UNIVERSITÄT WÜRZBURG

Visualization of Graphs

Lecture 6:
 Orthogonal Layouts

Johannes Zink

Summer semester 2024

Orthogonal Layout - Applications

Organigram of HS Limburg
Circuit diagram by Jeff Atwood

Orthogonal Layout - Definition

Observations.

■ Edges lie on a grid \Rightarrow bends lie on grid points

- Max. degree of each vertex is at most 4
■ Otherwise

Definition.

A drawing Γ of a graph G is called orthogonal if
■ vertices are drawn as points on a grid,

- each edge is represented as a sequence of alternating horizontal and vertical line segments of the grid, and
- pairs of edges are disjoint or cross orthogonally.

Planarization.

- Fix embedding

■ Crossings become vertices

Aesthetic criteria to optimize.

- Number of bends

■ Length of edges

- Width, height, area

■ Monotonicity of edges

Topology - Shape - Metrics

Three-step approach:

$V(G)$	$=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$
$E(G)$	$=\left\{v_{1} v_{2}, v_{1} v_{3}, v_{1} v_{4}, v_{2} v_{3}, v_{2} v_{4}\right\}$

Orthogonal Representation

Idea.

Describe orthogonal drawing combinatorially.

Definitions.

Let G be a plane graph with set F of faces and outer face $f_{0} \in F$.
\square Let e be an edge with the face f to the right. An edge description of e w.r.t. f is a triple (e, δ, α) where - $\delta \in\{0,1\}^{*}$ (where $0=$ right bend, $1=$ left bend)

- α is angle $\in\left\{\frac{\pi}{2}, \pi, \frac{3 \pi}{2}, 2 \pi\right\}$ between e and next edge e^{\prime}

$(e, 100, \pi)$

■ A face representation $H(f)$ of a face f is a clockwise ordered sequence $\left(e_{1}, \delta_{1}, \alpha_{1}\right),\left(e_{2}, \delta_{2}, \alpha_{2}\right), \ldots,\left(e_{\operatorname{deg}(f)}, \delta_{\operatorname{deg}(f)}, \alpha_{\operatorname{deg}(f)}\right)$ of edge descriptions w.r.t. f.
■ An orthogonal representation $H(G)$ of G is defined as

$$
H(G)=\{H(f) \mid f \in F\} .
$$

Orthogonal Representation - Example

$$
\begin{aligned}
& H\left(f_{0}\right)=\left(\left(e_{1}, 11, \frac{\pi}{2}\right),\left(e_{5}, 111, \frac{3 \pi}{2}\right),\left(e_{4}, \emptyset, \pi\right),\left(e_{3}, \emptyset, \pi\right),\left(e_{2}, \emptyset, \frac{\pi}{2}\right)\right) \\
& H\left(f_{1}\right)=\left(\left(e_{1}, 00, \frac{3 \pi}{2}\right),\left(e_{2}, \emptyset, \frac{\pi}{2}\right),\left(e_{6}, 00, \pi\right)\right) \\
& H\left(f_{2}\right)=\left(\left(e_{5}, 000, \frac{\pi}{2}\right),\left(e_{6}, 11, \frac{\pi}{2}\right),\left(e_{3}, \emptyset, \pi\right),\left(e_{4}, \emptyset, \frac{\pi}{2}\right)\right)
\end{aligned}
$$

Coordinates are not fixed yet!

Correctness of an Orthogonal Representation

(H1) $H(G)$ corresponds to F, f_{0}.
(H2) For each edge $\{u, v\}$ shared by faces f and g with $\left((u, v), \delta_{1}, \alpha_{1}\right) \in H(f)$ and $\left((v, u), \delta_{2}, \alpha_{2}\right) \in H(g)$, the sequence δ_{1} is like δ_{2}, but reversed and inverted.
(H3) Let $|\delta|_{0}$ (resp. $|\delta|_{1}$) be the number of zeros
 (resp. ones) in δ, and let $r=(e, \delta, \alpha)$. Let $C(r):=|\delta|_{0}-|\delta|_{1}-\alpha / \frac{\pi}{2}+2$.
For each face f, it holds that:

$$
\begin{aligned}
& C\left(\left(e_{3}, \emptyset, \pi\right)\right)=0-0-2+2=0 \\
& C\left(\left(e_{4}, \emptyset, \frac{\pi}{2}\right)\right)=0-0-1+2=1
\end{aligned}
$$

$$
\sum_{r \in H(f)} C(r)= \begin{cases}-4 & \text { if } f=f_{0} \\ +4 & \text { otherwise }\end{cases}
$$

$$
\begin{aligned}
C\left(\left(e_{5}, 000, \frac{\pi}{2}\right)\right) & =3-0-1+2=4 \\
C\left(\left(e_{6}, 11, \frac{\pi}{2}\right)\right) & =0-2-1+2=-1
\end{aligned}
$$

$(\mathrm{H} 4)$ For each vertex v, the sum of incident angles is 2π.

$$
\sum_{r \in H\left(f_{2}\right)} C(r)=+4
$$

Reminder: $s-t$ Flow Networks

Flow network ($G ; S, T ; u$) with

- directed graph G

■ sources $S \subseteq V(G)$, sinks $T \subseteq V(G)$
■ edge capacity $u: E(G) \rightarrow \mathbb{R}_{0}^{+} \cup\{\infty\}$
A function $X: E(G) \rightarrow \mathbb{R}_{0}^{+}$is called $S-T$ flow if:

$$
\begin{aligned}
0 \leq X(i, j) \leq u(i, j) & \forall(i, j) \in E(G) \\
\sum_{(i, j) \in E(G)} X(i, j)-\sum_{(j, i) \in E(G)} X(j, i)=0 & \forall i \in V(G) \backslash(S \cup T)
\end{aligned}
$$

A maximum $S-T$ flow is an $S-T$ flow where $\quad \sum X(i, j)-\quad \sum X(j, i)$ is maximized.

$$
(i, j) \in E(G), i \in S \quad(j, i) \in E(G), i \in S
$$

Reminder: $s-t$ Flow Networks

Flow network ($G ; s, t ; u$) with

- directed graph G
- source $s \in V(G)$, sink $t \in V(G)$

■ edge capacity $u: E(G) \rightarrow \mathbb{R}_{0}^{+} \cup\{\infty\}$
A function $X: E(G) \rightarrow \mathbb{R}_{0}^{+}$is called $s-t$ flow if:

$$
\begin{aligned}
0 \leq X(i, j) \leq u(i, j) & \forall(i, j) \in E(G) \\
\sum_{(i, j) \in E(G)} X(i, j)-\sum_{(j, i) \in E(G)} X(j, i)=0 & \forall i \in V(G) \backslash\{s, t\}
\end{aligned}
$$

General Flow Network

Flow network ($G ; S, T ; \ell ; u$) with

- directed graph G

■ sources $S \subseteq V(G)$, sinks $T \subseteq V(G)$
■ edge lower bound $\ell: E(G) \rightarrow \mathbb{R}_{0}^{+}$
■ edge capacity $u: E(G) \rightarrow \mathbb{R}_{0}^{+} \cup\{\infty\}$
A function $X: E(G) \rightarrow \mathbb{R}_{0}^{+}$is called $S-T$ flow if:

$$
\begin{aligned}
\ell(i, j) \leq X(i, j) \leq u(i, j) & \forall(i, j) \in E(G) \\
\sum_{(i, j) \in E(G)} X(i, j)-\sum_{(j, i) \in E(G)} X(j, i)=0 & \forall i \in V(G) \backslash(S \cup T)
\end{aligned}
$$

A maximum $S-T$ flow is an $S-T$ flow where $\quad \sum X(i, j)-\quad \sum X(j, i)$ is maximized.

$$
(i, j) \in E(G), i \in S \quad(j, i) \in E(G), i \in S
$$

General Flow Network

Flow network ($G ; b ; \ell ; u$) with
■ directed graph G

- node production/consumption b: $V(G) \rightarrow \mathbb{R}$ with $\sum_{i \in V(G)} b(i)=0$

■ edge lower bound $\ell: E(G) \rightarrow \mathbb{R}_{0}^{+}$
■ edge capacity $u: E(G) \rightarrow \mathbb{R}_{0}^{+} \cup\{\infty\}$
A function $X: E(G) \rightarrow \mathbb{R}_{0}^{+}$is called valid flow if:

$$
\begin{aligned}
\ell(i, j) \leq X(i, j) \leq u(i, j) & \forall(i, j) \in E(G) \\
\sum_{(i, j) \in E(G)} X(i, j)-\sum_{(j, i) \in E(G)} X(j, i)=b(i) & \forall i \in V(G)
\end{aligned}
$$

- Cost function: cost: $E(G) \rightarrow \mathbb{R}_{0}^{+}$and $\operatorname{cost}(X):=\sum_{(i, j) \in E(G)} \operatorname{cost}(i, j) \cdot X(i, j)$
X is a minimum-cost flow if X is a valid flow that minimizes $\operatorname{cost}(X)$.

General Flow Network - Algorithms

Theorem.

[Orlin 1991]
The minimum-cost flow problem can be solved in $O\left(n^{2} \log ^{2} n+m^{2} \log n\right)$ time.

Theorem.
[Cornelsen \& Karrenbauer 2011]
The minimum-cost flow problem for planar graphs with bounded costs and face sizes can be solved in $O\left(n^{3 / 2}\right)$ time.

Theorem. [van den Brand, Chen, Kyng, Liu, Peng,
Probst, Sachdeva, Sidford 2023]
The minimum-cost flow problem with integral vertex demands, edge capacities, and edge costs can be solved in $O\left(m^{1+o(1)} \log U \log C\right)$ time where U is the maximum capacity and C are the maximum costs.

Topology - Shape - Metrics

Three-step approach:

$V(G)$	$=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$
$E(G)$	$=\left\{v_{1} v_{2}, v_{1} v_{3}, v_{1} v_{4}, v_{2} v_{3}, v_{2} v_{4}\right\}$

Bend Minimization with Given Embedding

Geometric orthogonal bend minimization.
Given: \quad Plane graph G with maximum degree 4

- Combinatorial embedding F and outer face f_{0}

Find: Orthogonal drawing with minimum number of bends that preserves the embedding.

Compare with the following variant:

Combinatorial orthogonal bend minimization.
Given: ■ Plane graph G with maximum degree 4

- Combinatorial embedding F and outer face f_{0}

Find: Orthogonal representation $H(G)$ with minimum number of bends that preserves the embedding.

Bend Minimization with Given Embedding

How to solve the
combinatorial orthogonal bend minimization problem?

Idea.

Formulate as a network-flow problem:

- a unit of flow $=\measuredangle \frac{\pi}{2}$

■ vertices $\xrightarrow{\measuredangle}$ faces (\# $\# \measuredangle \frac{\pi}{2}$ per face)
■ faces $\stackrel{\measuredangle}{\longrightarrow}$ neighboring faces (\# bends toward the neighbor)

Combinatorial orthogonal bend minimization.
Given: ■ Plane graph G with maximum degree 4
■ Combinatorial embedding F and outer face f_{0}
Find: Orthogonal representation $H(G)$ with minimum number of bends that preserves the embedding.

Flow Network for Bend Minimization

(H1) $H(G)$ corresponds to F, f_{0}.
(H2) For each edge $\{u, v\}$ shared by faces f and g, the sequence δ_{1} is reversed and inverted copy of δ_{2}.
(H3) For each face f, it holds that:
$\sum_{r \in H(f)} C(r)= \begin{cases}-4 & \text { if } f=f_{0} \\ +4 & \text { otherwise }\end{cases}$
(H4) For each vertex v, the sum of incident angles is 2π.

Define flow network $N(G)=\left(\left(V(G) \cup F, E^{\prime}\right) ; b ; \ell ; u\right.$; cost $)$:
$\square E^{\prime}=\left\{(v, f)_{e e^{\prime}} \in V(G) \times F \mid v\right.$ between edges e, e^{\prime} of $\left.\partial f\right\} \cup$ $\left\{(f, g)_{e} \in F \times F \mid f, g\right.$ have common edge $\left.e\right\}$

Flow Network for Bend Minimization

(H1) $H(G)$ corresponds to F, f_{0}.
(H2) For each edge $\{u, v\}$ shared by faces f and g, the sequence δ_{1} is reversed and inverted copy of δ_{2}.
(H3) For each face f, it holds that:

$$
\sum_{r \in H(f)} C(r)= \begin{cases}-4 & \text { if } f=f_{0} \\ +4 & \text { otherwise }\end{cases}
$$

(H4) For each vertex v, the sum of incident angles is 2π.

Define flow network $N(G)=\left(\left(V(G) \cup F, E^{\prime}\right) ; b ; \ell ; u\right.$; cost $)$:
■ $E^{\prime}=\left\{(v, f)_{e e^{\prime}} \in V(G) \times F \mid v\right.$ between edges e, e^{\prime} of $\left.\partial f\right\} \cup$ $\left\{(f, g)_{e} \in F \times F \mid f, g\right.$ have common edge $\left.e\right\}$

■ $b(v)=4 \quad \forall v \in V(G)$
$\square(f)=-2 \operatorname{deg}_{G}(f)+\left\{\begin{array}{ll}-4 & \text { if } f=f_{0}, \\ +4 & \text { otherwise }\end{array}\right\} \Rightarrow \sum_{w \in V(G) \cup F} b(w)=0$

$$
\begin{aligned}
\forall(v, f) \in E^{\prime}, v \in V(G), f \in F & \ell(v, f):=1 \leq X(v, f) \leq 4=: u(v, f) \\
& \operatorname{cost}(v, f)=0 \\
\forall(f, g) \in E^{\prime}, f, g \in F & \ell(f, g):=0 \leq X(f, g) \leq \infty=: u(f, g) \\
& \operatorname{cost}(f, g)=1 \quad \begin{array}{l}
\text { We model only the }
\end{array} \\
&
\end{aligned}
$$

Flow Network Example

Legend

$$
\begin{aligned}
V(G) & \circ \\
F & \circ
\end{aligned}
$$

$$
V(G) \times F \supseteq \xrightarrow{1 / 4 / 0}
$$

$$
F \times F \supseteq \xrightarrow{0 / \infty / 1}
$$

$4=b$-value
3 flow

Flow Network Example

Legend

$$
\begin{aligned}
V(G) & \circ \\
F & \circ
\end{aligned}
$$

$$
\ell / u / \operatorname{cost}
$$

$$
V(G) \times F \supseteq \xrightarrow{1 / 4 / 0}
$$

$$
F \times F \supseteq \xrightarrow{0 / \infty / 1}
$$

$4=b$-value
3 flow

Bend Minimization - Result

Theorem.

[Tamassia '87]
A plane graph $\left(G, F, f_{0}\right)$ has a valid orthogonal representation $H(G)$ with k bends. \Leftrightarrow
The flow network $N(G)$ has a valid flow X with cost k.

Proof.

(H1) $H(G)$ corresponds to F, f_{0}.
(H2) For each edge $\{u, v\}$ shared by faces f and g, sequence δ_{1} is reversed and inverted δ_{2}.
(H3) For each face f it holds that:

$$
\sum_{r \in H(f)} C(r)= \begin{cases}-4 & \text { if } f=f_{0} \\ +4 & \text { otherwise }\end{cases}
$$

(H4) For each vertex v the sum of incident angles is 2π.
" \Leftarrow ": Given a valid flow X in $N(G)$ of cost k, construct an orthogonal representation $H(G)$ with k bends.

- Transform from flow to orthogonal description.

■ Show properties $(\mathrm{H} 1)-(\mathrm{H} 4)$.
$(\mathrm{H} 1) \mathrm{H}(\mathrm{G})$ matches F, f_{0}
(H2) Bend order inverted and reversed on opposite sides
(H3) Angle sum of $f= \pm 4$
\rightarrow Exercise.
(H4) Total angle at each vertex $=2 \pi$

Bend Minimization - Result

Theorem.

[Tamassia '87]
A plane graph $\left(G, F, f_{0}\right)$ has a valid orthogonal representation $H(G)$ with k bends. \Leftrightarrow
The flow network $N(G)$ has a valid flow X with cost k.
$b(v)=4 \quad \forall v \in V(G)$
$b(f)=-2 \operatorname{deg}_{G}(f)+ \begin{cases}-4 & \text { if } f=f_{0}, \\
+4 & \text { otherwise }\end{cases}$
$\ell(v, f):=1 \leq X(v, f) \leq 4=: u(v, f)$

$\operatorname{cost}(v, f)=0$
$\ell(f, g)=0 \leq X(f, g) \leq \infty=: u(f, g)$
$\operatorname{cost}(f, g)=1$

Proof.

" \Rightarrow ": Given an orthogonal representation $H(G)$ with k bends, construct a valid flow X in $N(G)$ of cost k.
■ Define flow $X: E^{\prime} \rightarrow \mathbb{R}_{0}^{+}$.
■ Show that X is a valid flow and has cost k.
(N1) $X(v f)=1 / 2 / 3 / 4$
(N2) $X\left((f g)_{e}\right)=|\delta|_{0}$, where (e, δ, x) describes edge e in $H(f)$
(N3) capacities, deficit/demand coverage
(N4) cost $=k$

Bend Minimization - Remarks

- The theorem implies that the combinatorial orthogonal bend minimization problem for plane graphs can be solved using an algorithm for min-cost flow.

Theorem.

[Garg \& Tamassia 1996]
The min-cost flow problem for planar graphs with bounded costs and vertex degrees can be solved in $O\left(n^{7 / 4} \sqrt{\log n}\right)$ time.

Theorem. [van den Brand, Chen, Kyng, Liu, Peng, Probst, Sachdeva, Sidford 2023]
The minimum-cost flow problem with integral vertex demands, edge capacities \& costs can be solved in $O\left(m^{1+o(1)} \log U \log C\right)$ time where U is max. capacity and C are max. costs.
$m \in O(n)$ for planar graphs $C \in\{0,1\} \quad$ Further, $\log n=n^{\log n} \log n=n^{\log \log n / \log n} \in n^{o(1)} \operatorname{since} \underset{n \rightarrow \infty}{ } \frac{\lim }{\log \log n}=0$

Corollary.

The combinatorial orthogonal bend minimization problem can be solved in $O\left(n^{1+o(1)}\right)$ time.

Theorem.

Bend minimization without given combinatorial embedding is NP-hard.

Topology - Shape - Metrics

Three-step approach:

$$
\begin{aligned}
V(G) & =\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\} \\
E(G) & =\left\{v_{1} v_{2}, v_{1} v_{3}, v_{1} v_{4}, v_{2} v_{3}, v_{2} v_{4}\right\}
\end{aligned}
$$

reduce

crossings $|$| combinatorial |
| :--- |
| embedding/ |
| planarization |

Topology

- Shape
[Tamassia 1987]

> area minimization

Compaction

Compaction problem.

Given: \quad Plane graph G with maximum degree 4
■ Orthogonal representation $H(G)$
Find: Compact orthogonal layout of G that realizes $H(G)$
Special case.
All faces are rectangles.
This guarantees: \quad minimum total edge length

- minimum area

Properties.

- bends only on the outer face

■ opposite sides of a face have the same length
Idea.
■ Formulate flow network for horizontal/vertical compaction

Flow Network for Edge-Length Assignment

Definition.

Flow Network $N_{\text {hor }}=\left(\left(W_{\text {hor }}, E_{\text {hor }}\right) ; b ; \ell ; u ;\right.$ cost $)$
$\square W_{\text {hor }}=F \backslash\left\{f_{0}\right\} \cup\{s, t\} \quad$ व
■ $E_{\text {hor }}=\{(f, g) \mid f, g$ share a horizontal segment and f lies below $g\} \cup\{(t, s)\}$

- $\ell(a)=1 \quad \forall a \in E_{\mathrm{hor}}$
- $u(a)=\infty \quad \forall a \in E_{\text {hor }}$

■ $\operatorname{cost}(a)=1 \quad \forall a \in E_{\text {hor }}$
■ $b(f)=0 \quad \forall f \in W_{\text {hor }}$

Flow Network for Edge-Length Assignment

Definition.

Flow Network $N_{\text {ver }}=\left(\left(W_{\text {ver }}, E_{\text {ver }}\right) ; b ; \ell ; u\right.$; cost $)$
$\square W_{\text {ver }}=F \backslash\left\{f_{0}\right\} \cup\{s, t\} \quad$ व
■ $E_{\text {ver }}=\{(f, g) \mid f, g$ share a vertical segment and f lies to the left of $g\} \cup\{(t, s)\}$

- $\ell(a)=1 \quad \forall a \in E_{\text {ver }}$

■ $u(a)=\infty \quad \forall a \in E_{\text {ver }}$
$\square \operatorname{cost}(a)=1 \quad \forall a \in E_{\text {ver }}$
■ $b(f)=0 \quad \forall f \in W_{\text {ver }}$

Compaction - Result

What if not all faces are rectangular?

Theorem.

A valid flow for $N_{\text {hor }}$ and $N_{\text {ver }}$ exists \Leftrightarrow corresponding edge lengths induce an orthogonal drawing.

What values of the drawing do the following quantities represent?

- $\left|X_{\mathrm{hor}}(t, s)\right|$ and $\left|X_{\mathrm{ver}}(t, s)\right|$?
width and height of the drawing
$\square \sum_{e \in E_{\text {hor }}} X_{\text {hor }}(e)+\sum_{e \in E_{\text {ver }}} X_{\text {ver }}(e)$ total edge length

Refinement of G and $H(G)$ - Inner Face

Refinement of G and $H(G)$ - Inner Face

Refinement of G and $H(G)$ - Outer Face

- Add an outer rectangle
- Traverse clockwise

Refinement of G and $H(G)$ - Outer Face

- Add an outer rectangle
- Traverse clockwise

Refinement of G and $H(G)$ - Outer Face

- Add an outer rectangle

■ Traverse clockwise

Refinement of G and $H(G)$ - Outer Face

Area minimized? No!

But we get bound $O\left((n+b)^{2}\right)$ on the area.

Theorem.
[Patrignani 2001]
Compaction for a given orthogonal representation is NP-hard in general.

Theorem.
[EFKSSW 2022]
Compaction is NP-hard even for orthogonal representations of cycles.

Compaction is NP-hard

Polynomial-time reduction from the NP-complete satisfiability problem (SAT).
In an instance of the SAT problem we have:
■ set of n Boolean variables $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$
■ m clauses $C_{1}, C_{2}, \ldots, C_{m}$, where a literal is a variable x or a negated variable $\neg x$ each clause is a disjunction of literals from X, e.g., $C_{1}=x_{1} \vee \neg x_{2} \vee x_{3}$

- Boolean formula $\Phi=C_{1} \wedge C_{2} \wedge \cdots \wedge C_{m}$

Question: Is there an assignment of truth values to the variables in X such that Φ is true?
Idea of the reduction:

- Given SAT instance $\Phi \Rightarrow$ construct a plane graph G and a orthogonal description $H(G)$
$\square \Phi$ is satisfiable $\Leftrightarrow G$ can be drawn w.r.t. $H(G)$ in area K for some specific number K

Boundary, Belt, and "Piston" Gadget

Boundary, Belt, and "Piston" Gadget

Boundary, Belt, and "Piston" Gadget

Clause Gadgets

Example:
$C_{1}=x_{2} \vee \neg x_{4}$
$C_{2}=x_{1} \vee x_{2} \vee \neg x_{3}$
$C_{3}=x_{5}$
$C_{4}=x_{4} \vee \neg x_{5}$

through each clause
\rightarrow for every clause, there needs to be
≥ 1 "gap of a literal" to be on the same height as the "tunnel" to the next literal

Complete Reduction

Pick

$$
K=(9 n+2) \times(9 m+7)
$$

$$
9 m+7
$$

Then:
G under $H(G)$ has an orthogonal drawing in area K

$$
\Leftrightarrow
$$

Φ satisfiable

Literature

■ [GD Ch. 5] for detailed explanation
■ [Tamassia 1987] "On embedding a graph in the grid with the minmum number of bends" Original paper on flow for bend minimization.

■ [van den Brand, Chen, Kyng, Liu, Peng, Probst, Sachdeva, Sidford 2023] "A Deterministic Almost-Linear Time Algorithm for Minimum-Cost Flow"
State-of-the-art algorithm for solving the minimum-cost flow problem (published recently in the proceedings of the FOCS 2023 conference).

- [Patrignani 2001] "On the complexity of orthogonal compaction" NP-hardness proof for orthogonal representation of planar max-degree-4 graphs.

■ [Evans, Fleszar, Kindermann, Saeedi, Shin, Wolff 2022] "Minimum rectilinear polygons for given angle sequences" NP-hardness proof for compaction of cycles.

