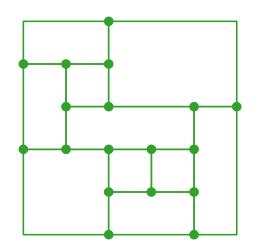
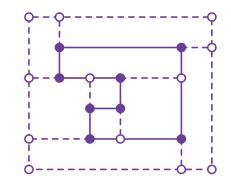
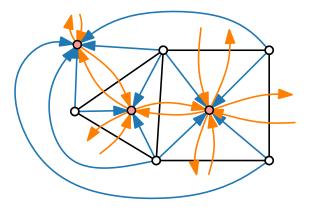


Visualization of Graphs



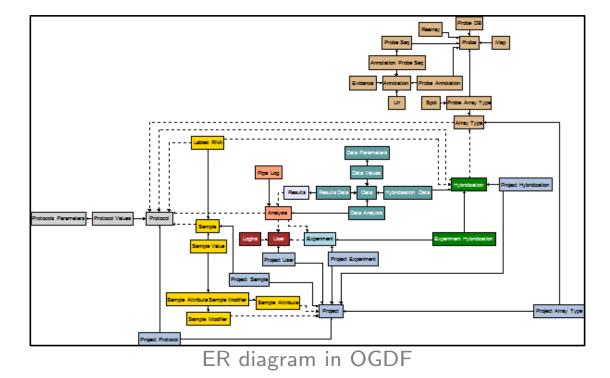
Lecture 6: Orthogonal Layouts

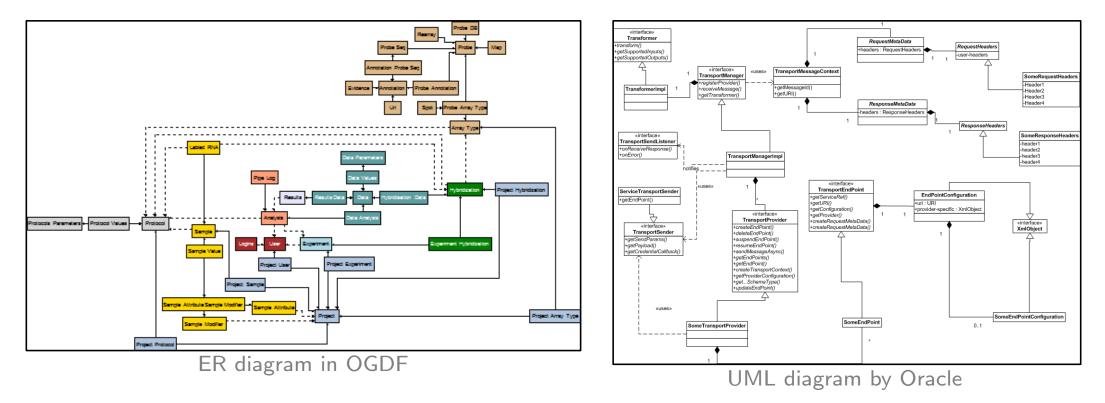


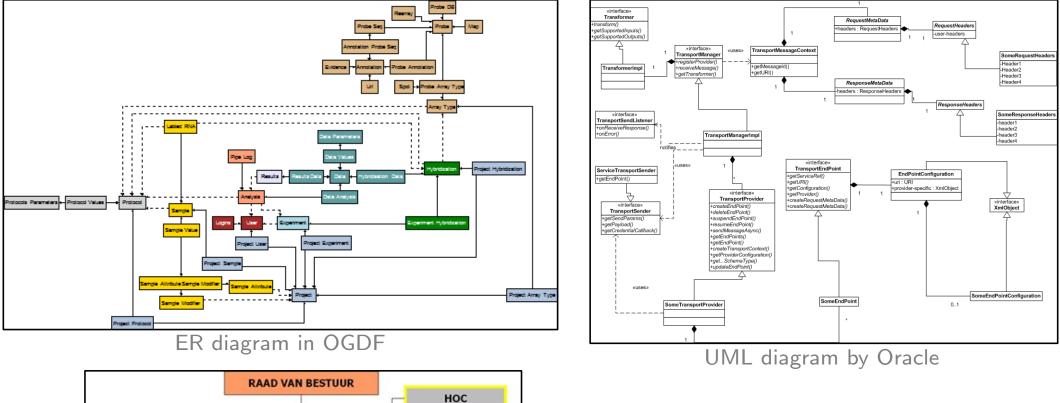


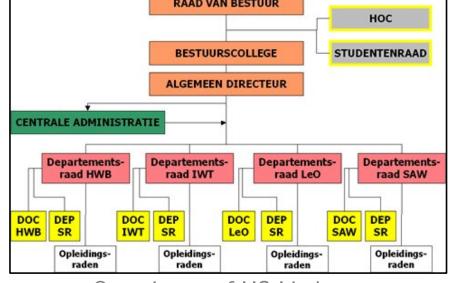
Johannes Zink

Summer semester 2024

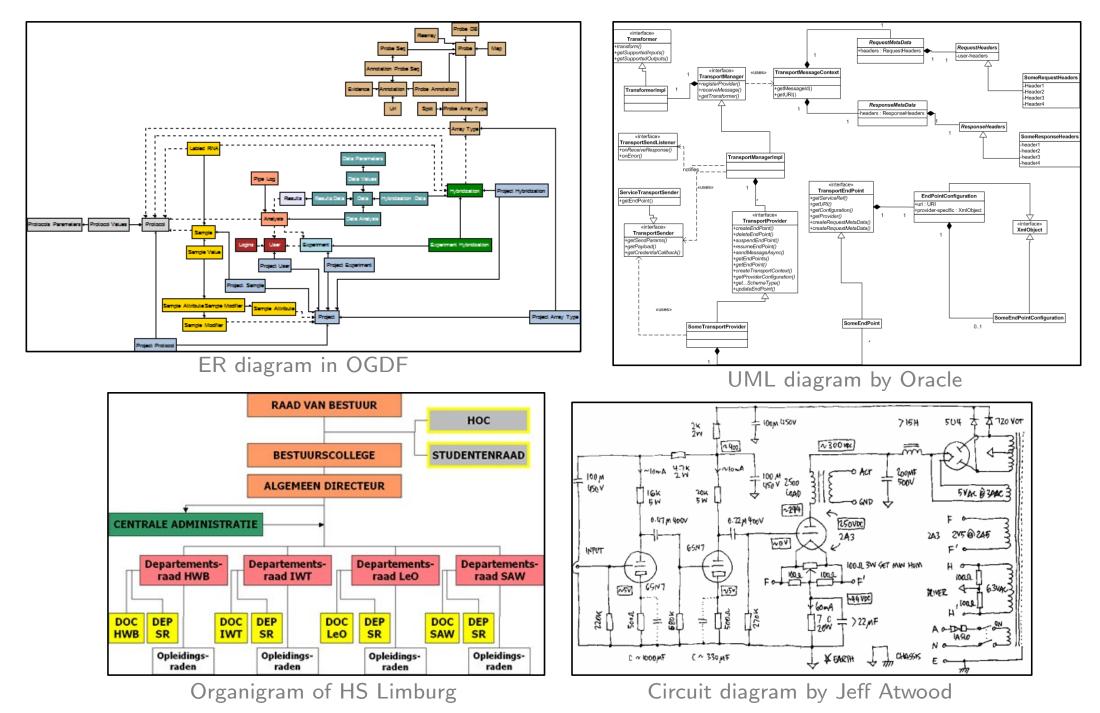






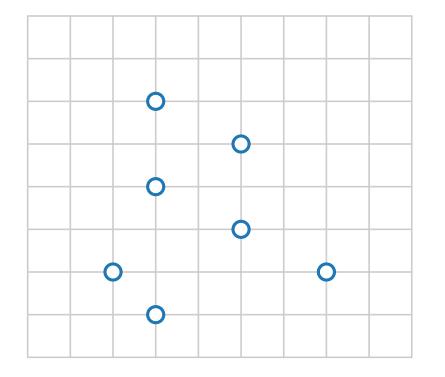


Organigram of HS Limburg



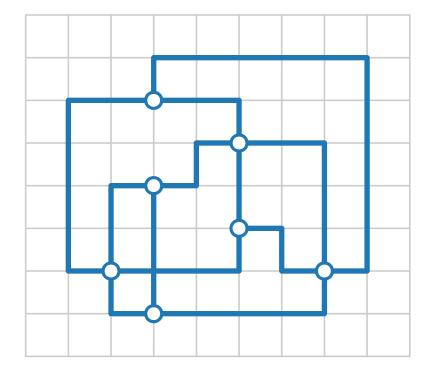
Definition.

A drawing Γ of a graph G is called orthogonal if



Definition.

A drawing Γ of a graph G is called orthogonal if

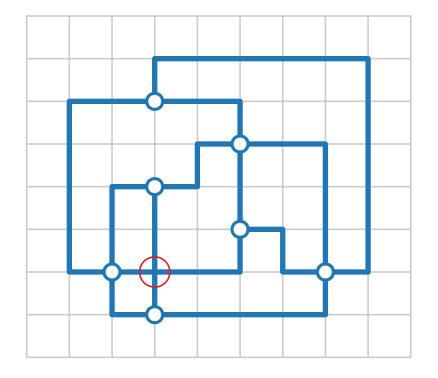


Definition.

A drawing Γ of a graph G is called orthogonal if

vertices are drawn as points on a grid,

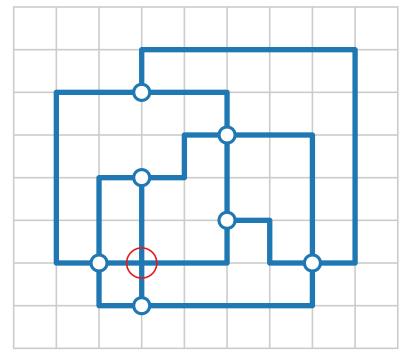
each edge is represented as a sequence of alternating horizontal and vertical line segments of the grid, and



Definition.

A drawing Γ of a graph G is called orthogonal if

- each edge is represented as a sequence of alternating horizontal and vertical line segments of the grid, and
- pairs of edges are disjoint or cross orthogonally.



Definition.

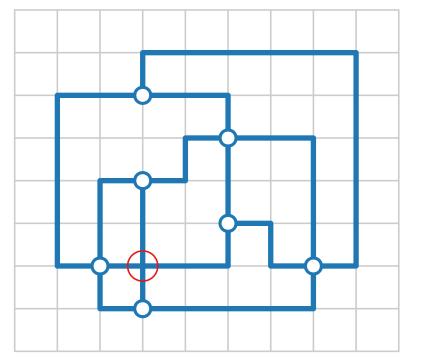
A drawing Γ of a graph G is called ${\rm orthogonal}$ if

vertices are drawn as points on a grid,

each edge is represented as a sequence of alternating horizontal and vertical line segments of the grid, and

pairs of edges are disjoint or cross orthogonally.

Observations.



Observations.

■ Edges lie on a grid ⇒
bends lie on grid points

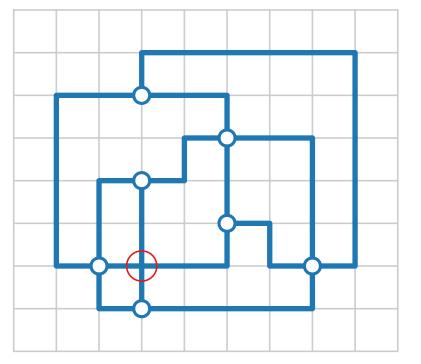
Definition.

A drawing Γ of a graph G is called orthogonal if

vertices are drawn as points on a grid,

each edge is represented as a sequence of alternating horizontal and vertical line segments of the grid, and

pairs of edges are disjoint or cross orthogonally.



Observations.

- Edges lie on a grid ⇒
 bends lie on grid points
- Max. degree of each vertex is at most 4

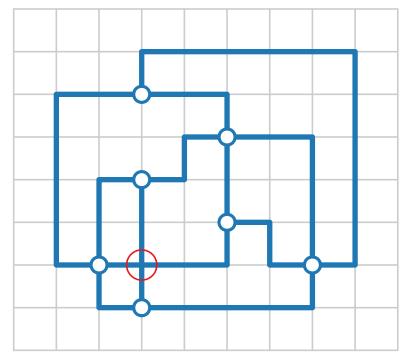
Definition.

A drawing Γ of a graph G is called ${\rm orthogonal}$ if

vertices are drawn as points on a grid,

each edge is represented as a sequence of alternating horizontal and vertical line segments of the grid, and

pairs of edges are disjoint or cross orthogonally.



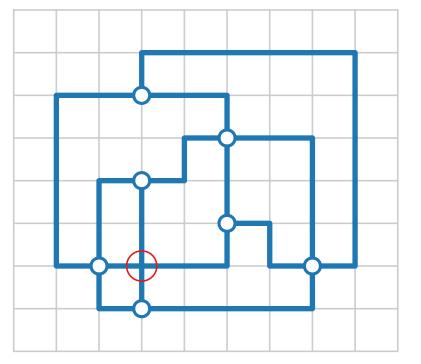
Observations.

- Edges lie on a grid ⇒
 bends lie on grid points
- Max. degree of each vertex is at most 4
- Otherwise

Definition.

A drawing Γ of a graph G is called orthogonal if

- each edge is represented as a sequence of alternating horizontal and vertical line segments of the grid, and
- pairs of edges are disjoint or cross orthogonally.



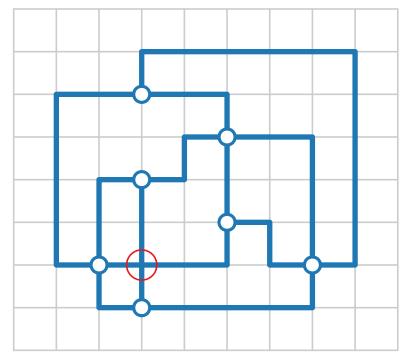
Observations.

- Edges lie on a grid ⇒
 bends lie on grid points
- Max. degree of each vertex is at most 4
- Otherwise

Definition.

A drawing Γ of a graph G is called orthogonal if

- each edge is represented as a sequence of alternating horizontal and vertical line segments of the grid, and
- pairs of edges are disjoint or cross orthogonally.



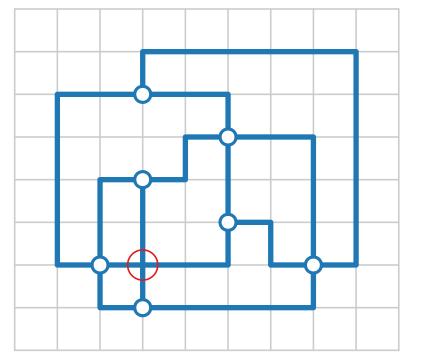
Observations.

- Edges lie on a grid ⇒
 bends lie on grid points
- Max. degree of each vertex is at most 4
- Otherwise ______

Definition.

A drawing Γ of a graph G is called orthogonal if

- each edge is represented as a sequence of alternating horizontal and vertical line segments of the grid, and
- pairs of edges are disjoint or cross orthogonally.



Definition.

A drawing Γ of a graph G is called orthogonal if

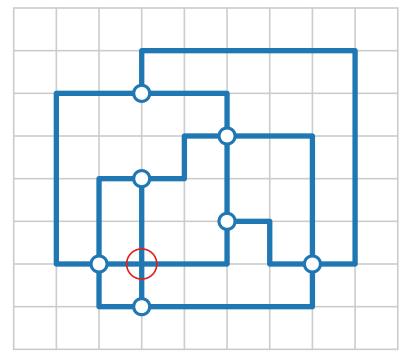
vertices are drawn as points on a grid,

each edge is represented as a sequence of alternating horizontal and vertical line segments of the grid, and

pairs of edges are disjoint or cross orthogonally.

Observations.

- Edges lie on a grid ⇒
 bends lie on grid points
- Max. degree of each vertex is at most 4



Definition.

A drawing Γ of a graph G is called orthogonal if

vertices are drawn as points on a grid,

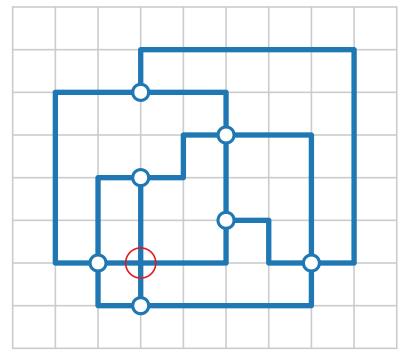
- each edge is represented as a sequence of alternating horizontal and vertical line segments of the grid, and
- pairs of edges are disjoint or cross orthogonally.

Observations.

- Edges lie on a grid ⇒
 bends lie on grid points
- Max. degree of each vertex is at most 4
- Otherwise _____

Planarization.

Fix embedding



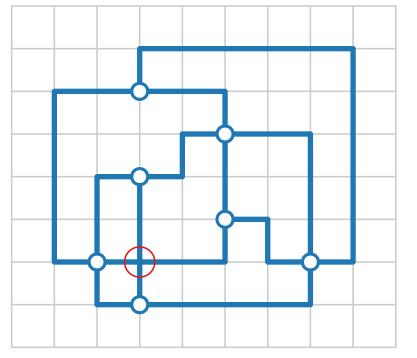
Observations.

- Edges lie on a grid ⇒
 bends lie on grid points
- Max. degree of each vertex is at most 4
- Otherwise

Definition.

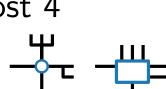
- A drawing Γ of a graph G is called orthogonal if
 - vertices are drawn as points on a grid,
 - each edge is represented as a sequence of alternating horizontal and vertical line segments of the grid, and
 - pairs of edges are disjoint or cross orthogonally.

- Fix embedding
- Crossings become vertices



Observations.

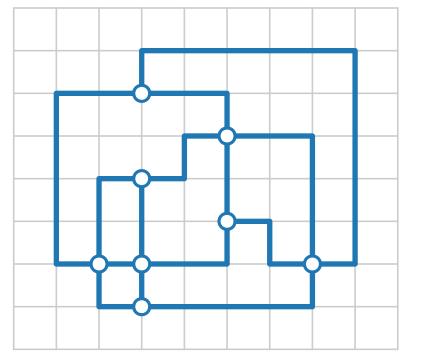
- Edges lie on a grid ⇒
 bends lie on grid points
- Max. degree of each vertex is at most 4
- Otherwise



Definition.

- A drawing Γ of a graph G is called ${\rm orthogonal}$ if
 - vertices are drawn as points on a grid,
 - each edge is represented as a sequence of alternating horizontal and vertical line segments of the grid, and
 - pairs of edges are disjoint or cross orthogonally.

- Fix embedding
- Crossings become vertices



Definition.

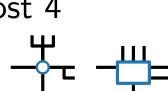
A drawing Γ of a graph G is called orthogonal if

vertices are drawn as points on a grid,

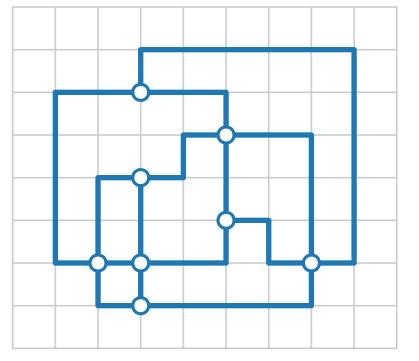
- each edge is represented as a sequence of alternating horizontal and vertical line segments of the grid, and
- pairs of edges are disjoint or cross orthogonally.

Observations.

- Edges lie on a grid ⇒
 bends lie on grid points
- Max. degree of each vertex is at most 4
- Otherwise



- Fix embedding
- Crossings become vertices



Definition.

A drawing Γ of a graph G is called ${\rm orthogonal}$ if

vertices are drawn as points on a grid,

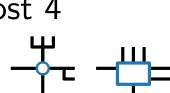
each edge is represented as a sequence of alternating horizontal and vertical line segments of the grid, and

pairs of edges are disjoint or cross orthogonally.

Observations.

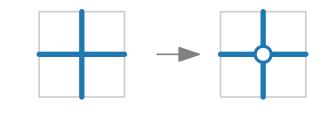
- Edges lie on a grid ⇒
 bends lie on grid points
- Max. degree of each vertex is at most 4

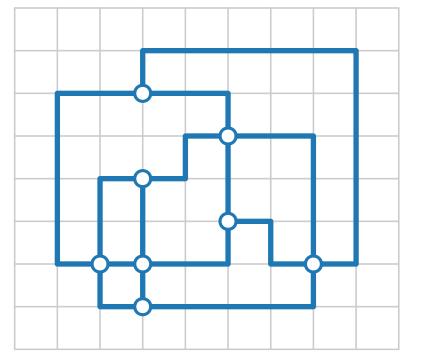
Otherwise



Planarization.

- Fix embedding
- Crossings become vertices





Definition.

A drawing Γ of a graph G is called ${\rm orthogonal}$ if

vertices are drawn as points on a grid,

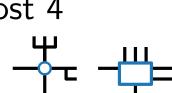
each edge is represented as a sequence of alternating horizontal and vertical line segments of the grid, and

pairs of edges are disjoint or cross orthogonally.

Observations.

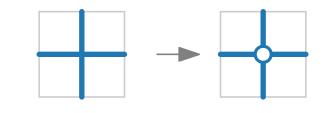
- Edges lie on a grid ⇒
 bends lie on grid points
- Max. degree of each vertex is at most 4

Otherwise



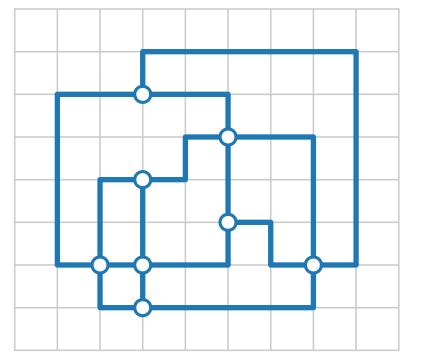
Planarization.

- Fix embedding
- Crossings become vertices



Aesthetic criteria to optimize.

Number of bends



Definition.

A drawing Γ of a graph G is called ${\rm orthogonal}$ if

vertices are drawn as points on a grid,

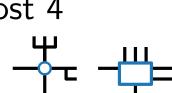
each edge is represented as a sequence of alternating horizontal and vertical line segments of the grid, and

pairs of edges are disjoint or cross orthogonally.

Observations.

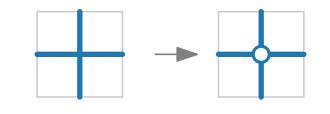
- Edges lie on a grid ⇒
 bends lie on grid points
- Max. degree of each vertex is at most 4

Otherwise

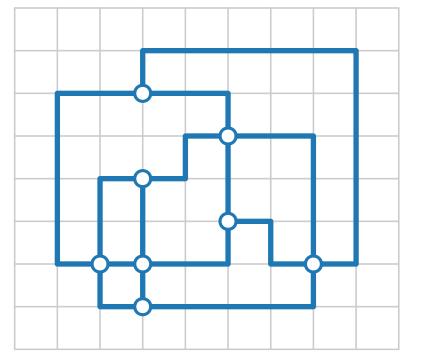


Planarization.

- Fix embedding
- Crossings become vertices



- Number of bends
- Length of edges



Definition.

A drawing Γ of a graph G is called ${\rm orthogonal}$ if

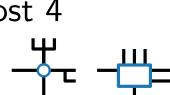
vertices are drawn as points on a grid,

each edge is represented as a sequence of alternating horizontal and vertical line segments of the grid, and

pairs of edges are disjoint or cross orthogonally.

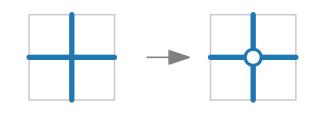
Observations.

- Edges lie on a grid ⇒
 bends lie on grid points
- Max. degree of each vertex is at most 4
- Otherwise

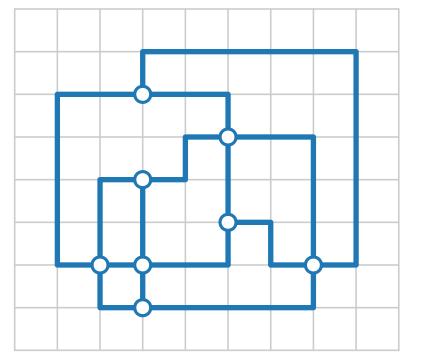


Planarization.

- Fix embedding
- Crossings become vertices



- Number of bends
- Length of edges
- Width, height, area



Definition.

A drawing Γ of a graph G is called ${\rm orthogonal}$ if

vertices are drawn as points on a grid,

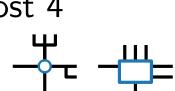
each edge is represented as a sequence of alternating horizontal and vertical line segments of the grid, and

pairs of edges are disjoint or cross orthogonally.

Observations.

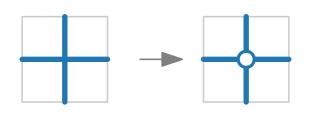
- Edges lie on a grid ⇒
 bends lie on grid points
- Max. degree of each vertex is at most 4

Otherwise



Planarization.

- Fix embedding
- Crossings become vertices



- Number of bends
- Length of edges
- Width, height, area
- Monotonicity of edges

[Tamassia 1987]

Topology – Shape – Metrics

Topology – Shape – Metrics

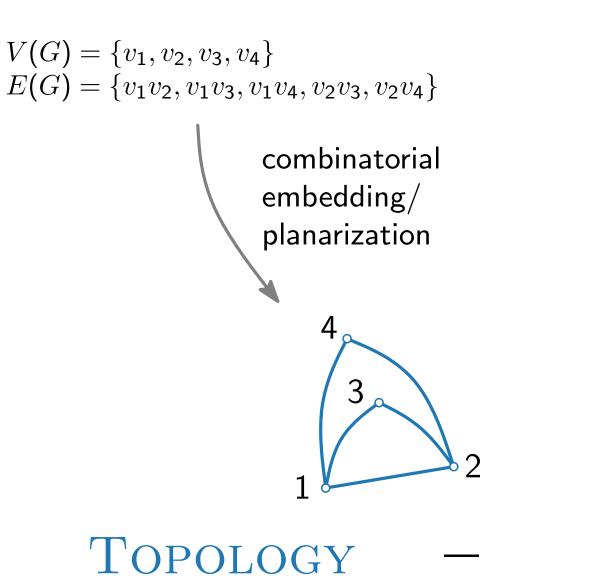
Three-step approach:

[Tamassia 1987]

 $V(G) = \{v_1, v_2, v_3, v_4\}$ $E(G) = \{v_1v_2, v_1v_3, v_1v_4, v_2v_3, v_2v_4\}$

TOPOLOGY – Shape – Metrics

Topology – Shape – Metrics

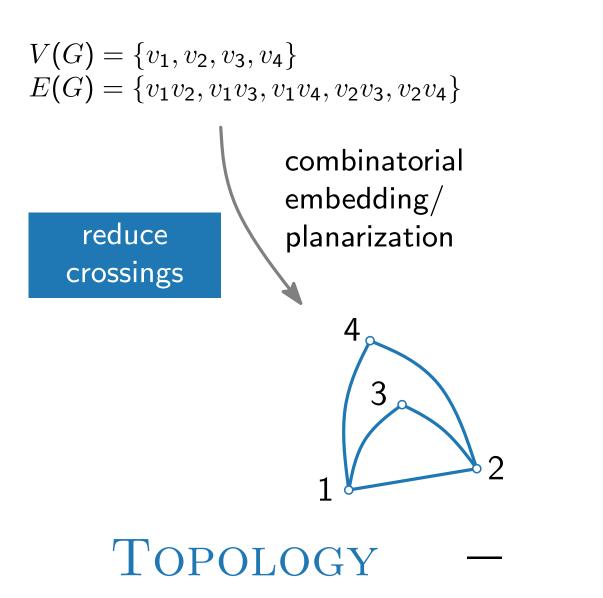


[Tamassia 1987]

HAPE

METRICS

Topology – Shape – Metrics



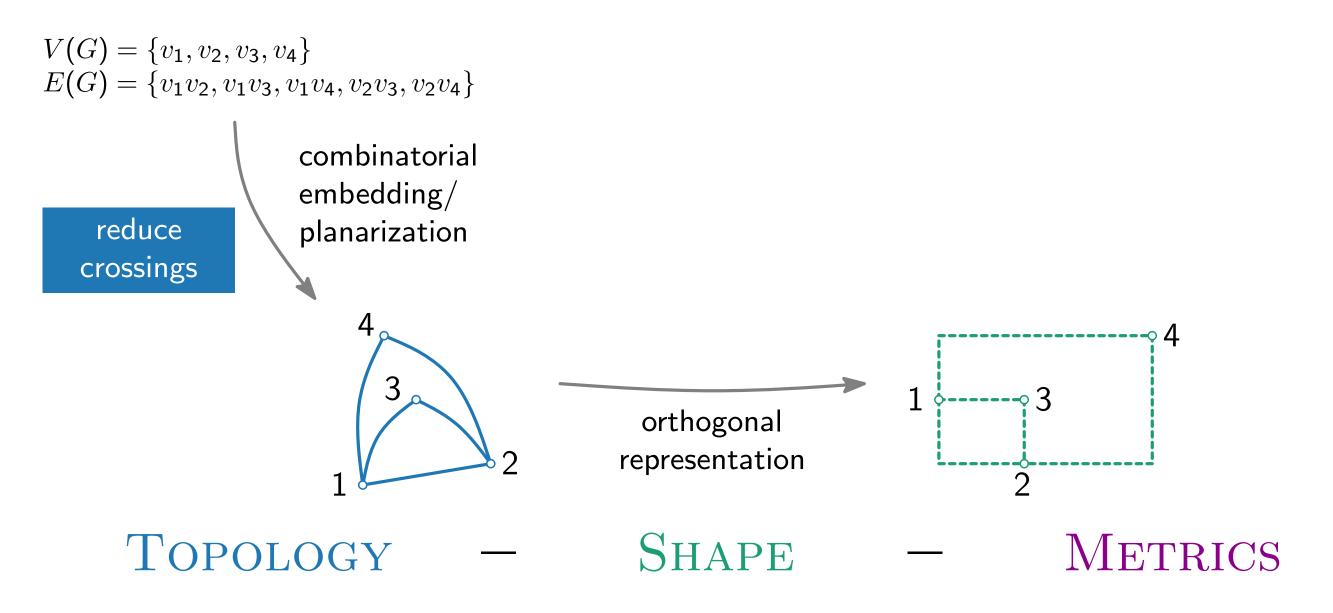
[Tamassia 1987]

APE

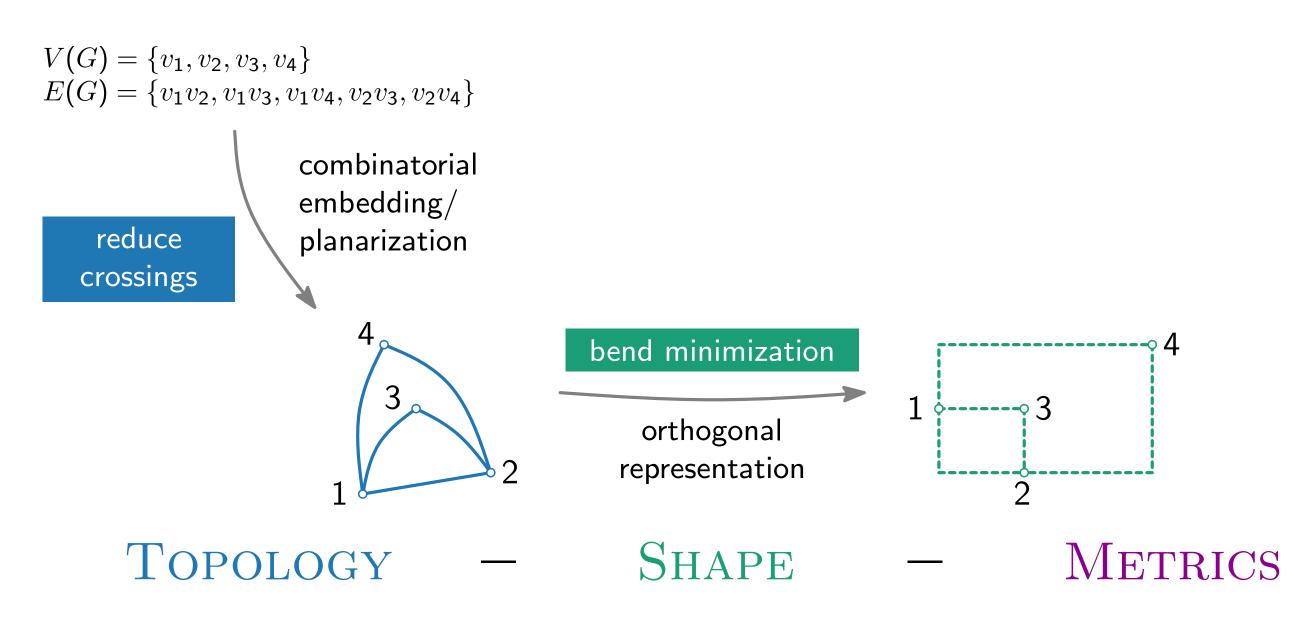
METRICS

Topology – Shape – Metrics

[Tamassia 1987]



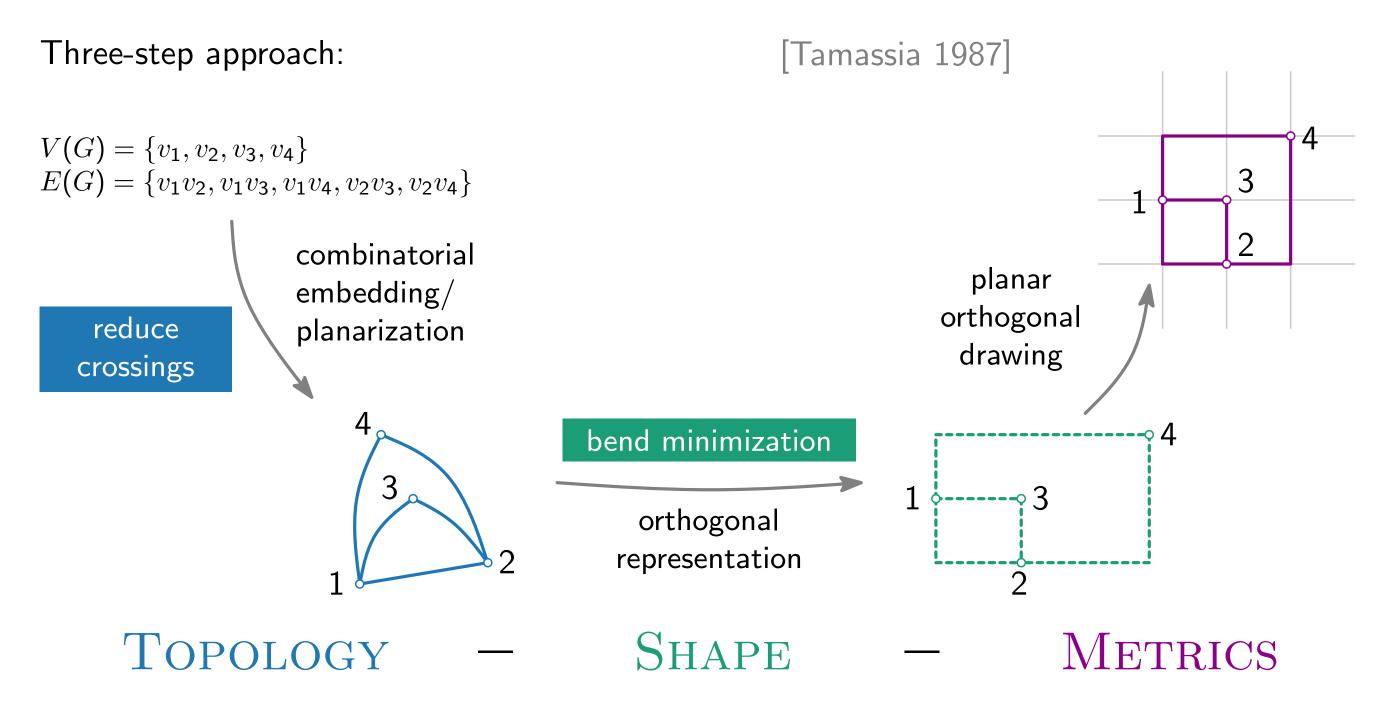
Topology – Shape – Metrics



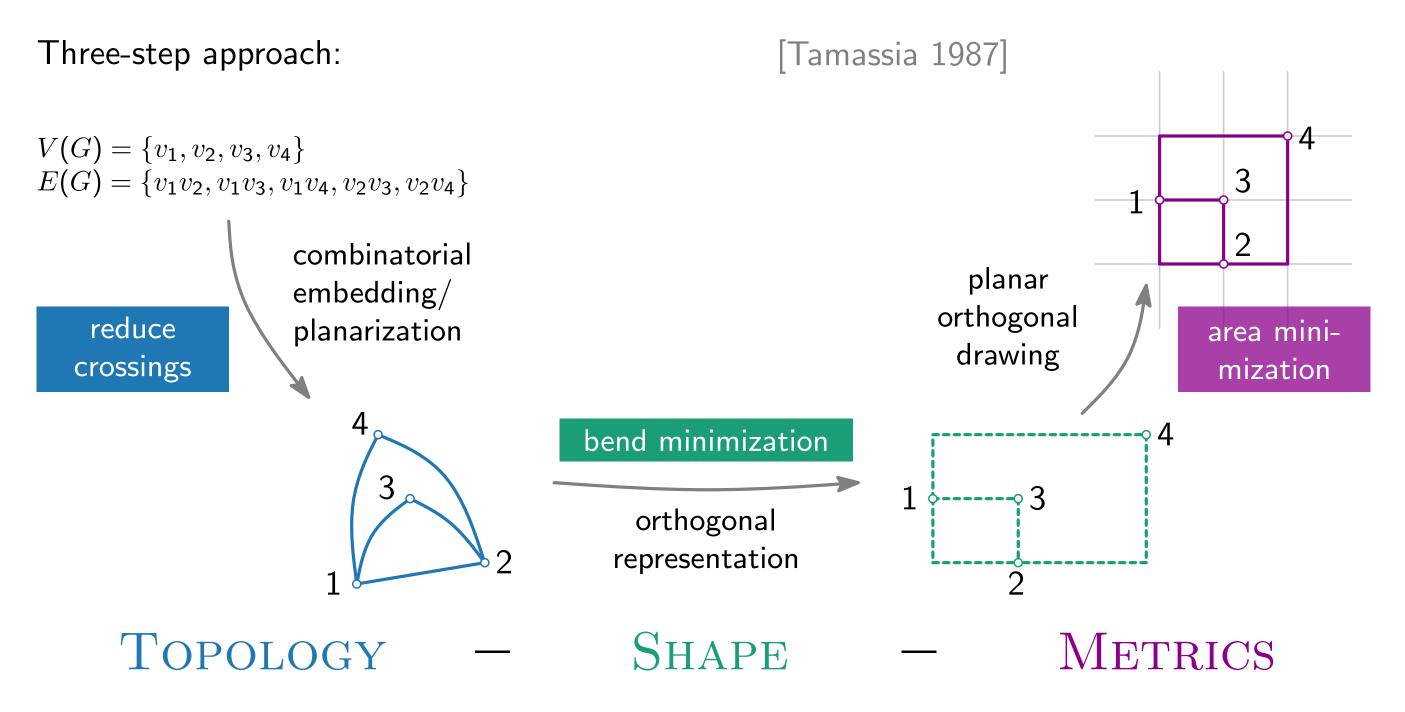
[Tamassia 1987]

4 - 6

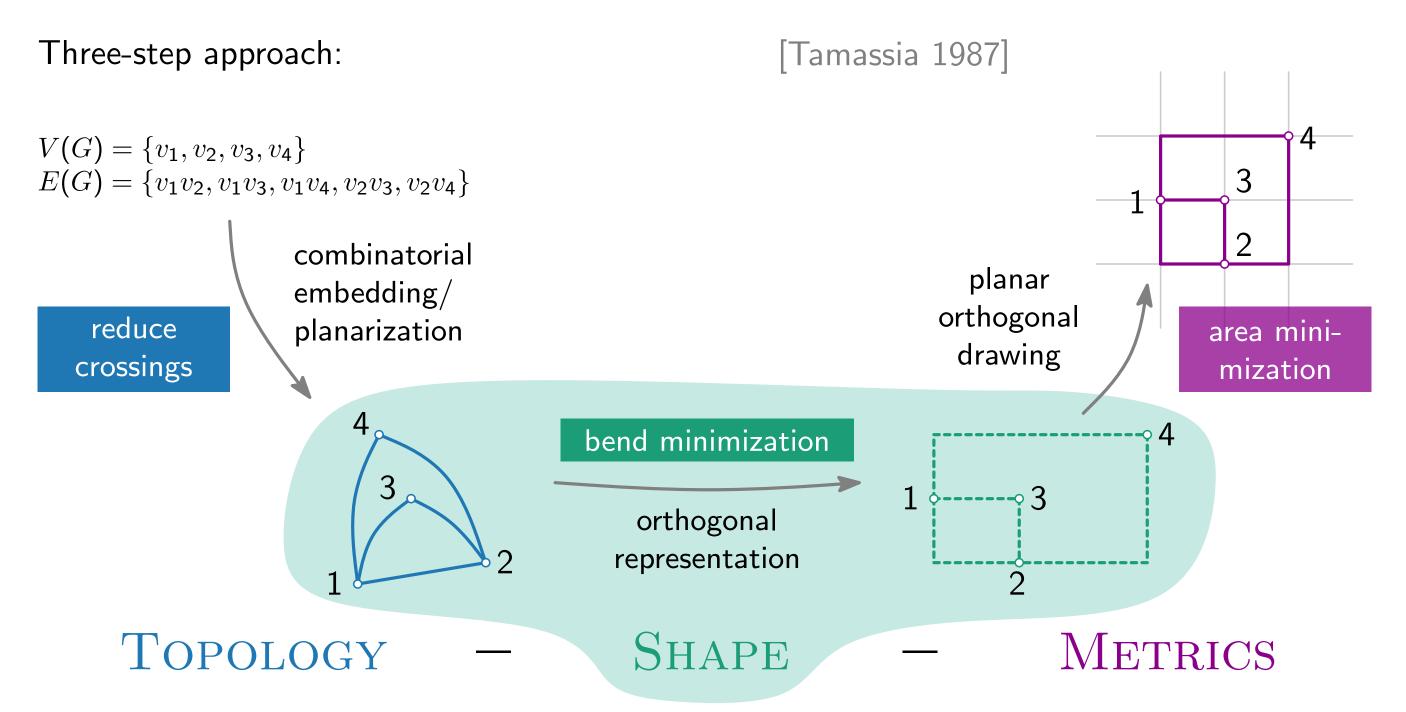
Topology – Shape – Metrics



Topology – Shape – Metrics



Topology – Shape – Metrics



Orthogonal Representation

Idea.

Describe orthogonal drawing combinatorially.

Orthogonal Representation

Idea.

Describe orthogonal drawing combinatorially.

Definitions.

Let G be a plane graph with set F of faces and outer face $f_0 \in F$.

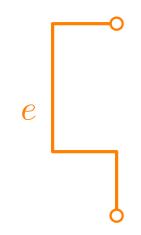
Idea.

Describe orthogonal drawing combinatorially.

Definitions.

Let G be a plane graph with set F of faces and outer face $f_0 \in F$.

Let e be an edge



Idea.

Describe orthogonal drawing combinatorially.

Definitions.

Let G be a plane graph with set F of faces and outer face $f_0 \in F$.

• Let e be an edge with the face f to the right.



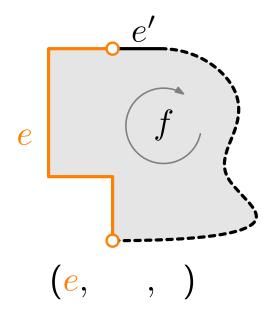
Idea.

Describe orthogonal drawing combinatorially.

Definitions.

Let G be a plane graph with set F of faces and outer face $f_0 \in F$.

Let *e* be an edge with the face *f* to the right. An edge description of *e* w.r.t. *f* is a triple (e, δ, α) where

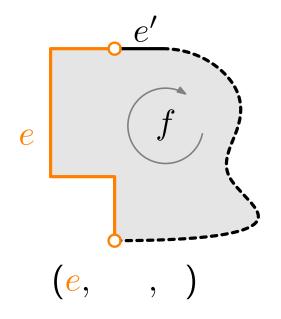


Idea.

Describe orthogonal drawing combinatorially.

Definitions.

Let G be a plane graph with set F of faces and outer face $f_0 \in F$.

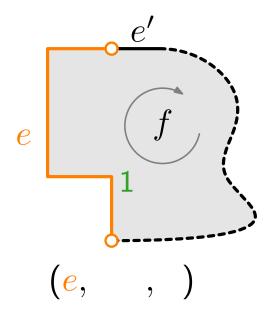


Idea.

Describe orthogonal drawing combinatorially.

Definitions.

Let G be a plane graph with set F of faces and outer face $f_0 \in F$.

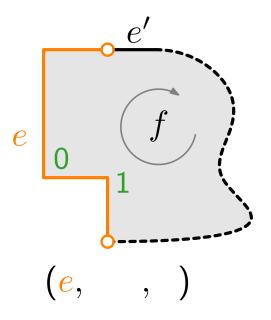


Idea.

Describe orthogonal drawing combinatorially.

Definitions.

Let G be a plane graph with set F of faces and outer face $f_0 \in F$.

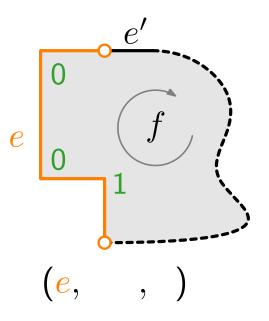


Idea.

Describe orthogonal drawing combinatorially.

Definitions.

Let G be a plane graph with set F of faces and outer face $f_0 \in F$.

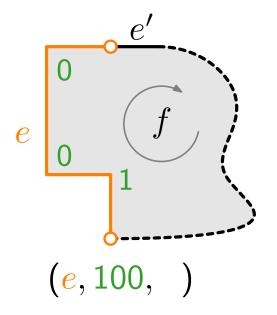


Idea.

Describe orthogonal drawing combinatorially.

Definitions.

Let G be a plane graph with set F of faces and outer face $f_0 \in F$.

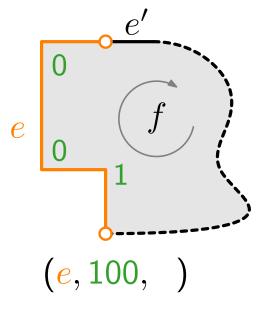


Idea.

Describe orthogonal drawing combinatorially.

Definitions.

Let G be a plane graph with set F of faces and outer face $f_0 \in F$.

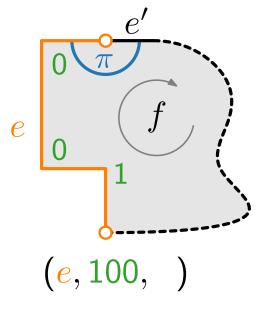


Idea.

Describe orthogonal drawing combinatorially.

Definitions.

Let G be a plane graph with set F of faces and outer face $f_0 \in F$.

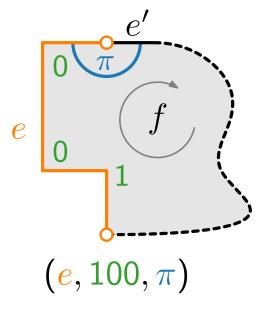


Idea.

Describe orthogonal drawing combinatorially.

Definitions.

Let G be a plane graph with set F of faces and outer face $f_0 \in F$.



Idea.

Describe orthogonal drawing combinatorially.

Definitions.

Let G be a plane graph with set F of faces and outer face $f_0 \in F$.

Let *e* be an edge with the face *f* to the right. An edge description of *e* w.r.t. *f* is a triple (*e*, δ, α) where
δ ∈ {0,1}* (where 0 = right bend, 1 = left bend)
α is angle ∈ {π/2, π, 3π/2, 2π} between *e* and next edge *e'*A face representation *H*(*f*) of a face *f* is a clockwise ordered set



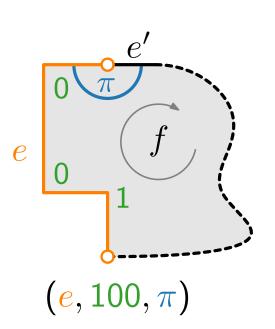
A face representation H(f) of a face f is a clockwise ordered sequence (e₁, δ₁, α₁), (e₂, δ₂, α₂), ..., (e_{deg(f)}, δ_{deg(f)}, α_{deg(f)}) of edge descriptions w.r.t. f.

Idea.

Describe orthogonal drawing combinatorially.

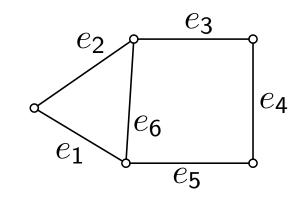
Definitions.

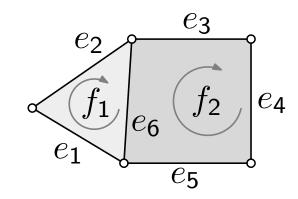
Let G be a plane graph with set F of faces and outer face $f_0 \in F$.

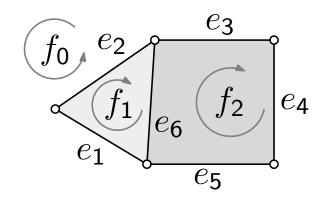


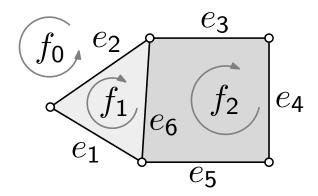
- A face representation H(f) of a face f is a clockwise ordered sequence $(e_1, \delta_1, \alpha_1), (e_2, \delta_2, \alpha_2), \dots, (e_{\deg(f)}, \delta_{\deg(f)}, \alpha_{\deg(f)})$ of edge descriptions w.r.t. f.
- An orthogonal representation H(G) of G is defined as

$$H(G) = \{H(f) \mid f \in F\}.$$

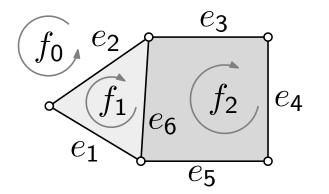




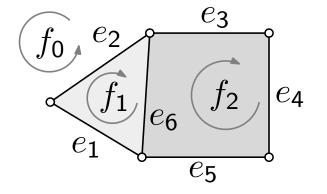


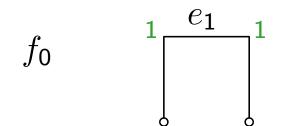


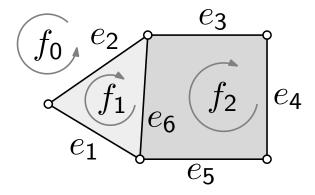
 $H(f_0) = ((e_1, 11, \frac{\pi}{2}), (e_5, 111, \frac{3\pi}{2}), (e_4, \emptyset, \pi), (e_3, \emptyset, \pi), (e_2, \emptyset, \frac{\pi}{2}))$ $H(f_1) = ((e_1, 00, \frac{3\pi}{2}), (e_2, \emptyset, \frac{\pi}{2}), (e_6, 00, \pi))$ $H(f_2) = ((e_5, 000, \frac{\pi}{2}), (e_6, 11, \frac{\pi}{2}), (e_3, \emptyset, \pi), (e_4, \emptyset, \frac{\pi}{2}))$

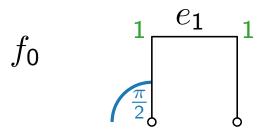


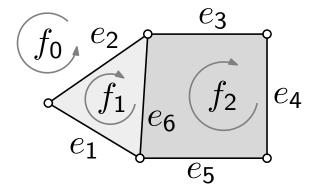
Combinatorial "drawing" of H(G)?

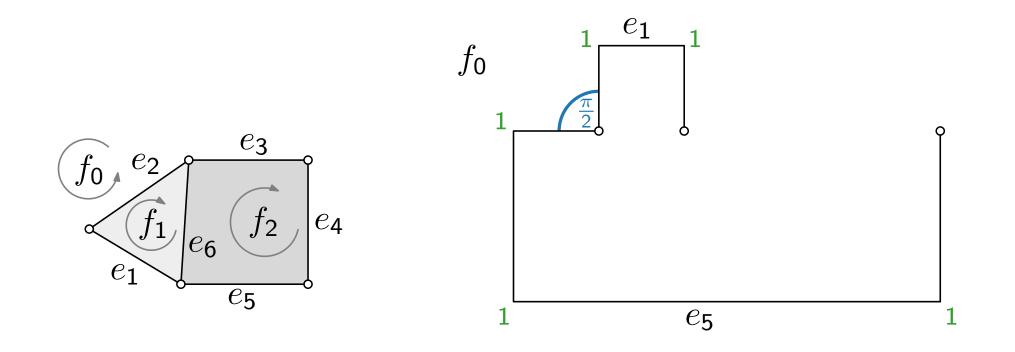


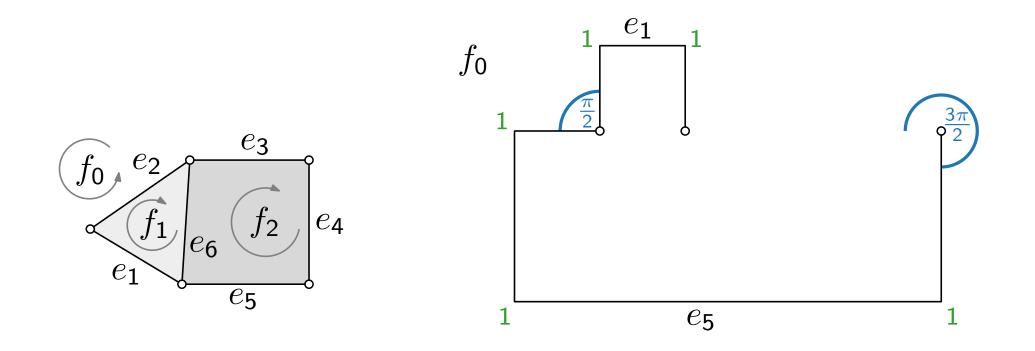


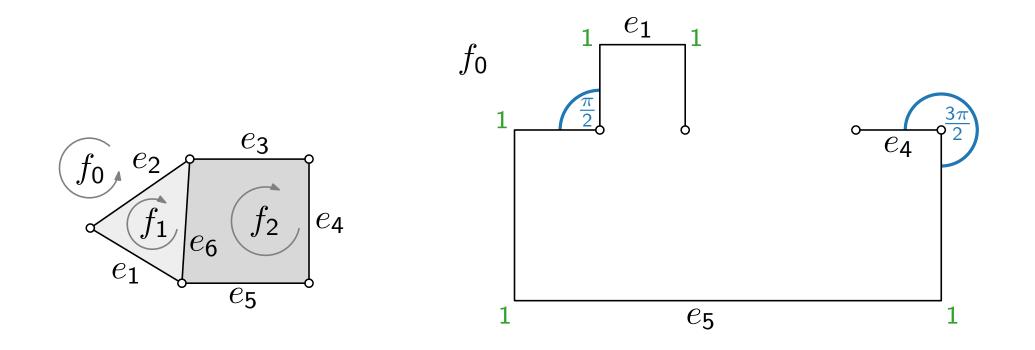


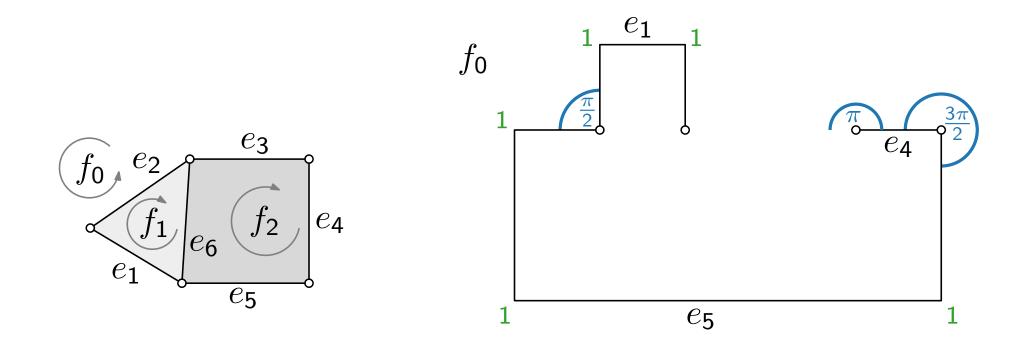


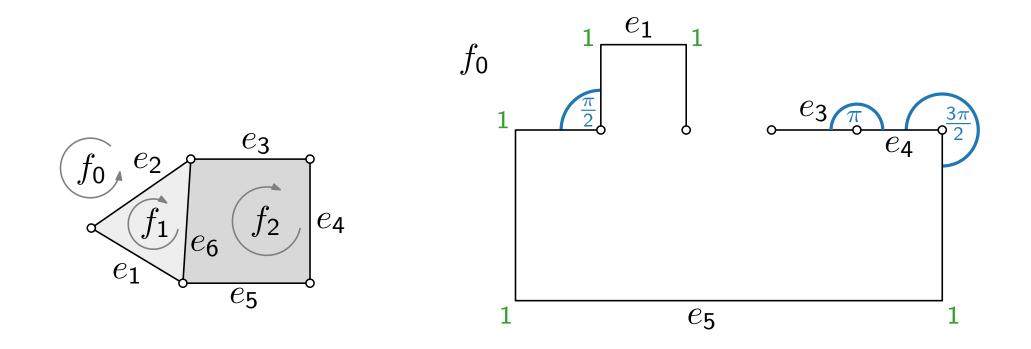


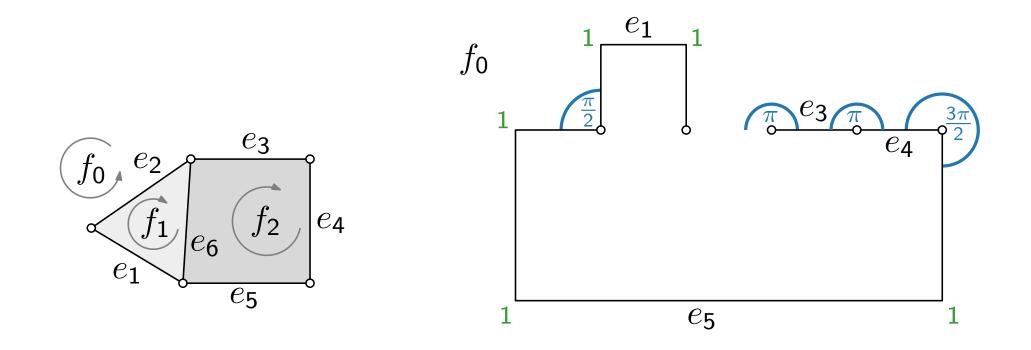


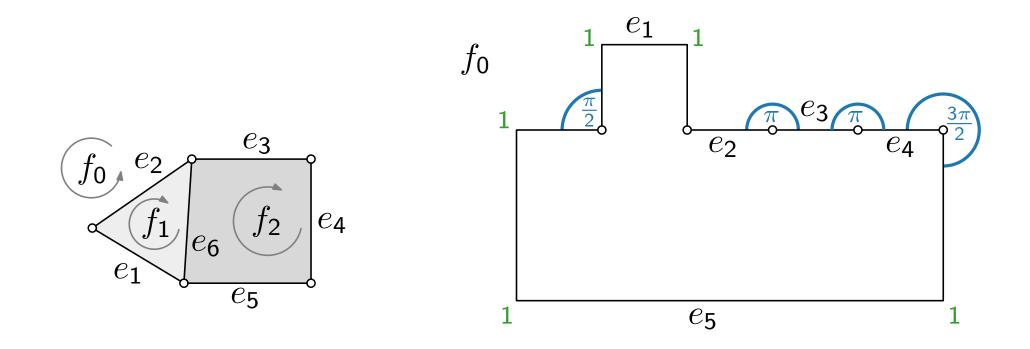


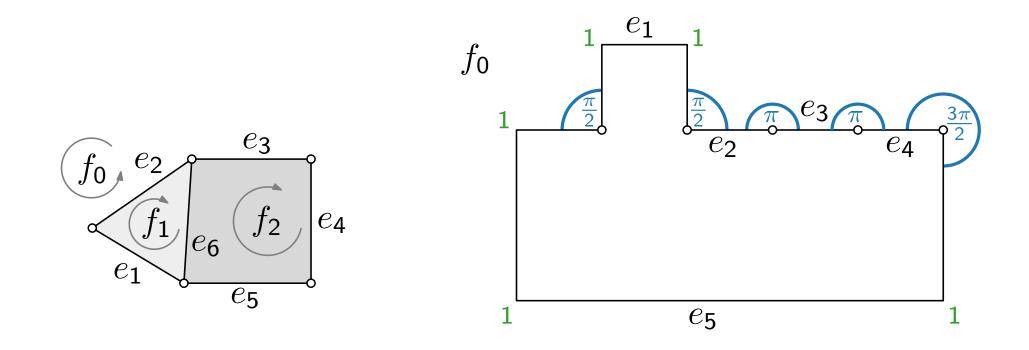


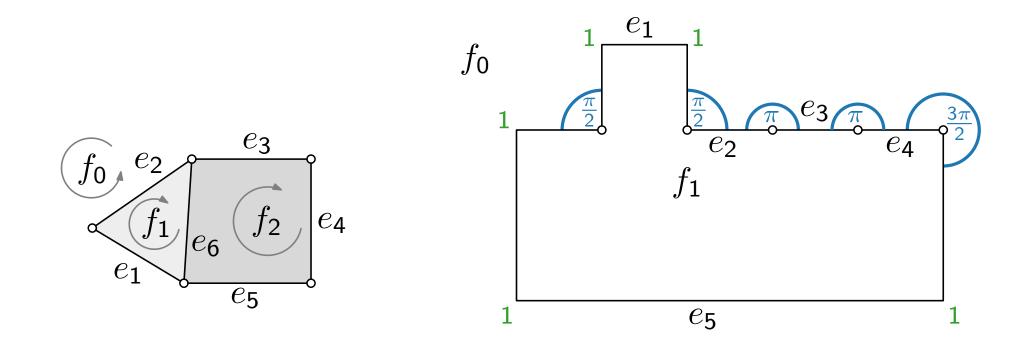


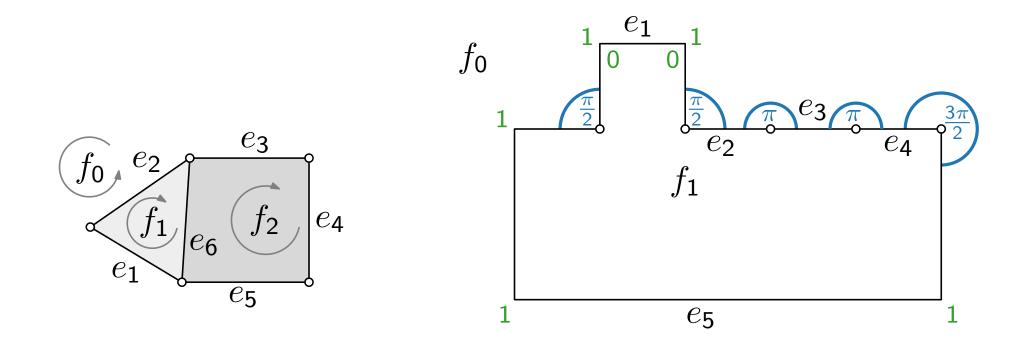


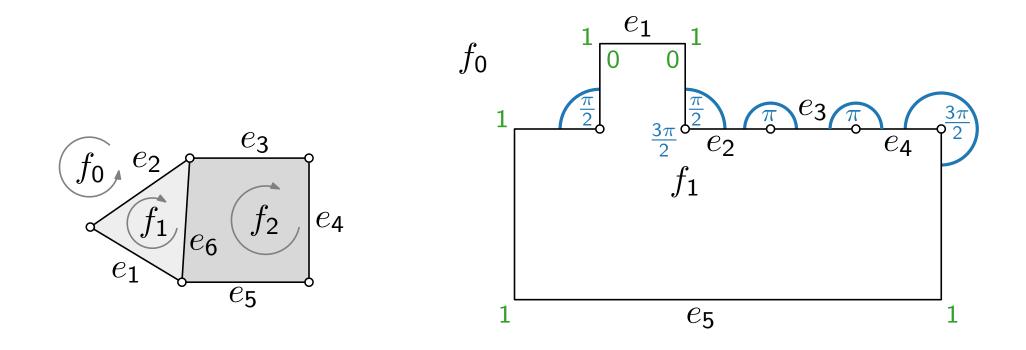


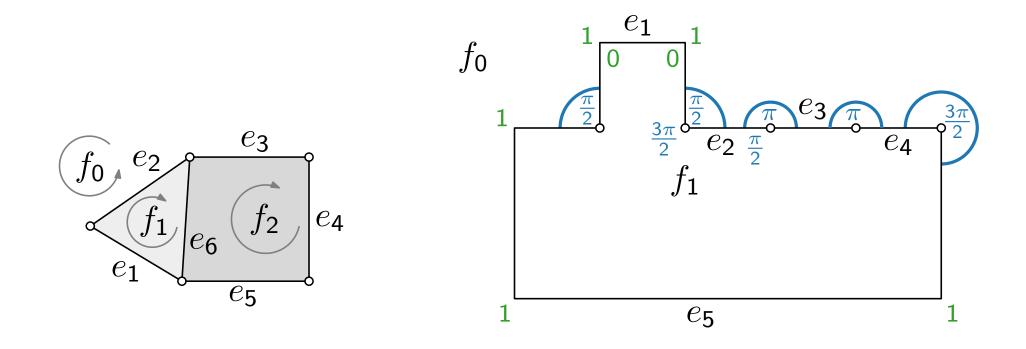


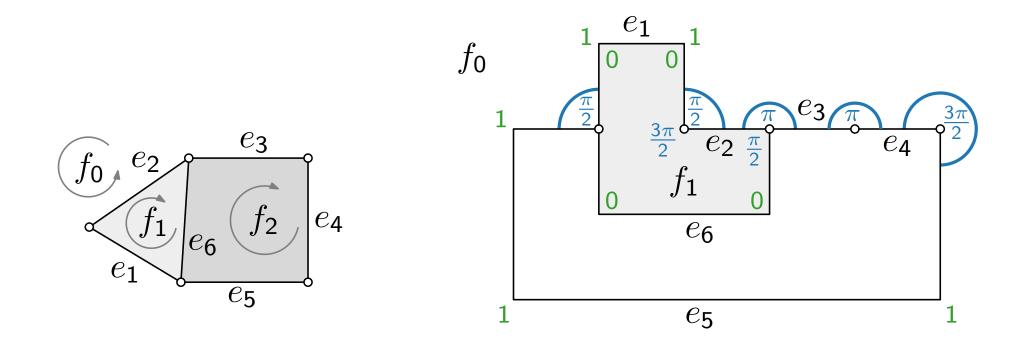


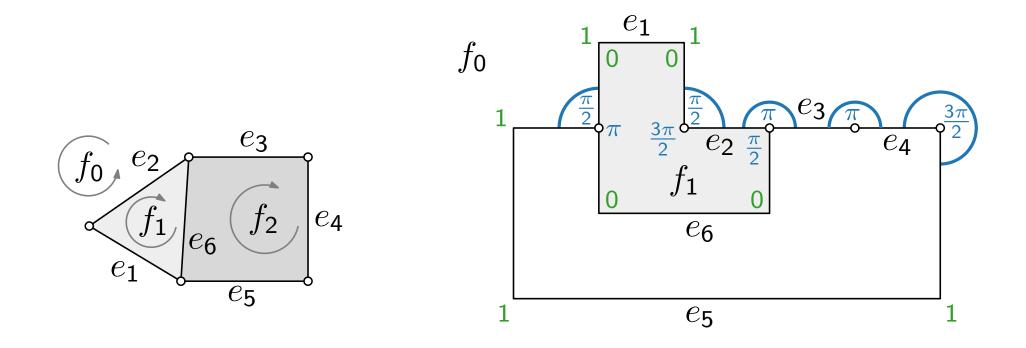


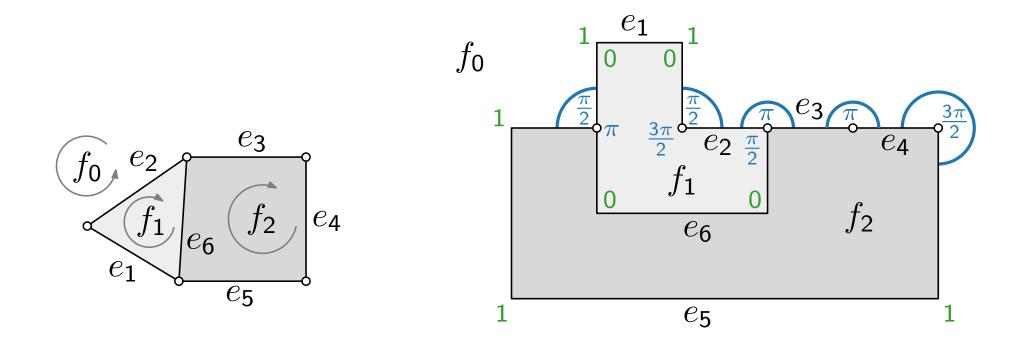


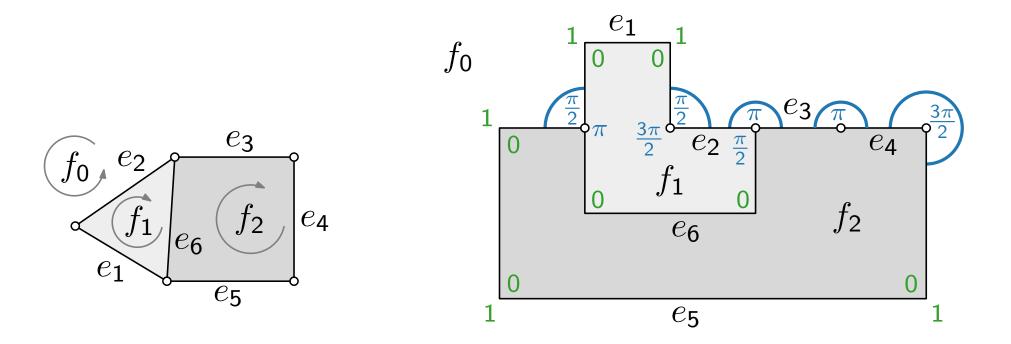


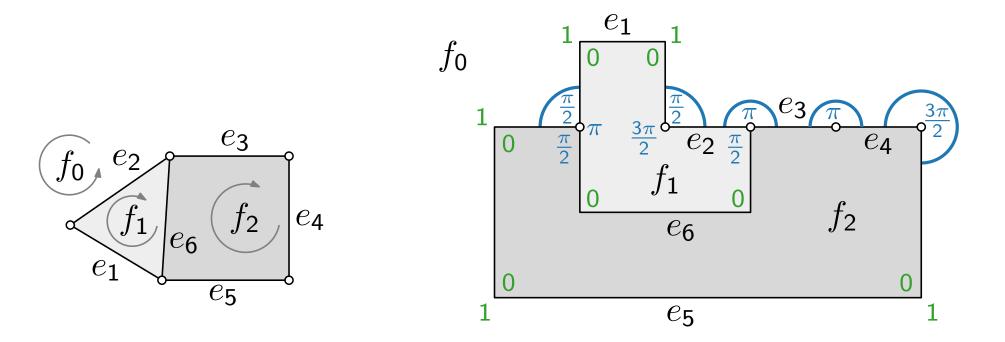


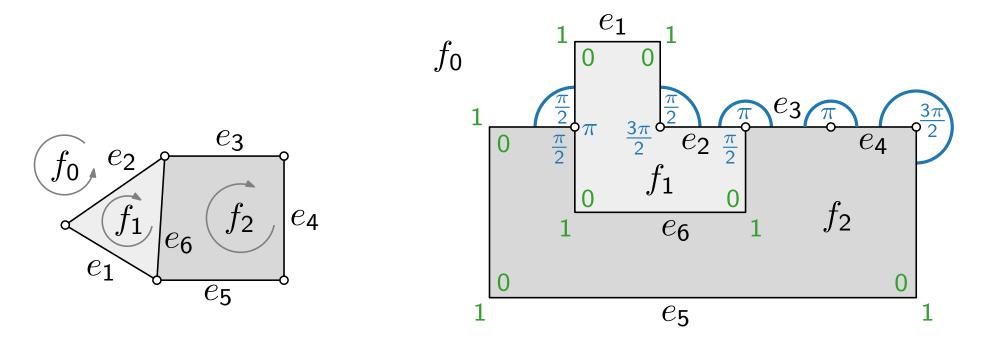


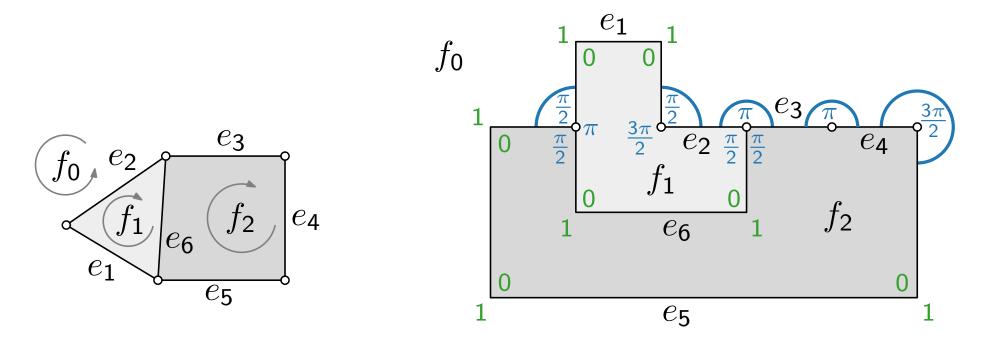


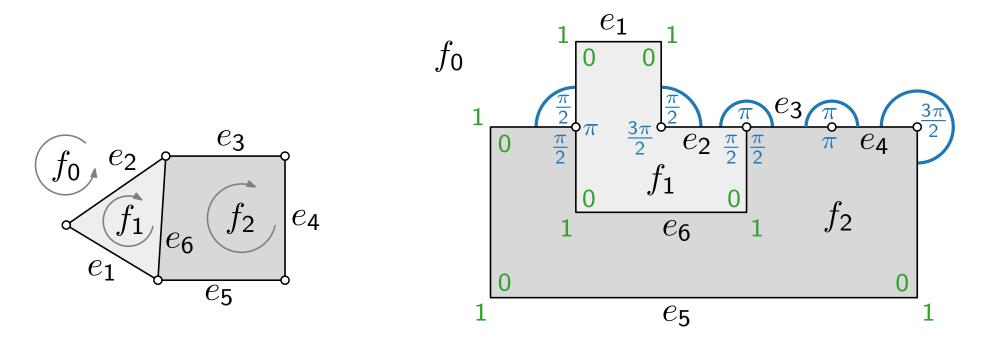


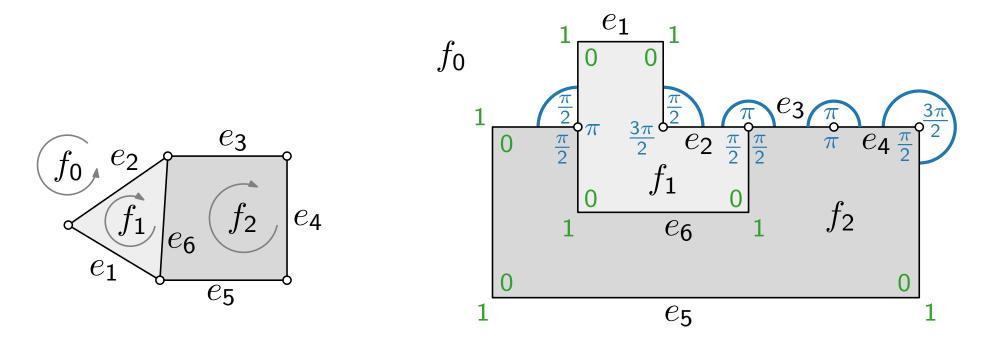


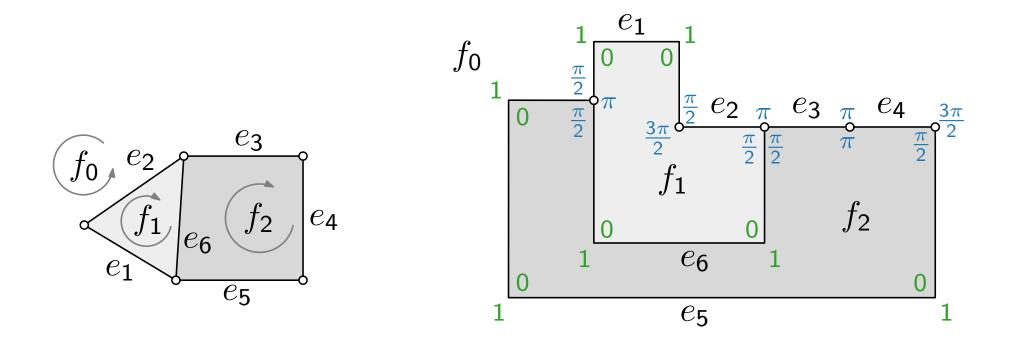










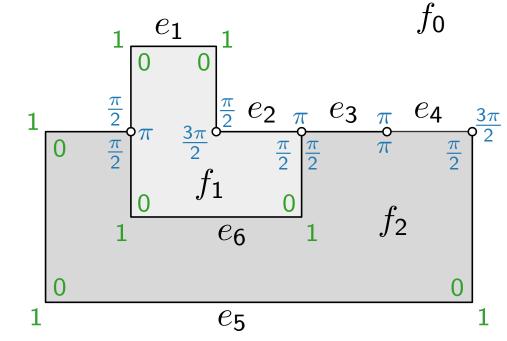


 $H(f_0) = ((e_1, 11, \frac{\pi}{2}), (e_5, 111, \frac{3\pi}{2}), (e_4, \emptyset, \pi), (e_3, \emptyset, \pi), (e_2, \emptyset, \frac{\pi}{2}))$ $H(f_1) = ((e_1, 00, \frac{3\pi}{2}), (e_2, \emptyset, \frac{\pi}{2}), (e_6, 00, \pi))$ $H(f_2) = ((e_5, 000, \frac{\pi}{2}), (e_6, 11, \frac{\pi}{2}), (e_3, \emptyset, \pi), (e_4, \emptyset, \frac{\pi}{2}))$

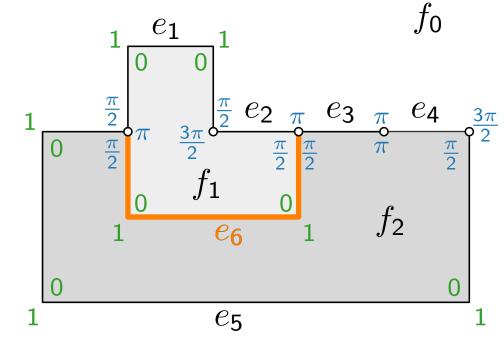


Coordinates are not fixed yet!

(H1) H(G) corresponds to F, f_0 .

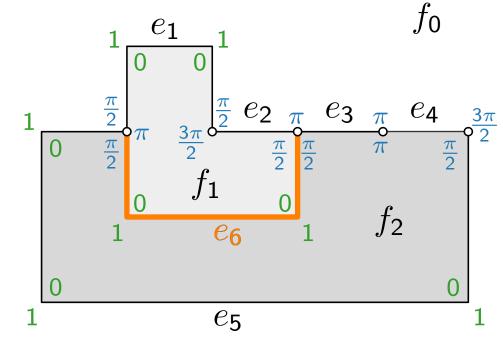


- (H1) H(G) corresponds to F, f_0 .
- (H2) For each edge $\{u, v\}$ shared by faces f and g with $((u, v), \delta_1, \alpha_1) \in H(f)$ and $((v, u), \delta_2, \alpha_2) \in H(g)$

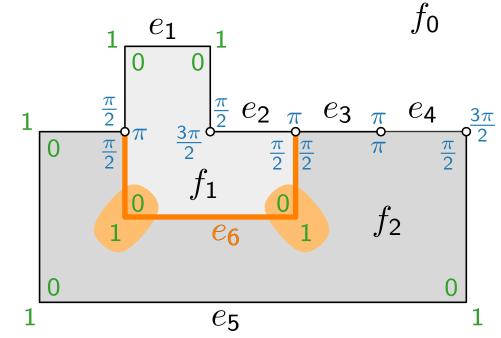


(H1) H(G) corresponds to F, f_0 .

(H2) For each edge $\{u, v\}$ shared by faces f and g with $((u, v), \delta_1, \alpha_1) \in H(f)$ and $((v, u), \delta_2, \alpha_2) \in H(g)$, the sequence δ_1 is like δ_2

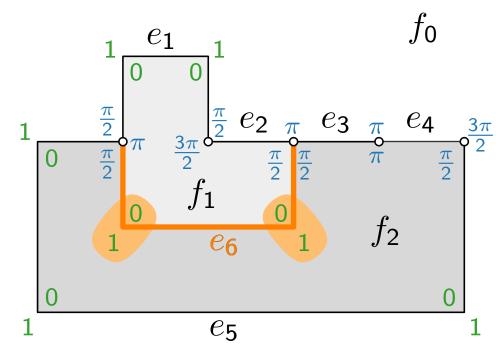


- (H1) H(G) corresponds to F, f_0 .
- (H2) For each edge $\{u, v\}$ shared by faces f and g with $((u, v), \delta_1, \alpha_1) \in H(f)$ and $((v, u), \delta_2, \alpha_2) \in H(g)$, the sequence δ_1 is like δ_2 , but reversed and inverted.



(H1) H(G) corresponds to F, f_0 .

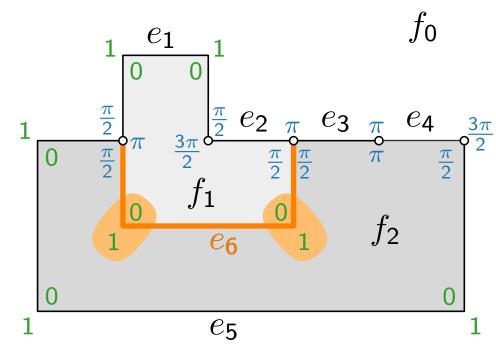
- (H2) For each edge $\{u, v\}$ shared by faces f and g with $((u, v), \delta_1, \alpha_1) \in H(f)$ and $((v, u), \delta_2, \alpha_2) \in H(g)$, the sequence δ_1 is like δ_2 , but reversed and inverted.
- (H3) Let $|\delta|_0$ (resp. $|\delta|_1$) be the number of zeros (resp. ones) in δ , and let $r = (e, \delta, \alpha)$. Let $C(r) := |\delta|_0 - |\delta|_1 - \alpha/\frac{\pi}{2} + 2$.



(H1) H(G) corresponds to F, f_0 .

(H2) For each edge $\{u, v\}$ shared by faces f and g with $((u, v), \delta_1, \alpha_1) \in H(f)$ and $((v, u), \delta_2, \alpha_2) \in H(g)$, the sequence δ_1 is like δ_2 , but reversed and inverted.

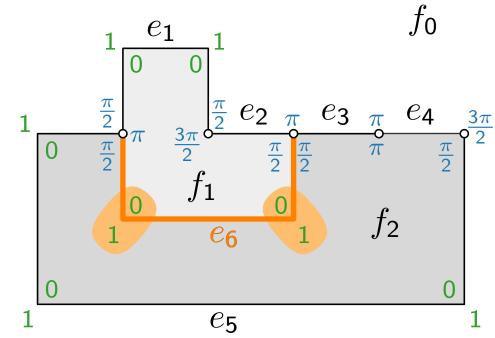
(H3) Let $|\delta|_0$ (resp. $|\delta|_1$) be the number of zeros (resp. ones) in δ , and let $r = (e, \delta, \alpha)$. Let $C(r) := |\delta|_0 - |\delta|_1 - \alpha/\frac{\pi}{2} + 2$. For each **face** f, it holds that:



(H1) H(G) corresponds to F, f_0 .

(H2) For each edge $\{u, v\}$ shared by faces f and g with $((u, v), \delta_1, \alpha_1) \in H(f)$ and $((v, u), \delta_2, \alpha_2) \in H(g)$, the sequence δ_1 is like δ_2 , but reversed and inverted.

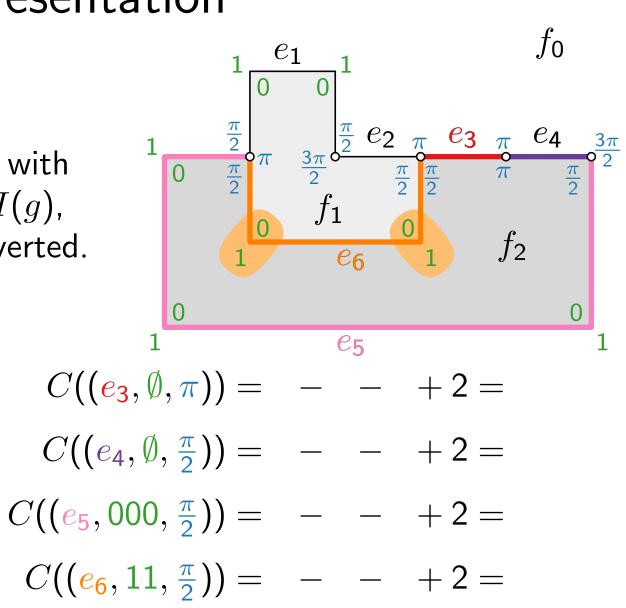
(H3) Let
$$|\delta|_0$$
 (resp. $|\delta|_1$) be the number of zeros
(resp. ones) in δ , and let $r = (e, \delta, \alpha)$.
Let $C(r) := |\delta|_0 - |\delta|_1 - \alpha/\frac{\pi}{2} + 2$.
For each **face** f , it holds that:
$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$



(H1) H(G) corresponds to F, f_0 .

(H2) For each edge $\{u, v\}$ shared by faces f and g with $((u, v), \delta_1, \alpha_1) \in H(f)$ and $((v, u), \delta_2, \alpha_2) \in H(g)$, the sequence δ_1 is like δ_2 , but reversed and inverted.

(H3) Let $|\delta|_0$ (resp. $|\delta|_1$) be the number of zeros (resp. ones) in δ , and let $r = (e, \delta, \alpha)$. Let $C(r) := |\delta|_0 - |\delta|_1 - \alpha/\frac{\pi}{2} + 2$. For each face f, it holds that: $\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$



(H1) H(G) corresponds to F, f_0 .

(H2) For each edge $\{u, v\}$ shared by faces f and g with $((u, v), \delta_1, \alpha_1) \in H(f)$ and $((v, u), \delta_2, \alpha_2) \in H(g)$, the sequence δ_1 is like δ_2 , but reversed and inverted.

(H3) Let $|\delta|_0$ (resp. $|\delta|_1$) be the number of zeros (resp. ones) in δ , and let $r = (e, \delta, \alpha)$. Let $C(r) := |\delta|_0 - |\delta|_1 - \alpha/\frac{\pi}{2} + 2$. For each face f, it holds that: $\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$

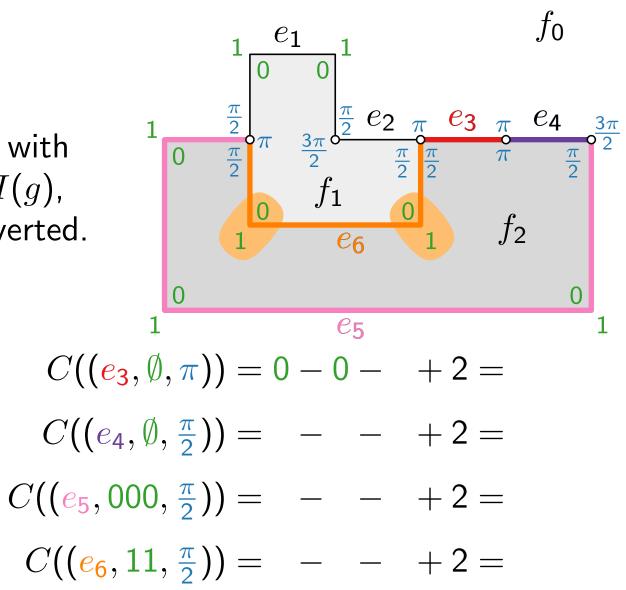
.fo $1 \begin{array}{c} \frac{\pi}{2} \\ 0 \\ \frac{\pi}{2} \\ 0 \\ \frac{\pi}{2} \\ \frac{3\pi}{2} \\ \frac{\pi}{2} \\ \frac{\pi}{2}$ e_{5} $C((e_3, \emptyset, \pi)) = 0 - - + 2 =$ $C((e_4, \emptyset, \frac{\pi}{2})) = - - + 2 =$ $C((e_5, 000, \frac{\pi}{2})) = - - + 2 =$ $C((e_6, 11, \frac{\pi}{2})) = - - + 2 =$

7 - 10

Correctness of an Orthogonal Representation

(H1) H(G) corresponds to F, f_0 .

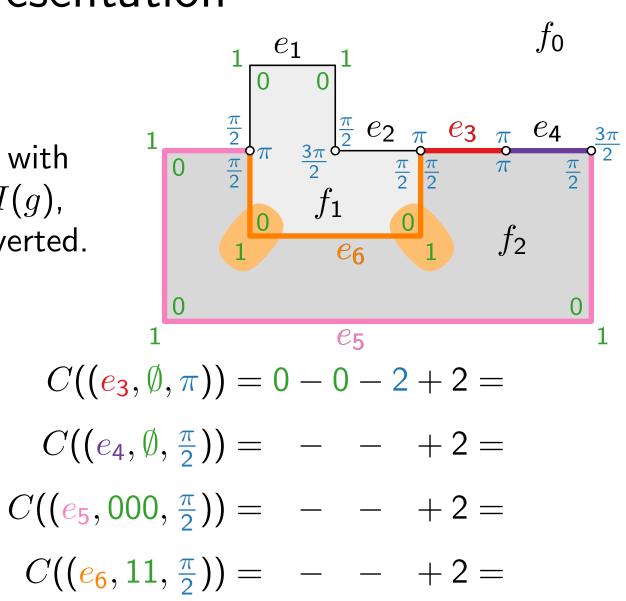
(H2) For each edge $\{u, v\}$ shared by faces f and g with $((u, v), \delta_1, \alpha_1) \in H(f)$ and $((v, u), \delta_2, \alpha_2) \in H(g)$, the sequence δ_1 is like δ_2 , but reversed and inverted.



(H1) H(G) corresponds to F, f_0 .

(H2) For each edge $\{u, v\}$ shared by faces f and g with $((u, v), \delta_1, \alpha_1) \in H(f)$ and $((v, u), \delta_2, \alpha_2) \in H(g)$, the sequence δ_1 is like δ_2 , but reversed and inverted.

(H3) Let $|\delta|_0$ (resp. $|\delta|_1$) be the number of zeros (resp. ones) in δ , and let $r = (e, \delta, \alpha)$. Let $C(r) := |\delta|_0 - |\delta|_1 - \alpha/\frac{\pi}{2} + 2$. For each **face** f, it holds that: $\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$



(H1) H(G) corresponds to F, f_0 .

(H2) For each edge $\{u, v\}$ shared by faces f and g with $((u, v), \delta_1, \alpha_1) \in H(f)$ and $((v, u), \delta_2, \alpha_2) \in H(g)$, the sequence δ_1 is like δ_2 , but reversed and inverted.

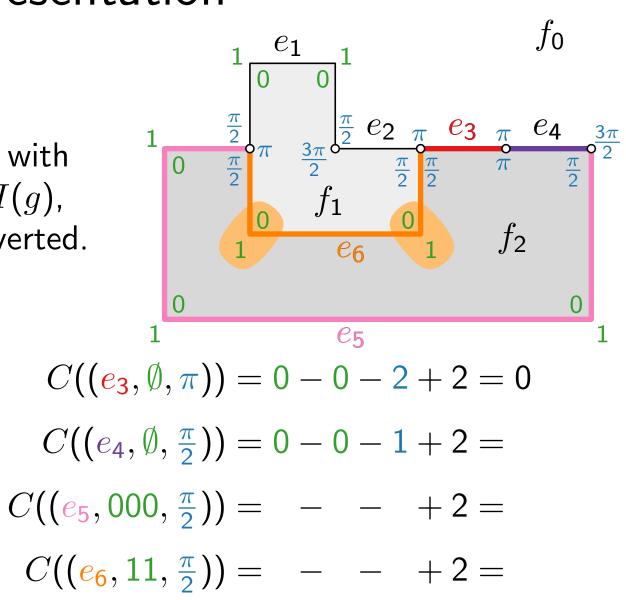
(H3) Let $|\delta|_0$ (resp. $|\delta|_1$) be the number of zeros (resp. ones) in δ , and let $r = (e, \delta, \alpha)$. Let $C(r) := |\delta|_0 - |\delta|_1 - \alpha/\frac{\pi}{2} + 2$. For each face f, it holds that: $\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$

.fo $1 \frac{\frac{\pi}{2}}{0} \pi \frac{3\pi}{2} \frac{\pi}{2} \frac{e_2}{\pi} \frac{e_3}{\pi} \frac{e_4}{\pi} \frac{3\pi}{2}$ $0 \frac{\pi}{2} \frac{\pi}{2} \frac{\pi}{2} \frac{\pi}{2} \frac{\pi}{2} \frac{\pi}{2} \frac{\pi}{2} \frac{\pi}{2}$ e_{5} $C((e_3, \emptyset, \pi)) = 0 - 0 - 2 + 2 = 0$ $C((e_4, \emptyset, \frac{\pi}{2})) = - - + 2 =$ $C((e_5, 000, \frac{\pi}{2})) = - - + 2 =$ $C((e_6, 11, \frac{\pi}{2})) = - - + 2 =$

(H1) H(G) corresponds to F, f_0 .

(H2) For each edge $\{u, v\}$ shared by faces f and g with $((u, v), \delta_1, \alpha_1) \in H(f)$ and $((v, u), \delta_2, \alpha_2) \in H(g)$, the sequence δ_1 is like δ_2 , but reversed and inverted.

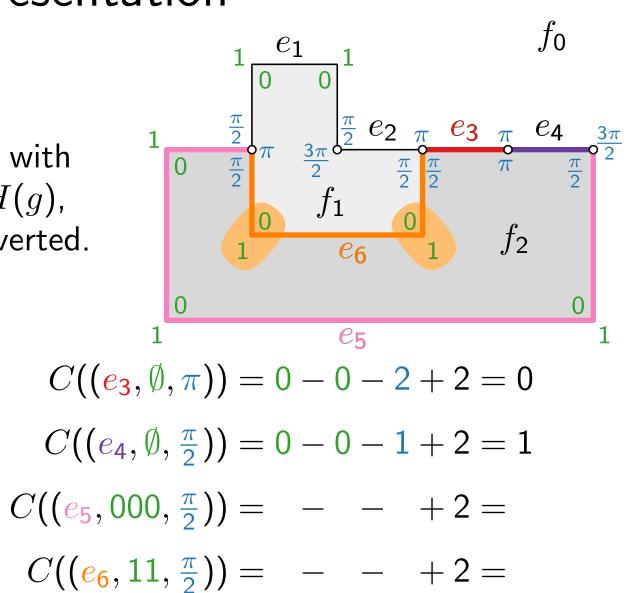
(H3) Let $|\delta|_0$ (resp. $|\delta|_1$) be the number of zeros (resp. ones) in δ , and let $r = (e, \delta, \alpha)$. Let $C(r) := |\delta|_0 - |\delta|_1 - \alpha/\frac{\pi}{2} + 2$. For each face f, it holds that: $\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$



(H1) H(G) corresponds to F, f_0 .

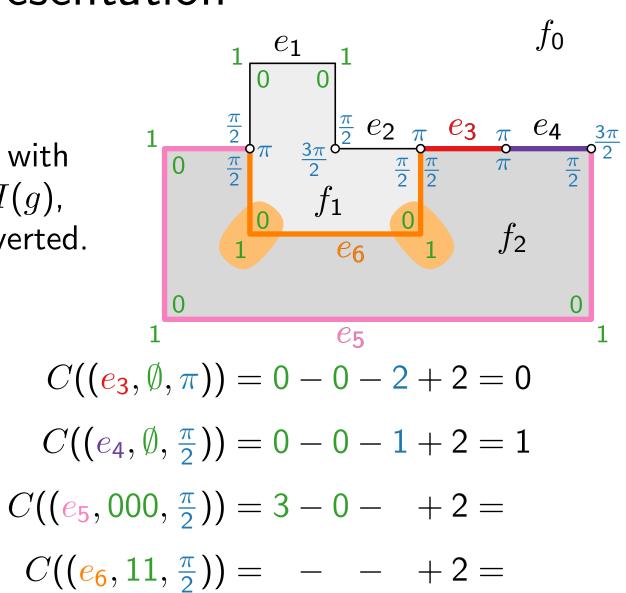
(H2) For each edge $\{u, v\}$ shared by faces f and g with $((u, v), \delta_1, \alpha_1) \in H(f)$ and $((v, u), \delta_2, \alpha_2) \in H(g)$, the sequence δ_1 is like δ_2 , but reversed and inverted.

(H3) Let $|\delta|_0$ (resp. $|\delta|_1$) be the number of zeros (resp. ones) in δ , and let $r = (e, \delta, \alpha)$. Let $C(r) := |\delta|_0 - |\delta|_1 - \alpha/\frac{\pi}{2} + 2$. For each **face** f, it holds that: $\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$



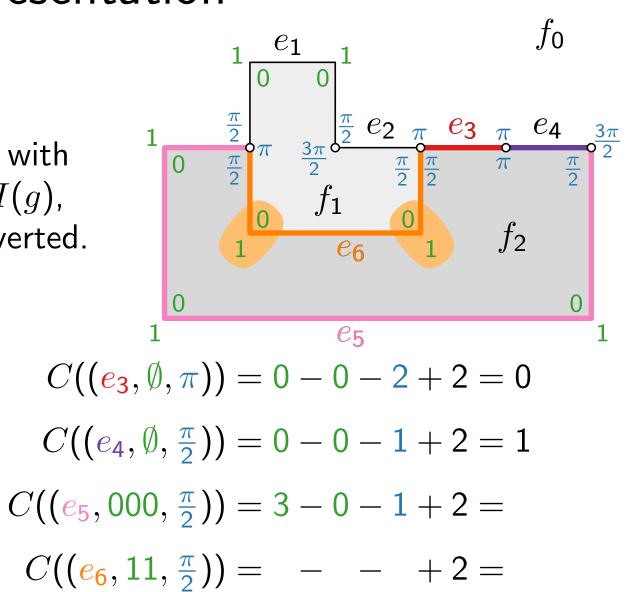
(H1) H(G) corresponds to F, f_0 .

(H2) For each edge $\{u, v\}$ shared by faces f and g with $((u, v), \delta_1, \alpha_1) \in H(f)$ and $((v, u), \delta_2, \alpha_2) \in H(g)$, the sequence δ_1 is like δ_2 , but reversed and inverted.



(H1) H(G) corresponds to F, f_0 .

(H2) For each edge $\{u, v\}$ shared by faces f and g with $((u, v), \delta_1, \alpha_1) \in H(f)$ and $((v, u), \delta_2, \alpha_2) \in H(g)$, the sequence δ_1 is like δ_2 , but reversed and inverted.

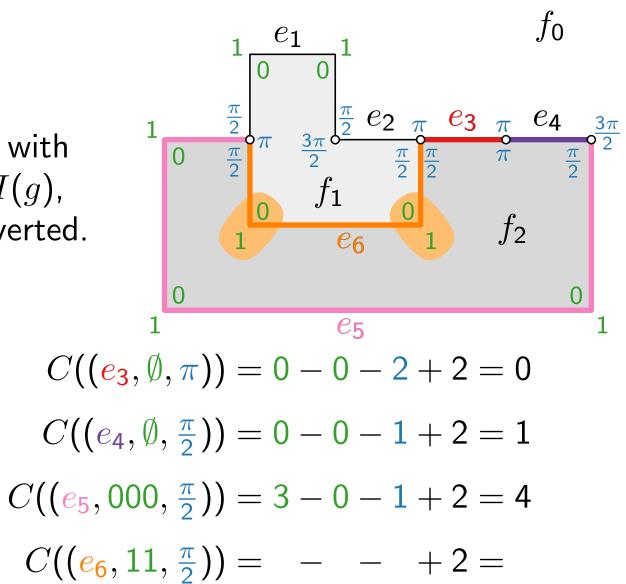


7 - 17

Correctness of an Orthogonal Representation

(H1) H(G) corresponds to F, f_0 .

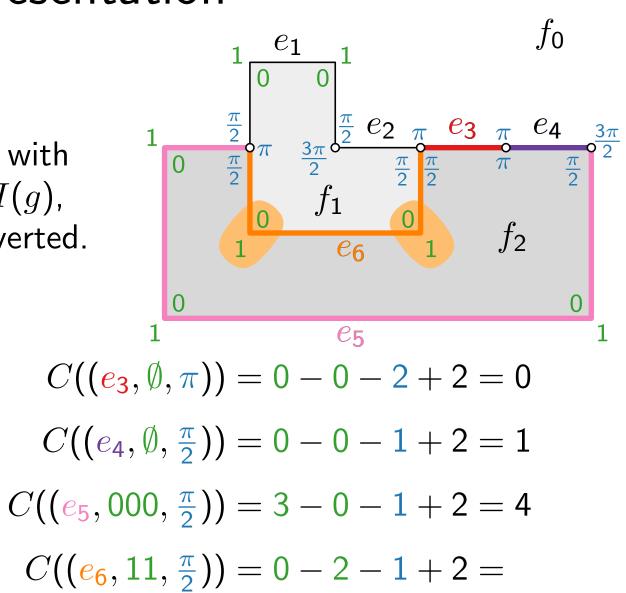
(H2) For each edge $\{u, v\}$ shared by faces f and g with $((u, v), \delta_1, \alpha_1) \in H(f)$ and $((v, u), \delta_2, \alpha_2) \in H(g)$, the sequence δ_1 is like δ_2 , but reversed and inverted.



(H1) H(G) corresponds to F, f_0 .

(H2) For each edge $\{u, v\}$ shared by faces f and g with $((u, v), \delta_1, \alpha_1) \in H(f)$ and $((v, u), \delta_2, \alpha_2) \in H(g)$, the sequence δ_1 is like δ_2 , but reversed and inverted.

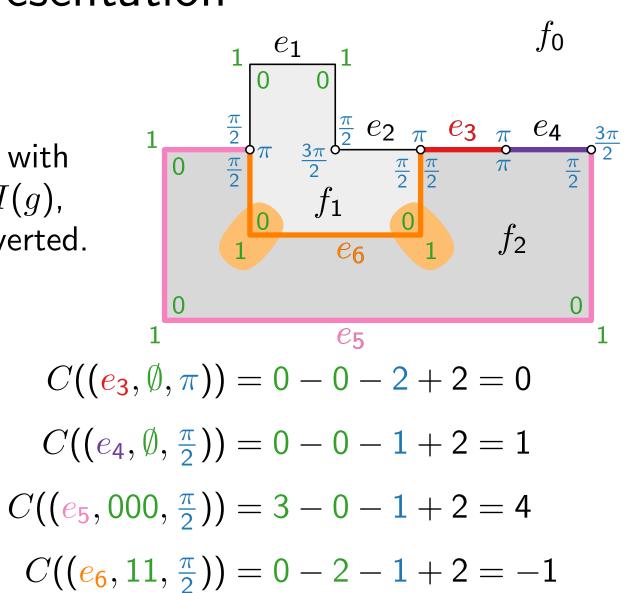
(H3) Let $|\delta|_0$ (resp. $|\delta|_1$) be the number of zeros (resp. ones) in δ , and let $r = (e, \delta, \alpha)$. Let $C(r) := |\delta|_0 - |\delta|_1 - \alpha/\frac{\pi}{2} + 2$. For each face f, it holds that: $\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$



(H1) H(G) corresponds to F, f_0 .

(H2) For each edge $\{u, v\}$ shared by faces f and g with $((u, v), \delta_1, \alpha_1) \in H(f)$ and $((v, u), \delta_2, \alpha_2) \in H(g)$, the sequence δ_1 is like δ_2 , but reversed and inverted.

(H3) Let $|\delta|_0$ (resp. $|\delta|_1$) be the number of zeros (resp. ones) in δ , and let $r = (e, \delta, \alpha)$. Let $C(r) := |\delta|_0 - |\delta|_1 - \alpha/\frac{\pi}{2} + 2$. For each face f, it holds that: $\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$



(H1) H(G) corresponds to F, f_0 .

(H2) For each edge $\{u, v\}$ shared by faces f and g with $((u, v), \delta_1, \alpha_1) \in H(f)$ and $((v, u), \delta_2, \alpha_2) \in H(g)$, the sequence δ_1 is like δ_2 , but reversed and inverted.

(H3) Let $|\delta|_0$ (resp. $|\delta|_1$) be the number of zeros (resp. ones) in δ , and let $r = (e, \delta, \alpha)$. Let $C(r) := |\delta|_0 - |\delta|_1 - \alpha/\frac{\pi}{2} + 2$. For each face f, it holds that: $\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$

.fo $1 \qquad \frac{\pi}{2} \qquad \pi \qquad \frac{\pi}{2} \qquad e_2 \qquad \pi \qquad e_3 \qquad \pi \qquad e_4 \qquad \frac{3\pi}{2} \\ 0 \qquad \frac{\pi}{2} \qquad \frac{\pi}{$ e_{5} $C((e_3, \emptyset, \pi)) = 0 - 0 - 2 + 2 = 0$ $C((e_4, \emptyset, \frac{\pi}{2})) = 0 - 0 - 1 + 2 = 1$ $C((e_5, 000, \frac{\pi}{2})) = 3 - 0 - 1 + 2 = 4$ $C((e_6, 11, \frac{\pi}{2})) = 0 - 2 - 1 + 2 = -1$

 $\sum_{r\in H(f_2)} C(r) =$

(H1) H(G) corresponds to F, f_0 .

(H2) For each edge $\{u, v\}$ shared by faces f and g with $((u, v), \delta_1, \alpha_1) \in H(f)$ and $((v, u), \delta_2, \alpha_2) \in H(g)$, the sequence δ_1 is like δ_2 , but reversed and inverted.

(H3) Let $|\delta|_0$ (resp. $|\delta|_1$) be the number of zeros (resp. ones) in δ , and let $r = (e, \delta, \alpha)$. Let $C(r) := |\delta|_0 - |\delta|_1 - \alpha/\frac{\pi}{2} + 2$. For each face f, it holds that: $\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$

.fo $1 \frac{\frac{\pi}{2}}{0} \frac{\pi}{2} \frac{\pi}{2} \frac{e_2}{\pi} \frac{e_3}{2} \frac{\pi}{2} \frac{e_4}{\pi} \frac{3\pi}{2}$ e_{5} $C((e_3, \emptyset, \pi)) = 0 - 0 - 2 + 2 = 0$ $C((e_4, \emptyset, \frac{\pi}{2})) = 0 - 0 - 1 + 2 = 1$ $C((e_5, 000, \frac{\pi}{2})) = 3 - 0 - 1 + 2 = 4$ $C((e_6, 11, \frac{\pi}{2})) = 0 - 2 - 1 + 2 = -1$

 $\sum_{r\in H(f_2)}C(r)=+4$

(H1) H(G) corresponds to F, f_0 .

(H2) For each edge $\{u, v\}$ shared by faces f and g with $((u, v), \delta_1, \alpha_1) \in H(f)$ and $((v, u), \delta_2, \alpha_2) \in H(g)$, the sequence δ_1 is like δ_2 , but reversed and inverted

(H3) Let $|\delta|_0$ (resp. $|\delta|_1$) be the number of zeros (resp. ones) in δ , and let $r = (e, \delta, \alpha)$. Let $C(r) := |\delta|_0 - |\delta|_1 - \alpha/\frac{\pi}{2} + 2$. For each **face** f, it holds that: $\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$

with

$$f(g)$$
,
verted.
 $C((e_3, \emptyset, \pi)) = 0 - 0 - 2 + 2 = 0$
 $C((e_5, 000, \frac{\pi}{2})) = 0 - 0 - 1 + 2 = 4$
 $C((e_6, 11, \frac{\pi}{2})) = 0 - 2 - 1 + 2 = -1$

 $r \in H(f_2)$

 $\sum C(r) = +4$

(H4) For each vertex v, the sum of incident angles is 2π .

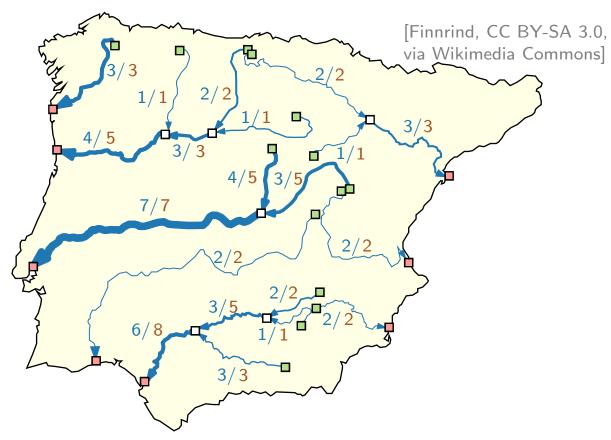
Flow network (G; S, T; u) with

- \blacksquare directed graph G
- sources $S \subseteq V(G)$, sinks $T \subseteq V(G)$
- edge *capacity* $u: E(G) \to \mathbb{R}^+_0 \cup \{\infty\}$

A function $X: E(G) \to \mathbb{R}_0^+$ is called S-T flow if:

 $0 \leq X(i,j) \leq u(i,j) \qquad \forall (i,j) \in E(G)$ $\sum_{(i,j)\in E(G)} X(i,j) - \sum_{(j,i)\in E(G)} X(j,i) = 0 \qquad \forall i \in V(G) \setminus (S \cup T)$

A maximum S-T flow is an S-T flow where $\sum_{(i,j)\in E(G),i\in S} X(i,j) - \sum_{(j,i)\in E(G),i\in S} X(j,i) \text{ is maximized.}$



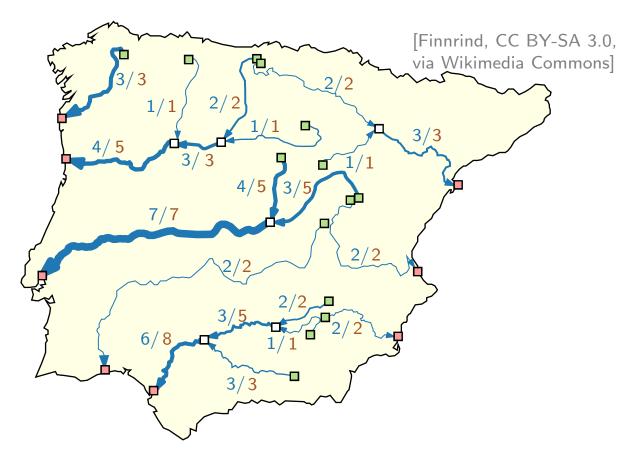
Flow network (G; s, t; u) with

- \blacksquare directed graph G
- source $s \in V(G)$, sink $t \in V(G)$
- edge *capacity* $u: E(G) \to \mathbb{R}^+_0 \cup \{\infty\}$

A function $X: E(G) \to \mathbb{R}_0^+$ is called S-T flow if:

 $0 \leq X(i,j) \leq u(i,j) \qquad \forall (i,j) \in E(G)$ $\sum_{(i,j)\in E(G)} X(i,j) - \sum_{(j,i)\in E(G)} X(j,i) = 0 \qquad \forall i \in V(G) \setminus (S \cup T)$

A maximum S-T flow is an S-T flow where $\sum_{(i,j)\in E(G),i\in S} X(i,j) - \sum_{(j,i)\in E(G),i\in S} X(j,i)$ is maximized.



Flow network (G; s, t; u) with

- \blacksquare directed graph G
- source $s \in V(G)$, sink $t \in V(G)$
- edge *capacity* $u: E(G) \to \mathbb{R}^+_0 \cup \{\infty\}$

A function $X: E(G) \to \mathbb{R}_0^+$ is called s-t flow if:

 $0 \leq X(i,j) \leq u(i,j) \qquad \forall (i,j) \in E(G)$ $\sum_{(i,j)\in E(G)} X(i,j) - \sum_{(j,i)\in E(G)} X(j,i) = 0 \qquad \forall i \in V(G) \setminus \{s,t\}$

A maximum S-T flow is an S-T flow where $\sum_{(i,j)\in E(G),i\in S} \frac{X(i,j)}{(j,i)\in E(G),i\in S} - \sum_{(j,i)\in E(G),i\in S} \frac{X(j,i)}{(j,i)\in E(G),i\in S}$ is maximized.

Flow network (G; s, t; u) with

- \blacksquare directed graph G
- source $s \in V(G)$, sink $t \in V(G)$
- edge *capacity* $u: E(G) \to \mathbb{R}^+_0 \cup \{\infty\}$

A function $X: E(G) \to \mathbb{R}_0^+$ is called s-t flow if:

 $0 \le X(i,j) \le u(i,j) \qquad \forall (i,j) \in E(G)$ $\sum_{(i,j)\in E(G)} X(i,j) - \sum_{(j,i)\in E(G)} X(j,i) = 0 \qquad \forall i \in V(G) \setminus \{s,t\}$

A maximum *s*-*t* flow is an *s*-*t* flow where $\sum_{(s,j)\in E(G)} X(s,j) - \sum_{(j,s)\in E(G)} X(j,s)$ is maximized.

Flow network (G; s, t; u) with

- \blacksquare directed graph G
- source $s \in V(G)$, sink $t \in V(G)$
- edge *capacity* $u: E(G) \to \mathbb{R}^+_0 \cup \{\infty\}$

A function $X: E(G) \to \mathbb{R}_0^+$ is called s-t flow if:

 $0 \le X(i,j) \le u(i,j) \qquad \forall (i,j) \in E(G)$ $\sum_{(i,j)\in E(G)} X(i,j) - \sum_{(j,i)\in E(G)} X(j,i) = 0 \qquad \forall i \in V(G) \setminus \{s,t\}$

A maximum *s*-*t* flow is an *s*-*t* flow where $\sum_{(s,j)\in E(G)} X(s,j) - \sum_{(j,s)\in E(G)} X(j,s)$ is maximized.

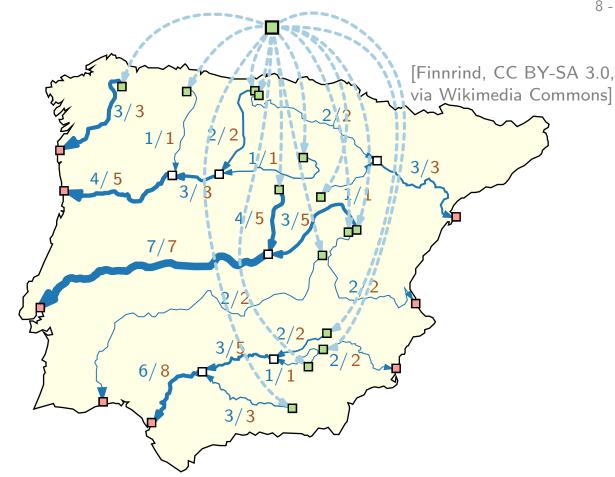
Flow network (G; s, t; u) with

- directed graph G
- source $s \in V(G)$, sink $t \in V(G)$
- edge *capacity* $u: E(G) \to \mathbb{R}^+_0 \cup \{\infty\}$

A function $X: E(G) \to \mathbb{R}_0^+$ is called s-t flow if:

 $0 \leq X(i,j) \leq u(i,j) \qquad \forall (i,j) \in E(G)$ $\sum X(i,j) - \sum X(j,i) = 0 \qquad \forall i \in V(G) \setminus \{s,t\}$ $(i,j) \in E(G)$ $(j,i) \in E(G)$

A maximum s-t flow is an s-t flow where $\sum X(s,j) - \sum X(j,s)$ is maximized. $(s,j) \in E(G)$ $(j,s) \in E(G)$



Reminder: *s*–*t* Flow Networks

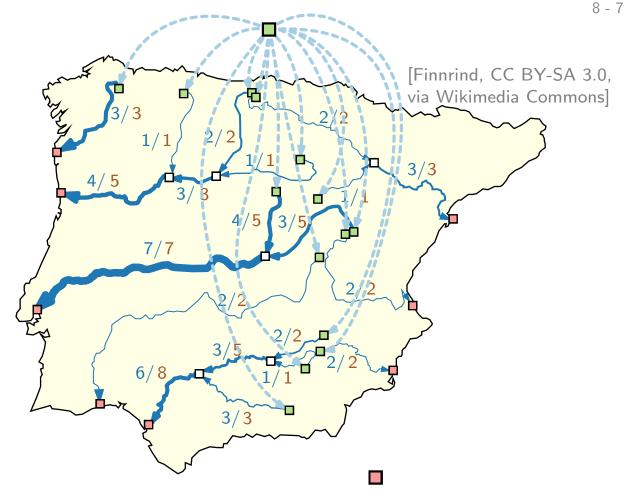
Flow network (G; s, t; u) with

- \blacksquare directed graph G
- source $s \in V(G)$, sink $t \in V(G)$
- edge *capacity* $u: E(G) \to \mathbb{R}^+_0 \cup \{\infty\}$

A function $X: E(G) \to \mathbb{R}_0^+$ is called s-t flow if:

 $0 \leq X(i,j) \leq u(i,j) \qquad \forall (i,j) \in E(G)$ $\sum_{(i,j)\in E(G)} X(i,j) - \sum_{(j,i)\in E(G)} X(j,i) = 0 \qquad \forall i \in V(G) \setminus \{s,t\}$

A maximum *s*-*t* flow is an *s*-*t* flow where $\sum_{(s,j)\in E(G)} X(s,j) - \sum_{(j,s)\in E(G)} X(j,s)$ is maximized.



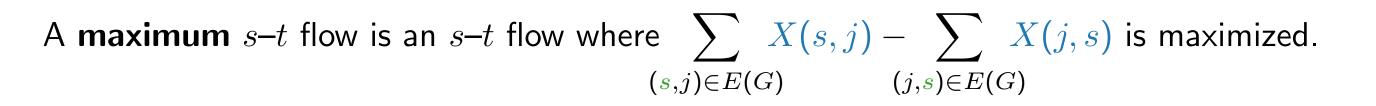
Reminder: *s*–*t* Flow Networks

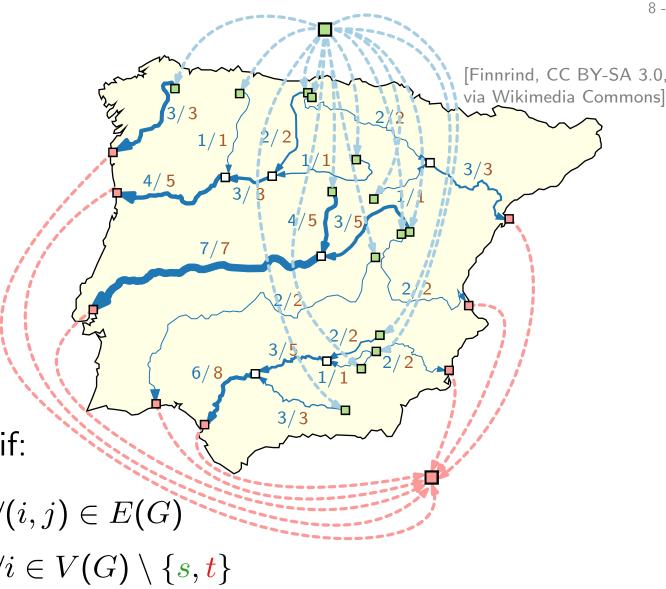
Flow network (G; s, t; u) with

- \blacksquare directed graph G
- source $s \in V(G)$, sink $t \in V(G)$
- edge *capacity* $u: E(G) \to \mathbb{R}^+_0 \cup \{\infty\}$

A function $X: E(G) \to \mathbb{R}_0^+$ is called s-t flow if:

 $0 \leq X(i,j) \leq u(i,j) \qquad \forall (i,j) \in E(G)$ $\sum_{(i,j)\in E(G)} X(i,j) - \sum_{(j,i)\in E(G)} X(j,i) = 0 \qquad \forall i \in V(G) \setminus \{s,t\}$





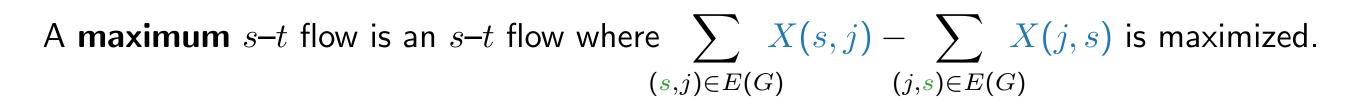
Reminder: *s*–*t* Flow Networks

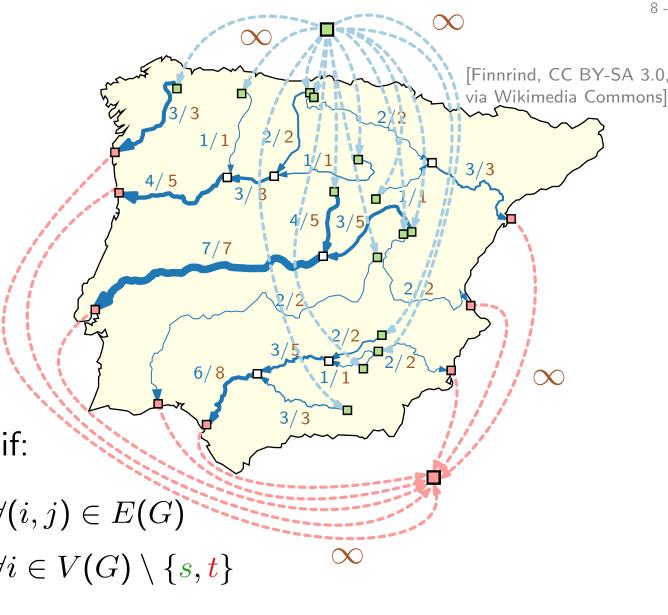
Flow network (G; s, t; u) with

- directed graph G
- source $s \in V(G)$, sink $t \in V(G)$
- edge *capacity* $u: E(G) \to \mathbb{R}^+_0 \cup \{\infty\}$

A function $X: E(G) \to \mathbb{R}_0^+$ is called s-t flow if:

 $0 \leq X(i,j) \leq u(i,j) \qquad \forall (i,j) \in E(G)$ $\sum X(i,j) - \sum X(j,i) = 0 \qquad \forall i \in V(G) \setminus \{s,t\}$ $(j,i) \in E(G)$ $(i,j) \in E(G)$





Flow network (G; S, T; u) with

- \blacksquare directed graph G
- sources $S \subseteq V(G)$, sinks $T \subseteq V(G)$
- edge *capacity* $u: E(G) \to \mathbb{R}^+_0 \cup \{\infty\}$

A function $X: E(G) \to \mathbb{R}_0^+$ is called S-T flow if:

 $0 \leq X(i,j) \leq u(i,j) \qquad \forall (i,j) \in E(G)$ $\sum_{(i,j)\in E(G)} X(i,j) - \sum_{(j,i)\in E(G)} X(j,i) = 0 \qquad \forall i \in V(G) \setminus (S \cup T)$

A maximum S-T flow is an S-T flow where $\sum_{(i,j)\in E(G),i\in S} \frac{X(i,j)}{(j,i)\in E(G),i\in S} - \sum_{(j,i)\in E(G),i\in S} \frac{X(j,i)}{(j,i)\in E(G),i\in S}$ is maximized.

9 - 1

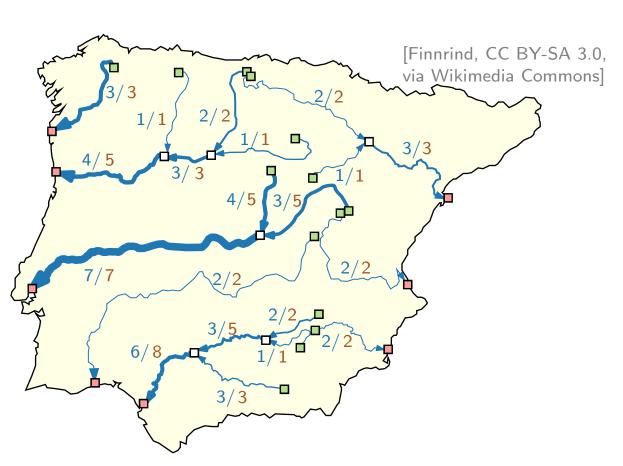
Flow network $(G; S, T; \ell; u)$ with

- \blacksquare directed graph G
- sources $S \subseteq V(G)$, sinks $T \subseteq V(G)$
- edge *capacity* $u: E(G) \to \mathbb{R}^+_0 \cup \{\infty\}$

A function $X: E(G) \to \mathbb{R}_0^+$ is called S-T flow if:

 $0 \leq X(i,j) \leq u(i,j) \qquad \forall (i,j) \in E(G)$ $\sum_{(i,j)\in E(G)} X(i,j) - \sum_{(j,i)\in E(G)} X(j,i) = 0 \qquad \forall i \in V(G) \setminus (S \cup T)$

A maximum S-T flow is an S-T flow where $\sum_{(i,j)\in E(G),i\in S} \frac{X(i,j)}{(j,i)\in E(G),i\in S} - \sum_{(j,i)\in E(G),i\in S} \frac{X(j,i)}{(j,i)\in E(G),i\in S}$ is maximized.

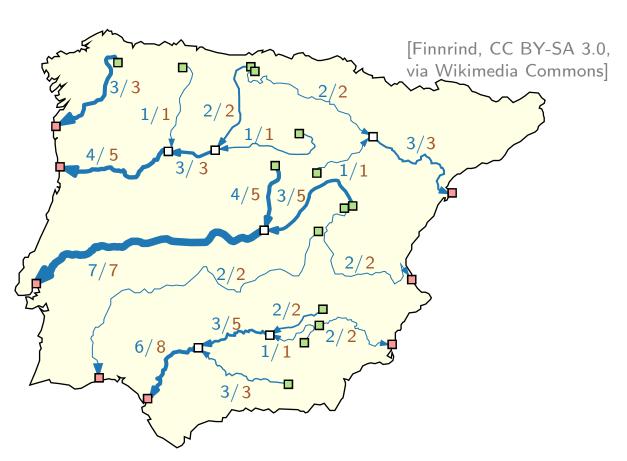


- Flow network $(G; S, T; \ell; u)$ with
- \blacksquare directed graph G
- sources $S \subseteq V(G)$, sinks $T \subseteq V(G)$
- edge *lower bound* $\ell : E(G) \to \mathbb{R}_0^+$
- edge *capacity* $u: E(G) \to \mathbb{R}^+_0 \cup \{\infty\}$

A function $X: E(G) \to \mathbb{R}_0^+$ is called S-T flow if:

 $0 \leq X(i,j) \leq u(i,j) \qquad \forall (i,j) \in E(G)$ $\sum_{(i,j)\in E(G)} X(i,j) - \sum_{(j,i)\in E(G)} X(j,i) = 0 \qquad \forall i \in V(G) \setminus (S \cup T)$

A maximum S-T flow is an S-T flow where $\sum_{(i,j)\in E(G),i\in S} \frac{X(i,j)}{(j,i)\in E(G),i\in S} - \sum_{(j,i)\in E(G),i\in S} \frac{X(j,i)}{(j,i)\in E(G),i\in S}$ is maximized.

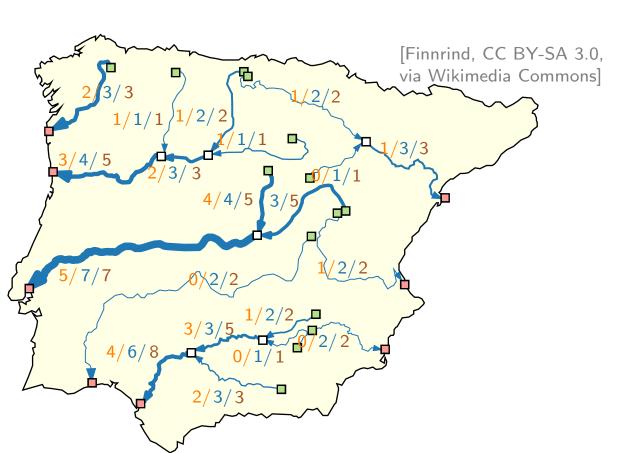


- Flow network $(G; S, T; \ell; u)$ with
- \blacksquare directed graph G
- sources $S \subseteq V(G)$, sinks $T \subseteq V(G)$
- edge *lower bound* $\ell : E(G) \to \mathbb{R}_0^+$
- edge *capacity* $u: E(G) \to \mathbb{R}^+_0 \cup \{\infty\}$

A function $X: E(G) \to \mathbb{R}_0^+$ is called S-T flow if:

 $0 \leq X(i,j) \leq u(i,j) \qquad \forall (i,j) \in E(G)$ $\sum_{(i,j)\in E(G)} X(i,j) - \sum_{(j,i)\in E(G)} X(j,i) = 0 \qquad \forall i \in V(G) \setminus (S \cup T)$

A maximum S-T flow is an S-T flow where $\sum_{(i,j)\in E(G),i\in S} X(i,j) - \sum_{(j,i)\in E(G),i\in S} X(j,i)$ is maximized.



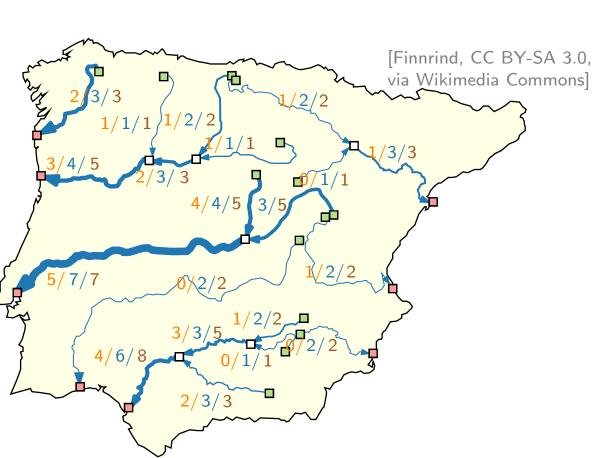
9 - 4

- Flow network $(G; S, T; \ell; u)$ with
- \blacksquare directed graph G
- sources $S \subseteq V(G)$, sinks $T \subseteq V(G)$
- edge *lower bound* $\ell : E(G) \to \mathbb{R}_0^+$
- edge *capacity* $u: E(G) \to \mathbb{R}^+_0 \cup \{\infty\}$

A function $X: E(G) \to \mathbb{R}_0^+$ is called S-T flow if:

 $\frac{\ell(i,j) \leq X(i,j) \leq u(i,j)}{\sum_{(i,j) \in E(G)} X(i,j) - \sum_{(j,i) \in E(G)} X(j,i) = 0} \quad \forall i \in V(G) \setminus (S \cup T)$

A maximum S-T flow is an S-T flow where $\sum_{(i,j)\in E(G),i\in S} \frac{X(i,j)}{(j,i)\in E(G),i\in S} - \sum_{(j,i)\in E(G),i\in S} \frac{X(j,i)}{(j,i)\in E(G),i\in S}$ is maximized.



- **Flow network** $(G; b; \ell; u)$ with
- \blacksquare directed graph G
- node production/consumption $b: V(G) \to \mathbb{R}$ with $\sum_{i \in V(G)} b(i)$
- edge *lower bound* $\ell : E(G) \to \mathbb{R}_0^+$
- edge *capacity* $u: E(G) \to \mathbb{R}^+_0 \cup \{\infty\}$

A function $X: E(G) \to \mathbb{R}_0^+$ is called S-T flow if:

 $\ell(i,j) \leq X(i,j) \leq u(i,j) \qquad \forall (i,j) \in E(G)$ $\sum_{(i,j)\in E(G)} X(i,j) - \sum_{(j,i)\in E(G)} X(j,i) = 0 \qquad \forall i \in V(G) \setminus (S \cup T)$

A maximum S-T flow is an S-T flow where $\sum_{(i,j)\in E(G),i\in S} \frac{X(i,j)}{(j,i)\in E(G),i\in S} - \sum_{(j,i)\in E(G),i\in S} \frac{X(j,i)}{(j,i)\in E(G),i\in S}$ is maximized.

4/6/8

2/3/3

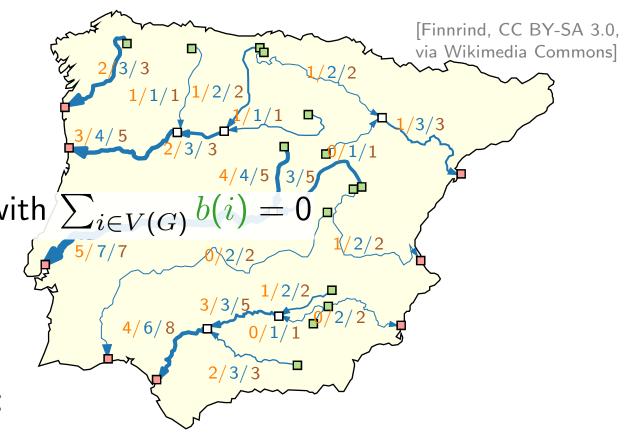
[Finnrind, CC BY-SA 3.0, via Wikimedia Commons]

- **Flow network** $(G; b; \ell; u)$ with
- \blacksquare directed graph G
- node production/consumption $b: V(G) \to \mathbb{R}$ with $\sum_{i \in V(G)} b(i) = 0$
- edge *lower bound* $\ell : E(G) \to \mathbb{R}_0^+$
- edge *capacity* $u: E(G) \to \mathbb{R}^+_0 \cup \{\infty\}$

A function $X: E(G) \to \mathbb{R}_0^+$ is called **valid flow** if:

 $\ell(i,j) \leq X(i,j) \leq u(i,j) \quad \forall (i,j) \in E(G)$ $\sum_{(i,j)\in E(G)} X(i,j) - \sum_{(j,i)\in E(G)} X(j,i) = b(i) \quad \forall i \in V(G)$

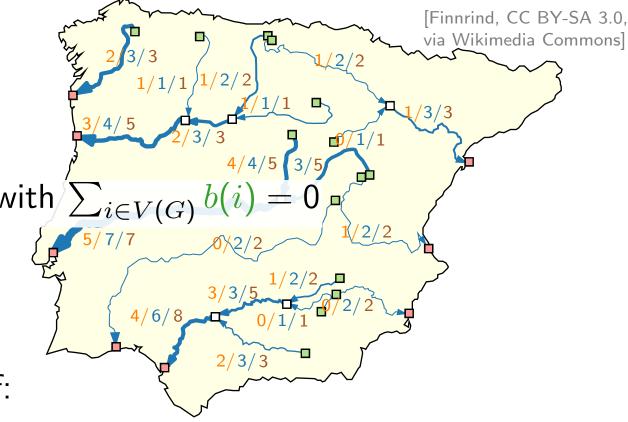
A maximum S-T flow is an S-T flow where $\sum_{(i,j)\in E(G),i\in S} X(i,j) - \sum_{(j,i)\in E(G),i\in S} X(j,i)$ is maximized.

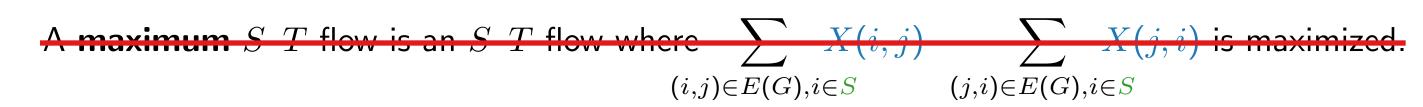


- **Flow network** $(G; b; \ell; u)$ with
- \blacksquare directed graph G
- node production/consumption $b: V(G) \to \mathbb{R}$ with $\sum_{i \in V(G)} b(i)$
- edge *lower bound* $\ell : E(G) \to \mathbb{R}_0^+$
- edge *capacity* $u: E(G) \to \mathbb{R}^+_0 \cup \{\infty\}$

A function $X: E(G) \to \mathbb{R}_0^+$ is called **valid flow** if:

 $\ell(i,j) \leq X(i,j) \leq u(i,j) \qquad \forall (i,j) \in E(G)$ $\sum_{(i,j)\in E(G)} X(i,j) - \sum_{(j,i)\in E(G)} X(j,i) = b(i) \quad \forall i \in V(G)$



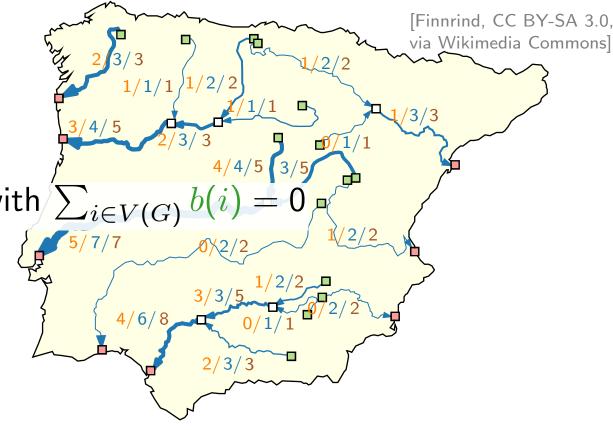


- **Flow network** $(G; b; \ell; u)$ with
- \blacksquare directed graph G
- node production/consumption $b: V(G) \to \mathbb{R}$ with $\sum_{i \in V(G)} b(i) = 0$
- edge *lower bound* $\ell : E(G) \to \mathbb{R}_0^+$
- edge *capacity* $u: E(G) \to \mathbb{R}^+_0 \cup \{\infty\}$

A function $X: E(G) \to \mathbb{R}_0^+$ is called **valid flow** if:

 $\ell(i,j) \leq X(i,j) \leq u(i,j) \qquad \forall (i,j) \in E(G)$ $\sum_{(i,j)\in E(G)} X(i,j) - \sum_{(j,i)\in E(G)} X(j,i) = b(i) \quad \forall i \in V(G)$

• Cost function: $cost: E(G) \to \mathbb{R}_0^+$

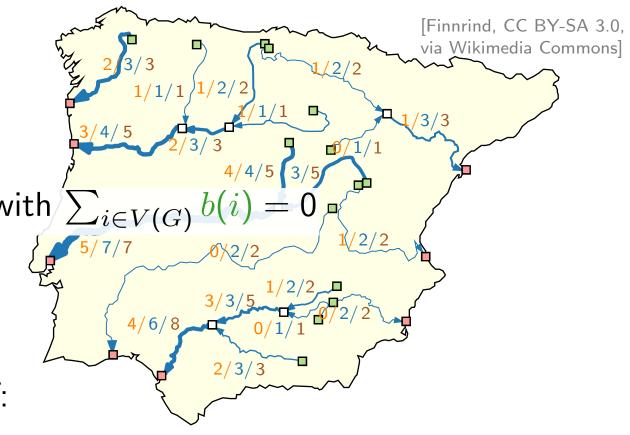


- **Flow network** $(G; b; \ell; u)$ with
- \blacksquare directed graph G
- node production/consumption $b: V(G) \to \mathbb{R}$ with $\sum_{i \in V(G)} b(i) = 0$
- edge *lower bound* $\ell : E(G) \to \mathbb{R}_0^+$
- edge *capacity* $u: E(G) \to \mathbb{R}^+_0 \cup \{\infty\}$

A function $X: E(G) \to \mathbb{R}_0^+$ is called **valid flow** if:

 $\ell(i,j) \leq X(i,j) \leq u(i,j) \qquad \forall (i,j) \in E(G)$ $\sum_{(i,j)\in E(G)} X(i,j) - \sum_{(j,i)\in E(G)} X(j,i) = b(i) \quad \forall i \in V(G)$

• Cost function: cost: $E(G) \to \mathbb{R}^+_0$ and $cost(X) := \sum_{(i,j) \in E(G)} cost(i,j) \cdot X(i,j)$



- **Flow network** $(G; b; \ell; u)$ with
- \blacksquare directed graph G
- node production/consumption $b: V(G) \to \mathbb{R}$ with $\sum_{i \in V(G)} b(i) = 0$
- edge *lower bound* $\ell : E(G) \to \mathbb{R}_0^+$
- edge *capacity* $u: E(G) \to \mathbb{R}^+_0 \cup \{\infty\}$

A function $X: E(G) \to \mathbb{R}_0^+$ is called **valid flow** if:

 $\ell(i,j) \leq X(i,j) \leq u(i,j) \qquad \forall (i,j) \in E(G)$ $\sum_{(i,j)\in E(G)} X(i,j) - \sum_{(j,i)\in E(G)} X(j,i) = b(i) \quad \forall i \in V(G)$

• Cost function: cost: $E(G) \to \mathbb{R}^+_0$ and $\operatorname{cost}(X) := \sum_{(i,j) \in E(G)} \operatorname{cost}(i,j) \cdot X(i,j)$ X is a minimum-cost flow if X is a valid flow that minimizes $\operatorname{cost}(X)$.

[Finnrind, CC BY-SA 3.0, via Wikimedia Commons]

1/3/3

4/6/8

2/3/3

n: #vertices m: #edges

Po	Polynomial Algorithms						
#	Due to			Year	Running Time		
1	Edmonds	and	d Karp	1972	$O((n + m') \log U S(n, m, nC))$		
2	Rock			1980	$O((n + m') \log U S(n, m, nC))$		
3	Rock			1980	O(n log C M(n, m, U))		
4	Bland and	l Je	nsen	1985	O(m log C M(n, m, U))		
5	Goldberg	anc	1 Tarjan	1987	$O(nm \log (n^2/m) \log (nC))$		
6	Goldberg	and	i Tarjan	1988	O(nm log n log (nC))		
7	Ahuja, Go	oldt	oerg, Orlin and Tarjan	1988	O(nm log log U log (nC))		
S	rongly Po	lyn	omial Algorithms				
#	Due to			Year	Running Time		
1	Tardos			1985	O(m ⁴)		
2	Orlin			1984	$O((n + m')^2 \log n S(n, m))$		
3	Fujishige		-	1986	$O((n + m')^2 \log n S(n, m))$		
4	4 Galil and Tardos		1986	$O(n^2 \log n S(n, m))$			
5	Goldberg	and	d Tarjan	1987	$O(nm^2 \log n \log(n^2/m))$		
6	Goldberg	and	d Tarjan	1988	O(nm ² log ² n)		
7	Orlin (thi	s pa	aper)	1988	$O((n + m') \log n S(n, m))$		
-							
S	(n, m)	*	O(m + n log n)		Fredman and Tarjan [1984]		
S	(n, m, C)	Ξ	O(Min (m + $n\sqrt{\log C}$), (m log log C))		Ahuja, Mehlhorn, Orlin and Tarjan [1990] Van Emde Boas, Kaas and Zijlstra[1977]		
Μ	l(n, m)	=	O(min (nm + $n^{2+\epsilon}$, nm lo where ϵ is any fixed consta		King, Rao, and Tarjan [1991]		
M(n, m, U)		=	$O(nm \log (\frac{n}{m}\sqrt{\log U} + 2))$		Ahuja, Orlin and Tarjan [1989]		

[Orlin 1991]

n: #verticesm: #edges

Polynomial Algorithms

[Orlin 1991]

- 1				
	#	Due to	Year	Running Time
	1	Edmonds and Karp	1972	$O((n + m') \log U S(n, m, nC))$
	2	Rock	1980	$O((n + m') \log U S(n, m, nC))$
	3	Rock	1980	O(n log C M(n, m, U))
	4	Bland and Jensen	1985	O(m log C M(n, m, U))
	5	Goldberg and Tarjan	1987	O(nm log (n ² /m) log (nC))
	6	Goldberg and Tarjan	1988	O(nm log n log (nC))
	7	Ahuja, Goldberg, Orlin and Tarjan	1988	O(nm log log U log (nC))

Strongly Polynomial Algorithms

	Due to	Year	Running Time
	Tardos	1985	O(m ⁴)
	Orlin	1984	$O((n + m')^2 \log n S(n, m))$
	Fujishige	1986	$O((n + m')^2 \log n S(n, m))$
;	Galil and Tardos	1986	O(n ² log n S(n, m))
	Goldberg and Tarjan	1987	$O(nm^2 \log n \log(n^2/m))$
	Goldberg and Tarjan	1988	O(nm ² log ² n)
,	Orlin (this paper)	1988	$O((n + m') \log n S(n, m))$

S(n, m)	-	O(m + n log n)	Fredman and Tarjan [1984]
S(n, m, C)	×	O(Min (m + $n\sqrt{\log C}$),	Ahuja, Mehlhorn, Orlin and Tarjan [1990]
		(m log log C))	Van Emde Boas, Kaas and Zijlstra[1977]
M(n, m)	=	O(min (nm + $n^{2+\epsilon}$, nm log n) where ϵ is any fixed constant.	King, Rao, and Tarjan [1991]
M(n, m, U)	*	$O(nm \log (\frac{n}{m}\sqrt{\log U} + 2))$	Ahuja, Orlin and Tarjan [1989]

Theorem.

[Orlin 1991]

The minimum-cost flow problem can be solved in $O(n^2 \log^2 n + m^2 \log n)$ time.

n: #vertices m: # edges

Polynomial Algorithms

#	Due to	Year	Running Time
"	Duelo		indianing time
1	Edmonds and Karp	1972	$O((n + m') \log U S(n, m, nC))$
2	Rock	1980	$O((n + m') \log U S(n, m, nC))$
3	Rock	1980	O(n log C M(n, m, U))
4	Bland and Jensen	1985	O(m log C M(n, m, U))
5	Goldberg and Tarjan	1987	$O(nm \log (n^2/m) \log (nC))$
6	Goldberg and Tarjan	1988	O(nm log n log (nC))
7	Ahuja, Goldberg, Orlin and Tarjan	1988	O(nm log log U log (nC))

Strongly Polynomial Algorithms

Due to	Year	Running Time
Tardos	1985	O(m ⁴)
Orlin	1984	$O((n + m')^2 \log n S(n, m))$
Fujishige	1986	$O((n + m')^2 \log n S(n, m))$
Galil and Tardos	1986	O(n ² log n S(n, m))
Goldberg and Tarjan	1987	$O(nm^2 \log n \log(n^2/m))$
Goldberg and Tarjan	1988	O(nm ² log ² n)
Orlin (this paper)	1988	O((n + m') log n S(n, m))

S(n, m)	-	O(m + n log n)	Fredman and Tarjan [1984]
S(n, m, C)	22	O(Min (m + $n\sqrt{\log C}$),	Ahuja, Mehlhorn, Orlin and Tarjan [1990]
		(m log log C))	Van Emde Boas, Kaas and Zijlstra[1977]
M(n, m)	=	O(min (nm + n ^{2+ϵ} , nm log n) where ϵ is any fixed constant.	King, Rao, and Tarjan [1991]
M(n, m, U)	*	$O(nm \log (\frac{n}{m}\sqrt{\log U} + 2))$	Ahuja, Orlin and Tarjan [1989]

Theorem.

The minimum-cost flow problem can be solved in $O(n^2 \log^2 n + m^2 \log n)$ time.

Theorem. [Cornelsen & Karrenbauer 2011] The minimum-cost flow problem for planar graphs with bounded costs and face sizes can be solved in $O(n^{3/2})$ time.

[Orlin 1991]

[Orlin 1991]

n: #vertices m: # edges

Polynomial Algorithms

#	Due to	Year	Running Time
1	Edmonds and Karp	1972	$O((n + m') \log U S(n, m, nC))$
2	Rock	1980	O((n + m') log U S(n, m, nC))
3	Rock	1980	O(n log C M(n, m, U))
4	Bland and Jensen	1985	O(m log C M(n, m, U))
5	Goldberg and Tarjan	1987	O(nm log (n ² /m) log (nC))
6	Goldberg and Tarjan	1988	O(nm log n log (nC))
7	Ahuja, Goldberg, Orlin and Tarjan	1988	O(nm log log U log (nC))

Strongly Polynomial Algorithms

#	Due to	Year	Running Time
1	Tardos	1985	O(m ⁴)
2	Orlin	1984	$O((n + m')^2 \log n S(n, m))$
3	Fujishige	1986	$O((n + m')^2 \log n S(n, m))$
4	Galil and Tardos	1986	O(n ² log n S(n, m))
5	Goldberg and Tarjan	1987	$O(nm^2 \log n \log(n^2/m))$
6	Goldberg and Tarjan	1988	O(nm ² log ² n)
7	Orlin (this paper)	1988	$O((n + m') \log n S(n, m))$

Theorem.

The minimum-cost flow problem can be solved in $O(n^2 \log^2 n + m^2 \log n)$ time.

Theorem. [Cornelsen & Karrenbauer 2011] The minimum-cost flow problem for planar graphs with bounded costs and face sizes can be solved in $O(n^{3/2})$ time.

[van den Brand, Chen, Kyng, Liu, Peng, Theorem. Probst, Sachdeva, Sidford 2023]

The minimum-cost flow problem with integral vertex demands, edge capacities, and edge costs can be solved in $O(m^{1+o(1)} \log U \log C)$ time where U is the maximum capacity and C are the maximum costs.

 $= O(m + n \log n)$ S(n, m) = O(Min (m + $n\sqrt{\log C}$), S(n, m, C) $(m \log \log C))$ = $O(\min(nm + n^{2+\epsilon}, nm \log n))$ M(n, m) where ε is any fixed constant.

 $M(n, m, U) = O(nm \log (\frac{n}{m}\sqrt{\log U} + 2))$

Fredman and Tarjan [1984]

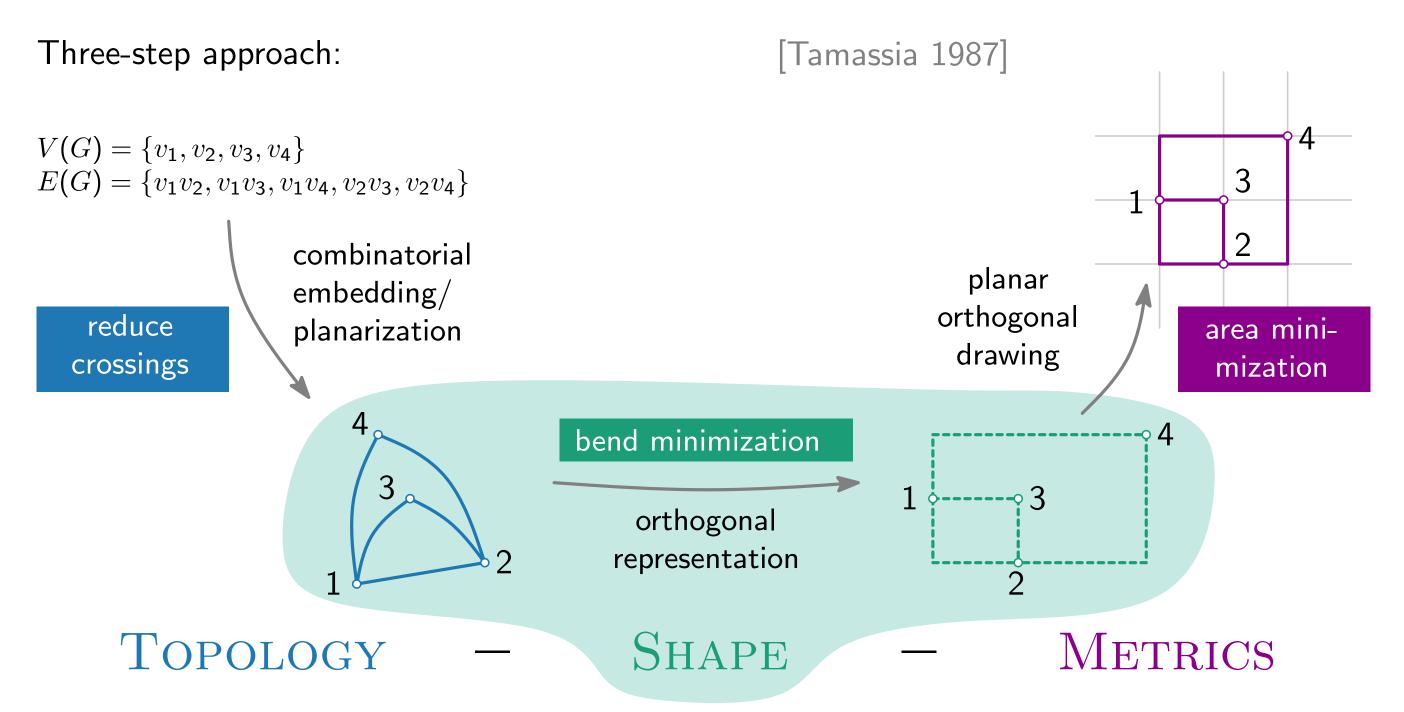
Ahuja, Mehlhorn, Orlin and Tarjan [1990] Van Emde Boas, Kaas and Zijlstra[1977] King, Rao, and Tarjan [1991]

Ahuja, Orlin and Tarjan [1989]

[Orlin 1991]

[Orlin 1991]

Topology – Shape – Metrics



Geometric orthogonal bend minimization. Given:

Find:

Geometric orthogonal bend minimization. Given: Plane graph *G* with maximum degree 4 Find:

Geometric orthogonal bend minimization. Given: Plane graph *G* with maximum degree 4

• Combinatorial embedding F and outer face f_0

Find:

Geometric orthogonal bend minimization.

Given: **I** Plane graph *G* with maximum degree 4

- Combinatorial embedding F and outer face f_0
- Find: Orthogonal drawing with minimum number of bends that preserves the embedding.

Geometric orthogonal bend minimization.

Given: **\blacksquare** Plane graph G with maximum degree 4

- Combinatorial embedding F and outer face f_0
- Find: Orthogonal drawing with minimum number of bends that preserves the embedding.

Compare with the following variant:

Combinatorial orthogonal bend minimization. Given:

Find:

Geometric orthogonal bend minimization.

Given: **\blacksquare** Plane graph G with maximum degree 4

- Combinatorial embedding F and outer face f_0
- Find: Orthogonal drawing with minimum number of bends that preserves the embedding.

Compare with the following variant:

Combinatorial orthogonal bend minimization.

- Given: **I** Plane graph *G* with maximum degree 4
 - Combinatorial embedding F and outer face f_0

Find:

Geometric orthogonal bend minimization.

Given: **I** Plane graph *G* with maximum degree 4

- Combinatorial embedding F and outer face f_0
- Find: Orthogonal drawing with minimum number of bends that preserves the embedding.

Compare with the following variant:

- Given: **I** Plane graph *G* with maximum degree 4
 - Combinatorial embedding F and outer face f_0
- Find: Orthogonal representation H(G) with minimum number of bends that preserves the embedding.

How to solve the combinatorial orthogonal bend minimization problem?

- Given: **I** Plane graph *G* with maximum degree 4
 - Combinatorial embedding F and outer face f_0
- Find: Orthogonal representation H(G) with minimum number of bends that preserves the embedding.

Idea.

How to solve the combinatorial orthogonal bend minimization problem?

Formulate as a network-flow problem:

- Given: **I** Plane graph *G* with maximum degree 4
 - Combinatorial embedding F and outer face f_0
- Find: Orthogonal representation H(G) with minimum number of bends that preserves the embedding.

How to solve the combinatorial orthogonal bend minimization problem?

ldea.

Formulate as a network-flow problem:

• a unit of flow =
$$\measuredangle \frac{\pi}{2}$$

- Given: **I** Plane graph *G* with maximum degree 4
 - Combinatorial embedding F and outer face f_0
- Find: Orthogonal representation H(G) with minimum number of bends that preserves the embedding.

How to solve the combinatorial orthogonal bend minimization problem?

ldea.

Formulate as a network-flow problem:

- Given: **I** Plane graph *G* with maximum degree 4
 - Combinatorial embedding F and outer face f_0
- Find: Orthogonal representation H(G) with minimum number of bends that preserves the embedding.

How to solve the combinatorial orthogonal bend minimization problem?

Idea.

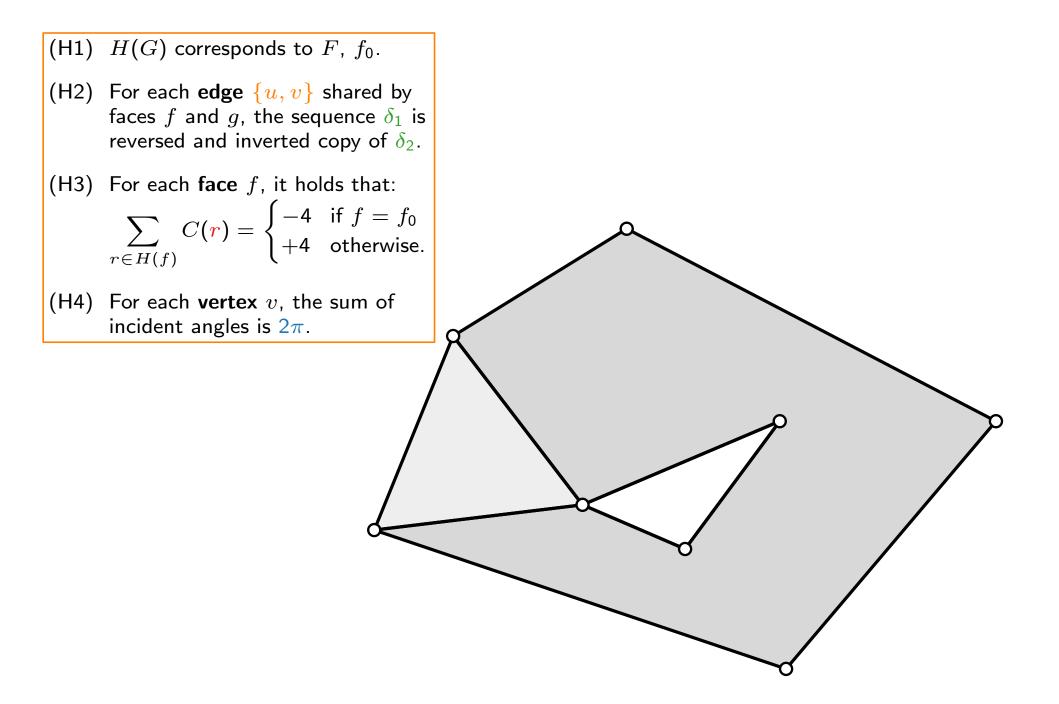
Formulate as a network-flow problem:

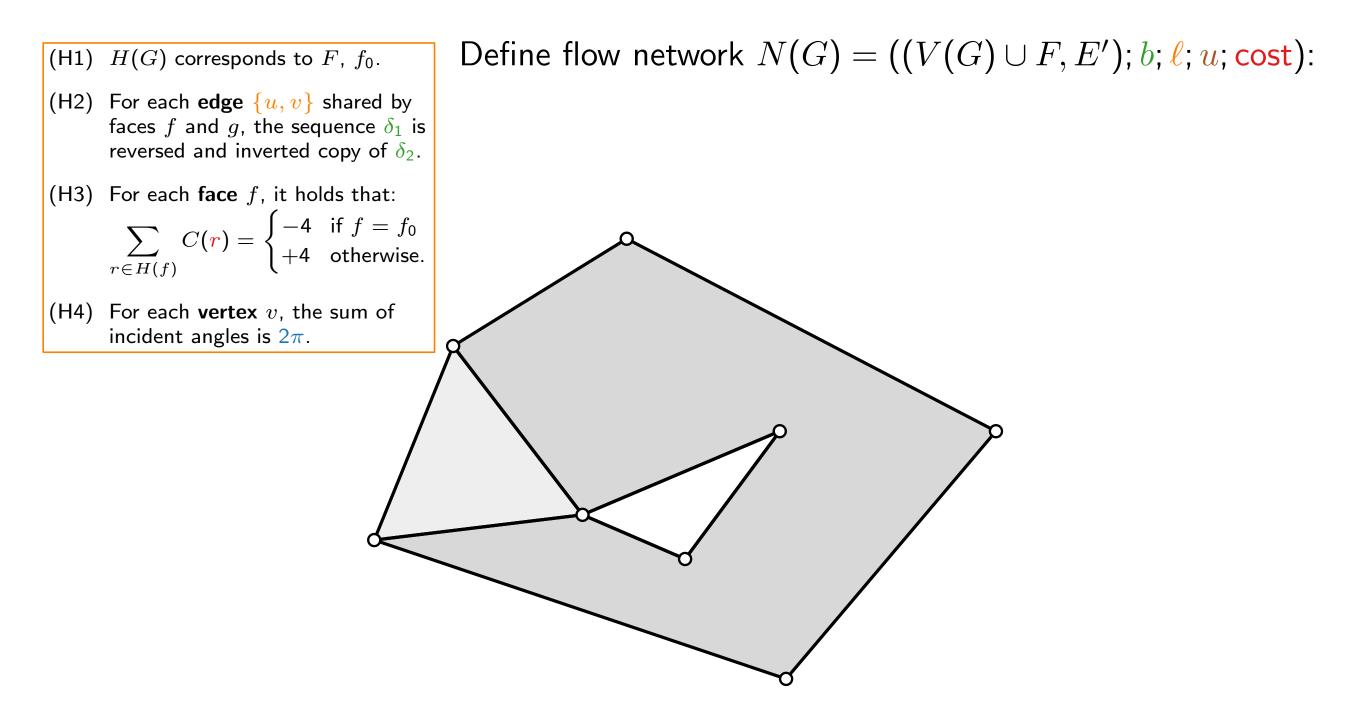
• faces $\stackrel{\measuredangle}{\longrightarrow}$ neighboring faces (# bends toward the neighbor)

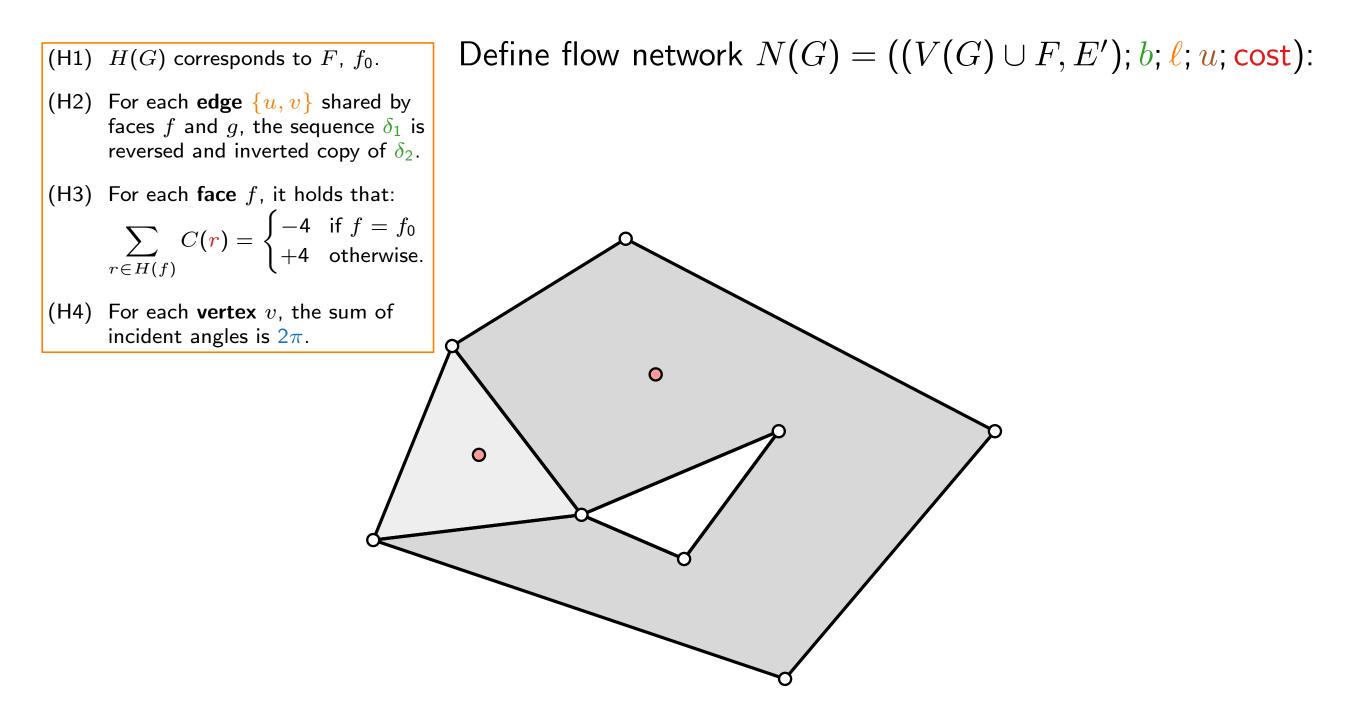
- Given: Plane graph G with maximum degree 4
 - Combinatorial embedding F and outer face f_0
- Find: **Orthogonal representation** H(G) with minimum number of bends that preserves the embedding.

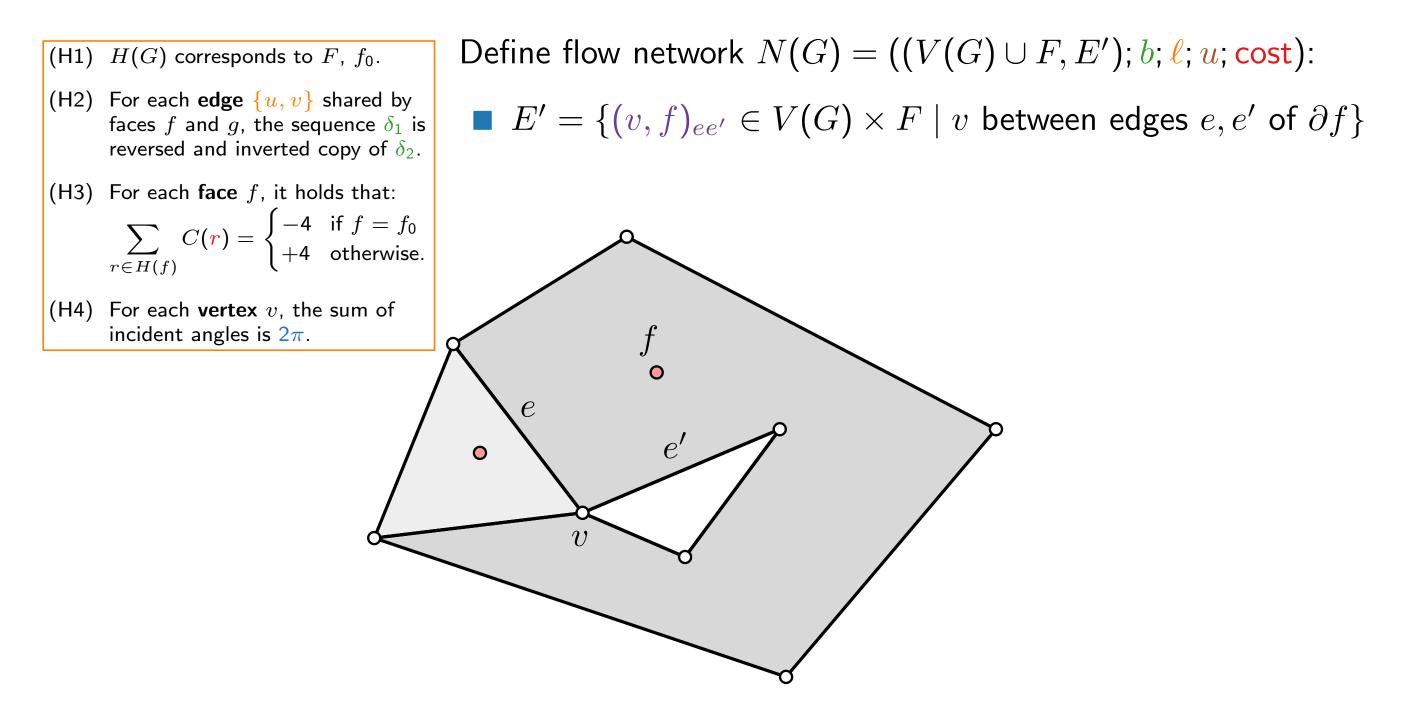
(H1) H(G) corresponds to F, f_0 .

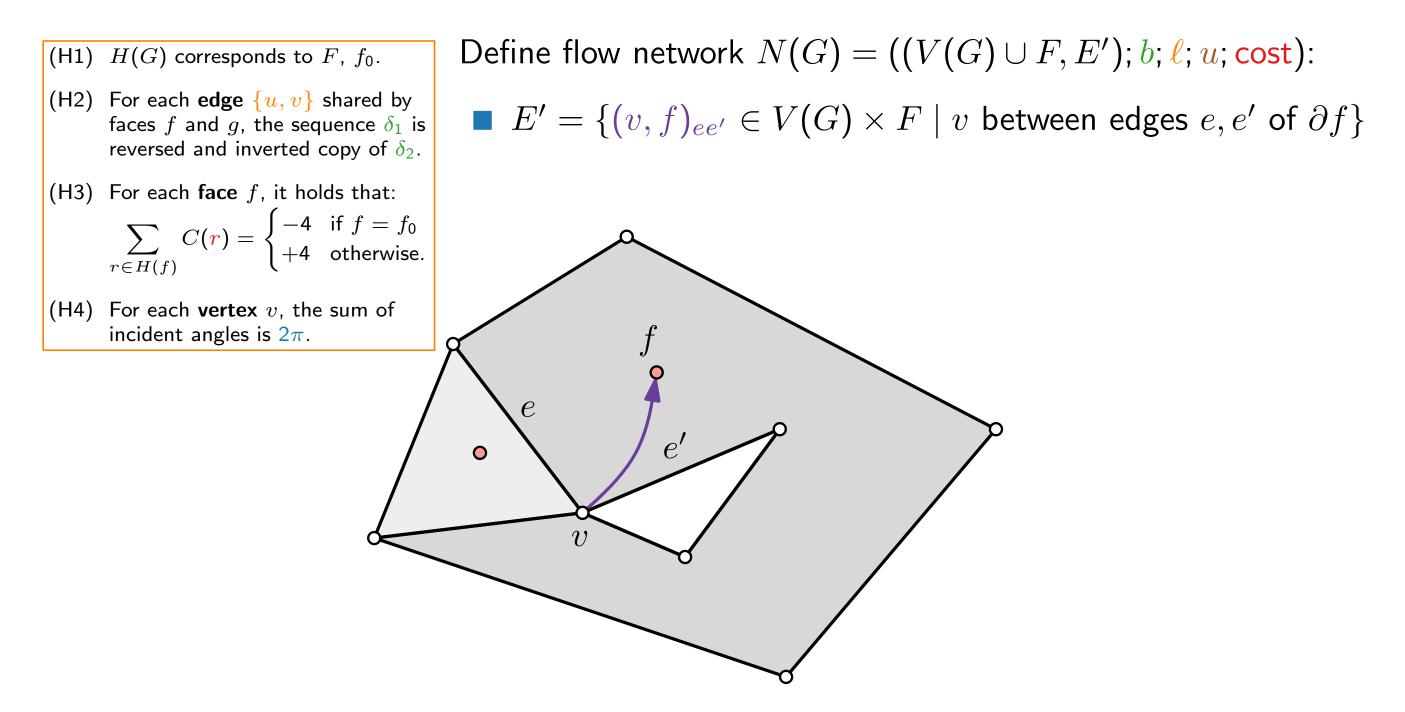
- (H2) For each edge $\{u, v\}$ shared by faces f and g, the sequence δ_1 is reversed and inverted copy of δ_2 .
- (H3) For each face f, it holds that: $\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$ (H4) For each vertex v, the sum of incident angles is 2π .

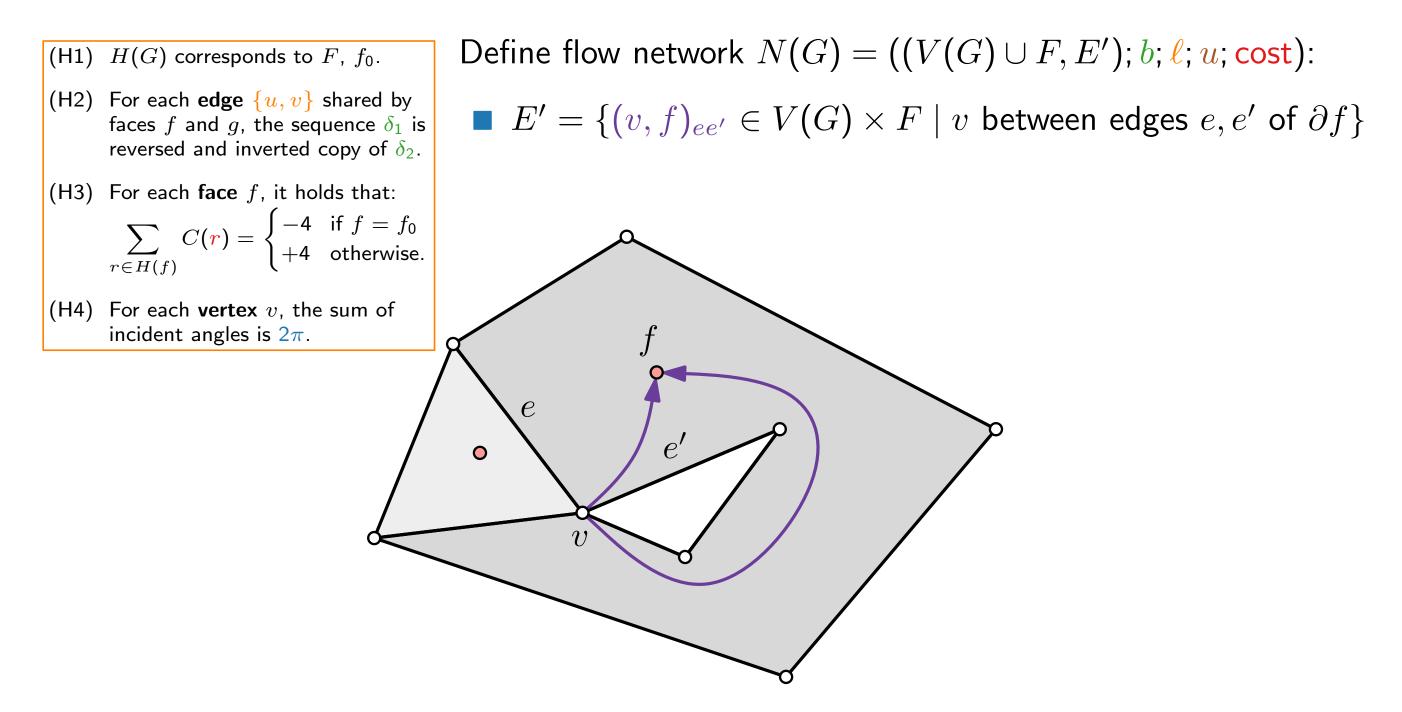


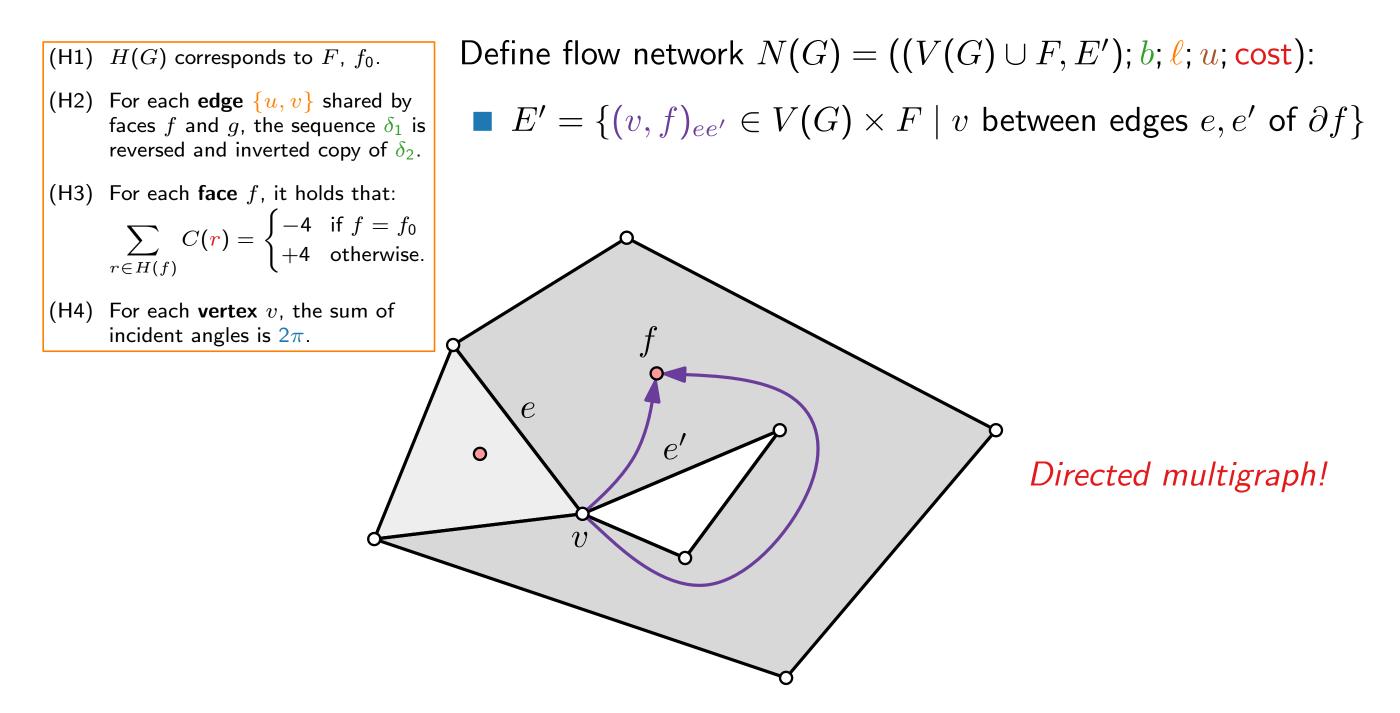


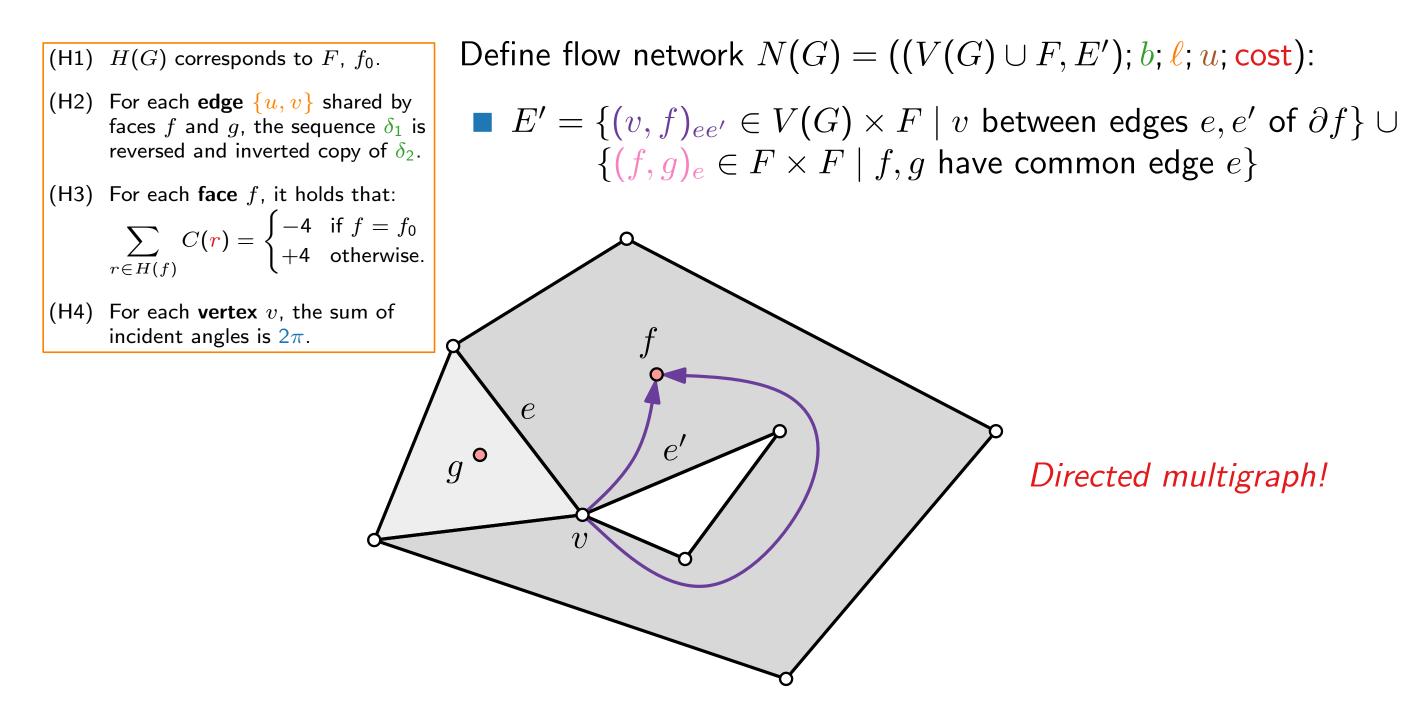


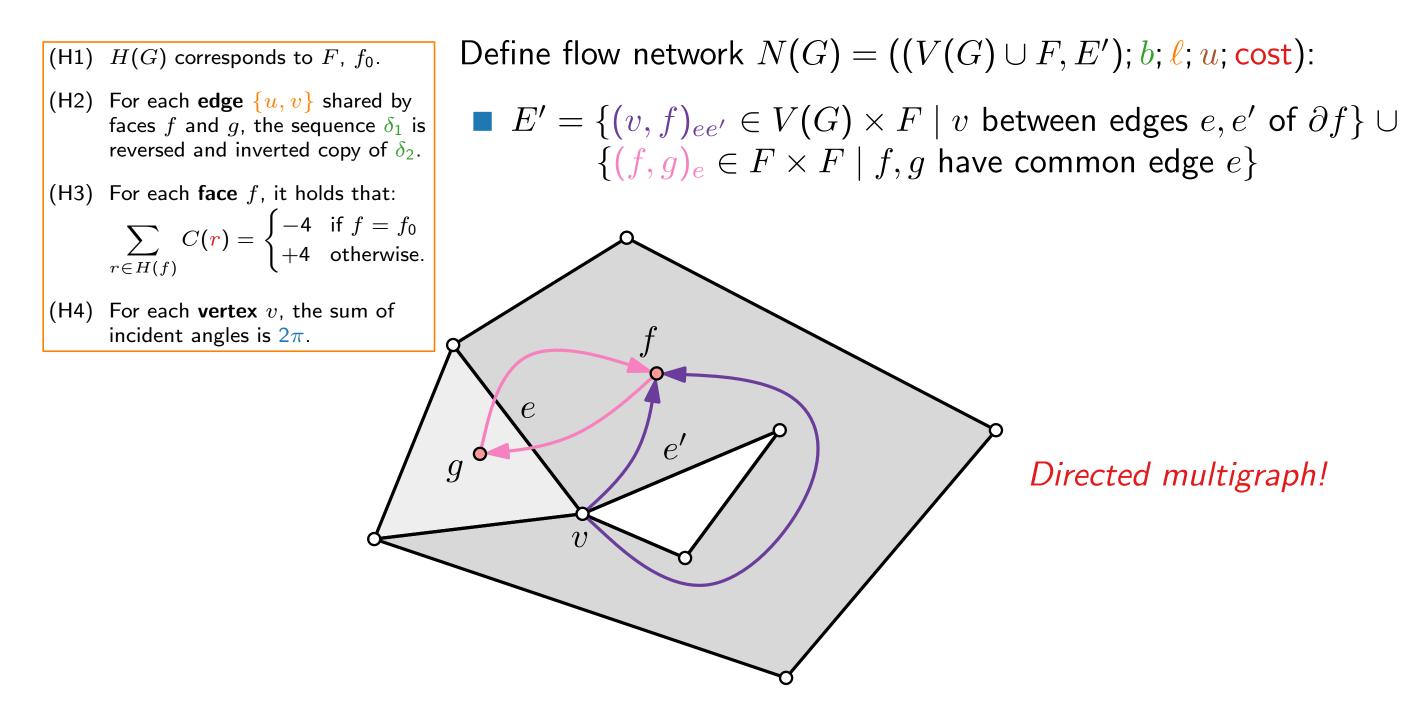


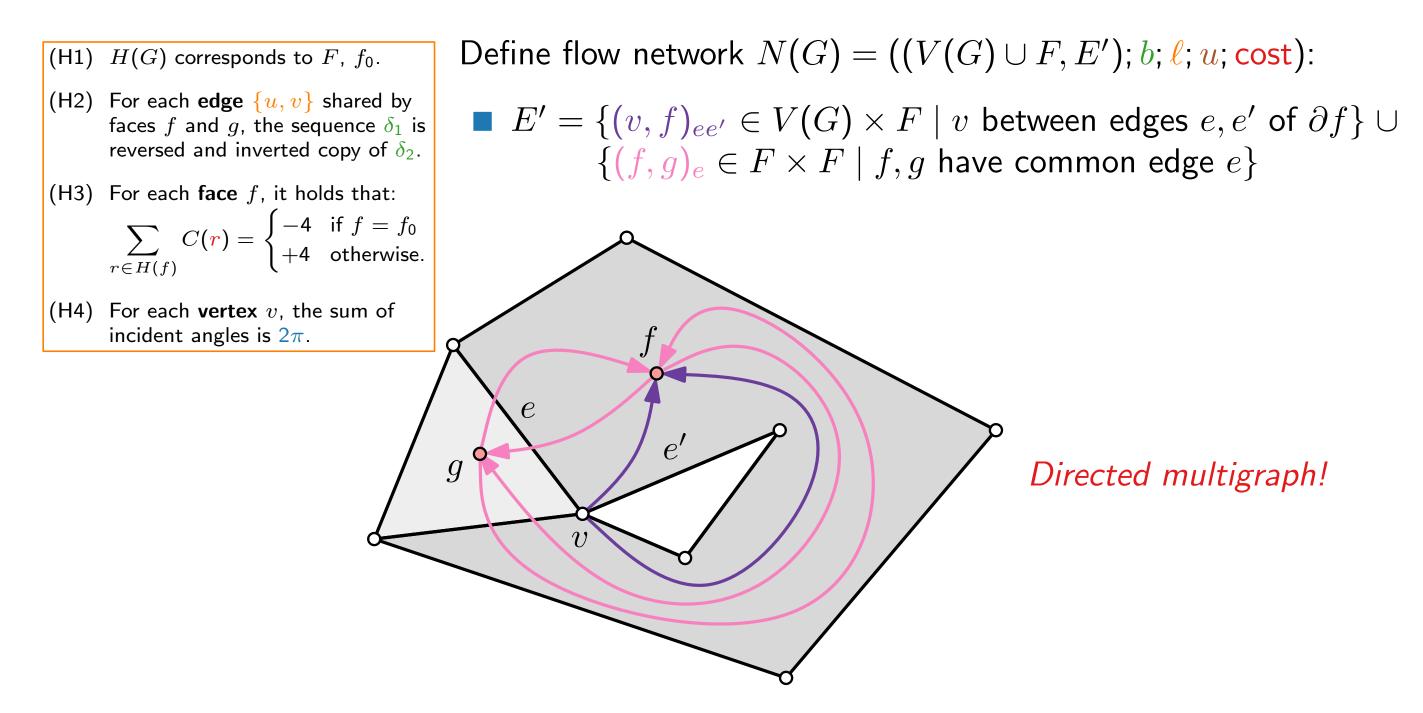












(H1) H(G) corresponds to F, f_0 .

- (H2) For each edge $\{u, v\}$ shared by faces f and g, the sequence δ_1 is reversed and inverted copy of δ_2 .
- (H3) For each face f, it holds that: $\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$ (H4) For each vertex v, the sum of incident angles is 2π .

Define flow network $N(G) = ((V(G) \cup F, E'); b; \ell; u; cost)$:

■ $E' = \{(v, f)_{ee'} \in V(G) \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup \{(f, g)_e \in F \times F \mid f, g \text{ have common edge } e\}$

$$\bullet b(v) = 4 \quad \forall v \in V(G)$$

(H1) H(G) corresponds to F, f_0 .

- (H2) For each edge $\{u, v\}$ shared by faces f and g, the sequence δ_1 is reversed and inverted copy of δ_2 .
- (H3) For each face f, it holds that: $\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$ (H4) For each vertex v, the sum of
- (H4) For each **vertex** v, the sum of incident angles is 2π .

 $2 \downarrow \frac{1}{1}$

Define flow network $N(G) = ((V(G) \cup F, E'); b; \ell; u; cost)$:

■ $E' = \{(v, f)_{ee'} \in V(G) \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup \{(f, g)_e \in F \times F \mid f, g \text{ have common edge } e\}$

$$\bullet b(v) = 4 \quad \forall v \in V(G)$$

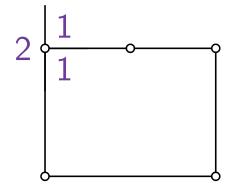
- (H1) H(G) corresponds to F, f_0 .
- (H2) For each edge $\{u, v\}$ shared by faces f and g, the sequence δ_1 is reversed and inverted copy of δ_2 .
- (H3) For each face f, it holds that: $\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$
- (H4) For each vertex v, the sum of incident angles is 2π .

Define flow network $N(G) = ((V(G) \cup F, E'); b; \ell; u; cost)$:

■ $E' = \{(v, f)_{ee'} \in V(G) \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup \{(f, g)_e \in F \times F \mid f, g \text{ have common edge } e\}$

$$\bullet b(v) = 4 \quad \forall v \in V(G)$$

 \bullet b(f)



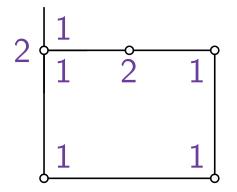
- (H1) H(G) corresponds to F, f_0 .
- (H2) For each edge $\{u, v\}$ shared by faces f and g, the sequence δ_1 is reversed and inverted copy of δ_2 .
- (H3) For each face f, it holds that: $\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$
- (H4) For each vertex v, the sum of incident angles is 2π .

Define flow network $N(G) = ((V(G) \cup F, E'); b; \ell; u; cost)$:

■ $E' = \{(v, f)_{ee'} \in V(G) \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup \{(f, g)_e \in F \times F \mid f, g \text{ have common edge } e\}$

$$\bullet b(v) = 4 \quad \forall v \in V(G)$$

 \bullet b(f)



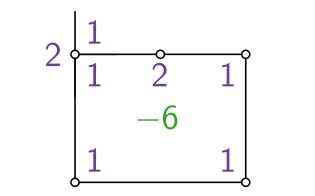
- (H1) H(G) corresponds to F, f_0 .
- (H2) For each edge $\{u, v\}$ shared by faces f and g, the sequence δ_1 is reversed and inverted copy of δ_2 .
- (H3) For each face f, it holds that: $\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$
- (H4) For each vertex v, the sum of incident angles is 2π .

Define flow network $N(G) = ((V(G) \cup F, E'); b; \ell; u; cost)$:

■ $E' = \{(v, f)_{ee'} \in V(G) \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup \{(f, g)_e \in F \times F \mid f, g \text{ have common edge } e\}$

$$\bullet b(v) = 4 \quad \forall v \in V(G)$$

 \bullet b(f)



(H1) H(G) corresponds to F, f_0 .

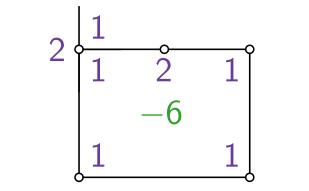
- (H2) For each edge $\{u, v\}$ shared by faces f and g, the sequence δ_1 is reversed and inverted copy of δ_2 .
- (H3) For each face f, it holds that: $\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$
- (H4) For each vertex v, the sum of incident angles is 2π .

Define flow network $N(G) = ((V(G) \cup F, E'); b; \ell; u; cost)$:

■ $E' = \{(v, f)_{ee'} \in V(G) \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup \{(f, g)_e \in F \times F \mid f, g \text{ have common edge } e\}$

$$b(v) = 4 \quad \forall v \in V(G)$$

$$b(f) = -2 \deg_G(f) + \begin{cases} -4 & \text{if } f = f_0, \\ +4 & \text{otherwise} \end{cases}$$



(H1) H(G) corresponds to F, f_0 .

(H2) For each edge $\{u, v\}$ shared by faces f and g, the sequence δ_1 is reversed and inverted copy of δ_2 .

(H3) For each face f, it holds that: $\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$

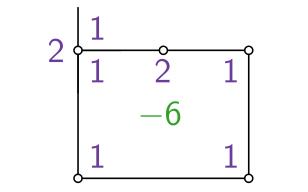
(H4) For each vertex v, the sum of incident angles is 2π .

Define flow network $N(G) = ((V(G) \cup F, E'); b; \ell; u; cost)$:

■ $E' = \{(v, f)_{ee'} \in V(G) \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup \{(f, g)_e \in F \times F \mid f, g \text{ have common edge } e\}$

$$b(v) = 4 \quad \forall v \in V(G)$$

$$b(f) = -2 \deg_G(f) + \begin{cases} -4 & \text{if } f = f_0, \\ +4 & \text{otherwise} \end{cases} \Rightarrow \sum_{w \in V(G) \cup F} b(w) \stackrel{?}{=} 0$$



(H1) H(G) corresponds to F, f_0 .

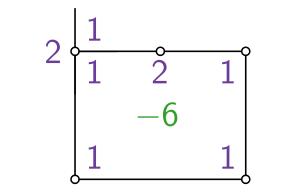
- (H2) For each edge $\{u, v\}$ shared by faces f and g, the sequence δ_1 is reversed and inverted copy of δ_2 .
- (H3) For each face f, it holds that: $\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$
- (H4) For each vertex v, the sum of incident angles is 2π .

Define flow network $N(G) = ((V(G) \cup F, E'); b; \ell; u; cost)$:

• $E' = \{(v, f)_{ee'} \in V(G) \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup \{(f, g)_e \in F \times F \mid f, g \text{ have common edge } e\}$

$$b(v) = 4 \quad \forall v \in V(G)$$

$$b(f) = -2 \deg_G(f) + \begin{cases} -4 & \text{if } f = f_0, \\ +4 & \text{otherwise} \end{cases} \Rightarrow \sum_{w \in V(G) \cup F} b(w) = 0$$
(Euler)



(H1) H(G) corresponds to F, f_0 .

(H2) For each edge $\{u, v\}$ shared by faces f and g, the sequence δ_1 is reversed and inverted copy of δ_2 .

(H3) For each face f, it holds that: $\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$

(H4) For each vertex v, the sum of incident angles is 2π .

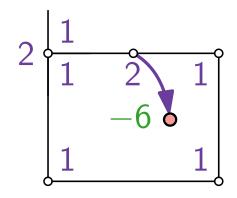
Define flow network $N(G) = ((V(G) \cup F, E'); b; \ell; u; cost)$:

■ $E' = \{(v, f)_{ee'} \in V(G) \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup \{(f, g)_e \in F \times F \mid f, g \text{ have common edge } e\}$

$$b(v) = 4 \quad \forall v \in V(G)$$

$$b(f) = -2 \deg_G(f) + \begin{cases} -4 & \text{if } f = f_0, \\ +4 & \text{otherwise} \end{cases} \Rightarrow \sum_{w \in V(G) \cup F} b(w) = 0$$
(Euler)

 $\forall (v, f) \in E', v \in V(G), f \in F$



(H1) H(G) corresponds to F, f_0 .

- (H2) For each edge $\{u, v\}$ shared by faces f and g, the sequence δ_1 is reversed and inverted copy of δ_2 .
- (H3) For each face f, it holds that: $\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$
- (H4) For each vertex v, the sum of incident angles is 2π .

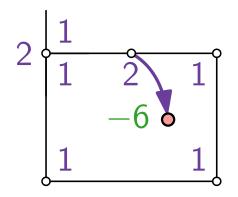
Define flow network $N(G) = ((V(G) \cup F, E'); b; \ell; u; cost)$:

■ $E' = \{(v, f)_{ee'} \in V(G) \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup \{(f, g)_e \in F \times F \mid f, g \text{ have common edge } e\}$

$$b(v) = 4 \quad \forall v \in V(G)$$

$$b(f) = -2 \deg_G(f) + \begin{cases} -4 & \text{if } f = f_0, \\ +4 & \text{otherwise} \end{cases} \Rightarrow \sum_{w \in V(G) \cup F} b(w) = 0$$
(Euler)

 $\forall (v, f) \in E', v \in V(G), f \in F$ $\ell(v, f) := \leq X(v, f) \leq =: u(v, f)$ $\cos(v, f) =$



(H1) H(G) corresponds to F, f_0 .

- (H2) For each edge $\{u, v\}$ shared by faces f and g, the sequence δ_1 is reversed and inverted copy of δ_2 .
- (H3) For each face f, it holds that: $\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$
- (H4) For each vertex v, the sum of incident angles is 2π .

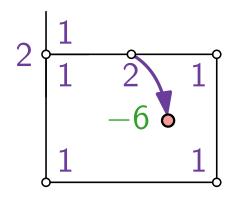
Define flow network $N(G) = ((V(G) \cup F, E'); b; \ell; u; cost)$:

■ $E' = \{(v, f)_{ee'} \in V(G) \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup \{(f, g)_e \in F \times F \mid f, g \text{ have common edge } e\}$

$$b(v) = 4 \quad \forall v \in V(G)$$

$$b(f) = -2 \deg_G(f) + \begin{cases} -4 & \text{if } f = f_0, \\ +4 & \text{otherwise} \end{cases} \Rightarrow \sum_{w \in V(G) \cup F} b(w) = 0$$
(Euler)

 $\forall (v, f) \in E', v \in V(G), f \in F$ $\ell(v, f) := 1 \le X(v, f) \le 4 =: u(v, f)$ $\cos(v, f) =$



(H1) H(G) corresponds to F, f_0 .

- (H2) For each edge $\{u, v\}$ shared by faces f and g, the sequence δ_1 is reversed and inverted copy of δ_2 .
- (H3) For each face f, it holds that: $\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$
- (H4) For each vertex v, the sum of incident angles is 2π .

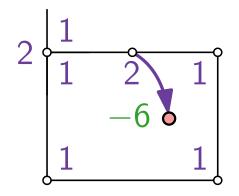
Define flow network $N(G) = ((V(G) \cup F, E'); b; \ell; u; cost)$:

■ $E' = \{(v, f)_{ee'} \in V(G) \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup \{(f, g)_e \in F \times F \mid f, g \text{ have common edge } e\}$

$$b(v) = 4 \quad \forall v \in V(G)$$

$$b(f) = -2 \deg_G(f) + \begin{cases} -4 & \text{if } f = f_0, \\ +4 & \text{otherwise} \end{cases} \Rightarrow \sum_{w \in V(G) \cup F} b(w) = 0$$
(Euler)

 $\forall (v, f) \in E', v \in V(G), f \in F$ $\ell(v, f) := 1 \le X(v, f) \le 4 =: u(v, f)$ $\cos(v, f) = 0$



(H1) H(G) corresponds to F, f_0 .

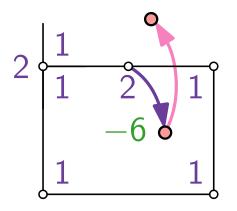
- (H2) For each edge $\{u, v\}$ shared by faces f and g, the sequence δ_1 is reversed and inverted copy of δ_2 .
- (H3) For each face f, it holds that: $\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$
- (H4) For each vertex v, the sum of incident angles is 2π .

Define flow network $N(G) = ((V(G) \cup F, E'); b; \ell; u; cost)$:

■ $E' = \{(v, f)_{ee'} \in V(G) \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup \{(f, g)_e \in F \times F \mid f, g \text{ have common edge } e\}$

$$b(v) = 4 \quad \forall v \in V(G)$$

$$b(f) = -2 \deg_G(f) + \begin{cases} -4 & \text{if } f = f_0, \\ +4 & \text{otherwise} \end{cases} \Rightarrow \sum_{w \in V(G) \cup F} b(w) = 0$$
(Euler)



 $\begin{aligned} \forall (v,f) \in E', v \in V(G), f \in F & \ell(v,f) := 1 \le X(v,f) \le 4 =: u(v,f) \\ & \operatorname{cost}(v,f) = 0 \\ \forall (f,g) \in E', f,g \in F & \ell(f,g) := \le X(f,g) \le =: u(f,g) \\ & \operatorname{cost}(f,g) = \end{aligned}$

(H1) H(G) corresponds to F, f_0 .

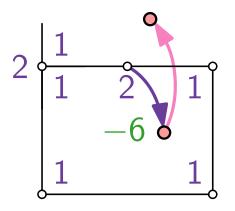
- (H2) For each edge $\{u, v\}$ shared by faces f and g, the sequence δ_1 is reversed and inverted copy of δ_2 .
- (H3) For each face f, it holds that: $\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$
- (H4) For each vertex v, the sum of incident angles is 2π .

Define flow network $N(G) = ((V(G) \cup F, E'); b; \ell; u; cost)$:

• $E' = \{(v, f)_{ee'} \in V(G) \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup \{(f, g)_e \in F \times F \mid f, g \text{ have common edge } e\}$

$$b(v) = 4 \quad \forall v \in V(G)$$

$$b(f) = -2 \deg_G(f) + \begin{cases} -4 & \text{if } f = f_0, \\ +4 & \text{otherwise} \end{cases} \Rightarrow \sum_{w \in V(G) \cup F} b(w) = 0$$
(Euler)



 $\begin{aligned} \forall (v,f) \in E', v \in V(G), f \in F & \ell(v,f) \coloneqq 1 \leq X(v,f) \leq 4 \eqqcolon u(v,f) \\ & \operatorname{cost}(v,f) = 0 \\ \forall (f,g) \in E', f,g \in F & \ell(f,g) \coloneqq 0 \leq X(f,g) \leq \infty \eqqcolon u(f,g) \\ & \operatorname{cost}(f,g) = \end{aligned}$

(H1) H(G) corresponds to F, f_0 .

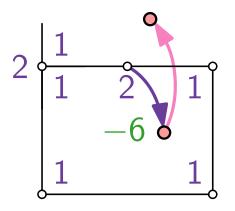
- (H2) For each edge $\{u, v\}$ shared by faces f and g, the sequence δ_1 is reversed and inverted copy of δ_2 .
- (H3) For each face f, it holds that: $\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$
- (H4) For each vertex v, the sum of incident angles is 2π .

Define flow network $N(G) = ((V(G) \cup F, E'); b; \ell; u; cost)$:

■ $E' = \{(v, f)_{ee'} \in V(G) \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup \{(f, g)_e \in F \times F \mid f, g \text{ have common edge } e\}$

$$b(v) = 4 \quad \forall v \in V(G)$$

$$b(f) = -2 \deg_G(f) + \begin{cases} -4 & \text{if } f = f_0, \\ +4 & \text{otherwise} \end{cases} \Rightarrow \sum_{w \in V(G) \cup F} b(w) = 0$$
(Euler)



 $\begin{array}{ll} \forall (v,f) \in E', v \in V(G), f \in F & \quad \ell(v,f) \coloneqq 1 \leq X(v,f) \leq 4 \eqqcolon u(v,f) \\ & \quad \operatorname{cost}(v,f) = 0 \\ \forall (f,g) \in E', f,g \in F & \quad \ell(f,g) \coloneqq 0 \leq X(f,g) \leq \infty \eqqcolon u(f,g) \\ & \quad \operatorname{cost}(f,g) = 1 \end{array}$

(H1) H(G) corresponds to F, f_0 .

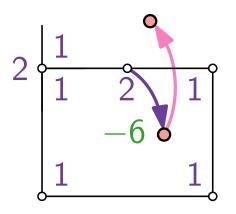
- (H2) For each edge $\{u, v\}$ shared by faces f and g, the sequence δ_1 is reversed and inverted copy of δ_2 .
- (H3) For each face f, it holds that: $\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$
- (H4) For each vertex v, the sum of incident angles is 2π .

Define flow network $N(G) = ((V(G) \cup F, E'); b; \ell; u; cost)$:

■ $E' = \{(v, f)_{ee'} \in V(G) \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup \{(f, g)_e \in F \times F \mid f, g \text{ have common edge } e\}$

$$b(v) = 4 \quad \forall v \in V(G)$$

$$b(f) = -2 \deg_G(f) + \begin{cases} -4 & \text{if } f = f_0, \\ +4 & \text{otherwise} \end{cases} \Rightarrow \sum_{w \in V(G) \cup F} b(w) = 0$$
(Euler)



 $\begin{aligned} \forall (v,f) \in E', v \in V(G), f \in F \\ \forall (f,g) \in E', f,g \in F \end{aligned} \begin{array}{c} \ell(v,f) &:= 1 \leq X(v,f) \\ \cost(v,f) &= 0 \\ \ell(f,g) &:= 0 \leq X(f,g) \\ \cost(f,g) &= 1 \\ \int \\ \operatorname{We model only the} \\ number \text{ of bends.} \\ \operatorname{Why is it enough?} \end{aligned}$

(H1) H(G) corresponds to F, f_0 .

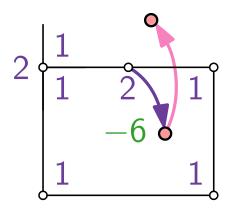
- (H2) For each edge $\{u, v\}$ shared by faces f and g, the sequence δ_1 is reversed and inverted copy of δ_2 .
- (H3) For each face f, it holds that: $\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$
- (H4) For each vertex v, the sum of incident angles is 2π .

Define flow network $N(G) = ((V(G) \cup F, E'); b; \ell; u; cost)$:

■ $E' = \{(v, f)_{ee'} \in V(G) \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup \{(f, g)_e \in F \times F \mid f, g \text{ have common edge } e\}$

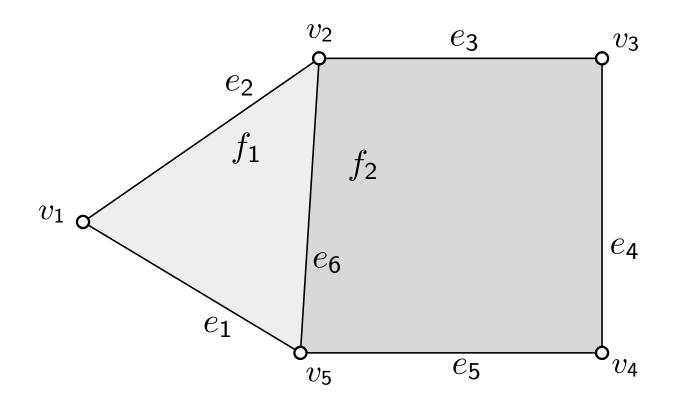
$$b(v) = 4 \quad \forall v \in V(G)$$

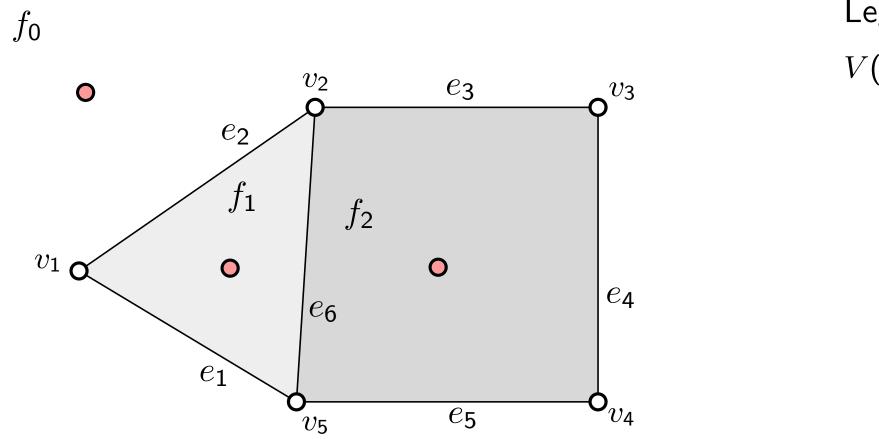
$$b(f) = -2 \deg_G(f) + \begin{cases} -4 & \text{if } f = f_0, \\ +4 & \text{otherwise} \end{cases} \Rightarrow \sum_{w \in V(G) \cup F} b(w) = 0$$
(Euler)



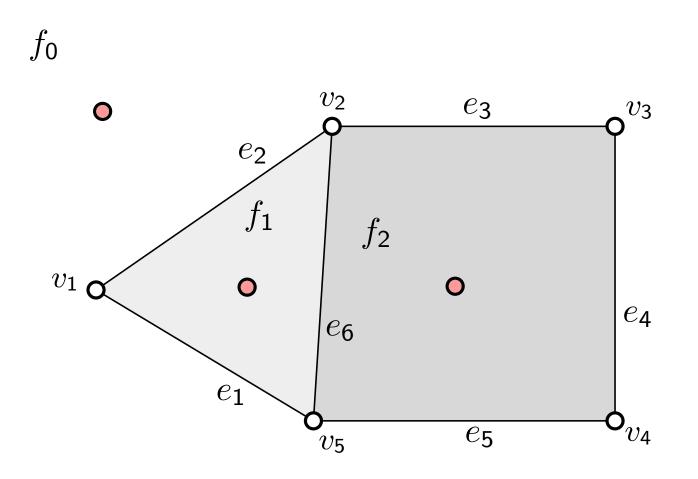
 $\forall (v, f) \in E', v \in V(G), f \in F$ $\forall (v, f) \in E', g \in F$ $\forall (f, g) \in E', f, g \in F$ $\forall (f, g) \in E', f, g \in F$ $\forall (f, g) := 0 \leq X(f, g) \leq \infty =: u(f, g)$ cost(f, g) = 1 we model only the number of bends. why is it enough? $\forall Exercise!$

 f_0

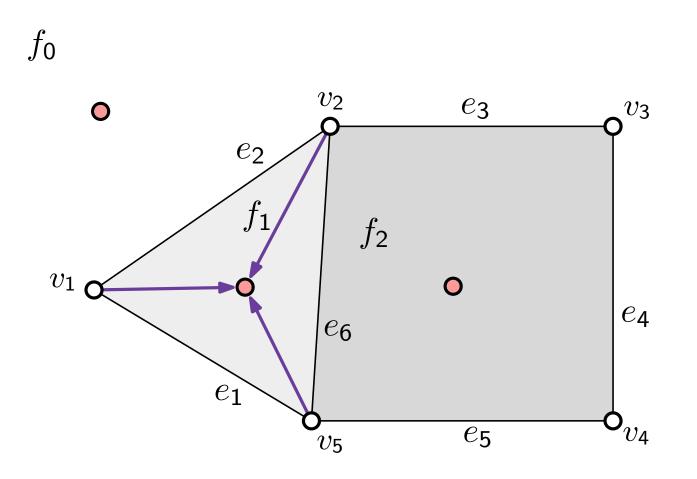




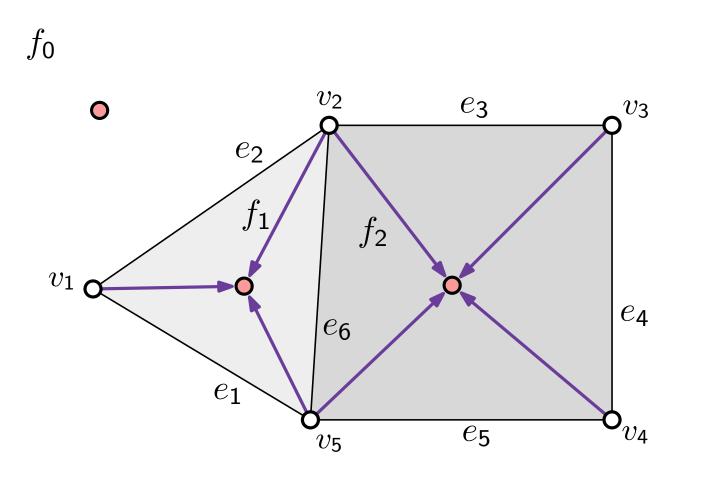
Legend V(G) • F



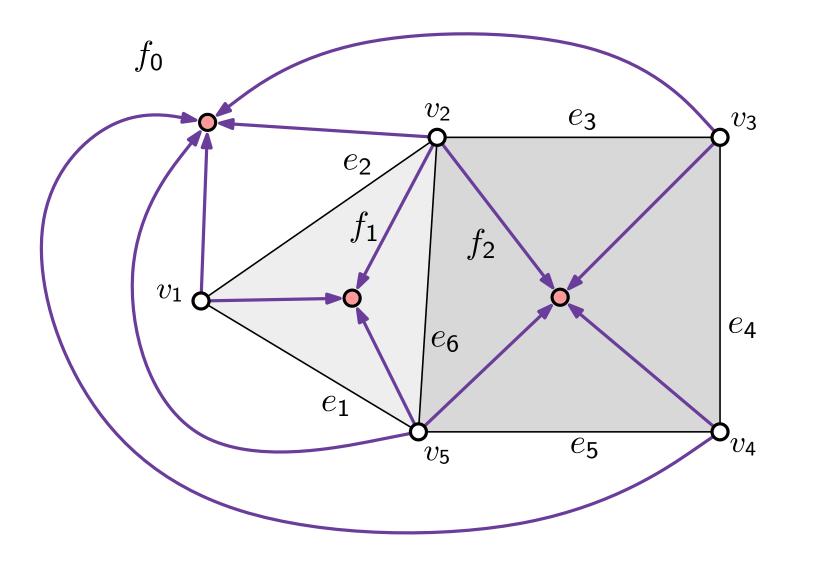
Legend $V(G) \circ$ $F \circ$ $\ell/u/cost$ $V(G) \times F \supseteq \frac{1/4/0}{4}$



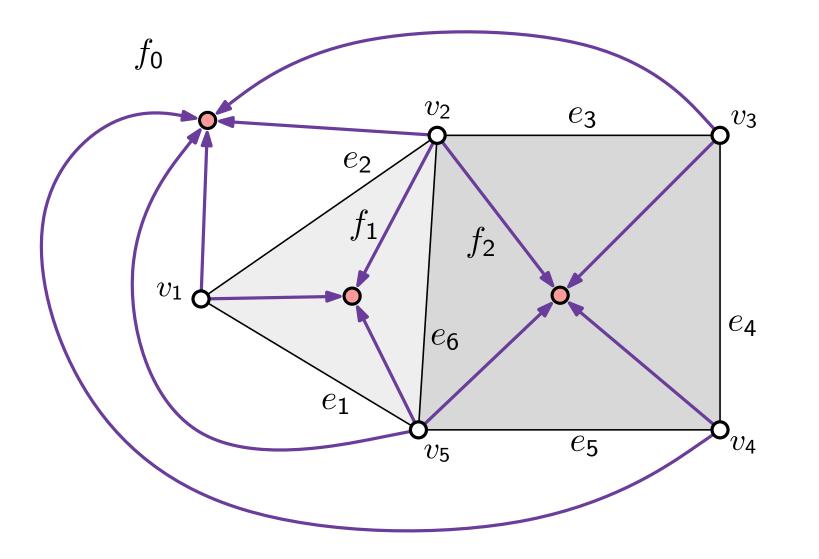
Legend $V(G) \circ$ $F \circ$ $\ell/u/cost$ $V(G) \times F \supseteq \xrightarrow{1/4/0}$



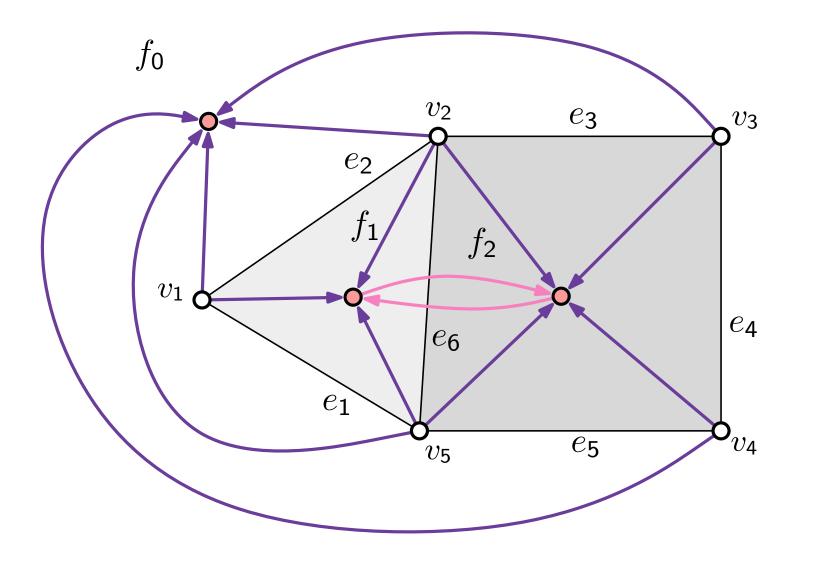
Legend $V(G) \circ$ $F \circ$ $\ell/u/cost$ $V(G) \times F \supseteq \frac{1/4/0}{4}$



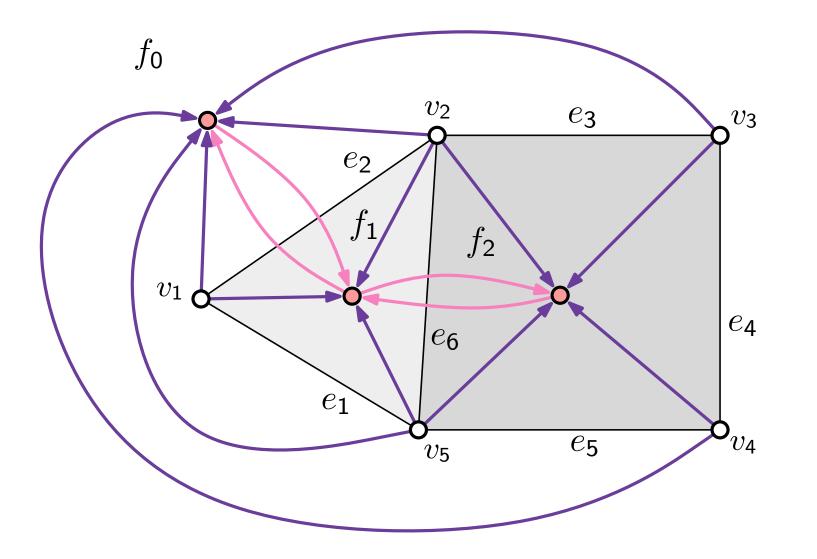
Legend $V(G) \circ$ $F \circ$ $\ell/u/cost$ $V(G) \times F \supseteq \xrightarrow{1/4/0}$



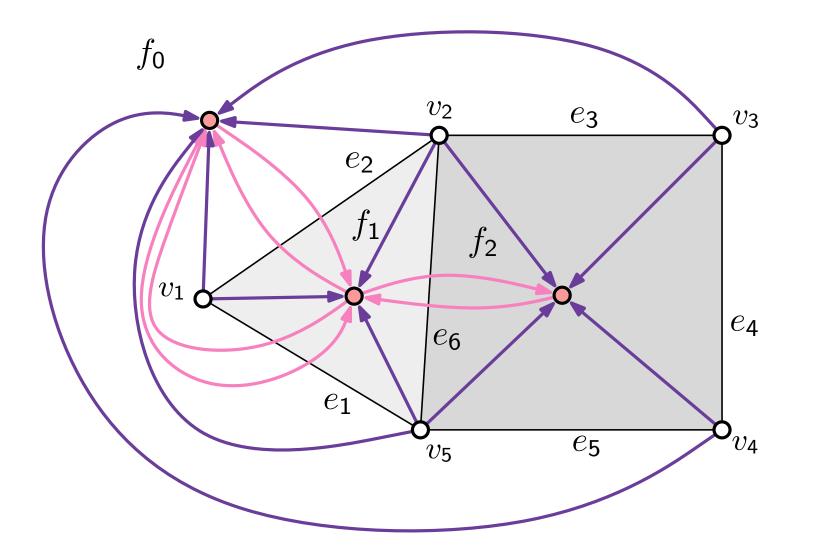
Legend $V(G) \circ$ $F \circ$ $\ell/u/cost$ $V(G) \times F \supseteq \frac{1/4/0}{5}$ $F \times F \supseteq \frac{0/\infty/1}{5}$



Legend $V(G) \circ$ $F \circ$ $\ell/u/cost$ $V(G) \times F \supseteq \frac{1/4/0}{5}$ $F \times F \supseteq \frac{0/\infty/1}{5}$



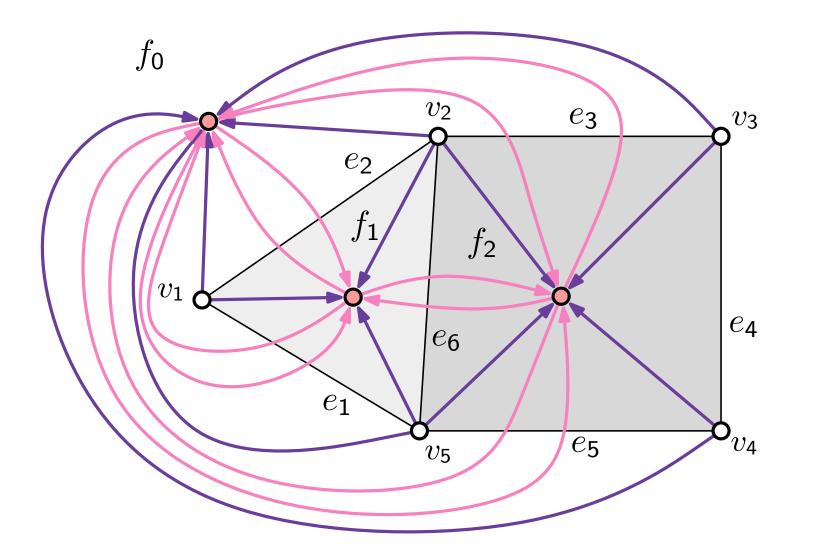
Legend $V(G) \circ$ $F \circ$ $\ell/u/cost$ $V(G) \times F \supseteq \frac{1/4/0}{4}$ $F \times F \supseteq \frac{0/\infty/1}{4}$



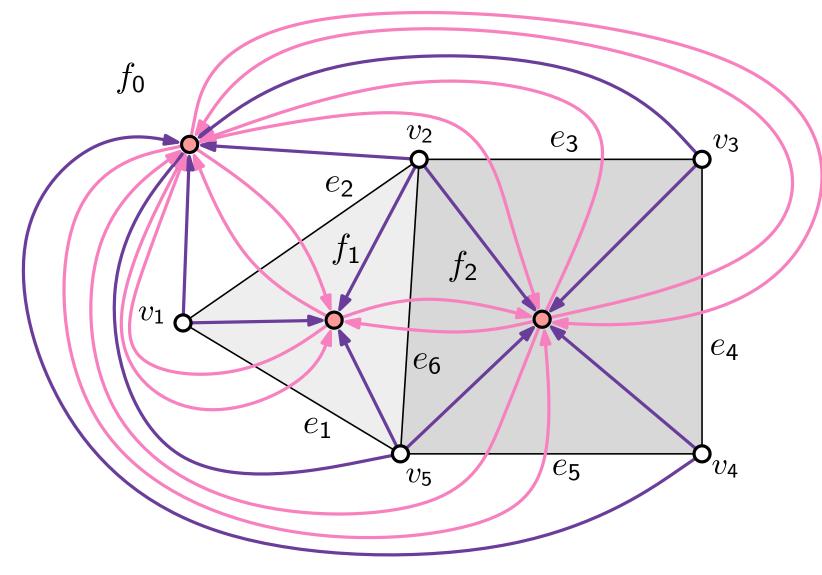
Legend $V(G) \circ$ $F \circ$ $\ell/u/cost$ $V(G) \times F \supseteq \frac{1/4/0}{2}$ $F \times F \supseteq \frac{0/\infty/1}{2}$



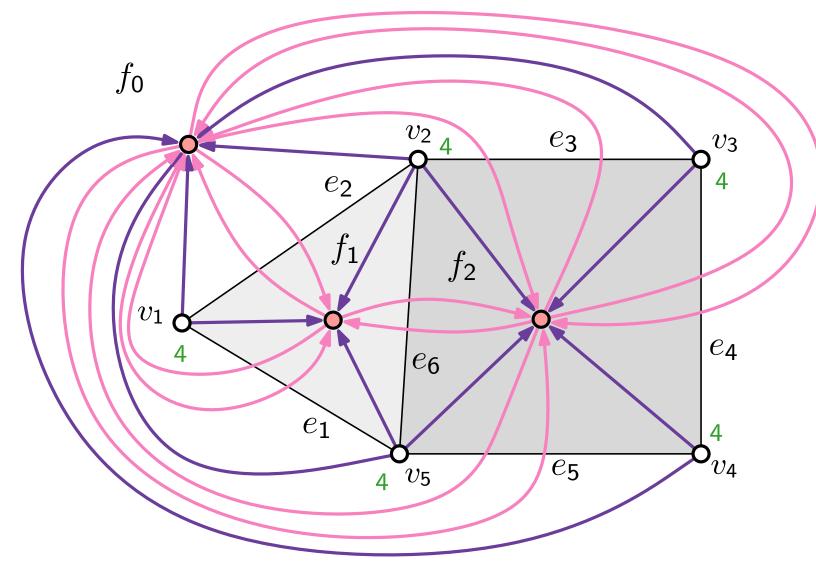
Legend $V(G) \circ$ $F \circ$ $\ell/u/cost$ $V(G) \times F \supseteq \frac{1/4/0}{2}$ $F \times F \supseteq \frac{0/\infty/1}{2}$



Legend $V(G) \circ$ $F \circ$ $\ell/u/cost$ $V(G) \times F \supseteq \frac{1/4/0}{2}$ $F \times F \supseteq \frac{0/\infty/1}{2}$

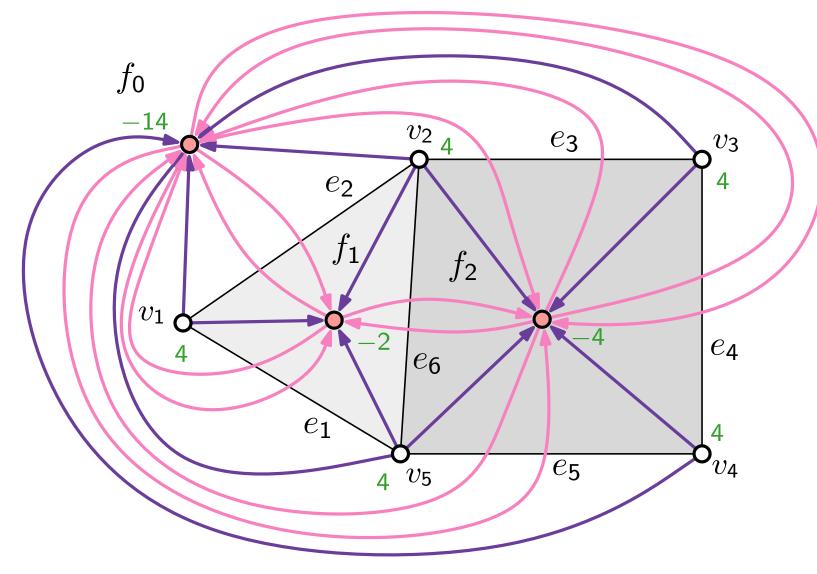


Legend $V(G) \circ$ $F \circ$ $\ell/u/cost$ $V(G) \times F \supseteq \frac{1/4/0}{4}$ $F \times F \supseteq \frac{0/\infty/1}{4}$



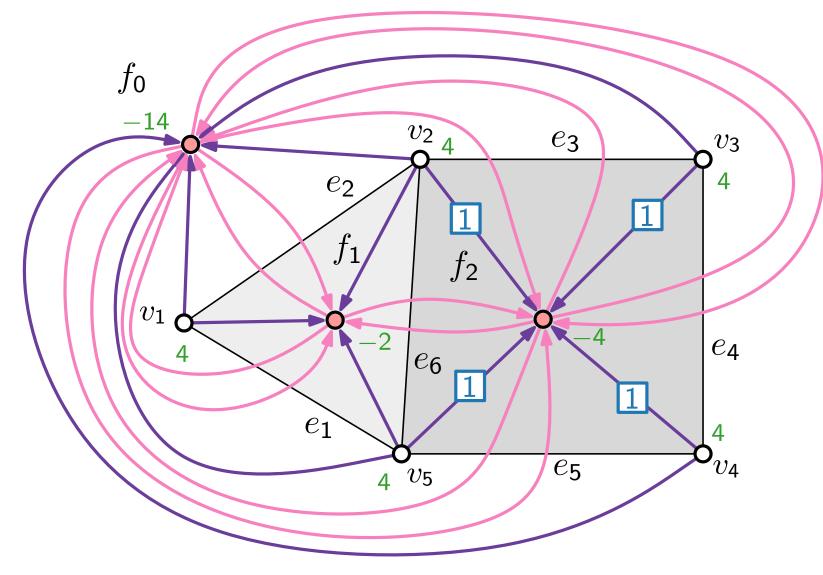
Legend $V(G) \circ$ $F \circ$ $\ell/u/cost$ $V(G) \times F \supseteq \frac{1/4/0}{2}$ $F \times F \supseteq \frac{0/\infty/1}{2}$

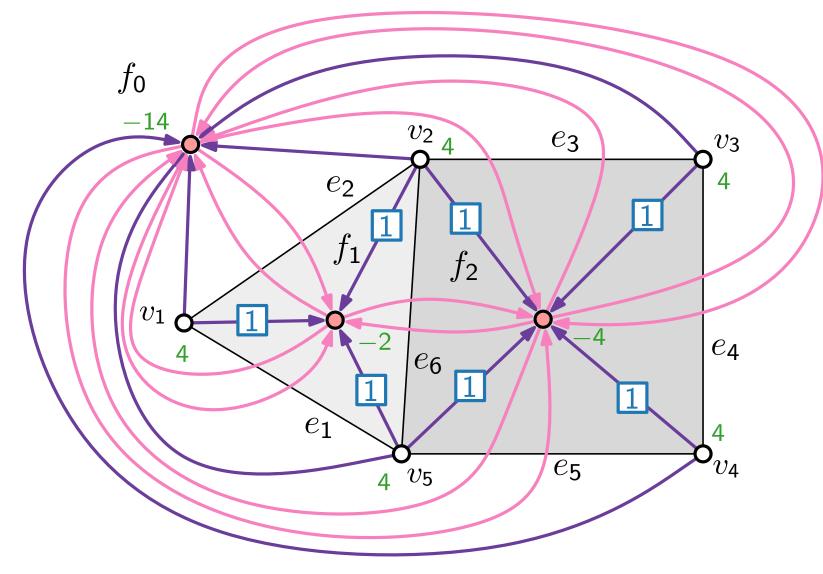
4 = b-value



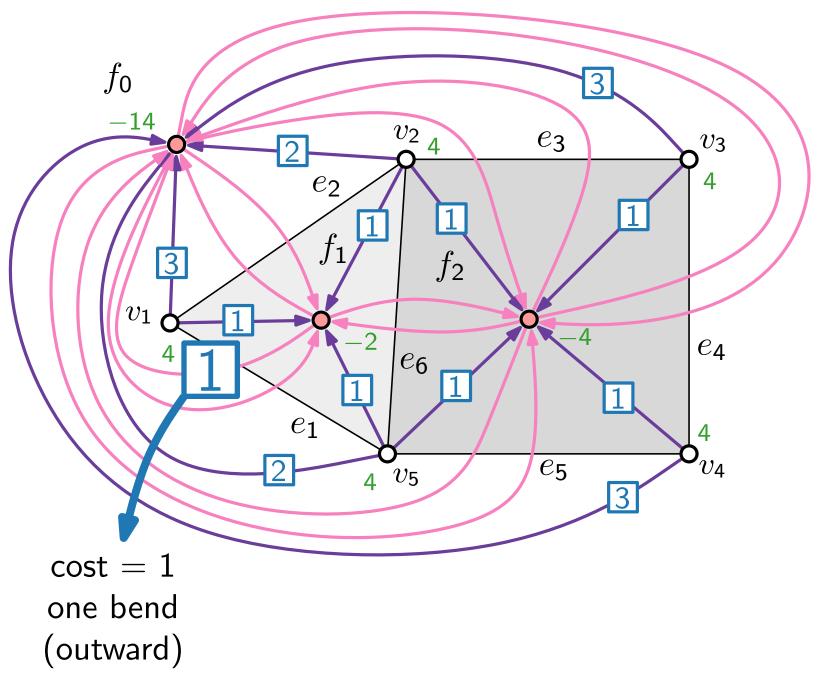
Legend $V(G) \circ$ $F \circ$ $\ell/u/cost$ $V(G) \times F \supseteq \frac{1/4/0}{4}$ $F \times F \supseteq \frac{0/\infty/1}{4}$

4 = b-value

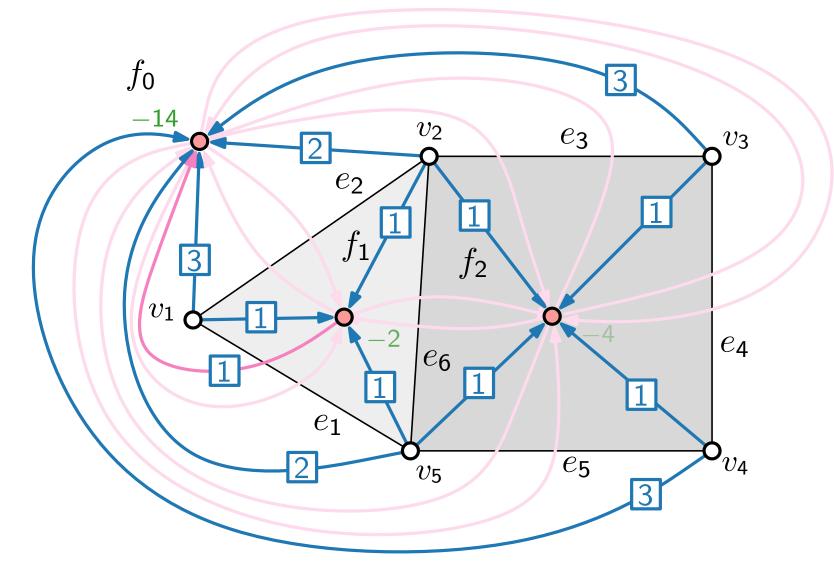


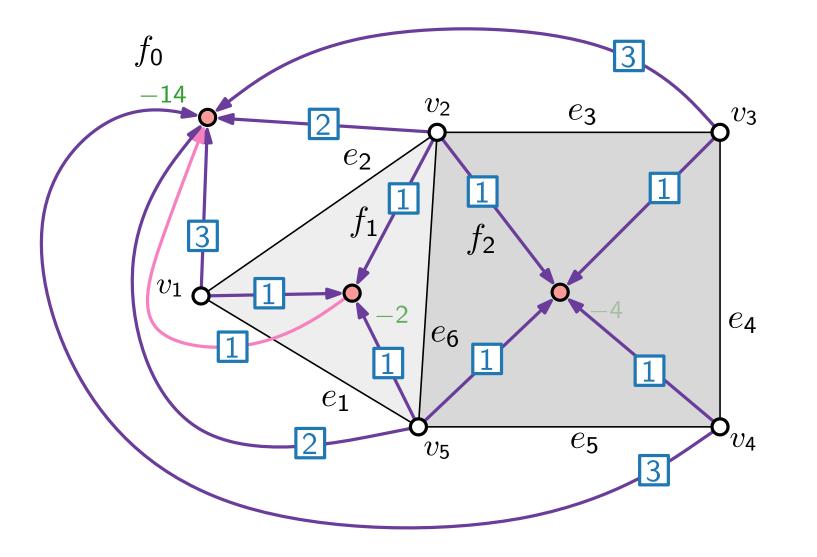


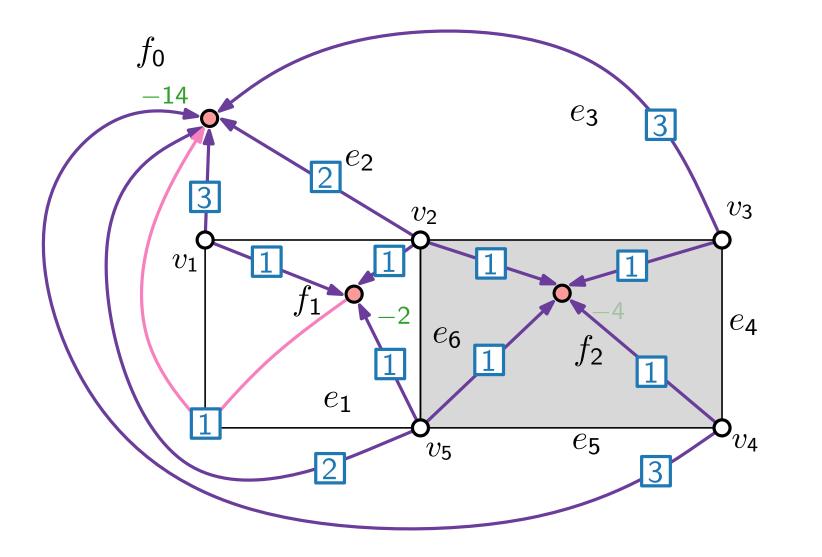




Legend V(G) **O** $F \circ$ $\ell/u/{\rm cost}$ $V(G) \times F \supseteq \xrightarrow{1/4/0}$ $F \times F \supseteq \overset{0/\infty/1}{\frown}$ 4 = b-value 3 flow







Theorem.

[Tamassia '87]

A plane graph (G, F, f_0) has a valid orthogonal representation H(G) with k bends. \Leftrightarrow The flow network N(G) has a valid flow X with cost k.

```
Theorem.
```

[Tamassia '87]

A plane graph (G, F, f_0) has a valid orthogonal representation H(G) with k bends. \Leftrightarrow The flow network N(G) has a valid flow X with cost k.

Proof.

Theorem.

[Tamassia '87]

A plane graph (G, F, f_0) has a valid orthogonal representation H(G) with k bends. \Leftrightarrow The flow network N(G) has a valid flow X with cost k.

Proof.

" \Leftarrow ": Given a valid flow X in N(G) of cost k,

```
Theorem.
```

[Tamassia '87]

A plane graph (G, F, f_0) has a valid orthogonal representation H(G) with k bends. \Leftrightarrow The flow network N(G) has a valid flow X with cost k.

Proof.

" \Leftarrow ": Given a valid flow X in N(G) of cost k, construct an orthogonal representation H(G) with k bends.

```
Theorem.
```

[Tamassia '87]

A plane graph (G, F, f_0) has a valid orthogonal representation H(G) with k bends. \Leftrightarrow The flow network N(G) has a valid flow X with cost k.

Proof.

- " \Leftarrow ": Given a valid flow X in N(G) of cost k, construct an orthogonal representation H(G) with k bends.
- Transform from flow to orthogonal description.

Theorem.

[Tamassia '87]

A plane graph (G, F, f_0) has a valid orthogonal representation H(G) with k bends. \Leftrightarrow The flow network N(G) has a valid flow X with cost k.

Proof.

- " \Leftarrow ": Given a valid flow X in N(G) of cost k, construct an orthogonal representation H(G) with k bends.
- Transform from flow to orthogonal description.
- Show properties (H1)–(H4).

15 - 6

- (H2) For each edge $\{u, v\}$ shared by faces f and g, sequence δ_1 is reversed and inverted δ_2 .
- (H3) For each face f it holds that: $\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$
- (H4) For each **vertex** v the sum of incident angles is 2π .

Theorem.

[Tamassia '87]

A plane graph (G, F, f_0) has a valid orthogonal representation H(G) with k bends. \Leftrightarrow The flow network N(G) has a valid flow X with cost k.

Proof.

- " \Leftarrow ": Given a valid flow X in N(G) of cost k, construct an orthogonal representation H(G) with k bends.
- Transform from flow to orthogonal description.
- Show properties (H1)–(H4).
 (H1) H(G) matches F, f₀

- (H2) For each edge $\{u, v\}$ shared by faces f and g, sequence δ_1 is reversed and inverted δ_2 .
- (H3) For each face f it holds that: $\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$
- (H4) For each vertex v the sum of incident angles is 2π .

Theorem.

[Tamassia '87]

A plane graph (G, F, f_0) has a valid orthogonal representation H(G) with k bends. \Leftrightarrow The flow network N(G) has a valid flow X with cost k.

Proof.

- " \Leftarrow ": Given a valid flow X in N(G) of cost k, construct an orthogonal representation H(G) with k bends.
- Transform from flow to orthogonal description.
- Show properties (H1)–(H4).
 (H1) H(G) matches F, f₀

(H4) Total angle at each vertex = 2π

- (H2) For each edge $\{u, v\}$ shared by faces f and g, sequence δ_1 is reversed and inverted δ_2 .
- (H3) For each face f it holds that: $\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$
- (H4) For each vertex v the sum of incident angles is 2π .

Theorem.

[Tamassia '87]

A plane graph (G, F, f_0) has a valid orthogonal representation H(G) with k bends. \Leftrightarrow The flow network N(G) has a valid flow X with cost k.

Proof.

- " \Leftarrow ": Given a valid flow X in N(G) of cost k, construct an orthogonal representation H(G) with k bends.
- Transform from flow to orthogonal description.
- Show properties (H1)–(H4).
 - (H1) H(G) matches F, f_0

(H2) Bend order inverted and reversed on opposite sides \checkmark

(H4) Total angle at each vertex = 2π

- (H2) For each edge $\{u, v\}$ shared by faces f and g, sequence δ_1 is reversed and inverted δ_2 .
- (H3) For each face f it holds that: $\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$
- (H4) For each **vertex** v the sum of incident angles is 2π .

Theorem.

[Tamassia '87]

A plane graph (G, F, f_0) has a valid orthogonal representation H(G) with k bends. \Leftrightarrow The flow network N(G) has a valid flow X with cost k.

Proof.

- " \Leftarrow ": Given a valid flow X in N(G) of cost k, construct an orthogonal representation H(G) with k bends.
- Transform from flow to orthogonal description.
- Show properties (H1)–(H4).
 - (H1) H(G) matches F, f_0

(H2) Bend order inverted and reversed on opposite sides \checkmark

(H3) Angle sum of $f = \pm 4$

(H4) Total angle at each vertex = 2π

15 - 10

(H1) H(G) corresponds to F, f_0 .

- (H2) For each edge $\{u, v\}$ shared by faces f and g, sequence δ_1 is reversed and inverted δ_2 .
- (H3) For each face f it holds that: $\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$
- (H4) For each vertex v the sum of incident angles is 2π .

 $\checkmark \rightarrow Exercise.$

```
Theorem.
```

[Tamassia '87]

A plane graph (G, F, f_0) has a valid orthogonal representation H(G) with k bends. \Leftrightarrow The flow network N(G) has a valid flow X with cost k.

Proof.

" \Rightarrow ": Given an orthogonal representation H(G) with k bends, construct a valid flow X in N(G) of cost k.

```
Theorem.
```

[Tamassia '87]

A plane graph (G, F, f_0) has a valid orthogonal representation H(G) with k bends. \Leftrightarrow The flow network N(G) has a valid flow X with cost k.

Proof.

- " \Rightarrow ": Given an orthogonal representation H(G) with k bends, construct a valid flow X in N(G) of cost k.
- Define flow $X: E' \to \mathbb{R}_0^+$.
- Show that X is a valid flow and has cost k.

[Tamassia '87]

A plane graph (G, F, f_0) has a valid orthogonal representation H(G) with k bends. \Leftrightarrow The flow network N(G) has a valid flow X with cost k.

$$b(v) = 4 \quad \forall v \in V(G)$$
 $b(f) = -2 \deg_G(f) + \begin{cases} -4 & \text{if } f = f_0, \\ +4 & \text{otherwise} \end{cases}$
 $\ell(v, f) := 1 \leq X(v, f) \leq 4 =: u(v, f)$
 $\cot(v, f) = 0$
 $\ell(f, g) := 0 \leq X(f, g) \leq \infty =: u(f, g)$
 $\cot(f, g) = 1$

Proof.

Theorem.

- " \Rightarrow ": Given an orthogonal representation H(G) with k bends, construct a valid flow X in N(G) of cost k.
- Define flow $X: E' \to \mathbb{R}_0^+$.
- Show that X is a valid flow and has cost k.

Theorem.

A plane graph (G, F, f_0) has a valid orthogonal representation H(G) with k bends. \Leftrightarrow The flow network N(G) has a valid flow X with cost k. b(v) = 4 \(\forall v \in V(G)\)
 b(f) = -2 \(\delta eg_G(f) + \) \{ -4 \(\infty f = f_0, +4 \) otherwise} \]
 \(\leftu (v, f) := 1 \leq X(v, f) + 4 =: u(v, f) \) \(\cost(v, f) = 0 \) \(\leftu (f, g) := 0 \leq X(f, g) \leq \omega =: u(f, g) \) \(\cost(f, g) = 1 \)

Proof.

" \Rightarrow ": Given an orthogonal representation H(G) with k bends, construct a valid flow X in N(G) of cost k.

[Tamassia '87]

Define flow $X: E' \to \mathbb{R}_0^+$.

Show that X is a valid flow and has cost k.
 (N1) X(vf) = 1/2/3/4

[Tamassia '87]

A plane graph (G, F, f_0) has a valid orthogonal representation H(G) with k bends. \Leftrightarrow

The flow network N(G) has a valid flow X with cost k.

b(v) = 4 \(\forall v \in V(G))\)
 b(f) = -2 deg_G(f) + \{ -4 & if f = f_0, +4 & otherwise \} +4 & otherwise \]
 l(v, f) := 1 \le X(v, f) \le 4 =: u(v, f) & cost(v, f) = 0 & l(f, g) := 0 \le X(f, g) \le \infty \le \infty = 1 & cost(f, g) = 0 & cost(f, g) = 1 & cost(f, g) = 0 & cost(f, g) & cost(f, g) = 0 & cost(f, g) & cost(f, g) = 0 & cost(f, g) & c

Proof.

Theorem.

- " \Rightarrow ": Given an orthogonal representation H(G) with k bends, construct a valid flow X in N(G) of cost k.
- Define flow $X: E' \to \mathbb{R}_0^+$.

Show that X is a valid flow and has cost k. (N1) X(vf) = 1/2/3/4(N2) $X((fg)_e) = |\delta|_0$, where (e, δ, x) describes edge e in H(f)

Theorem.

A plane graph (G, F, f_0) has a valid orthogonal representation H(G) with k bends. \Leftrightarrow The flow network N(G) has a valid flow X with cost k. b(v) = 4 \(\forall v \in V(G)\)
 b(f) = -2 deg_G(f) + \{ -4 & if f = f_0, +4 & otherwise \}
 l(v, f) := 1 \le X(v, f) \le 4 =: u(v, f) & otherwise \}
 l(v, f) := 0 \le X(v, f) \le 4 =: u(v, f) & otherwise \}
 l(f, g) := 0 \le X(f, g) \le \infty = 0 & otherwise \}

Proof.

" \Rightarrow ": Given an orthogonal representation H(G) with k bends, construct a valid flow X in N(G) of cost k.

[Tamassia '87]

Define flow $X: E' \to \mathbb{R}_0^+$.

Show that X is a valid flow and has cost k. (N1) X(vf) = 1/2/3/4(N2) $X((fg)_e) = |\delta|_0$, where (e, δ, x) describes edge e in H(f)

(N3) capacities, deficit/demand coverage

Theorem.

A plane graph (G, F, f_0) has a valid orthogonal representation H(G) with k bends. \Leftrightarrow The flow network N(G) has a valid flow X with cost k. b(v) = 4 \(\forall v \in V(G)\)
 b(f) = -2 deg_G(f) + \{ -4 & if f = f_0, +4 & otherwise \}
 l(v, f) := 1 \le X(v, f) \le 4 =: u(v, f) & otherwise \]
 l(v, f) := 0 \le X(v, f) \le 4 =: u(v, f) & otherwise \]
 l(f, g) := 0 \le X(f, g) \le \infty = 0 & otherwise \]
 cost(v, f) = 0 & otherwise \]

Proof.

" \Rightarrow ": Given an orthogonal representation H(G) with k bends, construct a valid flow X in N(G) of cost k.

[Tamassia '87]

• Define flow $X: E' \to \mathbb{R}_0^+$.

Show that X is a valid flow and has cost k.
(N1) X(vf) = 1/2/3/4
(N2) X((fg)_e) = |δ|₀, where (e, δ, x) describes edge e in H(f)
(N3) capacities, deficit/demand coverage
(N4) cost = k

The theorem implies that the combinatorial orthogonal bend minimization problem for plane graphs can be solved using an algorithm for min-cost flow.

The theorem implies that the combinatorial orthogonal bend minimization problem for plane graphs can be solved using an algorithm for min-cost flow.

Theorem. [Garg & Tamassia 1996] The min-cost flow problem for planar graphs with bounded costs and vertex degrees can be solved in $O(n^{7/4}\sqrt{\log n})$ time.

The theorem implies that the combinatorial orthogonal bend minimization problem for plane graphs can be solved using an algorithm for min-cost flow.

Theorem. [Garg & Tamassia 1996] The min-cost flow problem for planar graphs with bounded costs and vertex degrees can be solved in $O(n^{7/4}\sqrt{\log n})$ time.

Theorem. [van den Brand, Chen, Kyng, Liu, Peng, Probst, Sachdeva, Sidford 2023] The minimum-cost flow problem with integral vertex demands, edge capacities & costs can be solved in $O(m^{1+o(1)} \log U \log C)$ time where U is max. capacity and C are max. costs.

The theorem implies that the combinatorial orthogonal bend minimization problem for plane graphs can be solved using an algorithm for min-cost flow.

Theorem. [Garg & Tamassia 1996] The min-cost flow problem for planar graphs with bounded costs and vertex degrees can be solved in $O(n^{7/4}\sqrt{\log n})$ time.

Theorem. [van den Brand, Chen, Kyng, Liu, Peng, Probst, Sachdeva, Sidford 2023] The minimum-cost flow problem with integral vertex demands, edge capacities & costs can be solved in $O(m^{1+o(1)} \log U \log C)$ time where U is max. capacity and C are max. costs.

 $m \stackrel{\prime}{\in} O(n)$ for planar graphs

The theorem implies that the combinatorial orthogonal bend minimization problem for plane graphs can be solved using an algorithm for min-cost flow.

Theorem. [Garg & Tamassia 1996] The min-cost flow problem for planar graphs with bounded costs and vertex degrees can be solved in $O(n^{7/4}\sqrt{\log n})$ time.

Theorem. [van den Brand, Chen, Kyng, Liu, Peng, Probst, Sachdeva, Sidford 2023] The minimum-cost flow problem with integral vertex demands, edge capacities & costs can be solved in $O(m^{1+o(1)} \log U \log C)$ time where U is max. capacity and C are max. costs.

 $m \in O(n)$ for planar graphs $C \in \{0, 1\}$

The theorem implies that the combinatorial orthogonal bend minimization problem for plane graphs can be solved using an algorithm for min-cost flow.

```
Theorem.[Garg & Tamassia 1996]The min-cost flow problem for planar graphs with bounded costs and vertex degrees can<br/>be solved in O(n^{7/4}\sqrt{\log n}) time.Theorem.[van den Brand, Chen, Kyng, Liu, Peng, Probst, Sachdeva, Sidford 2023]<br/>The minimum-cost flow problem with integral vertex demands, edge capacities & costs can
```

be solved in $O(m^{1+o(1)} \log U \log C)$ time where U is max. capacity and C are max. costs.

 $m \in O(n)$ for planar graphs $C \in \{0, 1\}$ $U \in O(n)$ because 2n + 4 bends in total are always sufficient [Storer 1984]

The theorem implies that the combinatorial orthogonal bend minimization problem for plane graphs can be solved using an algorithm for min-cost flow.

Theorem.[Garg & Tamassia 1996]The min-cost flow problem for planar graphs with bounded costs and vertex degrees can
be solved in $O(n^{7/4}\sqrt{\log n})$ time.Theorem.[van den Brand, Chen, Kyng, Liu, Peng, Probst, Sachdeva, Sidford 2023]The minimum-cost flow problem with integral vertex demands, edge capacities & costs can
be solved in $O(m^{1+o(1)} \log U \log C)$ time where U is max. capacity and C are max. costs.

 $m \in O(n)$ for planar graphs $C \in \{0,1\}$ $U \in O(n)$ because 2n + 4 bends in total are always sufficient [Storer 1984] Further, $\log n = n^{\log_n \log n} = n^{\log \log n} \in n^{o(1)}$ since $\lim_{n \to \infty} \frac{\log \log n}{\log n} = 0$

The theorem implies that the combinatorial orthogonal bend minimization problem for plane graphs can be solved using an algorithm for min-cost flow.

Theorem. [Garg & Tamassia 1996] The min-cost flow problem for planar graphs with bounded costs and vertex degrees can be solved in $O(n^{7/4}\sqrt{\log n})$ time. [van den Brand, Chen, Kyng, Liu, Peng, Probst, Sachdeva, Sidford 2023] Theorem. The minimum-cost flow problem with integral vertex demands, edge capacities & costs can be solved in $O(m^{1+o(1)} \log U \log C)$ time where U is max. capacity and C are max. costs. $\longrightarrow U \in O(n)$ because 2n + 4 bends in total are always sufficient [Storer 1984] $m \in O(n)$ for planar graphs $C \in \{0,1\}$ Further, $\log n = n^{\log_n \log n} = n^{\log \log n} \in n^{o(1)}$ since $\lim_{n \to \infty} \frac{\log \log n}{\log n} = 0$ **Corollary.**

The combinatorial orthogonal bend minimization problem can be solved in $O(n^{1+o(1)})$ time.

The theorem implies that the combinatorial orthogonal bend minimization problem for plane graphs can be solved using an algorithm for min-cost flow.

Theorem.[Garg & Tamassia 1996]The min-cost flow problem for planar graphs with bounded costs and vertex degrees can
be solved in $O(n^{7/4}\sqrt{\log n})$ time.**Theorem.**[van den Brand, Chen, Kyng, Liu, Peng, Probst, Sachdeva, Sidford 2023]The minimum-cost flow problem with integral vertex demands, edge capacities & costs can
be solved in $O(m^{1+o(1)} \log U \log C)$ time where U is max. capacity and C are max. costs.

 $m \in O(n)$ for planar graphs $C \in \{0,1\}$ $U \in O(n)$ because 2n + 4 bends in total are always sufficient [Storer 1984] Further, $\log n = n^{\log_n \log n} = n^{\log \log n} \in n^{o(1)}$ since $\lim_{n \to \infty} \frac{\log \log n}{\log n} = 0$

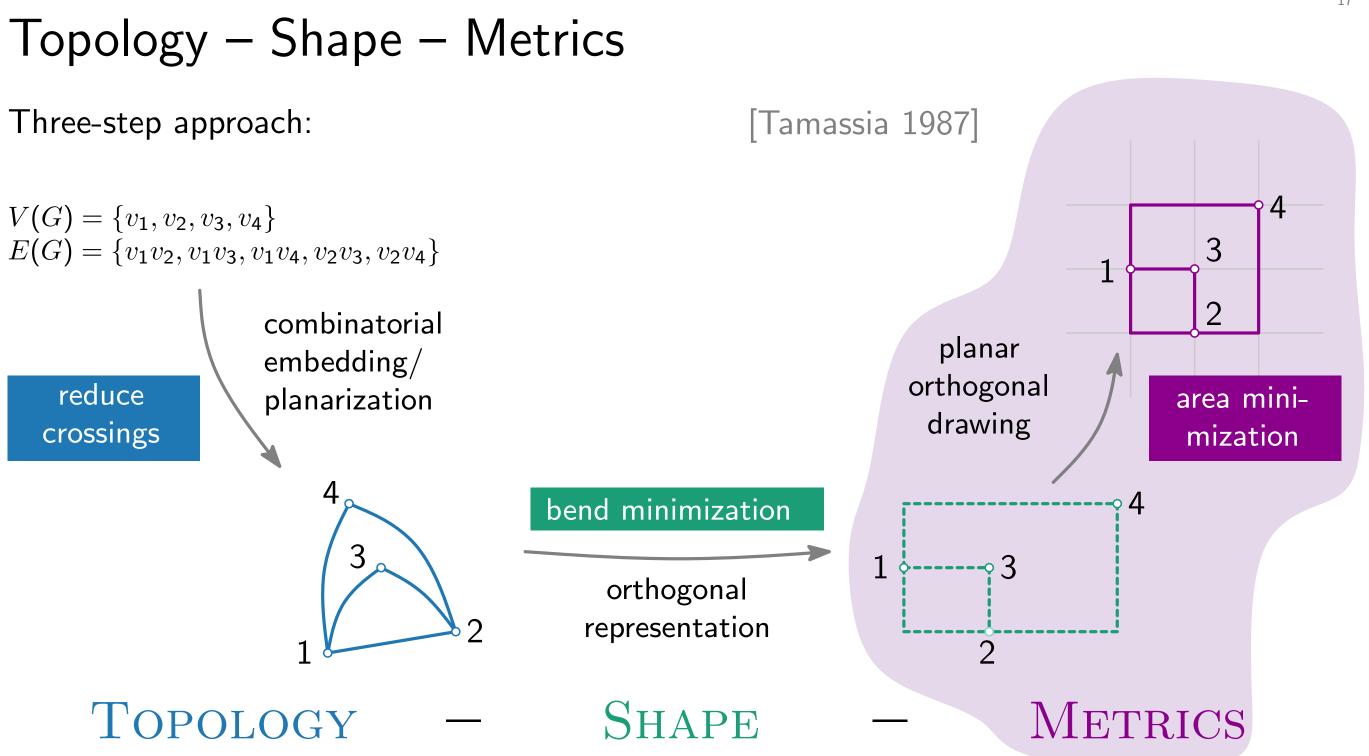
Corollary.

The combinatorial orthogonal bend minimization problem can be solved in $O(n^{1+o(1)})$ time.

Theorem.

[Garg & Tamassia 2001]

Bend minimization without given combinatorial embedding is NP-hard.



Compaction problem. Given:

Find:

Compaction problem. Given: Plane graph *G* with maximum degree 4 Find:

Compaction problem.

Given: **I** Plane graph *G* with maximum degree 4

• Orthogonal representation H(G)

Find:

Compaction problem.

Given: **I** Plane graph *G* with maximum degree 4

- Orthogonal representation H(G)
- Find: Compact orthogonal layout of G that realizes H(G)

Compaction problem.

Given: **I** Plane graph *G* with maximum degree 4

• Orthogonal representation H(G)

Find: Compact orthogonal layout of G that realizes H(G)

Special case.

All faces are rectangles.

Compaction problem.

Given: **I** Plane graph *G* with maximum degree 4

• Orthogonal representation H(G)

Find: Compact orthogonal layout of G that realizes H(G)

Special case.

All faces are rectangles.

This guarantees:

Compaction problem.

Given: **I** Plane graph *G* with maximum degree 4

• Orthogonal representation H(G)

Find: Compact orthogonal layout of G that realizes H(G)

Special case.

All faces are rectangles.

This guarantees: minimum total edge length

Compaction problem.

Given: **I** Plane graph *G* with maximum degree 4

- Orthogonal representation H(G)
- Find: Compact orthogonal layout of G that realizes H(G)

Special case.

All faces are rectangles.

This guarantees:

minimum total edge length

minimum area

Compaction problem.

Given: **I** Plane graph *G* with maximum degree 4

- Orthogonal representation H(G)
- Find: Compact orthogonal layout of G that realizes H(G)

Special case.

All faces are rectangles.

This guarantees: minimum total edge length

minimum area

Properties.

Compaction problem.

Given: **I** Plane graph *G* with maximum degree 4

- Orthogonal representation H(G)
- Find: Compact orthogonal layout of G that realizes H(G)

Special case.

All faces are rectangles.

This guarantees: minimum total edge length

minimum area

Properties.

bends only on the outer face

Compaction problem.

Given: **I** Plane graph *G* with maximum degree 4

- Orthogonal representation H(G)
- Find: Compact orthogonal layout of G that realizes H(G)

Special case.

All faces are rectangles.

This guarantees: minimum total edge length

minimum area

Properties.

- bends only on the outer face
- opposite sides of a face have the same length

Compaction problem.

Given: **I** Plane graph *G* with maximum degree 4

- Orthogonal representation H(G)
- Find: Compact orthogonal layout of G that realizes H(G)

Special case.

All faces are rectangles.

This guarantees: minimum total edge length

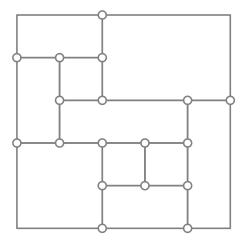
minimum area

Properties.

- bends only on the outer face
- opposite sides of a face have the same length

Idea.

Formulate flow network for horizontal/vertical compaction



Definition.

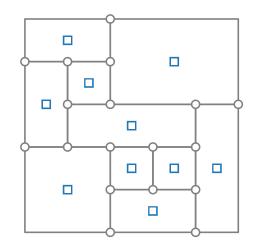
Flow Network $N_{hor} = ((W_{hor}, E_{hor}); b; \ell; u; cost)$



Definition.

Flow Network $N_{hor} = ((W_{hor}, E_{hor}); b; \ell; u; cost)$

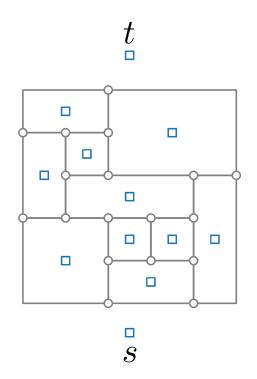
 $\bullet W_{hor} = F \setminus \{f_0\} \quad \Box$



Definition.

Flow Network $N_{hor} = ((W_{hor}, E_{hor}); b; \ell; u; cost)$

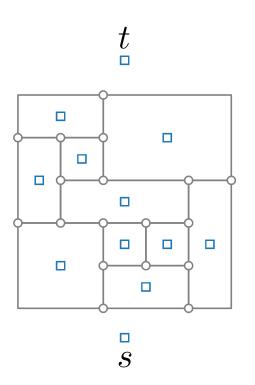
 $\blacksquare W_{hor} = F \setminus \{f_0\} \cup \{s, t\} \quad \Box$



Definition.

Flow Network $N_{hor} = ((W_{hor}, E_{hor}); b; \ell; u; cost)$

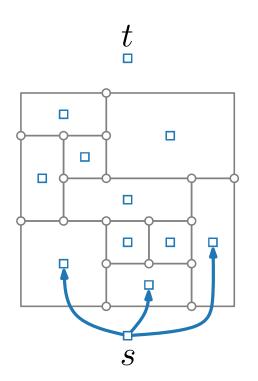
 $\blacksquare W_{hor} = F \setminus \{f_0\} \cup \{s,t\} \quad \blacksquare$



Definition.

Flow Network $N_{hor} = ((W_{hor}, E_{hor}); b; \ell; u; cost)$

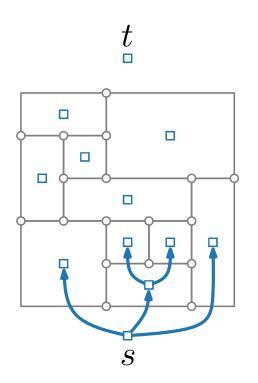
 $\blacksquare W_{hor} = F \setminus \{f_0\} \cup \{s,t\} \quad \blacksquare$



Definition.

Flow Network $N_{hor} = ((W_{hor}, E_{hor}); b; \ell; u; cost)$

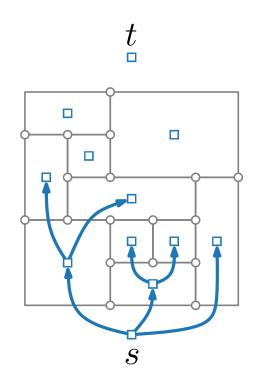
 $\blacksquare W_{\mathsf{hor}} = F \setminus \{f_0\} \cup \{s, t\} \quad \blacksquare$



Definition.

Flow Network $N_{hor} = ((W_{hor}, E_{hor}); b; \ell; u; cost)$

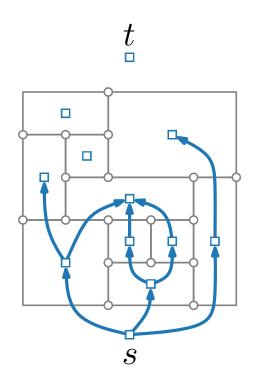
 $\blacksquare W_{\mathsf{hor}} = F \setminus \{f_0\} \cup \{s, t\} \quad \blacksquare$



Definition.

Flow Network $N_{hor} = ((W_{hor}, E_{hor}); b; \ell; u; cost)$

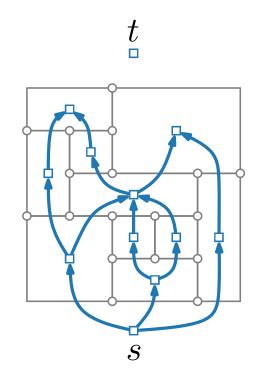
 $\blacksquare W_{hor} = F \setminus \{f_0\} \cup \{s,t\} \quad \blacksquare$



Definition.

Flow Network $N_{hor} = ((W_{hor}, E_{hor}); b; \ell; u; cost)$

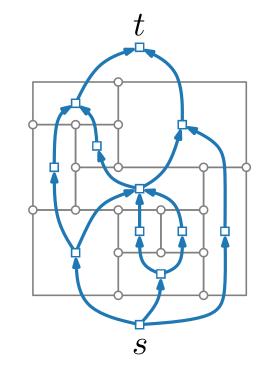
- $\blacksquare W_{hor} = F \setminus \{f_0\} \cup \{s,t\} \quad \blacksquare$
- $E_{hor} = \{(f,g) \mid f,g \text{ share a horizontal segment and } f \text{ lies below } g\}$



Definition.

Flow Network $N_{hor} = ((W_{hor}, E_{hor}); b; \ell; u; cost)$

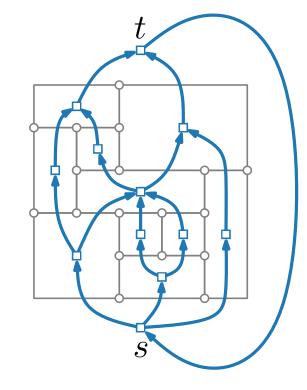
- $\blacksquare W_{hor} = F \setminus \{f_0\} \cup \{s,t\} \quad \blacksquare$
- $E_{hor} = \{(f,g) \mid f,g \text{ share a horizontal segment and } f \text{ lies below } g\}$



Definition.

Flow Network $N_{hor} = ((W_{hor}, E_{hor}); b; \ell; u; cost)$

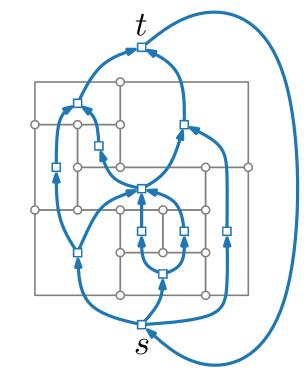
 $\blacksquare W_{hor} = F \setminus \{f_0\} \cup \{s,t\} \quad \blacksquare$



Definition.

Flow Network $N_{hor} = ((W_{hor}, E_{hor}); b; \ell; u; cost)$

- $\blacksquare W_{\mathsf{hor}} = F \setminus \{f_0\} \cup \{s, t\} \quad \Box$
- $E_{hor} = \{(f,g) \mid f,g \text{ share a horizontal segment and } f \text{ lies below } g\} \cup \{(t,s)\}$
- $\bullet \ \ell(a) = 1 \quad \forall a \in E_{hor}$



Definition.

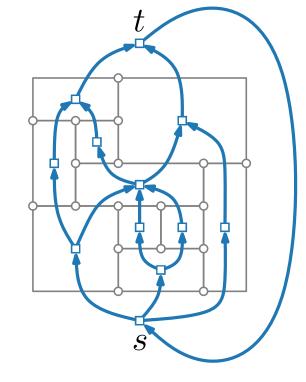
Flow Network $N_{hor} = ((W_{hor}, E_{hor}); b; \ell; u; cost)$

- $\blacksquare W_{\mathsf{hor}} = F \setminus \{f_0\} \cup \{s, t\} \quad \blacksquare$
- $E_{hor} = \{(f,g) \mid f,g \text{ share a horizontal segment and } f \text{ lies below } g\} \cup \{(t,s)\}$

$$\blacksquare \ \ell(a) = 1 \quad \forall a \in E_{\mathsf{hor}}$$

$$\blacksquare \ u(a) = \infty \quad \forall a \in E_{hor}$$

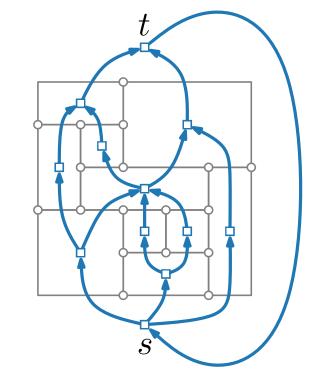
- -



Definition.

Flow Network $N_{hor} = ((W_{hor}, E_{hor}); b; \ell; u; cost)$

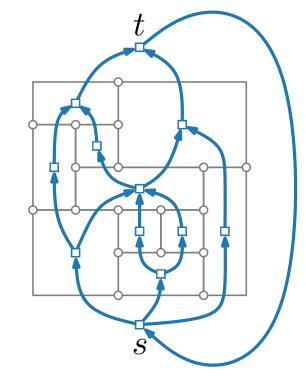
- $\blacksquare W_{hor} = F \setminus \{f_0\} \cup \{s, t\} \qquad \square$
- $E_{hor} = \{(f,g) \mid f,g \text{ share a horizontal segment and } f \text{ lies below } g\} \cup \{(t,s)\}$
- $\bullet \ \ell(a) = 1 \quad \forall a \in E_{hor}$
- $u(a) = \infty \quad \forall a \in E_{hor}$ $\operatorname{cost}(a) = 1 \quad \forall a \in E_{hor}$



Definition.

Flow Network $N_{hor} = ((W_{hor}, E_{hor}); b; \ell; u; cost)$

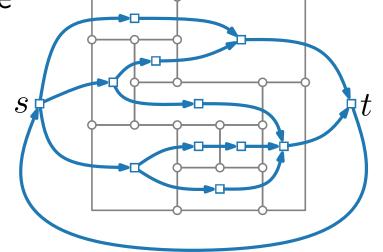
- $\blacksquare W_{\mathsf{hor}} = F \setminus \{f_0\} \cup \{s, t\} \quad \Box$
- $E_{hor} = \{(f,g) \mid f,g \text{ share a horizontal segment and } f \text{ lies below } g\} \cup \{(t,s)\}$
- $\bullet \ \ell(a) = 1 \quad \forall a \in E_{hor}$
- $\square u(a) = \infty \quad \forall a \in E_{hor}$
- cost(a) = 1 $\forall a \in E_{hor}$
- $\bullet \ b(f) = 0 \quad \forall f \in W_{hor}$

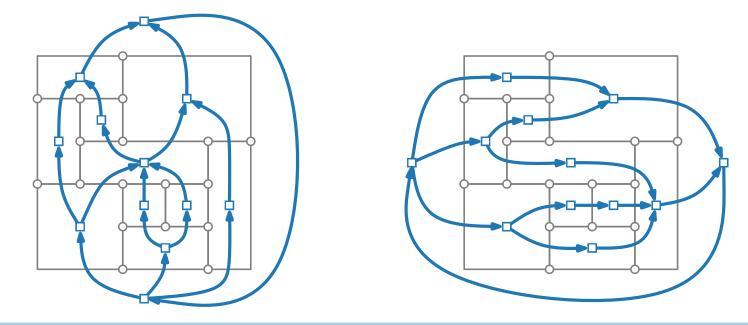


Definition.

Flow Network $N_{\text{ver}} = ((W_{\text{ver}}, E_{\text{ver}}); b; \ell; u; \text{cost})$

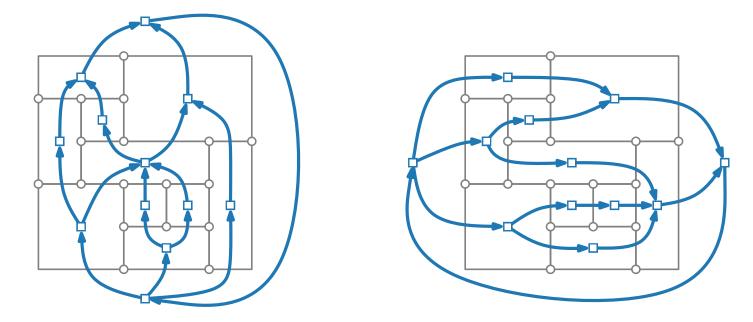
- $\ \ \, \blacksquare \ \, W_{\rm ver}=F\setminus\{f_0\}\cup\{s,t\}\qquad \ \, \blacksquare$
- $E_{ver} = \{(f,g) \mid f,g \text{ share a } vertical \text{ segment and } f \text{ lies to the } left \text{ of } g\} \cup \{(t,s)\}$
- $\bullet \ \ell(a) = 1 \quad \forall a \in E_{\mathsf{ver}}$
- $\blacksquare \ u(a) = \infty \quad \forall a \in E_{\text{ver}}$
- $\operatorname{cost}(a) = 1$ $\forall a \in E_{\operatorname{ver}}$
- $\bullet \ b(f) = \mathbf{0} \quad \forall f \in W_{\mathrm{ver}}$





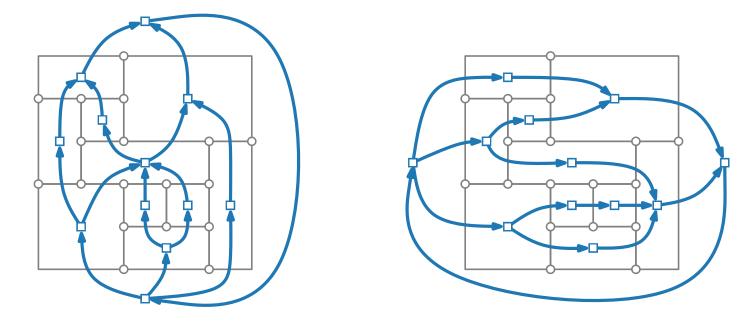
Theorem.

A valid flow for N_{hor} and N_{ver} exists \Leftrightarrow corresponding edge lengths induce an orthogonal drawing.



Theorem. A valid flow for N_{hor} and N_{ver} exists \Leftrightarrow corresponding edge lengths induce an orthogonal drawing.

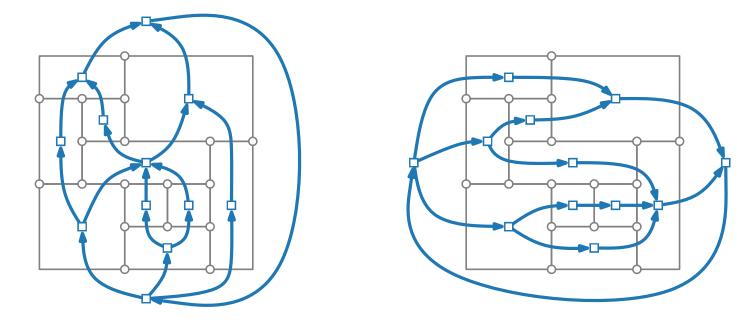
What values of the drawing do the following quantities represent?



Theorem.

A valid flow for N_{hor} and N_{ver} exists \Leftrightarrow corresponding edge lengths induce an orthogonal drawing.

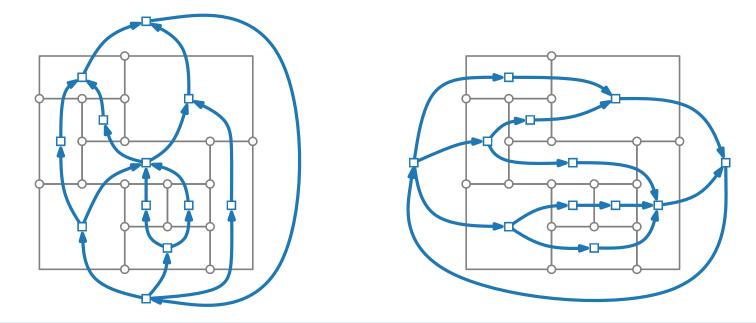
What values of the drawing do the following quantities represent? $|X_{hor}(t,s)| \text{ and } |X_{ver}(t,s)|?$



Theorem.

A valid flow for N_{hor} and N_{ver} exists \Leftrightarrow corresponding edge lengths induce an orthogonal drawing.

What values of the drawing do the following quantities represent? $|X_{hor}(t,s)| \text{ and } |X_{ver}(t,s)|? \text{ width and height of the drawing}$



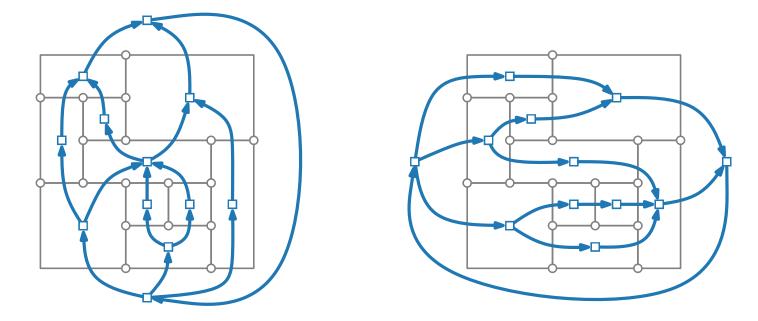
Theorem.

A valid flow for N_{hor} and N_{ver} exists \Leftrightarrow corresponding edge lengths induce an orthogonal drawing.

What values of the drawing do the following quantities represent?

 $|X_{hor}(t,s)|$ and $|X_{ver}(t,s)|$? width and height of the drawing

 $\sum_{e \in E_{hor}} X_{hor}(e) + \sum_{e \in E_{ver}} X_{ver}(e)$

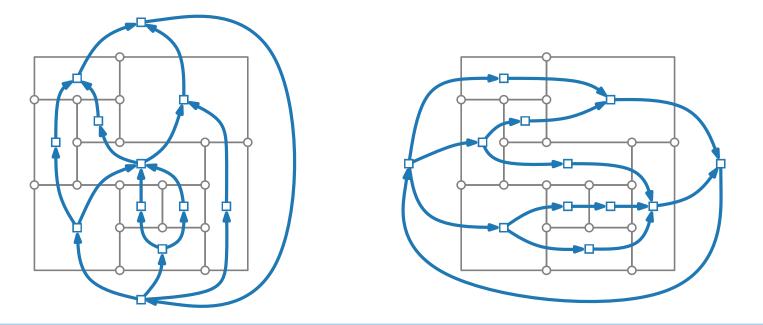


Theorem.

A valid flow for N_{hor} and N_{ver} exists \Leftrightarrow corresponding edge lengths induce an orthogonal drawing.

What values of the drawing do the following quantities represent?

- $\blacksquare |X_{hor}(t,s)| \text{ and } |X_{ver}(t,s)|? \qquad \text{width and height of the drawing}$
- $\sum_{e \in E_{hor}} X_{hor}(e) + \sum_{e \in E_{ver}} X_{ver}(e)$ total edge length



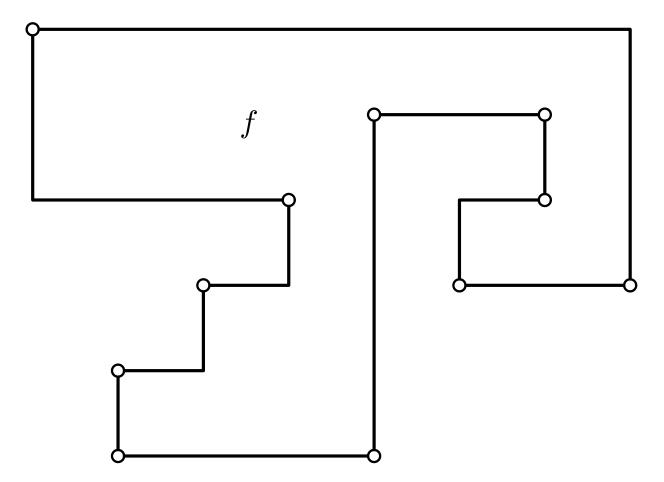
What if not all faces are rectangular?

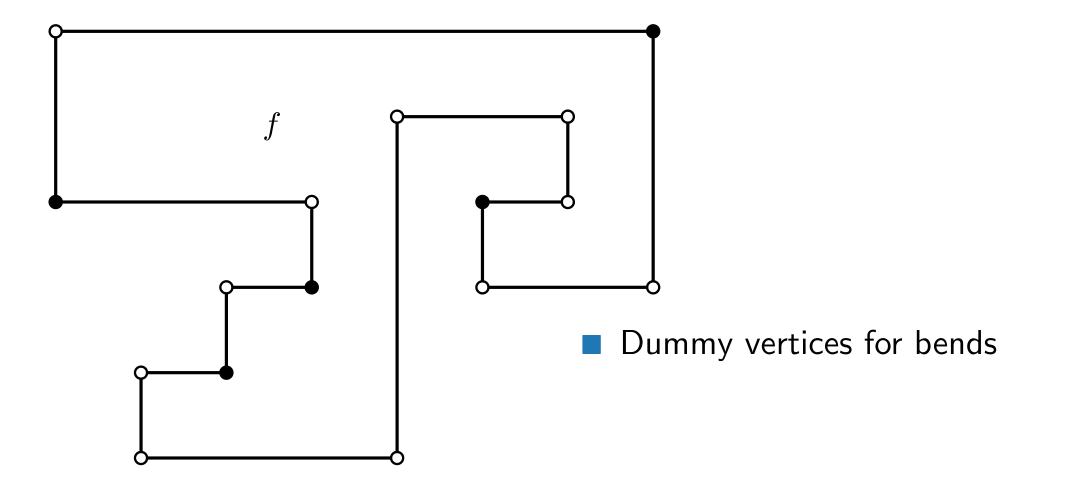
Theorem.

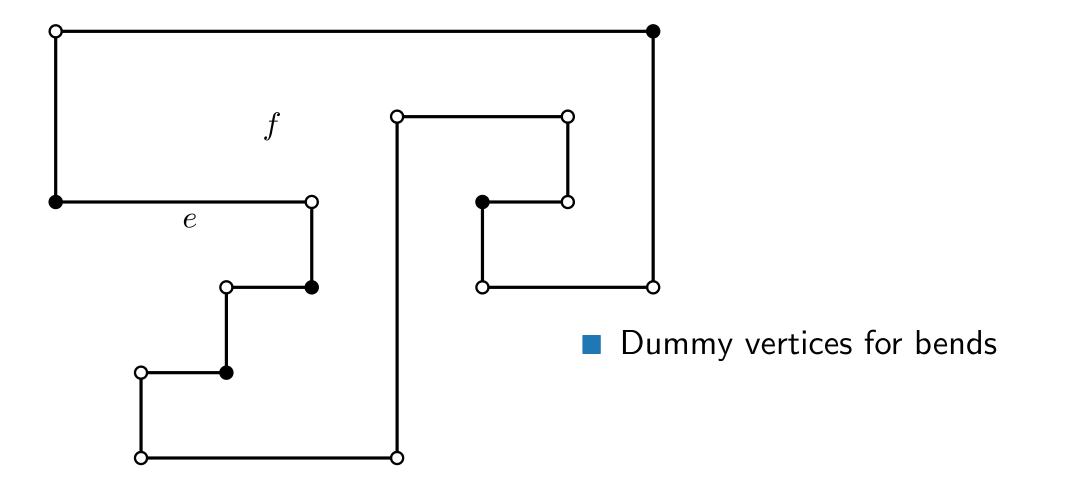
A valid flow for N_{hor} and N_{ver} exists \Leftrightarrow corresponding edge lengths induce an orthogonal drawing.

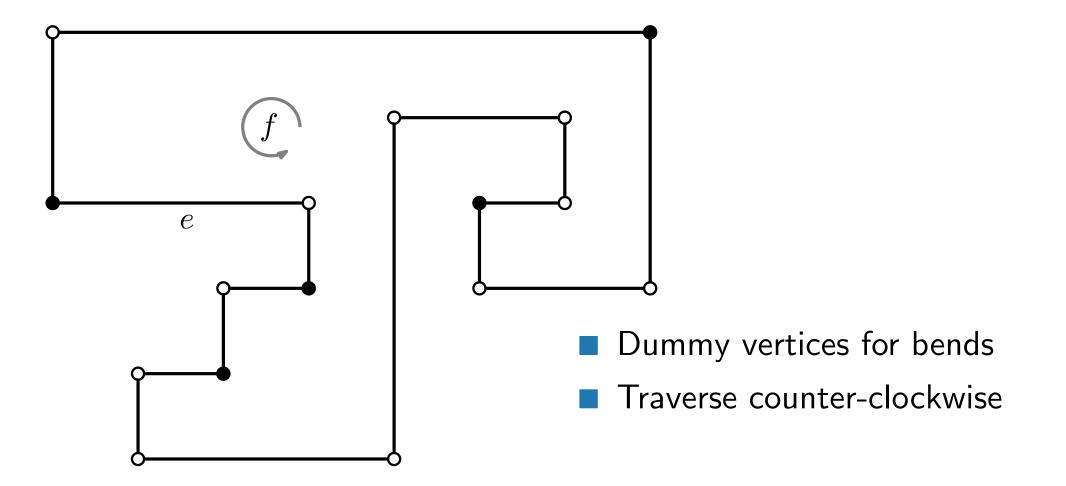
What values of the drawing do the following quantities represent?

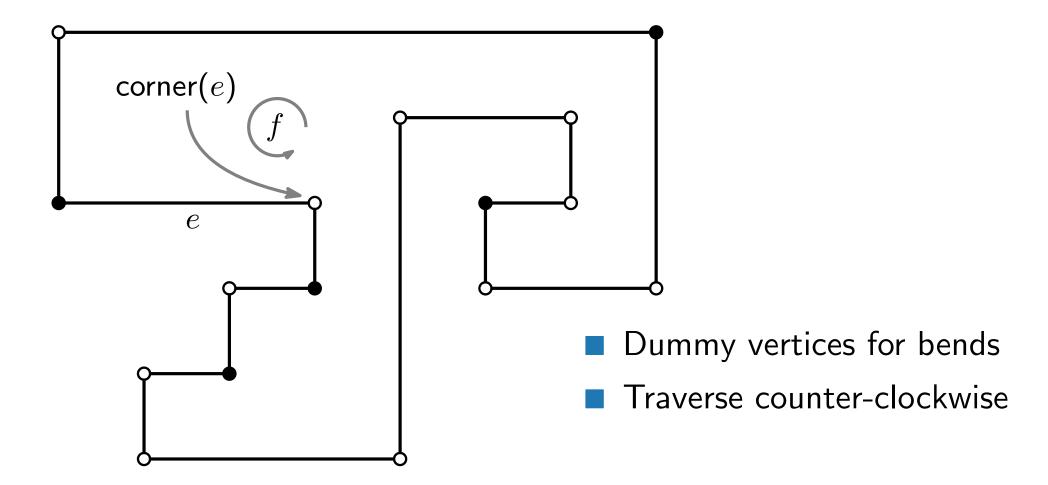
- $\blacksquare |X_{hor}(t,s)| \text{ and } |X_{ver}(t,s)|? \qquad \text{width and height of the drawing}$
- $\sum_{e \in E_{hor}} X_{hor}(e) + \sum_{e \in E_{ver}} X_{ver}(e)$ total edge length

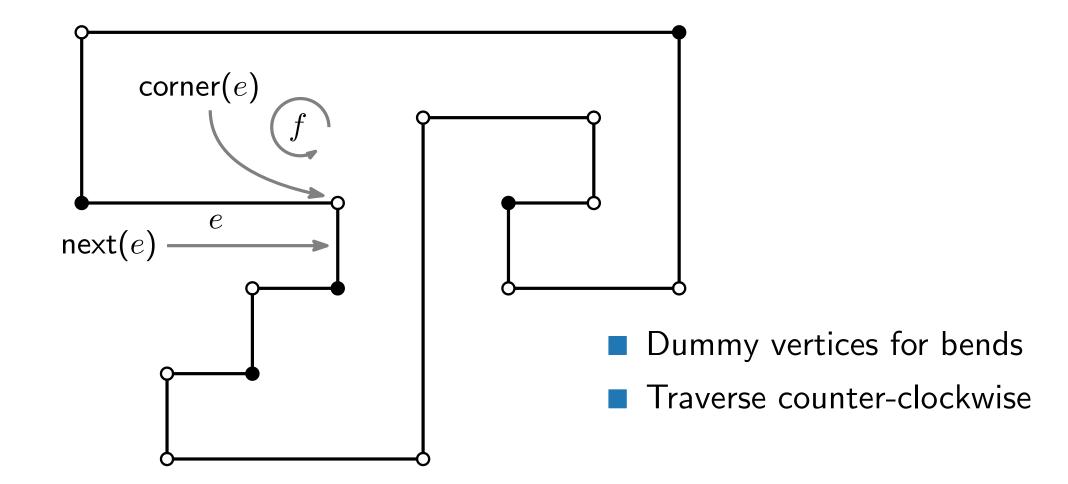


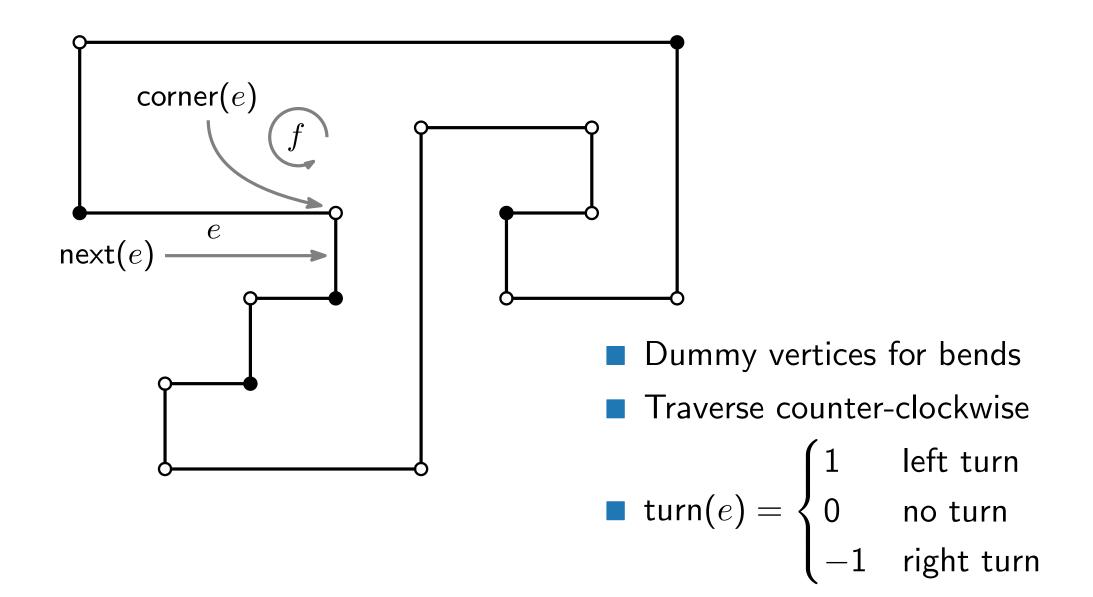


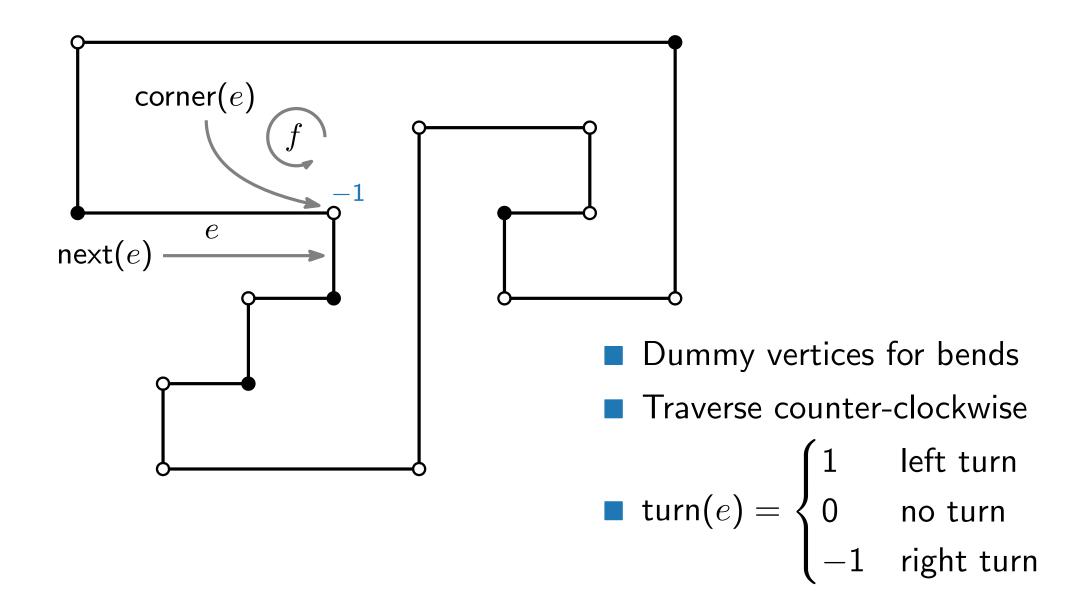


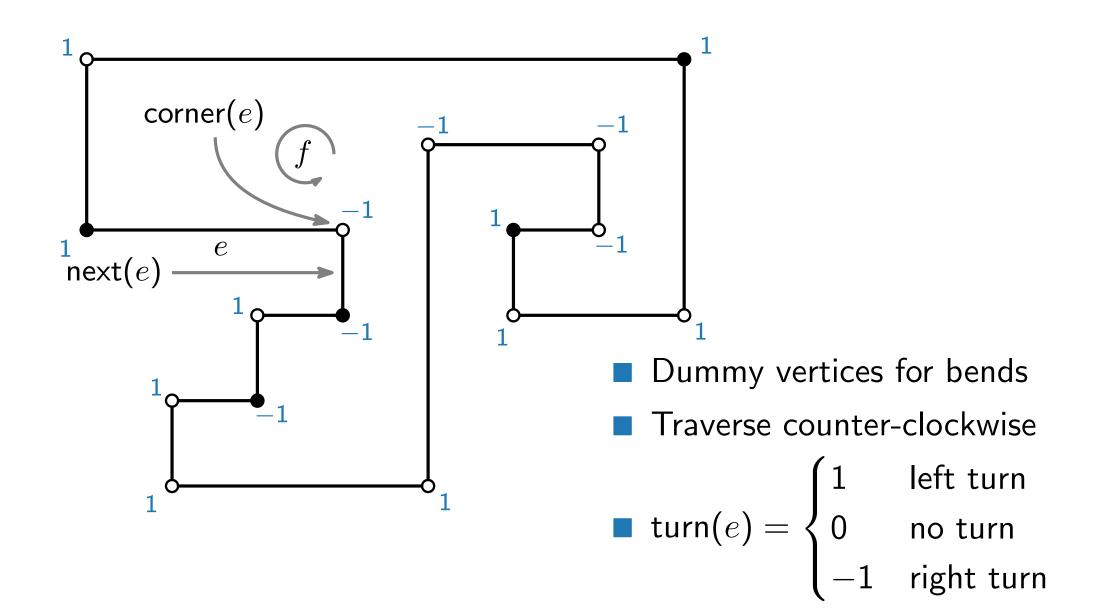


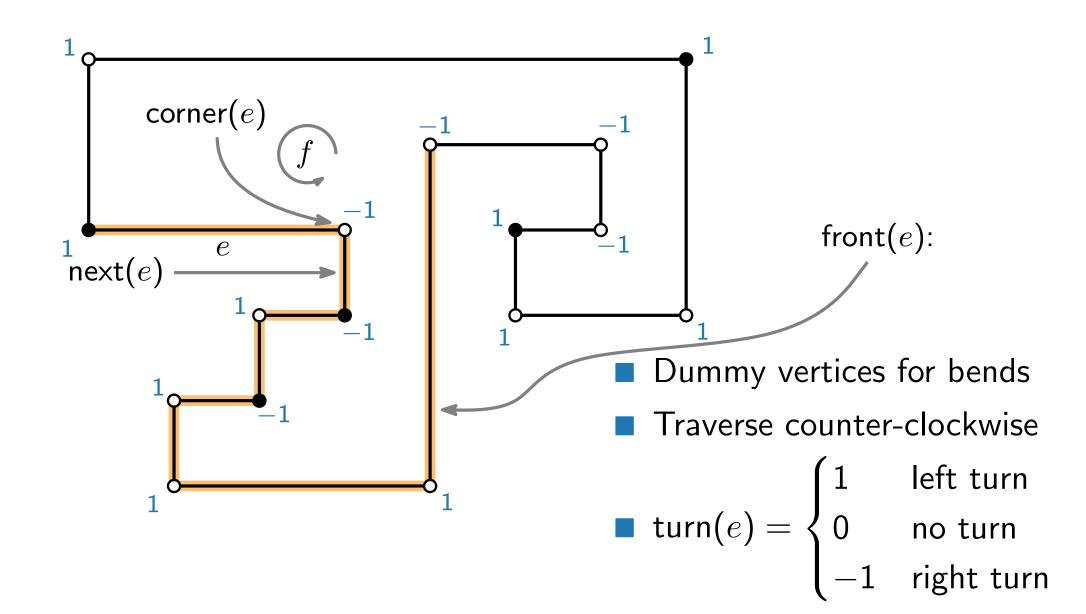


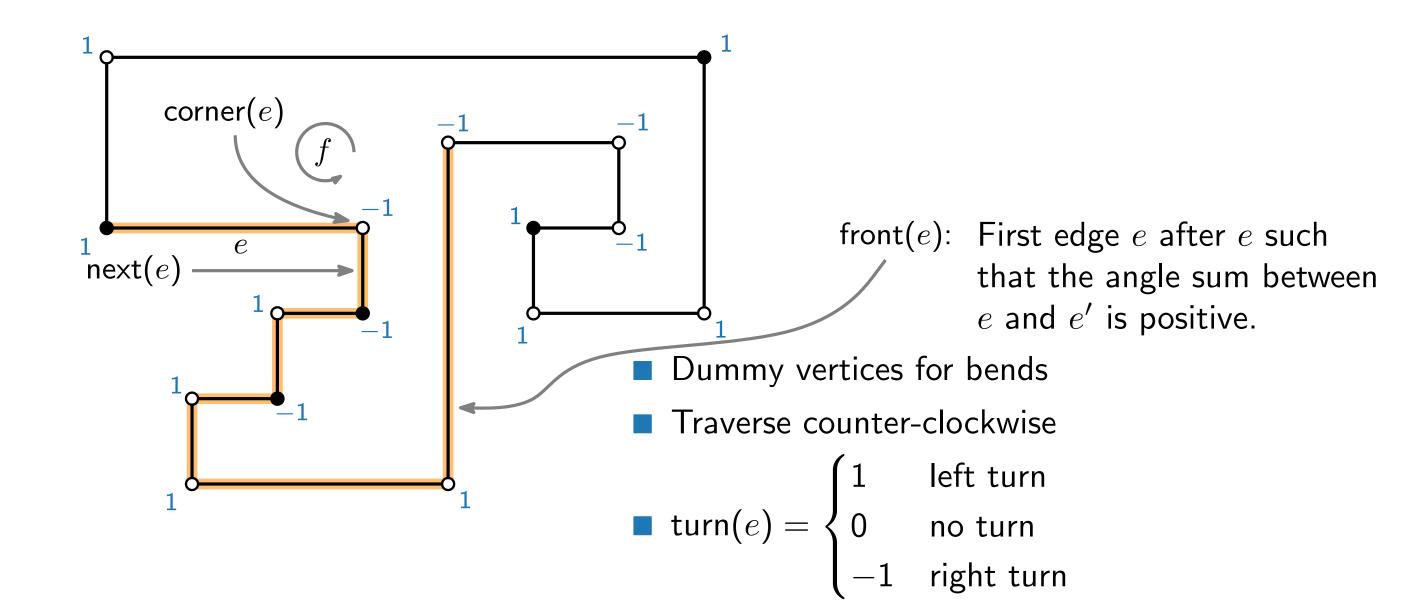


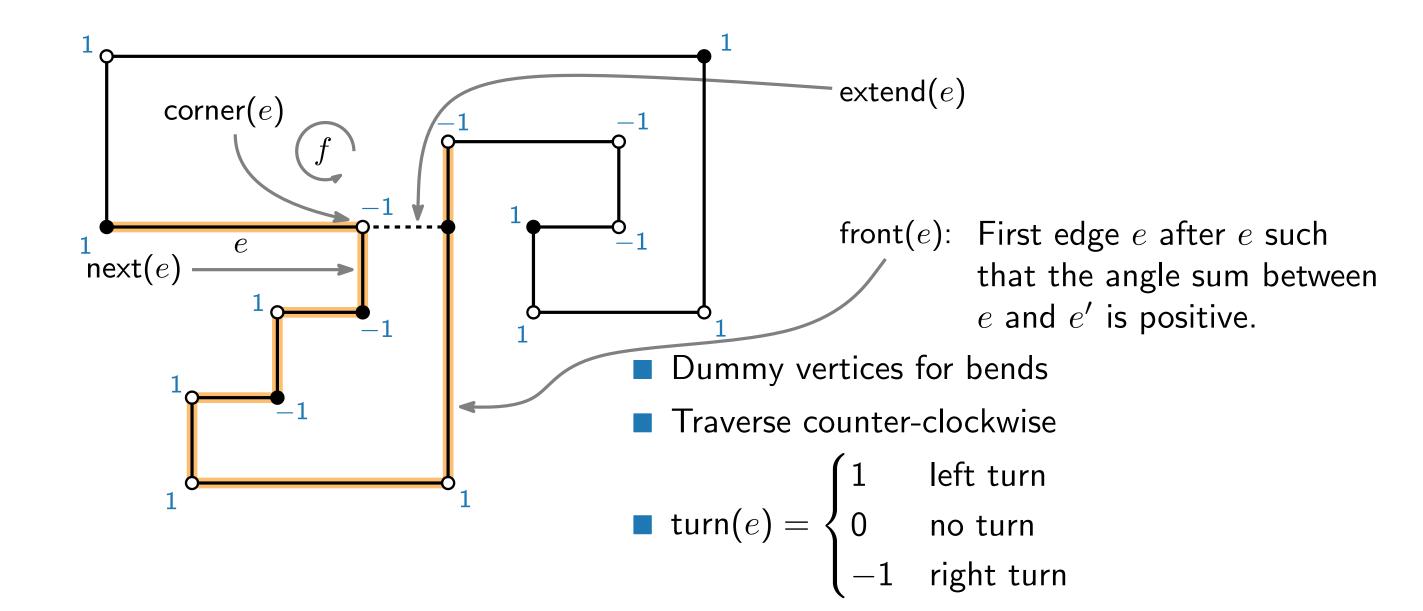


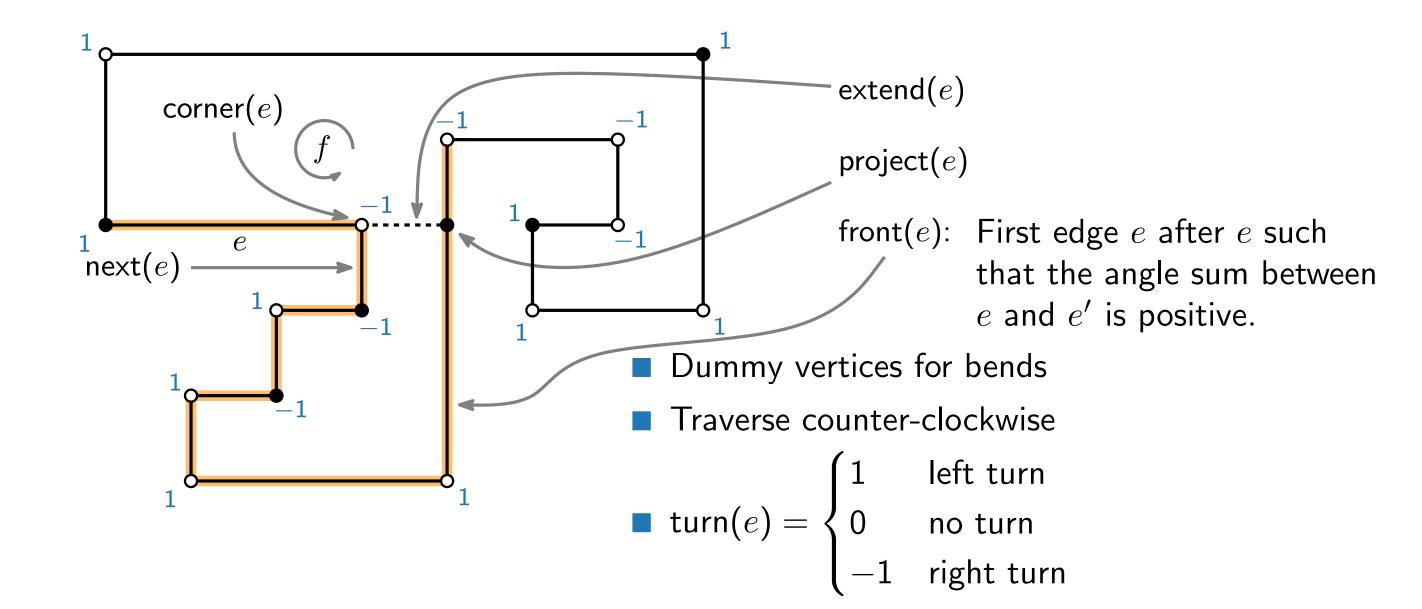


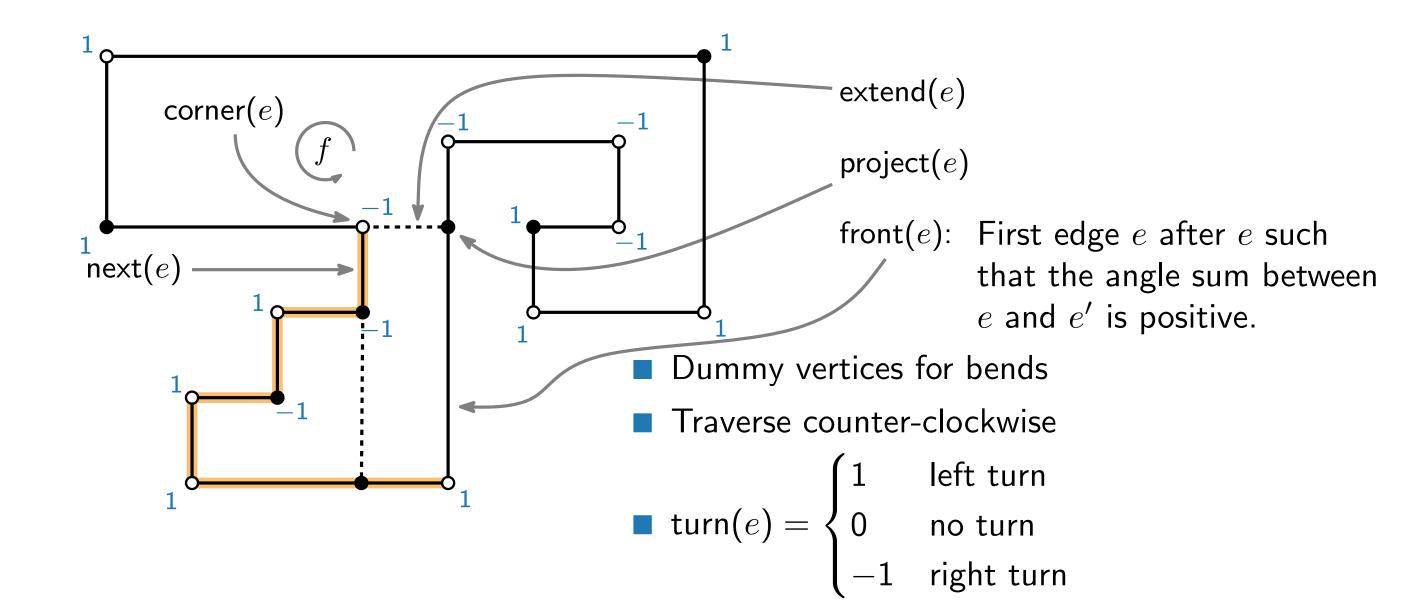


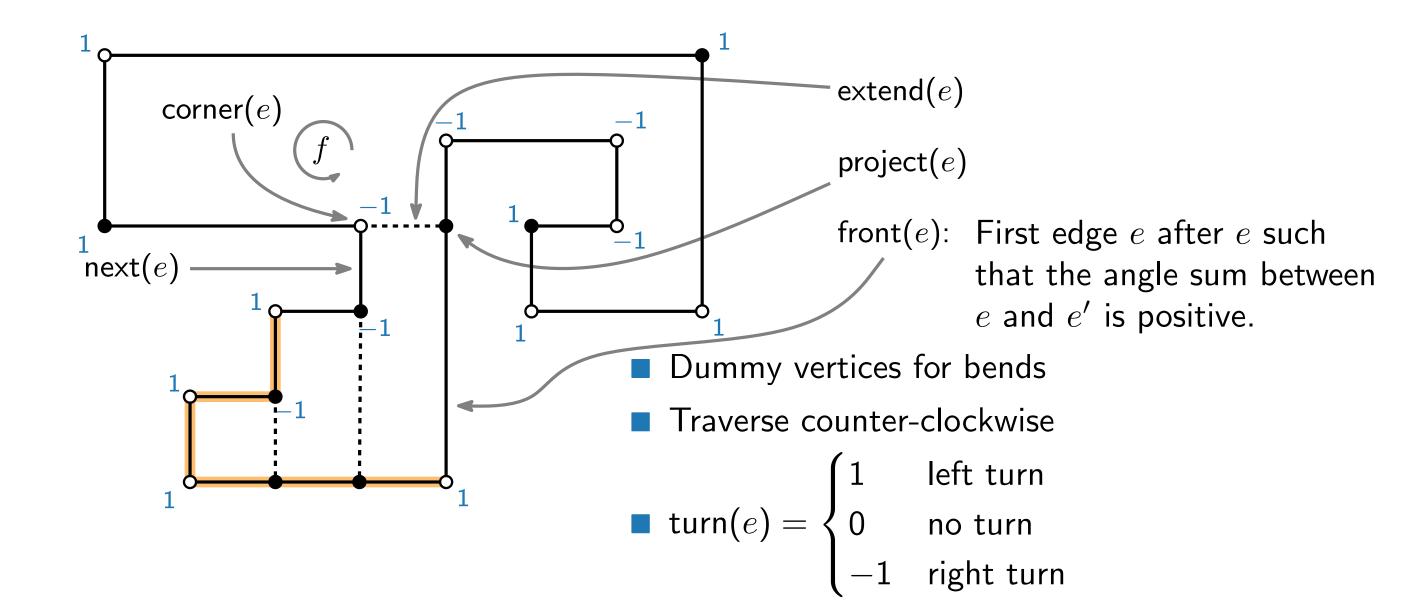


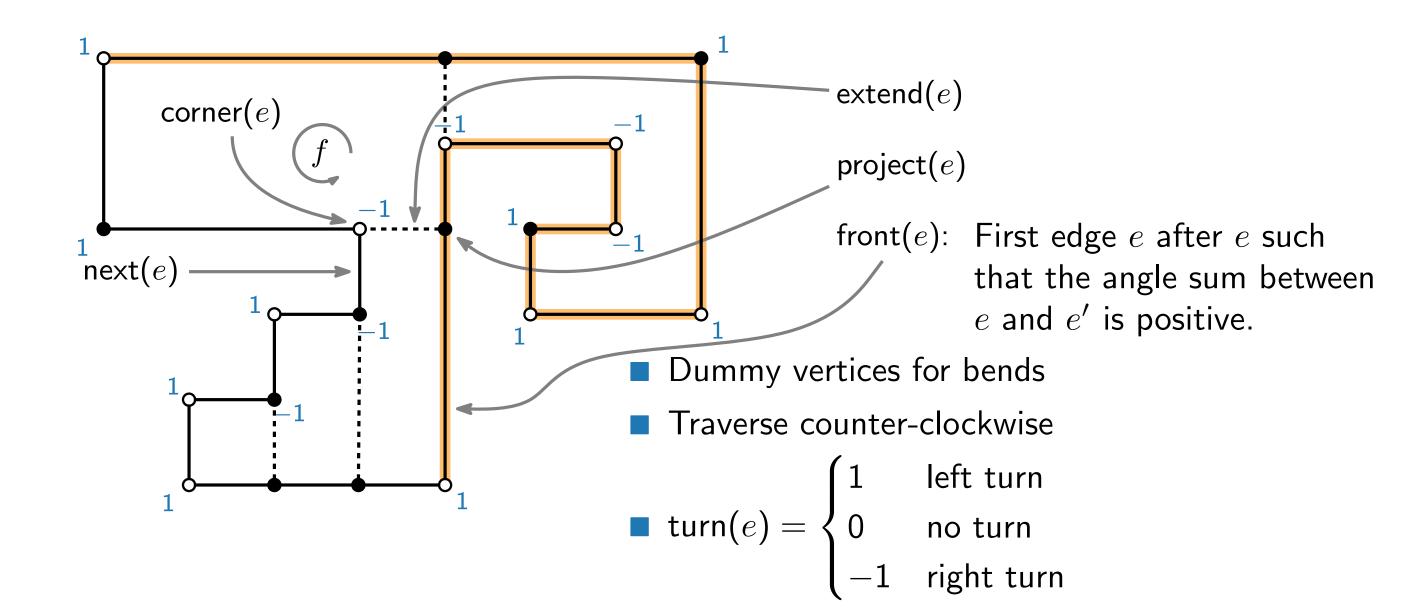


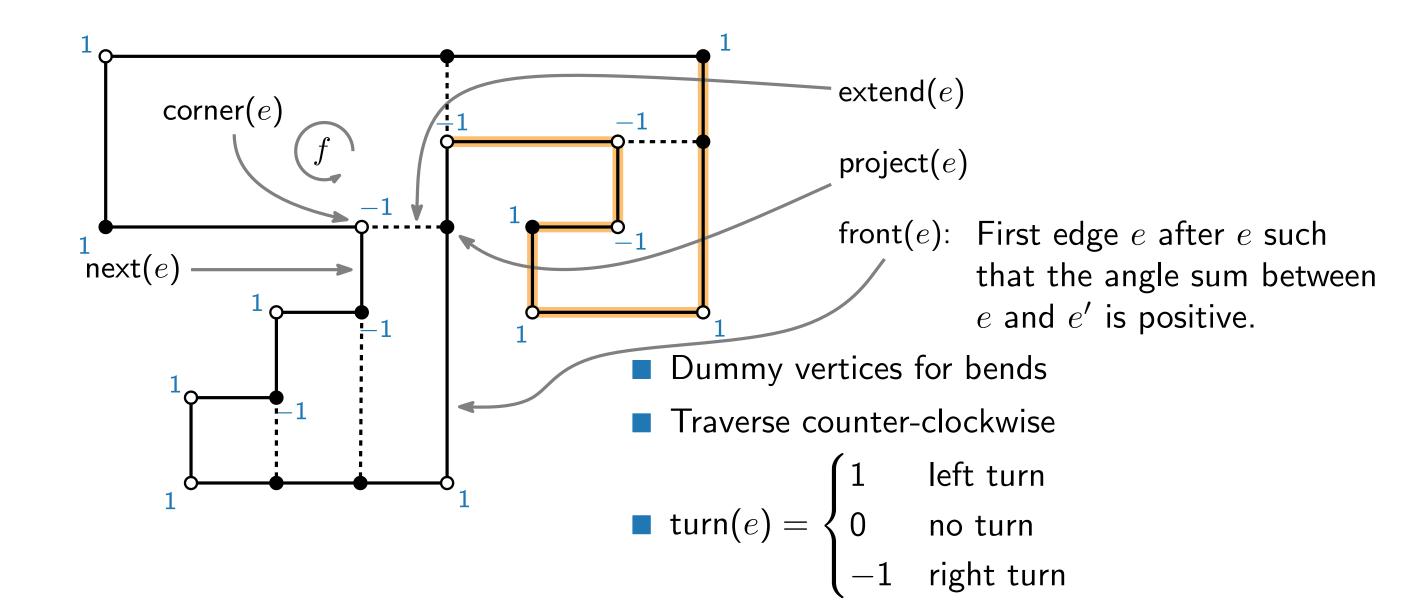


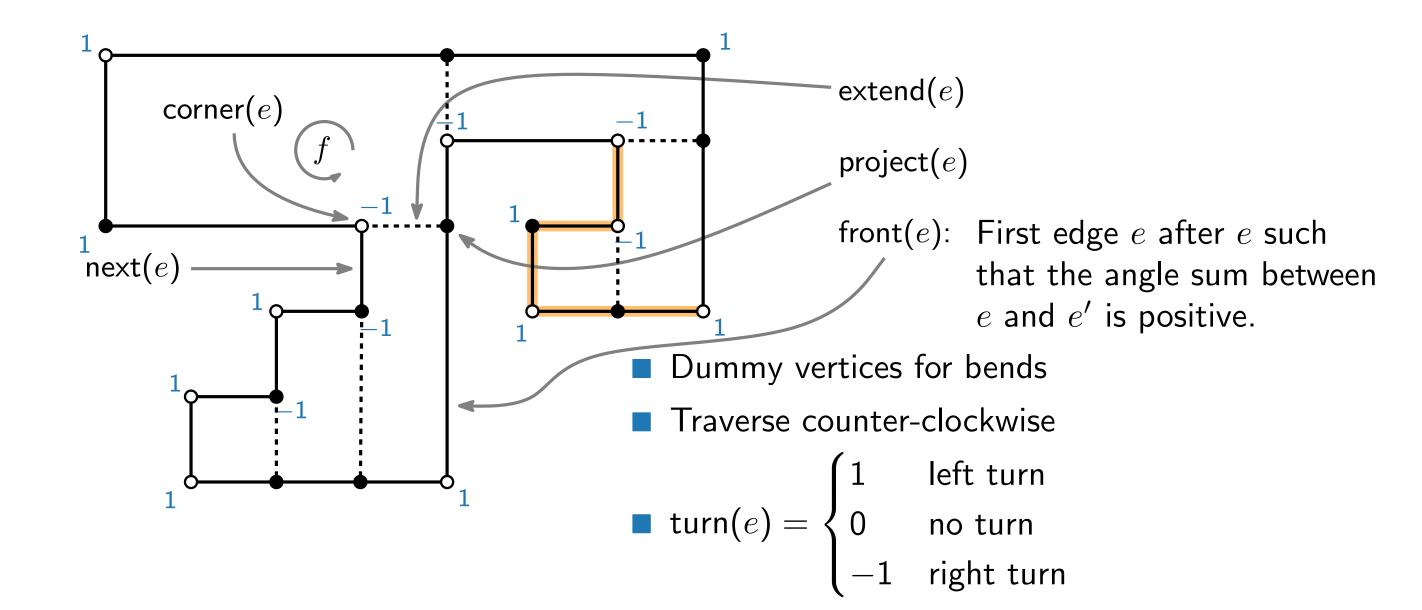


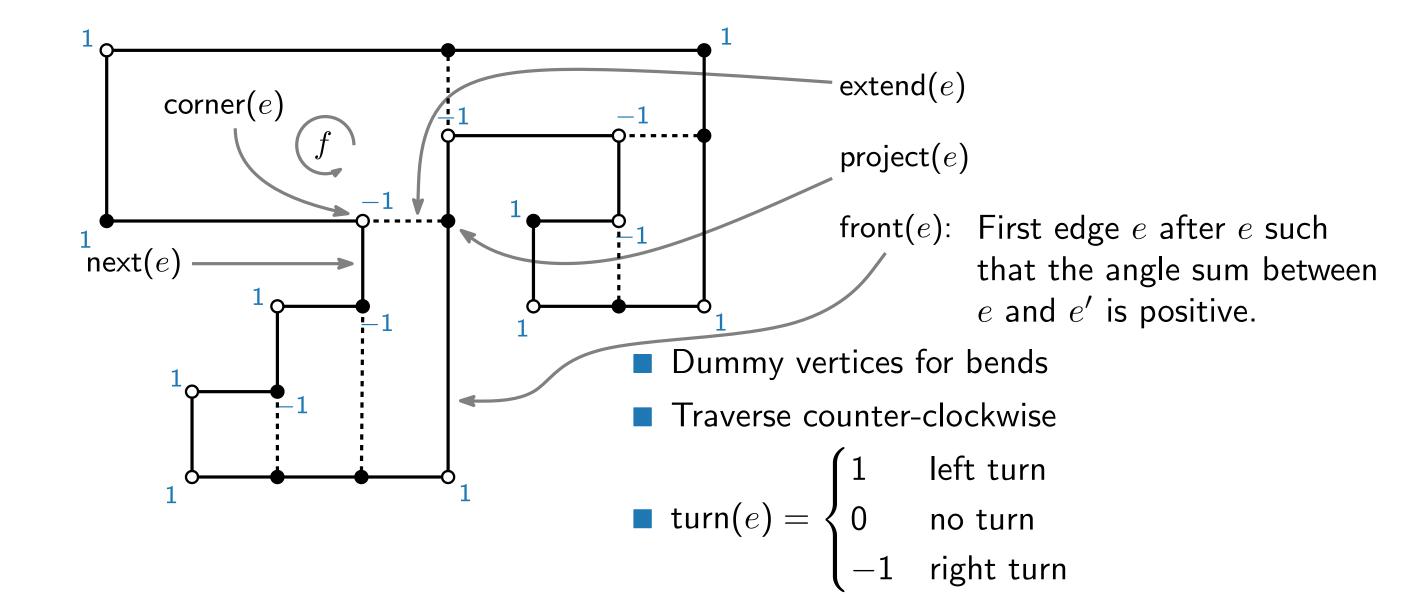


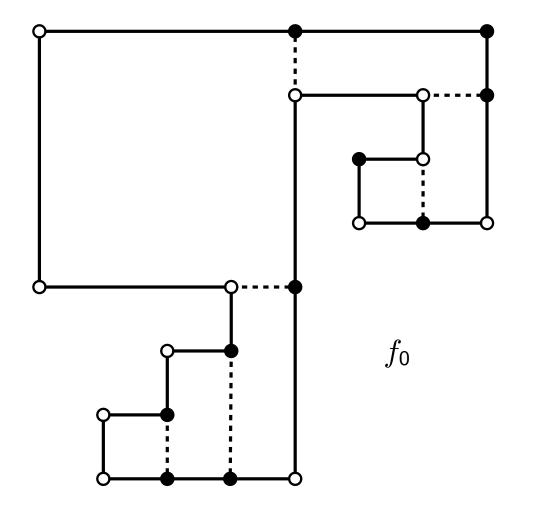


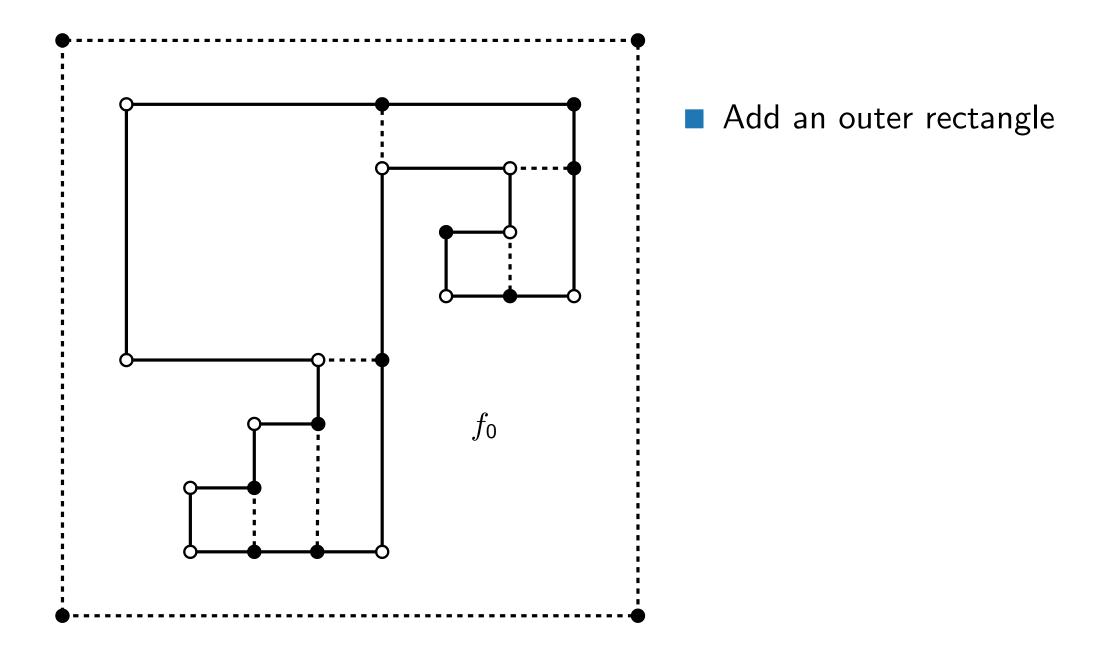


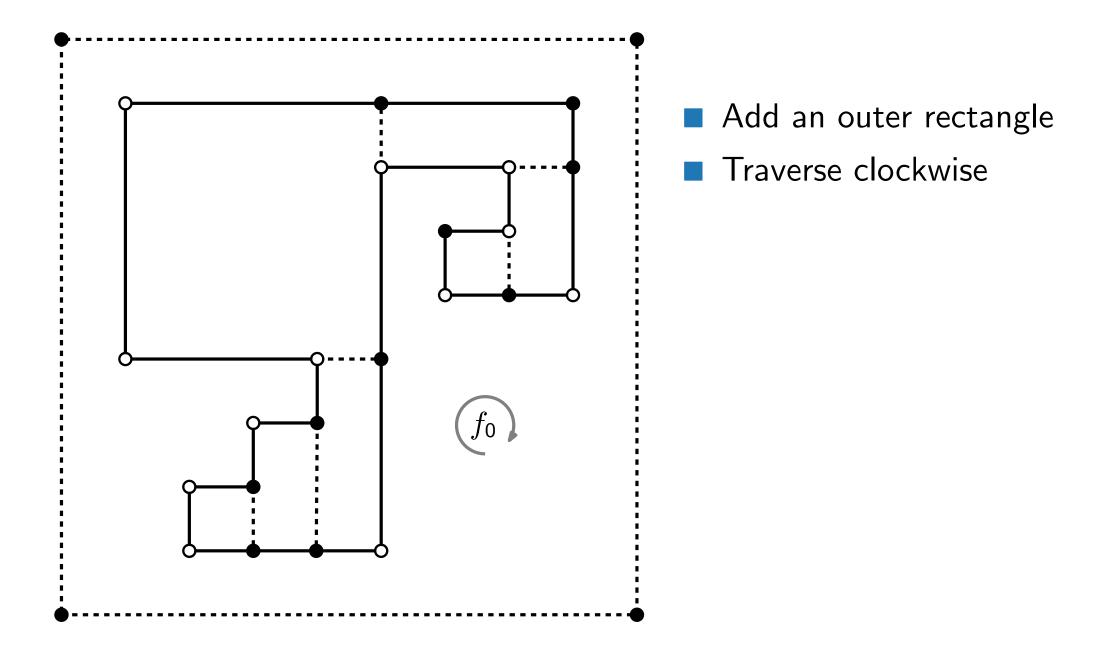


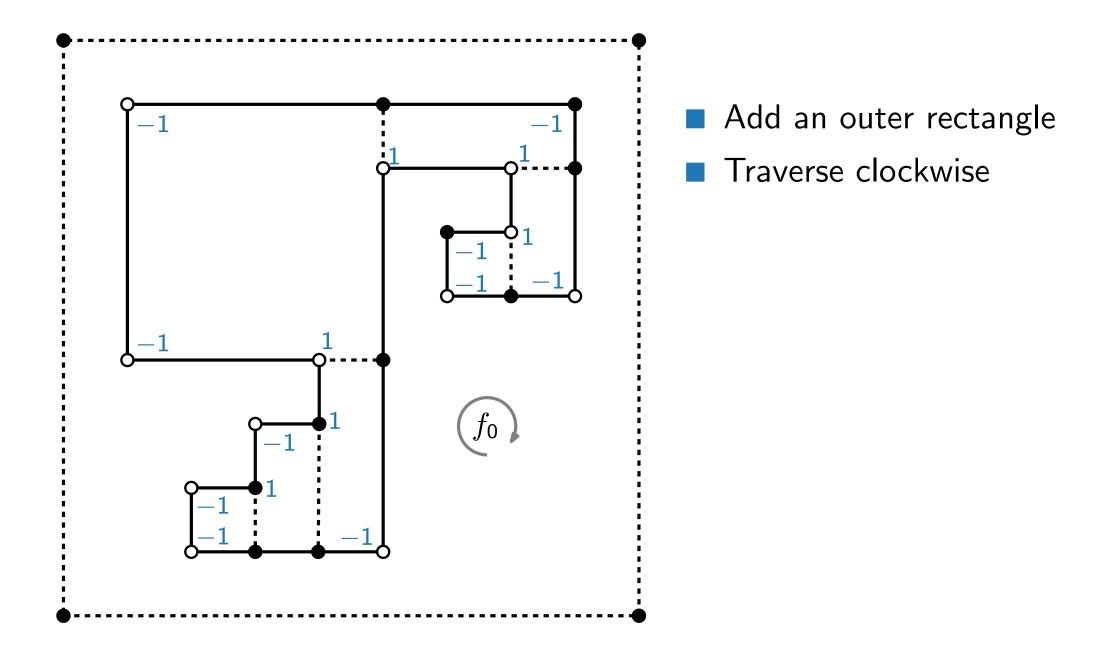


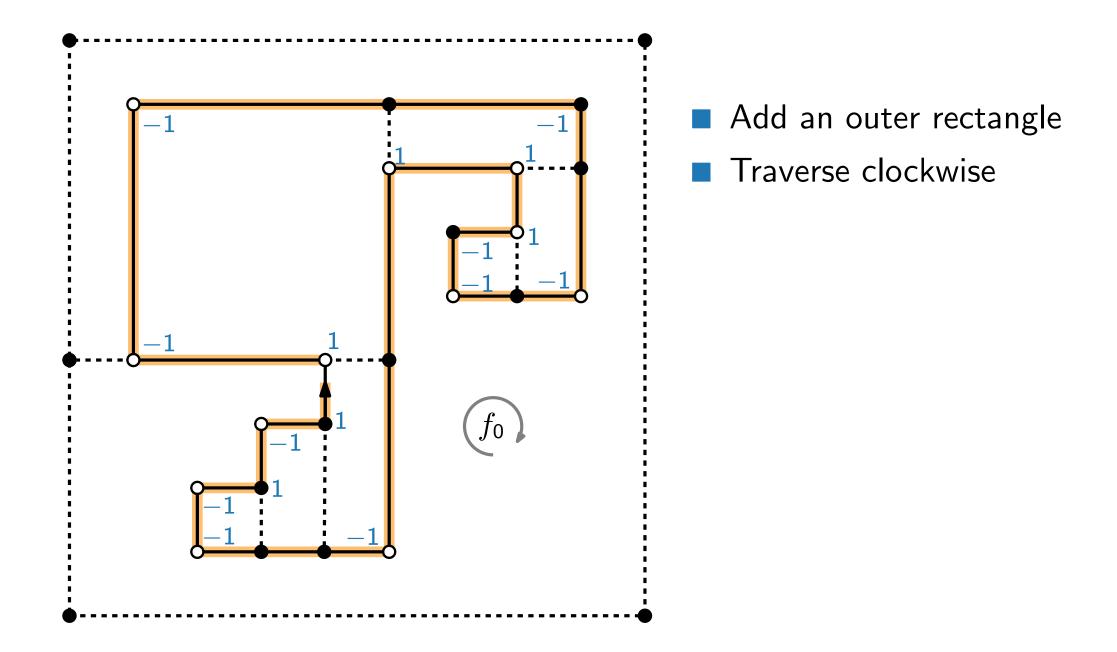


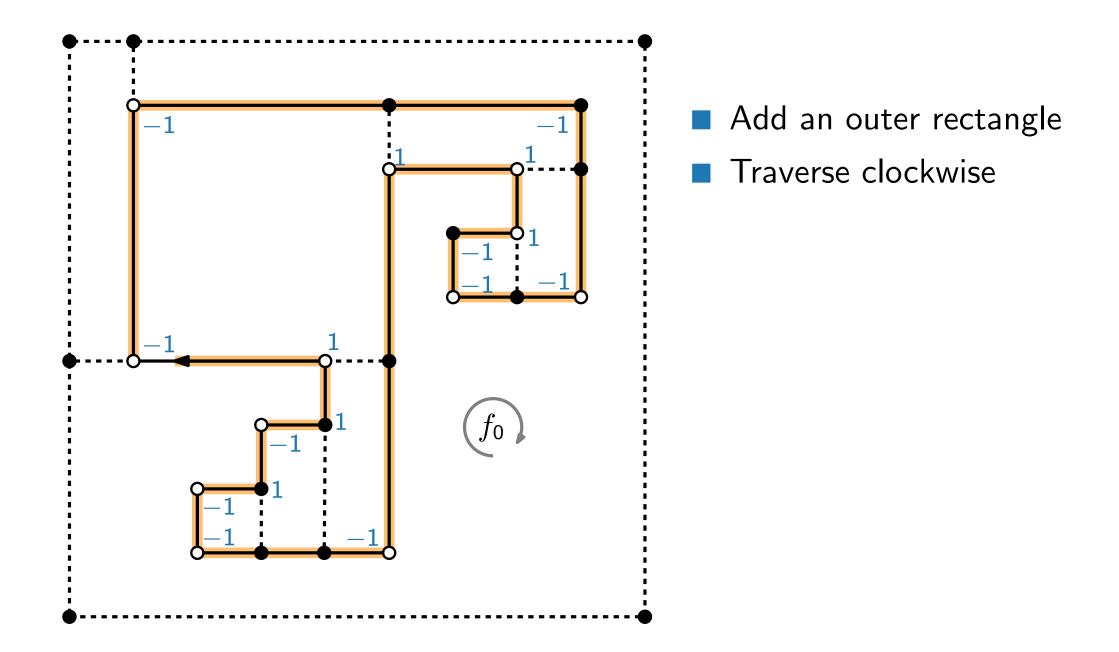


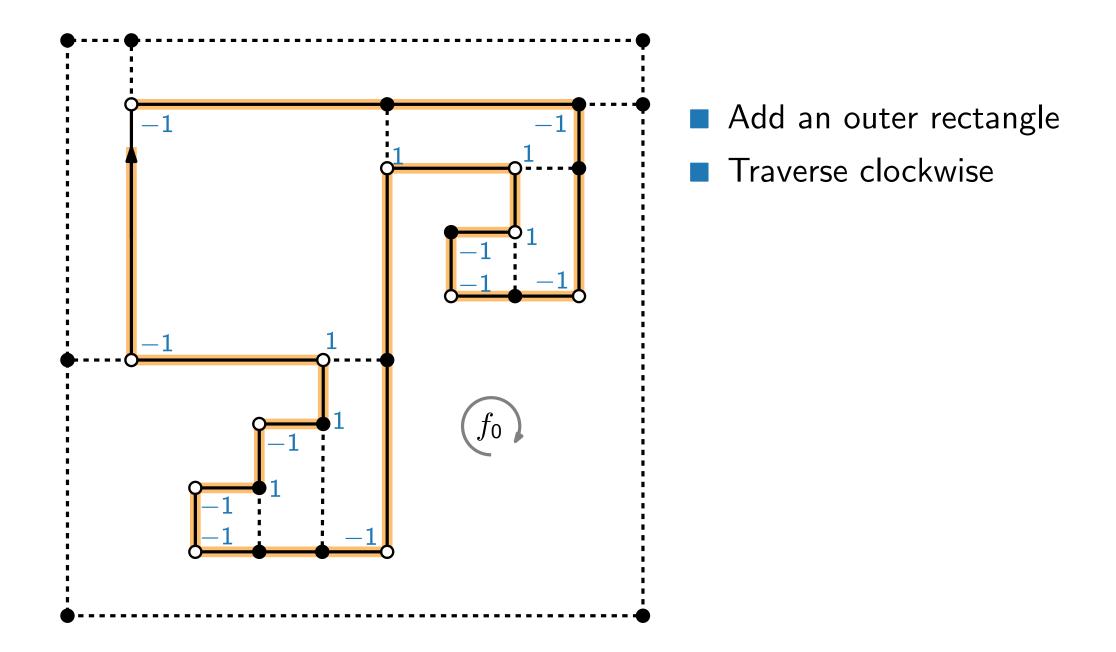


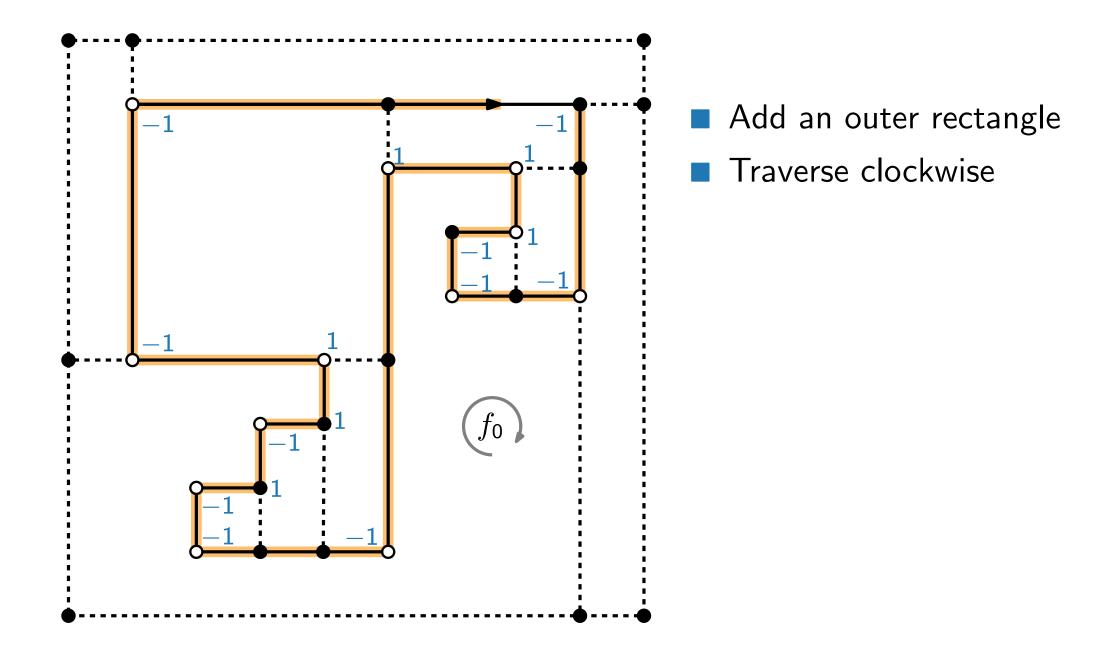


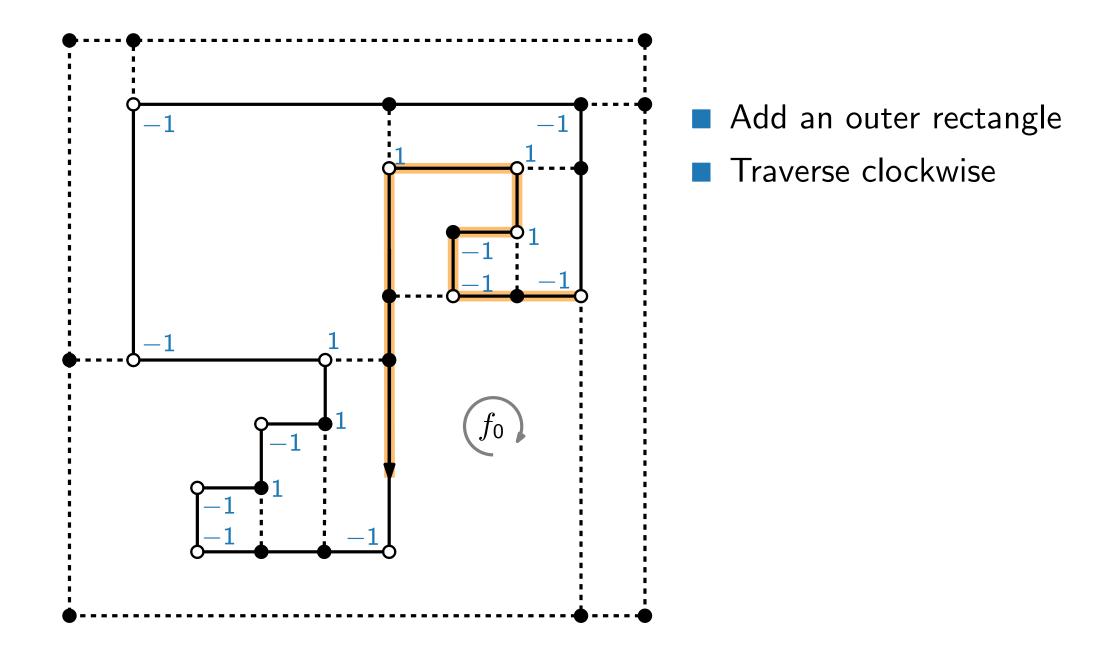


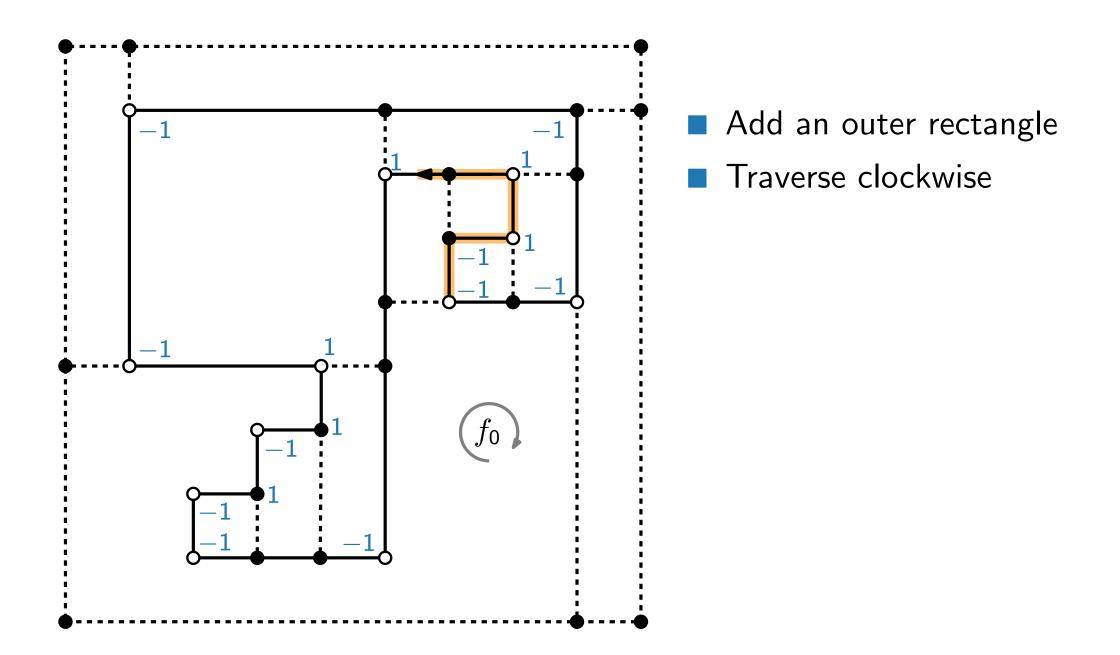


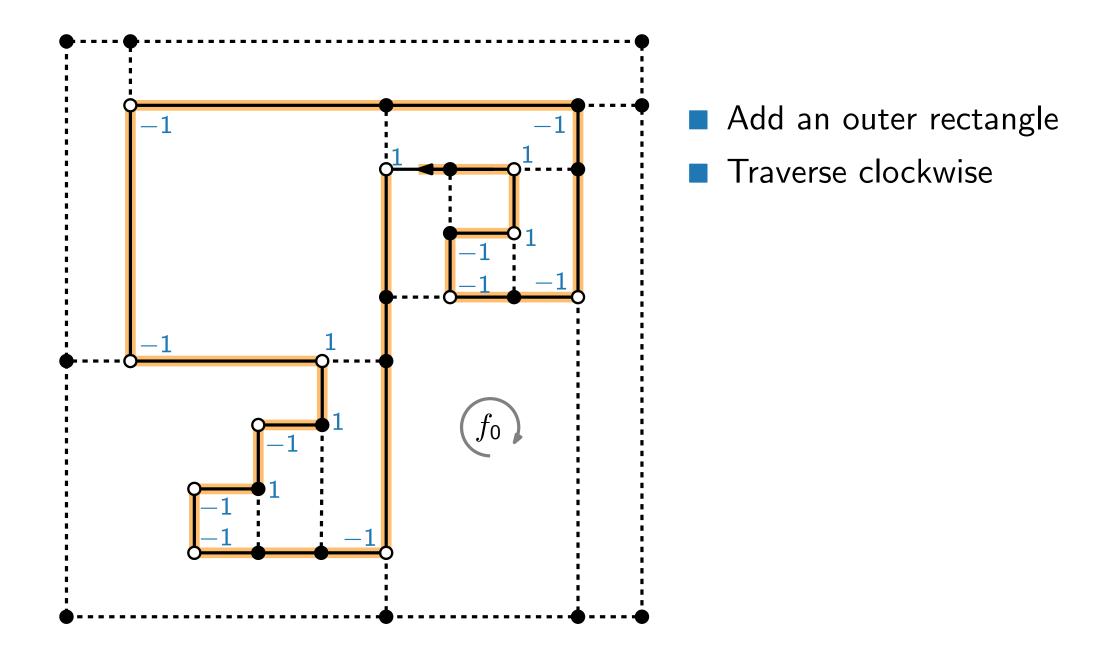


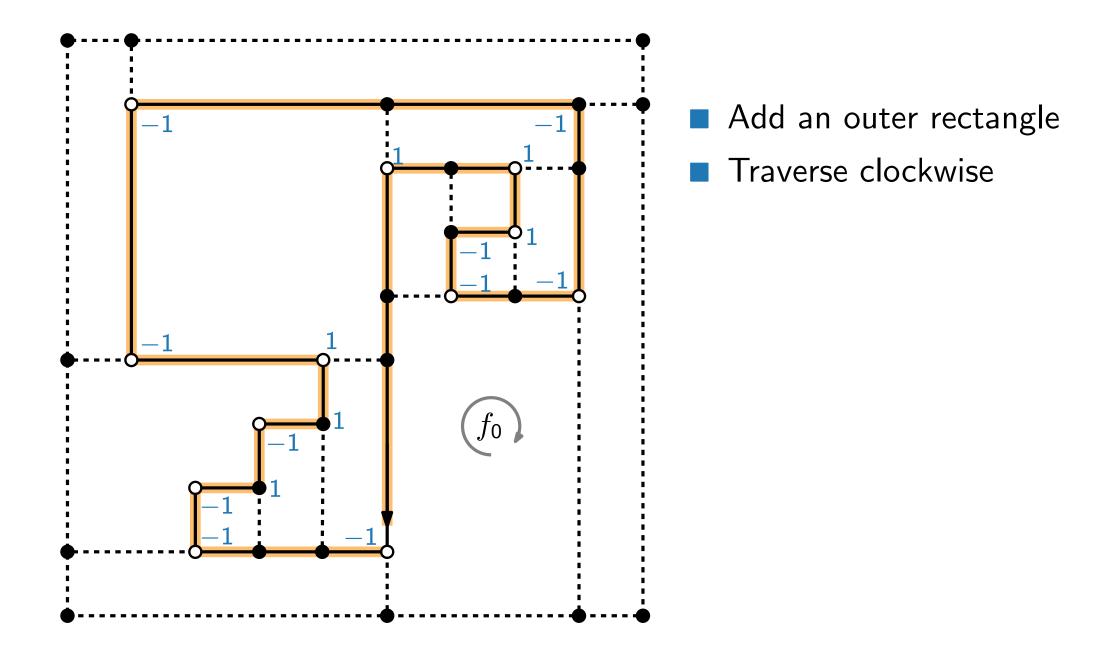


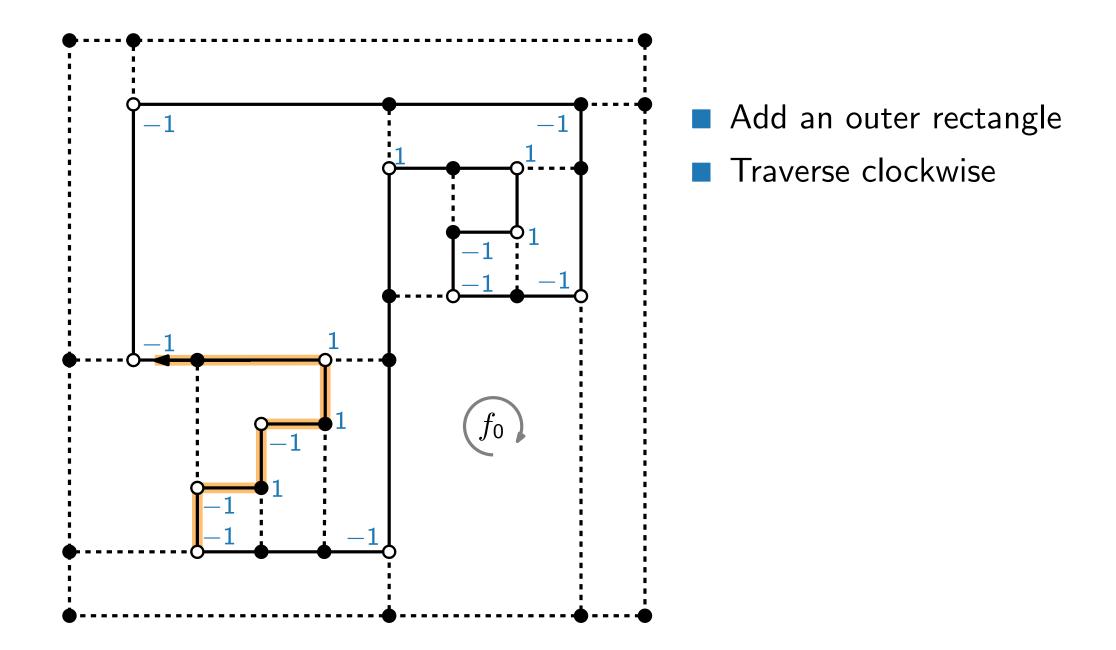


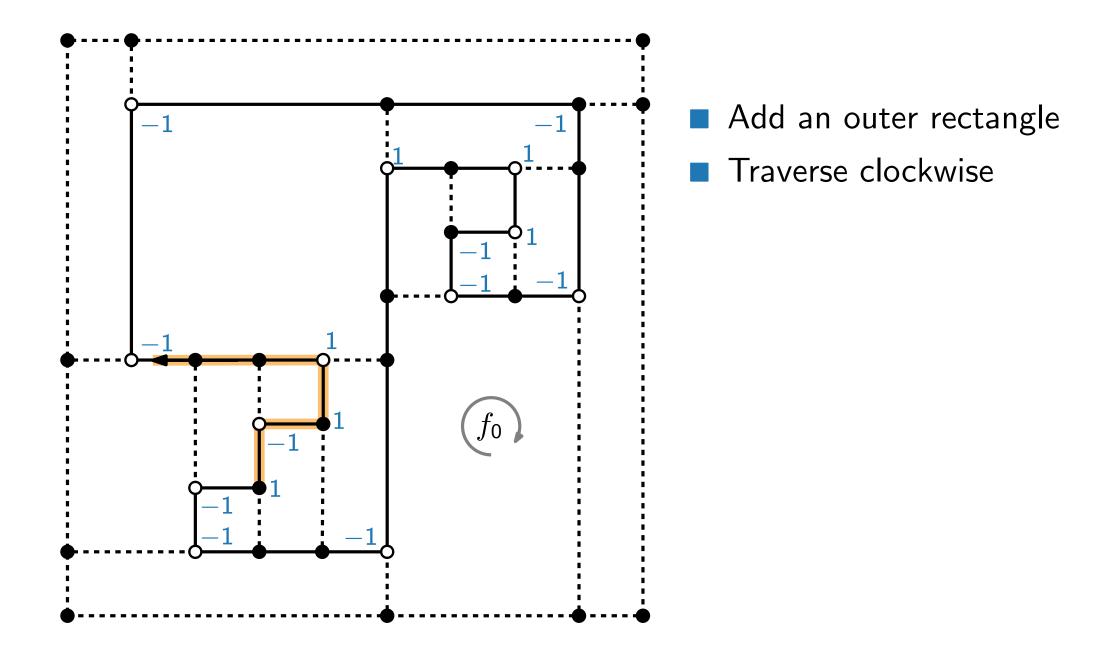


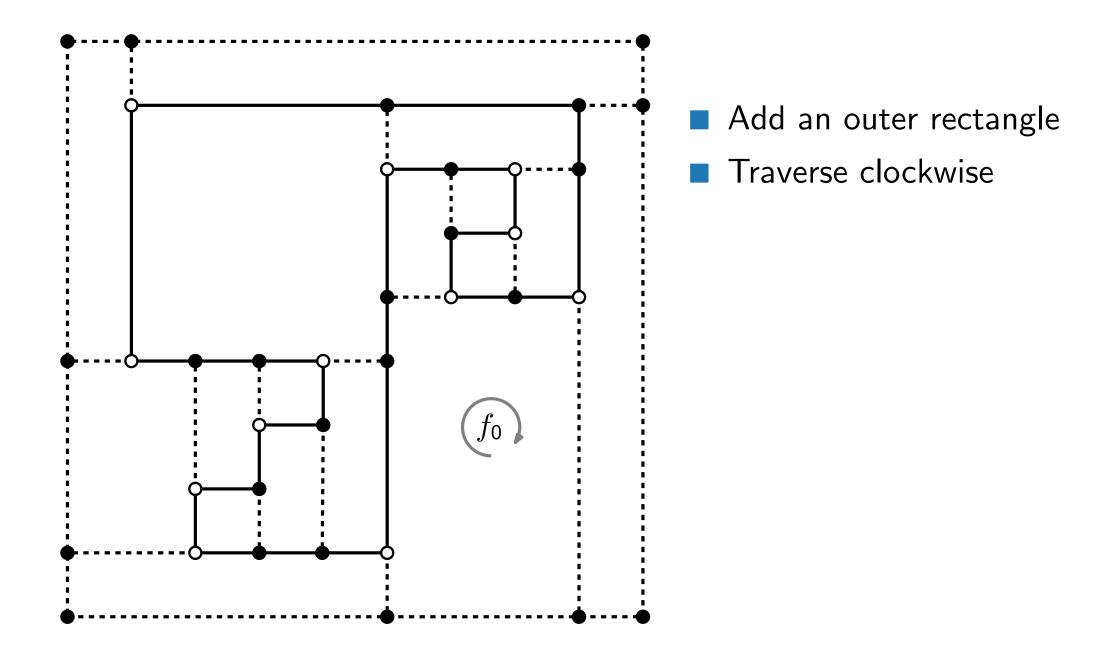


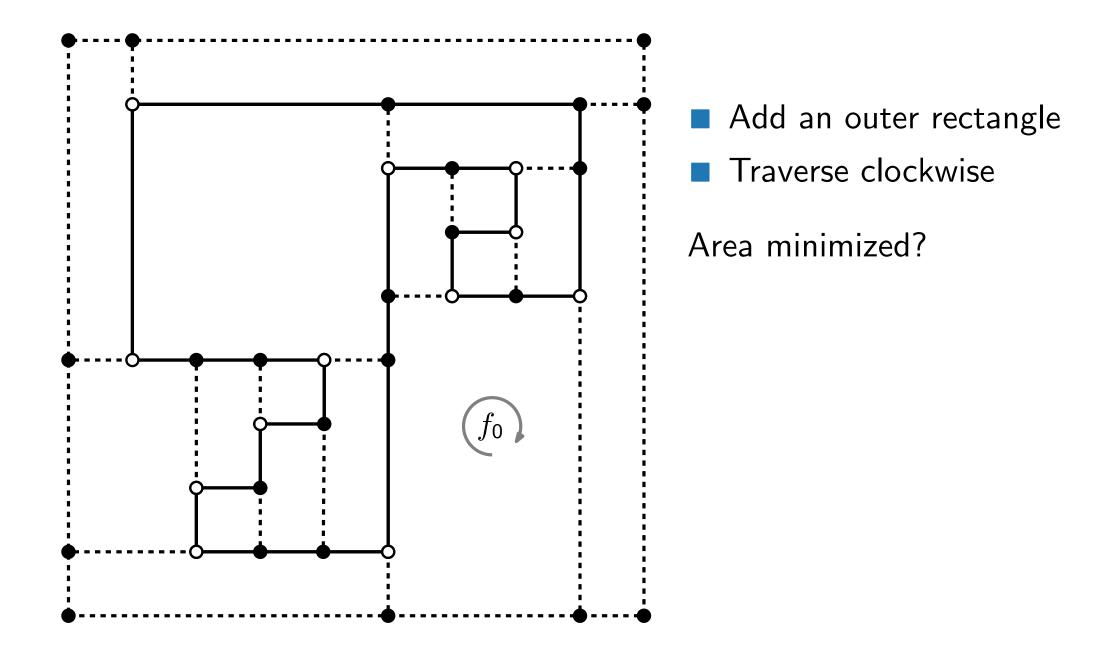


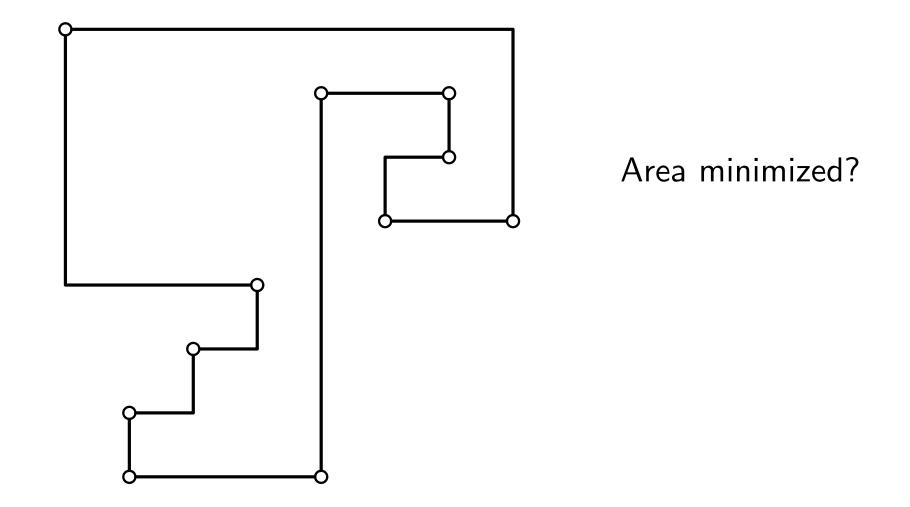


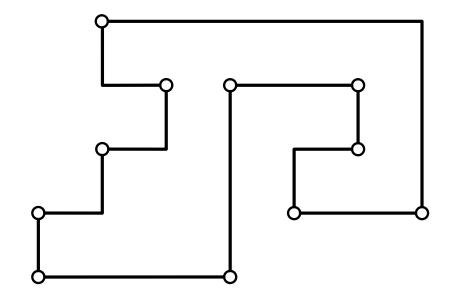




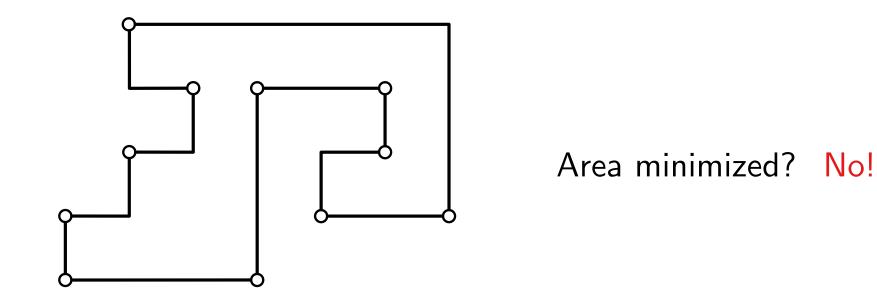




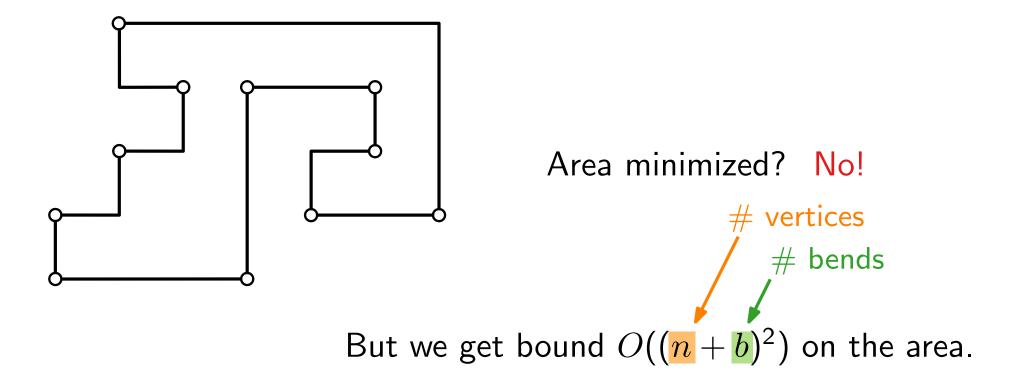


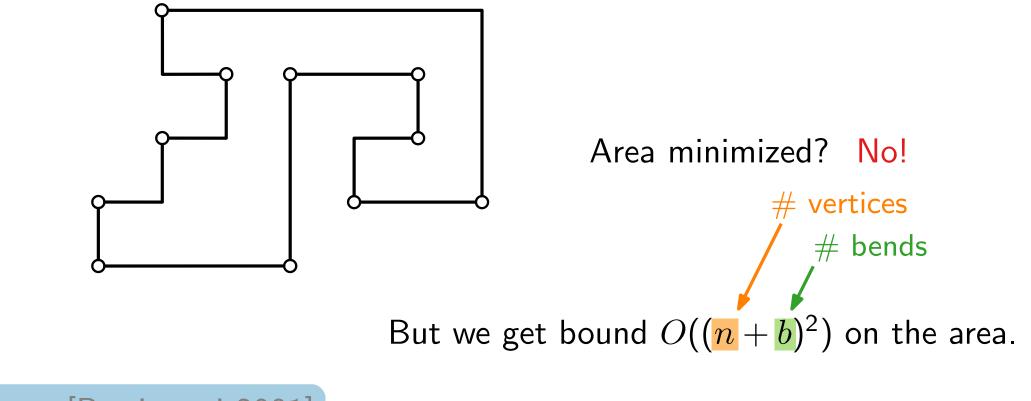


Area minimized? No!

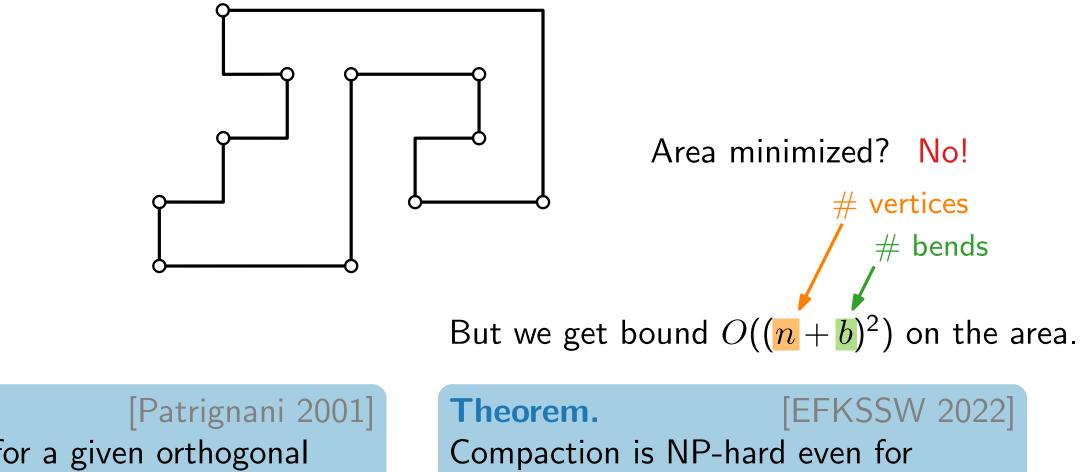


But we get bound $O((n+b)^2)$ on the area.



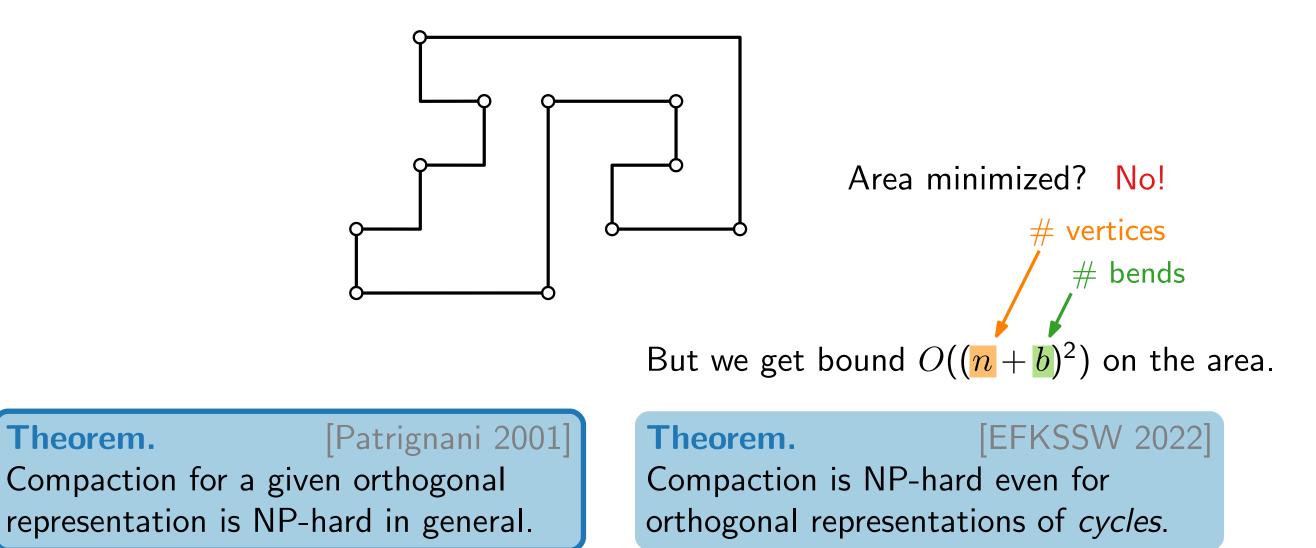


Theorem.[Patrignani 2001]Compaction for a given orthogonalrepresentation is NP-hard in general.



Theorem. Compaction for a given orthogonal representation is NP-hard in general.

orthogonal representations of cycles.



Polynomial-time reduction from the NP-complete satisfiability problem (SAT).

Polynomial-time reduction from the NP-complete satisfiability problem (SAT).

In an instance of the SAT problem we have:

Polynomial-time reduction from the NP-complete satisfiability problem (SAT).

In an instance of the SAT problem we have:

• set of n Boolean variables $X = \{x_1, x_2, \ldots, x_n\}$

Polynomial-time reduction from the NP-complete satisfiability problem (SAT).

In an instance of the SAT problem we have:

• set of n Boolean variables $X = \{x_1, x_2, \ldots, x_n\}$

 \blacksquare *m* clauses C_1, C_2, \ldots, C_m

Polynomial-time reduction from the NP-complete satisfiability problem (SAT).

In an instance of the SAT problem we have:

• set of n Boolean variables $X = \{x_1, x_2, \dots, x_n\}$

• m clauses C_1, C_2, \ldots, C_m , where each clause is a disjunction of literals from X,

Polynomial-time reduction from the NP-complete satisfiability problem (SAT).

In an instance of the SAT problem we have:

• set of n Boolean variables $X = \{x_1, x_2, \ldots, x_n\}$

• *m* clauses C_1, C_2, \ldots, C_m , where each clause is a disjunction of literals from *X*, e.g., $C_1 = x_1 \lor \neg x_2 \lor x_3$

Polynomial-time reduction from the NP-complete satisfiability problem (SAT).

In an instance of the SAT problem we have:

- set of n Boolean variables $X = \{x_1, x_2, \ldots, x_n\}$
- *m* clauses C_1, C_2, \ldots, C_m , where each clause is a disjunction of literals from *X*, e.g., $C_1 = x_1 \lor \neg x_2 \lor x_3$
- Boolean formula $\Phi = C_1 \wedge C_2 \wedge \cdots \wedge C_m$

Polynomial-time reduction from the NP-complete satisfiability problem (SAT).

In an instance of the SAT problem we have:

- set of n Boolean variables $X = \{x_1, x_2, \ldots, x_n\}$
- *m* clauses C_1, C_2, \ldots, C_m , where each clause is a disjunction of literals from *X*, e.g., $C_1 = x_1 \lor \neg x_2 \lor x_3$

Boolean formula
$$\Phi = C_1 \wedge C_2 \wedge \cdots \wedge C_m$$

Question: Is there an assignment of truth values to the variables in X such that Φ is true?

Polynomial-time reduction from the NP-complete satisfiability problem (SAT).

In an instance of the SAT problem we have:

- set of n Boolean variables $X = \{x_1, x_2, \ldots, x_n\}$
- *m* clauses C_1, C_2, \ldots, C_m , where each clause is a disjunction of literals from *X*, e.g., $C_1 = x_1 \lor \neg x_2 \lor x_3$

Boolean formula
$$\Phi = C_1 \wedge C_2 \wedge \cdots \wedge C_m$$

Question: Is there an assignment of truth values to the variables in X such that Φ is true?

Idea of the reduction:

Polynomial-time reduction from the NP-complete satisfiability problem (SAT).

In an instance of the SAT problem we have:

- set of n Boolean variables $X = \{x_1, x_2, \ldots, x_n\}$
- *m* clauses C_1, C_2, \ldots, C_m , where _____a literal is a variable *x* or a negated variable $\neg x$ each clause is a disjunction of literals from *X*, e.g., $C_1 = x_1 \lor \neg x_2 \lor x_3$

Boolean formula
$$\Phi = C_1 \wedge C_2 \wedge \cdots \wedge C_m$$

Question: Is there an assignment of truth values to the variables in X such that Φ is true?

Idea of the reduction:

Given SAT instance $\Phi \Rightarrow$ construct a plane graph G and a orthogonal description H(G)

Polynomial-time reduction from the NP-complete satisfiability problem (SAT).

In an instance of the SAT problem we have:

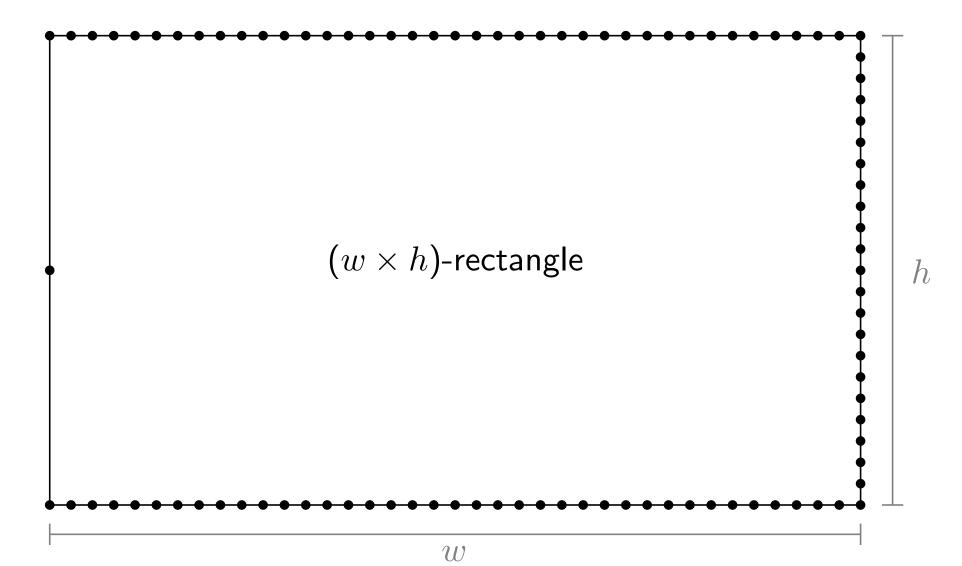
- set of n Boolean variables $X = \{x_1, x_2, \ldots, x_n\}$
- *m* clauses C_1, C_2, \ldots, C_m , where each clause is a disjunction of literals from *X*, e.g., $C_1 = x_1 \lor \neg x_2 \lor x_3$

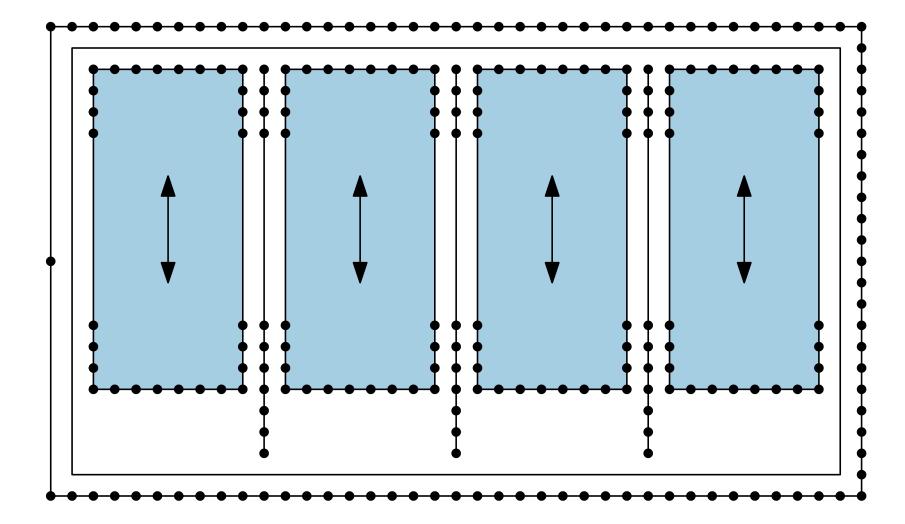
Boolean formula
$$\Phi = C_1 \wedge C_2 \wedge \cdots \wedge C_m$$

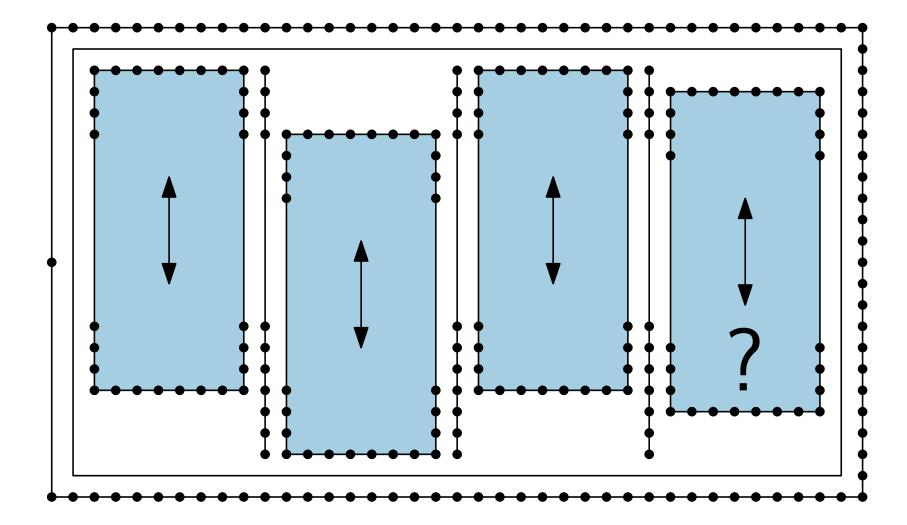
Question: Is there an assignment of truth values to the variables in X such that Φ is true?

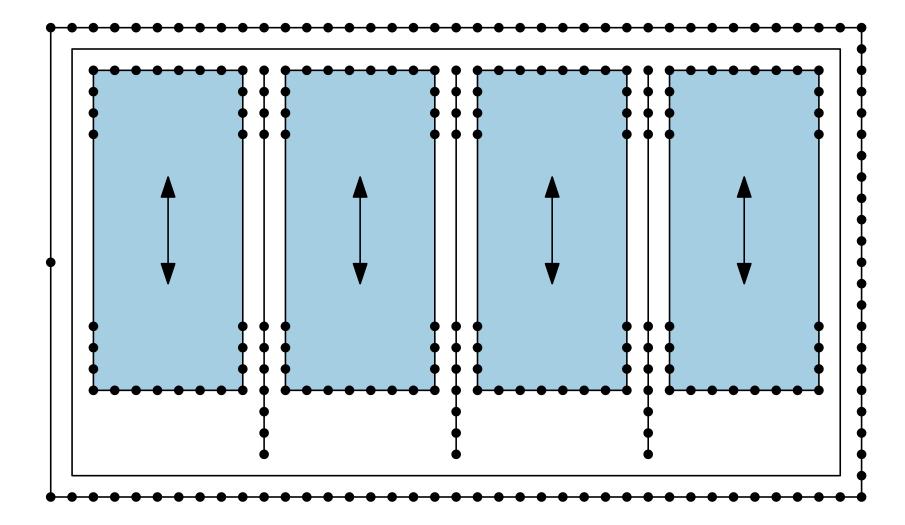
Idea of the reduction:

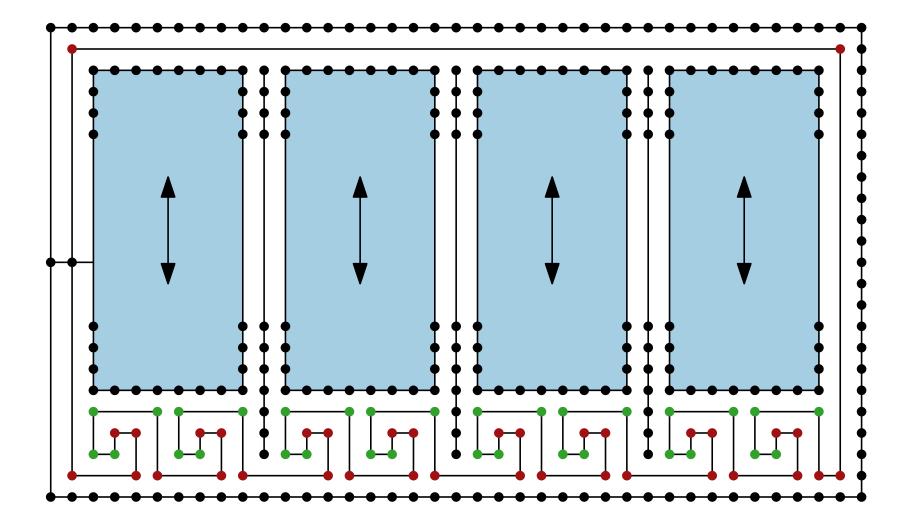
- Given SAT instance $\Phi \Rightarrow$ construct a plane graph G and a orthogonal description H(G)
- Φ is satisfiable $\Leftrightarrow G$ can be drawn w.r.t. H(G) in area K for some specific number K

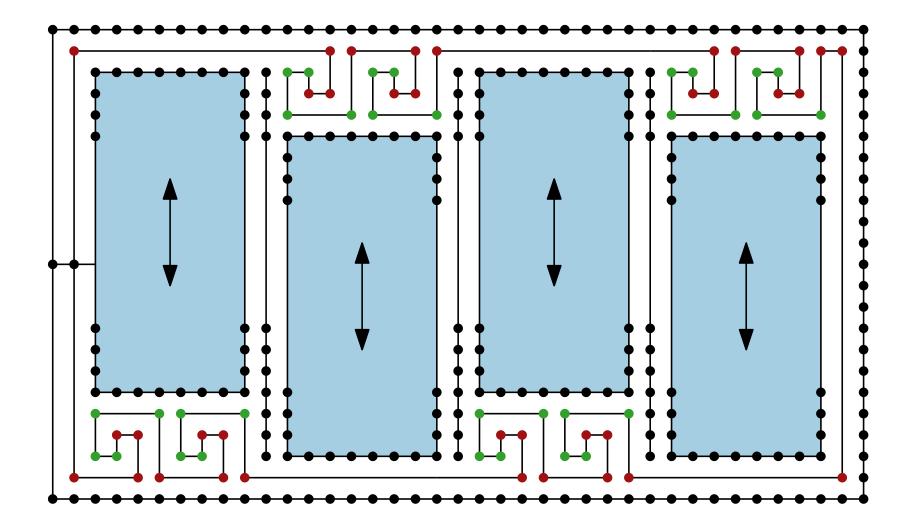


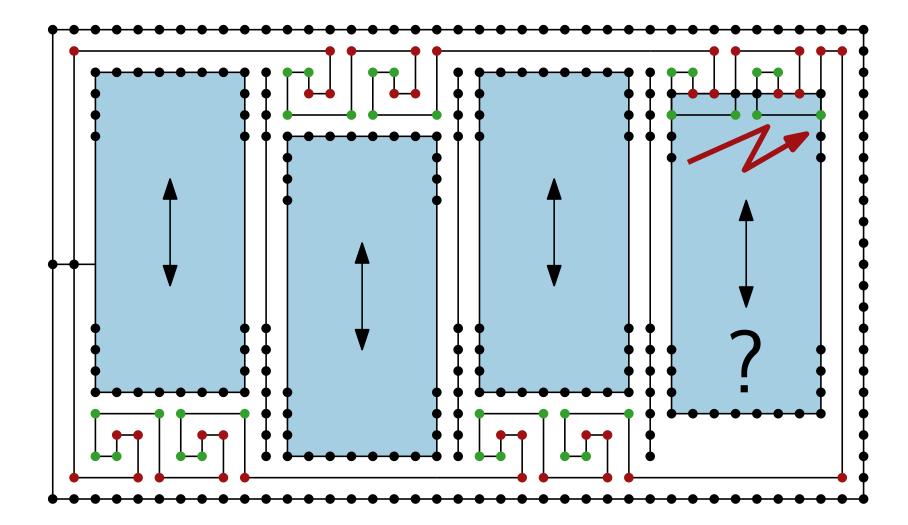


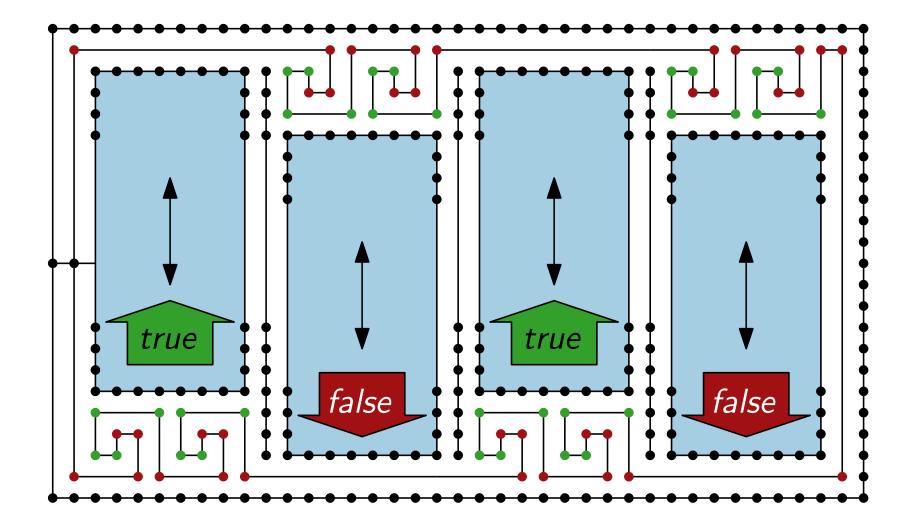


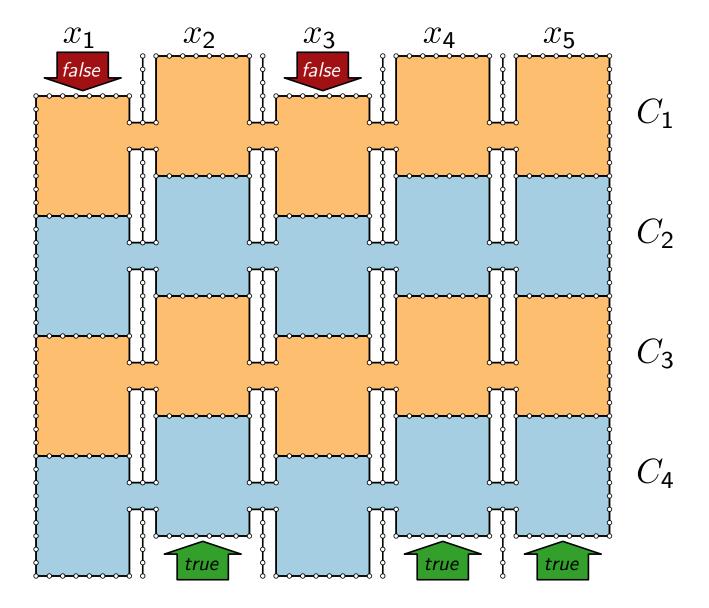


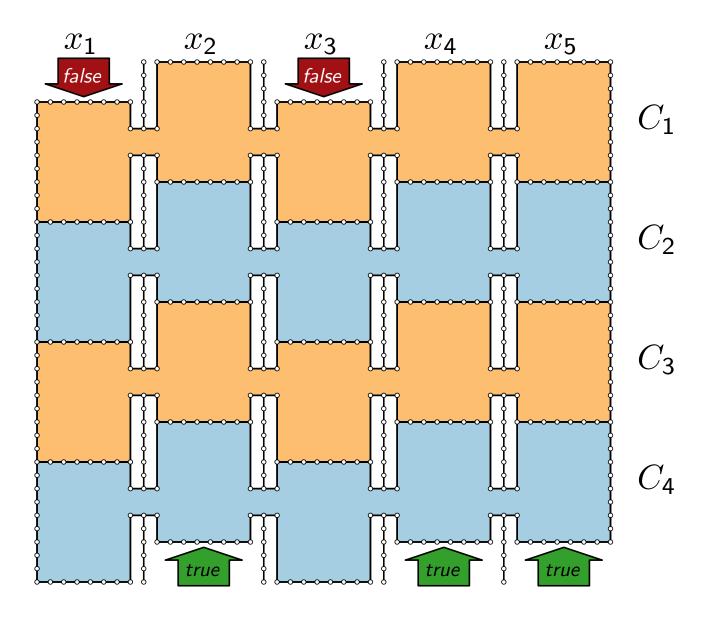




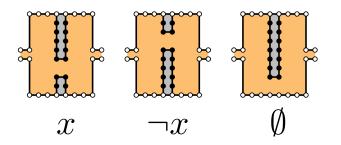


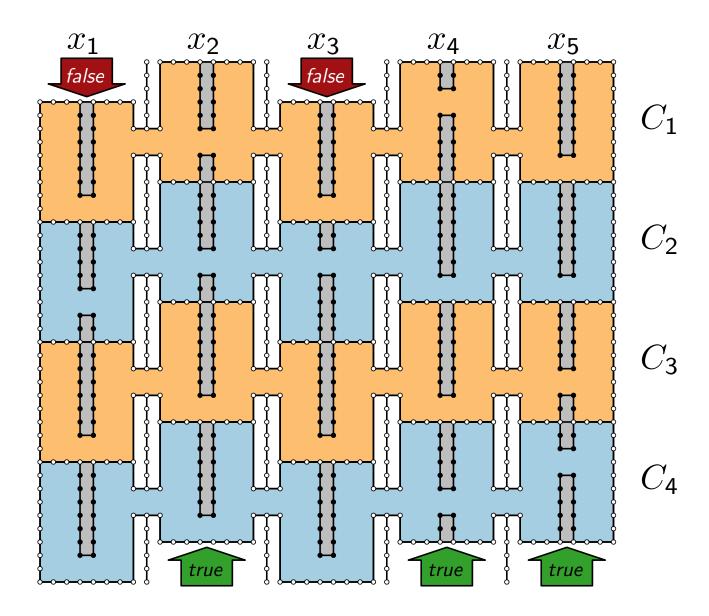




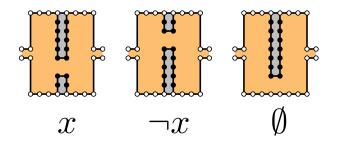


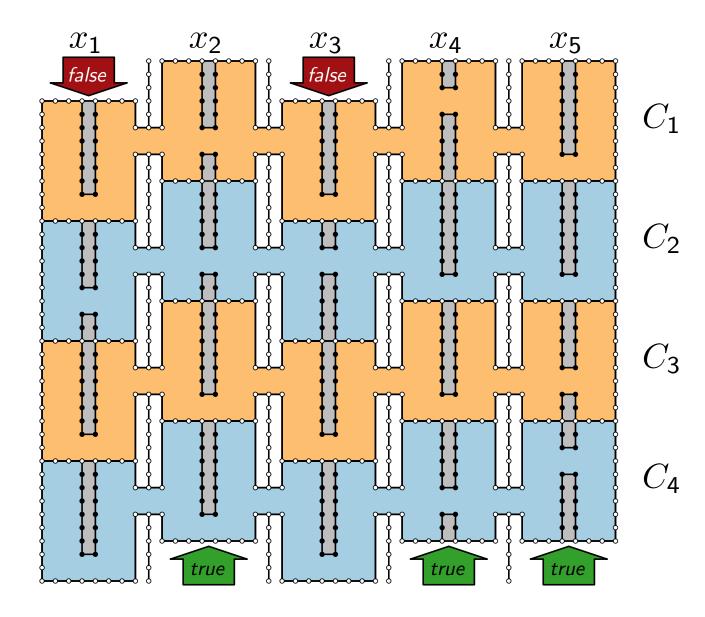
Example: $C_1 = x_2 \lor \neg x_4$ $C_2 = x_1 \lor x_2 \lor \neg x_3$ $C_3 = x_5$ $C_4 = x_4 \lor \neg x_5$



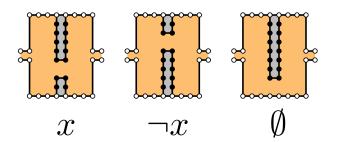


Example: $C_1 = x_2 \lor \neg x_4$ $C_2 = x_1 \lor x_2 \lor \neg x_3$ $C_3 = x_5$ $C_4 = x_4 \lor \neg x_5$

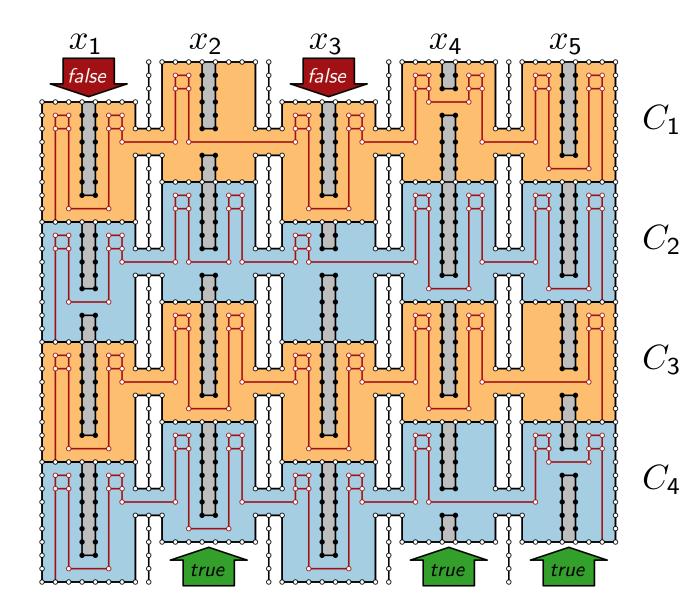




Example: $C_1 = x_2 \lor \neg x_4$ $C_2 = x_1 \lor x_2 \lor \neg x_3$ $C_3 = x_5$ $C_4 = x_4 \lor \neg x_5$



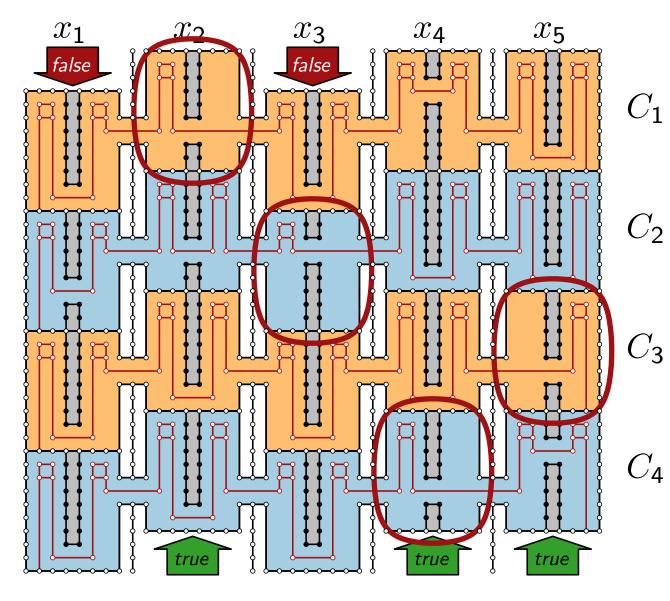
insert (2n-1)-chain through each clause



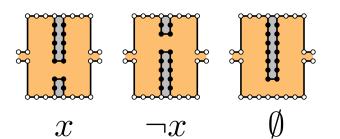
Example: $C_1 = x_2 \lor \neg x_4$ $C_2 = x_1 \lor x_2 \lor \neg x_3$ $C_3 = x_5$ $C_4 = x_4 \lor \neg x_5$



insert (2n-1)-chain through each clause



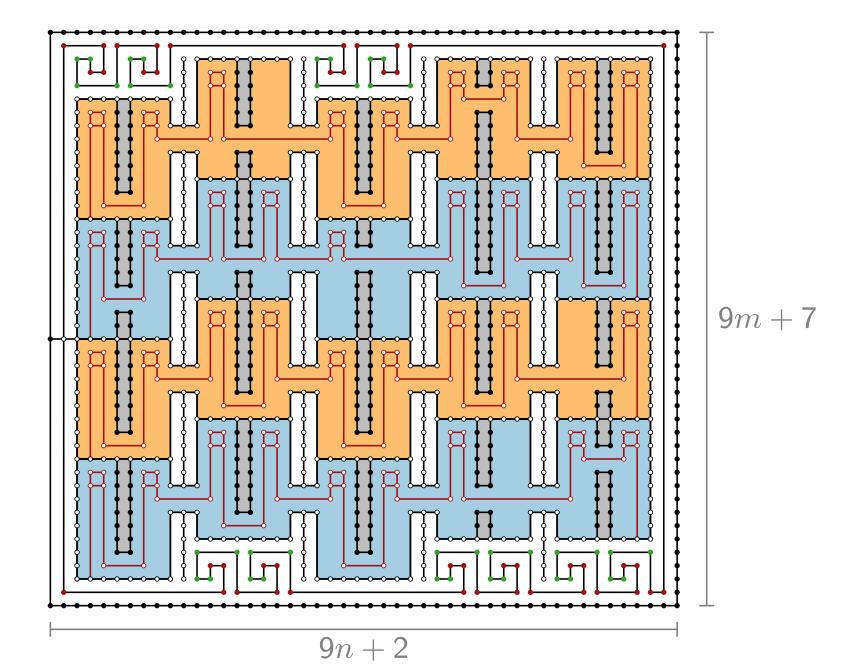
Example: $C_1 = x_2 \lor \neg x_4$ $C_2 = x_1 \lor x_2 \lor \neg x_3$ $C_3 = x_5$ $C_4 = x_4 \lor \neg x_5$



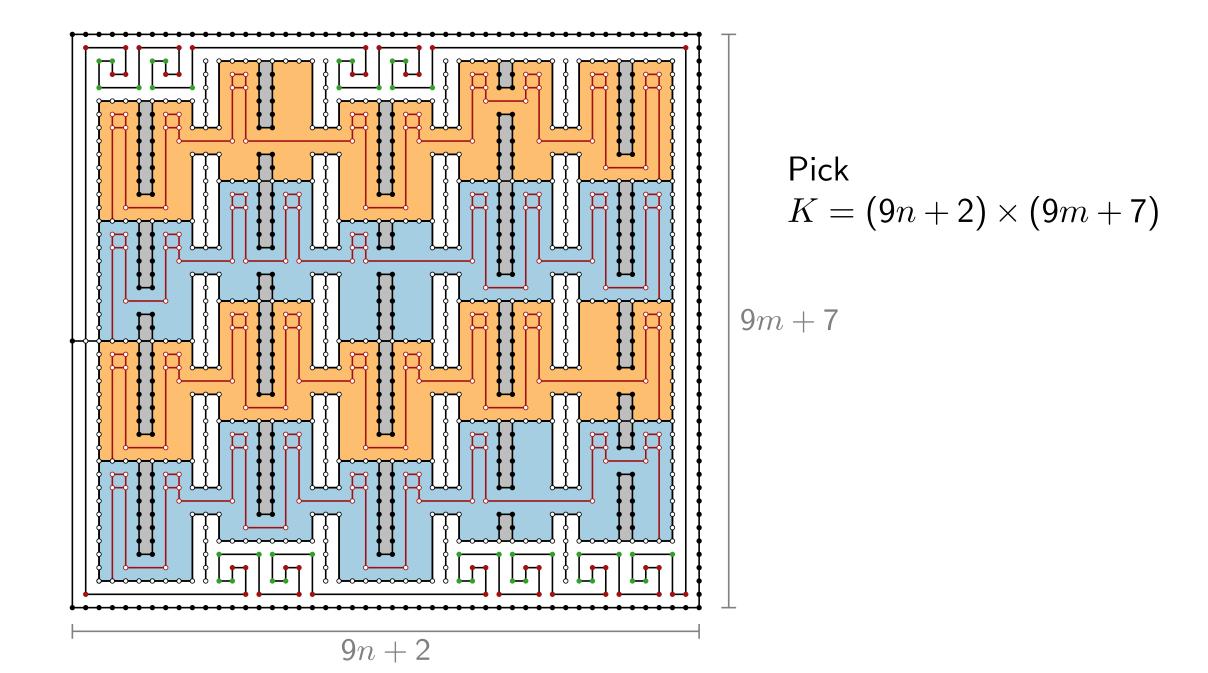
insert (2n-1)-chain through each clause

 \rightarrow for every clause, there needs to be ≥ 1 "gap of a literal" to be on the same height as the "tunnel" to the next literal

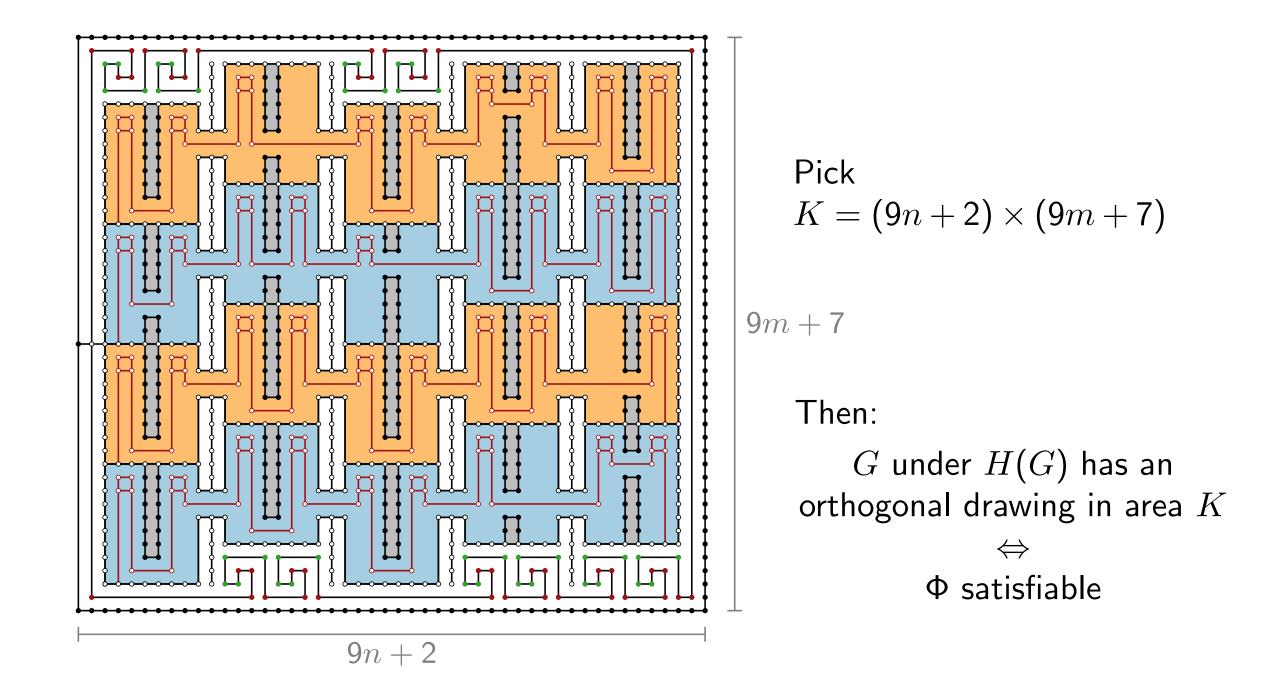
Complete Reduction



Complete Reduction



Complete Reduction



Literature

- [GD Ch. 5] for detailed explanation
- [Tamassia 1987] "On embedding a graph in the grid with the minmum number of bends" Original paper on flow for bend minimization.
- [van den Brand, Chen, Kyng, Liu, Peng, Probst, Sachdeva, Sidford 2023] "A Deterministic Almost-Linear Time Algorithm for Minimum-Cost Flow" State-of-the-art algorithm for solving the minimum-cost flow problem (published recently in the proceedings of the FOCS 2023 conference).
- [Patrignani 2001] "On the complexity of orthogonal compaction"
 NP-hardness proof for orthogonal representation of planar max-degree-4 graphs.
- [Evans, Fleszar, Kindermann, Saeedi, Shin, Wolff 2022] "Minimum rectilinear polygons for given angle sequences" NP-hardness proof for compaction of cycles.