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B For an (embedded) digraph to be upward planar, it needs to ...
B be planar

B be acyclic

B have a bimodal embedding

B ...but these conditions are not sufficient. — Exercise
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Theorem.
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Theorem. [Garg & Tamassia, 1995]
Given a planar acyclic digraph G,
it is NP-hard to decide whether G is upward planar.

Theorem 2. [Bertolazzi, Di Battista, Mannino, Tamassia, 1994]

Given an embedded planar digraph G,
it can be tested in quadratic time whether GG is upward planar.

Corollary.
Given a triconnected planar digraph G,
it can be tested in quadratic time whether G is upward planar.

Theorem. [Hutton & Lubiw, 1996]
Given an acyclic single-source digraph G,
it can be tested in linear time whether GG is upward planar.
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The Problem

Fixed Embedding Upward Planarity Testing.
Let G be a plane digraph, let F' be the set of faces of G,

and let fy be the outer face of G.
Test whether G is upward planar (w.r.t. to F' and fy).

Plan.
B Find a property that any upward planar drawing of G satisfies.

B Formalize this property.
B Specify an algorithm to test this property.
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Definition.
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such that
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Result Characterization

Theorem 3.
Let G be an acyclic plane digraph with embedding given by F' and fj.

Then G is upward planar (respecting F' and fj)
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Refinement Algorithm: ©, F, fy — st-digraph
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Refinement Algorithm: ©, F, fy — st-digraph

Let f be a face.

Consider the clockwise angle sequence o of L / S on local and sinks of f.
B Goal: Add edges to break large angles ( and sinks).
B For f # fo with |o¢| > 2 containing (L, S, S) at vertices
m = insert edge (2, x)
B x sink = insert edge (z, 2).
B Refine outer face fy similarly. p
— Exercise S

B Refine all faces. = G is contained in a planar st-digraph.

B Planarity, acyclicity, bimodality are invariants under construction.
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Series-Parallel Graphs — Applications

Flowcharts PERT-Diagrams

(Program Evaluation and Review Technique)

Computational complexity:
Series-parallel graphs often admit linear-time algorithms for NP-hard problems,

e.g., minimum maximal matching, maximum independent set, Hamiltonian completion.
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Series-Parallel Graphs — Straight-Line Drawings

B What makes parallel composition possible without creating crossings?

' angle(v)

Assume the following holds:
the only vertex in angle(v) is s

B This condition is preserved during the induction step.

Lemma.
The drawing produced by the algorithm is planar.
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Series-Parallel Graphs — Result

Theorem.
Let G be a series-parallel graph. Then G (with variable
embedding) admits a drawing [ that

W is upward planar,
W is straight-line, and
M uses quadratic area.

B Isomorphic components of G have congruent drawings
up to translation.

[ can be computed in linear time.



Series-Parallel Graphs — Fixed Embedding

Theorem. [Bertolazzi, Di Battista, Mannino, Tamassia '94]

For any n > 1, there exists a 2n-vertex series-parallel graph G,
in an embedding such that any upward planar straight-line drawing
of G,, that respects the given embedding requires 2(4™) area.
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Theorem. |[Bertolazzi, Di Battista, Mannino, Tamassia '94]

For any n > 1, there exists a 2n-vertex series-parallel graph G,
in an embedding such that any upward planar straight-line drawing
of G,, that respects the given embedding requires 2(4™) area.

B 2 Area(G,) < Area(I)
B 2-Area(ll) < Area(Gpi1)
= 4 - Area(G,,) < Area(Gp41)
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Discussion

B There exist fixed-parameter (FPT) algorithms to test upward planarity of general digraphs
with the parameter being the number of triconnected components.

[Healy, Lynch 2005, Didimo et al. 2009]

® Finding a consistent assignment (Theorem 2) can be sped up to O(n + r1°),
where r = # . [Abbasi, Healy, Rextin 2010]

B Many related concepts have been studied:

upward drawings of mixed graphs, upward drawings with layers for the vertices,
upward planarity on cylinder/torus, ...
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| iterature

B See [GD Ch. 6] for detailed explanation on upward planarity.
B See [GD Ch. 3] for divide and conquer methods of series-parallel graphs

Orginal papers referenced:
B [Kelly '87] Fundamentals of Planar Ordered Sets

B Di Battista & Tamassia '88| Algorithms for Plane Representations of Acyclic Digraphs

B [Garg &Tamassia '95]
On the Computational Complexity of Upward and Rectilinear Planarity Testing

B [Hutton & Lubiw '96] Upward Planar Drawing of Single-Source Acyclic Digraphs

B [Bertolazzi, Di Battista, Mannino, Tamassia '94|
Upward Drawings of Triconnected Digraphs

B [Healy & Lynch '05] Building Blocks of Upward Planar Digraphs
B Didimo, Giordano, Liotta '09] Upward Spirality and Upward Planarity Testing

B [Abbasi, Healy, Rextin '10]
mproving the running time of embedded upward planarity testing
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