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Observations.

m Edges lie on a grid =
bends lie on grid points

B Max. degree of each
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B Otherwise _?_: L1
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Orthogonal Representation — Example

H(fO) — ((617 117 %)7 (657 1117 3%)7 (647 ®7 77)7 (637 @7 77)7 (627 ®7 %))
H(f1) = ((e1,00, %), (e2,0, %), (es,00, 7))
H(f2) — ((657 000, %)7 (667 11, %)7 (637 @7 7T)7 (647 (Z)a %))
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Orthogonal Representation — Example

H(fO) — ((617 117 %)7 (657 1117 3%)7 (647 ®7 77)7 (637 @7 77)7 (627 ®7 %))
H(f1) = ((e1,00, %), (e2,0, %), (es,00, 7))
H(f2) — ((657 000, %)7 (667 11, %)7 (637 ®7 7T)7 (647 (Z)a %))

€3

N
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@e
€1 4

€5

fo

1 61 4
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Orthogonal Representation — Example

H(fO) — ((617 117 %)7 (657 1117 3%)7 (647 ®7 77)7 (637 @7 77)7 (627 ®7 %))
H(f1) = ((e1,00, %), (e2,0, %), (es,00, 7))
H(f2) — ((657 000, %)7 (667 11, %)7 (637 ®7 7T)7 (647 (Z)a %))
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Orthogonal Representation — Example

H(fO) — ((617 117 %)7 (657 1117 3%)7 (647 ®7 77)7 (637 @7 77)7 (627 ®7 %))
H(f1) = ((e1,00, %), (e2,0, %), (es,00, 7))
H(f2) — ((657 000, %)7 (667 11, %)7 (637 ®7 7T)7 (647 (Z)a %))

161 4
Jo
1 AV AN
€2 €4

€1
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Orthogonal Representation — Example

H(fO) — ((617 117 %)7 (657 1117 3%)7 (647 ®7 77)7 (637 @7 77)7 (627 ®7 %))
H(f1) = ((e1,00, %), (e2,0, %), (es,00, 7))
H(f2) — ((657 000, %)7 (667 11, %)7 (637 ®7 7T)7 (647 (Z)a %))

€3

N

O

o,
@e
€1 4

€5

O
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Jo
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€2 €4
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Orthogonal Representation — Example

H(fO) — ((617 117 %)7 (657 1117 3%)7 (647 ®7 77)7 (637 @7 77)7 (627 ®7 %))
H(f1) = ((e1,00, %), (e2,0, %), (es,00, 7))
H(f2) — ((657 000, %)7 (667 11, %)7 (637 ®7 7T)7 (647 (Z)a %))

161 4
fo 0 O
1 AWEA TR /3
O 0, \2
€2 €4
J1

€1
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Orthogonal Representation — Example

H(fO) — ((617 117 %)7 (657 1117 3%)7 (647 ®7 77)7 (637 @7 77)7 (627 ®7 %))
H(f1) = ((e1,00, %), (e2,0, %), (es,00, 7))
H(f2) — ((657 000, %)7 (667 11, %)7 (637 ®7 7T)7 (647 (Z)a %))

1 €1 4
Jo 0 0
1 5\ /ANE3 [ 37
3r 0 0 oo
> €2 €4
f1

€1
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Orthogonal Representation — Example

H(fo) = ((e1,11, 3),

H(f1) = (e,

(es, 111,
00, 3), (e2,

H(f2) = ((es,000, 5), (es, 11,

o,
@e
€1 4

fo

), (ea, 0, ), (e3,0,7), (e2,0, %))
0, %), (es,00, 7))
7), (e3,0,7), (es,0, %))
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Orthogonal Representation — Example

H(fo) = ((e1,11, Z), (es, 111, 3X), (€4, 0, ), (e3, 0, 7), (2,0, Z))
H(f1) = ((ex, OO ) (6 . %)7 (es,00, 7))
H(f2) — ((657 000, 3 P )7 (667 11, g)a (637 @7 7T)7 (647 (Z)v %))

fo
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1
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€6

@
?2

€5

- 21



Orthogonal Representation — Example

H(fo) = ((e1,11, 3),

H(f1) = (e,

(es, 111,
00, 3), (e2, 0

H(f2) = ((es,000, 5), (es, 11,

o,
@e
€1 4

fo 0
1 [3

(647 (2)7

%), (e, 0,7, (e3,0,7), (e2,0, 5))
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Orthogonal Representation — Example

H(fo) = ((e1,11, Z), (es, 111, 3X), (€4, 0, ), (e3, 0, 7), (2,0, Z))
H(f1) = ((ex, OO ) (6 . %)7 (es,00, 7))
H(f2) — ((657 000, 3 P )7 (667 11, g)a (637 @7 7T)7 (647 (Z)v %))

1
fo
1 L%Q,w HAVAaW.
@62 — Y 62W
0
€14 )
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Orthogonal Representation — Example

H(fo) = ((e1,11, Z), (es, 111, 3X), (€4, 0, ), (e3, 0, 7), (2,0, Z))
H(f1) = ((ex, OO ) (6 . %)7 (es,00, 7))
H(f2) — ((657 000, 3 P )7 (667 11, g)a (637 @7 7T)7 (647 (Z)v %))

1
fo
! L%Q, WAVALTAW
€3 0 a2 6 7T
e
@66@ * 6 k&
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Orthogonal Representation — Example

H(fo) = ((e1,11, Z), (es, 111, 3X), (€4, 0, ), (e3, 0, 7), (2,0, Z))

H(f1) = ((ex, OO ) (6 . %)7 (es,00, 7))
H(f2) — ((657 000, 3 P )7 (667 11, g)a (637 @7 7T)7 (647 (Z)v %))

1
Jo
1 [% /\63f\
63 O 7T)7T 3 6 71'
@66@64 6 /2
€1 4 o 0




Orthogonal Representation — Example

H(fo) = ((e1,11, Z), (es, 111, 3X), (€4, 0, ), (e3, 0, 7), (2,0, Z))

H(f1) = ((ex, OO ) (6 . %)7 (es,00, 7))
H(f2) — ((657 000, 3 P )7 (667 11, g)a (637 @7 7T)7 (647 (Z)v %))

1
fo
1 3 /\63f\
63 0 7T)7T 3 6 71'
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Orthogonal Representation — Example

H(fo) = ((e1,11, Z), (es, 111, 3X), (€4, 0, ), (e3, 0, 7), (2,0, Z))

H(f1) = ((ex, OO ) (6 . %)7 (es,00, 7))
H(f2) — ((657 000, 3 P )7 (667 11, g)a (637 @7 7T)7 (647 (Z)v %))

1
Jo
1 [zﬁ,w - /\63/\
O % 2 71' 7'('
1 €6 1 f2
0
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Orthogonal Representation — Example

H(fO) — ((617 117 %)7 (657 1117 3%)7 (647 ®7 77)7 (637 @7 77)7 (627 ®7 %))
H(f1) = ((e1,00, %), (e2,0, %), (es,00, 7))
H(f2) — ((657 000, %)7 (667 11, %)7 (637 ®7 7T)7 (647 (Z)a %))

1 1
fo 0 O
1—4? v b ) OSSO L 7
O > Zf 2 PR 7T 4
0 L
1 €6 1 f2
0 0
1 €5 1
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Orthogonal Representation — Example

H(fO) — ((617 117 %)7 (657 1117 3%)7 (647 ®7 77)7 (637 @7 77)7 (627 ®7 %))
H(f1) = ((e1,00, %), (e2,0, %), (es,00, 7))
H(f2) — ((657 000, %)7 (667 11, %)7 (637 @7 7T)7 (647 (Z)a %))

1 1
Jo 0 0
1—4? SRR AN SR T oa W,
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1 €6 1 f2
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Orthogonal Representation — Example

H(fO) — ((617 117 %)7 (657 1117 3%)7 (647 ®7 77)7 (637 @7 77)7 (627 ®7 %))
H(f1) = ((e1,00, %), (e2,0, %), (es,00, 7))
H(f2) — ((657 0007 %)7 (667 117 % 7(637 ®77T)7 (647 (Z)v %))

A
fo L0 0
1 2
0 |7 % €2 r €3 1 €4 3x
e3 2 37 —0— p 77 2
o 2f 2 |2 2
1
€6 Cf_;/ . 0 o /2
1 €6 1
€5 ° 0 0
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Orthogonal Representation — Example

H(fO) — ((617 117 %)7 (657 1117 3771-)7 (647 ®7 77)7 (637 ®7 77)7 (627 ®7 %))
H(f1) = ((e1,00, %), (e2,0, %), (es,00, 7))
H(f2) — ((657 0007 %)7 (667 117 % 7(637 @77‘-)7 (647 (Z)a %))

1 €1 4
fo L0 0
1 2
0 =" €2 1 €3 1 €4 3p
e3 2 3w p p 77 2
o 2 52 2
J1
ee @ €4 0 0 f2
1 €6 1
€5 ° 0 0
1 €5 1

Coordinates are not fixed yet!
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Correctness of an Orthogonal Representation

1 e fO
(H1) H(G) corresponds to F', fo. 0 OI
us us e .
10—207T 32 % 45037
2 2
A
1 €6 f2
0 0




Correctness of an Orthogonal Representation

fo
(H1) H(G) corresponds to F', fo. 1|0 oll
5 5 €2 1 €3 1 €4
(H2) For each edge shared by faces f and g with ! 0 2 o — =
2 ]2 2
( 7517&1)EH(f) and( 7527&2)61{(9) 0 fl 0
1 1 f2
0 0




Correctness of an Orthogonal Representation

€1 Jo
(H1) H(G) corresponds to F', fo. —1ml
o 5 €2 5 €3 5 €4 7
(H2) For each edge shared by faces f and g with ! 0 2 W - U 3037
( ,01,01) € H(f) and ( L0, a0) € H(g), O 1 20 2 2
the sequence 01 is like 05 1 . o
0 0




Correctness of an Orthogonal Representation

€1 fO
(H1) H(G) corresponds to F', fo. ‘oo
_ 1 % % €2 7w €3 1 €4 3x
(H2) For each edge shared by faces f and ¢ with 0 =|” 3z a2
( 7517&1)EH(f) and( 7627&2)61{(9)' 0 fl 202 :
the sequence 07 is like 0», but reversed and inverted. 1 w1 J2
0 0




Correctness of an Orthogonal Representation

€1 fO
(H1) H(G) corresponds to F', fo. ‘oo
_ 1 5 5 €2 1 €3 1 €4 3
(H2) For each edge shared by faces f and ¢ with 0 =|” 3z a2
( 7517&1)EH(f) and( 7627&2)61{(9)' 0 fl 202 2
the sequence 07 is like 0», but reversed and inverted. 1 w1 J2
(H3) Let |0|g (resp. |0|1) be the number of zeros . : e : .
(resp. ones) in 0, and let r = (e, 0, ).

Let C(r) := |6]o — |01 — o/ % + 2.



Correctness of an Orthogonal Representation
(H1) H(G) corresponds to F', fo.
(H2) For each edge shared by faces f and ¢ with 0

( 7517&1)EH(f) and ( 7627&2)61{(9)1
the sequence 07 is like 0,, but reversed and inverted.

(H3) Let |0|g (resp. |0|1) be the number of zeros :

(resp. ones) in 0, and let r = (e, 0, ).
Let C(r) :=[d]o — 0|1 — /T + 2.
For each face f, it holds that:

) . fo
0 0

12 2€ 71 €3 7 €4 3n
s .- m |z T x|’

2 ! 2 |2 2

L 0

0

€5 1



Correctness of an Orthogonal Representation
(H1) H(G) corresponds to F', fo.

(H2) For each edge

( 7517&1)EH(f) and ( 7627&2)61{(9)1
the sequence 07 is like 0,, but reversed and inverted.

(H3) Let |0|g (resp. |0|1) be the number of zeros :

Io OI
shared by faces f and g with ! 0 - :

(resp. ones) in 0, and let r = (e, 0, ).
Let C(r) :=[d]o — 0|1 — /T + 2.
For each face f, it holds that:

S C(r)—{4 if f = fo

+4 otherwise.



Correctness of an Orthogonal Representation

1 €1 1 fO
(H1) H(G) corresponds to F', fo. 0 O
_ 1 5 5 €2 1 €3 1 €4 3x

(H2) For each edge shared by faces f and ¢ with 0 =|” 3z 0 O e

( 7517&1)€H(f) and ( 7627&2)61{(9)' 0 fl 0

the sequence 07 is like 0», but reversed and inverted. 1 e 1 [
(H3) Let |0|g (resp. |0|1) be the number of zeros . : : .

(resp. ones) in 0, and let r = (e, 0, ). O . 5 _

Let C(r) :=[d]o — 0|1 — /T + 2. (€30, 7)) i

For each face f, it holds that: C’((64, 0,5)= — — +2=

rCH(S) +4 otherwise. C’(( %)) _ _ _ Lo—



Correctness of an Orthogonal Representation

1 €1 1 fO
(H1) H(G) corresponds to F', fo. 0 O
_ 1 5 5 €2 1 €3 1 €4 3x

(H2) For each edge shared by faces f and ¢ with 0 =|” 3z 0 O e

( 7517&1)€H(f) and ( 7627&2)61{(9)' 0 fl 0

the sequence 07 is like 0», but reversed and inverted. 1 e 1 [
(H3) Let |0|g (resp. |0|1) be the number of zeros . : : .

(resp. ones) in 0, and let r = (e, 0, ). O _ B 5 _

Let C(r) :=[d]o — 0|1 — /T + 2. (€30, 7)) i

For each face f, it holds that: C’((64, 0,5)= — — +2=

rCH(S) +4 otherwise. C’(( %)) _ _ _ Lo—



Correctness of an Orthogonal Representation

1 €1 1 fO
(H1) H(G) corresponds to F', fo. 0 O
_ 1 5 5 €2 1 €3 1 €4 3x

(H2) For each edge shared by faces f and ¢ with 0 =|” 3z 0 O e

( 7517&1)€H(f) and ( 7627&2)61{(9)' 0 fl 0

the sequence 07 is like 0», but reversed and inverted. 1 e 1 [
(H3) Let |0|g (resp. |0|1) be the number of zeros . : : .

(resp. ones) in 0, and let r = (e, 0, ). O _ 5 _

Let C(r) :=[d]o — 0|1 — /T + 2. (€30, 7)) i

For each face f, it holds that: C’((64, 0,5)= — — +2=

rCH(S) +4 otherwise. C’(( %)) _ _ _ Lo—



Correctness of an Orthogonal Representation

1 €1 1 fO
(H1) H(G) corresponds to F', fo. 0 O
_ 1 g % €2 r €3 1 €4 3n

(H2) For each edge shared by faces f and ¢ with 0 =|” 3z 0 O e

( 7517&1)€H(f) and ( 7627&2)61{(9)' 0 fl 0

the sequence 07 is like 0», but reversed and inverted. 1 e 1 [
(H3) Let |0|g (resp. |0|1) be the number of zeros . : : .

(resp. ones) in 0, and let r = (e, 0, ). O _0_0_249—

Let C(r) :=[d]o — 0|1 — /T + 2. ((e3,0, 7)) = i

For each face f, it holds that: C’((64, 0,5)= — — +2=

rCH(S) +4 otherwise. C’(( %)) _ _ _ Lo—



Correctness of an Orthogonal Representation

1 €1 1 fO
(H1) H(G) corresponds to F', fo. 0 O
_ 1 5 5 €2 1 €3 1 €4 3x

(H2) For each edge shared by faces f and ¢ with 0 =|” 3z 0 O e

( 7517&1)€H(f) and ( 7627&2)61{(9)' 0 fl 0

the sequence 07 is like 0», but reversed and inverted. 1 e 1 [
(H3) Let |0|g (resp. |0|1) be the number of zeros . : : .

(resp. ones) in 0, and let r = (e, 0, ). O 0 0-_24+92—0

Let C(r) :=[d]o — 0|1 — /T + 2. (€30, 7)) i

For each face f, it holds that: C’((64, 0,5)= — — +2=

rCH(S) +4 otherwise. C’(( %)) _ _ _ Lo—



Correctness of an Orthogonal Representation

1 €1 1 fO
(H1) H(G) corresponds to F', fo. 0 O
_ 1 % % €2 7w €3 1 €4 3x

(H2) For each edge shared by faces f and ¢ with 0 =|” 3z 0 O e

( 7517&1)€H(f) and ( 7527&2)61{(9)' 0 fl 0

the sequence 07 is like 0», but reversed and inverted. 1 e 1 [
(H3) Let |0|g (resp. |0|1) be the number of zeros . : : .

(resp. ones) in 0, and let r = (e, 0, ). O 0 0-_24+92—0

Let C(r) :=[d]o — 0|1 — /T + 2. (€30, 7)) i

For each face f, it holds that: C((es,0,5))=0—-0—-1+42=

rCH(S) +4 otherwise. C’(( 711’@): _ _ 19—



Correctness of an Orthogonal Representation

1 €1 1 fO
(H1) H(G) corresponds to F', fo. 0 O
_ 1 % % €2 1 €3 1 €4 3

(H2) For each edge shared by faces f and ¢ with 0 =|” 3z 0 O e

( 7517&1)€H(f) and ( 7627&2)61{(9)' 0 fl 0

the sequence 07 is like 0», but reversed and inverted. 1 TR
(H3) Let |0|g (resp. |0|1) be the number of zeros . : : .

(resp. ones) in 0, and let r = (e, 0, ). O 0 0-_24+92—0

Let C(r) :=[d]o — 0|1 — /T + 2. (€30, 7)) i

For each face f, it holds that: C((es,0,5))=0—-0-142=1

rCH(S) +4 otherwise. C’(( 711’@): _ _ 19—



Correctness of an Orthogonal Representation

1 €1 1 fO
(H1) H(G) corresponds to F', fo. Io OI
_ 1 5 5 €2 5 €3 1 €4 3p

(H2) For each edge shared by faces f and ¢ with 0 =|” 3z 0 O e

( 7517@1)€H(f) and ( ,(52,042)61{(9), 0 J1 0

the sequence 07 is like 0», but reversed and inverted. 1 —q 2
(H3) Let |0|g (resp. |0|1) be the number of zeros . : : .

(resp. ones) in 0, and let r = (e, 0, ). O 0 0-_24+92—0

Let C(r) :=[d]o — 0|1 — /T + 2. ((e3,0,7) i

For each face f, it holds that: C((es,0,5)=0-0—-1+2=1

+4 otherwise.

%
) C(r)—{4 tI = C((¢5,000, 3
2



Correctness of an Orthogonal Representation

1 €1 1 fO
(H1) H(G) corresponds to F', fo. Io OI
_ 1 % % €2 7w €3 1 €4 3x
(H2) For each edge shared by faces f and ¢ with 0 =|” 3z 0 O e
( 7517&1)€H(f) and ( 7527&2)61{(9)' 0 fl 0
the sequence 07 is like 0», but reversed and inverted. 1 —q 2
(H3) Let |0|g (resp. |0|1) be the number of zeros . : : .
(resp. ones) in 0, and let r = (e, 0, ). O 0 0-_24+92—0
Let C(r) :=[d]o — 0|1 — /T + 2. (€30, 7)) i
For each face f, it holds that: C((es,0,5))=0—-0-142=1
3 c(r)_{j 'fti::fo C((75,000,2)) =3 -0 —1+2 =
rCH(S) +4 otherwise. C’(( 711’@): _ _ 19—



Correctness of an Orthogonal Representation

1 €1 1 fO
(H1) H(G) corresponds to F', fo. Io OI
_ 1 5 5 €2 5 €3 1 €4 3p

(H2) For each edge shared by faces f and ¢ with 0 =|” 3z 0 O e

( 7517@1)€H(f) and ( ,(52,042)61{(9), 0 J1 0

the sequence 07 is like 0», but reversed and inverted. 1 —q 2
(H3) Let |0|g (resp. |0|1) be the number of zeros . : : .

(resp. ones) in 0, and let r = (e, 0, ). O 0 0-_24+92—0

Let C(r) :=[d]o — 0|1 — /T + 2. (€30, 7)) i

For each face f, it holds that: C((es,0,5)=0-0—-1+2=1

+4 otherwise.

%
) C(r)—{4 tI = C((¢5,000, 3
2



Correctness of an Orthogonal Representation

1 €1 1 fO
(H1) H(G) corresponds to F', fo. 0 O
_ 1 g % €2 r €3 1 €4 3n

(H2) For each edge shared by faces f and ¢ with 0 =|” 3z 0 O e

( 7517&1)€H(f) and ( 7527&2)61{(9)' 0 fl 0

the sequence 07 is like 0,, but reversed and inverted. 1 1 fr
(H3) Let |0|g (resp. |0|1) be the number of zeros . : : .

(resp. ones) in 0, and let r = (e, 0, ). O 0 0-_24+92—0

Let C(r) :=[d]o — 0|1 — /T + 2. (3,0, 7)) = i

For each face f, it holds that: C’((e4, 0,Z)=0-0—-1+2=1

) =
N=3-0—14+2=4

> O(r)—{“ /= C((¢s,000,
,T)=0-2—-142=

+4 otherwise.
C«



Correctness of an Orthogonal Representation

1 €1 1 fO
(H1) H(G) corresponds to F', fo. 0 O
_ 1 g % €2 r €3 1 €4 3n

(H2) For each edge shared by faces f and ¢ with 0 =|” 3z 0 O e

( 7517&1)€H(f) and ( 7527&2)61{(9)' 0 fl 0

the sequence 07 is like 0,, but reversed and inverted. 1 1 fr
(H3) Let |0|g (resp. |0|1) be the number of zeros . : : .

(resp. ones) in 0, and let r = (e, 0, ). O 0 0-_24+92—0

Let C(r) :=[d]o — 0|1 — /T + 2. (3,0, 7)) = i

For each face f, it holds that: C’((e4, 0,Z)=0-0—-1+2=1

) =
N=3-0—14+2=4

> O(r)—{“ /= C((¢s,000,
L,I)=0-2—-1+42=—1

+4 otherwise.
C«



Correctness of an Orthogonal Representation

1 €1 1 fO
(H1) H(G) corresponds to F', fo. 0 O
_ 1 % % €2 1 €3 1 €4 3
(H2) For each edge shared by faces f and ¢ with 0 =|” 3z 0 O e
( 7517&1)€H(f) and ( 7527&2)61{(9)' 0 fl 0
the sequence 07 is like 0», but reversed and inverted. 1 e 1 [
(H3) Let |0|g (resp. |0|1) be the number of zeros . : : .
(resp. ones) in 0, and let r = (e, 0, ). O 0 0-_24+92—0
Let C(r) :=[d]o — 0|1 — /T + 2. ((e3,0, 7)) = i
For each face f, it holds that: C’((e4, 0,5)=0-0—-142=1
S C(T)_{j Ifti]f:fo C((+5,000,2)) =3—-0—1+2=4
rEH(f) T4 otherwise. C(( ,I)=0-2—-1+4+2=—1




Correctness of an Orthogonal Representation

1 €1 1 fO
(H1) H(G) corresponds to F', fo. 0 O
_ 1 % % €2 1 €3 1 €4 3
(H2) For each edge shared by faces f and ¢ with 0 =|” 3z 0 O e
( 7517&1)€H(f) and ( 7527&2)61{(9)' 0 fl 0
the sequence 07 is like 0», but reversed and inverted. 1 e 1 [
(H3) Let |0|g (resp. |0|1) be the number of zeros . : : .
(resp. ones) in 0, and let r = (e, 0, ). O 0 0-_24+92—0
Let C(r) :=[d]o — 0|1 — /T + 2. ((e3,0, 7)) = i
For each face f, it holds that: C’((e4, 0,5)=0-0—-142=1
S C(T)_{j Ifti]f:fo C((+5,000,2)) =3—-0—1+2=4
rEH(f) T4 otherwise. C(( ,I)=0-2—-1+4+2=—1




Correctness of an Orthogonal Representation

1 e fO
(H1) H(G) corresponds to F', fo. Io OI
_ 1 5 5 €2 1 €3 1 €4 3x
(H2) For each edge shared by faces f and ¢ with 0 =" 3z 0 O e
( 7517&1)€H(f) and ( 7627&2)61{(9)' 0 fl 0
the sequence 07 is like 0,, but reversed and inverted. 1 e 1 [
(H3) Let |0]p (resp. |0|1) be the number of zeros . : L .
(resp. ones) in 0, and let r = (e, 0, ). O C0_0_249-0
Let C(r) :=[d]o — 0|1 — /T + 2. (€30, 7)) i
For each face f, it holds that: C((es,0,5))=0—-0-142=1
9 C(T)_{j Ifti]f:fo C((¢5,000,2)=3-0—-1+2=4
reH(f) T4 otherwise. C(c6,11,2)) =0—2—1+2=—1
(H4) For each vertex v, the sum of incident angles is 27. Z C(r) = +4



8-1

Reminder: s—t Flow Networks

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Flow network (G; S, T; u) with

B directed graph G

B sources S C V(G), sinks T' C V(G)
B edge capacity u: E(G) — Ry U {0}

A function X : E(G) — Ry is called S=T flow if:

0<X(4,7) <ulij)  V(,75) € E(G)
o X)) - ) X(i)=0  VieV(G)\(SUT)

(2,5)€ E(G) (4,2)€ E(G)

A maximum S-T flow is an S-T' flow where Z X(¢,7) — Z X (7,17) is maximized.
(i,§)EE(G),i€S (4,1)€B(G) i€ S
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Reminder: s—t Flow Networks

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Flow network (G, s, t; u) with

B directed graph G

B source s € V(G), sinkt € V(G)

B edge capacity u: E(G) — R U {0}

A function X: E(G) — Ry is called S=T flow if:

0<X(4,7) <ulij)  V(,75) € E(G)
o X)) - ) X(i)=0  VieV(G)\(SUT)

(2,5)€ E(G) (4,2)€ E(G)

A maximum S-T flow is an S-T' flow where Z X(¢,7) — Z X (7,17) is maximized.
(i,§)EE(G),i€S (4,1)€B(G) i€ S
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Reminder: s—t Flow Networks

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Flow network (G, s, t; u) with

B directed graph G

B source s € V(G), sinkt € V(G)

B edge capacity u: E(G) — R U {0}

A function X: E(G) — Ry is called s— flow if:

0<X(¢,7) <uli,j) V(7)€ E(G)
Yo X)) - ) X(i)=0  VieV(G)\{st}

(2,5)€ E(G) (4,2)€ E(G)

A maximum S-T flow is an S-T' flow where Z X(¢,7) — Z X (7,17) is maximized.
(i,§)EE(G),i€S (4,1)€B(G) i€ S
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Reminder: s—t Flow Networks

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Flow network (G, s, t; u) with

B directed graph G

B source s € V(G), sinkt € V(G)

B edge capacity u: E(G) — R U {0}

A function X: E(G) — Ry is called s— flow if:

0<X(¢,7) <uli,j) V(7)€ E(G)
Yo X)) - ) X(i)=0  VieV(G)\{st}

(2,5)€ E(G) (4,2)€ E(G)

A maximum s—t flow is an s—t flow where Z X(s,7) — Z X (7,s) is maximized.
(s,7)EE(G) (4,5)€E(G)
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Reminder: s—t Flow Networks

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Flow network (G, s, t; u) with

B directed graph G

B source s € V(G), sinkt € V(G)

B edge capacity u: E(G) — R U {0}

A function X: E(G) — Ry is called s— flow if:

0<X(¢,7) <uli,j) V(7)€ E(G)
Yo X)) - ) X(i)=0  VieV(G)\{st}

(2,5)€ E(G) (4,2)€ E(G)

A maximum s—t flow is an s—t flow where Z X(s,7) — Z X (7,s) is maximized.
(s,7)EE(G) (4,5)€E(G)
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Reminder: s—t Flow Networks

Y A [Finnrind, CC BY-SA 3.0,
- — : via Wikimedia Commons
3/3 2%k T |
1/1) 2/2 b
4/5 IKEB >j\ 3/3
. . 3/8 3 ™1/
Flow network (G; s, t; 1) with 45 (35
m directed graph G U ' {ED
. 272\
B source s € V(G), sinkt € V(G) : & »
] 35X T
B edge capacity u: E(G) — R U {0} 56 e A 22
- 3/3

A function X: E(G) — Ry is called s— flow if:

0<X(¢,7) <uli,j) V(7)€ E(G)
Yo X)) - ) X(i)=0  VieV(G)\{st}

(2,5)€ E(G) (4,2)€ E(G)

A maximum s—t flow is an s—t flow where Z X(s,7) — Z X (7,s) is maximized.
(s,7)EE(G) (4,5)€E(G)
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Reminder: s—t Flow Networks

A o NSV = N T\ [Finnrind, CC BY-SA 3.0,
- ' IR '\A\"‘\,. via Wikimedia Commons]
3/3 ™y 2Y2
1/1) 2/2 A
] m 3/8 ] /1
Flow network (G} s,t; 1) with b5 (o N
B directed graph G - : {:D
5/% 2,"2 \
B source s € V(G), sinkt € V(G) 5 & /2
B edge capacity u: E(G) — R U {0} 6/8 o 3/r“1f/‘fl~{('u2)2
] ] ] ] 3/3
A function X: E(G) — Ry is called s— flow if:
O

0<X(¢,7) <uli,j) V(7)€ E(G)
Yo X)) - ) X(i)=0  VieV(G)\{st}

(2,5)€ E(G) (4,2)€ E(G)

A maximum s—t flow is an s—t flow where Z X(s,7) — Z X (7,s) is maximized.
(s,7)EE(G) (4,5)€E(G)
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Reminder: s—t Flow Networks

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Flow network (G, s, t; u) with

B directed graph G

B source s € V(G), sinkt € V(G)

B edge capacity u: E(G) — R U {0}

A function X: E(G) — Ry is called s— flow if:

0<X(¢,7) <uli,j) V(7)€ E(G)
Yo X)) - ) X(i)=0  VieV(G)\{st}

(2,5)€ E(G) (4,2)€ E(G)

A maximum s—t flow is an s—t flow where Z X(s,7) — Z X (7,s) is maximized.
(s,7)EE(G) (4,5)€E(G)
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Reminder: s—t Flow Networks

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Flow network (G, s, t; u) with

B directed graph G

B source s € V(G), sinkt € V(G)

B edge capacity u: E(G) — R U {0}

A function X: E(G) — Ry is called s— flow if:

0< X(2,7) <ule,7)  V(i,5) € E(G)
Yo X)) - ) X(i)=0  VieV(G)\{st} >

(2,5)€ E(G) (4,2)€ E(G)

A maximum s—t flow is an s—t flow where Z X(s,7) — Z X (7,s) is maximized.
(s,7)EE(G) (4,5)€E(G)
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General Flow Network

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Flow network (G; S, T; 1) with

B directed graph G

B sources S C V(G), sinks T' C V(G)
B edge capacity u: E(G) — R U {0}

A function X: E(G) — Ry is called S=T flow if:

0< X(4,7) <ulij)  V(,75) € E(G)
X)) - ) X(i)=0  VieV(G)\(SUT)

(2,5)€ E(G) (4,2)€ E(G)

A maximum S-T flow is an S-T' flow where Z X(¢,7) — Z X (7,17) is maximized.
(i,§)EE(G),i€S (4,1)€B(G) i€ S
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General Flow Network

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Flow network (G; S, T;/;u) with

B directed graph G

B sources S C V(G), sinks T' C V(G)
B edge capacity u: E(G) — R U {0}

A function X: E(G) — Ry is called S=T flow if:

0< X(4,7) <ulij)  V(,75) € E(G)
X)) - ) X(i)=0  VieV(G)\(SUT)

(2,5)€ E(G) (4,2)€ E(G)

A maximum S-T flow is an S-T' flow where Z X(¢,7) — Z X (7,17) is maximized.
(i,§)EE(G),i€S (4,1)€B(G) i€ S
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General Flow Network

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Flow network (G; S, T;/;u) with
B directed graph G
B sources S CV(G), sinks T C V(G)

B edge lower bound (1 E(G) — RS
B edge capacity u: E(G) — R U {0}

A function X: E(G) — Ry is called S=T flow if:

0<X(¢,7) <uli,y) V(7)€ E(G)
X)) - ) X(i)=0  VieV(G)\(SUT)

(2,5)€ E(G) (4,2)€ E(G)

A maximum S-T flow is an S-T' flow where Z X(¢,7) — Z X (7,17) is maximized.
(i,§)EE(G),i€S (4,1)€B(G) i€ S
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General Flow Network

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Flow network (G; S, T;/;u) with
B directed graph G
B sources S C V(G), sinks T'C V(G)

B edge lower bound (1 E(G) — RS
B edge capacity u: E(G) — R U {0}

A function X: E(G) — Ry is called S=T flow if:

0<X(¢,7) <uli,y) V(7)€ E(G)
X)) - ) X(i)=0  VieV(G)\(SUT)

(2,5)€ E(G) (4,2)€ E(G)

A maximum S-T flow is an S-T' flow where Z X(¢,7) — Z X (7,17) is maximized.
(i,§)EE(G),i€S (4,1)€B(G) i€ S
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General Flow Network

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Flow network (G; S, T;/;u) with
B directed graph G
B sources S C V(G), sinks T'C V(G)

B edge lower bound (1 E(G) — RS
B edge capacity u: E(G) — R U {0}

A function X: E(G) — Ry is called S=T flow if:

(e.7) < X(1,7) <wuli,g)  V(,7) € BE(G)
X)) - ) X(i)=0  VieV(G)\(SUT)

(2,5)€ E(G) (4,2)€ E(G)

A maximum S-T flow is an S-T' flow where Z X(¢,7) — Z X (7,17) is maximized.
(i,§)EE(G),i€S (4,1)€B(G) i€ S
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General Flow Network

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Flow network (G;b; /; 1) with _
m directed graph G /3/34/4/5 "
B node production/consumption b: V(G) — R with » ;15 0(¢) =0 .

B edge lower bound (1 E(G) — RS ! T ON/2 e
B edge capacity u: E(G) — R U {0} 6B

A function X: E(G) — Ry is called S=T flow if:

((e.7) < X(1,5) Swuli,g)  V(,7) € B(G)
X)) - ) X(i)=0  VieV(G)\(SUT)

(2,5)€ E(G) (4,2)€ E(G)

A maximum S-T flow is an S-T' flow where Z X(¢,7) — Z X (7,17) is maximized.
(i,§)EE(G),i€S (4,1)€B(G) i€ S
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General Flow Network

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Flow network (G;b; /; 1) with _
m directed graph G /3/34/4/5 "
B node production/consumption b: V(G) — R with » ;15 0(¢) =0 .

B edge lower bound (1 E(G) — RS ! T ON/2 e
B edge capacity u: E(G) — R U {0} 6B

A function X : E(G) — Ry is called valid flow if:

0 g) < X(,7) <wulig) V(i J) € B(G)
Yo X(i )= ) X(j.i)=0b(i) VieV(G)

(2,5)€ E(G) (4,2)€ E(G)

A maximum S-T flow is an S-T' flow where Z X(¢,7) — Z X (7,17) is maximized.
(i,§)EE(G),i€S (4,1)€B(G) i€ S
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General Flow Network

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Flow network (G;b; /; 1) with _
B directed graph G /3/34/4/5 ” 3
B node production/consumption b: V(G) — R with » ;15 0(¢) =0 ]

B edge lower bound (' E(G) — Rar ' £ OR/2

¥ 1/2/2

B edge capacity u: E(G) — R U {0} ers L

A function X : E(G) — Ry is called valid flow if:

(e g) < X(1,7) <wulig) V(i j) € B(G)
Yo X(i )= ) X(j.i)=0b(i) VieV(G)

(2,5)€ E(G) (4,2)€ E(G)

(i,4)€E(G),i€S (1) EE(G)i€S
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General Flow Network

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Flow network (G;b; /; 1) with _
m directed graph G /3/34/4/5 " \
B node production/consumption b: V(G) — R with » ;15 0(¢) =0

B edge lower bound (1 E(G) — RS ! T ON/2 e
B edge capacity u: E(G) — R U {0} 6B

A function X : E(G) — Ry is called valid flow if:

0 g) < X(,7) <wulig) V(i J) € B(G)
Yo X(i )= ) X(j.i)=0b(i) VieV(G)

(2,5)€ E(G) (4,2)€ E(G)

m Cost function: cost: B(G) — R§
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General Flow Network

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Flow network (G;b; /; 1) with _
m directed graph G /3/34/4/5 " \
B node production/consumption b: V(G) — R with » ;15 0(¢) =0

B edge lower bound (1 E(G) — RS ! T ON/2 e
B edge capacity u: E(G) — R U {0} 6B

A function X : E(G) — Ry is called valid flow if:

0 g) < X(,7) <wulig) V(i J) € B(G)
Yo X(i )= ) X(j.i)=0b(i) VieV(G)

(2,5)€ E(G) (4,2)€ E(G)

m Cost function: cost: B(G) — R§ and cost(X) := Z(i’j)eE(G) cost(7,7) - X(i,7)
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General Flow Network

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Flow network (G;b; /; 1) with _
B directed graph G /3/34/4/5 ” 3
B node production/consumption b: V(G) — R with » ;15 0(¢) =0 ]

B edge lower bound (' E(G) — Rar ' £ OR/2

¥ 1/2/2

B edge capacity u: E(G) — R U {0} ers L

A function X : E(G) — Ry is called valid flow if:

0 g) < X(,7) <wulig) V(i J) € B(G)
Yo X(i )= ) X(j.i)=0b(i) VieV(G)

(2,5)€ E(G) (7,0)€ E(G)
m Cost function: cost: B(G) — R§ and cost(X) := > (i.)er(q) cost(s, 7) - X (4, 7)

X is a minimum-cost flow if X is a valid flow that minimizes cost(.X).



General Flow Network — Algorithms

Polynomial Algorithms

# Dueto Year
1 Edmonds and Karp 1972
2 Rock 1980
3 Rock 1980
4 Bland and Jensen 1985
5 Goldberg and Tarjan 1987
6 Goldberg and Tarjan 1988
7 Ahuja, Goldberg, Orlin and Tarjan 1988
Strongly Polynomial Algorithms
# Dueto Year
1 Tardos 1985
2 Orlin 1984
3 Fujishige 1986
4 Galil and Tardos 1986
5 Goldberg and Tarjan 1987
6 Goldberg and Tarjan 1988
7 Orlin (this paper) 1988
S(n, m) = O(m+nlogn)
S(n,m,C) = O(Min {m + nmy/log C),
(m log log C))

Min, m) = Ofmin (nm + n?*€, nm log n)

where € is any fixed constant,
Mn, m, U) = Ofnm log ( o+log U +2))

Running Time

O((n + m") log U 5(n, m, nC))
O((n + m') log U S(n, m, nC))
O(n log C M{n, m, U))

Of(m log C M(n, m, U))

O(nm log (n2 /m) log (nC))
O(nm log n log (nC)}

O(nm log log U log (nC))

Running Time

O(m4)

O((n + m)2 log n S(n, m))
O((n + m)2 log n S(n, m))
O(n log n S(n, m))
CJ'{m'n2 log n Ing[n:’-ﬁm}}
Cl[nrn2 ]r::g2 n)

O((n + m’) log n S(n, m}))

Fredman and Tarjan [1984]

Ahuja, Mehlhorn, Orlin and Tarjan [1990]
Van Emde Boas, Kaas and Zijlstra[1977]

King, Rao, and Tarjan [1991]

Ahuja, Orlin and Tarjan [1989)

[Orlin 1991]

n: Fvertices
m: #edges
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10 - 2
n: Fvertices

General Flow Network — Algorithms m: dredges

Polynomial Algorithms

# Dueto Year
1 Edmonds and Karp 1972
2 Rock 1980
3 Rock 1980
4 Bland and Jensen 1985
5 Goldberg and Tarjan 1987
6 Goldberg and Tarjan 1988
7 Ahuja, Goldberg, Orlin and Tarjan 1988
Strongly Polynomial Algorithms
# Dueto Year
1 Tardos 1985
2 Orlin 1984
3 Fujishige 1986
4 Galil and Tardos 1986
5 Goldberg and Tarjan 1987
6 Goldberg and Tarjan 1988
7 Orlin (this paper) 1988
S(n, m) = O(m+nlogn)
S(n,m,C) = O(Min {m + nmy/log C),
(m log log C))

Min, m) = Ofmin (nm + n?*€, nm log n)

where € is any fixed constant,
M(n, m, U) = O(nm log ( :ﬂﬁgm 2))

Running Time

O((n + m") log U 5(n, m, nC))
O((n + m') log U S(n, m, nC))
O(n log C M{n, m, U))

Of(m log C M(n, m, U))

O(nm log (n2 /m) log (nC))
O(nm log n log (nC)}

O(nm log log U log (nC))

Running Time

O(m4)

O((n + m"2 log n S(n, m))
O((n+ m"2 log n S(n, m))
O(n log n S(n, m))
D‘{m‘n2 log n ]Dgtn:’-ﬁm}}
D{nm2 ]r::g2 n)

O((n + m’) log n S(n, m}))

Fredman and Tarjan [1984]

Ahuja, Mehlhorn, Orlin and Tarjan [1990]
Van Emde Boas, Kaas and Zijlstra[1977]

King, Rao, and Tarjan [1991]

Ahuja, Orlin and Tarjan [1989)

[Orlin 1991]

Theorem. [Orlin 1991]
The minimum-cost flow problem can be solved in
O(n?log® n + m?logn) time.
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n: Fvertices

General Flow Network — Algorithms m: dredges

Polynomial Algorithms

Due to

Edmonds and Karp

Rock

Rock

Bland and Jensen

Goldberg and Tarjan

Goldberg and Tarjan

Ahuja, Goldberg, Orlin and Tarjan

=} on N o W3 B o~ H

Strongly Polynomial Algorithms

Due to

Tardos

Orlin

Fujishige

Galil and Tardos
Goldberg and Tarjan
Goldberg and Tarjan

=] O N sk W 2 — 3

Orlin (this paper)

Year
1972
1980
1980
1985
1987
1988
1988

Year
1985
1984
1986
1986
1987
1988
1988

S(n, m) = O(m+nlogn)
S(n,m,C) = O(Min {m + nmy/log C),
(m log log C))
Min, m) = Ofmin (nm + n?*€, nm log n)
where € is any fixed constant,
Mn, m, U) = Ofnm log ( o+log U +2))

Running Time

O((n + m") log U 5(n, m, nC))
O((n + m') log U S(n, m, nC))
O(n log C M{n, m, U))

Of(m log C M(n, m, U))

O(nm log (n2 /m) log (nC))
O(nm log n log (nC)}

O(nm log log U log (nC))

Running Time

O(m4)

O((n + m"2 log n S(n, m))
O((n+ m"2 log n S(n, m))
O log n S(n, m))
D‘{nrn2 log n logtn:’-ﬁm}}
C,'l{r'um2 ]r::g2 n)

O((n + m’) log n S(n, m}))

Fredman and Tarjan [1984]

Ahuja, Mehlhorn, Orlin and Tarjan [1990]
Van Emde Boas, Kaas and Zijlstra[1977]

King, Rao, and Tarjan [1991]

Ahuja, Orlin and Tarjan [1989)

|
Theorem. [Orlin 1991]

The minimum-cost flow problem can be solved in
O(n?log® n + m? logn) time.

Theorem. [Cornelsen & Karrenbauer 2011]
The minimum-cost flow problem for planar graphs

with bounded costs and face sizes can be solved in
O(n3/?) time.

[Orlin 1991]
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n: Fvertices

General Flow Network — Algorithms m: dredges

Polynomial Algorithms

Due to

Edmonds and Karp

Rock

Rock

Bland and Jensen

Goldberg and Tarjan

Goldberg and Tarjan

Ahuja, Goldberg, Orlin and Tarjan

=} on N o W3 B o~ H

Strongly Polynomial Algorithms

Due to

Tardos

Orlin

Fujishige

Galil and Tardos
Goldberg and Tarjan
Goldberg and Tarjan

=] O N sk W 2 — 3

Orlin (this paper)

Year
1972
1980
1980
1985
1987
1988
1988

Year
1985
1984
1986
1986
1987
1988
1988

S(n, m) = O(m+nlogn)
Sn,m,C) = O(Min {m+m/iog C),
(m log log C))
M(n, m) = Ofmin (nm + n?*€, nm log n)
where € is any fixed constant,
Mn, m, U) = Ofnm log ( o+log U +2))

Running Time

O((n + m") log U 5(n, m, nC))
O((n + m') log U S(n, m, nC))
O(n log C M{n, m, U))

O(m log C M(n, m, U}))

O(nm log (n2 /m) log (nC))
O(nm log n log (nC)}

O(nm log log U log (nC))

Running Time

O(m4)

O((n + m"2 log n S(n, m))
O((n+ m"2 log n S(n, m))
O log n S(n, m))
D‘{nrn2 log n logLn:’-Im}}
C,'l{ru'ﬂ2 ]r::g2 n)

O((n + m’) log n S(n, m}))

Fredman and Tarjan [1984]

Ahuja, Mehlhorn, Orlin and Tarjan [1990]
Van Emde Boas, Kaas and Zijlstra[1977]

King, Rao, and Tarjan [1991]

Ahuja, Orlin and Tarjan [1989)

|
Theorem. [Orlin 1991]

The minimum-cost flow problem can be solved in
O(n?log® n + m? logn) time.

Theorem. [Cornelsen & Karrenbauer 2011]
The minimum-cost flow problem for planar graphs

with bounded costs and face sizes can be solved in

O(n3/?) time.

ITheorem. [van den Brand, Chen, Kyng, Liu, Peng,
Probst, Sachdeva, Sidford 2023]

The minimum-cost flow problem with integral vertex

demands, edge capacities, and edge costs can be

solved in O(m!T°W) log U log C') time where U is the

maximum capacity and C' are the maximum costs.
]

[Orlin 1991]
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Topology — Shape — Metrics

Three-step approach: [Tamassia 1987]

V(G) — {'Ul,’Uz,’U?,,’U4} 34
E(G) — {1)11)27 V103, V104, V20V3, ’U2’U4}

1 "—‘[ 3
combinatorial 1 2

embedding / planar

reduce planarization orthog_onal area mini-
crossings drawing mization

VAN b<nc minimization [ 7

1

orthogonal i
2 representation = teeeoe- .é's. ...........

1
TOPOLOQY — SHAPE — METRICS
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Bend Minimization with Given Embedding

Geometric orthogonal bend minimization.
Given:  ® Plane graph G with maximum degree 4
B Combinatorial embedding F' and outer face f

Find:  Orthogonal drawing with minimum number of bends that
preserves the embedding.

Compare with the following variant:

Combinatorial orthogonal bend minimization.
Given:  m Plane graph GG with maximum degree 4

B Combinatorial embedding F' and outer face fj

Find:  Orthogonal representation H(G) with minimum
number of bends that preserves the embedding.
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Bend Minimization with Given Embedding

How to solve the
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orthogonal bend
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Combinatorial orthogonal bend minimization.
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Find:  Orthogonal representation H(G) with minimum
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Bend Minimization with Given Embedding

How to solve the
combinatorial
orthogonal bend
minimization
problem?

Idea.
Formulate as a network-flow problem:

Combinatorial orthogonal bend minimization.

Given:

Find:
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Bend Minimization with Given Embedding

How to solve the
combinatorial
orthogonal bend
minimization
problem?

Idea.
Formulate as a network-flow problem:

B a unit of flow = A%

Combinatorial orthogonal bend minimization.

Given:

Find:

B Plane graph G with maximum degree 4
B Combinatorial embedding F' and outer face fj

Orthogonal representation H((G) with minimum
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Bend Minimization with Given Embedding

How to solve the
combinatorial
orthogonal bend
minimization
problem?

Idea.
Formulate as a network-flow problem:

B a unit of flow = A%

B vertices —= faces (# £% per face)

Combinatorial orthogonal bend minimization.

Given:

Find:

B Plane graph G with maximum degree 4
B Combinatorial embedding F' and outer face fj

Orthogonal representation H((G) with minimum
number of bends that preserves the embedding.
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Bend Minimization with Given Embedding

How to solve the Idea.
combinatorial Formulate as a network-flow problem:
orth.o.gor}al Pend B a unit of flow = £7
minimization y
oroblem? B vertices — faces (# £ 7 per face)

m faces -5 neighboring faces (# bends toward the neighbor)

Combinatorial orthogonal bend minimization.
Given:  m Plane graph GG with maximum degree 4

B Combinatorial embedding F' and outer face fj

Find:  Orthogonal representation H(G) with minimum
number of bends that preserves the embedding.



Flow Network for Bend Minimization

(H1) H(G) corresponds to F', fp.

(H2) For each edge shared by
faces f and g, the sequence 0 is
reversed and inverted copy of d-.

(H3) For each face f, it holds that:
—4 if f =
> c={ T4 b
rwise.
reH(f)

(H4) For each vertex v, the sum of
incident angles is 2.
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Flow Network for Bend Minimization

(H1) H(G) corresponds to F, fo. Define flow network N(G) = ((V(G) U F, E"); b; ('; u; cost):

(H2) For each edge shared by

faces f and g, the sequence ¢ is [] E/ = {(U, f)ee’ - V(G) X F ‘ v between edges €, 6/ of @f}

reversed and inverted copy of d-.

(H3) For each face f, it holds that:
—4 if f =

ST ooy =g F NI
+4 otherwise.

reH(f)

(H4) For each vertex v, the sum of
incident angles is 2.

Directed multigraph!
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Flow Network for Bend Minimization

(H1)
(H2)

(H3)

(H4)

H(G) corresponds to F, fo. Define flow network N(G) = ((V(G) U F, E’); b; (; u; cost):

For h ed hared b

faoc:esajf ar?dg;, the seqzezcee 51yis [] E/ — {(U, f)ee’ - V(G) X F ‘ v between edges €, 6/ of @f} U
reversed and inverted copy of d-. { c Fx F | f7 g have common edge 6}

For each face f, it holds that:

=4 iff=fo
Z Cr) = {—1—4 otherwise.

reH(f)

For each vertex v, the sum of
incident angles is 2.

Directed multigraph!
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Flow Network for Bend Minimization
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Flow Network for Bend Minimization

(H1)
(H2)

(H3)

(H4)
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For each face f, it holds that:

=4 iff=fo
Z Cr) = {—1—4 otherwise.

reH(f)
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Directed multigraph!
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Flow Network for Bend Minimization

(H1) H(G) corresponds to F, fo. Define flow network N(G) = ((V(G) U F, E"); b; ('; u; cost):

H2) For each ed hared b
(H2) faoc:esajf ar?dgge, the seqzeicee 61yis [] E/ = {(U, f)ee’ - V(G) X F ‘ v between edges €, 6/ of @f} U

reversed and inverted copy of 9. { c Fx F | f, g have common edge 6}
(H3) For each face f, it holds that:
S o) = {—4 fr=4f | mbv)=4 YveV(Q)

rCH(F) +4 otherwise.

(H4) For each vertex v, the sum of
incident angles is 2.
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Flow Network for Bend Minimization

(H1) H(G) corresponds to F, fo. Define flow network N(G) = ((V(G) U F, E"); b; ('; u; cost):

H2) For each ed hared b
(H2) faoc:esajf ar?dgge, the seqzeicee 61yis [] E/ = {(U, f)ee’ - V(G) X F ‘ v between edges €, 6/ of @f} U

reversed and inverted copy of 9. { c Fx F | f, g have common edge 6}
(H3) For each face f, it holds that:

> C(T):{—“ fr=rf6 | mbv)=4 YveV(Q)

rCH(F) +4 otherwise.

(H4) For each vertex v, the sum of
incident angles is 2.

1
o
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Flow Network for Bend Minimization

(H1) H(G) corresponds to F, fo. Define flow network N(G) = ((V(G) U F, E"); b; ('; u; cost):

H2) For each ed hared b
(H2) faocejajf ar?dgge, the seqzeicee 51yis [] E/ = {(U, f)ee’ - V(G) X F ‘ v between edges €, 6/ of @f} U

reversed and inverted copy of 9. { c Fx F | f, g have common edge 6}
(H3) For each face f, it holds that:
S o) = {—4 fr=4f | mbv)=4 YveV(Q)

rCH(F) +4 otherwise.

(H4) For each vertex v, the sum of [ b(f)

incident angles is 2.
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Flow Network for Bend Minimization

(H1) H(G) corresponds to F, fo. Define flow network N(G) = ((V(G) U F, E"); b; ('; u; cost):

H2) For each ed hared b
(H2) faocejajf ar?dgge, the seqzeicee 51yis [] E/ = {(U, f)ee’ - V(G) X F ‘ v between edges €, 6/ of @f} U

reversed and inverted copy of 9. { c Fx F | f, g have common edge 6}
(H3) For each face f, it holds that:
S o) = {—4 fr=4f | mbv)=4 YveV(Q)

rCH(F) +4 otherwise.

(H4) For each vertex v, the sum of [ b(f)

incident angles is 2.

1
21T 3 1]
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Flow Network for Bend Minimization

(H1) H(G) corresponds to F, fo. Define flow network N(G) = ((V(G) U F, E"); b; ('; u; cost):

H2) For each ed hared b
(H2) faocejajf ar?dgge, the seqzeicee 51yis [] E/ = {(U, f)ee’ - V(G) X F ‘ v between edges €, 6/ of @f} U

reversed and inverted copy of 9. { c Fx F | f, g have common edge 6}
(H3) For each face f, it holds that:
S o) = {—4 fr=4f | mbv)=4 YveV(Q)

rCH(F) +4 otherwise.

(H4) For each vertex v, the sum of [ b(f)

incident angles is 2.

1
21T 3 1]
"
1 1
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Flow Network for Bend Minimization

(H1) H(G) corresponds to F, fo. Define flow network N(G) = ((V(G) U F, E"); b; ('; u; cost):

(H2) For each edge shared by

faces f and g, the sequence ¢ is [] E/ = {(U, f)ee’ - V(G) X F ‘ v between edges €, 6/ of @f} U

reversed and inverted copy of 9. { c Fx F | f, g have common edge 6}
(H3) For each face f, it holds that:

5 C(T):{—“ fr=f MW bv)=4 YveV(GQ)

rCH(F) +4 otherwise.

—4 if f — f07
(H4) iFncidenthangltes is 27trh f - b(f) =2 degG(f) " {

+4 otherwise

1
27T 5 1
—6
1 1
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Flow Network for Bend Minimization

(H1)
(H2)

(H3)

(H4)

H(G) corresponds to F, fo. Define flow network N(G) = ((V(G) U F, E’); b; (; u; cost):

For each edge shared by

faces f and g, the sequence ¢ is [] E/ = {(U, f)ee’ - V(G) X F ‘ v between edges €, 6/ of @f} U

reversed and inverted copy of d-. { c Fx F | f g have common edge 6}
)
For each face f, it holds that:

> C(T):{—“ fr=rf6 | mbv)=4 YveV(Q)

rCH(F) +4 otherwise.

?
4 i f=fo,0 = 2 Oblw)=0
_For. each vertex_v, the sum of ] b — _2 de + weVIGUF
incident angles is 2. (f) gG(f) {_|_4 otherwise cV(G)U

1
21T 3 1]
"
1 1
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Flow Network for Bend Minimization

(H1)
(H2)

(H3)

(H4)

H(G) corresponds to F, fo. Define flow network N(G) = ((V(G) U F, E’); b; (; u; cost):

For each edge shared by

faces f and g, the sequence ¢ is [] E/ = {(U, f)ee’ - V(G) X F ‘ v between edges €, 6/ of @f} U

reversed and inverted copy of d-. { c Fx F | f g have common edge 6}
)
For each face f, it holds that:

> C(T):{—“ fr=rf6 | mbv)=4 YveV(Q)

rCH(F) +4 otherwise.

4 i f=fo,0 = 2 Oblw)=0
_For. each vertex_v, the sum of ] b — _2 de _|_ weEVIC\UF dler
incident angles is 27r. (f) gG(f) {_|_4 otherwise eV (G)U (E le )

1
21T 3 1]
"
1 1
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Flow Network for Bend Minimization

(H1)
(H2)

(H3)

(H4)

H(G) corresponds to F, fo. Define flow network N(G) = ((V(G) U F, E’); b; (; u; cost):

For each edge shared by

faces f and g, the sequence ¢ is [] E/ = {(U, f)ee’ - V(G) X F ‘ v between edges €, 6/ of @f} U

reversed and inverted copy of d-. { c Fx F | f g have common edge 6}
)
For each face f, it holds that:

> C(T):{—“ fr=rf6 | mbv)=4 YveV(Q)

rCH(F) +4 otherwise.

4 i f=fo,0 = 2 Oblw)=0
_For. each vertex_v, the sum of ] b — _2 de _|_ weEVIC\UF dler
incident angles is 27r. (f) gG(f) {_|_4 otherwise eV (G)U (E le )

V(v,f)e E',ve V(G),f € F
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Flow Network for Bend Minimization

(H1) H(G) corresponds to F, fo. Define flow network N(G) = ((V(G) U F, E"); b; ('; u; cost):

H2) For each ed hared b
(H2) faocejaj"C ar?dgge, the seqzeicee 51yis [] E/ = {(U, f)ee’ - V(G) X F ‘ v between edges €, 6/ of (9f} U

reversed and inverted copy of 9. { c Fx F | f, g have common edge 6}
(H3) For each face f, it holds that:

> C(T):{—“ fr=rf6 | mbv)=4 YveV(Q)

rCH(F) +4 otherwise.

4 i f=fo,0 = 2 Oblw)=0
(H4) _For. each vertex v, the sum of H ) — —2de + weVICUE Eul
incident angles is 27r. (f) gG(f) {_|_4 otherwise eV (G)U ( u er)

V(v,f) e E',veV(Q),feF = < X(v,f) < =u(v,f)
201 ) ) cost(v, f) =
1 2\! 1
—0
1 1
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Flow Network for Bend Minimization

(H1) H(G) corresponds to F, fo. Define flow network N(G) = ((V(G) U F, E"); b; ('; u; cost):

(H2) For each edge shared by

faces f and g, the sequence ¢ is [] E/ = {(U, f)ee’ - V(G) X F ‘ v between edges €, 6/ of (9f} U

reversed and inverted copy of 9. { c Fx F | f, g have common edge 6}
(H3) For each face f, it holds that:

5 C(T):{—“ fr=f MW bv)=4 YveV(GQ)

rCH(F) +4 otherwise.

4 i f=fo,0 = 2 Oblw)=0
(H4) _For. each vertex v, the sum of H ) — —2de + weVICUE Eul
incident angles is 27r. (f) gG(f) {_|_4 otherwise eV (G)U ( u er)

Y(v,f)e E',ve V(G),feF =1< X(v, f) <4 =:u(v, f)
201 ) ) cost(v, f) =
1 2\! 1
—0
1 1
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Flow Network for Bend Minimization

(H1) H(G) corresponds to F, fo. Define flow network N(G) = ((V(G) U F, E"); b; ('; u; cost):

(H2) For each edge shared by

faces f and g, the sequence ¢ is [] E/ = {(U, f)ee’ - V(G) X F ‘ v between edges €, 6/ of (9f} U

reversed and inverted copy of 9. { c Fx F | f, g have common edge 6}
(H3) For each face f, it holds that:

5 C(T):{—“ fr=f MW bv)=4 YveV(GQ)

rCH(F) +4 otherwise.

4 i f=fo,0 = 2 Oblw)=0
(H4) _For. each vertex v, the sum of H ) — —2de + weVICUE Eul
incident angles is 27r. (f) gG(f) {_|_4 otherwise eV (G)U ( u er)

Y(v,f)e E',ve V(G),feF =1< X(v, f) <4 =:u(v, f)
, |1 ) cost(v, f) =0
1 2\! 1
—0
1 1
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Flow Network for Bend Minimization

(H1) H(G) corresponds to F, fo. Define flow network N(G) = ((V(G) U F, E"); b; ('; u; cost):

H2) For each ed hared b
(H2) faoce:aj"C ar?dgge, the seqzezcee 51yis [] E/ = {(U, f)ee’ - V(G) X F ‘ v between edges €, 6/ of (9f} U

reversed and inverted copy of 9. { c Fx F | f, g have common edge 6}
(H3) For each face f, it holds that:

> C(T):{—“ fr=rf6 | mbv)=4 YveV(Q)

rCH(F) +4 otherwise.

4 i f=fo,0 = 2 Oblw)=0
(H4) _For. each vertex v, the sum of H ) — —2de + weVICUE Eul
incident angles is 27r. (f) gG(f) {_|_4 otherwise eV (G)U ( u er)

. V(v,f) e E',ve V(G),f € F =1< X(v, f) <4 =:u(v, f)
1 cost(v, f) =0
) o a o
1 2\!1 V(f.g)€E, f,gc F = <X(f,9)<  =u(f,9)
1 -0 1 cost(f, g) =




13-25

Flow Network for Bend Minimization

(H1) H(G) corresponds to F, fo. Define flow network N(G) = ((V(G) U F, E"); b; ('; u; cost):

H2) For each ed hared b
(H2) faoce:aj"C ar?dgge, the seqzezcee 51yis [] E/ = {(U, f)ee’ - V(G) X F ‘ v between edges €, 6/ of (9f} U

reversed and inverted copy of 9. { c Fx F | f, g have common edge 6}
(H3) For each face f, it holds that:

> C(T):{—“ fr=rf6 | mbv)=4 YveV(Q)

rCH(F) +4 otherwise.

4 i f=fo,0 = 2 Oblw)=0
(H4) _For. each vertex v, the sum of H ) — —2de + weVICUE Eul
incident angles is 27r. (f) gG(f) {_|_4 otherwise eV (G)U ( u er)

. V(v,f) e E',ve V(G),f € F =1< X(v, f) <4 =:u(v, f)
1 cost(v, f) =0
) o a o
1 2\!1 V(f.g)€E, f,gc F =0< X(f,9) < oo =:u(f,g)
1 -0 1 cost(f, g) =
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Flow Network for Bend Minimization

(H1) H(G) corresponds to F, fo. Define flow network N(G) = ((V(G) U F, E"); b; ('; u; cost):

H2) For each ed hared b
(H2) faoce:aj"C ar?dgge, the seqzezcee 51yis [] E/ = {(U, f)ee’ - V(G) X F ‘ v between edges €, 6/ of (9f} U

reversed and inverted copy of 9. { c Fx F | f, g have common edge 6}
(H3) For each face f, it holds that:

> C(T):{—“ fr=rf6 | mbv)=4 YveV(Q)

rCH(F) +4 otherwise.

4 i f=fo,0 = 2 Oblw)=0
(H4) _For. each vertex v, the sum of H ) — —2de + weVICUE Eul
incident angles is 27r. (f) gG(f) {_|_4 otherwise eV (G)U ( u er)

. V(v,f) e E',ve V(G),f € F =1< X(v, f) <4 =:u(v, f)
1 cost(v, f) =0
2(: a o
1 2\!1 Y(/.q)€E fgeF =0< X(f,9) <oo=:u(fg)
1 —6 1 cost(f, g) = 1
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(H1) H(G) corresponds to F, fo. Define flow network N(G) = ((V(G) U F, E"); b; ('; u; cost):

(H2) For each edge shared by

faces f and g, the sequence ¢ is [] E/ = {(U, f)ee’ - V(G) X F ‘ v between edges €, 6/ of (9f} U

reversed and inverted copy of d-. {

(H3) For each face f, it holds that:

> C(T):{—“ fr=f | M bv)=4 YveV(Q)

rCH(F) +4 otherwise.

(H4) For each vertex v, the sum of ] b(f) — 9 deg(;(f) 4+ {

incident angles is 2.

o V(v,f) e E',ve V(GQ),f € F =1<
1 cost(v, f) =0
) o o o
1 2\!1 % cFE fgeF =0<
0 cost(f, 9) = 1
1 1

S 8 T
=Im

—4 if f — f07 =
+4 otherwise

X (v, f)

X(f,9)

€ F x F'| f, g have common edge ¢}

2, blw)=0

weV (G)UF (Euler)

< 4= u(v, f)

< oo = u(f, )

We model only the
number of bends.

Why is

it enough?
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Flow Network for Bend Minimization

(H1) H(G) corresponds to F, fo. Define flow network N(G) = ((V(G) U F, E"); b; ('; u; cost):

(H2) For each edge shared by

faces f and g, the sequence ¢ is [] E/ = {(U, f)ee’ - V(G) X F ‘ v between edges €, 6/ of (9f} U

reversed and inverted copy of 9. { c Fx F | f, g have common edge 6}
(H3) For each face f, it holds that:

5 C(T):{—“ fr=f MW bv)=4 YveV(GQ)

rCH(F) +4 otherwise.

4 i f=fo,0 = 2 Oblw)=0
(H4) _For. each vertex v, the sum of H ) — —2de + weVICUE Eul
incident angles is 27r. (f) gG(f) {_|_4 otherwise eV (G)U ( u er)

. V(v,f) e E',ve V(G),f € F =1 <|X (v, f)|L 4 =:u(v, f)
, |1 ) cost(v, f) =0
1 2\!1 V(f.g)€EE, fgEF =0 <|X(f,9)|< 00 =t u(f, g)
—6 COSt(f, g) =1 We model only the
 — T e

a — [Exercise!
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Proof. (H4)
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(H1)

: (H2)
Theorem. [Tamassia '87]

A plane graph (G, F, fy) has a valid orthogonal
representation H(G) with k bends. <

The flow network N(G) has a valid flow X with cost k.

(H3)

Proof. (H4)

“<": Given a valid flow X in N(G) of cost k,
construct an orthogonal representation H(G) with k bends.

B Transform from flow to orthogonal description.
B Show properties (H1)—(H4).
(H1) H(G) matches F fj v

H2) Bend order inverted and reversed on opposite sides v

/N N

4) Total angle at each vertex = 27 v

—~
]

15 -

H(G) corresponds to F', fo.

For each edge shared by
faces f and g, sequence 01 is
reversed and inverted o-.

For each face f it holds that:
—4 if f =

DICORE

e H(f) +4 otherwise.

For each vertex v the sum of
incident angles is 2.

H3) Angle sum of f = +4 v — Exercise.

10
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Theorem. [Tamassia '87]
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Bend Minimization — Result

B (v)=4 YveV(Q)
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Bend Minimization — Result

B (v)=4 YveV(Q)

Theorem. [Tamassia '87] 4 i f=fo
A - m () = —2degG(f>+{ S =

plane graph (G, F, fo) has a valid orthogonal +4  otherwise
representation H(G) with k bends. & = et fji% X(v, f) = 4=u(v, f)
The flow network N(G) has a valid flow X with cost k. Ry ;g% X(f,9) < 0o = u(f, 9)
Proof.

"=": Given an orthogonal representation H(G) with k bends,
construct a valid flow X in N(G) of cost k.

B Define flow X: E' — R{.

B Show that X is a valid flow and has cost k.
(N1) X(vf)=1/2/3/4 v
(N2) X( ) = |d]o, where (e, d, x) describes edge e in H(f)



Bend Minimization — Result

Theorem.

Proof.

"=": Given an orthogonal representation H(G) with k bends,
construct a valid flow X in N(G) of cost k.

B Define flow X : F' — R(J{.
B Show that X is a valid flow and has cost k.

(
(

(

\
\

\

1) X(vf) =1/2/3/4

[Tamassia '87]
A plane graph (G, F, fy) has a valid orthogonal
representation H(G) with k bends. <

The flow network N(G) has a valid flow X with cost k.

b(v) =4 VYv e V(G)
—4 Iff: f07

+4 otherwise

b(f) = —2degg(f) + {

=1< X (v, f) <4 =:u(v, f)
cost(v, f) =0

=0< X(f,9) <oo=:u(f,g)
cost(f,g) =1

v

2) X( ) = |d]o, where (e, d, x) describes edge e in H(f)

3) capacities, deficit/demand coverage

v

15-16
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Theorem.

Proof.

"=": Given an orthogonal representation H(G) with k bends,
construct a valid flow X in N(G) of cost k.

B Define flow X : F' — R(J{.
B Show that X is a valid flow and has cost k.

(

(
(
(

\

\
\
\

1) X(vf) =1/2/3/4

2) X( ) = [d|o, where (e, d, x) describes edge e in H(f)

3) capacities, deficit/demand coverage

4) cost = k

[Tamassia '87]
A plane graph (G, F, fy) has a valid orthogonal
representation H(G) with k bends. <

The flow network N(G) has a valid flow X with cost k.

b(v) =4 VYv e V(G)
—4 Iff: f07

+4 otherwise

b(f) = —2degg(f) + {

=1< X (v, f) <4 =:u(v, f)
cost(v, f) =0

=0< X(f,9) <oo=:u(f,g)
cost(f,g) =1

SNENIENIEN
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Bend Minimization — Remarks

B The theorem implies that the combinatorial orthogonal bend minimization problem for
plane graphs can be solved using an algorithm for min-cost flow.

Theorem.

The min-cost flow problem for planar graphs with bounded costs and vertex degrees can
be solved in O(n"/*\/logn) time.

Theorem.

The minimum-cost flow problem with integral vertex demands, edge capacities & costs can
be solved in O(m!T°W log U log C') time where U is max. capacity and C are max. costs.

Corollary.
The combinatorial orthogonal bend minimization problem can be solved in O(n!t°(})) time.

Theorem.
Bend minimization without given combinatorial embedding is NP-hard.
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Topology — Shape — Metrics

Three-step approach: [Tamassia 1987]
V(G) — {?)1,’02,1]3,’04} 04
E(G) = {v1v2, v1v3, V104, V203, U204 } 3

1 ¢
combinatorial I 2
embedding/ ol
reduce planarization orthog.onal area mini-
crossings drawing mization

VAN < minimizztion [ 7

1

orthogonal
2 representation 0 e ]

1 2
TOPOLOQY — SHAPE — METRICS
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Compaction

Compaction problem.
Given:  ® Plane graph G with maximum degree 4
B Orthogonal representation H(G)
Find:  Compact orthogonal layout of G that realizes H(G)

Special case.
All faces are rectangles.

This guarantees: ™ minimum total edge length

B minimum area
Properties.

B bends only on the outer face

B opposite sides of a face have the same length

Idea.

B Formulate flow network for horizontal /vertical compaction
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Flow Network for Edge-Length Assignment

Definition.
Flow Network Nnor = ((Whor, Ehor); b; (; u; cost)
B Whor = F\{fo}U{S,t} O

B Fho ={(f,9) | f,g share a horizontal segment and f lies
below g}

0~
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Flow Network for Edge-Length Assignment

Definition.
Flow Network Nnor = ((Whor, Ehor); b; (; u; cost)

B Whor=F\{fo}U{s,t} =
B Fho ={(f,9) | f,g share a horizontal segment and f lies

below g} U {(t,s)}
[] f(a) =1 Va € Eyo

[ ] u(a) — 00 Va €& Ehor
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Flow Network for Edge-Length Assignment

Definition.
Flow Network Nnor = ((Whor, Ehor); b; (; u; cost)

] Whor = F \ {fg} U {S,t} O

B Fhor ={(f,9) | f,g share a horizontal segment and f lies

below g} U {(t,s)}
[] f(a) =1 Va € Eyo

] u(a) = o0 Va & Ehor
B cost(a) =1 Va € Ephy
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Flow Network for Edge-Length Assignment

Definition.
Flow Network Nnor = ((Whor, Ehor); b; (; u; cost)

] Whor = F \ {fg} U {S,t} O

B Fhor ={(f,9) | f,g share a horizontal segment and f lies

below g} U {(t,s)}
la)=1 Va € Ene
ula) =00 Va € Epor
cost(a) =1 Va € Fho
D) =0 Vf € Wher




Flow Network for Edge-Length Assignment

Definition.
Flow Network Nyer = ((Wher, Ever); b; /; u; cost)

Wier = F\{fo} U{s,t} o
Fyer =4{(f,9) | f, g share a vertical segment and f lies to the
left of g} U{(¢,s)}

la)=1 Va & Eye
ula) =00 Va € Eye
cost(a) =1 Va € Eye
b(f) =0 Vf € Wi

20



Compaction — Result

Theorem.
A valid flow for Nyor and N exists <
corresponding edge lengths induce an orthogonal drawing.
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Compaction — Result

Theorem.
A valid flow for Nyor and N exists <
corresponding edge lengths induce an orthogonal drawing.

21 -

What if not all faces
are rectangular?

What values of the drawing do the following quantities represent?
B | X (7, s)] and | X e (2, 5)]7 width and height of the drawing

[ ZeEEhor Xhor(e) —+ ZeEEver Xver(e) total edge length
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Compaction is NP-hard

Polynomial-time reduction from the NP-complete satisfiability problem (SAT).

In an instance of the SAT problem we have:
B set of n Boolean variables X = {z1,25,...,2,}

m m clauses C'1,C5,...,C,,, where
each clause is a disjunction of literals from X,
eg., Ci =21V 2oV 3

B Boolean formula ®=C{ ACo A --- N C,,

Question: Is there an assignment of truth values to the variables in X such that ® is true?

ldea of the reduction:

B Given SAT instance ® = construct a plane graph G and a orthogonal description H(G)

B & is satisfiable << G can be drawn w.r.t. H(G) in area K for some specific number K
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Clause Gadgets

Example:

Cl — Xo V Ty

Co =x1 VIV T3
03 — Is

04 — X4 \Y4 —Ix

Tar 1ir s

T - fl

26 -



26

Clause Gadgets




Clause Gadgets

Example:

Cl — Xo V Ty
Co=x1VxoV 23
C3 — Ix

04 — X4 \Y4 —Ix

insert (2n — 1)-chain
through each clause
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Clause Gadgets
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Example:

Cl — XI? V XLy
Co=x1VxoV 23
03 — Ix

04 — X4 \Y4 —Ix

insert (2n(= 1)-chain
through each clause

— for every clause, there needs to be
> 1 “gap of a literal” to be on the same
height as the “tunnel” to the next literal
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Complete Reduction

Pick
K=(M+2)x(9m+7)

Om + 7

Then:

G under H(G) has an
orthogonal drawing in area K
<~
® satisfiable
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| iterature

B [GD Ch. 5] for detailed explanation

B [Tamassia 1987] “On embedding a graph in the grid with the minmum number of bends”
Original paper on flow for bend minimization.

B [van den Brand, Chen, Kyng, Liu, Peng, Probst, Sachdeva, Sidford 2023]
“A Deterministic Almost-Linear Time Algorithm for Minimum-Cost Flow"
State-of-the-art algorithm for solving the minimum-cost flow problem
(published recently in the proceedings of the FOCS 2023 conference).

B [Patrignani 2001] “On the complexity of orthogonal compaction”
NP-hardness proof for orthogonal representation of planar max-degree-4 graphs.

B [Evans, Fleszar, Kindermann, Saeedi, Shin, Wolff 2022]
“Minimum rectilinear polygons for given angle sequences”
NP-hardness proof for compaction of cycles.
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