E VERSITAT
WURZBURG
Visualization of Graphs
Lecture 6:
- Orthogonal Layouts

a8

[A

%é éé N Johannes Zink
/ Summer semester 2024

Orthogonal Layout — Applications

ER diagram in OGDF

Orthogonal Layout — Applications

winteriacer
Transformer
[Fransformi) RoquestMotaData RequestHeadars
Lgetsupportedinputs() ; [headers - RequesiHieaders [Roquosttioadars |
Fead
[+ gotsupportedOutputs() 1 1
1 «nirfacen «usess |TransportMessageContext
TransportManager

SomeRequestHeaders

Header|
Header2

registerProvider;] |-
]
+getTransformer() [tgetURI) Header3
; t ResponsoMetaData Headert

headers . ResponseHeaders
1 i
“inierfacen

1
TransportSendListener T
FronReceneResporsel] header2
[onErmor() TransportManagerimpl header3
headerd
1 winterface s
i TransportEndPoint
ServiceTransportSender n EndPointConfiguration
[FgeEndPamt) - [tgatSonizoRafl)
1getURIY) Ry
_ getCe) l l+provider-zpecific : XmiObject
wiveriace LgeiProvider() 1 1
L MetaData()
dinterfacen fotaData() “interiacen
] XmiObject
TransportSender +deleteEndPaini() 1 YN
getSandParams() +suspendEndPoirt()
+getPaylod() +resumeEnaPoint()
+getCradentiaiCaliback() +sendMessageAsync)
: +getEndPaints)
| +getEndPoint()
\ +creale TransportConfext))
| +getProviderCanfiguration)
| +get...SchemaType()
| +updateEndPoint)
I
I
} ausass
I
} SomeTransportProvider

ER diagram in OGDF i

UML diagram by Oracle

Orthogonal Layout — Applications

winteriacer
Transformer

iransiormi)

[+ getSupportedinputs()

|+ gotsupporteacutputsp

ER diagram in OGDF

-

RequestMotaData
, [theaders : RequesiHeaders

“nterfacen
TransportManager

«usess [TransportMessageContoxt

registarProvider) |- —— ==
)

nterfacen
TransportSendListanor
[tonReceiveResponse()

1
+getT

) [+getURI()

S

RespanseMotaData

headers . ResponseHeaders

SomeRequestHeaders

Header!
Header2
-Headerd
Headerd

1
headerl
header2
header3

[onErmor() TransportManagerimpl
P —
HD[\ﬁelg 77777
i
1 winterfaces
ausess 1 .
ServiceTransportSender| | TransportEnapeint
+getSenviceRef)
[tgeiEndPaint) ! [Sertrin
| LigetC
i wintertacen getProvider() 1
o \ TransportProvider +ereateRequestMetaDataf)
dinterfacen Datai)
1
TranspartSendar H +deteteEndPoint)
[*gatSandParams(} K—- +suspandEndPoint()
+getPayload]) +resumeEnaPoint()
+getCradentiaiCaliback() +sendMessageAsync)
: +getEndPaints)
| +getEndPoint()
\ +creale TransportContext)
| +getProviderConfigurationt)
| +gel..SchemaType()
| +updateEndPoint)
I
I
E—
I
} SomeTransportProvider SWE@

i

EndPointConfiguration

[+ - URT
[+ provider-specific : XmiObject

headerd

winterfaces
XmiObject
£

RAAD VAN BESTUUR

BESTUURSCOLLEGE

L STUDENTENRAAD

ALGEMEEN DIRECTEUR

" fand HWB

Departements-

raad LeO raad SAW

DocC

HWE

DEP | Doc
SR | IWT

DEP
SR

Opleidings- |
raden |

Opleidings-
raden

Doc
LeO

DEP DOC || DEP
SR SAW || SR

Opleidings-
raden

Opleidings-
raden

Organigram of HS Limburg

UML diagram by

Oracle

Orthogonal Layout — Applications

winterfaces
man;:::}furmwr RequestMataData
Lgetsupportedinputs() [headers RequesiHeaders
‘ —

|+ gotsupportedoutputsp

«usess [TransportMessageContoxt

wintarfacan
TransportManager SomeRequestHeaders
Header!

\ +rsg!slsrPlawdsr{J) ————— ;
Header2
oo) [rgetURID) T

; t RespanseMotaData Headerd
heaters | ResponseHeaders

dnieraces !
TransportSendListonor | Tieadert
[ronReceiveResponse() | header2
[ronEmor) \ TransportManagerimpl header3

Vo headerd
notfes |
s
I
: Jees . winteriacen
ServiceTransportSender TransportEndPoint
e I X gelSorviceRen) EndPointConfiguration
! gettmig TR
| - +getC [+provider-specific : Xml|Object
wintertacen Provider() 1 1
5 I TransportProvider e ciMetaDaa) e
winterfacen fotaDatal) -
TransportSender : vdelereEndPomeJ 1 xm'jm
[*gatSandParams(} K—- +suspandEndPoint()
+getPayload() +resumeEnaPoint()
[+getCradentialCatibacki) +sendMessageAsync()
; +gotEndPoints()
| +getEndPoint()
| +oreale TransportConfext()
| +getProviderConfigurationt)
| +gel..SchemaType()
| +updateEndPoint)
|
|
| ausass
{SomaEndPaintConfiguration
|
} SomeTransportProvider SWE@ 0.1

: : 1
ER diagram in OGDF UML diagram by Oracle

RAAD VAN BESTUUR

BESTUURSCOLLEGE L STUDENTENRAAD
[

ALGEMEEN DIRECTEUR

[|
Departements-

" raad HWB T madrr adte0 || tasdsaw
] |1 L\ [I;\

pocC DEP‘ DOC || DEP DOC | | DEP DOC || DEP : ' ;
HWB || SR | IWT || SR LeO | | SR SAW || SR : : i :
Opleidings- Opleidings- Opleidings- Opleidings- £ o 0 F {7 Viop® + ¥ BT J;:L’M £
raden | raden raden raden ;J;

Organigram of HS Limburg Circuit diagram by Jeff Atwood

Orthogonal Layout — Definition

Definition.
A drawing I of a graph G is called orthogonal if

Orthogonal Layout — Definition

Definition.
Q A drawing I of a graph G is called orthogonal if
O : : :
4 B vertices are drawn as points on a grid,
O
O O

Orthogonal Layout — Definition

Definition.
A drawing I of a graph G is called orthogonal if

B vertices are drawn as points on a grid,

B each edge is represented as a sequence of alternating
horizontal and vertical line segments of the grid, and

Orthogonal Layout — Definition

Definition.
A drawing I of a graph G is called orthogonal if

B vertices are drawn as points on a grid,

B each edge is represented as a sequence of alternating
horizontal and vertical line segments of the grid, and

B pairs of edges are disjoint or cross orthogonally.

Orthogonal Layout — Definition

Observations.

Definition.
A drawing I of a graph G is called orthogonal if

B vertices are drawn as points on a grid,

B each edge is represented as a sequence of alternating
horizontal and vertical line segments of the grid, and

B pairs of edges are disjoint or cross orthogonally.

Orthogonal Layout — Definition

Definition.
A drawing I of a graph G is called orthogonal if

B vertices are drawn as points on a grid,

B each edge is represented as a sequence of alternating
horizontal and vertical line segments of the grid, and

B pairs of edges are disjoint or cross orthogonally.

Observations.

m Edges lie on a grid =
bends lie on grid points

Orthogonal Layout — Definition

Definition.
A drawing I of a graph G is called orthogonal if

B vertices are drawn as points on a grid,

B each edge is represented as a sequence of alternating
horizontal and vertical line segments of the grid, and

B pairs of edges are disjoint or cross orthogonally.

Observations.

m Edges lie on a grid =
bends lie on grid points

B Max. degree of each
vertex Is at most 4

Orthogonal Layout — Definition

Definition.
A drawing I of a graph G is called orthogonal if

B vertices are drawn as points on a grid,

B each edge is represented as a sequence of alternating
horizontal and vertical line segments of the grid, and

B pairs of edges are disjoint or cross orthogonally.

Observations.

m Edges lie on a grid =
bends lie on grid points

B Max. degree of each
vertex Is at most 4

B Otherwise _+_

Orthogonal Layout — Definition

Definition.
A drawing I of a graph G is called orthogonal if

B vertices are drawn as points on a grid,

B each edge is represented as a sequence of alternating
horizontal and vertical line segments of the grid, and

B pairs of edges are disjoint or cross orthogonally.

Observations.

m Edges lie on a grid =
bends lie on grid points

B Max. degree of each
vertex Is at most 4

B Otherwise _?_:

Orthogonal Layout — Definition

Definition.
A drawing I of a graph G is called orthogonal if

B vertices are drawn as points on a grid,

B each edge is represented as a sequence of alternating
horizontal and vertical line segments of the grid, and

B pairs of edges are disjoint or cross orthogonally.

Observations.

m Edges lie on a grid =
bends lie on grid points

B Max. degree of each
vertex Is at most 4

B Otherwise _?_: L1
|

- 10

Orthogonal Layout — Definition

Definition.
A drawing I of a graph G is called orthogonal if

B vertices are drawn as points on a grid,

B each edge is represented as a sequence of alternating
horizontal and vertical line segments of the grid, and

B pairs of edges are disjoint or cross orthogonally.

Observations. Planarization.

m Edges lie on a grid =
bends lie on grid points

B Max. degree of each
vertex Is at most 4

B Otherwise _?_: L1
|

- 11

Orthogonal Layout — Definition

Definition.
A drawing I of a graph G is called orthogonal if

B vertices are drawn as points on a grid,

B each edge is represented as a sequence of alternating
horizontal and vertical line segments of the grid, and

B pairs of edges are disjoint or cross orthogonally.

Observations. Planarization.

m Edges lie on a grid = B Fix embedding

bends lie on grid points

B Max. degree of each
vertex Is at most 4

B Otherwise _?_: L1
|

- 12

Orthogonal Layout — Definition

Definition.
A drawing I of a graph G is called orthogonal if

B vertices are drawn as points on a grid,

B each edge is represented as a sequence of alternating
horizontal and vertical line segments of the grid, and

B pairs of edges are disjoint or cross orthogonally.

Observations. Planarization.

m Edges lie on a grid = B Fix embedding

bends lie on grid points B Crossings become

B Max. degree of each vertices

vertex Is at most 4

B Otherwise _?_: L1
|

- 13

Orthogonal Layout — Definition

Definition.
A drawing I of a graph G is called orthogonal if

B vertices are drawn as points on a grid,

B each edge is represented as a sequence of alternating
horizontal and vertical line segments of the grid, and

B pairs of edges are disjoint or cross orthogonally.

Observations. Planarization.

m Edges lie on a grid = B Fix embedding

bends lie on grid points B Crossings become

B Max. degree of each vertices

vertex 1s at most 4
. —»
B Otherwise _?_: L1

- 14

Orthogonal Layout — Definition

Definition.
A drawing I of a graph G is called orthogonal if

B vertices are drawn as points on a grid,

B each edge is represented as a sequence of alternating
horizontal and vertical line segments of the grid, and

B pairs of edges are disjoint or cross orthogonally.

Observations. Planarization.

m Edges lie on a grid = B Fix embedding

bends lie on grid points B Crossings become

B Max. degree of each vertices

vertex 1s at most 4
. —»
B Otherwise _?_: L1

- 15

Orthogonal Layout — Definition

Definition.
A drawing I of a graph G is called orthogonal if

B vertices are drawn as points on a grid,

B each edge is represented as a sequence of alternating
horizontal and vertical line segments of the grid, and

B pairs of edges are disjoint or cross orthogonally.

Observations. Planarization. Aesthetic criteria to optimize.

m Edges lie on a grid = B Fix embedding

bends lie on grid points B Crossings become

B Max. degree of each vertices

vertex 1s at most 4
. —»
B Otherwise _?_: L1

- 16

Orthogonal Layout — Definition

Definition.
A drawing I of a graph G is called orthogonal if

B vertices are drawn as points on a grid,

B each edge is represented as a sequence of alternating
horizontal and vertical line segments of the grid, and

B pairs of edges are disjoint or cross orthogonally.

Observations. Planarization. Aesthetic criteria to optimize.

m Edges lie on a grid = m Fix embedding B Number of bends

bends lie on grid points B Crossings become

B Max. degree of each vertices

vertex 1s at most 4
. —»
B Otherwise _?_: L1

- 17

Orthogonal Layout — Definition

Definition.
A drawing I of a graph G is called orthogonal if

B vertices are drawn as points on a grid,

B each edge is represented as a sequence of alternating
horizontal and vertical line segments of the grid, and

B pairs of edges are disjoint or cross orthogonally.

Observations. Planarization. Aesthetic criteria to optimize.

m Edges lie on a grid = m Fix embedding B Number of bends

bends lie on grid points B Crossings become B Length of edges

B Max. degree of each vertices

vertex 1s at most 4
. —»
B Otherwise _?_: L1

- 18

Orthogonal Layout — Definition

Definition.
A drawing I of a graph G is called orthogonal if

B vertices are drawn as points on a grid,

B each edge is represented as a sequence of alternating
horizontal and vertical line segments of the grid, and

B pairs of edges are disjoint or cross orthogonally.

Observations. Planarization. Aesthetic criteria to optimize.
B Edges lie on a grid = B Fix embedding B Number of bends

bends lie on grid points B Crossings become B Length of edges
B Max. degree of each vertices m Width, height, area

vertex 1s at most 4
. —»
B Otherwise _?_: L1

- 19

Orthogonal Layout — Definition

Observations.

m Edges lie on a grid =
bends lie on grid points

B Max. degree of each
vertex Is at most 4

B Otherwise _?_: L1
|

Definition.
A drawing I of a graph G is called orthogonal if

B vertices are drawn as points on a grid,

B each edge is represented as a sequence of alternating
horizontal and vertical line segments of the grid, and

B pairs of edges are disjoint or cross orthogonally.

Planarization. Aesthetic criteria to optimize.
B Fix embedding B Number of bends
B Crossings become B Length of edges

vertices B Width, height, area

+ . + B Monotonicity of edges
m ..

- 20

Topology — Shape — Metrics

Three-step approach: [Tamassia 1987]

TOPOLOQY — SHAPE — METRICS

Topology — Shape — Metrics

Three-step approach: [Tamassia 1987]

V(G) — {Ula U2, U3, U4}
E(G) = {v1v2,v1v3, V104, V203, V24 }

TOPOLOQY — SHAPE — METRICS

Topology — Shape — Metrics

Three-step approach:

V(G) — {Ula U2, U3, U4}
E(G) = {v1v2,v1v3, V104, V203, V24 }

combinatorial

embedding/
planarization

4

1
TOPOLOGY —

[Tamassia 1987]

SHAPE —

METRICS

Topology — Shape — Metrics

Three-step approach: [Tamassia 1987]

V(G) — {vla U2, U3, /04}
E(G) = {v1v2, v1v3, V104, V203, Va4 }

combinatorial

embedding/
reduce planarization
crossings
4
2
1

TOPOLOQY — SHAPE — METRICS

Topology — Shape — Metrics

Three-step approach: [Tamassia 1987]

V(G) — {vla U2, U3, /04}
E(G) = {v1v2, v1v3, V104, V203, Va4 }

combinatorial

embedding/
reduce planarization
crossings
4 " = 4

- 1 o--m--- <3 i

orthogonal i i i

2 representation N B

1 2

TOPOLOQY — SHAPE — METRICS

Topology — Shape — Metrics

Three-step approach:

V(G) — {vla v2, U3, /04}
E(G) = {v1va, v1v3, U104, V2U3, V24 }

combinatorial

embedding/
reduce planarization
crossings
4

1
TOPOLOGY

bend minimization

[Tamassia 1987]

—>> 1 S <3
orthogonal i i
representation A .25). _____
SHAPE —

ETRICS

Topology — Shape — Metrics

Three-step approach: [Tamassia 1987]

V(G) — {?)1,?)2,’(]3,’04} 04

E(G) = {v1v2, v1v3, V104, V203, U204 } 1 3
combinatorial I 2
embedding/ planar

reduce planarization orthog_onal
crossings drawing

VAN - minimization [— 7

1

orthogonal i
2 representation = teeooe- .25).

1
TOPOLOQY — SHAPE — METRICS

Topology — Shape — Metrics

Three-step approach: [Tamassia 1987]

V(G) — {vla v2, U3, /04}
E(G) = {v1va, v1v3, U104, V2U3, V24 }

combinatorial
embedding/

reduce planarization
crossings

:

orthogonal
2 representation

1
TOPOLOQY — SHAPE

—=

04

15 3
i2
planar |
orthog_onal Joe i
drawing .
mization

— METRICS

Topology — Shape — Metrics

Three-step approach: [Tamassia 1987]

V(G) — {vla v2, U3, /04}
E(G) = {v1va, v1v3, U104, V2U3, V24 }

combinatorial
embedding/

reduce planarization
crossings

’

orthogonal
2 representation

1
TOPOLOQY — SHAPE

—

04

15 3
i2
planar |
orthog_onal Joe i
drawing .
mization

— METRICS

Orthogonal Representation

Idea.
Describe orthogonal drawing combinatorially.

Orthogonal Representation

Idea.
Describe orthogonal drawing combinatorially.

Definitions.
Let G be a plane graph with set F' of faces and outer face fy € F'.

Orthogonal Representation

Idea.
Describe orthogonal drawing combinatorially.

Definitions.
Let G be a plane graph with set F' of faces and outer face fy € F'.

B Let ¢ be an edge

Orthogonal Representation

Idea.
Describe orthogonal drawing combinatorially.

6,
Definitions. T
Let G be a plane graph with set F' of faces and outer face fy € F'. @ ‘:.
B Let ¢ be an edge with the face f to the right. {

4
-
-

Orthogonal Representation

Idea.
Describe orthogonal drawing combinatorially.

6,
Definitions. T
Let G be a plane graph with set F' of faces and outer face fy € F'. @ ‘:.
B Let ¢ be an edge with the face f to the right. {

An edge description of ¢ w.r.t. f is a triple (¢, 0, «) where

4
-
-

Orthogonal Representation

Idea.
Describe orthogonal drawing combinatorially.

6,
Definitions. T
Let G be a plane graph with set F' of faces and outer face fy € F'. @ ‘:.
B Let ¢ be an edge with the face f to the right. {

An edge description of ¢ w.r.t. f is a triple (¢, 0, «) where
m 0 c {01} (where O = right bend, 1 = left bend) o=

Orthogonal Representation

Idea.
Describe orthogonal drawing combinatorially.

6,
Definitions. T
Let G be a plane graph with set F' of faces and outer face fy € F'. @ ‘:.
B Let ¢ be an edge with the face f to the right. . {

An edge description of ¢ w.r.t. f is a triple (¢, 0, «) where
m 0 c {01} (where O = right bend, 1 = left bend) o=

Orthogonal Representation

Idea.
Describe orthogonal drawing combinatorially.

6,
Definitions. T
Let G be a plane graph with set F' of faces and outer face fy € F'. @ ‘:.
B Let ¢ be an edge with the face f to the right. 0 . {

An edge description of ¢ w.r.t. f is a triple (¢, 0, «) where
m 0 c {01} (where O = right bend, 1 = left bend) o=

Orthogonal Representation

Idea.
Describe orthogonal drawing combinatorially.

6,
Definitions. RN
Let G be a plane graph with set F' of faces and outer face fy € F'. @ ‘:.
B Let ¢ be an edge with the face f to the right. 0 . {

An edge description of ¢ w.r.t. f is a triple (¢, 0, «) where
m 0 c {01} (where O = right bend, 1 = left bend) o=

Orthogonal Representation

Idea.
Describe orthogonal drawing combinatorially.

Definitions.
Let G be a plane graph with set F' of faces and outer face fy € F'.

B Let ¢ be an edge with the face f to the right.
An edge description of ¢ w.r.t. f is a triple (¢, 0, «) where

m e {0,1}* (where 0 = right bend, 1 = left bend)

e

0 ™,
]

0 z
1 \

4
-
-

Orthogonal Representation

Idea.
Describe orthogonal drawing combinatorially.

Definitions.
Let G be a plane graph with set F' of faces and outer face fy € F'.

B Let ¢ be an edge with the face f to the right.
An edge description of ¢ w.r.t. f is a triple (¢, 0, «) where

m e {0,1}* (where 0 = right bend, 1 = left bend)

B «isangle € {7,m, 3{,2%} between ¢ and next edge ¢’

£ .
0 N
7))
0 {
1 \
(e, 100,)

Orthogonal Representation

Idea.
Describe orthogonal drawing combinatorially.

Definitions.
Let G be a plane graph with set F' of faces and outer face fy € F'.

B Let ¢ be an edge with the face f to the right.
An edge description of ¢ w.r.t. f is a triple (¢, 0, «) where

m e {0,1}* (where 0 = right bend, 1 = left bend)

B «isangle € {7,m, 3{,2%} between ¢ and next edge ¢’

4
-
-

Orthogonal Representation

Idea.
Describe orthogonal drawing combinatorially.

Definitions.
Let G be a plane graph with set F' of faces and outer face fy € F'.

B Let ¢ be an edge with the face f to the right.
An edge description of ¢ w.r.t. f is a triple (¢, 0, «) where

m e {0,1}* (where 0 = right bend, 1 = left bend)

B «isangle € {7,m, 3{,2%} between ¢ and next edge ¢’

4
-
-

Orthogonal Representation

Idea.
Describe orthogonal drawing combinatorially.
e/
Definitions. o\ / -
Let G be a plane graph with set F' of faces and outer face fy € F'. @ ‘:.
B Let ¢ be an edge with the face f to the right. 0 . {
An edge description of ¢ w.r.t. f is a triple (¢, 0,) where \
m e {0,11* (where 0 = right bend, 1 = left bend) o=
37 () 100, 7T)

B «isangle € {7, 7, 3,21} between ¢ and next edge ¢’

B A face representation H(f) of a face f is a clockwise ordered sequence
(e1,01, 1), (e2,02,2),...,(, Odeg(f)s (ldeg(f)) Of edge descriptions w.r.t. f.

Orthogonal Representation

Idea.
Describe orthogonal drawing combinatorially.
6,
Definitions. o\ /J T~
Let G be a plane graph with set F' of faces and outer face fy € F'. @ :.
B Let ¢ be an edge with the face f to the right. 0 . {
An edge description of ¢ w.r.t. f is a triple (¢, 0,) where \
m e {0,11* (where 0 = right bend, 1 = left bend) o=
B «isangle € {7,m, 3777,2%} between ¢ and next edge ¢’ (¢,100,)
B A face representation H(f) of a face f is a clockwise ordered sequence
(e1,01, 1), (e2,02,2),...,(, Odeg(f)s (ldeg(f)) Of edge descriptions w.r.t. f.

B An orthogonal representation H(G) of G is defined as

H(G) =1{H(f) | [€ F}.

Orthogonal Representation — Example

Orthogonal Representation — Example

Orthogonal Representation — Example

e |

Orthogonal Representation — Example

H(fO) — ((617 117 %)7 (657 1117 3%)7 (647 ®7 77)7 (637 @7 77)7 (627 ®7 %))
H(f1) = ((e1,00, %), (e2,0, %), (es,00, 7))
H(f2) — ((657 000, %)7 (667 11, %)7 (637 ®7 7T)7 (647 (Z)a %))

€1

Orthogonal Representation — Example

H(fO) — ((617 117 %)7 (657 1117 3%)7 (647 ®7 77)7 (637 @7 77)7 (627 ®7 %))
H(f1) = ((e1,00, %), (e2,0, %), (es,00, 7))
H(f2) — ((657 000, %)7 (667 11, %)7 (637 ®7 7T)7 (647 (Z)a %))

€3

@62 ’, T . . i . 1
Combinatorial “drawing” of H(G)?
€6
€1 4

O

€5

Orthogonal Representation — Example

H(fO) — ((617 117 %)7 (657 1117 3%)7 (647 ®7 77)7 (637 @7 77)7 (627 ®7 %))
H(f1) = ((e1,00, %), (e2,0, %), (es,00, 7))
H(f2) — ((657 000, %)7 (667 11, %)7 (637 ®7 7T)7 (647 (Z)a %))

fo

€1

Orthogonal Representation — Example

H(fO) — ((617 117 %)7 (657 1117 3%)7 (647 ®7 77)7 (637 @7 77)7 (627 ®7 %))
H(f1) = ((e1,00, %), (e2,0, %), (es,00, 7))
H(f2) — ((657 000, %)7 (667 11, %)7 (637 ®7 7T)7 (647 (Z)a %))

1 €1

Co

1

€1

Orthogonal Representation — Example

H(fO) — ((617 117 %)7 (657 1117 3%)7 (647 ®7 77)7 (637 @7 77)7 (627 ®7 %))

H(fl) — ((617 00, 377?)7 (627 2, %)7 (667 0077-‘-))
H(f2) — ((657 000, %)7 (667 11, g)a (637 (bv 7T)7 (647 (Z)v %))

161 4

fo

N[

€1

Orthogonal Representation — Example

H(fO) — ((617 117 %)7 (657 1117 3%)7 (647 ®7 77)7 (637 @7 77)7 (627 ®7 %))
H(f1) = ((e1,00, %), (e2,0, %), (es,00, 7))
H(f2) — ((657 000, %)7 (667 11, %)7 (637 ®7 7T)7 (647 (Z)a %))

1 €1

fo | |
1

1

€1

Orthogonal Representation — Example

H(fO) — ((617 117 %)7 (657 1117 3%)7 (647 ®7 77)7 (637 @7 77)7 (627 ®7 %))
H(f1) = ((e1,00, %), (e2,0, %), (es,00, 7))
H(f2) — ((657 000, %)7 (667 11, %)7 (637 @7 7T)7 (647 (Z)a %))

161 4

‘|

€1

- 10

Orthogonal Representation — Example

H(fO) — ((617 117 %)7 (657 1117 3%)7 (647 ®7 77)7 (637 @7 77)7 (627 ®7 %))
H(f1) = ((e1,00, %), (e2,0, %), (es,00, 7))
H(f2) — ((657 000, %)7 (667 11, %)7 (637 @7 7T)7 (647 (Z)a %))

1 €1

fo | |
1

1

€1

Orthogonal Representation — Example

H(fO) — ((617 117 %)7 (657 1117 3%)7 (647 ®7 77)7 (637 @7 77)7 (627 ®7 %))
H(f1) = ((e1,00, %), (e2,0, %), (es,00, 7))
H(f2) — ((657 000, %)7 (667 11, %)7 (637 @7 7T)7 (647 (Z)a %))

161 4

fo | |
1 T

€1

Orthogonal Representation — Example

H(fO) — ((617 117 %)7 (657 1117 3%)7 (647 ®7 77)7 (637 @7 77)7 (627 ®7 %))
H(f1) = ((e1,00, %), (e2,0, %), (es,00, 7))
H(f2) — ((657 000, %)7 (667 11, %)7 (637 @7 7T)7 (647 (Z)a %))

€3

N

o,
@e
€1 4

€5

fo

161 4

ji—l e [
v€4 \2

- 13

Orthogonal Representation — Example

H(fO) — ((617 117 %)7 (657 1117 3%)7 (647 ®7 77)7 (637 @7 77)7 (627 ®7 %))
H(f1) = ((e1,00, %), (e2,0, %), (es,00, 7))
H(f2) — ((657 000, %)7 (667 11, %)7 (637 ®7 7T)7 (647 (Z)a %))

€3

N

o,
@e
€1 4

€5

fo

1 61 4
[Z[1 ﬂg\@sﬂg\e@
4

_14

Orthogonal Representation — Example

H(fO) — ((617 117 %)7 (657 1117 3%)7 (647 ®7 77)7 (637 @7 77)7 (627 ®7 %))
H(f1) = ((e1,00, %), (e2,0, %), (es,00, 7))
H(f2) — ((657 000, %)7 (667 11, %)7 (637 ®7 7T)7 (647 (Z)a %))

€3

N

o,
@e
€1 4

€5

fo

161 4
Ji—l N @
€2 €4

- 15

Orthogonal Representation — Example

H(fO) — ((617 117 %)7 (657 1117 3%)7 (647 ®7 77)7 (637 @7 77)7 (627 ®7 %))
H(f1) = ((e1,00, %), (e2,0, %), (es,00, 7))
H(f2) — ((657 000, %)7 (667 11, %)7 (637 ®7 7T)7 (647 (Z)a %))

161 4
Jo
1 AV AN
€2 €4

€1

- 16

Orthogonal Representation — Example

H(fO) — ((617 117 %)7 (657 1117 3%)7 (647 ®7 77)7 (637 @7 77)7 (627 ®7 %))
H(f1) = ((e1,00, %), (e2,0, %), (es,00, 7))
H(f2) — ((657 000, %)7 (667 11, %)7 (637 ®7 7T)7 (647 (Z)a %))

€3

N

O

o,
@e
€1 4

€5

O

161 4
Jo
1 AV AN
€2 €4
J1

- 17

Orthogonal Representation — Example

H(fO) — ((617 117 %)7 (657 1117 3%)7 (647 ®7 77)7 (637 @7 77)7 (627 ®7 %))
H(f1) = ((e1,00, %), (e2,0, %), (es,00, 7))
H(f2) — ((657 000, %)7 (667 11, %)7 (637 ®7 7T)7 (647 (Z)a %))

161 4
fo 0 O
1 AWEA TR /3
O 0, \2
€2 €4
J1

€1

- 18

Orthogonal Representation — Example

H(fO) — ((617 117 %)7 (657 1117 3%)7 (647 ®7 77)7 (637 @7 77)7 (627 ®7 %))
H(f1) = ((e1,00, %), (e2,0, %), (es,00, 7))
H(f2) — ((657 000, %)7 (667 11, %)7 (637 ®7 7T)7 (647 (Z)a %))

1 €1 4
Jo 0 0
1 5\ /ANE3 [37
3r 0 0 oo
> €2 €4
f1

€1

- 19

Orthogonal Representation — Example

H(fo) = ((e1,11, 3),

H(f1) = (e,

(es, 111,
00, 3), (e2,

H(f2) = ((es,000, 5), (es, 11,

o,
@e
€1 4

fo

), (ea, 0,), (e3,0,7), (e2,0, %))
0, %), (es,00, 7))
7), (e3,0,7), (es,0, %))

ﬂ N

7627T

@
?2

- 20

Orthogonal Representation — Example

H(fo) = ((e1,11, Z), (es, 111, 3X), (€4, 0,), (e3, 0, 7), (2,0, Z))
H(f1) = ((ex, OO) (6 . %)7 (es,00, 7))
H(f2) — ((657 000, 3 P)7 (667 11, g)a (637 @7 7T)7 (647 (Z)v %))

fo

€1

1
4&

l \ NE3/7TN

7627T

€6

@
?2

€5

- 21

Orthogonal Representation — Example

H(fo) = ((e1,11, 3),

H(f1) = (e,

(es, 111,
00, 3), (e2, 0

H(f2) = ((es,000, 5), (es, 11,

o,
@e
€1 4

fo 0
1 [3

(647 (2)7

%), (e, 0,7, (e3,0,7), (e2,0, 5))
y %)7 (667 OO’ 7'('))
%), (637 @7 7T)7

2))

- 22

Orthogonal Representation — Example

H(fo) = ((e1,11, Z), (es, 111, 3X), (€4, 0,), (e3, 0, 7), (2,0, Z))
H(f1) = ((ex, OO) (6 . %)7 (es,00, 7))
H(f2) — ((657 000, 3 P)7 (667 11, g)a (637 @7 7T)7 (647 (Z)v %))

1
fo
1 L%Q,w HAVAaW.
@62 — Y 62W
0
€14)
€5

Orthogonal Representation — Example

H(fo) = ((e1,11, Z), (es, 111, 3X), (€4, 0,), (e3, 0, 7), (2,0, Z))
H(f1) = ((ex, OO) (6 . %)7 (es,00, 7))
H(f2) — ((657 000, 3 P)7 (667 11, g)a (637 @7 7T)7 (647 (Z)v %))

1
fo
! L%Q, WAVALTAW
€3 0 a2 6 7T
e
@66@ * 6 k&
et~ ;

Orthogonal Representation — Example

H(fo) = ((e1,11, Z), (es, 111, 3X), (€4, 0,), (e3, 0, 7), (2,0, Z))

H(f1) = ((ex, OO) (6 . %)7 (es,00, 7))
H(f2) — ((657 000, 3 P)7 (667 11, g)a (637 @7 7T)7 (647 (Z)v %))

1
Jo
1 [% /\63f\
63 O 7T)7T 3 6 71'
@66@64 6 /2
€1 4 o 0

Orthogonal Representation — Example

H(fo) = ((e1,11, Z), (es, 111, 3X), (€4, 0,), (e3, 0, 7), (2,0, Z))

H(f1) = ((ex, OO) (6 . %)7 (es,00, 7))
H(f2) — ((657 000, 3 P)7 (667 11, g)a (637 @7 7T)7 (647 (Z)v %))

1
fo
1 3 /\63f\
63 0 7T)7T 3 6 71'
er~ ;

Orthogonal Representation — Example

H(fo) = ((e1,11, Z), (es, 111, 3X), (€4, 0,), (e3, 0, 7), (2,0, Z))

H(f1) = ((ex, OO) (6 . %)7 (es,00, 7))
H(f2) — ((657 000, 3 P)7 (667 11, g)a (637 @7 7T)7 (647 (Z)v %))

1
Jo
1 [zﬁ,w - /\63/\
O % 2 71' 7'('
1 €6 1 f2
0

- 27

Orthogonal Representation — Example

H(fO) — ((617 117 %)7 (657 1117 3%)7 (647 ®7 77)7 (637 @7 77)7 (627 ®7 %))
H(f1) = ((e1,00, %), (e2,0, %), (es,00, 7))
H(f2) — ((657 000, %)7 (667 11, %)7 (637 ®7 7T)7 (647 (Z)a %))

1 1
fo 0 O
1—4? v b) OSSO L 7
O > Zf 2 PR 7T 4
0 L
1 €6 1 f2
0 0
1 €5 1

- 28

Orthogonal Representation — Example

H(fO) — ((617 117 %)7 (657 1117 3%)7 (647 ®7 77)7 (637 @7 77)7 (627 ®7 %))
H(f1) = ((e1,00, %), (e2,0, %), (es,00, 7))
H(f2) — ((657 000, %)7 (667 11, %)7 (637 @7 7T)7 (647 (Z)a %))

1 1
Jo 0 0
1—4? SRR AN SR T oa W,
0 1)
1 €6 1 f2
0 0
1 €5 1

- 29

Orthogonal Representation — Example

H(fO) — ((617 117 %)7 (657 1117 3%)7 (647 ®7 77)7 (637 @7 77)7 (627 ®7 %))
H(f1) = ((e1,00, %), (e2,0, %), (es,00, 7))
H(f2) — ((657 0007 %)7 (667 117 % 7(637 ®77T)7 (647 (Z)v %))

A
fo L0 0
1 2
0 |7 % €2 r €3 1 €4 3x
e3 2 37 —0— p 77 2
o 2f 2 |2 2
1
€6 Cf_;/ . 0 o /2
1 €6 1
€5 ° 0 0

- 30

Orthogonal Representation — Example

H(fO) — ((617 117 %)7 (657 1117 3771-)7 (647 ®7 77)7 (637 ®7 77)7 (627 ®7 %))
H(f1) = ((e1,00, %), (e2,0, %), (es,00, 7))
H(f2) — ((657 0007 %)7 (667 117 % 7(637 @77‘-)7 (647 (Z)a %))

1 €1 4
fo L0 0
1 2
0 =" €2 1 €3 1 €4 3p
e3 2 3w p p 77 2
o 2 52 2
J1
ee @ €4 0 0 f2
1 €6 1
€5 ° 0 0
1 €5 1

Coordinates are not fixed yet!

- 31

Correctness of an Orthogonal Representation

1 e fO
(H1) H(G) corresponds to F', fo. 0 OI
us us e .
10—207T 32 % 45037
2 2
A
1 €6 f2
0 0

Correctness of an Orthogonal Representation

fo
(H1) H(G) corresponds to F', fo. 1|0 oll
5 5 €2 1 €3 1 €4
(H2) For each edge shared by faces f and g with ! 0 2 o — =
2]2 2
(7517&1)EH(f) and(7527&2)61{(9) 0 fl 0
1 1 f2
0 0

Correctness of an Orthogonal Representation

€1 Jo
(H1) H(G) corresponds to F', fo. —1ml
o 5 €2 5 €3 5 €4 7
(H2) For each edge shared by faces f and g with ! 0 2 W - U 3037
(,01,01) € H(f) and (L0, a0) € H(g), O 1 20 2 2
the sequence 01 is like 05 1 . o
0 0

Correctness of an Orthogonal Representation

€1 fO
(H1) H(G) corresponds to F', fo. ‘oo
_ 1 % % €2 7w €3 1 €4 3x
(H2) For each edge shared by faces f and ¢ with 0 =|” 3z a2
(7517&1)EH(f) and(7627&2)61{(9)' 0 fl 202 :
the sequence 07 is like 0», but reversed and inverted. 1 w1 J2
0 0

Correctness of an Orthogonal Representation

€1 fO
(H1) H(G) corresponds to F', fo. ‘oo
_ 1 5 5 €2 1 €3 1 €4 3
(H2) For each edge shared by faces f and ¢ with 0 =|” 3z a2
(7517&1)EH(f) and(7627&2)61{(9)' 0 fl 202 2
the sequence 07 is like 0», but reversed and inverted. 1 w1 J2
(H3) Let |0|g (resp. |0|1) be the number of zeros . : e : .
(resp. ones) in 0, and let r = (e, 0,).

Let C(r) := |6]o — |01 — o/ % + 2.

Correctness of an Orthogonal Representation
(H1) H(G) corresponds to F', fo.
(H2) For each edge shared by faces f and ¢ with 0

(7517&1)EH(f) and (7627&2)61{(9)1
the sequence 07 is like 0,, but reversed and inverted.

(H3) Let |0|g (resp. |0|1) be the number of zeros :

(resp. ones) in 0, and let r = (e, 0,).
Let C(r) :=[d]o — 0|1 — /T + 2.
For each face f, it holds that:

) . fo
0 0

12 2€ 71 €3 7 €4 3n
s .- m |z T x|’

2 ! 2 |2 2

L 0

0

€5 1

Correctness of an Orthogonal Representation
(H1) H(G) corresponds to F', fo.

(H2) For each edge

(7517&1)EH(f) and (7627&2)61{(9)1
the sequence 07 is like 0,, but reversed and inverted.

(H3) Let |0|g (resp. |0|1) be the number of zeros :

Io OI
shared by faces f and g with ! 0 - :

(resp. ones) in 0, and let r = (e, 0,).
Let C(r) :=[d]o — 0|1 — /T + 2.
For each face f, it holds that:

S C(r)—{4 if f = fo

+4 otherwise.

Correctness of an Orthogonal Representation

1 €1 1 fO
(H1) H(G) corresponds to F', fo. 0 O
_ 1 5 5 €2 1 €3 1 €4 3x

(H2) For each edge shared by faces f and ¢ with 0 =|” 3z 0 O e

(7517&1)€H(f) and (7627&2)61{(9)' 0 fl 0

the sequence 07 is like 0», but reversed and inverted. 1 e 1 [
(H3) Let |0|g (resp. |0|1) be the number of zeros . : : .

(resp. ones) in 0, and let r = (e, 0,). O . 5 _

Let C(r) :=[d]o — 0|1 — /T + 2. (€30, 7)) i

For each face f, it holds that: C’((64, 0,5)= — — +2=

rCH(S) +4 otherwise. C’((%)) _ _ _ Lo—

Correctness of an Orthogonal Representation

1 €1 1 fO
(H1) H(G) corresponds to F', fo. 0 O
_ 1 5 5 €2 1 €3 1 €4 3x

(H2) For each edge shared by faces f and ¢ with 0 =|” 3z 0 O e

(7517&1)€H(f) and (7627&2)61{(9)' 0 fl 0

the sequence 07 is like 0», but reversed and inverted. 1 e 1 [
(H3) Let |0|g (resp. |0|1) be the number of zeros . : : .

(resp. ones) in 0, and let r = (e, 0,). O _ B 5 _

Let C(r) :=[d]o — 0|1 — /T + 2. (€30, 7)) i

For each face f, it holds that: C’((64, 0,5)= — — +2=

rCH(S) +4 otherwise. C’((%)) _ _ _ Lo—

Correctness of an Orthogonal Representation

1 €1 1 fO
(H1) H(G) corresponds to F', fo. 0 O
_ 1 5 5 €2 1 €3 1 €4 3x

(H2) For each edge shared by faces f and ¢ with 0 =|” 3z 0 O e

(7517&1)€H(f) and (7627&2)61{(9)' 0 fl 0

the sequence 07 is like 0», but reversed and inverted. 1 e 1 [
(H3) Let |0|g (resp. |0|1) be the number of zeros . : : .

(resp. ones) in 0, and let r = (e, 0,). O _ 5 _

Let C(r) :=[d]o — 0|1 — /T + 2. (€30, 7)) i

For each face f, it holds that: C’((64, 0,5)= — — +2=

rCH(S) +4 otherwise. C’((%)) _ _ _ Lo—

Correctness of an Orthogonal Representation

1 €1 1 fO
(H1) H(G) corresponds to F', fo. 0 O
_ 1 g % €2 r €3 1 €4 3n

(H2) For each edge shared by faces f and ¢ with 0 =|” 3z 0 O e

(7517&1)€H(f) and (7627&2)61{(9)' 0 fl 0

the sequence 07 is like 0», but reversed and inverted. 1 e 1 [
(H3) Let |0|g (resp. |0|1) be the number of zeros . : : .

(resp. ones) in 0, and let r = (e, 0,). O _0_0_249—

Let C(r) :=[d]o — 0|1 — /T + 2. ((e3,0, 7)) = i

For each face f, it holds that: C’((64, 0,5)= — — +2=

rCH(S) +4 otherwise. C’((%)) _ _ _ Lo—

Correctness of an Orthogonal Representation

1 €1 1 fO
(H1) H(G) corresponds to F', fo. 0 O
_ 1 5 5 €2 1 €3 1 €4 3x

(H2) For each edge shared by faces f and ¢ with 0 =|” 3z 0 O e

(7517&1)€H(f) and (7627&2)61{(9)' 0 fl 0

the sequence 07 is like 0», but reversed and inverted. 1 e 1 [
(H3) Let |0|g (resp. |0|1) be the number of zeros . : : .

(resp. ones) in 0, and let r = (e, 0,). O 0 0-_24+92—0

Let C(r) :=[d]o — 0|1 — /T + 2. (€30, 7)) i

For each face f, it holds that: C’((64, 0,5)= — — +2=

rCH(S) +4 otherwise. C’((%)) _ _ _ Lo—

Correctness of an Orthogonal Representation

1 €1 1 fO
(H1) H(G) corresponds to F', fo. 0 O
_ 1 % % €2 7w €3 1 €4 3x

(H2) For each edge shared by faces f and ¢ with 0 =|” 3z 0 O e

(7517&1)€H(f) and (7527&2)61{(9)' 0 fl 0

the sequence 07 is like 0», but reversed and inverted. 1 e 1 [
(H3) Let |0|g (resp. |0|1) be the number of zeros . : : .

(resp. ones) in 0, and let r = (e, 0,). O 0 0-_24+92—0

Let C(r) :=[d]o — 0|1 — /T + 2. (€30, 7)) i

For each face f, it holds that: C((es,0,5))=0—-0—-1+42=

rCH(S) +4 otherwise. C’((711’@): _ _ 19—

Correctness of an Orthogonal Representation

1 €1 1 fO
(H1) H(G) corresponds to F', fo. 0 O
_ 1 % % €2 1 €3 1 €4 3

(H2) For each edge shared by faces f and ¢ with 0 =|” 3z 0 O e

(7517&1)€H(f) and (7627&2)61{(9)' 0 fl 0

the sequence 07 is like 0», but reversed and inverted. 1 TR
(H3) Let |0|g (resp. |0|1) be the number of zeros . : : .

(resp. ones) in 0, and let r = (e, 0,). O 0 0-_24+92—0

Let C(r) :=[d]o — 0|1 — /T + 2. (€30, 7)) i

For each face f, it holds that: C((es,0,5))=0—-0-142=1

rCH(S) +4 otherwise. C’((711’@): _ _ 19—

Correctness of an Orthogonal Representation

1 €1 1 fO
(H1) H(G) corresponds to F', fo. Io OI
_ 1 5 5 €2 5 €3 1 €4 3p

(H2) For each edge shared by faces f and ¢ with 0 =|” 3z 0 O e

(7517@1)€H(f) and (,(52,042)61{(9), 0 J1 0

the sequence 07 is like 0», but reversed and inverted. 1 —q 2
(H3) Let |0|g (resp. |0|1) be the number of zeros . : : .

(resp. ones) in 0, and let r = (e, 0,). O 0 0-_24+92—0

Let C(r) :=[d]o — 0|1 — /T + 2. ((e3,0,7) i

For each face f, it holds that: C((es,0,5)=0-0—-1+2=1

+4 otherwise.

%
) C(r)—{4 tI = C((¢5,000, 3
2

Correctness of an Orthogonal Representation

1 €1 1 fO
(H1) H(G) corresponds to F', fo. Io OI
_ 1 % % €2 7w €3 1 €4 3x
(H2) For each edge shared by faces f and ¢ with 0 =|” 3z 0 O e
(7517&1)€H(f) and (7527&2)61{(9)' 0 fl 0
the sequence 07 is like 0», but reversed and inverted. 1 —q 2
(H3) Let |0|g (resp. |0|1) be the number of zeros . : : .
(resp. ones) in 0, and let r = (e, 0,). O 0 0-_24+92—0
Let C(r) :=[d]o — 0|1 — /T + 2. (€30, 7)) i
For each face f, it holds that: C((es,0,5))=0—-0-142=1
3 c(r)_{j 'fti::fo C((75,000,2)) =3 -0 —1+2 =
rCH(S) +4 otherwise. C’((711’@): _ _ 19—

Correctness of an Orthogonal Representation

1 €1 1 fO
(H1) H(G) corresponds to F', fo. Io OI
_ 1 5 5 €2 5 €3 1 €4 3p

(H2) For each edge shared by faces f and ¢ with 0 =|” 3z 0 O e

(7517@1)€H(f) and (,(52,042)61{(9), 0 J1 0

the sequence 07 is like 0», but reversed and inverted. 1 —q 2
(H3) Let |0|g (resp. |0|1) be the number of zeros . : : .

(resp. ones) in 0, and let r = (e, 0,). O 0 0-_24+92—0

Let C(r) :=[d]o — 0|1 — /T + 2. (€30, 7)) i

For each face f, it holds that: C((es,0,5)=0-0—-1+2=1

+4 otherwise.

%
) C(r)—{4 tI = C((¢5,000, 3
2

Correctness of an Orthogonal Representation

1 €1 1 fO
(H1) H(G) corresponds to F', fo. 0 O
_ 1 g % €2 r €3 1 €4 3n

(H2) For each edge shared by faces f and ¢ with 0 =|” 3z 0 O e

(7517&1)€H(f) and (7527&2)61{(9)' 0 fl 0

the sequence 07 is like 0,, but reversed and inverted. 1 1 fr
(H3) Let |0|g (resp. |0|1) be the number of zeros . : : .

(resp. ones) in 0, and let r = (e, 0,). O 0 0-_24+92—0

Let C(r) :=[d]o — 0|1 — /T + 2. (3,0, 7)) = i

For each face f, it holds that: C’((e4, 0,Z)=0-0—-1+2=1

) =
N=3-0—14+2=4

> O(r)—{“ /= C((¢s,000,
,T)=0-2—-142=

+4 otherwise.
C«

Correctness of an Orthogonal Representation

1 €1 1 fO
(H1) H(G) corresponds to F', fo. 0 O
_ 1 g % €2 r €3 1 €4 3n

(H2) For each edge shared by faces f and ¢ with 0 =|” 3z 0 O e

(7517&1)€H(f) and (7527&2)61{(9)' 0 fl 0

the sequence 07 is like 0,, but reversed and inverted. 1 1 fr
(H3) Let |0|g (resp. |0|1) be the number of zeros . : : .

(resp. ones) in 0, and let r = (e, 0,). O 0 0-_24+92—0

Let C(r) :=[d]o — 0|1 — /T + 2. (3,0, 7)) = i

For each face f, it holds that: C’((e4, 0,Z)=0-0—-1+2=1

) =
N=3-0—14+2=4

> O(r)—{“ /= C((¢s,000,
L,I)=0-2—-1+42=—1

+4 otherwise.
C«

Correctness of an Orthogonal Representation

1 €1 1 fO
(H1) H(G) corresponds to F', fo. 0 O
_ 1 % % €2 1 €3 1 €4 3
(H2) For each edge shared by faces f and ¢ with 0 =|” 3z 0 O e
(7517&1)€H(f) and (7527&2)61{(9)' 0 fl 0
the sequence 07 is like 0», but reversed and inverted. 1 e 1 [
(H3) Let |0|g (resp. |0|1) be the number of zeros . : : .
(resp. ones) in 0, and let r = (e, 0,). O 0 0-_24+92—0
Let C(r) :=[d]o — 0|1 — /T + 2. ((e3,0, 7)) = i
For each face f, it holds that: C’((e4, 0,5)=0-0—-142=1
S C(T)_{j Ifti]f:fo C((+5,000,2)) =3—-0—1+2=4
rEH(f) T4 otherwise. C((,I)=0-2—-1+4+2=—1

Correctness of an Orthogonal Representation

1 €1 1 fO
(H1) H(G) corresponds to F', fo. 0 O
_ 1 % % €2 1 €3 1 €4 3
(H2) For each edge shared by faces f and ¢ with 0 =|” 3z 0 O e
(7517&1)€H(f) and (7527&2)61{(9)' 0 fl 0
the sequence 07 is like 0», but reversed and inverted. 1 e 1 [
(H3) Let |0|g (resp. |0|1) be the number of zeros . : : .
(resp. ones) in 0, and let r = (e, 0,). O 0 0-_24+92—0
Let C(r) :=[d]o — 0|1 — /T + 2. ((e3,0, 7)) = i
For each face f, it holds that: C’((e4, 0,5)=0-0—-142=1
S C(T)_{j Ifti]f:fo C((+5,000,2)) =3—-0—1+2=4
rEH(f) T4 otherwise. C((,I)=0-2—-1+4+2=—1

Correctness of an Orthogonal Representation

1 e fO
(H1) H(G) corresponds to F', fo. Io OI
_ 1 5 5 €2 1 €3 1 €4 3x
(H2) For each edge shared by faces f and ¢ with 0 =" 3z 0 O e
(7517&1)€H(f) and (7627&2)61{(9)' 0 fl 0
the sequence 07 is like 0,, but reversed and inverted. 1 e 1 [
(H3) Let |0]p (resp. |0|1) be the number of zeros . : L .
(resp. ones) in 0, and let r = (e, 0,). O C0_0_249-0
Let C(r) :=[d]o — 0|1 — /T + 2. (€30, 7)) i
For each face f, it holds that: C((es,0,5))=0—-0-142=1
9 C(T)_{j Ifti]f:fo C((¢5,000,2)=3-0—-1+2=4
reH(f) T4 otherwise. C(c6,11,2)) =0—2—1+2=—1
(H4) For each vertex v, the sum of incident angles is 27. Z C(r) = +4

8-1

Reminder: s—t Flow Networks

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Flow network (G; S, T; u) with

B directed graph G

B sources S C V(G), sinks T' C V(G)
B edge capacity u: E(G) — Ry U {0}

A function X : E(G) — Ry is called S=T flow if:

0<X(4,7) <ulij) V(,75) € E(G)
o X)) -) X(i)=0 VieV(G)\(SUT)

(2,5)€ E(G) (4,2)€ E(G)

A maximum S-T flow is an S-T' flow where Z X(¢,7) — Z X (7,17) is maximized.
(i,§)EE(G),i€S (4,1)€B(G) i€ S

8-2

Reminder: s—t Flow Networks

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Flow network (G, s, t; u) with

B directed graph G

B source s € V(G), sinkt € V(G)

B edge capacity u: E(G) — R U {0}

A function X: E(G) — Ry is called S=T flow if:

0<X(4,7) <ulij) V(,75) € E(G)
o X)) -) X(i)=0 VieV(G)\(SUT)

(2,5)€ E(G) (4,2)€ E(G)

A maximum S-T flow is an S-T' flow where Z X(¢,7) — Z X (7,17) is maximized.
(i,§)EE(G),i€S (4,1)€B(G) i€ S

8-3

Reminder: s—t Flow Networks

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Flow network (G, s, t; u) with

B directed graph G

B source s € V(G), sinkt € V(G)

B edge capacity u: E(G) — R U {0}

A function X: E(G) — Ry is called s— flow if:

0<X(¢,7) <uli,j) V(7)€ E(G)
Yo X)) -) X(i)=0 VieV(G)\{st}

(2,5)€ E(G) (4,2)€ E(G)

A maximum S-T flow is an S-T' flow where Z X(¢,7) — Z X (7,17) is maximized.
(i,§)EE(G),i€S (4,1)€B(G) i€ S

8 -4

Reminder: s—t Flow Networks

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Flow network (G, s, t; u) with

B directed graph G

B source s € V(G), sinkt € V(G)

B edge capacity u: E(G) — R U {0}

A function X: E(G) — Ry is called s— flow if:

0<X(¢,7) <uli,j) V(7)€ E(G)
Yo X)) -) X(i)=0 VieV(G)\{st}

(2,5)€ E(G) (4,2)€ E(G)

A maximum s—t flow is an s—t flow where Z X(s,7) — Z X (7,s) is maximized.
(s,7)EE(G) (4,5)€E(G)

8-5

Reminder: s—t Flow Networks

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Flow network (G, s, t; u) with

B directed graph G

B source s € V(G), sinkt € V(G)

B edge capacity u: E(G) — R U {0}

A function X: E(G) — Ry is called s— flow if:

0<X(¢,7) <uli,j) V(7)€ E(G)
Yo X)) -) X(i)=0 VieV(G)\{st}

(2,5)€ E(G) (4,2)€ E(G)

A maximum s—t flow is an s—t flow where Z X(s,7) — Z X (7,s) is maximized.
(s,7)EE(G) (4,5)€E(G)

8 -

Reminder: s—t Flow Networks

Y A [Finnrind, CC BY-SA 3.0,
- — : via Wikimedia Commons
3/3 2%k T |
1/1) 2/2 b
4/5 IKEB >j\ 3/3
. . 3/8 3 ™1/
Flow network (G; s, t; 1) with 45 (35
m directed graph G U ' {ED
. 272\
B source s € V(G), sinkt € V(G) : & »
] 35X T
B edge capacity u: E(G) — R U {0} 56 e A 22
- 3/3

A function X: E(G) — Ry is called s— flow if:

0<X(¢,7) <uli,j) V(7)€ E(G)
Yo X)) -) X(i)=0 VieV(G)\{st}

(2,5)€ E(G) (4,2)€ E(G)

A maximum s—t flow is an s—t flow where Z X(s,7) — Z X (7,s) is maximized.
(s,7)EE(G) (4,5)€E(G)

8 -

Reminder: s—t Flow Networks

A o NSV = N T\ [Finnrind, CC BY-SA 3.0,
- ' IR '\A\"‘\,. via Wikimedia Commons]
3/3 ™y 2Y2
1/1) 2/2 A
] m 3/8] /1
Flow network (G} s,t; 1) with b5 (o N
B directed graph G - : {:D
5/% 2,"2 \
B source s € V(G), sinkt € V(G) 5 & /2
B edge capacity u: E(G) — R U {0} 6/8 o 3/r“1f/‘fl~{('u2)2
]]]] 3/3
A function X: E(G) — Ry is called s— flow if:
O

0<X(¢,7) <uli,j) V(7)€ E(G)
Yo X)) -) X(i)=0 VieV(G)\{st}

(2,5)€ E(G) (4,2)€ E(G)

A maximum s—t flow is an s—t flow where Z X(s,7) — Z X (7,s) is maximized.
(s,7)EE(G) (4,5)€E(G)

8 -

Reminder: s—t Flow Networks

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Flow network (G, s, t; u) with

B directed graph G

B source s € V(G), sinkt € V(G)

B edge capacity u: E(G) — R U {0}

A function X: E(G) — Ry is called s— flow if:

0<X(¢,7) <uli,j) V(7)€ E(G)
Yo X)) -) X(i)=0 VieV(G)\{st}

(2,5)€ E(G) (4,2)€ E(G)

A maximum s—t flow is an s—t flow where Z X(s,7) — Z X (7,s) is maximized.
(s,7)EE(G) (4,5)€E(G)

8 -

Reminder: s—t Flow Networks

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Flow network (G, s, t; u) with

B directed graph G

B source s € V(G), sinkt € V(G)

B edge capacity u: E(G) — R U {0}

A function X: E(G) — Ry is called s— flow if:

0< X(2,7) <ule,7) V(i,5) € E(G)
Yo X)) -) X(i)=0 VieV(G)\{st} >

(2,5)€ E(G) (4,2)€ E(G)

A maximum s—t flow is an s—t flow where Z X(s,7) — Z X (7,s) is maximized.
(s,7)EE(G) (4,5)€E(G)

9-1

General Flow Network

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Flow network (G; S, T; 1) with

B directed graph G

B sources S C V(G), sinks T' C V(G)
B edge capacity u: E(G) — R U {0}

A function X: E(G) — Ry is called S=T flow if:

0< X(4,7) <ulij) V(,75) € E(G)
X)) -) X(i)=0 VieV(G)\(SUT)

(2,5)€ E(G) (4,2)€ E(G)

A maximum S-T flow is an S-T' flow where Z X(¢,7) — Z X (7,17) is maximized.
(i,§)EE(G),i€S (4,1)€B(G) i€ S

9-2

General Flow Network

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Flow network (G; S, T;/;u) with

B directed graph G

B sources S C V(G), sinks T' C V(G)
B edge capacity u: E(G) — R U {0}

A function X: E(G) — Ry is called S=T flow if:

0< X(4,7) <ulij) V(,75) € E(G)
X)) -) X(i)=0 VieV(G)\(SUT)

(2,5)€ E(G) (4,2)€ E(G)

A maximum S-T flow is an S-T' flow where Z X(¢,7) — Z X (7,17) is maximized.
(i,§)EE(G),i€S (4,1)€B(G) i€ S

9-3

General Flow Network

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Flow network (G; S, T;/;u) with
B directed graph G
B sources S CV(G), sinks T C V(G)

B edge lower bound (1 E(G) — RS
B edge capacity u: E(G) — R U {0}

A function X: E(G) — Ry is called S=T flow if:

0<X(¢,7) <uli,y) V(7)€ E(G)
X)) -) X(i)=0 VieV(G)\(SUT)

(2,5)€ E(G) (4,2)€ E(G)

A maximum S-T flow is an S-T' flow where Z X(¢,7) — Z X (7,17) is maximized.
(i,§)EE(G),i€S (4,1)€B(G) i€ S

9-4

General Flow Network

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Flow network (G; S, T;/;u) with
B directed graph G
B sources S C V(G), sinks T'C V(G)

B edge lower bound (1 E(G) — RS
B edge capacity u: E(G) — R U {0}

A function X: E(G) — Ry is called S=T flow if:

0<X(¢,7) <uli,y) V(7)€ E(G)
X)) -) X(i)=0 VieV(G)\(SUT)

(2,5)€ E(G) (4,2)€ E(G)

A maximum S-T flow is an S-T' flow where Z X(¢,7) — Z X (7,17) is maximized.
(i,§)EE(G),i€S (4,1)€B(G) i€ S

9-5

General Flow Network

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Flow network (G; S, T;/;u) with
B directed graph G
B sources S C V(G), sinks T'C V(G)

B edge lower bound (1 E(G) — RS
B edge capacity u: E(G) — R U {0}

A function X: E(G) — Ry is called S=T flow if:

(e.7) < X(1,7) <wuli,g) V(,7) € BE(G)
X)) -) X(i)=0 VieV(G)\(SUT)

(2,5)€ E(G) (4,2)€ E(G)

A maximum S-T flow is an S-T' flow where Z X(¢,7) — Z X (7,17) is maximized.
(i,§)EE(G),i€S (4,1)€B(G) i€ S

9-6

General Flow Network

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Flow network (G;b; /; 1) with _
m directed graph G /3/34/4/5 "
B node production/consumption b: V(G) — R with » ;15 0(¢) =0 .

B edge lower bound (1 E(G) — RS ! T ON/2 e
B edge capacity u: E(G) — R U {0} 6B

A function X: E(G) — Ry is called S=T flow if:

((e.7) < X(1,5) Swuli,g) V(,7) € B(G)
X)) -) X(i)=0 VieV(G)\(SUT)

(2,5)€ E(G) (4,2)€ E(G)

A maximum S-T flow is an S-T' flow where Z X(¢,7) — Z X (7,17) is maximized.
(i,§)EE(G),i€S (4,1)€B(G) i€ S

9-7

General Flow Network

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Flow network (G;b; /; 1) with _
m directed graph G /3/34/4/5 "
B node production/consumption b: V(G) — R with » ;15 0(¢) =0 .

B edge lower bound (1 E(G) — RS ! T ON/2 e
B edge capacity u: E(G) — R U {0} 6B

A function X : E(G) — Ry is called valid flow if:

0 g) < X(,7) <wulig) V(i J) € B(G)
Yo X(i)=) X(j.i)=0b(i) VieV(G)

(2,5)€ E(G) (4,2)€ E(G)

A maximum S-T flow is an S-T' flow where Z X(¢,7) — Z X (7,17) is maximized.
(i,§)EE(G),i€S (4,1)€B(G) i€ S

9-8

General Flow Network

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Flow network (G;b; /; 1) with _
B directed graph G /3/34/4/5 ” 3
B node production/consumption b: V(G) — R with » ;15 0(¢) =0]

B edge lower bound (' E(G) — Rar ' £ OR/2

¥ 1/2/2

B edge capacity u: E(G) — R U {0} ers L

A function X : E(G) — Ry is called valid flow if:

(e g) < X(1,7) <wulig) V(i j) € B(G)
Yo X(i)=) X(j.i)=0b(i) VieV(G)

(2,5)€ E(G) (4,2)€ E(G)

(i,4)€E(G),i€S (1) EE(G)i€S

9-9

General Flow Network

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Flow network (G;b; /; 1) with _
m directed graph G /3/34/4/5 " \
B node production/consumption b: V(G) — R with » ;15 0(¢) =0

B edge lower bound (1 E(G) — RS ! T ON/2 e
B edge capacity u: E(G) — R U {0} 6B

A function X : E(G) — Ry is called valid flow if:

0 g) < X(,7) <wulig) V(i J) € B(G)
Yo X(i)=) X(j.i)=0b(i) VieV(G)

(2,5)€ E(G) (4,2)€ E(G)

m Cost function: cost: B(G) — R§

9-10

General Flow Network

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Flow network (G;b; /; 1) with _
m directed graph G /3/34/4/5 " \
B node production/consumption b: V(G) — R with » ;15 0(¢) =0

B edge lower bound (1 E(G) — RS ! T ON/2 e
B edge capacity u: E(G) — R U {0} 6B

A function X : E(G) — Ry is called valid flow if:

0 g) < X(,7) <wulig) V(i J) € B(G)
Yo X(i)=) X(j.i)=0b(i) VieV(G)

(2,5)€ E(G) (4,2)€ E(G)

m Cost function: cost: B(G) — R§ and cost(X) := Z(i’j)eE(G) cost(7,7) - X(i,7)

0 -

General Flow Network

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Flow network (G;b; /; 1) with _
B directed graph G /3/34/4/5 ” 3
B node production/consumption b: V(G) — R with » ;15 0(¢) =0]

B edge lower bound (' E(G) — Rar ' £ OR/2

¥ 1/2/2

B edge capacity u: E(G) — R U {0} ers L

A function X : E(G) — Ry is called valid flow if:

0 g) < X(,7) <wulig) V(i J) € B(G)
Yo X(i)=) X(j.i)=0b(i) VieV(G)

(2,5)€ E(G) (7,0)€ E(G)
m Cost function: cost: B(G) — R§ and cost(X) := > (i.)er(q) cost(s, 7) - X (4, 7)

X is a minimum-cost flow if X is a valid flow that minimizes cost(.X).

General Flow Network — Algorithms

Polynomial Algorithms

Dueto Year
1 Edmonds and Karp 1972
2 Rock 1980
3 Rock 1980
4 Bland and Jensen 1985
5 Goldberg and Tarjan 1987
6 Goldberg and Tarjan 1988
7 Ahuja, Goldberg, Orlin and Tarjan 1988
Strongly Polynomial Algorithms
Dueto Year
1 Tardos 1985
2 Orlin 1984
3 Fujishige 1986
4 Galil and Tardos 1986
5 Goldberg and Tarjan 1987
6 Goldberg and Tarjan 1988
7 Orlin (this paper) 1988
S(n, m) = O(m+nlogn)
S(n,m,C) = O(Min {m + nmy/log C),
(m log log C))

Min, m) = Ofmin (nm + n?*€, nm log n)

where € is any fixed constant,
Mn, m, U) = Ofnm log (o+log U +2))

Running Time

O((n + m") log U 5(n, m, nC))
O((n + m') log U S(n, m, nC))
O(n log C M{n, m, U))

Of(m log C M(n, m, U))

O(nm log (n2 /m) log (nC))
O(nm log n log (nC)}

O(nm log log U log (nC))

Running Time

O(m4)

O((n + m)2 log n S(n, m))
O((n + m)2 log n S(n, m))
O(n log n S(n, m))
CJ'{m'n2 log n Ing[n:’-ﬁm}}
Cl[nrn2]r::g2 n)

O((n + m’) log n S(n, m}))

Fredman and Tarjan [1984]

Ahuja, Mehlhorn, Orlin and Tarjan [1990]
Van Emde Boas, Kaas and Zijlstra[1977]

King, Rao, and Tarjan [1991]

Ahuja, Orlin and Tarjan [1989)

[Orlin 1991]

n: Fvertices
m: #edges

10-1

10 - 2
n: Fvertices

General Flow Network — Algorithms m: dredges

Polynomial Algorithms

Dueto Year
1 Edmonds and Karp 1972
2 Rock 1980
3 Rock 1980
4 Bland and Jensen 1985
5 Goldberg and Tarjan 1987
6 Goldberg and Tarjan 1988
7 Ahuja, Goldberg, Orlin and Tarjan 1988
Strongly Polynomial Algorithms
Dueto Year
1 Tardos 1985
2 Orlin 1984
3 Fujishige 1986
4 Galil and Tardos 1986
5 Goldberg and Tarjan 1987
6 Goldberg and Tarjan 1988
7 Orlin (this paper) 1988
S(n, m) = O(m+nlogn)
S(n,m,C) = O(Min {m + nmy/log C),
(m log log C))

Min, m) = Ofmin (nm + n?*€, nm log n)

where € is any fixed constant,
M(n, m, U) = O(nm log (:ﬂﬁgm 2))

Running Time

O((n + m") log U 5(n, m, nC))
O((n + m') log U S(n, m, nC))
O(n log C M{n, m, U))

Of(m log C M(n, m, U))

O(nm log (n2 /m) log (nC))
O(nm log n log (nC)}

O(nm log log U log (nC))

Running Time

O(m4)

O((n + m"2 log n S(n, m))
O((n+ m"2 log n S(n, m))
O(n log n S(n, m))
D‘{m‘n2 log n]Dgtn:’-ﬁm}}
D{nm2]r::g2 n)

O((n + m’) log n S(n, m}))

Fredman and Tarjan [1984]

Ahuja, Mehlhorn, Orlin and Tarjan [1990]
Van Emde Boas, Kaas and Zijlstra[1977]

King, Rao, and Tarjan [1991]

Ahuja, Orlin and Tarjan [1989)

[Orlin 1991]

Theorem. [Orlin 1991]
The minimum-cost flow problem can be solved in
O(n?log® n + m?logn) time.

10- 3
n: Fvertices

General Flow Network — Algorithms m: dredges

Polynomial Algorithms

Due to

Edmonds and Karp

Rock

Rock

Bland and Jensen

Goldberg and Tarjan

Goldberg and Tarjan

Ahuja, Goldberg, Orlin and Tarjan

=} on N o W3 B o~ H

Strongly Polynomial Algorithms

Due to

Tardos

Orlin

Fujishige

Galil and Tardos
Goldberg and Tarjan
Goldberg and Tarjan

=] O N sk W 2 — 3

Orlin (this paper)

Year
1972
1980
1980
1985
1987
1988
1988

Year
1985
1984
1986
1986
1987
1988
1988

S(n, m) = O(m+nlogn)
S(n,m,C) = O(Min {m + nmy/log C),
(m log log C))
Min, m) = Ofmin (nm + n?*€, nm log n)
where € is any fixed constant,
Mn, m, U) = Ofnm log (o+log U +2))

Running Time

O((n + m") log U 5(n, m, nC))
O((n + m') log U S(n, m, nC))
O(n log C M{n, m, U))

Of(m log C M(n, m, U))

O(nm log (n2 /m) log (nC))
O(nm log n log (nC)}

O(nm log log U log (nC))

Running Time

O(m4)

O((n + m"2 log n S(n, m))
O((n+ m"2 log n S(n, m))
O log n S(n, m))
D‘{nrn2 log n logtn:’-ﬁm}}
C,'l{r'um2]r::g2 n)

O((n + m’) log n S(n, m}))

Fredman and Tarjan [1984]

Ahuja, Mehlhorn, Orlin and Tarjan [1990]
Van Emde Boas, Kaas and Zijlstra[1977]

King, Rao, and Tarjan [1991]

Ahuja, Orlin and Tarjan [1989)

|
Theorem. [Orlin 1991]

The minimum-cost flow problem can be solved in
O(n?log® n + m? logn) time.

Theorem. [Cornelsen & Karrenbauer 2011]
The minimum-cost flow problem for planar graphs

with bounded costs and face sizes can be solved in
O(n3/?) time.

[Orlin 1991]

10 -
n: Fvertices

General Flow Network — Algorithms m: dredges

Polynomial Algorithms

Due to

Edmonds and Karp

Rock

Rock

Bland and Jensen

Goldberg and Tarjan

Goldberg and Tarjan

Ahuja, Goldberg, Orlin and Tarjan

=} on N o W3 B o~ H

Strongly Polynomial Algorithms

Due to

Tardos

Orlin

Fujishige

Galil and Tardos
Goldberg and Tarjan
Goldberg and Tarjan

=] O N sk W 2 — 3

Orlin (this paper)

Year
1972
1980
1980
1985
1987
1988
1988

Year
1985
1984
1986
1986
1987
1988
1988

S(n, m) = O(m+nlogn)
Sn,m,C) = O(Min {m+m/iog C),
(m log log C))
M(n, m) = Ofmin (nm + n?*€, nm log n)
where € is any fixed constant,
Mn, m, U) = Ofnm log (o+log U +2))

Running Time

O((n + m") log U 5(n, m, nC))
O((n + m') log U S(n, m, nC))
O(n log C M{n, m, U))

O(m log C M(n, m, U}))

O(nm log (n2 /m) log (nC))
O(nm log n log (nC)}

O(nm log log U log (nC))

Running Time

O(m4)

O((n + m"2 log n S(n, m))
O((n+ m"2 log n S(n, m))
O log n S(n, m))
D‘{nrn2 log n logLn:’-Im}}
C,'l{ru'ﬂ2]r::g2 n)

O((n + m’) log n S(n, m}))

Fredman and Tarjan [1984]

Ahuja, Mehlhorn, Orlin and Tarjan [1990]
Van Emde Boas, Kaas and Zijlstra[1977]

King, Rao, and Tarjan [1991]

Ahuja, Orlin and Tarjan [1989)

|
Theorem. [Orlin 1991]

The minimum-cost flow problem can be solved in
O(n?log® n + m? logn) time.

Theorem. [Cornelsen & Karrenbauer 2011]
The minimum-cost flow problem for planar graphs

with bounded costs and face sizes can be solved in

O(n3/?) time.

ITheorem. [van den Brand, Chen, Kyng, Liu, Peng,
Probst, Sachdeva, Sidford 2023]

The minimum-cost flow problem with integral vertex

demands, edge capacities, and edge costs can be

solved in O(m!T°W) log U log C') time where U is the

maximum capacity and C' are the maximum costs.
]

[Orlin 1991]

11

Topology — Shape — Metrics

Three-step approach: [Tamassia 1987]

V(G) — {'Ul,’Uz,’U?,,’U4} 34
E(G) — {1)11)27 V103, V104, V20V3, ’U2’U4}

1 "—‘[3
combinatorial 1 2

embedding / planar

reduce planarization orthog_onal area mini-
crossings drawing mization

VAN b<nc minimization [7

1

orthogonal i
2 representation = teeeoe- .é's.

1
TOPOLOQY — SHAPE — METRICS

Bend Minimization with Given Embedding

Geometric orthogonal bend minimization.

Given:

Find:

12 -

Bend Minimization with Given Embedding

Geometric orthogonal bend minimization.

Given: ® Plane graph G with maximum degree 4

Find:

12 -

Bend Minimization with Given Embedding

Geometric orthogonal bend minimization.
Given: ® Plane graph G with maximum degree 4

B Combinatorial embedding F' and outer face f
Find:

12 -

Bend Minimization with Given Embedding

Geometric orthogonal bend minimization.
Given: ® Plane graph G with maximum degree 4
B Combinatorial embedding F' and outer face f

Find: Orthogonal drawing with minimum number of bends that
preserves the embedding.

12 -

Bend Minimization with Given Embedding

Geometric orthogonal bend minimization.
Given: ® Plane graph G with maximum degree 4
B Combinatorial embedding F' and outer face f

Find: Orthogonal drawing with minimum number of bends that
preserves the embedding.

Compare with the following variant:

Combinatorial orthogonal bend minimization.

Given:

Find:

12 -

Bend Minimization with Given Embedding

Geometric orthogonal bend minimization.
Given: ® Plane graph G with maximum degree 4
B Combinatorial embedding F' and outer face f

Find: Orthogonal drawing with minimum number of bends that
preserves the embedding.

Compare with the following variant:

Combinatorial orthogonal bend minimization.
Given: m Plane graph GG with maximum degree 4

B Combinatorial embedding F' and outer face fj
Find:

12 -

Bend Minimization with Given Embedding

Geometric orthogonal bend minimization.
Given: ® Plane graph G with maximum degree 4
B Combinatorial embedding F' and outer face f

Find: Orthogonal drawing with minimum number of bends that
preserves the embedding.

Compare with the following variant:

Combinatorial orthogonal bend minimization.
Given: m Plane graph GG with maximum degree 4

B Combinatorial embedding F' and outer face fj

Find: Orthogonal representation H(G) with minimum
number of bends that preserves the embedding.

12 -

Bend Minimization with Given Embedding

How to solve the
combinatorial
orthogonal bend
minimization
problem?

Combinatorial orthogonal bend minimization.
Given: m Plane graph GG with maximum degree 4

B Combinatorial embedding F' and outer face fj

Find: Orthogonal representation H(G) with minimum
number of bends that preserves the embedding.

12 -

Bend Minimization with Given Embedding

How to solve the
combinatorial
orthogonal bend
minimization
problem?

Idea.
Formulate as a network-flow problem:

Combinatorial orthogonal bend minimization.

Given:

Find:

B Plane graph G with maximum degree 4
B Combinatorial embedding F' and outer face fj

Orthogonal representation H((G) with minimum
number of bends that preserves the embedding.

12 -

Bend Minimization with Given Embedding

How to solve the
combinatorial
orthogonal bend
minimization
problem?

Idea.
Formulate as a network-flow problem:

B a unit of flow = A%

Combinatorial orthogonal bend minimization.

Given:

Find:

B Plane graph G with maximum degree 4
B Combinatorial embedding F' and outer face fj

Orthogonal representation H((G) with minimum
number of bends that preserves the embedding.

12-10

Bend Minimization with Given Embedding

How to solve the
combinatorial
orthogonal bend
minimization
problem?

Idea.
Formulate as a network-flow problem:

B a unit of flow = A%

B vertices —= faces (# £% per face)

Combinatorial orthogonal bend minimization.

Given:

Find:

B Plane graph G with maximum degree 4
B Combinatorial embedding F' and outer face fj

Orthogonal representation H((G) with minimum
number of bends that preserves the embedding.

12-11

12 - 12

Bend Minimization with Given Embedding

How to solve the Idea.
combinatorial Formulate as a network-flow problem:
orth.o.gor}al Pend B a unit of flow = £7
minimization y
oroblem? B vertices — faces (# £ 7 per face)

m faces -5 neighboring faces (# bends toward the neighbor)

Combinatorial orthogonal bend minimization.
Given: m Plane graph GG with maximum degree 4

B Combinatorial embedding F' and outer face fj

Find: Orthogonal representation H(G) with minimum
number of bends that preserves the embedding.

Flow Network for Bend Minimization

(H1) H(G) corresponds to F', fp.

(H2) For each edge shared by
faces f and g, the sequence 0 is
reversed and inverted copy of d-.

(H3) For each face f, it holds that:
—4 if f =
> c={ T4 b
rwise.
reH(f)

(H4) For each vertex v, the sum of
incident angles is 2.

Flow Network for Bend Minimization

(H1) H(G) corresponds to F', fp.

(H2) For each edge shared by
faces f and g, the sequence 0 is
reversed and inverted copy of d-.

(H3) For each face f, it holds that:
—4 if f =
> c={ T4 b
rwise.
reH(f)

(H4) For each vertex v, the sum of
incident angles is 2.

Flow Network for Bend Minimization

(H1)
(H2)

(H3)

(H4)

H(G) corresponds to F', fo.

For each edge shared by
faces f and g, the sequence 0 is
reversed and inverted copy of d-.

For each face f, it holds that:

> cm:{—“ if f = fo

rCH(F) +4 otherwise.

For each vertex v, the sum of
incident angles is 2.

Define flow network N(G) = ((V(G) U F, E"); b; ('; u; cost):

13 -

Flow Network for Bend Minimization

(H1) H(G) corresponds to F, fo. Define flow network N(G) = ((V(G) U F, E"); b; ('; u; cost):

(H2) For each edge shared by
faces f and g, the sequence 0 is
reversed and inverted copy of d-.

(H3) For each face f, it holds that:

Z C(T):{—‘l if f = fo

rCH(F) +4 otherwise.

(H4) For each vertex v, the sum of
incident angles is 2.

13 -

Flow Network for Bend Minimization

(H1) H(G) corresponds to F, fo. Define flow network N(G) = ((V(G) U F, E"); b; ('; u; cost):

(H2) For each edge shared by

faces f and g, the sequence ¢ is [] E/ = {(U, f)ee’ - V(G) X F ‘ v between edges €, 6/ of @f}

reversed and inverted copy of d-.

(H3) For each face f, it holds that:
—4 if f =

ST ooy =g F NI
+4 otherwise.

reH(f)

(H4) For each vertex v, the sum of
incident angles is 2.

13 -

Flow Network for Bend Minimization

(H1) H(G) corresponds to F, fo. Define flow network N(G) = ((V(G) U F, E"); b; ('; u; cost):

(H2) For each edge shared by

faces f and g, the sequence ¢ is [] E/ = {(U, f)ee’ - V(G) X F ‘ v between edges €, 6/ of @f}

reversed and inverted copy of d-.

(H3) For each face f, it holds that:
—4 if f =

ST ooy =g F NI
+4 otherwise.

reH(f)

(H4) For each vertex v, the sum of
incident angles is 2.

13 -

Flow Network for Bend Minimization

(H1) H(G) corresponds to F, fo. Define flow network N(G) = ((V(G) U F, E"); b; ('; u; cost):

(H2) For each edge shared by

faces f and g, the sequence ¢ is [] E/ = {(U, f)ee’ - V(G) X F ‘ v between edges €, 6/ of @f}

reversed and inverted copy of d-.

(H3) For each face f, it holds that:
—4 if f =

ST ooy =g F NI
+4 otherwise.

reH(f)

(H4) For each vertex v, the sum of
incident angles is 2.

13 -

Flow Network for Bend Minimization

(H1) H(G) corresponds to F, fo. Define flow network N(G) = ((V(G) U F, E"); b; ('; u; cost):

(H2) For each edge shared by

faces f and g, the sequence ¢ is [] E/ = {(U, f)ee’ - V(G) X F ‘ v between edges €, 6/ of @f}

reversed and inverted copy of d-.

(H3) For each face f, it holds that:
—4 if f =

ST ooy =g F NI
+4 otherwise.

reH(f)

(H4) For each vertex v, the sum of
incident angles is 2.

Directed multigraph!

13 -

13-9

Flow Network for Bend Minimization

(H1)
(H2)

(H3)

(H4)

H(G) corresponds to F, fo. Define flow network N(G) = ((V(G) U F, E’); b; (; u; cost):

For h ed hared b

faoc:esajf ar?dg;, the seqzezcee 51yis [] E/ — {(U, f)ee’ - V(G) X F ‘ v between edges €, 6/ of @f} U
reversed and inverted copy of d-. { c Fx F | f7 g have common edge 6}

For each face f, it holds that:

=4 iff=fo
Z Cr) = {—1—4 otherwise.

reH(f)

For each vertex v, the sum of
incident angles is 2.

Directed multigraph!

13-10

Flow Network for Bend Minimization

(H1)
(H2)

(H3)

(H4)

H(G) corresponds to F, fo. Define flow network N(G) = ((V(G) U F, E’); b; (; u; cost):

For h ed hared b

faoc:esajf ar?dg;, the seqzezcee 51yis [] E/ — {(U, f)ee’ - V(G) X F ‘ v between edges €, 6/ of @f} U
reversed and inverted copy of d-. { c Fx F | f7 g have common edge 6}

For each face f, it holds that:

=4 iff=fo
Z Cr) = {—1—4 otherwise.

reH(f)

For each vertex v, the sum of
incident angles is 2.

Directed multigraph!

13-11

Flow Network for Bend Minimization

(H1)
(H2)

(H3)

(H4)

H(G) corresponds to F, fo. Define flow network N(G) = ((V(G) U F, E’); b; (; u; cost):

For h ed hared b

faoc:esajf ar?dg;, the seqzezcee 51yis [] E/ — {(U, f)ee’ - V(G) X F ‘ v between edges €, 6/ of @f} U
reversed and inverted copy of d-. { c Fx F | f7 g have common edge 6}

For each face f, it holds that:

=4 iff=fo
Z Cr) = {—1—4 otherwise.

reH(f)

For each vertex v, the sum of
incident angles is 2.

Directed multigraph!

13-12

Flow Network for Bend Minimization

(H1) H(G) corresponds to F, fo. Define flow network N(G) = ((V(G) U F, E"); b; ('; u; cost):

H2) For each ed hared b
(H2) faoc:esajf ar?dgge, the seqzeicee 61yis [] E/ = {(U, f)ee’ - V(G) X F ‘ v between edges €, 6/ of @f} U

reversed and inverted copy of 9. { c Fx F | f, g have common edge 6}
(H3) For each face f, it holds that:
S o) = {—4 fr=4f | mbv)=4 YveV(Q)

rCH(F) +4 otherwise.

(H4) For each vertex v, the sum of
incident angles is 2.

13-13

Flow Network for Bend Minimization

(H1) H(G) corresponds to F, fo. Define flow network N(G) = ((V(G) U F, E"); b; ('; u; cost):

H2) For each ed hared b
(H2) faoc:esajf ar?dgge, the seqzeicee 61yis [] E/ = {(U, f)ee’ - V(G) X F ‘ v between edges €, 6/ of @f} U

reversed and inverted copy of 9. { c Fx F | f, g have common edge 6}
(H3) For each face f, it holds that:

> C(T):{—“ fr=rf6 | mbv)=4 YveV(Q)

rCH(F) +4 otherwise.

(H4) For each vertex v, the sum of
incident angles is 2.

1
o

13- 14

Flow Network for Bend Minimization

(H1) H(G) corresponds to F, fo. Define flow network N(G) = ((V(G) U F, E"); b; ('; u; cost):

H2) For each ed hared b
(H2) faocejajf ar?dgge, the seqzeicee 51yis [] E/ = {(U, f)ee’ - V(G) X F ‘ v between edges €, 6/ of @f} U

reversed and inverted copy of 9. { c Fx F | f, g have common edge 6}
(H3) For each face f, it holds that:
S o) = {—4 fr=4f | mbv)=4 YveV(Q)

rCH(F) +4 otherwise.

(H4) For each vertex v, the sum of [b(f)

incident angles is 2.

13-15

Flow Network for Bend Minimization

(H1) H(G) corresponds to F, fo. Define flow network N(G) = ((V(G) U F, E"); b; ('; u; cost):

H2) For each ed hared b
(H2) faocejajf ar?dgge, the seqzeicee 51yis [] E/ = {(U, f)ee’ - V(G) X F ‘ v between edges €, 6/ of @f} U

reversed and inverted copy of 9. { c Fx F | f, g have common edge 6}
(H3) For each face f, it holds that:
S o) = {—4 fr=4f | mbv)=4 YveV(Q)

rCH(F) +4 otherwise.

(H4) For each vertex v, the sum of [b(f)

incident angles is 2.

1
21T 3 1]
1 1

13-16

Flow Network for Bend Minimization

(H1) H(G) corresponds to F, fo. Define flow network N(G) = ((V(G) U F, E"); b; ('; u; cost):

H2) For each ed hared b
(H2) faocejajf ar?dgge, the seqzeicee 51yis [] E/ = {(U, f)ee’ - V(G) X F ‘ v between edges €, 6/ of @f} U

reversed and inverted copy of 9. { c Fx F | f, g have common edge 6}
(H3) For each face f, it holds that:
S o) = {—4 fr=4f | mbv)=4 YveV(Q)

rCH(F) +4 otherwise.

(H4) For each vertex v, the sum of [b(f)

incident angles is 2.

1
21T 3 1]
"
1 1

13- 17

Flow Network for Bend Minimization

(H1) H(G) corresponds to F, fo. Define flow network N(G) = ((V(G) U F, E"); b; ('; u; cost):

(H2) For each edge shared by

faces f and g, the sequence ¢ is [] E/ = {(U, f)ee’ - V(G) X F ‘ v between edges €, 6/ of @f} U

reversed and inverted copy of 9. { c Fx F | f, g have common edge 6}
(H3) For each face f, it holds that:

5 C(T):{—“ fr=f MW bv)=4 YveV(GQ)

rCH(F) +4 otherwise.

—4 if f — f07
(H4) iFncidenthangltes is 27trh f - b(f) =2 degG(f) " {

+4 otherwise

1
27T 5 1
—6
1 1

13-18

Flow Network for Bend Minimization

(H1)
(H2)

(H3)

(H4)

H(G) corresponds to F, fo. Define flow network N(G) = ((V(G) U F, E’); b; (; u; cost):

For each edge shared by

faces f and g, the sequence ¢ is [] E/ = {(U, f)ee’ - V(G) X F ‘ v between edges €, 6/ of @f} U

reversed and inverted copy of d-. { c Fx F | f g have common edge 6}
)
For each face f, it holds that:

> C(T):{—“ fr=rf6 | mbv)=4 YveV(Q)

rCH(F) +4 otherwise.

?
4 i f=fo,0 = 2 Oblw)=0
_For. each vertex_v, the sum of] b — _2 de + weVIGUF
incident angles is 2. (f) gG(f) {_|_4 otherwise cV(G)U

1
21T 3 1]
"
1 1

13-19

Flow Network for Bend Minimization

(H1)
(H2)

(H3)

(H4)

H(G) corresponds to F, fo. Define flow network N(G) = ((V(G) U F, E’); b; (; u; cost):

For each edge shared by

faces f and g, the sequence ¢ is [] E/ = {(U, f)ee’ - V(G) X F ‘ v between edges €, 6/ of @f} U

reversed and inverted copy of d-. { c Fx F | f g have common edge 6}
)
For each face f, it holds that:

> C(T):{—“ fr=rf6 | mbv)=4 YveV(Q)

rCH(F) +4 otherwise.

4 i f=fo,0 = 2 Oblw)=0
_For. each vertex_v, the sum of] b — _2 de _|_ weEVIC\UF dler
incident angles is 27r. (f) gG(f) {_|_4 otherwise eV (G)U (E le)

1
21T 3 1]
"
1 1

13-20

Flow Network for Bend Minimization

(H1)
(H2)

(H3)

(H4)

H(G) corresponds to F, fo. Define flow network N(G) = ((V(G) U F, E’); b; (; u; cost):

For each edge shared by

faces f and g, the sequence ¢ is [] E/ = {(U, f)ee’ - V(G) X F ‘ v between edges €, 6/ of @f} U

reversed and inverted copy of d-. { c Fx F | f g have common edge 6}
)
For each face f, it holds that:

> C(T):{—“ fr=rf6 | mbv)=4 YveV(Q)

rCH(F) +4 otherwise.

4 i f=fo,0 = 2 Oblw)=0
_For. each vertex_v, the sum of] b — _2 de _|_ weEVIC\UF dler
incident angles is 27r. (f) gG(f) {_|_4 otherwise eV (G)U (E le)

V(v,f)e E',ve V(G),f € F

13-21

Flow Network for Bend Minimization

(H1) H(G) corresponds to F, fo. Define flow network N(G) = ((V(G) U F, E"); b; ('; u; cost):

H2) For each ed hared b
(H2) faocejaj"C ar?dgge, the seqzeicee 51yis [] E/ = {(U, f)ee’ - V(G) X F ‘ v between edges €, 6/ of (9f} U

reversed and inverted copy of 9. { c Fx F | f, g have common edge 6}
(H3) For each face f, it holds that:

> C(T):{—“ fr=rf6 | mbv)=4 YveV(Q)

rCH(F) +4 otherwise.

4 i f=fo,0 = 2 Oblw)=0
(H4) _For. each vertex v, the sum of H) — —2de + weVICUE Eul
incident angles is 27r. (f) gG(f) {_|_4 otherwise eV (G)U (u er)

V(v,f) e E',veV(Q),feF = < X(v,f) < =u(v,f)
201)) cost(v, f) =
1 2\! 1
—0
1 1

13- 22

Flow Network for Bend Minimization

(H1) H(G) corresponds to F, fo. Define flow network N(G) = ((V(G) U F, E"); b; ('; u; cost):

(H2) For each edge shared by

faces f and g, the sequence ¢ is [] E/ = {(U, f)ee’ - V(G) X F ‘ v between edges €, 6/ of (9f} U

reversed and inverted copy of 9. { c Fx F | f, g have common edge 6}
(H3) For each face f, it holds that:

5 C(T):{—“ fr=f MW bv)=4 YveV(GQ)

rCH(F) +4 otherwise.

4 i f=fo,0 = 2 Oblw)=0
(H4) _For. each vertex v, the sum of H) — —2de + weVICUE Eul
incident angles is 27r. (f) gG(f) {_|_4 otherwise eV (G)U (u er)

Y(v,f)e E',ve V(G),feF =1< X(v, f) <4 =:u(v, f)
201)) cost(v, f) =
1 2\! 1
—0
1 1

13-23

Flow Network for Bend Minimization

(H1) H(G) corresponds to F, fo. Define flow network N(G) = ((V(G) U F, E"); b; ('; u; cost):

(H2) For each edge shared by

faces f and g, the sequence ¢ is [] E/ = {(U, f)ee’ - V(G) X F ‘ v between edges €, 6/ of (9f} U

reversed and inverted copy of 9. { c Fx F | f, g have common edge 6}
(H3) For each face f, it holds that:

5 C(T):{—“ fr=f MW bv)=4 YveV(GQ)

rCH(F) +4 otherwise.

4 i f=fo,0 = 2 Oblw)=0
(H4) _For. each vertex v, the sum of H) — —2de + weVICUE Eul
incident angles is 27r. (f) gG(f) {_|_4 otherwise eV (G)U (u er)

Y(v,f)e E',ve V(G),feF =1< X(v, f) <4 =:u(v, f)
, |1) cost(v, f) =0
1 2\! 1
—0
1 1

13- 24

Flow Network for Bend Minimization

(H1) H(G) corresponds to F, fo. Define flow network N(G) = ((V(G) U F, E"); b; ('; u; cost):

H2) For each ed hared b
(H2) faoce:aj"C ar?dgge, the seqzezcee 51yis [] E/ = {(U, f)ee’ - V(G) X F ‘ v between edges €, 6/ of (9f} U

reversed and inverted copy of 9. { c Fx F | f, g have common edge 6}
(H3) For each face f, it holds that:

> C(T):{—“ fr=rf6 | mbv)=4 YveV(Q)

rCH(F) +4 otherwise.

4 i f=fo,0 = 2 Oblw)=0
(H4) _For. each vertex v, the sum of H) — —2de + weVICUE Eul
incident angles is 27r. (f) gG(f) {_|_4 otherwise eV (G)U (u er)

. V(v,f) e E',ve V(G),f € F =1< X(v, f) <4 =:u(v, f)
1 cost(v, f) =0
) o a o
1 2\!1 V(f.g)€E, f,gc F = <X(f,9)< =u(f,9)
1 -0 1 cost(f, g) =

13-25

Flow Network for Bend Minimization

(H1) H(G) corresponds to F, fo. Define flow network N(G) = ((V(G) U F, E"); b; ('; u; cost):

H2) For each ed hared b
(H2) faoce:aj"C ar?dgge, the seqzezcee 51yis [] E/ = {(U, f)ee’ - V(G) X F ‘ v between edges €, 6/ of (9f} U

reversed and inverted copy of 9. { c Fx F | f, g have common edge 6}
(H3) For each face f, it holds that:

> C(T):{—“ fr=rf6 | mbv)=4 YveV(Q)

rCH(F) +4 otherwise.

4 i f=fo,0 = 2 Oblw)=0
(H4) _For. each vertex v, the sum of H) — —2de + weVICUE Eul
incident angles is 27r. (f) gG(f) {_|_4 otherwise eV (G)U (u er)

. V(v,f) e E',ve V(G),f € F =1< X(v, f) <4 =:u(v, f)
1 cost(v, f) =0
) o a o
1 2\!1 V(f.g)€E, f,gc F =0< X(f,9) < oo =:u(f,g)
1 -0 1 cost(f, g) =

13-26

Flow Network for Bend Minimization

(H1) H(G) corresponds to F, fo. Define flow network N(G) = ((V(G) U F, E"); b; ('; u; cost):

H2) For each ed hared b
(H2) faoce:aj"C ar?dgge, the seqzezcee 51yis [] E/ = {(U, f)ee’ - V(G) X F ‘ v between edges €, 6/ of (9f} U

reversed and inverted copy of 9. { c Fx F | f, g have common edge 6}
(H3) For each face f, it holds that:

> C(T):{—“ fr=rf6 | mbv)=4 YveV(Q)

rCH(F) +4 otherwise.

4 i f=fo,0 = 2 Oblw)=0
(H4) _For. each vertex v, the sum of H) — —2de + weVICUE Eul
incident angles is 27r. (f) gG(f) {_|_4 otherwise eV (G)U (u er)

. V(v,f) e E',ve V(G),f € F =1< X(v, f) <4 =:u(v, f)
1 cost(v, f) =0
2(: a o
1 2\!1 Y(/.q)€E fgeF =0< X(f,9) <oo=:u(fg)
1 —6 1 cost(f, g) = 1

Flow Network for Bend Minimization

13- 27

(H1) H(G) corresponds to F, fo. Define flow network N(G) = ((V(G) U F, E"); b; ('; u; cost):

(H2) For each edge shared by

faces f and g, the sequence ¢ is [] E/ = {(U, f)ee’ - V(G) X F ‘ v between edges €, 6/ of (9f} U

reversed and inverted copy of d-. {

(H3) For each face f, it holds that:

> C(T):{—“ fr=f | M bv)=4 YveV(Q)

rCH(F) +4 otherwise.

(H4) For each vertex v, the sum of] b(f) — 9 deg(;(f) 4+ {

incident angles is 2.

o V(v,f) e E',ve V(GQ),f € F =1<
1 cost(v, f) =0
) o o o
1 2\!1 % cFE fgeF =0<
0 cost(f, 9) = 1
1 1

S 8 T
=Im

—4 if f — f07 =
+4 otherwise

X (v, f)

X(f,9)

€ F x F'| f, g have common edge ¢}

2, blw)=0

weV (G)UF (Euler)

< 4= u(v, f)

< oo = u(f,)

We model only the
number of bends.

Why is

it enough?

13- 28

Flow Network for Bend Minimization

(H1) H(G) corresponds to F, fo. Define flow network N(G) = ((V(G) U F, E"); b; ('; u; cost):

(H2) For each edge shared by

faces f and g, the sequence ¢ is [] E/ = {(U, f)ee’ - V(G) X F ‘ v between edges €, 6/ of (9f} U

reversed and inverted copy of 9. { c Fx F | f, g have common edge 6}
(H3) For each face f, it holds that:

5 C(T):{—“ fr=f MW bv)=4 YveV(GQ)

rCH(F) +4 otherwise.

4 i f=fo,0 = 2 Oblw)=0
(H4) _For. each vertex v, the sum of H) — —2de + weVICUE Eul
incident angles is 27r. (f) gG(f) {_|_4 otherwise eV (G)U (u er)

. V(v,f) e E',ve V(G),f € F =1 <|X (v, f)|L 4 =:u(v, f)
, |1) cost(v, f) =0
1 2\!1 V(f.g)€EE, fgEF =0 <|X(f,9)|< 00 =t u(f, g)
—6 COSt(f, g) =1 We model only the
 — T e

a — [Exercise!

Flow Network Example

fo

14 -

Flow Network Example

fo

Legend

V(G) ©
F o

14 -

Flow Network Example

fo Legend
V(G) ©
€3 U3
Q F O
¢/u/cost
1/4/0
V(G)x F D L»
()] O
€4

Flow Network Example

fo Legend
V(G) ©
€3 U3
Q F O
¢/u/cost
1/4/0
V(G)x F D L»
@)
€4

Flow Network Example

fo

Legend
V(G) ©
F O
¢/u/cost
1/4/0
V(G)x F D L»

14 -

Flow Network Example

Jo ‘/////””—

O=—

€3 U3

Legend
V(G) ©
F O
¢/u/cost
1/4/0
V(G)x F D —1—1—>

14 -

Flow Network Example

Legend
V(G) ©
F O
¢/u/cost
1/4/0
V(G)x F D L»

Fx F DO

14 -

Flow Network Example

Legend
V(G) ©
F O
¢/u/cost
1/4/0
V(G)x F D L»

Fx F DO

14 -

Flow Network Example

fo /

U3

O=—
?
/ fl

%

6

N
N

€4

/M

Legend

V(G) ©

F O
¢/u/cost

V(G)x F D 1—ﬁzg»

Fx F DO

14 -

Flow Network Example

Legend
V(G) ©
F O
¢/u/cost
1/4/0
V(G)x F D L»

Fx F DO

14 - 10

Flow Network Example

Legend
V(G) ©
F O
¢/u/cost
1/4/0
V(G)x F D L»

Fx F DO

14 - 11

Flow Network Example

Legend
V(G) ©
F O
¢/u/cost
1/4/0
V(G)x F D L»

Fx F DO

14 - 12

Flow Network Example

Legend
V(G) ©
F O
¢/u/cost
1/4/0
V(G)x F D L»

Fx F DO

14 - 13

Flow Network Example

fo

O/ 22 4)1’3
\ ? €2

Legend

V(G) ©

F O
¢/u/cost

V(G)x F D 1—ﬁzg»

Fx F DO

4 — b-value

14 - 14

Flow Network Example

Legend

V(G) ©

F O
¢/u/cost

V(G)x F D 1—ﬁzg»

Fx F DO

4 — b-value

14 - 15

Flow Network Example

. / .

?\

N\

Legend

V(G) ©

F O
¢/u/cost

V(G)x F D 1—ﬁzg»

Fx F DO

4 — b-value

3| flow

14 - 16

Flow Network Example

Legend

V(G) ©

F O
¢/u/cost

V(G)x F D 1—ﬁzg»

Fx F DO

4 — b-value

3| flow

14 - 17

Flow Network Example

Legend

V(G) ©

F O
¢/u/cost

V(G)x F D 1—ﬁz&

Fx F DO

4 — b-value

3| flow

14 - 18

Flow Network Example

cost = 1
one bend
(outward)

Legend

V(G) ©

F O
¢/u/cost

V(G)x F D 1—ﬁz&

Fx F DO

4 — b-value

3| flow

14 - 19

Flow Network Example

Legend

V(G) ©

F O
¢/u/cost

V(G)x F D 11&19»

Fx F DO

4 — b-value

3| flow

14 - 20

Flow Network Example

Legend

V(G) ©

F O
¢/u/cost

V(G)x F D 1—ﬁz&

Fx F DO

4 — b-value

3| flow

14 - 21

Flow Network Example

Legend

V(G) ©

F O
¢/u/cost

V(G)x F D 1—ﬁz&

Fx F DO

4 — b-value

3| flow

14 - 22

Bend Minimization — Result

Theorem. [Tamassia '87]
A plane graph (G, F, fy) has a valid orthogonal
representation H(G) with k bends. <

The flow network N(G) has a valid flow X with cost k.

15 -

Bend Minimization — Result

Theorem. [Tamassia '87]
A plane graph (G, F, fy) has a valid orthogonal
representation H(G) with k bends. <

The flow network N(G) has a valid flow X with cost k.
Proof.

15 -

Bend Minimization — Result

Theorem. [Tamassia '87]
A plane graph (G, F, fy) has a valid orthogonal
representation H(G) with k bends. <

The flow network N(G) has a valid flow X with cost k.

Proof.
"<": Given a valid flow X in N(G) of cost k,

15 -

Bend Minimization — Result

Theorem. [Tamassia '87]
A plane graph (G, F, fy) has a valid orthogonal
representation H(G) with k bends. <

The flow network N(G) has a valid flow X with cost k.

Proof.

“<": Given a valid flow X in N(G) of cost k,
construct an orthogonal representation H(G) with k bends.

15 -

Bend Minimization — Result

Theorem. [Tamassia '87]
A plane graph (G, F, fy) has a valid orthogonal
representation H(G) with k bends. <

The flow network N(G) has a valid flow X with cost k.

Proof.

“<": Given a valid flow X in N(G) of cost k,
construct an orthogonal representation H(G) with k bends.

B Transform from flow to orthogonal description.

15 -

Bend Minimization — Result

(H1)

: (H2)
Theorem. [Tamassia '87]

A plane graph (G, F, fy) has a valid orthogonal
representation H(G) with k bends. <

The flow network N(G) has a valid flow X with cost k.

(H3)

Proof. (H4)

“<": Given a valid flow X in N(G) of cost k,
construct an orthogonal representation H(G) with k bends.

B Transform from flow to orthogonal description.
B Show properties (H1)—(H4).

15 -

H(G) corresponds to F', fo.

For each edge shared by
faces f and g, sequence 01 is
reversed and inverted o-.

For each face f it holds that:
—4 if f =
S oomy=4 Ty N =
+4 otherwise.
rEH(f)

For each vertex v the sum of
incident angles is 2.

Bend Minimization — Result

(H1)

: (H2)
Theorem. [Tamassia '87]

A plane graph (G, F, fy) has a valid orthogonal
representation H(G) with k bends. <

The flow network N(G) has a valid flow X with cost k.

(H3)

Proof. (H4)

“<": Given a valid flow X in N(G) of cost k,
construct an orthogonal representation H(G) with k bends.

B Transform from flow to orthogonal description.
B Show properties (H1)—-(H4).
(H1) H(G) matches F fj v

15 -

H(G) corresponds to F', fo.

For each edge shared by
faces f and g, sequence 01 is
reversed and inverted o-.

For each face f it holds that:
—4 if f =
S oomy=4 Ty N =
+4 otherwise.
rEH(f)

For each vertex v the sum of
incident angles is 2.

Bend Minimization — Result

(H1)

: (H2)
Theorem. [Tamassia '87]

A plane graph (G, F, fy) has a valid orthogonal
representation H(G) with k bends. <

The flow network N(G) has a valid flow X with cost k.

(H3)

Proof. (H4)

“<": Given a valid flow X in N(G) of cost k,
construct an orthogonal representation H(G) with k bends.

B Transform from flow to orthogonal description.
B Show properties (H1)—-(H4).
(H1) H(G) matches F fj v

(H4) Total angle at each vertex = 27 v

15 -

H(G) corresponds to F', fo.

For each edge shared by
faces f and g, sequence 01 is
reversed and inverted o-.

For each face f it holds that:
—4 if f =

DICORE

e H(f) +4 otherwise.

For each vertex v the sum of
incident angles is 2.

Bend Minimization — Result

(H1)

: (H2)
Theorem. [Tamassia '87]

A plane graph (G, F, fy) has a valid orthogonal
representation H(G) with k bends. <

The flow network N(G) has a valid flow X with cost k.

(H3)

Proof. (H4)

“<": Given a valid flow X in N(G) of cost k,
construct an orthogonal representation H(G) with k bends.

B Transform from flow to orthogonal description.
B Show properties (H1)—-(H4).
(H1) H(G) matches F fj v

(H2) Bend order inverted and reversed on opposite sides v

(H4) Total angle at each vertex = 27 v

15 -

H(G) corresponds to F', fo.

For each edge shared by
faces f and g, sequence 01 is
reversed and inverted o-.

For each face f it holds that:
—4 if f =

DICORE

e H(f) +4 otherwise.

For each vertex v the sum of
incident angles is 2.

Bend Minimization — Result

(H1)

: (H2)
Theorem. [Tamassia '87]

A plane graph (G, F, fy) has a valid orthogonal
representation H(G) with k bends. <

The flow network N(G) has a valid flow X with cost k.

(H3)

Proof. (H4)

“<": Given a valid flow X in N(G) of cost k,
construct an orthogonal representation H(G) with k bends.

B Transform from flow to orthogonal description.
B Show properties (H1)—(H4).
(H1) H(G) matches F fj v

H2) Bend order inverted and reversed on opposite sides v

/N N

4) Total angle at each vertex = 27 v

—~
]

15 -

H(G) corresponds to F', fo.

For each edge shared by
faces f and g, sequence 01 is
reversed and inverted o-.

For each face f it holds that:
—4 if f =

DICORE

e H(f) +4 otherwise.

For each vertex v the sum of
incident angles is 2.

H3) Angle sum of f = +4 v — Exercise.

10

15-11

Bend Minimization — Result

Theorem. [Tamassia '87]
A plane graph (G, F, fy) has a valid orthogonal
representation H(G) with k bends. <

The flow network N(G) has a valid flow X with cost k.

Proof.

"=": Given an orthogonal representation H(G) with k bends,
construct a valid flow X in N(G) of cost k.

15-12

Bend Minimization — Result

Theorem. [Tamassia '87]
A plane graph (G, F, fy) has a valid orthogonal
representation H(G) with k bends. <

The flow network N(G) has a valid flow X with cost k.

Proof.

"=": Given an orthogonal representation H(G) with k bends,
construct a valid flow X in N(G) of cost k.

B Define flow X : F' — R(J{.
B Show that X is a valid flow and has cost k.

15-13

Bend Minimization — Result

B (v)=4 YveV(Q)

Theorem. [Tamassia '87] 4 i f=fo
A - m () = —2degG(f>+{ S =

plane graph (G, F, fo) has a valid orthogonal +4 otherwise
representation H(G) with k bends. & = et fji% X(v, f) = 4=u(v, f)
The flow network N(G) has a valid flow X with cost k. Ry ;g% X(f,9) < 0o = u(f, 9)
Proof.

"=": Given an orthogonal representation H(G) with k bends,
construct a valid flow X in N(G) of cost k.

B Define flow X : F' — R(J{.
B Show that X is a valid flow and has cost k.

15- 14

Bend Minimization — Result

B (v)=4 YveV(Q)

Theorem. [Tamassia '87] 4 i f=fo
A - m () = —2degG(f>+{ S =

plane graph (G, F, fo) has a valid orthogonal +4 otherwise
representation H(G) with k bends. & = et fji% X(v, f) = 4=u(v, f)
The flow network N(G) has a valid flow X with cost k. Ry ;g% X(f,9) < 0o = u(f, 9)
Proof.

"=": Given an orthogonal representation H(G) with k bends,
construct a valid flow X in N(G) of cost k.

B Define flow X : F' — R(J{.
B Show that X is a valid flow and has cost k.

(N1) X(vf)=1/2/3/4 v

15-15

Bend Minimization — Result

B (v)=4 YveV(Q)

Theorem. [Tamassia '87] 4 i f=fo
A - m () = —2degG(f>+{ S =

plane graph (G, F, fo) has a valid orthogonal +4 otherwise
representation H(G) with k bends. & = et fji% X(v, f) = 4=u(v, f)
The flow network N(G) has a valid flow X with cost k. Ry ;g% X(f,9) < 0o = u(f, 9)
Proof.

"=": Given an orthogonal representation H(G) with k bends,
construct a valid flow X in N(G) of cost k.

B Define flow X: E' — R{.

B Show that X is a valid flow and has cost k.
(N1) X(vf)=1/2/3/4 v
(N2) X() = |d]o, where (e, d, x) describes edge e in H(f)

Bend Minimization — Result

Theorem.

Proof.

"=": Given an orthogonal representation H(G) with k bends,
construct a valid flow X in N(G) of cost k.

B Define flow X : F' — R(J{.
B Show that X is a valid flow and has cost k.

(
(

(

\
\

\

1) X(vf) =1/2/3/4

[Tamassia '87]
A plane graph (G, F, fy) has a valid orthogonal
representation H(G) with k bends. <

The flow network N(G) has a valid flow X with cost k.

b(v) =4 VYv e V(G)
—4 Iff: f07

+4 otherwise

b(f) = —2degg(f) + {

=1< X (v, f) <4 =:u(v, f)
cost(v, f) =0

=0< X(f,9) <oo=:u(f,g)
cost(f,g) =1

v

2) X() = |d]o, where (e, d, x) describes edge e in H(f)

3) capacities, deficit/demand coverage

v

15-16

Bend Minimization — Result

Theorem.

Proof.

"=": Given an orthogonal representation H(G) with k bends,
construct a valid flow X in N(G) of cost k.

B Define flow X : F' — R(J{.
B Show that X is a valid flow and has cost k.

(

(
(
(

\

\
\
\

1) X(vf) =1/2/3/4

2) X() = [d|o, where (e, d, x) describes edge e in H(f)

3) capacities, deficit/demand coverage

4) cost = k

[Tamassia '87]
A plane graph (G, F, fy) has a valid orthogonal
representation H(G) with k bends. <

The flow network N(G) has a valid flow X with cost k.

b(v) =4 VYv e V(G)
—4 Iff: f07

+4 otherwise

b(f) = —2degg(f) + {

=1< X (v, f) <4 =:u(v, f)
cost(v, f) =0

=0< X(f,9) <oo=:u(f,g)
cost(f,g) =1

SNENIENIEN

15 - 17

16 -

Bend Minimization — Remarks

B The theorem implies that the combinatorial orthogonal bend minimization problem for
plane graphs can be solved using an algorithm for min-cost flow.

16 -

Bend Minimization — Remarks

B The theorem implies that the combinatorial orthogonal bend minimization problem for
plane graphs can be solved using an algorithm for min-cost flow.

Theorem. |Garg & Tamassia 1996]
The min-cost flow problem for planar graphs with bounded costs and vertex degrees can
be solved in O(n’/4\/logn) time.

16 -

Bend Minimization — Remarks

B The theorem implies that the combinatorial orthogonal bend minimization problem for
plane graphs can be solved using an algorithm for min-cost flow.

Theorem. |Garg & Tamassia 1996]

The min-cost flow problem for planar graphs with bounded costs and vertex degrees can
be solved in O(n’/4\/logn) time.

Theorem. [van den Brand, Chen, Kyng, Liu, Peng, Probst, Sachdeva, Sidford 2023]
The minimum-cost flow problem with integral vertex demands, edge capacities & costs can
be solved in O(m!T°W log U log C') time where U is max. capacity and C are max. costs.

16 -

Bend Minimization — Remarks

B The theorem implies that the combinatorial orthogonal bend minimization problem for
plane graphs can be solved using an algorithm for min-cost flow.

Theorem. |Garg & Tamassia 1996]

The min-cost flow problem for planar graphs with bounded costs and vertex degrees can
be solved in O(n’/4\/logn) time.

Theorem. [van den Brand, Chen, Kyng, Liu, Peng, Probst, Sachdeva, Sidford 2023]
The minimum-cost flow problem with integral vertex demands, edge capacities & costs can
be solved in O(m!T°W log U log C') time where U is max. capacity and C are max. costs.

16 -

Bend Minimization — Remarks

B The theorem implies that the combinatorial orthogonal bend minimization problem for
plane graphs can be solved using an algorithm for min-cost flow.

Theorem. |Garg & Tamassia 1996]

The min-cost flow problem for planar graphs with bounded costs and vertex degrees can
be solved in O(n’/4\/logn) time.

Theorem. [van den Brand, Chen, Kyng, Liu, Peng, Probst, Sachdeva, Sidford 2023]
The minimum-cost flow problem with integral vertex demands, edge capacities & costs can
be solved in O(m!T°W log U log C') time where U is max. capacity and C are max. costs.

16 -

Bend Minimization — Remarks

B The theorem implies that the combinatorial orthogonal bend minimization problem for
plane graphs can be solved using an algorithm for min-cost flow.

Theorem. |Garg & Tamassia 1996]

The min-cost flow problem for planar graphs with bounded costs and vertex degrees can
be solved in O(n’/4\/logn) time.

Theorem. [van den Brand, Chen, Kyng, Liu, Peng, Probst, Sachdeva, Sidford 2023]
The minimum-cost flow problem with integral vertex demands, edge capacities & costs can
be solved in O(m!T°W log U log C') time where U is max. capacity and C are max. costs.

16 -

Bend Minimization — Remarks

B The theorem implies that the combinatorial orthogonal bend minimization problem for
plane graphs can be solved using an algorithm for min-cost flow.

Theorem. |Garg & Tamassia 1996]

The min-cost flow problem for planar graphs with bounded costs and vertex degrees can
be solved in O(n’/4\/logn) time.

Theorem. [van den Brand, Chen, Kyng, Liu, Peng, Probst, Sachdeva, Sidford 2023]
The minimum-cost flow problem with integral vertex demands, edge capacities & costs can
be solved in O(m!T°W log U log C') time where U is max. capacity and C are max. costs.

Bend Minimization — Remarks

B The theorem implies that the combinatorial orthogonal bend minimization problem for
plane graphs can be solved using an algorithm for min-cost flow.

Theorem.

The min-cost flow problem for planar graphs with bounded costs and vertex degrees can
be solved in O(n"/*\/logn) time.

Theorem.
The minimum-cost flow problem with integral vertex demands, edge capacities & costs can
be solved in O(m!T°W log U log C') time where U is max. capacity and C are max. costs.

Corollary.
The combinatorial orthogonal bend minimization problem can be solved in O(n!t°(})) time.

Bend Minimization — Remarks

B The theorem implies that the combinatorial orthogonal bend minimization problem for
plane graphs can be solved using an algorithm for min-cost flow.

Theorem.

The min-cost flow problem for planar graphs with bounded costs and vertex degrees can
be solved in O(n"/*\/logn) time.

Theorem.

The minimum-cost flow problem with integral vertex demands, edge capacities & costs can
be solved in O(m!T°W log U log C') time where U is max. capacity and C are max. costs.

Corollary.
The combinatorial orthogonal bend minimization problem can be solved in O(n!t°(})) time.

Theorem.
Bend minimization without given combinatorial embedding is NP-hard.

17

Topology — Shape — Metrics

Three-step approach: [Tamassia 1987]
V(G) — {?)1,’02,1]3,’04} 04
E(G) = {v1v2, v1v3, V104, V203, U204 } 3

1 ¢
combinatorial I 2
embedding/ ol
reduce planarization orthog.onal area mini-
crossings drawing mization

VAN < minimizztion [7

1

orthogonal
2 representation 0 e]

1 2
TOPOLOQY — SHAPE — METRICS

Compaction

Compaction problem.

Given:

Find:

18 -

Compaction

Compaction problem.

Given:

Find:

B Plane graph G with maximum degree 4

18 -

Compaction

Compaction problem.

Given:

Find:

B Plane graph G with maximum degree 4
B Orthogonal representation H(G)

18 -

Compaction

Compaction problem.

Given:

Find:

B Plane graph G with maximum degree 4
B Orthogonal representation H(G)
Compact orthogonal layout of G that realizes H(G)

18 -

Compaction

Compaction problem.
Given: ® Plane graph G with maximum degree 4
B Orthogonal representation H(G)

Find: Compact orthogonal layout of G that realizes H(G)

Special case.
All faces are rectangles.

18 -

Compaction

Compaction problem.
Given: ® Plane graph G with maximum degree 4
B Orthogonal representation H(G)

Find: Compact orthogonal layout of G that realizes H(G)

Special case.
All faces are rectangles.

This guarantees:

18 -

Compaction

Compaction problem.
Given: ® Plane graph G with maximum degree 4
B Orthogonal representation H(G)

Find: Compact orthogonal layout of G that realizes H(G)

Special case.
All faces are rectangles.

This guarantees: ™ minimum total edge length

18 -

Compaction

Compaction problem.
Given: ® Plane graph G with maximum degree 4
B Orthogonal representation H(G)

Find: Compact orthogonal layout of G that realizes H(G)

Special case.
All faces are rectangles.

This guarantees: ™ minimum total edge length

B minimum area

18 -

Compaction

Compaction problem.
Given: ® Plane graph G with maximum degree 4
B Orthogonal representation H(G)

Find: Compact orthogonal layout of G that realizes H(G)

Special case.
All faces are rectangles.

This guarantees: ™ minimum total edge length

B minimum area
Properties.

18 -

18- 10

Compaction

Compaction problem.
Given: ® Plane graph G with maximum degree 4
B Orthogonal representation H(G)

Find: Compact orthogonal layout of G that realizes H(G)

Special case.
All faces are rectangles.

This guarantees: ™ minimum total edge length

B minimum area
Properties.

B bends only on the outer face

18- 11

Compaction

Compaction problem.
Given: ® Plane graph G with maximum degree 4
B Orthogonal representation H(G)

Find: Compact orthogonal layout of G that realizes H(G)

Special case.
All faces are rectangles.

This guarantees: ™ minimum total edge length

B minimum area
Properties.

B bends only on the outer face

B opposite sides of a face have the same length

18 - 12

Compaction

Compaction problem.
Given: ® Plane graph G with maximum degree 4
B Orthogonal representation H(G)
Find: Compact orthogonal layout of G that realizes H(G)

Special case.
All faces are rectangles.

This guarantees: ™ minimum total edge length

B minimum area
Properties.

B bends only on the outer face

B opposite sides of a face have the same length

Idea.

B Formulate flow network for horizontal /vertical compaction

Flow Network for Edge-Length Assignment

19 -

Flow Network for Edge-Length Assignment

Definition.
Flow Network Nnor = ((Whor, Ehor); b; (; u; cost)

19 -

Flow Network for Edge-Length Assignment

Definition.
Flow Network Nnor = ((Whor, Ehor); b; (; u; cost)

O Whor:F\{fO} o

19 -

Flow Network for Edge-Length Assignment

Definition.
Flow Network Nnor = ((Whor, Ehor); b; (; u; cost)

] Whor = F \ {fO} U {S,t} O

19 -

Flow Network for Edge-Length Assignment

Definition.
Flow Network Nnor = ((Whor, Ehor); b; (; u; cost)

] Whor = F \ {fg} U {S,t} O

B Fho ={(f,9) | f,g share a horizontal segment and f lies
below g}

Flow Network for Edge-Length Assignment

Definition.
Flow Network Nnor = ((Whor, Ehor); b; (; u; cost)
B Whor = F\{fo}U{s,t} o L

B Fho ={(f,9) | f,g share a horizontal segment and f lies
below g}

19 -

Flow Network for Edge-Length Assignment

Definition.

Flow Network Nnor = ((Whor, Ehor); b; (; u; cost)

B Whe = F\{fo}U{s,t} = L

B Fho ={(f,9) | f,g share a horizontal segment and f lies —
below g} < o

19 -

Flow Network for Edge-Length Assignment

Definition.
Flow Network Nnor = ((Whor, Ehor); b; (; u; cost)
B Whor = F\{fo}U{s,t} o L

B Fho ={(f,9) | f,g share a horizontal segment and f lies
below g}

19 -

Flow Network for Edge-Length Assignment

Definition.
Flow Network Nnor = ((Whor, Ehor); b; (; u; cost)
B Whor = F\{fo}U{s,t} o L

B Fho ={(f,9) | f,g share a horizontal segment and f lies
below g}

19-10

Flow Network for Edge-Length Assignment

Definition.
Flow Network Nnor = ((Whor, Ehor); b; (; u; cost)
B Whor = F\{fo}U{S,t} O

B Fho ={(f,9) | f,g share a horizontal segment and f lies
below g}

0~

19-11

Flow Network for Edge-Length Assignment

Definition.
Flow Network Nnor = ((Whor, Ehor); b; (; u; cost)
B Whor = F\{fo}U{S,t} O

B Fho ={(f,9) | f,g share a horizontal segment and f lies
below g}

19-12

Flow Network for Edge-Length Assignment

Definition.
Flow Network Nnor = ((Whor, Ehor); b; (; u; cost)

B Whor = F\{fo}U{S,t} O
B Fhor ={(f,9) | f,g share a horizontal segment and f lies
below g} U {(t,s)}

19-13

Flow Network for Edge-Length Assignment

Definition.

Flow Network Nnor = ((Whor, Ehor); b; (; u; cost)

B Wy, = F\{fo}U{S,t} O

B Fho ={(f,9) | f,g share a horizontal segment and f lies
below g} U {(t,s)}

] f(a) =1 Va € Eho

19- 14

Flow Network for Edge-Length Assignment

Definition.
Flow Network Nnor = ((Whor, Ehor); b; (; u; cost)

B Whor=F\{fo}U{s,t} =
B Fho ={(f,9) | f,g share a horizontal segment and f lies

below g} U {(t,s)}
[] f(a) =1 Va € Eyo

[] u(a) — 00 Va €& Ehor

19-15

Flow Network for Edge-Length Assignment

Definition.
Flow Network Nnor = ((Whor, Ehor); b; (; u; cost)

] Whor = F \ {fg} U {S,t} O

B Fhor ={(f,9) | f,g share a horizontal segment and f lies

below g} U {(t,s)}
[] f(a) =1 Va € Eyo

] u(a) = o0 Va & Ehor
B cost(a) =1 Va € Ephy

19-16

Flow Network for Edge-Length Assignment

Definition.
Flow Network Nnor = ((Whor, Ehor); b; (; u; cost)

] Whor = F \ {fg} U {S,t} O

B Fhor ={(f,9) | f,g share a horizontal segment and f lies

below g} U {(t,s)}
la)=1 Va € Ene
ula) =00 Va € Epor
cost(a) =1 Va € Fho
D) =0 Vf € Wher

Flow Network for Edge-Length Assignment

Definition.
Flow Network Nyer = ((Wher, Ever); b; /; u; cost)

Wier = F\{fo} U{s,t} o
Fyer =4{(f,9) | f, g share a vertical segment and f lies to the
left of g} U{(¢,s)}

la)=1 Va & Eye
ula) =00 Va € Eye
cost(a) =1 Va € Eye
b(f) =0 Vf € Wi

20

Compaction — Result

Theorem.
A valid flow for Nyor and N exists <
corresponding edge lengths induce an orthogonal drawing.

21 -

Compaction — Result

Theorem.
A valid flow for Nyor and N exists <
corresponding edge lengths induce an orthogonal drawing.

What values of the drawing do the following quantities represent?

21 -

Compaction — Result

Theorem.
A valid flow for Nyor and N exists <
corresponding edge lengths induce an orthogonal drawing.

What values of the drawing do the following quantities represent?
B | X, (2, s)] and | X e (2, 5)]7?

21 -

Compaction — Result

Theorem.
A valid flow for Nyor and N exists <
corresponding edge lengths induce an orthogonal drawing.

What values of the drawing do the following quantities represent?
B | X (7, s)] and | X e (2, 5)]7 width and height of the drawing

21 -

Compaction — Result

Theorem.
A valid flow for Nyor and N exists <
corresponding edge lengths induce an orthogonal drawing.

What values of the drawing do the following quantities represent?
B | X (7, s)] and | X e (2, 5)]7 width and height of the drawing

- zeEEhor Xhor(e) —I_ ZBEEver Xver(e)

21 -

Compaction — Result

Theorem.
A valid flow for Nyor and N exists <
corresponding edge lengths induce an orthogonal drawing.

What values of the drawing do the following quantities represent?
B | X (7, s)] and | X e (2, 5)]7 width and height of the drawing

] ZeEEhor Xhor(e) —+ ZGEEver Xver(e) total edge length

21 -

Compaction — Result

Theorem.
A valid flow for Nyor and N exists <
corresponding edge lengths induce an orthogonal drawing.

21 -

What if not all faces
are rectangular?

What values of the drawing do the following quantities represent?
B | X (7, s)] and | X e (2, 5)]7 width and height of the drawing

[ZeEEhor Xhor(e) —+ ZeEEver Xver(e) total edge length

Refinement of G and H(G) — Inner Face

Refinement of G and H(G) — Inner Face

O

B Dummy vertices for bends

22 -

Refinement of G and H(G) — Inner Face

O

B Dummy vertices for bends

22 -

Refinement of G and H(G) — Inner Face

O
B Dummy vertices for bends

B Traverse counter-clockwise

22 -

Refinement of G and H(G) — Inner Face

corner(e)

O
B Dummy vertices for bends

B Traverse counter-clockwise

22 -

Refinement of G and H(G) — Inner Face

o ®
corner(e)
\&
o
e
next(e) =
O

B Dummy vertices for bends

B Traverse counter-clockwise

22 -

Refinement of G and H(G) — Inner Face

o ®
corner(e)
\&
o
e
next(e) =
O

B Dummy vertices for bends
B Traverse counter-clockwise

1 left turn
B turn(e) =<0 no turn

—1 right turn

22 -

Refinement of G and H(G) — Inner Face

o ®
corner(e)
\&]
—1
o

e

next(e)
O

B Dummy vertices for bends

B Traverse counter-clockwise

S 1 left turn
B turn(e) =<0 no turn

—1 right turn

22 -

Refinement of G and H(G) — Inner Face

corner(e)

1 1
B Dummy vertices for bends

B Traverse counter-clockwise

S 1 left turn
B turn(e) =<0 no turn

—1 right turn

22 -

22 - 10

Refinement of G and H(G) — Inner Face

corner(e) 4 1

] front(e):

O
1 1/
f Dummy vertices for bends

B Traverse counter-clockwise

5 1 left turn
B turn(e) =<0 no turn

—1 right turn

22 - 11

Refinement of G and H(G) — Inner Face

corner(e) 4 1

0 4 front(e): First edge e after e such

that the angle sum between
: o, e and ¢’ is positive.
f Dummy vertices for bends

B Traverse counter-clockwise

5 1 left turn
B turn(e) =<0 no turn

—1 right turn

22 - 12

Refinement of G and H(G) — Inner Face

1, o
— extend(e)
—1
0 4 front(e): First edge e after e such
that the angle sum between
01/ e and €’ is positive.

f Dummy vertices for bends

B Traverse counter-clockwise

3 1 left turn
B turn(e) =<0 no turn

—1 right turn

22 - 13

Refinement of G and H(G) — Inner Face

— extend(e)

project(e)

/front(e): First edge e after e such

that the angle sum between
o, e and €’ is positive.
f Dummy vertices for bends

B Traverse counter-clockwise

3 1 left turn
B turn(e) =<0 no turn

—1 right turn

22 - 14

Refinement of G and H(G) — Inner Face

— extend(e)

project(e)

/front(e): First edge e after e such

that the angle sum between
o, e and €’ is positive.
f Dummy vertices for bends

B Traverse counter-clockwise

S 1 left turn
B turn(e) =<0 no turn

—1 right turn

22 - 15

Refinement of G and H(G) — Inner Face

— extend(e)

project(e)

/front(e): First edge e after e such

that the angle sum between
o, e and €’ is positive.
f Dummy vertices for bends

B Traverse counter-clockwise

S 1 left turn
B turn(e) =<0 no turn

—1 right turn

22 - 16

Refinement of G and H(G) — Inner Face

— extend(e)

project(e)

/front(e): First edge e after e such

that the angle sum between
., e and €’ is positive.
f Dummy vertices for bends

B Traverse counter-clockwise

3 1 left turn
B turn(e) =<0 no turn

—1 right turn

22 - 17

Refinement of G and H(G) — Inner Face

— extend(e)

project(e)

/front(e): First edge e after e such

that the angle sum between
., e and €’ is positive.
f Dummy vertices for bends

B Traverse counter-clockwise

S 1 left turn
B turn(e) =<0 no turn

—1 right turn

22 - 18

Refinement of G and H(G) — Inner Face

— extend(e)

project(e)

/front(e): First edge e after e such

that the angle sum between
O, e and €’ is positive.
f Dummy vertices for bends

B Traverse counter-clockwise

S 1 left turn
B turn(e) =<0 no turn

—1 right turn

22 -19

Refinement of G and H(G) — Inner Face

— extend(e)

project(e)

/front(e): First edge e after e such

that the angle sum between
o, e and €’ is positive.
f Dummy vertices for bends

B Traverse counter-clockwise

S 1 left turn
B turn(e) =<0 no turn

—1 right turn

Refinement of G and H(G) — Outer Face

fo

Refinement of G and H(G) — Outer Face

B Add an outer rectangle

fo

23 -

Refinement of G and H(G) — Outer Face

B Add an outer rectangle

-9 : M Traverse clockwise

23 -

Refinement of G and H(G) — Outer Face

B Add an outer rectangle

B Traverse clockwise

23 -

Refinement of G and H(G) — Outer Face

B Add an outer rectangle

B Traverse clockwise

23 -

Refinement of G and H(G) — Outer Face

B Add an outer rectangle

B Traverse clockwise

23 -

Refinement of G and H(G) — Outer Face

B Add an outer rectangle

B Traverse clockwise

23 -

Refinement of G and H(G) — Outer Face

B Add an outer rectangle

B Traverse clockwise

23 -

Refinement of G and H(G) — Outer Face

B Add an outer rectangle

B Traverse clockwise

23 -

23 -10

Refinement of G and H(G) — Outer Face

B Add an outer rectangle

B Traverse clockwise

23 - 11

Refinement of G and H(G) — Outer Face

B Add an outer rectangle

B Traverse clockwise

23 - 12

Refinement of G and H(G) — Outer Face

B Add an outer rectangle

B Traverse clockwise

23 - 13

Refinement of G and H(G) — Outer Face

B Add an outer rectangle

B Traverse clockwise

23 - 14

Refinement of G and H(G) — Outer Face

B Add an outer rectangle

B Traverse clockwise

23 -15

Refinement of G and H(G) — Outer Face

B Add an outer rectangle

B Traverse clockwise

23 - 16

Refinement of G and H(G) — Outer Face

B Add an outer rectangle

B Traverse clockwise

Area minimized?

23 - 17

Refinement of G and H(G) — Outer Face

®,
! I Area minimized?
O

23 - 18

Refinement of G and H(G) — Outer Face

®,
! I Area minimized? No!
O

O

23 -19

Refinement of G and H(G) — Outer Face

Area minimized? No!

But we get bound O((n + b)?) on the area.

23 - 20

Refinement of G and H(G) — Outer Face

Area minimized? No!

bends

But we get bound O((n + b)?) on the area.

23 -21

Refinement of G and H(G) — Outer Face

o
Area minimized? No!
o
| 4 bends
But we get bound O((n + b)?) on the area.
Theorem. [Patrignani 2001]

Compaction for a given orthogonal
representation is NP-hard in general.

Refinement of G and H(G) — Outer Face

Theorem. [Patrignani 2001]
Compaction for a given orthogonal
representation is NP-hard in general.

Area minimized? No!

bends

But we get bound O((n + b)?) on the area.

Theorem. [EFKSSW 2022]

Compaction is NP-hard even for
orthogonal representations of cycles.

23 - 22

Refinement of G and H(G) — Outer Face

Theorem. [Patrignani 2001]

Compaction for a given orthogonal
representation is NP-hard in general.

Area minimized? No!

bends

But we get bound O((n + b)?) on the area.

Theorem. [EFKSSW 2022]

Compaction is NP-hard even for
orthogonal representations of cycles.

23 - 23

Compaction is NP-hard

Polynomial-time reduction from the NP-complete satisfiability problem (SAT).

24 -

Compaction is NP-hard

Polynomial-time reduction from the NP-complete satisfiability problem (SAT).

In an instance of the SAT problem we have:

24 -

Compaction is NP-hard

Polynomial-time reduction from the NP-complete satisfiability problem (SAT).

In an instance of the SAT problem we have:

B set of n Boolean variables X = {z1,25,...,2,}

24 -

Compaction is NP-hard

Polynomial-time reduction from the NP-complete satisfiability problem (SAT).

In an instance of the SAT problem we have:
B set of n Boolean variables X = {z1,25,...,2,}

B m clauses C1,C5,...,C,,

24 -

Compaction is NP-hard

Polynomial-time reduction from the NP-complete satisfiability problem (SAT).

In an instance of the SAT problem we have:
B set of n Boolean variables X = {z1,25,...,2,}

m m clauses C'1,C5,...,C,,, where
each clause is a disjunction of literals from X,

24 -

Compaction is NP-hard

Polynomial-time reduction from the NP-complete satisfiability problem (SAT).

In an instance of the SAT problem we have:
B set of n Boolean variables X = {z1,25,...,2,}

m m clauses C'1,C5,...,C,,, where
each clause is a disjunction of literals from X,
eg., Ci =21V 2oV 3

24 -

Compaction is NP-hard

Polynomial-time reduction from the NP-complete satisfiability problem (SAT).

In an instance of the SAT problem we have:
B set of n Boolean variables X = {z1,25,...,2,}

m m clauses C'1,C5,...,C,,, where
each clause is a disjunction of literals from X,
eg., Ci =21V 2oV 3

B Boolean formula ®=C{ ACo A --- N C,,

24 -

Compaction is NP-hard

Polynomial-time reduction from the NP-complete satisfiability problem (SAT).

In an instance of the SAT problem we have:
B set of n Boolean variables X = {z1,25,...,2,}

m m clauses C'1,C5,...,C,,, where
each clause is a disjunction of literals from X,
eg., Ci =21V 2oV 3

B Boolean formula ®=C{ ACo A --- N C,,

Question: Is there an assignment of truth values to the variables in X such that ® is true?

24 -

Compaction is NP-hard

Polynomial-time reduction from the NP-complete satisfiability problem (SAT).

In an instance of the SAT problem we have:
B set of n Boolean variables X = {z1,25,...,2,}

m m clauses C'1,C5,...,C,,, where
each clause is a disjunction of literals from X,
eg., Ci =21V 2oV 3

B Boolean formula ®=C{ ACo A --- N C,,

Question: Is there an assignment of truth values to the variables in X such that ® is true?

ldea of the reduction:

24 -

24 - 10

Compaction is NP-hard

Polynomial-time reduction from the NP-complete satisfiability problem (SAT).

In an instance of the SAT problem we have:
B set of n Boolean variables X = {z1,25,...,2,}

m m clauses C'1,C5,...,C,,, where
each clause is a disjunction of literals from X,
eg., Ci =21V 2oV 3

B Boolean formula ®=C{ ACo A --- N C,,

Question: Is there an assignment of truth values to the variables in X such that ® is true?

ldea of the reduction:

B Given SAT instance ® = construct a plane graph G and a orthogonal description H(G)

24 - 11

Compaction is NP-hard

Polynomial-time reduction from the NP-complete satisfiability problem (SAT).

In an instance of the SAT problem we have:
B set of n Boolean variables X = {z1,25,...,2,}

m m clauses C'1,C5,...,C,,, where
each clause is a disjunction of literals from X,
eg., Ci =21V 2oV 3

B Boolean formula ®=C{ ACo A --- N C,,

Question: Is there an assignment of truth values to the variables in X such that ® is true?

ldea of the reduction:

B Given SAT instance ® = construct a plane graph G and a orthogonal description H(G)

B & is satisfiable << G can be drawn w.r.t. H(G) in area K for some specific number K

Boundary, Belt, and “Piston” Gadget

(w x h)-rectangle

Boundary, Belt, and “Piston” Gadget

Boundary, Belt, and “Piston” Gadget

Boundary, Belt, and “Piston” Gadget

Boundary, Belt, and “Piston” Gadget

Boundary, Belt, and “Piston” Gadget

w?%%%?%%r
i i

Boundary, Belt, and "Piston” Gadget
Ti@imiw
|byll]

Boundary, Belt, and “Piston” Gadget

i?@%if{ﬁﬁﬂﬂlr
|
- Nam

-

Clause Gadgets

Clause Gadgets

Example:

Cl — Xo V Ty

Co =x1 VIV T3
03 — Is

04 — X4 \Y4 —Ix

Tar 1ir s

T - fl

26 -

26

Clause Gadgets

Clause Gadgets

Example:

Cl — Xo V Ty
Co=x1VxoV 23
C3 — Ix

04 — X4 \Y4 —Ix

insert (2n — 1)-chain
through each clause

26 -

Clause Gadgets

Example:

Cl — XI? V XLy
Co=x1VxoV 23
03 — Ix

04 — X4 \Y4 —Ix

insert (2n — 1)-chain
through each clause

26 -

Clause Gadgets

26 -

Example:

Cl — XI? V XLy
Co=x1VxoV 23
03 — Ix

04 — X4 \Y4 —Ix

insert (2n(= 1)-chain
through each clause

— for every clause, there needs to be
> 1 “gap of a literal” to be on the same
height as the “tunnel” to the next literal

Complete Reduction

+ 2

Complete Reduction

Pick
K=(M+2)x(9m+7)

Om + 7

Complete Reduction

Pick
K=(M+2)x(9m+7)

Om + 7

Then:

G under H(G) has an
orthogonal drawing in area K
<~
® satisfiable

28

| iterature

B [GD Ch. 5] for detailed explanation

B [Tamassia 1987] “On embedding a graph in the grid with the minmum number of bends”
Original paper on flow for bend minimization.

B [van den Brand, Chen, Kyng, Liu, Peng, Probst, Sachdeva, Sidford 2023]
“A Deterministic Almost-Linear Time Algorithm for Minimum-Cost Flow"
State-of-the-art algorithm for solving the minimum-cost flow problem
(published recently in the proceedings of the FOCS 2023 conference).

B [Patrignani 2001] “On the complexity of orthogonal compaction”
NP-hardness proof for orthogonal representation of planar max-degree-4 graphs.

B [Evans, Fleszar, Kindermann, Saeedi, Shin, Wolff 2022]
“Minimum rectilinear polygons for given angle sequences”
NP-hardness proof for compaction of cycles.

	Orthogonal layout
	Applications
	Definition

	Topology - Shape - Metrics
	Definition
	Example
	Correctness

	Reminder: s--t Flow Networks
	s-t Flow Networks
	General Flow Network
	General Flow Network - Algorithms
	Problem Statement
	Flow Network
	Example
	Result
	Remarks
	Problem Statement
	Flow Network
	Result
	Refinement of Inner Face
	Refinement of Outer Face
	Boundary, Belt, and ``Piston'' Gadget
	Clause Gadgets
	Complete Reduction

	Literature

