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Upward Planar Drawings – Motivation

� What may the direction of edges in a directed graph represent?

� Time

� Flow

� Hierarchy

� . . .

PERT diagram Petri net Phylogenetic network

� We aim for drawings where the general direction is preserved.

Program Evaluation and Review Technique
(Project management)

Place/Transition net
(Modeling languages for distributed systems)

Ancestral trees / networks
(Biology)
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Upward Planarity – Necessary Conditions

� For an (embedded) digraph to be upward planar, it needs to . . .

� be planar

� be acyclic

� have a bimodal embedding

bimodal vertex not bimodal

� . . . but these conditions are not sufficient. → Exercise
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Upward Planarity – Complexity

Theorem. [Garg & Tamassia, 1995]
Given a planar acyclic digraph G,
it is NP-hard to decide whether G is upward planar.
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The Problem

Fixed Embedding Upward Planarity Testing.
Let G be a plane digraph, let F be the set of faces of G,
and let f0 be the outer face of G.
Test whether G is upward planar (w.r.t. to F and f0).
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The Problem

Plan.

� Find a property that any upward planar drawing of G satisfies.

� Formalize this property.

� Specify an algorithm to test this property.

Fixed Embedding Upward Planarity Testing.
Let G be a plane digraph, let F be the set of faces of G,
and let f0 be the outer face of G.
Test whether G is upward planar (w.r.t. to F and f0).
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Angles, Local Sources & Sinks

Definitions.

� A vertex v is a local source w.r.t. to a face f
if v has two outgoing edges on ∂f .

� A vertex v is a local sink w.r.t. to a face f
if v has two incoming edges on ∂f .

� An angle α at a local source/sink is large
if α > π and small otherwise.

� L(v) = # large angles at v

� L(f) = # large angles in f

� S(v) = # small angles at v

� S(f) = # small angles at f

� A(f) = # local sources w.r.t. to f
= # local sinks w.r.t. to f
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Assignment Problem

� Observe that the global sources and global sinks have precisely one large angle

� All other vertices have only small angles.

� Let v be a global source and let it be incident to faces f1 and f2.

� Does v have a large angle in f1 or f2?
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Assignment Problem

� Observe that the global sources and global sinks have precisely one large angle

� All other vertices have only small angles.

� Let v be a global source and let it be incident to faces f1 and f2.

� Does v have a large angle in f1 or f2?

f2f1

v
f2

f1

v

f2

f1

v
? ?
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� Similar argument for the outer face f0.
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Number of Large Angles

Lemma 3.
In every upward planar drawing of G, it holds that

� for each vertex v : L(v) =

{
0 if v is an inner vertex,

1 if v is a gobal source / sink;

� for each face f : L(f) =

{
A(f)− 1 if f 6= f0,

A(f) + 1 if f = f0.
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In every upward planar drawing of G, it holds that
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Assignment of Large Angles to Faces

Let S be the set of (global) sources, and let T be the set of (global) sinks.
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Let G be an acyclic plane digraph with embedding given by F and f0.

Then G is upward planar (respecting F and f0)
⇔ G is bimodal and there exists a consistent assignment Φ.

G is upward planar. ⇔ G is a spanning subgraph of a planar st-digraph.
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−(A(w)− 1) ∀w ∈ F (G) \ {f0}
−(A(w) + 1) w = f0
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Visualization of Graphs

Lecture 5:
Upward Planar Drawings

Part II:
Series-Parallel Graphs
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Series-Parallel Graphs

A graph G is series-parallel if

� it contains a single (directed) edge (s, t), or

� it consists of two series-parallel graphs G1, G2

with sources s1, s2 and sinks t1, t2 that are
combined using one of the following rules:
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G2

t2

G1

s1

A graph G is series-parallel if

� it contains a single (directed) edge (s, t), or

� it consists of two series-parallel graphs G1, G2

with sources s1, s2 and sinks t1, t2 that are
combined using one of the following rules:

Series composition
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t1 = s2
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A graph G is series-parallel if

� it contains a single (directed) edge (s, t), or

� it consists of two series-parallel graphs G1, G2
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Series-Parallel Graphs

G2

t2

G1

s1

A graph G is series-parallel if

� it contains a single (directed) edge (s, t), or

� it consists of two series-parallel graphs G1, G2

with sources s1, s2 and sinks t1, t2 that are
combined using one of the following rules:

Series composition Parallel composition

s

t

G1 G2

G1

s1

t1

G2

s2

s1 = s2

t1 = t2

t1 = s2

Convince yourself
that series-parallel
graphs are (upward)
planar!

t2
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Series-Parallel Graphs – Decomposition Tree

A decomposition tree of G is a binary tree T with nodes of three types: S, P and Q.
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Series-Parallel Graphs – Decomposition Tree

A decomposition tree of G is a binary tree T with nodes of three types: S, P and Q.

� A Q-node represents a single edge.

� An S-node represents a series composition;
its children T1 and T2 represent G1 and G2.
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Series-Parallel Graphs – Decomposition Tree

G1 G2

A decomposition tree of G is a binary tree T with nodes of three types: S, P and Q.

� A Q-node represents a single edge.

� A P-node represents a parallel composition;
its children T1 and T2 represent G1 and G2

� An S-node represents a series composition;
its children T1 and T2 represent G1 and G2.

Q S

T1 T2 T1 T2

P

G2

G1
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Series-Parallel Graphs – Decomposition Example
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Series-Parallel Graphs – Applications

Flowcharts PERT-Diagrams
(Program Evaluation and Review Technique)
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Series-Parallel Graphs – Applications

Flowcharts PERT-Diagrams
(Program Evaluation and Review Technique)

Computational complexity:
Series-parallel graphs often admit linear-time algorithms for NP-hard problems,
e.g., minimum maximal matching, maximum independent set, Hamiltonian completion.
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Drawing conventions

Drawing aesthetics to optimize
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Series-Parallel Graphs – Straight-Line Drawings

Divide & conquer algorithm using the decomposition tree
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Series-Parallel Graphs – Straight-Line Drawings

� Invariant: draw G inside a right-angled isosceles bounding triangle ∆(G)
with s at the bottom and t at the top

Divide & conquer algorithm using the decomposition tree

∆(G)

t

s
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Series-Parallel Graphs – Result

Theorem.
Let G be a series-parallel graph. Then G (with variable
embedding) admits a drawing Γ that

� is upward planar,

� is straight-line, and

� uses quadratic area.

� Isomorphic components of G have congruent drawings
up to translation.

Γ can be computed in linear time.
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Theorem. [Bertolazzi, Di Battista, Mannino, Tamassia ’94]

For any n ≥ 1, there exists a 2n-vertex series-parallel graph Gn

in an embedding such that any upward planar straight-line drawing
of Gn that respects the given embedding requires Ω(4n) area.
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� There exist fixed-parameter (FPT) algorithms to test upward planarity of general digraphs
with the parameter being the number of triconnected components.

[Healy, Lynch 2005, Didimo et al. 2009]

� Finding a consistent assignment (Theorem 2) can be sped up to O(n+ r1.5),
where r = # sources. [Abbasi, Healy, Rextin 2010]

� Many related concepts have been studied:
upward drawings of mixed graphs, upward drawings with layers for the vertices,
upward planarity on cylinder/torus, . . .
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