

Visualization of Graphs

Lecture 5: Upward Planar Drawings

Part I: Recognition

Johannes Zink

Summer semester 2024

What may the direction of edges in a directed graph represent?

What may the direction of edges in a directed graph represent?
 Time

PERT diagram

Program Evaluation and Review Technique (Project management)

What may the direction of edges in a directed graph represent?
 Time

Flow

PERT diagram

Program Evaluation and Review Technique (Project management)

Petri net

Place/Transition net (Modeling languages for distributed systems)

- What may the direction of edges in a directed graph represent?
 Time
 - Flow
 - Hierarchy

PERT diagram

Program Evaluation and Review Technique (Project management)

Petri net

Place/Transition net (Modeling languages for distributed systems)

Phylogenetic network

Ancestral trees / networks (Biology)

- What may the direction of edges in a directed graph represent?
 Time
 - Flow

. . .

Hierarchy

PERT diagram

Program Evaluation and Review Technique (Project management)

Petri net

Place/Transition net (Modeling languages for distributed systems)

Phylogenetic network

Ancestral trees / networks (Biology)

- What may the direction of edges in a directed graph represent?
 - Time
 - Flow
 - Hierarchy
 - ...
- We aim for drawings where the general direction is preserved.

PERT diagram

Program Evaluation and Review Technique (Project management)

Petri net

Place/Transition net (Modeling languages for distributed systems)

Phylogenetic network

Ancestral trees / networks (Biology)

A directed graph (*digraph*) is **upward planar** when it admits a drawing

A directed graph (*digraph*) is **upward planar** when it admits a drawing that is planar

A directed graph (*digraph*) is **upward planar** when it admits a drawing **I** that is planar and

where each edge is drawn as an upward y-monotone curve.

A directed graph (*digraph*) is **upward planar** when it admits a drawing **t**hat is planar and

where each edge is drawn as an upward y-monotone curve.

For an (embedded) digraph to be upward planar, it needs to ...

For an (embedded) digraph to be upward planar, it needs to ...
 be planar

- For an (embedded) digraph to be upward planar, it needs to ...
 - be planar
 - be acyclic

- For an (embedded) digraph to be upward planar, it needs to
 - be planar
 - be acyclic

- For an (embedded) digraph to be upward planar, it needs to ...
 - be planar
 - be acyclic

- For an (embedded) digraph to be upward planar, it needs to ...
 - be planar
 - be acyclic

- For an (embedded) digraph to be upward planar, it needs to ...
 - be planar
 - be acyclic

- For an (embedded) digraph to be upward planar, it needs to ...
 - be planar
 - be acyclic

- For an (embedded) digraph to be upward planar, it needs to ...
 - be planar
 - be acyclic

- For an (embedded) digraph to be upward planar, it needs to ...
 - be planar
 - be acyclic

- For an (embedded) digraph to be upward planar, it needs to ...
 - be planar
 - be acyclic

- For an (embedded) digraph to be upward planar, it needs to ...
 - be planar
 - be acyclic
 - have a bimodal embedding

- For an (embedded) digraph to be upward planar, it needs to ...
 - be planar
 - be acyclic
 - have a bimodal embedding
- ... but these conditions are not sufficient.

- For an (embedded) digraph to be upward planar, it needs to ...
 - be planar
 - be acyclic
 - have a bimodal embedding
- ... but these conditions are *not sufficient*. \rightarrow **Exercise**

not bimodal

Theorem 1.[Kelly 1987, Di Battista & Tamassia 1988]For a digraph G, the following statements are equivalent:

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]For a digraph G, the following statements are equivalent:(1) G is upward planar.

Theorem 1.[Kelly 1987, Di Battista & Tamassia 1988]

- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G, the following statements are equivalent:

- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.

\smile

no crossings

Theorem 1.[Kelly 1987, Di Battista & Tamassia 1988]

- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.

Theorem 1.[Kelly 1987, Di Battista & Tamassia 1988]

- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988] For a digraph *G*, the following statements are equivalent:

- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.

Additionally: Embedded such that s and t are on the outer face f_0 .

acyclic digraph with a single source *s* and a single sink *t*

no crossings

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988] For a digraph *G*, the following statements are equivalent:

- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.

Additionally: Embedded such that s and t are on the outer face f_0 .

or: Edge (s, t) exists.

★ acyclic digraph with a single source s and a single sink t

no crossings

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988] For a digraph *G*, the following statements are equivalent:

- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.

Additionally: Embedded such that s and t are on the outer face f_0 .

or: Edge (s, t) exists.

acyclic digraph with a single source s and a single sink t

no crossings

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G, the following statements are equivalent:

- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.

Proof.

(2) \Rightarrow (1) By definition.

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G, the following statements are equivalent:

- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.

Proof.

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G, the following statements are equivalent:

- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.

Proof.

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G, the following statements are equivalent:

- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.

Proof.

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G, the following statements are equivalent:

- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.

Proof.

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G, the following statements are equivalent:

- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.

Proof.

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G, the following statements are equivalent:

- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.

Proof.

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G, the following statements are equivalent:

- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.

Proof.

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G, the following statements are equivalent:

- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.

Proof.

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G, the following statements are equivalent:

- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.

Proof.

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G, the following statements are equivalent:

- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.

Proof.

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G, the following statements are equivalent:

- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.

Proof.

(2) \Rightarrow (1) By definition. (1) \Rightarrow (3) For the proof idea, see the example above. (3) \Rightarrow (2) Triangulate & construct drawing:

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G, the following statements are equivalent:

- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.

Proof.

(2) \Rightarrow (1) By definition. (1) \Rightarrow (3) For the proof idea, see the example above. (3) \Rightarrow (2) Triangulate & construct drawing:

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G, the following statements are equivalent:

- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.

Proof.

(2) \Rightarrow (1) By definition. (1) \Rightarrow (3) For the proof idea, see the example above. (3) \Rightarrow (2) Triangulate & construct drawing:

Claim.

Can be drawn in pre-specified triangle.

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G, the following statements are equivalent:

- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.

Proof.

(2) \Rightarrow (1) By definition. (1) \Rightarrow (3) For the proof idea, see the example above. (3) \Rightarrow (2) Triangulate & construct drawing:

Claim.

Can be drawn in pre-specified triangle.

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G, the following statements are equivalent:

- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.

Proof.

(2) \Rightarrow (1) By definition. (1) \Rightarrow (3) For the proof idea, see the example above. (3) \Rightarrow (2) Triangulate & construct drawing:

Claim.

Can be drawn in pre-specified triangle.

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G, the following statements are equivalent:

- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.

Proof.

(2) \Rightarrow (1) By definition. (1) \Rightarrow (3) For the proof idea, see the example above. (3) \Rightarrow (2) Triangulate & construct drawing:

Claim.

Can be drawn in pre-specified triangle.

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G, the following statements are equivalent:

- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.

Proof.

(2) \Rightarrow (1) By definition. (1) \Rightarrow (3) For the proof idea, see the example above. (3) \Rightarrow (2) Triangulate & construct drawing:

Claim.

Can be drawn in pre-specified triangle.

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G, the following statements are equivalent:

(1) G is upward planar.

Case 1:

- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.

Proof.

(2) \Rightarrow (1) By definition. (1) \Rightarrow (3) For the proof idea, see the example above. (3) \Rightarrow (2) Triangulate & construct drawing:

Claim.

Can be drawn chord in pre-specified triangle.

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G, the following statements are equivalent:

(1) G is upward planar.

Case 1:

- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.

Proof.

(2) \Rightarrow (1) By definition. (1) \Rightarrow (3) For the proof idea, see the example above. (3) \Rightarrow (2) Triangulate & construct drawing:

Claim.

Can be drawn chord in pre-specified triangle.

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G, the following statements are equivalent:

(1) G is upward planar.

Case 1:

- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.

Proof.

(2) \Rightarrow (1) By definition. (1) \Rightarrow (3) For the proof idea, see the example above. (3) \Rightarrow (2) Triangulate & construct drawing:

Claim.

Can be drawn chord in pre-specified triangle.

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G, the following statements are equivalent:

- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.

Proof.

(2) \Rightarrow (1) By definition. (1) \Rightarrow (3) For the proof idea, see the example above. (3) \Rightarrow (2) Triangulate & construct drawing:

Claim.Case 1:Can be drawnchordin pre-specifiedtriangle.

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G, the following statements are equivalent:

- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.

Proof.

(2) \Rightarrow (1) By definition. (1) \Rightarrow (3) For the proof idea, see the example above. (3) \Rightarrow (2) Triangulate & construct drawing:

Claim.Case 1:Can be drawnchordin pre-specifiedtriangle.

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G, the following statements are equivalent:

- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.

Proof.

(2) \Rightarrow (1) By definition. (1) \Rightarrow (3) For the proof idea, see the example above. (3) \Rightarrow (2) Triangulate & construct drawing:

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G, the following statements are equivalent:

- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.

Proof.

(2) \Rightarrow (1) By definition. (1) \Rightarrow (3) For the proof idea, see the example above. (3) \Rightarrow (2) Triangulate & construct drawing:

Claim.Case 1:tCase 2:tCan be drawnchordno chordno chordin pre-specified \rightarrow two smaller \rightarrow two smallertriangle. \rightarrow two smaller \rightarrow consider vertices below v.Induction on the
number of vertices n.n

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G, the following statements are equivalent:

- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.

Proof.

(2) \Rightarrow (1) By definition. (1) \Rightarrow (3) For the proof idea, see the example above. (3) \Rightarrow (2) Triangulate & construct drawing:

Claim. Case 1: Can be drawn chord in pre-specified triangle. Induction on the number of vertices n. Case 2: v no chord v two smaller instances; solve inductively s v Among these, take "highest."

Theorem 1.[Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G, the following statements are equivalent:

- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.

Proof.

(2) \Rightarrow (1) By definition. (1) \Rightarrow (3) For the proof idea, see the example above. (3) \Rightarrow (2) Triangulate & construct drawing: *Idea:* Contract uv!

Claim. Case 1: Can be drawn chord in pre-specified triangle. Induction on the number of vertices n. Case 2: Induction on the instances; solve inductively for the end of the

Theorem 1.[Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G, the following statements are equivalent:

- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.

Proof.

(2) \Rightarrow (1) By definition. (1) \Rightarrow (3) For the proof idea, see the example above. (3) \Rightarrow (2) Triangulate & construct drawing: *Idea:* Contract uv!

Claim. Case 1: Can be drawn chord chord in pre-specified triangle. Induction on the number of vertices n.
Upward Planarity – Characterization

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988] For a digraph *G*, the following statements are equivalent:

- (1) C is unward planar
 - (1) G is upward planar.
 - (2) G admits an upward planar straight-line drawing.
 - (3) G is a spanning subgraph of a planar st-digraph.

Proof.

(2) \Rightarrow (1) By definition. (1) \Rightarrow (3) For the proof idea, see the example above. (3) \Rightarrow (2) Triangulate & construct drawing: *Idea:* Contract uv!

Given a *planar acyclic* digraph G, decide whether G is upward planar.

Theorem.

[Garg & Tamassia, 1995]

Given a *planar acyclic* digraph G, it is NP-hard to decide whether G is upward planar.

Theorem.

[Garg & Tamassia, 1995]

Given a *planar acyclic* digraph G, it is NP-hard to decide whether G is upward planar.

Theorem 2. [Bertolazzi, Di Battista, Mannino, Tamassia, 1994] Given an *embedded* planar digraph G, it can be tested in quadratic time whether G is upward planar.

Theorem.

[Garg & Tamassia, 1995]

Given a *planar acyclic* digraph G, it is NP-hard to decide whether G is upward planar.

Theorem 2. [Bertolazzi, Di Battista, Mannino, Tamassia, 1994] Given an *embedded* planar digraph G, it can be tested in quadratic time whether G is upward planar.

Corollary. Given a *triconnected* planar digraph G, it can be tested in quadratic time whether G is upward planar.

Theorem.

[Garg & Tamassia, 1995]

Given a *planar acyclic* digraph G, it is NP-hard to decide whether G is upward planar.

Theorem 2. [Bertolazzi, Di Battista, Mannino, Tamassia, 1994] Given an *embedded* planar digraph G, it can be tested in quadratic time whether G is upward planar.

Corollary. Given a *triconnected* planar digraph G, it can be tested in quadratic time whether G is upward planar.

Theorem.[Hutton & Lubiw, 1996]Given an acyclic single-source digraph G,it can be tested in linear time whether G is upward planar.

Theorem.

[Garg & Tamassia, 1995]

Given a *planar acyclic* digraph G, it is NP-hard to decide whether G is upward planar.

Theorem 2. [Bertolazzi, Di Battista, Mannino, Tamassia, 1994] Given an *embedded* planar digraph G, it can be tested in quadratic time whether G is upward planar.

Corollary.

Given a *triconnected* planar digraph G, it can be tested in quadratic time whether G is upward planar.

Theorem.[Hutton & Lubiw, 1996]Given an acyclic single-source digraph G,it can be tested in linear time whether G is upward planar.

The Problem

Fixed Embedding Upward Planarity Testing. Let G be a plane digraph, let F be the set of faces of G, and let f_0 be the outer face of G. Test whether G is upward planar (w.r.t. to F and f_0).

The Problem

Fixed Embedding Upward Planarity Testing. Let G be a plane digraph, let F be the set of faces of G, and let f_0 be the outer face of G. Test whether G is upward planar (w.r.t. to F and f_0).

Plan.

- Find a property that any upward planar drawing of G satisfies.
- Formalize this property.
- Specify an algorithm to test this property.

Definitions.

Definitions.

Definitions.

Definitions.

Definitions.

Definitions.

Definitions.

Definitions.

- A vertex v is a local source w.r.t. to a face fif v has two outgoing edges on ∂f . boundary of f
- A vertex v is a local sink w.r.t. to a face f if v has two incoming edges on ∂f .

- A vertex v is a local source w.r.t. to a face fif v has two outgoing edges on ∂f . boundary of f
- A vertex v is a local sink w.r.t. to a face f if v has two incoming edges on ∂f .

- A vertex v is a local source w.r.t. to a face fif v has two outgoing edges on ∂f . boundary of f
- A vertex v is a local sink w.r.t. to a face f if v has two incoming edges on ∂f .

- A vertex v is a local source w.r.t. to a face fif v has two outgoing edges on ∂f boundary of f
- A vertex v is a local sink w.r.t. to a face f if v has two incoming edges on ∂f .

- A vertex v is a local source w.r.t. to a face fif v has two outgoing edges on ∂f boundary of f
- A vertex v is a local sink w.r.t. to a face f if v has two incoming edges on ∂f .

8 - 15

Angles, Local Sources & Sinks

- A vertex v is a local source w.r.t. to a face fif v has two outgoing edges on ∂f . boundary of f
- A vertex v is a local sink w.r.t. to a face f if v has two incoming edges on ∂f .

- A vertex v is a local source w.r.t. to a face fif v has two outgoing edges on ∂f . boundary of f
- A vertex v is a local sink w.r.t. to a face f if v has two incoming edges on ∂f .
- An angle α at a local source/sink is large if $\alpha > \pi$ and small otherwise.

- A vertex v is a local source w.r.t. to a face fif v has two outgoing edges on ∂f . boundary of f
- A vertex v is a local sink w.r.t. to a face f if v has two incoming edges on ∂f .
- An angle α at a local source/sink is large if $\alpha > \pi$ and small otherwise.

- A vertex v is a local source w.r.t. to a face fif v has two outgoing edges on ∂f . boundary of f
- A vertex v is a local sink w.r.t. to a face f if v has two incoming edges on ∂f .
- An angle α at a local source/sink is large if $\alpha > \pi$ and small otherwise.

- A vertex v is a local source w.r.t. to a face fif v has two outgoing edges on ∂f . boundary of f
- A vertex v is a local sink w.r.t. to a face f if v has two incoming edges on ∂f .
- An angle α at a local source/sink is large if $\alpha > \pi$ and small otherwise.

8 - 20

Angles, Local Sources & Sinks

- A vertex v is a local source w.r.t. to a face fif v has two outgoing edges on ∂f . boundary of f
- A vertex v is a local sink w.r.t. to a face f if v has two incoming edges on ∂f .
- An angle α at a local source/sink is large if $\alpha > \pi$ and small otherwise.

- A vertex v is a local source w.r.t. to a face fif v has two outgoing edges on ∂f . boundary of f
- A vertex v is a local sink w.r.t. to a face f if v has two incoming edges on ∂f .
- An angle α at a local source/sink is large if $\alpha > \pi$ and small otherwise.

- A vertex v is a local source w.r.t. to a face fif v has two outgoing edges on ∂f . boundary of f
- A vertex v is a **local sink** w.r.t. to a face f if v has two incoming edges on ∂f .
- An angle α at a local source/sink is large if $\alpha > \pi$ and small otherwise.
- L(v) = # large angles at v

- A vertex v is a local source w.r.t. to a face fif v has two outgoing edges on ∂f . boundary of f
- A vertex v is a **local sink** w.r.t. to a face f if v has two incoming edges on ∂f .
- An angle α at a local source/sink is large if $\alpha > \pi$ and small otherwise.
- L(v) = # large angles at v
- L(f) = # large angles in f

- A vertex v is a local source w.r.t. to a face fif v has two outgoing edges on ∂f . boundary of f
- A vertex v is a **local sink** w.r.t. to a face f if v has two incoming edges on ∂f .
- An angle α at a local source/sink is large if $\alpha > \pi$ and small otherwise.
- L(v) = # large angles at v
- L(f) = # large angles in f
- S(v) = # small angles at v
- S(f) = # small angles at f

- A vertex v is a local source w.r.t. to a face fif v has two outgoing edges on ∂f . boundary of f
- A vertex v is a **local sink** w.r.t. to a face f if v has two incoming edges on ∂f .
- An angle α at a local source/sink is large if $\alpha > \pi$ and small otherwise.
- L(v) = # large angles at v
- L(f) = # large angles in f
- S(v) = # small angles at v
- S(f) = # small angles at f
- A(f) = # local sources w.r.t. to f

- A vertex v is a local source w.r.t. to a face fif v has two outgoing edges on ∂f . boundary of f
- A vertex v is a **local sink** w.r.t. to a face f if v has two incoming edges on ∂f .
- An angle α at a local source/sink is large if $\alpha > \pi$ and small otherwise.
- L(v) = # large angles at v
- L(f) = # large angles in f
- S(v) = # small angles at v
- S(f) = # small angles at f
- A(f) = # local sources w.r.t. to f = # local sinks w.r.t. to f

- A vertex v is a local source w.r.t. to a face fif v has two outgoing edges on ∂f . boundary of f
- A vertex v is a **local sink** w.r.t. to a face f if v has two incoming edges on ∂f .
- An angle α at a local source/sink is large if $\alpha > \pi$ and small otherwise.
- L(v) = # large angles at v
- L(f) = # large angles in f
- S(v) = # small angles at v
- S(f) = # small angles at f
- A(f) = # local sources w.r.t. to f = # local sinks w.r.t. to f

Angles, Local Sources & Sinks

Definitions.

- A vertex v is a local source w.r.t. to a face fif v has two outgoing edges on ∂f boundary of f
- A vertex v is a **local sink** w.r.t. to a face f if v has two incoming edges on ∂f .
- An angle α at a local source/sink is large if $\alpha > \pi$ and small otherwise.
- L(v) = # large angles at v
- L(f) = # large angles in f
- S(v) = # small angles at v
- S(f) = # small angles at f
- A(f) = # local sources w.r.t. to f= # local sinks w.r.t. to f

Lemma 1. L(f) + S(f) = 2A(f)

Observe that the global sources and global sinks have precisely one large angle

- Observe that the global sources and global sinks have precisely one large angle
- All other vertices have only small angles.

- Observe that the global sources and global sinks have precisely one large angle
- All other vertices have only small angles.
- Let v be a global source and let it be incident to faces f_1 and f_2 .

- Observe that the global sources and global sinks have precisely one large angle
- All other vertices have only small angles.
- Let v be a global source and let it be incident to faces f_1 and f_2 .
- Does v have a large angle in f_1 or f_2 ?

- Observe that the global sources and global sinks have precisely one large angle
- All other vertices have only small angles.
- Let v be a global source and let it be incident to faces f_1 and f_2 .
- Does v have a large angle in f_1 or f_2 ?

- Observe that the global sources and global sinks have precisely one large angle
- All other vertices have only small angles.
- Let v be a global source and let it be incident to faces f_1 and f_2 .
- Does v have a large angle in f_1 or f_2 ?

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2 & \text{if } f \neq f_0, \\ +2 & \text{if } f = f_0. \end{cases}$$

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2 & \text{if } f \neq f_0, \\ +2 & \text{if } f = f_0. \end{cases}$$

Proof by induction on L(f).

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2 & \text{if } f \neq f_0, \\ +2 & \text{if } f = f_0. \end{cases}$$

Proof by induction on L(f).

$$\blacksquare L(f) = 0$$

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2 & \text{if } f \neq f_0, \\ +2 & \text{if } f = f_0. \end{cases}$$

Proof by induction on
$$L(f)$$
.
 $L(f) = 0$

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2 & \text{if } f \neq f_0, \\ +2 & \text{if } f = f_0. \end{cases}$$

Proof by induction on
$$L(f)$$
.
 $L(f) = 0$ $\Rightarrow S(f) = 2$

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2 & \text{if } f \neq f_0, \\ +2 & \text{if } f = f_0. \end{cases}$$

Proof by induction on
$$L(f)$$
.
 $L(f) = 0$ $\Rightarrow S(f) = 2$ \checkmark

 $\blacksquare L(f) \geq 1$

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2 & \text{if } f \neq f_0, \\ +2 & \text{if } f = f_0. \end{cases}$$

Proof by induction on
$$L(f)$$
.
 $L(f) = 0$ $\Rightarrow S(f) = 2$

$\blacksquare L(f) \ge 1$

Split f with edge from a large angle at a "low" sink u to...

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2 & \text{if } f \neq f_0, \\ +2 & \text{if } f = f_0. \end{cases}$$

Proof by induction on
$$L(f)$$
.
 $L(f) = 0$ $\Rightarrow S(f) = 2$

$\blacksquare L(f) \ge 1$

Split f with edge from a large angle at a "low" sink u to...

sink v with small angle:

10 - 8

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2 & \text{if } f \neq f_0, \\ +2 & \text{if } f = f_0. \end{cases}$$

Proof by induction on
$$L(f)$$
.
 $L(f) = 0$ $\Rightarrow S(f) = 2$

$\blacksquare L(f) \ge 1$

Split f with edge from a large angle at a "low" sink u to...

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2 & \text{if } f \neq f_0, \\ +2 & \text{if } f = f_0. \end{cases}$$

Proof by induction on
$$L(f)$$
.
 $L(f) = 0$ $\Rightarrow S(f) = 2$ \checkmark

$\blacksquare L(f) \ge 1$

Split f with edge from a large angle at a "low" sink u to...

$$L(f) - S(f)$$

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2 & \text{if } f \neq f_0, \\ +2 & \text{if } f = f_0. \end{cases}$$

Proof by induction on
$$L(f)$$
.
 $L(f) = 0$ $\Rightarrow S(f) = 2$ \checkmark

$\blacksquare L(f) \ge 1$

Split f with edge from a large angle at a "low" sink u to...

sink v with small angle:

$L(f) - S(f) = L(f_1) + L(f_2) + 1$

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2 & \text{if } f \neq f_0, \\ +2 & \text{if } f = f_0. \end{cases}$$

Proof by induction on
$$L(f)$$
.
 $L(f) = 0$ $\Rightarrow S(f) = 2$ \checkmark

$\blacksquare L(f) \geq 1$

Split f with edge from a large angle at a "low" sink u to...

$$L(f) - S(f) = L(f_1) + L(f_2) + 1$$

- (S(f_1) + S(f_2) - 1)

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2 & \text{if } f \neq f_0, \\ +2 & \text{if } f = f_0. \end{cases}$$

Proof by induction on
$$L(f)$$
.
 $L(f) = 0$
 $\Rightarrow S(f) = 2$

$\blacksquare L(f) \ge 1$

Split f with edge from a large angle at a "low" sink u to...

$$-2 -2$$
$$L(f) - S(f) = L(f_1) + L(f_2) + 1$$
$$-(S(f_1) + S(f_2) - 1)$$

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2 & \text{if } f \neq f_0, \\ +2 & \text{if } f = f_0. \end{cases}$$

Proof by induction on
$$L(f)$$
.
 $L(f) = 0$
 $\Rightarrow S(f) = 2$

$\blacksquare L(f) \ge 1$

Split f with edge from a large angle at a "low" sink u to...

$$-2 -2 -2$$

$$L(f) - S(f) = L(f_1) + L(f_2) + 1$$

$$-(S(f_1) + S(f_2) - 1)$$

$$= -2 - 2 + 2 = -2$$

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2 & \text{if } f \neq f_0, \\ +2 & \text{if } f = f_0. \end{cases}$$

Proof by induction on
$$L(f)$$
.
 $L(f) = 0$ $\Rightarrow S(f) = 2$ \checkmark

$\blacksquare L(f) \ge 1$

Split f with edge from a large angle at a "low" sink u to...

$$L(f) - S(f)$$

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2 & \text{if } f \neq f_0, \\ +2 & \text{if } f = f_0. \end{cases}$$

Proof by induction on
$$L(f)$$
.
 $L(f) = 0$ $\Rightarrow S(f) = 2$ \checkmark

$\blacksquare L(f) \ge 1$

Split f with edge from a large angle at a "low" sink u to...

$$L(f) - S(f) = L(f_1) + L(f_2) + 1$$

- (S(f_1) + S(f_2) - 1)

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2 & \text{if } f \neq f_0, \\ +2 & \text{if } f = f_0. \end{cases}$$

Proof by induction on
$$L(f)$$
.
 $L(f) = 0$ $\Rightarrow S(f) = 2$ \checkmark

$\blacksquare L(f) \ge 1$

Split f with edge from a large angle at a "low" sink u to...

$$-2 -2 -2$$

$$L(f) - S(f) = L(f_1) + L(f_2) + 1 - (S(f_1) + S(f_2) - 1)$$

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2 & \text{if } f \neq f_0, \\ +2 & \text{if } f = f_0. \end{cases}$$

Proof by induction on
$$L(f)$$
.
 $L(f) = 0$
 $\Rightarrow S(f) = 2$

$\blacksquare L(f) \ge 1$

Split f with edge from a large angle at a "low" sink u to...

$$-2 -2 -2$$

$$L(f) - S(f) = L(f_1) + L(f_2) + 1$$

$$-(S(f_1) + S(f_2) - 1)$$

$$= -2 - 2 + 2 = -2$$

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2 & \text{if } f \neq f_0, \\ +2 & \text{if } f = f_0. \end{cases}$$

Proof by induction on
$$L(f)$$
.
 $L(f) = 0$ $\Rightarrow S(f) = 2$ \checkmark

$\blacksquare L(f) \ge 1$

Split f with edge from a large angle at a "low" sink u to...

source v with small angle:

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2 & \text{if } f \neq f_0, \\ +2 & \text{if } f = f_0. \end{cases}$$

Proof by induction on
$$L(f)$$
.
 $L(f) = 0$ $\Rightarrow S(f) = 2$

$\blacksquare L(f) \ge 1$

Split f with edge from a large angle at a "low" sink u to...

source v with small angle:

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2 & \text{if } f \neq f_0, \\ +2 & \text{if } f = f_0. \end{cases}$$

Proof by induction on
$$L(f)$$
.
 $L(f) = 0$ $\Rightarrow S(f) = 2$

$\blacksquare L(f) \ge 1$

Split f with edge from a large angle at a "low" sink u to...

source v with small angle:

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2 & \text{if } f \neq f_0, \\ +2 & \text{if } f = f_0. \end{cases}$$

Proof by induction on
$$L(f)$$
.
 $L(f) = 0$ $\Rightarrow S(f) = 2$ \checkmark

$\blacksquare L(f) \ge 1$

Split f with edge from a large angle at a "low" sink u to...

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2 & \text{if } f \neq f_0, \\ +2 & \text{if } f = f_0. \end{cases}$$

Proof by induction on
$$L(f)$$
.
 $L(f) = 0$ $\Rightarrow S(f) = 2$ \checkmark

$\blacksquare L(f) \ge 1$

Split f with edge from a large angle at a "low" sink u to...

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2 & \text{if } f \neq f_0, \\ +2 & \text{if } f = f_0. \end{cases}$$

Proof by induction on
$$L(f)$$
.
 $L(f) = 0$ $\Rightarrow S(f) = 2$

$\blacksquare L(f) \ge 1$

Split f with edge from a large angle at a "low" sink u to...

$$L(f) - S(f)$$

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2 & \text{if } f \neq f_0, \\ +2 & \text{if } f = f_0. \end{cases}$$

Proof by induction on
$$L(f)$$
.
 $L(f) = 0$ $\Rightarrow S(f) = 2$ \checkmark

$\blacksquare L(f) \ge 1$

Split f with edge from a large angle at a "low" sink u to...

source v with small/large angle:

$L(f) - S(f) = L(f_1) + L(f_2) + 2$

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2 & \text{if } f \neq f_0, \\ +2 & \text{if } f = f_0. \end{cases}$$

Proof by induction on
$$L(f)$$
.
 $L(f) = 0$ $\Rightarrow S(f) = 2$ \checkmark

$\blacksquare L(f) \ge 1$

Split f with edge from a large angle at a "low" sink u to...

source v with small/large angle:

$L(f) - S(f) = L(f_1) + L(f_2) + 2$ $- (S(f_1) + S(f_2))$

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2 & \text{if } f \neq f_0, \\ +2 & \text{if } f = f_0. \end{cases}$$

Proof by induction on
$$L(f)$$
.
 $L(f) = 0$ $\Rightarrow S(f) = 2$ \checkmark

$\blacksquare L(f) \ge 1$

Split f with edge from a large angle at a "low" sink u to...

$$-2 -2$$

$$L(f) - S(f) = L(f_1) + L(f_2) + 2$$

$$-(S(f_1) + S(f_2))$$

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2 & \text{if } f \neq f_0, \\ +2 & \text{if } f = f_0. \end{cases}$$

Proof by induction on
$$L(f)$$
.
 $L(f) = 0$ $\Rightarrow S(f) = 2$ \checkmark

$\blacksquare L(f) \ge 1$

Split f with edge from a large angle at a "low" sink u to...

$$-2 -2$$
$$L(f) - S(f) = L(f_1) + L(f_2) + 2$$
$$-(S(f_1) + S(f_2))$$
$$= -2 - 2 + 2 = -2$$

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2 & \text{if } f \neq f_0, \\ +2 & \text{if } f = f_0. \end{cases}$$

Proof by induction on
$$L(f)$$
.
 $L(f) = 0$ $\Rightarrow S(f) = 2$

$\blacksquare L(f) \ge 1$

Split f with edge from a large angle at a "low" sink u to...

• vertex v that is neither source nor sink:

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2 & \text{if } f \neq f_0, \\ +2 & \text{if } f = f_0. \end{cases}$$

Proof by induction on
$$L(f)$$
.
 $L(f) = 0$ $\Rightarrow S(f) = 2$

$\blacksquare L(f) \ge 1$

Split f with edge from a large angle at a "low" sink u to...

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2 & \text{if } f \neq f_0, \\ +2 & \text{if } f = f_0. \end{cases}$$

Proof by induction on
$$L(f)$$
.
 $L(f) = 0$ $\Rightarrow S(f) = 2$ \checkmark

$\blacksquare L(f) \ge 1$

Split f with edge from a large angle at a "low" sink u to...

$$L(f) - S(f)$$

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2 & \text{if } f \neq f_0, \\ +2 & \text{if } f = f_0. \end{cases}$$

Proof by induction on
$$L(f)$$
.
 $L(f) = 0$ $\Rightarrow S(f) = 2$ \checkmark

$\blacksquare L(f) \ge 1$

Split f with edge from a large angle at a "low" sink u to...

vertex v that is neither source nor sink:

$L(f) - S(f) = L(f_1) + L(f_2) + 1$

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2 & \text{if } f \neq f_0, \\ +2 & \text{if } f = f_0. \end{cases}$$

Proof by induction on
$$L(f)$$
.
 $L(f) = 0$ $\Rightarrow S(f) = 2$ \checkmark

$\blacksquare L(f) \ge 1$

Split f with edge from a large angle at a "low" sink u to...

$$L(f) - S(f) = L(f_1) + L(f_2) + 1$$

- (S(f_1) + S(f_2) - 1)

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2 & \text{if } f \neq f_0, \\ +2 & \text{if } f = f_0. \end{cases}$$

Proof by induction on
$$L(f)$$
.
 $L(f) = 0$
 $\Rightarrow S(f) = 2$

$\blacksquare L(f) \ge 1$

Split f with edge from a large angle at a "low" sink u to...

$$-2 -2 -2$$

$$L(f) - S(f) = \frac{L(f_1) + L(f_2) + 1}{-(S(f_1) + S(f_2) - 1)}$$

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2 & \text{if } f \neq f_0, \\ +2 & \text{if } f = f_0. \end{cases}$$

Proof by induction on
$$L(f)$$
.
 $L(f) = 0$
 $\Rightarrow S(f) = 2$

$\blacksquare L(f) \ge 1$

Split f with edge from a large angle at a "low" sink u to...

$$-2 -2 -2$$

$$L(f) - S(f) = L(f_1) + L(f_2) + 1$$

$$-(S(f_1) + S(f_2) - 1)$$

$$= -2 - 2 + 2 = -2$$

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2 & \text{if } f \neq f_0, \\ +2 & \text{if } f = f_0. \end{cases}$$

Proof by induction on
$$L(f)$$
.
 $L(f) = 0$
 $\Rightarrow S(f) = 2$

$\blacksquare L(f) \ge 1$

Split f with edge from a large angle at a "low" sink u to...

vertex v that is neither source nor sink:

$$-2 -2 -2$$

$$L(f) - S(f) = L(f_1) + L(f_2) + 1$$

$$-(S(f_1) + S(f_2) - 1)$$

$$= -2 - 2 + 2 = -2$$

• Otherwise "high" source u exists. \rightarrow symmetric

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2 & \text{if } f \neq f_0, \\ +2 & \text{if } f = f_0. \end{cases}$$

Proof by induction on
$$L(f)$$
.
 $L(f) = 0$
 $\Rightarrow S(f) = 2$

$\blacksquare L(f) \ge 1$

Split f with edge from a large angle at a "low" sink u to...

vertex v that is neither source nor sink:

$$-2 -2$$

$$L(f) - S(f) = L(f_1) + L(f_2) + 1$$

$$-(S(f_1) + S(f_2) - 1)$$

$$= -2 - 2 + 2 = -2$$
Otherwise "high" source *u* exists. \rightarrow symmetric

Similar argument for the outer face f_0 .

Lemma 3.

Lemma 3. In every upward planar drawing of *G*, it holds that for each vertex $v: L(v) = \begin{cases} 0\\ 1 \end{cases}$

Lemma 3. In every upward planar drawing of *G*, it holds that • for each vertex $v: L(v) = \begin{cases} 0 & \text{if } v \text{ is an inner vertex,} \\ 1 \end{cases}$

Lemma 3. In every upward planar drawing of G, it holds that for each vertex $v: L(v) = \begin{cases} 0 & \text{if } v \text{ is an inner vertex,} \\ 1 & \text{if } v \text{ is a gobal source / sink;} \end{cases}$

Lemma 3. In every upward planar drawing of *G*, it holds that for each vertex $v: L(v) = \begin{cases} 0 & \text{if } v \text{ is an inner vertex,} \\ 1 & \text{if } v \text{ is a gobal source } / \text{ sink;} \end{cases}$ for each face f: L(f) =

Lemma 3. In every upward planar drawing of G, it holds that for each vertex $v: L(v) = \begin{cases} 0 & \text{if } v \text{ is an inner vertex,} \\ 1 & \text{if } v \text{ is a gobal source } / \text{ sink;} \end{cases}$ for each face $f: L(f) = \begin{cases} A(f) - 1 & \text{if } f \neq f_0, \end{cases}$

Lemma 3.

for each vertex v: L(v) =

$$\begin{cases}
0 & \text{if } v \text{ is an inner vertex,} \\
1 & \text{if } v \text{ is a gobal source / sink;} \\
\end{cases}$$

for each face f: L(f) =

$$\begin{cases}
A(f) - 1 & \text{if } f \neq f_0, \\
A(f) + 1 & \text{if } f = f_0.
\end{cases}$$

Lemma 3. In every upward planar drawing of *G*, it holds that for each vertex $v: L(v) = \begin{cases} 0 & \text{if } v \text{ is an inner vertex,} \\ 1 & \text{if } v \text{ is a gobal source } / \text{ sink;} \end{cases}$ for each face $f: L(f) = \begin{cases} A(f) - 1 & \text{if } f \neq f_0, \\ A(f) + 1 & \text{if } f = f_0. \end{cases}$

Lemma 3. In every upward planar drawing of G, it holds that for each vertex $v: L(v) = \begin{cases} 0 & \text{if } v \text{ is an inner vertex,} \\ 1 & \text{if } v \text{ is a gobal source } / \text{ sink;} \end{cases}$ for each face $f: L(f) = \begin{cases} A(f) - 1 & \text{if } f \neq f_0, \\ A(f) + 1 & \text{if } f = f_0. \end{cases}$

Lemma 3.

for each vertex v: L(v) =

$$\begin{cases}
0 & \text{if } v \text{ is an inner vertex,} \\
1 & \text{if } v \text{ is a gobal source / sink;} \\
\end{cases}$$

for each face f: L(f) =

$$\begin{cases}
A(f) - 1 & \text{if } f \neq f_0, \\
A(f) + 1 & \text{if } f = f_0.
\end{cases}$$

Lemma 3.

for each vertex v: L(v) =

$$\begin{cases}
0 & \text{if } v \text{ is an inner vertex,} \\
1 & \text{if } v \text{ is a gobal source / sink;} \\
\end{cases}$$

for each face f: L(f) =

$$\begin{cases}
A(f) - 1 & \text{if } f \neq f_0, \\
A(f) + 1 & \text{if } f = f_0.
\end{cases}$$

Lemma 3.

for each vertex v: L(v) =

$$\begin{cases}
0 & \text{if } v \text{ is an inner vertex,} \\
1 & \text{if } v \text{ is a gobal source / sink;} \\
\end{cases}$$

for each face f: L(f) =

$$\begin{cases}
A(f) - 1 & \text{if } f \neq f_0, \\
A(f) + 1 & \text{if } f = f_0.
\end{cases}$$

Lemma 3.

In every upward planar drawing of G, it holds that

for each vertex v: L(v) =

$$\begin{cases}
0 & \text{if } v \text{ is an inner vertex,} \\
1 & \text{if } v \text{ is a gobal source / sink;} \\
\end{cases}$$

for each face f: L(f) =

$$\begin{cases}
A(f) - 1 & \text{if } f \neq f_0, \\
A(f) + 1 & \text{if } f = f_0.
\end{cases}$$

Proof.

Lemma 3.

In every upward planar drawing of G, it holds that

for each vertex v: L(v) =

$$\begin{cases}
0 & \text{if } v \text{ is an inner vertex,} \\
1 & \text{if } v \text{ is a gobal source / sink;} \\
\end{cases}$$

for each face f: L(f) =

$$\begin{cases}
A(f) - 1 & \text{if } f \neq f_0, \\
A(f) + 1 & \text{if } f = f_0.
\end{cases}$$

Proof. Lemma 1: L(f) + S(f) = 2A(f)

Lemma 3.

In every upward planar drawing of G, it holds that

for each vertex v: L(v) =

$$\begin{cases}
0 & \text{if } v \text{ is an inner vertex,} \\
1 & \text{if } v \text{ is a gobal source / sink;} \\
\end{cases}$$

for each face f: L(f) =

$$\begin{cases}
A(f) - 1 & \text{if } f \neq f_0, \\
A(f) + 1 & \text{if } f = f_0.
\end{cases}$$

Proof. Lemma 1: L(f) + S(f) = 2A(f)Lemma 2: $L(f) - S(f) = \pm 2$.

Lemma 3.

In every upward planar drawing of G, it holds that

for each vertex v: L(v) =

$$\begin{cases}
0 & \text{if } v \text{ is an inner vertex,} \\
1 & \text{if } v \text{ is a gobal source / sink;} \\
\end{cases}$$

for each face f: L(f) =

$$\begin{cases}
A(f) - 1 & \text{if } f \neq f_0, \\
A(f) + 1 & \text{if } f = f_0.
\end{cases}$$

Proof. Lemma 1: L(f) + S(f) = 2A(f)Lemma 2: $L(f) - S(f) = \pm 2$.

Lemma 3.

for each vertex v: L(v) =

$$\begin{cases}
0 & \text{if } v \text{ is an inner vertex,} \\
1 & \text{if } v \text{ is a gobal source / sink;} \\
\end{cases}$$

for each face f: L(f) =

$$\begin{cases}
A(f) - 1 & \text{if } f \neq f_0, \\
A(f) + 1 & \text{if } f = f_0.
\end{cases}$$

Proof. Lemma 1:
$$L(f) + S(f) = 2A(f)$$

Lemma 2: $L(f) - S(f) = \pm 2$.
 $\Rightarrow 2L(f) = 2A(f) \pm 2$.

Let S be the set of (global) sources, and let T be the set of (global) sinks.

Let S be the set of (global) sources, and let T be the set of (global) sinks.

Definition. A consistent assignment $\Phi: S \cup T \to F$ is a mapping with

Let S be the set of (global) sources, and let T be the set of (global) sinks.

Definition. A consistent assignment $\Phi: S \cup T \rightarrow F$ is a mapping with $\Phi: v \mapsto$ incident face, where v forms a large angle such that

Let S be the set of (global) sources, and let T be the set of (global) sinks.

Definition. A consistent assignment $\Phi: S \cup T \to F$ is a mapping with $\Phi: v \mapsto$ incident face, where v forms a large angle such that $|\Phi^{-1}(f)| =$

Let S be the set of (global) sources, and let T be the set of (global) sinks.

Definition. A consistent assignment $\Phi: S \cup T \rightarrow F$ is a mapping with $\Phi: v \mapsto$ incident face, where v forms a large angle such that

$$|\Phi^{-1}(f)| = L(f) =$$

Let S be the set of (global) sources, and let T be the set of (global) sinks.

Definition. A consistent assignment $\Phi: S \cup T \rightarrow F$ is a mapping with $\Phi: v \mapsto$ incident face, where v forms a large angle such that

$$|\Phi^{-1}(f)| = L(f) = \begin{cases} A(f) - 1 & \text{if } f \neq f_0, \\ A(f) + 1 & \text{if } f = f_0. \end{cases}$$

global sources

■ global sources & sinks

global sources & sinks A(f) = # local sources/sinks of f

■ global sources & sinks A(f) = # local sources/sinks of f
Example of Angle-to-Face Assignment

■ global sources & sinks A(f) = # local sources/sinks of f

Example of Angle-to-Face Assignment

Example of Angle-to-Face Assignment

Theorem 3.

Let G be an acyclic plane digraph with embedding given by F and f_0 .

Theorem 3.

Let G be an acyclic plane digraph with embedding given by F and f_0 .

Then G is upward planar (respecting F and f_0)

 $\Leftrightarrow G$ is bimodal and there exists a consistent assignment Φ .

Theorem 3.

Let G be an acyclic plane digraph with embedding given by F and f_0 .

Then G is upward planar (respecting F and f_0)

 \Leftrightarrow G is bimodal and there exists a consistent assignment Φ .

Proof. \Rightarrow : As constructed before.

Theorem 3.

Let G be an acyclic plane digraph with embedding given by F and f_0 .

Then G is upward planar (respecting F and f_0)

 $\Leftrightarrow G$ is bimodal and there exists a consistent assignment Φ .

Proof.

- \Rightarrow : As constructed before.
- \Leftarrow : Idea:
- Construct planar st-digraph that is a supergraph of G.

Theorem 3.

Let G be an acyclic plane digraph with embedding given by F and f_0 .

Then G is upward planar (respecting F and f_0)

 $\Leftrightarrow G$ is bimodal and there exists a consistent assignment Φ .

Proof.

- \Rightarrow : As constructed before.
- \Leftarrow : Idea:
- Construct planar st-digraph that is a supergraph of G.
- Apply equivalence from Theorem 1.

G is upward planar. $\Leftrightarrow G$ is a spanning subgraph of a planar st-digraph.

Let f be a face.

Let f be a face.

Consider the clockwise angle sequence σ_f of L / S on local sources and sinks of f.

Goal: Add edges to break large angles (sources and sinks).

Let f be a face.

- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:

Let f be a face.

- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:

Let f be a face.

- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \ge 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:

Let f be a face.

- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \ge 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:

Let f be a face.

- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \ge 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:
- x source ⇒ insert edge (z, x)

Let f be a face.

- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:
- $x \text{ source} \Rightarrow \text{insert edge}(z, x)$

Let f be a face.

- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:
- $x \text{ source} \Rightarrow \text{insert edge}(z, x)$

Let f be a face.

- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:
- $x \text{ source} \Rightarrow \text{insert edge}(z, x)$
- $x \operatorname{sink} \Rightarrow \operatorname{insert} \operatorname{edge} (x, z).$

Let f be a face.

- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:
- $x \text{ source} \Rightarrow \text{insert edge}(z, x)$
- $x \operatorname{sink} \Rightarrow \operatorname{insert} \operatorname{edge} (x, z).$

Let f be a face.

- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:
- $x \text{ source} \Rightarrow \text{insert edge}(z, x)$
- $x \operatorname{sink} \Rightarrow \operatorname{insert} \operatorname{edge} (x, z).$

Let f be a face.

- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:
- $x \text{ source} \Rightarrow \text{insert edge}(z, x)$
- $x \operatorname{sink} \Rightarrow \operatorname{insert} \operatorname{edge} (x, z).$

Let f be a face.

- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:
- $x \text{ source} \Rightarrow \text{insert edge}(z, x)$
- $x \operatorname{sink} \Rightarrow \operatorname{insert} \operatorname{edge} (x, z).$
- Refine outer face f_0 similarly.

Let f be a face.

- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:
- $x \text{ source} \Rightarrow \text{insert edge}(z, x)$
- $x \operatorname{sink} \Rightarrow \operatorname{insert} \operatorname{edge} (x, z).$
- Refine outer face f_0 similarly.
 - \rightarrow Exercise

Let f be a face.

Consider the clockwise angle sequence σ_f of L / S on local sources and sinks of f.

- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:
- $x \text{ source} \Rightarrow \text{insert edge}(z, x)$
- $x \operatorname{sink} \Rightarrow \operatorname{insert} \operatorname{edge} (x, z).$
- Refine outer face f_0 similarly.

 \rightarrow Exercise

Refine all faces. $\Rightarrow G$ is contained in a planar st-digraph.

Let f be a face.

- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:
- $x \text{ source} \Rightarrow \text{insert edge}(z, x)$
- $x \operatorname{sink} \Rightarrow \operatorname{insert} \operatorname{edge} (x, z).$
- Refine outer face f_0 similarly.

 \rightarrow Exercise

- Refine all faces. $\Rightarrow G$ is contained in a planar st-digraph.
- Planarity, acyclicity, bimodality are invariants under construction.

Theorem 2. [Bertolazzi, Di Battista, Mannino, Tamassia '94] Given an *embedded* planar digraph G, we can test in quadratic time whether G is upward planar.

Theorem 2. [Bertolazzi, Di Battista, Mannino, Tamassia '94] Given an *embedded* planar digraph G, we can test in quadratic time whether G is upward planar.

Proof.

Test for bimodality.

Theorem 2. [Bertolazzi, Di Battista, Mannino, Tamassia '94] Given an *embedded* planar digraph G, we can test in quadratic time whether G is upward planar.

- Test for bimodality.
- Test for a consistent assignment Φ (via flow network).

Theorem 2. [Bertolazzi, Di Battista, Mannino, Tamassia '94] Given an *embedded* planar digraph G, we can test in quadratic time whether G is upward planar.

- Test for bimodality.
- Test for a consistent assignment Φ (via flow network).
- If G bimodal and Φ exists, refine G to plane st-digraph H.

Theorem 2. [Bertolazzi, Di Battista, Mannino, Tamassia '94] Given an *embedded* planar digraph G, we can test in quadratic time whether G is upward planar.

- Test for bimodality.
- Test for a consistent assignment Φ (via flow network).
- If G bimodal and Φ exists, refine G to plane st-digraph H.
- Draw *H* upward planar.

Theorem 2. [Bertolazzi, Di Battista, Mannino, Tamassia '94] Given an *embedded* planar digraph G, we can test in quadratic time whether G is upward planar.

- Test for bimodality.
- Test for a consistent assignment Φ (via flow network).
- If G bimodal and Φ exists, refine G to plane st-digraph H.
- **D**raw H upward planar.
- Deleted edges added in refinement step.

Idea. Flow (v, f) = 1

from global source $/ \sinh v$ to the incident face f its large angle gets assigned to.

Idea. Flow (v, f) = 1from global source / sink v to the incident face f its large angle gets assigned to.

Flow network. $N_{F,f_0}(G) = ((W, E'); b; \ell; u)$ $W = E' = \ell(e) = E'$

$$u(e) =$$

$$\bullet b(w) =$$

Idea. Flow (v, f) = 1from global source / sink v to the incident face f its large angle gets assigned to. nodes of flow network edges of flow network lower/upper bounds on edge capcities Flow network. $N_{F,f_0}(G) = ((W, E'); b; \ell; u)$ supplies/demands of nodes $\blacksquare W =$ $\blacksquare E' =$ $\ \ \, = \ \, \ell(e) =$ \blacksquare u(e) = $\bullet b(w) =$

Idea. Flow (v, f) = 1from global source / sink v to the incident face f its large angle gets assigned to. nodes of flow network edges of flow network lower/upper bounds on edge capcities Flow network. $N_{F,f_0}(G) = ((W, E'); b; \ell; u)$ supplies/demands of nodes **Example.** $\blacksquare W =$ $\blacksquare E' =$ $\bullet \ \ell(e) =$ \blacksquare u(e) = $\bullet b(w) =$

Idea. Flow (v, f) = 1from global source / sink v to the incident face f its large angle gets assigned to. nodes of flow network edges of flow network lower/upper bounds on edge capcities supplies/demands of nodes Flow network. Flow network. $(W, E'); b; \ell; u$ **Example.** • $W = \{v \in V(G) \mid v \text{ source or sink}\} \cup$ $\blacksquare E' =$ $\bullet \ \ell(e) =$ \blacksquare u(e) = $\bullet b(w) =$

Idea. Flow (v, f) = 1from global source / sink v to the incident face f its large angle gets assigned to. nodes of flow network edges of flow network lower/upper bounds on edge capcities supplies/demands of nodes Flow network. Flow network. $(W, E'); b; \ell; u$ **Example.** $\blacksquare W = \{v \in V(G) \mid v \text{ source or sink}\} \cup F(G)$ $\blacksquare E' =$ $\bullet \ \ell(e) =$ \blacksquare u(e) = $\bullet b(w) =$ \diamond

Idea. Flow (v, f) = 1from global source / sink v to the incident face f its large angle gets assigned to. nodes of flow network edges of flow network lower/upper bounds on edge capcities supplies/demands of nodes Flow network. $N_{F,f_0}(G) = ((W, E'); b; \ell; u)$ **Example.** $W = \{v \in V(G) \mid v \text{ source or sink}\} \cup F(G)$ $E' = \{(v, f) \mid v \text{ incident to } f\}$ $\ \ \, = \ \, \ell(e) =$ \blacksquare u(e) = $\bullet b(w) =$

Idea. Flow (v, f) = 1from global source / sink v to the incident face f its large angle gets assigned to. nodes of flow network edges of flow network lower/upper bounds on edge capcities supplies/demands of nodes Flow network. $N_{F,f_0}(G) = ((W, E'); b; \ell; u)$ **Example.** $\blacksquare W = \{ v \in V(G) \mid v \text{ source or sink} \} \cup F(G)$ $\blacksquare E' = \{(v, f) \mid v \text{ incident to } f\} \longrightarrow$ $\bullet \ \ell(e) = \mathbf{0} \ \forall e \in E'$ $\bullet u(e) = 1 \ \forall e \in E'$ $\bullet b(w) =$

Idea. Flow (v, f) = 1from global source / sink v to the incident face f its large angle gets assigned to. nodes of flow network edges of flow network lower/upper bounds on edge capcities Flow network. $N_{F,f_0}(G) = ((W, E'); b; \ell; u)$ supplies/demands of nodes **Example**. $W = \{v \in V(G) \mid v \text{ source or sink}\} \cup F(G)$ $E' = \{(v, f) \mid v \text{ incident to } f\}$ $\bullet \ \ell(e) = \mathbf{0} \ \forall e \in E'$ $\bullet u(e) = 1 \ \forall e \in E'$ $\forall w \in W \cap V(G)$

Visualization of Graphs

Lecture 5: Upward Planar Drawings

Part II: Series-Parallel Graphs

A graph G is series-parallel if

it contains a single (directed) edge (s, t), or

- it contains a single (directed) edge (s, t), or
- it consists of two series-parallel graphs G_1 , G_2

- **it** contains a single (directed) edge (s, t), or
- it consists of two series-parallel graphs G_1 , G_2 with sources s_1 , s_2 and sinks t_1 , t_2

- **it** contains a single (directed) edge (s, t), or
- it consists of two series-parallel graphs G_1 , G_2 with sources s_1 , s_2 and sinks t_1 , t_2 that are combined using one of the following rules:

- **it** contains a single (directed) edge (s, t), or
- it consists of two series-parallel graphs G₁, G₂ with sources s₁, s₂ and sinks t₁, t₂ that are combined using one of the following rules:

A graph G is series-parallel if

- **it** contains a single (directed) edge (s, t), or
- it consists of two series-parallel graphs G₁, G₂ with sources s₁, s₂ and sinks t₁, t₂ that are combined using one of the following rules:

20 - 7

A graph G is series-parallel if

- it contains a single (directed) edge (s, t), or
- it consists of two series-parallel graphs G₁, G₂ with sources s₁, s₂ and sinks t₁, t₂ that are combined using one of the following rules:

Convince yourself that series-parallel graphs are (upward) planar!

A decomposition tree of G is a binary tree T with nodes of three types: S, P and Q.

A decomposition tree of G is a binary tree T with nodes of three types: S, P and Q.

A Q-node represents a single edge.

A decomposition tree of G is a binary tree T with nodes of three types: S, P and Q.

- A Q-node represents a single edge.
- An S-node represents a series composition; its children T_1 and T_2 represent G_1 and G_2 .

A decomposition tree of G is a binary tree T with nodes of three types: S, P and Q.

- A Q-node represents a single edge.
- An S-node represents a series composition; its children T_1 and T_2 represent G_1 and G_2 .
- A P-node represents a parallel composition; its children T_1 and T_2 represent G_1 and G_2

Series-Parallel Graphs – Applications

Flowcharts

PERT-Diagrams (Program Evaluation and Review Technique)

Series-Parallel Graphs – Applications

Flowcharts

PERT-Diagrams (Program Evaluation and Review Technique)

Computational complexity:

Series-parallel graphs often admit linear-time algorithms for NP-hard problems, e.g., minimum maximal matching, maximum independent set, Hamiltonian completion.

Drawing conventions

Drawing conventions

Planarity

Drawing conventions

- Planarity
- Straight-line edges

Drawing conventions

- Planarity
- Straight-line edges
- Upward

Drawing conventions

- Planarity
- Straight-line edges
- Upward

Drawing aesthetics to optimize

Area

Drawing conventions

- Planarity
- Straight-line edges
- Upward

- Area
- Symmetry

Divide & conquer algorithm using the decomposition tree

Divide & conquer algorithm using the decomposition tree

Invariant: draw G inside a right-angled isosceles bounding triangle Δ(G) with s at the bottom and t at the top

Divide & conquer algorithm using the decomposition tree

Invariant: draw G inside a right-angled isosceles bounding triangle Δ(G) with s at the bottom and t at the top

Base case: Q-nodes

Divide & conquer algorithm using the decomposition tree

Invariant: draw G inside a right-angled isosceles bounding triangle Δ(G) with s at the bottom and t at the top

Base case: Q-nodes **Divide:** Draw G_1 and G_2 first

Divide & conquer algorithm using the decomposition tree

Invariant: draw G inside a right-angled isosceles bounding triangle Δ(G) with s at the bottom and t at the top

Base case: Q-nodes **Divide:** Draw G_1 and G_2 first

Divide & conquer algorithm using the decomposition tree

Invariant: draw G inside a right-angled isosceles bounding triangle Δ(G) with s at the bottom and t at the top

Divide: Draw G_1 and G_2 first

Conquer:

Base case: Q-nodes

Divide & conquer algorithm using the decomposition tree

Invariant: draw G inside a right-angled isosceles bounding triangle Δ(G) with s at the bottom and t at the top

Base case: Q-nodes

Divide: Draw G_1 and G_2 first

Conquer:

S-nodes: series compositions

 $\Delta(G)$

Divide & conquer algorithm using the decomposition tree

Invariant: draw G inside a right-angled isosceles bounding triangle Δ(G) with s at the bottom and t at the top

Divide: Draw G_1 and G_2 first

Conquer:

Base case: Q-nodes

S-nodes: series compositions

Divide & conquer algorithm using the decomposition tree

Invariant: draw G inside a right-angled isosceles bounding triangle Δ(G) with s at the bottom and t at the top

Base case: Q-nodes **Divide:** Draw G_1 and G_2 first

Conquer:

S-nodes: series compositions

Divide & conquer algorithm using the decomposition tree

Invariant: draw G inside a right-angled isosceles bounding triangle Δ(G) with s at the bottom and t at the top

Base case: Q-nodes

Divide: Draw G_1 and G_2 first

Conquer:

- S-nodes: series compositions
- P-nodes: parallel compositions

Divide & conquer algorithm using the decomposition tree

Invariant: draw G inside a right-angled isosceles bounding triangle Δ(G) with s at the bottom and t at the top

Divide: Draw G_1 and G_2 first

Conquer:

Base case: Q-nodes

- S-nodes: series compositions
- P-nodes: parallel compositions

 $\Delta(G_1) \qquad \Delta(G_2)$

Divide & conquer algorithm using the decomposition tree

 $\Delta(G_2)$

 $\Delta(G_1)$

Invariant: draw G inside a right-angled isosceles bounding triangle Δ(G) with s at the bottom and t at the top

Divide: Draw G_1 and G_2 first

 $\Delta(G_1)$

Conquer:

Base case: Q-nodes

- S-nodes: series compositions
- P-nodes: parallel compositions

 $\Delta(G)$

S

 $\Delta(G)$

S

 $\Delta(G_2)$

 $\Delta(G_1)$

 $\Delta(G_2)$

Divide & conquer algorithm using the decomposition tree

 $\Delta(G_2)$

 $\Delta(G_1)$

Invariant: draw G inside a right-angled isosceles bounding triangle Δ(G) with s at the bottom and t at the top

Divide: Draw G_1 and G_2 first

 $\Delta(G_1)$

Conquer:

Base case: Q-nodes

- S-nodes: series compositions
- P-nodes: parallel compositions

 $\Delta(G)$

S

 $\Delta(G_2)$

 $\Delta(G_1)$

 $\Delta(G_2)$

25 - 13

 $\Delta(G)$

Divide & conquer algorithm using the decomposition tree

 $\Delta(G_2)$

 $\Delta(G_1)$

Invariant: draw G inside a right-angled isosceles bounding triangle Δ(G) with s at the bottom and t at the top

Divide: Draw G_1 and G_2 first

 $\Delta(G_1)$

Conquer:

Base case: Q-nodes

- S-nodes: series compositions
- P-nodes: parallel compositions

 $\Delta(G)$

S

Do you see any problem?

 $\Delta(G_2)$

 $\Delta(G_1)$

 $\Delta(G_2)$

 $\Delta(G)$

Divide & conquer algorithm using the decomposition tree

 $\Delta(G_2)$

 $\Delta(G_1)$

Invariant: draw G inside a right-angled isosceles bounding triangle Δ(G) with s at the bottom and t at the top

Divide: Draw G_1 and G_2 first

 $\Delta(G_1)$

Conquer:

Base case: Q-nodes

- S-nodes: series compositions
- P-nodes: parallel compositions

 $\Delta(G)$

S

Do you see any problem? single edge

 $\Delta(G_2)$

 $\Delta(G_1)$

 $\Delta(G_2)$

 $\Delta(G)$

Divide & conquer algorithm using the decomposition tree

 $\Delta(G_2)$

 $\Delta(G_1)$

Invariant: draw G inside a right-angled isosceles bounding triangle Δ(G) with s at the bottom and t at the top

Divide: Draw G_1 and G_2 first

 $\Delta(G_1)$

Conquer:

Base case: Q-nodes

- S-nodes: series compositions
- P-nodes: parallel compositions

 $\Delta(G)$

S

 $\Delta(G_2)$ Do you see any problem? single edge change embedding!

 $\Delta(G_1)$

 $\Delta(G)$

S

 $\Delta(G_2)$

Divide & conquer algorithm using the decomposition tree

 $\Delta(G_2)$

 $\Delta(G_1)$

Invariant: draw G inside a right-angled isosceles bounding triangle Δ(G) with s at the bottom and t at the top

Divide: Draw G_1 and G_2 first

 $\Delta(G_1)$

Conquer:

Base case: Q-nodes

- S-nodes: series compositions
- P-nodes: parallel compositions

 $\Delta(G)$

S

 $\Delta(G_2)$

25 - 17

Divide & conquer algorithm using the decomposition tree

 $\Delta(G_2)$

 $\Delta(G_1)$

Invariant: draw G inside a right-angled isosceles bounding triangle Δ(G) with s at the bottom and t at the top

Divide: Draw G_1 and G_2 first

 $\Delta(G_1)$

Conquer:

Base case: Q-nodes

- S-nodes: series compositions
- P-nodes: parallel compositions

 $\Delta(G)$

S

 $\Delta(G)$

S

 $\Delta(G_2)$

 $\Delta(G_1)$

 $\Delta(G_2)$

Divide & conquer algorithm using the decomposition tree

 $\Delta(G_2)$

 $\Delta(G_1)$

Invariant: draw G inside a right-angled isosceles bounding triangle Δ(G) with s at the bottom and t at the top

Divide: Draw G_1 and G_2 first

 $\Delta(G_1)$

Conquer:

Base case: Q-nodes

- S-nodes: series compositions
- P-nodes: parallel compositions

 $\Delta(G)$

S

 $\Delta(G)$

S

 $\Delta(G_2)$

 $\Delta(G_1)$

 $\Delta(G_2)$

What makes parallel composition possible without creating crossings?

Assume the following holds: the only vertex in angle(v) is s

What makes parallel composition possible without creating crossings?

This condition **is** preserved during the induction step.

Assume the following holds: the only vertex in angle(v) is s

What makes parallel composition possible without creating crossings?

This condition **is** preserved during the induction step.

Assume the following holds: the only vertex in angle(v) is s

Lemma.

The drawing produced by the algorithm is planar.

Theorem.

Let G be a series-parallel graph. Then G (with variable embedding) admits a drawing Γ that

Theorem.

Let G be a series-parallel graph. Then G (with variable embedding) admits a drawing Γ that

is upward planar,

Theorem.

Let G be a series-parallel graph. Then G (with variable embedding) admits a drawing Γ that

is upward planar,

■ is straight-line, and

Theorem.

Let G be a series-parallel graph. Then G (with variable embedding) admits a drawing Γ that

- is upward planar,
- is straight-line, and
- uses quadratic area.

Theorem.

Let G be a series-parallel graph. Then G (with variable embedding) admits a drawing Γ that

- is upward planar,
- is straight-line, and
- uses quadratic area.
- Isomorphic components of G have congruent drawings up to translation.
Series-Parallel Graphs – Result

Theorem.

Let G be a series-parallel graph. Then G (with variable embedding) admits a drawing Γ that

- is upward planar,
- is straight-line, and
- uses quadratic area.
- Isomorphic components of G have congruent drawings up to translation.
- Γ can be computed in linear time.

Theorem.[Bertolazzi, Di Battista, Mannino, Tamassia '94]

For any $n \ge 1$, there exists a 2n-vertex series-parallel graph G_n in an embedding such that any upward planar straight-line drawing of G_n that respects the given embedding requires $\Omega(4^n)$ area.

Theorem. [Bertolazzi, Di Battista, Mannino, Tamassia '94] For any $n \ge 1$, there exists a 2n-vertex series-parallel graph G_n in an embedding such that any upward planar straight-line drawing of G_n that respects the given embedding requires $\Omega(4^n)$ area.

Theorem. [Bertolazzi, Di Battista, Mannino, Tamassia '94] For any $n \ge 1$, there exists a 2n-vertex series-parallel graph G_n in an embedding such that any upward planar straight-line drawing of G_n that respects the given embedding requires $\Omega(4^n)$ area.

Theorem. [Bertolazzi, Di Battista, Mannino, Tamassia '94] For any $n \ge 1$, there exists a 2n-vertex series-parallel graph G_n in an embedding such that any upward planar straight-line drawing of G_n that respects the given embedding requires $\Omega(4^n)$ area.

Theorem. [Bertolazzi, Di Battista, Mannino, Tamassia '94] For any $n \ge 1$, there exists a 2n-vertex series-parallel graph G_n in an embedding such that any upward planar straight-line drawing of G_n that respects the given embedding requires $\Omega(4^n)$ area.

Discussion

There exist fixed-parameter (FPT) algorithms to test upward planarity of general digraphs with the parameter being the number of triconnected components.

[Healy, Lynch 2005, Didimo et al. 2009]

Discussion

There exist fixed-parameter (FPT) algorithms to test upward planarity of general digraphs with the parameter being the number of triconnected components.

[Healy, Lynch 2005, Didimo et al. 2009]

■ Finding a consistent assignment (Theorem 2) can be sped up to O(n + r^{1.5}), where r = # sources.
[Abbasi, Healy, Rextin 2010]

Discussion

There exist fixed-parameter (FPT) algorithms to test upward planarity of general digraphs with the parameter being the number of triconnected components.

[Healy, Lynch 2005, Didimo et al. 2009]

Finding a consistent assignment (Theorem 2) can be sped up to O(n + r^{1.5}), where r = # sources.
[Abbasi, Healy, Rextin 2010]

Many related concepts have been studied: upward drawings of mixed graphs, upward drawings with layers for the vertices, upward planarity on cylinder/torus, ...

Literature

- See [GD Ch. 6] for detailed explanation on upward planarity.
- See [GD Ch. 3] for divide and conquer methods of series-parallel graphs

Orginal papers referenced:

- [Kelly '87] Fundamentals of Planar Ordered Sets
- [Di Battista & Tamassia '88] Algorithms for Plane Representations of Acyclic Digraphs
- Garg & Tamassia '95] On the Computational Complexity of Upward and Rectilinear Planarity Testing
- [Hutton & Lubiw '96] Upward Planar Drawing of Single-Source Acyclic Digraphs
- [Bertolazzi, Di Battista, Mannino, Tamassia '94]
 Upward Drawings of Triconnected Digraphs
- [Healy & Lynch '05] Building Blocks of Upward Planar Digraphs
- [Didimo, Giordano, Liotta '09] Upward Spirality and Upward Planarity Testing
- [Abbasi, Healy, Rextin '10]
 Improving the running time of embedded upward planarity testing