Visualization of Graphs

Lecture 5:
Upward Planar Drawings

Part I:
Recognition

Johannes Zink

Upward Planar Drawings - Motivation

Upward Planar Drawings - Motivation

- What may the direction of edges in a directed graph represent?

Upward Planar Drawings - Motivation

- What may the direction of edges in a directed graph represent?

■ Time

PERT diagram

[^0](Project management)

Upward Planar Drawings - Motivation

■ What may the direction of edges in a directed graph represent?
■ Time

- Flow

PERT diagram
Program Evaluation and Review Technique (Project management)

Place/Transition net

Upward Planar Drawings - Motivation

■ What may the direction of edges in a directed graph represent?
■ Time

- Flow

■ Hierarchy

Upward Planar Drawings - Motivation

■ What may the direction of edges in a directed graph represent?
■ Time

- Flow
- Hierarchy
- ...

PERT diagram
Program Evaluation and Review Technique
(Project management)

Place/Transition net

Phylogenetic network

Upward Planar Drawings - Motivation

■ What may the direction of edges in a directed graph represent?

- Time
- Flow
- Hierarchy
- We aim for drawings where the general direction is preserved.

PERT diagram
Program Evaluation and Review Technique
(Project management)

Place/Transition net
(Modeling languages for distributed systems)

■ ...

Phylogenetic network

[^1](Biology)

Upward Planar Drawings - Definition

A directed graph (digraph) is upward planar when it admits a drawing

Upward Planar Drawings - Definition

A directed graph (digraph) is upward planar when it admits a drawing - that is planar

Upward Planar Drawings - Definition

A directed graph (digraph) is upward planar when it admits a drawing
■ that is planar and

- where each edge is drawn as an upward y-monotone curve.

Upward Planar Drawings - Definition

A directed graph (digraph) is upward planar when it admits a drawing

- that is planar and
- where each edge is drawn as an upward y-monotone curve.

Upward Planarity - Necessary Conditions

■ For an (embedded) digraph to be upward planar, it needs to ...

Upward Planarity - Necessary Conditions

■ For an (embedded) digraph to be upward planar, it needs to ...

- be planar

Upward Planarity - Necessary Conditions

■ For an (embedded) digraph to be upward planar, it needs to ...

- be planar
- be acyclic

Upward Planarity - Necessary Conditions

■ For an (embedded) digraph to be upward planar, it needs to ...

- be planar
- be acyclic

Upward Planarity - Necessary Conditions

■ For an (embedded) digraph to be upward planar, it needs to ...

- be planar
- be acyclic

Upward Planarity - Necessary Conditions

■ For an (embedded) digraph to be upward planar, it needs to ...

- be planar

■ be acyclic

Upward Planarity - Necessary Conditions

■ For an (embedded) digraph to be upward planar, it needs to ...

- be planar

■ be acyclic

Upward Planarity - Necessary Conditions

■ For an (embedded) digraph to be upward planar, it needs to ...

- be planar

■ be acyclic

Upward Planarity - Necessary Conditions

■ For an (embedded) digraph to be upward planar, it needs to ...

- be planar

■ be acyclic

Upward Planarity - Necessary Conditions

■ For an (embedded) digraph to be upward planar, it needs to ...

- be planar

■ be acyclic

Upward Planarity - Necessary Conditions

■ For an (embedded) digraph to be upward planar, it needs to ...

- be planar

■ be acyclic

bimodal vertex

not bimodal

Upward Planarity - Necessary Conditions

■ For an (embedded) digraph to be upward planar, it needs to ...

- be planar
- be acyclic
- have a bimodal embedding

bimodal vertex

not bimodal

Upward Planarity - Necessary Conditions

■ For an (embedded) digraph to be upward planar, it needs to ...

- be planar
- be acyclic
- have a bimodal embedding

■ . . . but these conditions are not sufficient.

bimodal vertex

not bimodal

Upward Planarity - Necessary Conditions

■ For an (embedded) digraph to be upward planar, it needs to ...

- be planar
- be acyclic
- have a bimodal embedding

■ . . . but these conditions are not sufficient. \rightarrow Exercise

bimodal vertex

not bimodal

Upward Planarity - Characterization

Theorem 1. [Kelly 1987, Di Battista \& Tamassia 1988]
For a digraph G, the following statements are equivalent:

Upward Planarity - Characterization

Theorem 1. [Kelly 1987, Di Battista \& Tamassia 1988]
For a digraph G, the following statements are equivalent:
(1) G is upward planar.

Upward Planarity - Characterization

Theorem 1. [Kelly 1987, Di Battista \& Tamassia 1988]
For a digraph G, the following statements are equivalent:
(1) G is upward planar.
(2) G admits an upward planar straight-line drawing.

Upward Planarity - Characterization

Theorem 1. [Kelly 1987, Di Battista \& Tamassia 1988]
For a digraph G, the following statements are equivalent:
(1) G is upward planar.
(2) G admits an upward planar straight-line drawing.
(3) G is a spanning subgraph of a planar st-digraph.

Upward Planarity - Characterization

Theorem 1. [Kelly 1987, Di Battista \& Tamassia 1988]
For a digraph G, the following statements are equivalent:
(1) G is upward planar.
(2) G admits an upward planar straight-line drawing.
(3) G is a spanning subgraph of a planar st-digraph.

no crossings

Upward Planarity - Characterization

Theorem 1. [Kelly 1987, Di Battista \& Tamassia 1988]
For a digraph G, the following statements are equivalent:
(1) G is upward planar.
(2) G admits an upward planar straight-line drawing.
(3) G is a spanning subgraph of a planar st-digraph.
no crossings
acyclic digraph with
a single source s and a single sink t

Upward Planarity - Characterization

Theorem 1. [Kelly 1987, Di Battista \& Tamassia 1988]

For a digraph G, the following statements are equivalent:
(1) G is upward planar.
(2) G admits an upward planar straight-line drawing.
(3) G is a spanning subgraph of a planar st-digraph.

acyclic digraph with
a single source s and a single sink t

Upward Planarity - Characterization

Theorem 1. [Kelly 1987, Di Battista \& Tamassia 1988]

For a digraph G, the following statements are equivalent:
(1) G is upward planar.
(2) G admits an upward planar straight-line drawing.
(3) G is a spanning subgraph of a planar st-digraph.

acyclic digraph with
a single source s and a single sink t

Upward Planarity - Characterization

Theorem 1. [Kelly 1987, Di Battista \& Tamassia 1988]

For a digraph G, the following statements are equivalent:
(1) G is upward planar.
(2) G admits an upward planar straight-line drawing.
(3) G is a spanning subgraph of a planar st-digraph.

acyclic digraph with
a single source s and a single sink t

Upward Planarity - Characterization

Theorem 1. [Kelly 1987, Di Battista \& Tamassia 1988]

For a digraph G, the following statements are equivalent:
(1) G is upward planar.
(2) G admits an upward planar straight-line drawing.
(3) G is a spanning subgraph of a planar st-digraph.

acyclic digraph with
a single source s and a single sink t

Upward Planarity - Characterization

Theorem 1. [Kelly 1987, Di Battista \& Tamassia 1988]

For a digraph G, the following statements are equivalent:
(1) G is upward planar.
(2) G admits an upward planar straight-line drawing.
(3) G is a spanning subgraph of a planar st-digraph.

acyclic digraph with
a single source s and a single sink t

Upward Planarity - Characterization

Theorem 1. [Kelly 1987, Di Battista \& Tamassia 1988]

For a digraph G, the following statements are equivalent:
(1) G is upward planar.
(2) G admits an upward planar straight-line drawing.
(3) G is a spanning subgraph of a planar st-digraph.

acyclic digraph with
a single source s and a single sink t

Upward Planarity - Characterization

Theorem 1. [Kelly 1987, Di Battista \& Tamassia 1988]

For a digraph G, the following statements are equivalent:
(1) G is upward planar.
(2) G admits an upward planar straight-line drawing.
(3) G is a spanning subgraph of a planar st-digraph.

acyclic digraph with
a single source s and a single sink t

Upward Planarity - Characterization

Theorem 1. [Kelly 1987, Di Battista \& Tamassia 1988]

For a digraph G, the following statements are equivalent:
(1) G is upward planar.
(2) G admits an upward planar straight-line drawing.
(3) G is a spanning subgraph of a planar st-digraph.

acyclic digraph with
a single source s and a single sink t

Upward Planarity - Characterization

Theorem 1. [Kelly 1987, Di Battista \& Tamassia 1988]

For a digraph G, the following statements are equivalent:
(1) G is upward planar.
(2) G admits an upward planar straight-line drawing.
(3) G is a spanning subgraph of a planar st-digraph.

Additionally:

Embedded such that s and t are on the outer face f_{0}.

Upward Planarity - Characterization

Theorem 1. [Kelly 1987, Di Battista \& Tamassia 1988]

For a digraph G, the following statements are equivalent:
(1) G is upward planar.
(2) G admits an upward planar straight-line drawing.
(3) G is a spanning subgraph of a planar st-digraph.

Additionally:

Embedded such that s and t are on the outer face f_{0}.

```
{ { no crossings 
```


or:
Edge (s, t) exists.

Upward Planarity - Characterization

Theorem 1. [Kelly 1987, Di Battista \& Tamassia 1988]

For a digraph G, the following statements are equivalent:
(1) G is upward planar.
(2) G admits an upward planar straight-line drawing.
(3) G is a spanning subgraph of a planar st-digraph.

Additionally:

Embedded such that s and t are on the outer face f_{0}.

$$
\left\{\begin{array}{l}
\text { no crossings } \\
\text { acyclic digraph with } \\
\text { a single source } s \text { and a single sink } t
\end{array}\right.
$$

or:
Edge (s, t) exists.

Upward Planarity - Characterization

Theorem 1. [Kelly 1987, Di Battista \& Tamassia 1988]

For a digraph G, the following statements are equivalent:
(1) G is upward planar.
(2) G admits an upward planar straight-line drawing.
(3) G is a spanning subgraph of a planar st-digraph.

Proof.

Upward Planarity - Characterization

Theorem 1. [Kelly 1987, Di Battista \& Tamassia 1988]

For a digraph G, the following statements are equivalent:
(1) G is upward planar.
(2) G admits an upward planar straight-line drawing.
(3) G is a spanning subgraph of a planar st-digraph.

Proof.

$(2) \Rightarrow(1)$ By definition.

Upward Planarity - Characterization

Theorem 1. [Kelly 1987, Di Battista \& Tamassia 1988]

For a digraph G, the following statements are equivalent:
(1) G is upward planar.
(2) G admits an upward planar straight-line drawing.
(3) G is a spanning subgraph of a planar st-digraph.

Proof.

$(2) \Rightarrow(1)$ By definition. $(1) \Rightarrow(3)$ For the proof idea, see the example above.

Upward Planarity - Characterization

Theorem 1. [Kelly 1987, Di Battista \& Tamassia 1988]

For a digraph G, the following statements are equivalent:
(1) G is upward planar.
(2) G admits an upward planar straight-line drawing.
(3) G is a spanning subgraph of a planar st-digraph.

Proof.

$(2) \Rightarrow(1)$ By definition. $(1) \Rightarrow(3)$ For the proof idea, see the example above.

Upward Planarity - Characterization

Theorem 1. [Kelly 1987, Di Battista \& Tamassia 1988]

For a digraph G, the following statements are equivalent:
(1) G is upward planar.
(2) G admits an upward planar straight-line drawing.
(3) G is a spanning subgraph of a planar st-digraph.

Proof.

$(2) \Rightarrow(1)$ By definition. $(1) \Rightarrow(3)$ For the proof idea, see the example above.

Upward Planarity - Characterization

Theorem 1. [Kelly 1987, Di Battista \& Tamassia 1988]

For a digraph G, the following statements are equivalent:
(1) G is upward planar.
(2) G admits an upward planar straight-line drawing.
(3) G is a spanning subgraph of a planar st-digraph.

Proof.

$(2) \Rightarrow(1)$ By definition. $(1) \Rightarrow(3)$ For the proof idea, see the example above.

Upward Planarity - Characterization

Theorem 1. [Kelly 1987, Di Battista \& Tamassia 1988]

For a digraph G, the following statements are equivalent:
(1) G is upward planar.
(2) G admits an upward planar straight-line drawing.
(3) G is a spanning subgraph of a planar st-digraph.

Proof.

$(2) \Rightarrow(1)$ By definition. $(1) \Rightarrow(3)$ For the proof idea, see the example above.

Upward Planarity - Characterization

Theorem 1. [Kelly 1987, Di Battista \& Tamassia 1988]

For a digraph G, the following statements are equivalent:
(1) G is upward planar.
(2) G admits an upward planar straight-line drawing.
(3) G is a spanning subgraph of a planar st-digraph.

Proof.

$(2) \Rightarrow(1)$ By definition. $(1) \Rightarrow(3)$ For the proof idea, see the example above.

Upward Planarity - Characterization

Theorem 1. [Kelly 1987, Di Battista \& Tamassia 1988]

For a digraph G, the following statements are equivalent:
(1) G is upward planar.
(2) G admits an upward planar straight-line drawing.
(3) G is a spanning subgraph of a planar st-digraph.

Proof.

$(2) \Rightarrow(1)$ By definition. $(1) \Rightarrow(3)$ For the proof idea, see the example above.

Upward Planarity - Characterization

Theorem 1. [Kelly 1987, Di Battista \& Tamassia 1988]

For a digraph G, the following statements are equivalent:
(1) G is upward planar.
(2) G admits an upward planar straight-line drawing.
(3) G is a spanning subgraph of a planar st-digraph.

Proof.

$(2) \Rightarrow(1)$ By definition. $(1) \Rightarrow(3)$ For the proof idea, see the example above.

Upward Planarity - Characterization

Theorem 1. [Kelly 1987, Di Battista \& Tamassia 1988]

For a digraph G, the following statements are equivalent:
(1) G is upward planar.
(2) G admits an upward planar straight-line drawing.
(3) G is a spanning subgraph of a planar st-digraph.

Proof.

$(2) \Rightarrow(1)$ By definition. $(1) \Rightarrow(3)$ For the proof idea, see the example above.

Upward Planarity - Characterization

Theorem 1. [Kelly 1987, Di Battista \& Tamassia 1988]

For a digraph G, the following statements are equivalent:
(1) G is upward planar.
(2) G admits an upward planar straight-line drawing.
(3) G is a spanning subgraph of a planar st-digraph.

Proof.

$(2) \Rightarrow(1)$ By definition. $(1) \Rightarrow(3)$ For the proof idea, see the example above.
(3) $\Rightarrow(2)$

Upward Planarity - Characterization

Theorem 1. [Kelly 1987, Di Battista \& Tamassia 1988]

For a digraph G, the following statements are equivalent:
(1) G is upward planar.
(2) G admits an upward planar straight-line drawing.
(3) G is a spanning subgraph of a planar st-digraph.

Proof.
$(2) \Rightarrow(1)$ By definition. $(1) \Rightarrow(3)$ For the proof idea, see the example above.
(3) \Rightarrow (2) Triangulate \& construct drawing:

Upward Planarity - Characterization

Theorem 1. [Kelly 1987, Di Battista \& Tamassia 1988]

For a digraph G, the following statements are equivalent:
(1) G is upward planar.
(2) G admits an upward planar straight-line drawing.
(3) G is a spanning subgraph of a planar st-digraph.

Proof.
$(2) \Rightarrow(1)$ By definition. $(1) \Rightarrow(3)$ For the proof idea, see the example above.
(3) \Rightarrow (2) Triangulate \& construct drawing:

Upward Planarity - Characterization

Theorem 1. [Kelly 1987, Di Battista \& Tamassia 1988]

For a digraph G, the following statements are equivalent:
(1) G is upward planar.
(2) G admits an upward planar straight-line drawing.
(3) G is a spanning subgraph of a planar st-digraph.

Proof.

$(2) \Rightarrow(1)$ By definition. $(1) \Rightarrow(3)$ For the proof idea, see the example above.
(3) \Rightarrow (2) Triangulate \& construct drawing:

Claim.

Can be drawn
in pre-specified triangle.

Upward Planarity - Characterization

Theorem 1. [Kelly 1987, Di Battista \& Tamassia 1988]

For a digraph G, the following statements are equivalent:
(1) G is upward planar.
(2) G admits an upward planar straight-line drawing.
(3) G is a spanning subgraph of a planar st-digraph.

Proof.

$(2) \Rightarrow(1)$ By definition. $(1) \Rightarrow(3)$ For the proof idea, see the example above.
(3) \Rightarrow (2) Triangulate \& construct drawing:

Claim.

Can be drawn in pre-specified triangle.

Upward Planarity - Characterization

Theorem 1. [Kelly 1987, Di Battista \& Tamassia 1988]

For a digraph G, the following statements are equivalent:
(1) G is upward planar.
(2) G admits an upward planar straight-line drawing.
(3) G is a spanning subgraph of a planar st-digraph.

Proof.
$(2) \Rightarrow(1)$ By definition. $(1) \Rightarrow(3)$ For the proof idea, see the example above.
(3) \Rightarrow (2) Triangulate \& construct drawing:

Claim.

Can be drawn in pre-specified triangle.
Induction on the number of vertices n.

Upward Planarity - Characterization

Theorem 1. [Kelly 1987, Di Battista \& Tamassia 1988]

For a digraph G, the following statements are equivalent:
(1) G is upward planar.
(2) G admits an upward planar straight-line drawing.
(3) G is a spanning subgraph of a planar st-digraph.

Proof.
$(2) \Rightarrow(1)$ By definition. $(1) \Rightarrow(3)$ For the proof idea, see the example above.
(3) \Rightarrow (2) Triangulate \& construct drawing:

Claim.

Can be drawn in pre-specified triangle.
Induction on the number of vertices n.

Upward Planarity - Characterization

Theorem 1. [Kelly 1987, Di Battista \& Tamassia 1988]

For a digraph G, the following statements are equivalent:
(1) G is upward planar.
(2) G admits an upward planar straight-line drawing.
(3) G is a spanning subgraph of a planar st-digraph.

Proof.
$(2) \Rightarrow(1)$ By definition. $(1) \Rightarrow(3)$ For the proof idea, see the example above.
(3) \Rightarrow (2) Triangulate \& construct drawing:

Claim.

Can be drawn in pre-specified triangle.
Induction on the number of vertices n.

Upward Planarity - Characterization

Theorem 1. [Kelly 1987, Di Battista \& Tamassia 1988]

For a digraph G, the following statements are equivalent:
(1) G is upward planar.
(2) G admits an upward planar straight-line drawing.
(3) G is a spanning subgraph of a planar st-digraph.

Proof.

$(2) \Rightarrow(1)$ By definition. $(1) \Rightarrow(3)$ For the proof idea, see the example above.
(3) \Rightarrow (2) Triangulate \& construct drawing:

Claim.
Can be drawn in pre-specified triangle.

Induction on the number of vertices n.

Case 1: chord

Upward Planarity - Characterization

Theorem 1. [Kelly 1987, Di Battista \& Tamassia 1988]

For a digraph G, the following statements are equivalent:
(1) G is upward planar.
(2) G admits an upward planar straight-line drawing.
(3) G is a spanning subgraph of a planar st-digraph.

Proof.

$(2) \Rightarrow(1)$ By definition. $(1) \Rightarrow(3)$ For the proof idea, see the example above.
(3) \Rightarrow (2) Triangulate \& construct drawing:

Claim.
Can be drawn in pre-specified triangle.

Induction on the number of vertices n.

Case 1: chord

Upward Planarity - Characterization

Theorem 1. [Kelly 1987, Di Battista \& Tamassia 1988]

For a digraph G, the following statements are equivalent:
(1) G is upward planar.
(2) G admits an upward planar straight-line drawing.
(3) G is a spanning subgraph of a planar st-digraph.

Proof.

$(2) \Rightarrow(1)$ By definition. $(1) \Rightarrow(3)$ For the proof idea, see the example above.
(3) \Rightarrow (2) Triangulate \& construct drawing:

Claim.
Can be drawn in pre-specified triangle.

Induction on the number of vertices n.

Case 1: chord

Upward Planarity - Characterization

Theorem 1. [Kelly 1987, Di Battista \& Tamassia 1988]

For a digraph G, the following statements are equivalent:
(1) G is upward planar.
(2) G admits an upward planar straight-line drawing.
(3) G is a spanning subgraph of a planar st-digraph.

Proof.

$(2) \Rightarrow(1)$ By definition. $(1) \Rightarrow(3)$ For the proof idea, see the example above.
(3) \Rightarrow (2) Triangulate \& construct drawing:

Claim.
Can be drawn in pre-specified triangle.

Induction on the number of vertices n. chord

Case 1:

Upward Planarity - Characterization

Theorem 1. [Kelly 1987, Di Battista \& Tamassia 1988]

For a digraph G, the following statements are equivalent:
(1) G is upward planar.
(2) G admits an upward planar straight-line drawing.
(3) G is a spanning subgraph of a planar st-digraph.

Proof.

$(2) \Rightarrow(1)$ By definition. $(1) \Rightarrow(3)$ For the proof idea, see the example above.
(3) \Rightarrow (2) Triangulate \& construct drawing:

Claim.
Can be drawn in pre-specified triangle.

Induction on the number of vertices n. chord

Case 1:

Upward Planarity - Characterization

Theorem 1. [Kelly 1987, Di Battista \& Tamassia 1988]

For a digraph G, the following statements are equivalent:
(1) G is upward planar.
(2) G admits an upward planar straight-line drawing.
(3) G is a spanning subgraph of a planar st-digraph.

Proof.

$(2) \Rightarrow(1)$ By definition. $(1) \Rightarrow(3)$ For the proof idea, see the example above.
(3) \Rightarrow (2) Triangulate \& construct drawing:

Claim.
Can be drawn
in pre-specified
Can be drawn
in pre-specified triangle.
Induction on the number of vertices n. chord

Case 1:

Upward Planarity - Characterization

Theorem 1. [Kelly 1987, Di Battista \& Tamassia 1988]

For a digraph G, the following statements are equivalent:
(1) G is upward planar.
(2) G admits an upward planar straight-line drawing.
(3) G is a spanning subgraph of a planar st-digraph.

Proof.

$(2) \Rightarrow(1)$ By definition. $(1) \Rightarrow(3)$ For the proof idea, see the example above.
(3) \Rightarrow (2) Triangulate \& construct drawing:

Claim.
Can be drawn
in pre-specified
Can be drawn
in pre-specified triangle.
Induction on the number of vertices n. chord

Case 1:

Upward Planarity - Characterization

Theorem 1. [Kelly 1987, Di Battista \& Tamassia 1988]

For a digraph G, the following statements are equivalent:
(1) G is upward planar.
(2) G admits an upward planar straight-line drawing.
(3) G is a spanning subgraph of a planar st-digraph.

Proof.

$(2) \Rightarrow(1)$ By definition. $(1) \Rightarrow(3)$ For the proof idea, see the example above.
(3) \Rightarrow (2) Triangulate \& construct drawing:

Claim.
Can be drawn
in pre-specified
Can be drawn
in pre-specified triangle.
Induction on the number of vertices n. chord

Case 1:

$$
S
$$

Upward Planarity - Characterization

Theorem 1. [Kelly 1987, Di Battista \& Tamassia 1988]

For a digraph G, the following statements are equivalent:
(1) G is upward planar.
(2) G admits an upward planar straight-line drawing.
(3) G is a spanning subgraph of a planar st-digraph.

Proof.

$(2) \Rightarrow(1)$ By definition. $(1) \Rightarrow(3)$ For the proof idea, see the example above.
(3) \Rightarrow (2) Triangulate \& construct drawing:

Idea: Contract $u v$!

Claim.
Can be drawn in pre-specified triangle.

Induction on the number of vertices n. chord

Case 1:

Consider vertices below v. Among these, take "highest."

Upward Planarity - Characterization

Theorem 1. [Kelly 1987, Di Battista \& Tamassia 1988]

For a digraph G, the following statements are equivalent:
(1) G is upward planar.
(2) G admits an upward planar straight-line drawing.
(3) G is a spanning subgraph of a planar st-digraph.

Proof.

$(2) \Rightarrow(1)$ By definition. $(1) \Rightarrow(3)$ For the proof idea, see the example above.
(3) \Rightarrow (2) Triangulate \& construct drawing:

Claim.
Can be drawn in pre-specified triangle.

Induction on the number of vertices n. chord

Case 1:

Idea: Contract $u v$!

Upward Planarity - Characterization

Theorem 1. [Kelly 1987, Di Battista \& Tamassia 1988]

For a digraph G, the following statements are equivalent:
(1) G is upward planar.
(2) G admits an upward planar straight-line drawing.
(3) G is a spanning subgraph of a planar st-digraph.

Proof.

$(2) \Rightarrow(1)$ By definition. $(1) \Rightarrow(3)$ For the proof idea, see the example above.
(3) \Rightarrow (2) Triangulate \& construct drawing:

Idea: Contract $u v$!

Claim.
Can be drawn in pre-specified triangle.

Induction on the number of vertices n. chord

Case 1:

Upward Planarity - Complexity

Given a planar acyclic digraph G, decide whether G is upward planar.

Upward Planarity - Complexity

Theorem.
[Garg \& Tamassia, 1995]
Given a planar acyclic digraph G, it is NP-hard to decide whether G is upward planar.

Upward Planarity - Complexity

Theorem.
Given a planar acyclic digraph G, it is NP-hard to decide whether G is upward planar.

Theorem 2. [Bertolazzi, Di Battista, Mannino, Tamassia, 1994] Given an embedded planar digraph G, it can be tested in quadratic time whether G is upward planar.

Upward Planarity - Complexity

Theorem. [Garg \& Tamassia, 1995]
Given a planar acyclic digraph G, it is NP-hard to decide whether G is upward planar.

Theorem 2. [Bertolazzi, Di Battista, Mannino, Tamassia, 1994] Given an embedded planar digraph G, it can be tested in quadratic time whether G is upward planar.

Corollary.

Given a triconnected planar digraph G, it can be tested in quadratic time whether G is upward planar.

Upward Planarity - Complexity

Theorem. [Garg \& Tamassia, 1995]
Given a planar acyclic digraph G, it is NP-hard to decide whether G is upward planar.

Theorem 2. [Bertolazzi, Di Battista, Mannino, Tamassia, 1994] Given an embedded planar digraph G, it can be tested in quadratic time whether G is upward planar.

Corollary.

Given a triconnected planar digraph G, it can be tested in quadratic time whether G is upward planar.

Theorem.

[Hutton \& Lubiw, 1996]
Given an acyclic single-source digraph G, it can be tested in linear time whether G is upward planar.

Upward Planarity - Complexity

Theorem. [Garg \& Tamassia, 1995]
Given a planar acyclic digraph G, it is NP-hard to decide whether G is upward planar.

Theorem 2. [Bertolazzi, Di Battista, Mannino, Tamassia, 1994] Given an embedded planar digraph G, it can be tested in quadratic time whether G is upward planar.

Corollary.

Given a triconnected planar digraph G, it can be tested in quadratic time whether G is upward planar.

Theorem.
 [Hutton \& Lubiw, 1996]

Given an acyclic single-source digraph G,
it can be tested in linear time whether G is upward planar.

The Problem

Fixed Embedding Upward Planarity Testing.
Let G be a plane digraph, let F be the set of faces of G, and let f_{0} be the outer face of G.
Test whether G is upward planar (w.r.t. to F and f_{0}).

The Problem

Fixed Embedding Upward Planarity Testing.
Let G be a plane digraph, let F be the set of faces of G, and let f_{0} be the outer face of G.
Test whether G is upward planar (w.r.t. to F and f_{0}).

Plan.

■ Find a property that any upward planar drawing of G satisfies.
■ Formalize this property.

- Specify an algorithm to test this property.

Angles, Local Sources \& Sinks

Definitions.

Angles, Local Sources \& Sinks

Definitions.

■ A vertex v is a local source w.r.t. to a face f if v has two outgoing edges on ∂f.

Angles, Local Sources \& Sinks

Definitions.

■ A vertex v is a local source w.r.t. to a face f if v has two outgoing edges on ∂f boundary of f

Angles, Local Sources \& Sinks

Definitions.

■ A vertex v is a local source w.r.t. to a face f if v has two outgoing edges on ∂f boundary of f

Angles, Local Sources \& Sinks

Definitions.

■ A vertex v is a local source w.r.t. to a face f if v has two outgoing edges on ∂f boundary of f

Angles, Local Sources \& Sinks

Definitions.

- A vertex v is a local source w.r.t. to a face f if v has two outgoing edges on ∂f boundary of f

Angles, Local Sources \& Sinks

Definitions.

■ A vertex v is a local source w.r.t. to a face f if v has two outgoing edges on ∂f boundary of f

Angles, Local Sources \& Sinks

Definitions.

■ A vertex v is a local source w.r.t. to a face f if v has two outgoing edges on ∂f boundary of f

Angles, Local Sources \& Sinks

Definitions.

■ A vertex v is a local source w.r.t. to a face f if v has two outgoing edges on ∂f boundary of f

Angles, Local Sources \& Sinks

Definitions.

■ A vertex v is a local source w.r.t. to a face f if v has two outgoing edges on ∂f. boundary of f
■ A vertex v is a local sink w.r.t. to a face f if v has two incoming edges on ∂f.

Angles, Local Sources \& Sinks

Definitions.

■ A vertex v is a local source w.r.t. to a face f if v has two outgoing edges on ∂f. boundary of f
■ A vertex v is a local sink w.r.t. to a face f if v has two incoming edges on ∂f.

Angles, Local Sources \& Sinks

Definitions.

■ A vertex v is a local source w.r.t. to a face f if v has two outgoing edges on ∂f. boundary of f
■ A vertex v is a local sink w.r.t. to a face f if v has two incoming edges on ∂f.

Angles, Local Sources \& Sinks

Definitions.

■ A vertex v is a local source w.r.t. to a face f if v has two outgoing edges on ∂f. boundary of f
■ A vertex v is a local sink w.r.t. to a face f if v has two incoming edges on ∂f.

Angles, Local Sources \& Sinks

Definitions.

■ A vertex v is a local source w.r.t. to a face f if v has two outgoing edges on ∂f. boundary of f
■ A vertex v is a local sink w.r.t. to a face f if v has two incoming edges on ∂f.

Angles, Local Sources \& Sinks

Definitions.

■ A vertex v is a local source w.r.t. to a face f if v has two outgoing edges on ∂f. boundary of f
■ A vertex v is a local sink w.r.t. to a face f if v has two incoming edges on ∂f.

Angles, Local Sources \& Sinks

Definitions.

■ A vertex v is a local source w.r.t. to a face f if v has two outgoing edges on ∂f. \longleftarrow boundary of f
■ A vertex v is a local sink w.r.t. to a face f if v has two incoming edges on ∂f.

- An angle α at a local source/sink is large if $\alpha>\pi$ and small otherwise.

Angles, Local Sources \& Sinks

Definitions.

■ A vertex v is a local source w.r.t. to a face f if v has two outgoing edges on ∂f boundary of f
■ A vertex v is a local sink w.r.t. to a face f if v has two incoming edges on ∂f.

- An angle α at a local source/sink is large if $\alpha>\pi$ and small otherwise.

Angles, Local Sources \& Sinks

Definitions.

■ A vertex v is a local source w.r.t. to a face f if v has two outgoing edges on ∂f boundary of f
■ A vertex v is a local sink w.r.t. to a face f if v has two incoming edges on ∂f.

- An angle α at a local source/sink is large if $\alpha>\pi$ and small otherwise.

Angles, Local Sources \& Sinks

Definitions.

■ A vertex v is a local source w.r.t. to a face f if v has two outgoing edges on ∂f boundary of f
■ A vertex v is a local sink w.r.t. to a face f if v has two incoming edges on ∂f.

- An angle α at a local source/sink is large if $\alpha>\pi$ and small otherwise.

Angles, Local Sources \& Sinks

Definitions.

■ A vertex v is a local source w.r.t. to a face f if v has two outgoing edges on ∂f boundary of f
■ A vertex v is a local sink w.r.t. to a face f if v has two incoming edges on ∂f.

- An angle α at a local source/sink is large if $\alpha>\pi$ and small otherwise.

Angles, Local Sources \& Sinks

Definitions.

■ A vertex v is a local source w.r.t. to a face f if v has two outgoing edges on ∂f boundary of f
■ A vertex v is a local sink w.r.t. to a face f if v has two incoming edges on ∂f.

- An angle α at a local source/sink is large if $\alpha>\pi$ and small otherwise.

Angles, Local Sources \& Sinks

Definitions.

■ A vertex v is a local source w.r.t. to a face f if v has two outgoing edges on ∂f, boundary of f
■ A vertex v is a local sink w.r.t. to a face f if v has two incoming edges on ∂f.

- An angle α at a local source/sink is large if $\alpha>\pi$ and small otherwise.

■ $L(v)=\#$ large angles at v

Angles, Local Sources \& Sinks

Definitions.

■ A vertex v is a local source w.r.t. to a face f if v has two outgoing edges on ∂f, boundary of f
■ A vertex v is a local sink w.r.t. to a face f if v has two incoming edges on ∂f.

- An angle α at a local source/sink is large if $\alpha>\pi$ and small otherwise.

■ $L(v)=\#$ large angles at v

- $L(f)=\#$ large angles in f

Angles, Local Sources \& Sinks

Definitions.

■ A vertex v is a local source w.r.t. to a face f if v has two outgoing edges on ∂f, boundary of f
■ A vertex v is a local sink w.r.t. to a face f if v has two incoming edges on ∂f.
■ An angle α at a local source/sink is large if $\alpha>\pi$ and small otherwise.

■ $L(v)=\#$ large angles at v

- $L(f)=\#$ large angles in f

■ $S(v)=\#$ small angles at v

- $S(f)=$ \# small angles at f

Angles, Local Sources \& Sinks

Definitions.

■ A vertex v is a local source w.r.t. to a face f if v has two outgoing edges on ∂f, boundary of f
■ A vertex v is a local sink w.r.t. to a face f if v has two incoming edges on ∂f.
■ An angle α at a local source/sink is large if $\alpha>\pi$ and small otherwise.

■ $L(v)=\#$ large angles at v
■ $L(f)=\#$ large angles in f
■ $S(v)=\#$ small angles at v

- $S(f)=\#$ small angles at f

■ $A(f)=\#$ local sources w.r.t. to f

Angles, Local Sources \& Sinks

Definitions.

■ A vertex v is a local source w.r.t. to a face f if v has two outgoing edges on ∂f, boundary of f
■ A vertex v is a local sink w.r.t. to a face f if v has two incoming edges on ∂f.

- An angle α at a local source/sink is large if $\alpha>\pi$ and small otherwise.

■ $L(v)=\#$ large angles at v
■ $L(f)=\#$ large angles in f
■ $S(v)=\#$ small angles at v

- $S(f)=\#$ small angles at f

■ $A(f)=\#$ local sources w.r.t. to f
$=\#$ local sinks w.r.t. to f

Angles, Local Sources \& Sinks

Definitions.

■ A vertex v is a local source w.r.t. to a face f if v has two outgoing edges on ∂f. boundary of f
■ A vertex v is a local sink w.r.t. to a face f if v has two incoming edges on ∂f.

- An angle α at a local source/sink is large if $\alpha>\pi$ and small otherwise.

■ $L(v)=\#$ large angles at v
■ $L(f)=\#$ large angles in f

- $S(v)=\#$ small angles at v

■ $S(f)=\#$ small angles at f
■ $A(f)=\#$ local sources w.r.t. to f
$=\#$ local sinks w.r.t. to f

Angles, Local Sources \& Sinks

Definitions.

■ A vertex v is a local source w.r.t. to a face f if v has two outgoing edges on ∂f. boundary of f
■ A vertex v is a local sink w.r.t. to a face f if v has two incoming edges on ∂f.
■ An angle α at a local source/sink is large if $\alpha>\pi$ and small otherwise.

■ $L(v)=\#$ large angles at v

- $L(f)=\#$ large angles in f

■ $S(v)=\#$ small angles at v

- $S(f)=$ \# small angles at f

■ $A(f)=\#$ local sources w.r.t. to f

Lemma 1.

$L(f)+S(f)=2$ $=\#$ local sinks w.r.t. to f

Assignment Problem

■ Observe that the global sources and global sinks have precisely one large angle

Assignment Problem

■ Observe that the global sources and global sinks have precisely one large angle

- All other vertices have only small angles.

Assignment Problem

■ Observe that the global sources and global sinks have precisely one large angle

- All other vertices have only small angles.

■ Let v be a global source and let it be incident to faces f_{1} and f_{2}.

Assignment Problem

■ Observe that the global sources and global sinks have precisely one large angle

- All other vertices have only small angles.

■ Let v be a global source and let it be incident to faces f_{1} and f_{2}.

- Does v have a large angle in f_{1} or f_{2} ?

Assignment Problem

■ Observe that the global sources and global sinks have precisely one large angle

- All other vertices have only small angles.

■ Let v be a global source and let it be incident to faces f_{1} and f_{2}.

- Does v have a large angle in f_{1} or f_{2} ?

Assignment Problem

■ Observe that the global sources and global sinks have precisely one large angle

- All other vertices have only small angles.

■ Let v be a global source and let it be incident to faces f_{1} and f_{2}.
■ Does v have a large angle in f_{1} or f_{2} ?

Angle Relations

> Lemma 2.
> $L(f)-S(f)= \begin{cases}-2 & \text { if } f \neq f_{0} \\ +2 & \text { if } f=f_{0}\end{cases}$

Angle Relations

> Lemma 2.
> $L(f)-S(f)= \begin{cases}-2 & \text { if } f \neq f_{0} \\ +2 & \text { if } f=f_{0}\end{cases}$

Angle Relations

> Lemma 2.
> $L(f)-S(f)= \begin{cases}-2 & \text { if } f \neq f_{0} \\ +2 & \text { if } f=f_{0}\end{cases}$

Proof by induction on $L(f)$.

- $L(f)=0$

Angle Relations

> Lemma 2.
> $L(f)-S(f)= \begin{cases}-2 & \text { if } f \neq f_{0} \\ +2 & \text { if } f=f_{0}\end{cases}$

Proof by induction on $L(f)$.

- $L(f)=0$

Angle Relations

> Lemma 2.
> $L(f)-S(f)= \begin{cases}-2 & \text { if } f \neq f_{0}, \\ +2 & \text { if } f=f_{0}\end{cases}$

Proof by induction on $L(f)$.

- $L(f)=0$

$$
\Rightarrow S(f)=2
$$

Angle Relations

> Lemma
> $L(f)-S(f)= \begin{cases}-2 & \text { if } f \neq f_{0} \\ +2 & \text { if } f=f_{0}\end{cases}$

Proof by induction on $L(f)$.

- $L(f)=0$

$$
\Rightarrow S(f)=2
$$

■ $L(f) \geq 1$

Angle Relations

> Lemma
> $L(f)-S(f)= \begin{cases}-2 & \text { if } f \neq f_{0} \\ +2 & \text { if } f=f_{0}\end{cases}$
Proof by induction on $L(f)$.
■ $L(f)=0$

$$
\Rightarrow S(f)=2
$$

- $L(f) \geq 1$

Split f with edge from a large angle at a "low" sink u to...

Angle Relations

Lemma 2.
$L(f)-S(f)= \begin{cases}-2 & \text { if } f \neq f_{0}, \\ +2 & \text { if } f=f_{0} .\end{cases}$

Proof by induction on $L(f)$.
■ $L(f)=0$

Angle Relations

Lemma 2.
$L(f)-S(f)= \begin{cases}-2 & \text { if } f \neq f_{0}, \\ +2 & \text { if } f=f_{0} .\end{cases}$

Proof by induction on $L(f)$.
■ $L(f)=0$

Angle Relations

Lemma 2.
$L(f)-S(f)= \begin{cases}-2 & \text { if } f \neq f_{0}, \\ +2 & \text { if } f=f_{0} .\end{cases}$

Proof by induction on $L(f)$.
■ $L(f)=0$

$$
\Rightarrow S(f)=2
$$

- $L(f) \geq 1$

Split f with edge from a large angle at a "low" sink u to...

- $\operatorname{sink} v$ with small angle:

$$
L(f)-S(f)
$$

Angle Relations

Lemma 2.
$L(f)-S(f)= \begin{cases}-2 & \text { if } f \neq f_{0}, \\ +2 & \text { if } f=f_{0} .\end{cases}$

Proof by induction on $L(f)$.
■ $L(f)=0$

Angle Relations

Lemma 2.
$L(f)-S(f)= \begin{cases}-2 & \text { if } f \neq f_{0}, \\ +2 & \text { if } f=f_{0} .\end{cases}$

Proof by induction on $L(f)$.
■ $L(f)=0$

Angle Relations

Lemma 2.
$L(f)-S(f)= \begin{cases}-2 & \text { if } f \neq f_{0}, \\ +2 & \text { if } f=f_{0} .\end{cases}$

Proof by induction on $L(f)$.

- $L(f)=0$

$$
\Rightarrow S(f)=2
$$

- $L(f) \geq 1$

Split f with edge from a large angle at a "low" sink u to...
■ sink v with small angle:

$$
\begin{aligned}
L(f)-S(f)= & -2\left(f_{1}\right)+L\left(f_{2}\right)+1 \\
& -\left(S\left(f_{1}\right)+S\left(f_{2}\right)-1\right)
\end{aligned}
$$

Angle Relations

Lemma 2.
$L(f)-S(f)= \begin{cases}-2 & \text { if } f \neq f_{0}, \\ +2 & \text { if } f=f_{0} .\end{cases}$

Proof by induction on $L(f)$.

- $L(f)=0$

$$
\Rightarrow S(f)=2
$$

- $L(f) \geq 1$

Split f with edge from a large angle at a "low" sink u to...
■ sink v with small angle:

$$
\begin{aligned}
L(f)-S(f)= & -2\left(f_{1}\right)+L\left(f_{2}\right)+1 \\
& -\left(S\left(f_{1}\right)+S\left(f_{2}\right)-1\right) \\
= & -2-2+2=-2
\end{aligned}
$$

Angle Relations

Lemma 2.
$L(f)-S(f)= \begin{cases}-2 & \text { if } f \neq f_{0}, \\ +2 & \text { if } f=f_{0} .\end{cases}$

Proof by induction on $L(f)$.

- $L(f)=0$

$$
\Rightarrow S(f)=2
$$

- $L(f) \geq 1$

Split f with edge from a large angle at a "low" sink u to...
■ sink v with small/large angle:

$$
L(f)-S(f)
$$

Angle Relations

Lemma 2.
$L(f)-S(f)= \begin{cases}-2 & \text { if } f \neq f_{0}, \\ +2 & \text { if } f=f_{0} .\end{cases}$

Proof by induction on $L(f)$.

- $L(f)=0$

$$
\Rightarrow S(f)=2
$$

- $L(f) \geq 1$

Split f with edge from a large angle at a "low" sink u to...
■ sink v with small/large angle:

$$
\begin{aligned}
L(f)-S(f)= & L\left(f_{1}\right)+L\left(f_{2}\right)+1 \\
& -\left(S\left(f_{1}\right)+S\left(f_{2}\right)-1\right)
\end{aligned}
$$

Angle Relations

Lemma 2.
$L(f)-S(f)= \begin{cases}-2 & \text { if } f \neq f_{0}, \\ +2 & \text { if } f=f_{0} .\end{cases}$

Proof by induction on $L(f)$.

- $L(f)=0$

$$
\Rightarrow S(f)=2
$$

- $L(f) \geq 1$

Split f with edge from a large angle at a "low" sink u to...
■ sink v with small/large angle:

$$
\begin{aligned}
L(f)-S(f)= & -2\left(f_{1}\right)+L\left(f_{2}\right)+1 \\
& -\left(S\left(f_{1}\right)+S\left(f_{2}\right)-1\right)
\end{aligned}
$$

Angle Relations

Lemma 2.
$L(f)-S(f)= \begin{cases}-2 & \text { if } f \neq f_{0}, \\ +2 & \text { if } f=f_{0} .\end{cases}$

Proof by induction on $L(f)$.

- $L(f)=0$

$$
\Rightarrow S(f)=2
$$

- $L(f) \geq 1$

Split f with edge from a large angle at a "low" sink u to...
■ sink v with small/large angle:

$$
\begin{aligned}
L(f)-S(f)= & L\left(f_{1}\right)+L\left(f_{2}\right)+1 \\
& -\left(S\left(f_{1}\right)+S\left(f_{2}\right)-1\right) \\
= & -2-2+2=-2
\end{aligned}
$$

Angle Relations

Lemma 2.
$L(f)-S(f)= \begin{cases}-2 & \text { if } f \neq f_{0}, \\ +2 & \text { if } f=f_{0} .\end{cases}$

Proof by induction on $L(f)$.
■ $L(f)=0$

Angle Relations

Lemma 2.
$L(f)-S(f)= \begin{cases}-2 & \text { if } f \neq f_{0}, \\ +2 & \text { if } f=f_{0} .\end{cases}$

Proof by induction on $L(f)$.

- $L(f)=0$

Angle Relations

Lemma 2.
$L(f)-S(f)= \begin{cases}-2 & \text { if } f \neq f_{0}, \\ +2 & \text { if } f=f_{0} .\end{cases}$

Proof by induction on $L(f)$.
■ $L(f)=0$

Angle Relations

Lemma 2.
$L(f)-S(f)= \begin{cases}-2 & \text { if } f \neq f_{0}, \\ +2 & \text { if } f=f_{0} .\end{cases}$

Proof by induction on $L(f)$.

- $L(f)=0$
$\Rightarrow S(f)=2$

■ $L(f) \geq 1$
Split f with edge from a large angle at a "low" sink u to...

- source v with smatt/large angle:

Angle Relations

Lemma 2.
$L(f)-S(f)= \begin{cases}-2 & \text { if } f \neq f_{0}, \\ +2 & \text { if } f=f_{0} .\end{cases}$

Proof by induction on $L(f)$.
■ $L(f)=0$

$$
\Rightarrow S(f)=2
$$

- $L(f) \geq 1$

Split f with edge from a large angle at a "low" sink u to...

- source v with smatt/large angle:

Angle Relations

Lemma 2.
$L(f)-S(f)= \begin{cases}-2 & \text { if } f \neq f_{0}, \\ +2 & \text { if } f=f_{0} .\end{cases}$

Proof by induction on $L(f)$.

- $L(f)=0$
$\Rightarrow S(f)=2$
- $L(f) \geq 1$

Split f with edge from a large angle at a "low" sink u to...

- source v with smatt/large angle:

$$
L(f)-S(f)
$$

Angle Relations

Lemma 2.
$L(f)-S(f)= \begin{cases}-2 & \text { if } f \neq f_{0}, \\ +2 & \text { if } f=f_{0} .\end{cases}$

Proof by induction on $L(f)$.

- $L(f)=0$

$$
\Rightarrow S(f)=2
$$

- $L(f) \geq 1$

Split f with edge from a large angle at a "low" sink u to...

- source v with smatt/large angle:

$$
L(f)-S(f)=L\left(f_{1}\right)+L\left(f_{2}\right)+2
$$

Angle Relations

Lemma 2.
$L(f)-S(f)= \begin{cases}-2 & \text { if } f \neq f_{0}, \\ +2 & \text { if } f=f_{0} .\end{cases}$

Proof by induction on $L(f)$.

- $L(f)=0$

$$
\Rightarrow S(f)=2
$$

- $L(f) \geq 1$

Split f with edge from a large angle at a "low" sink u to...
■ source v with smatt/large angle:

$$
\begin{aligned}
L(f)-S(f)= & L\left(f_{1}\right)+L\left(f_{2}\right)+2 \\
& -\left(S\left(f_{1}\right)+S\left(f_{2}\right)\right)
\end{aligned}
$$

Angle Relations

Lemma 2.
$L(f)-S(f)= \begin{cases}-2 & \text { if } f \neq f_{0}, \\ +2 & \text { if } f=f_{0} .\end{cases}$

Proof by induction on $L(f)$.
■ $L(f)=0$

$$
\Rightarrow S(f)=2
$$

- $L(f) \geq 1$

Split f with edge from a large angle at a "low" sink u to...

- source v with smatt/large angle:

$$
\begin{aligned}
L(f)-S(f)= & -2\left(f_{1}\right)+L\left(f_{2}\right)+2 \\
& -\left(S\left(f_{1}\right)+S\left(f_{2}\right)\right)
\end{aligned}
$$

Angle Relations

Lemma 2.
$L(f)-S(f)= \begin{cases}-2 & \text { if } f \neq f_{0}, \\ +2 & \text { if } f=f_{0} .\end{cases}$

Proof by induction on $L(f)$.
■ $L(f)=0$

$$
\Rightarrow S(f)=2
$$

- $L(f) \geq 1$

Split f with edge from a large angle at a "low" sink u to...

- source v with smatt/large angle:

$$
\begin{aligned}
L(f)-S(f)= & -2\left(f_{1}\right)+L\left(f_{2}\right)+2 \\
& -\left(S\left(f_{1}\right)+S\left(f_{2}\right)\right) \\
= & -2-2+2=-2
\end{aligned}
$$

Angle Relations

Lemma 2.
$L(f)-S(f)= \begin{cases}-2 & \text { if } f \neq f_{0}, \\ +2 & \text { if } f=f_{0} .\end{cases}$

Proof by induction on $L(f)$.
■ $L(f)=0$

Angle Relations

Lemma 2.
$L(f)-S(f)= \begin{cases}-2 & \text { if } f \neq f_{0}, \\ +2 & \text { if } f=f_{0} .\end{cases}$

Proof by induction on $L(f)$.
■ $L(f)=0$

- $L(f) \geq 1$

Split f with edge from a large angle at a "low" sink u to...
\square vertex v that is neither source nor sink:

Angle Relations

Lemma 2.
$L(f)-S(f)= \begin{cases}-2 & \text { if } f \neq f_{0}, \\ +2 & \text { if } f=f_{0} .\end{cases}$

Proof by induction on $L(f)$.
■ $L(f)=0$

$$
\Rightarrow S(f)=2
$$

■ $L(f) \geq 1$
Split f with edge from a large angle at a "low" sink u to...
\square vertex v that is neither source nor sink:

$$
L(f)-S(f)
$$

Angle Relations

Lemma 2.
$L(f)-S(f)= \begin{cases}-2 & \text { if } f \neq f_{0}, \\ +2 & \text { if } f=f_{0} .\end{cases}$

Proof by induction on $L(f)$.
■ $L(f)=0$

Angle Relations

Lemma 2.
$L(f)-S(f)= \begin{cases}-2 & \text { if } f \neq f_{0}, \\ +2 & \text { if } f=f_{0} .\end{cases}$

Proof by induction on $L(f)$.
■ $L(f)=0$

$$
\Rightarrow S(f)=2
$$

- $L(f) \geq 1$

Split f with edge from a large angle at a "low" sink u to...
\square vertex v that is neither source nor sink:

$$
\begin{aligned}
L(f)-S(f)= & L\left(f_{1}\right)+L\left(f_{2}\right)+1 \\
& -\left(S\left(f_{1}\right)+S\left(f_{2}\right)-1\right)
\end{aligned}
$$

Angle Relations

Lemma 2.
$L(f)-S(f)= \begin{cases}-2 & \text { if } f \neq f_{0}, \\ +2 & \text { if } f=f_{0} .\end{cases}$

Proof by induction on $L(f)$.

- $L(f)=0$

$$
\Rightarrow S(f)=2
$$

- $L(f) \geq 1$

Split f with edge from a large angle at a "low" sink u to...
\square vertex v that is neither source nor sink:

$$
\begin{aligned}
L(f)-S(f)= & -2\left(f_{1}\right)+L\left(f_{2}\right)+1 \\
& -\left(S\left(f_{1}\right)+S\left(f_{2}\right)-1\right)
\end{aligned}
$$

Angle Relations

Lemma 2.
$L(f)-S(f)= \begin{cases}-2 & \text { if } f \neq f_{0}, \\ +2 & \text { if } f=f_{0} .\end{cases}$

Proof by induction on $L(f)$.
■ $L(f)=0$

$$
\Rightarrow S(f)=2
$$

- $L(f) \geq 1$

Split f with edge from a large angle at a "low" sink u to...
\square vertex v that is neither source nor sink:

$$
\begin{aligned}
L(f)-S(f)= & L\left(f_{1}\right)+L\left(f_{2}\right)+1 \\
& -\left(S\left(f_{1}\right)+S\left(f_{2}\right)-1\right) \\
= & -2-2+2=-2
\end{aligned}
$$

Angle Relations

Lemma 2.
$L(f)-S(f)= \begin{cases}-2 & \text { if } f \neq f_{0}, \\ +2 & \text { if } f=f_{0} .\end{cases}$

Proof by induction on $L(f)$.

- $L(f)=0$

$$
\Rightarrow S(f)=2
$$

- $L(f) \geq 1$

Split f with edge from a large angle at a "low" sink u to...
\square vertex v that is neither source nor sink:

$$
\begin{aligned}
L(f)-S(f)= & -2\left(f_{1}\right)+L\left(f_{2}\right)+1 \\
& -\left(S\left(f_{1}\right)+S\left(f_{2}\right)-1\right) \\
= & -2-2+2=-2
\end{aligned}
$$

■ Otherwise "high" source u exists. \rightarrow symmetric

Angle Relations

Lemma 2.
$L(f)-S(f)= \begin{cases}-2 & \text { if } f \neq f_{0}, \\ +2 & \text { if } f=f_{0} .\end{cases}$

Proof by induction on $L(f)$.

- $L(f)=0$

$$
\Rightarrow S(f)=2
$$

- $L(f) \geq 1$

Split f with edge from a large angle at a "low" sink u to...
\square vertex v that is neither source nor sink:

$$
\begin{aligned}
L(f)-S(f)= & -2\left(f_{1}\right)+L\left(f_{2}\right)+1 \\
& -\left(S\left(f_{1}\right)+S\left(f_{2}\right)-1\right) \\
= & -2-2+2=-2
\end{aligned}
$$

■ Otherwise "high" source u exists. \rightarrow symmetric

- Similar argument for the outer face f_{0}.

Number of Large Angles

Lemma 3.
In every upward planar drawing of G, it holds that

Number of Large Angles

Lemma 3.
In every upward planar drawing of G, it holds that
for each vertex $v: L(v)=\left\{\begin{array}{l}0 \\ 1\end{array}\right.$

Number of Large Angles

Lemma 3.

In every upward planar drawing of G, it holds that
for each vertex $v: L(v)= \begin{cases}0 & \text { if } v \text { is an inner vertex, } \\ 1 & \end{cases}$

Number of Large Angles

Lemma 3.

In every upward planar drawing of G, it holds that
for each vertex $v: L(v)= \begin{cases}0 & \text { if } v \text { is an inner vertex, } \\ 1 & \text { if } v \text { is a gobal source / sink; }\end{cases}$

Number of Large Angles

Lemma 3.

In every upward planar drawing of G, it holds that
for each vertex $v: L(v)= \begin{cases}0 & \text { if } v \text { is an inner vertex, } \\ 1 & \text { if } v \text { is a gobal source / sink; }\end{cases}$

- for each face $f: L(f)=$

Number of Large Angles

Lemma 3.

In every upward planar drawing of G, it holds that

- for each vertex $v: L(v)= \begin{cases}0 & \text { if } v \text { is an inner vertex, } \\ 1 & \text { if } v \text { is a gobal source / sink; }\end{cases}$
- for each face $f: L(f)= \begin{cases}A(f)-1 & \text { if } f \neq f_{0}, \\ \end{cases}$

Number of Large Angles

Lemma 3.

In every upward planar drawing of G, it holds that

- for each vertex $v: L(v)= \begin{cases}0 & \text { if } v \text { is an inner vertex, } \\ 1 & \text { if } v \text { is a gobal source / sink; }\end{cases}$
for each face $f: L(f)= \begin{cases}A(f)-1 & \text { if } f \neq f_{0}, \\ A(f)+1 & \text { if } f=f_{0} .\end{cases}$

Number of Large Angles

Lemma 3.

In every upward planar drawing of G, it holds that
for each vertex $v: L(v)= \begin{cases}0 & \text { if } v \text { is an inner vertex, } \\ 1 & \text { if } v \text { is a gobal source / sink; }\end{cases}$

- for each face $f: L(f)= \begin{cases}A(f)-1 & \text { if } f \neq f_{0}, \\ A(f)+1 & \text { if } f=f_{0} .\end{cases}$

Number of Large Angles

Lemma 3.

In every upward planar drawing of G, it holds that
for each vertex $v: L(v)= \begin{cases}0 & \text { if } v \text { is an inner vertex, } \\ 1 & \text { if } v \text { is a gobal source / sink; }\end{cases}$

- for each face $f: L(f)= \begin{cases}A(f)-1 & \text { if } f \neq f_{0}, \\ A(f)+1 & \text { if } f=f_{0} .\end{cases}$

Number of Large Angles

Lemma 3.

In every upward planar drawing of G, it holds that
for each vertex $v: L(v)= \begin{cases}0 & \text { if } v \text { is an inner vertex, } \\ 1 & \text { if } v \text { is a gobal source / sink; }\end{cases}$

- for each face $f: L(f)= \begin{cases}A(f)-1 & \text { if } f \neq f_{0}, \\ A(f)+1 & \text { if } f=f_{0} .\end{cases}$

Number of Large Angles

Lemma 3.

In every upward planar drawing of G, it holds that
for each vertex $v: L(v)= \begin{cases}0 & \text { if } v \text { is an inner vertex, } \\ 1 & \text { if } v \text { is a gobal source/sink; }\end{cases}$
for each face $f: L(f)= \begin{cases}A(f)-1 & \text { if } f \neq f_{0}, \\ A(f)+1 & \text { if } f=f_{0} .\end{cases}$

Number of Large Angles

Lemma 3.

In every upward planar drawing of G, it holds that
for each vertex $v: L(v)= \begin{cases}0 & \text { if } v \text { is an inner vertex, } \\ 1 & \text { if } v \text { is a gobal source/sink; }\end{cases}$
for each face $f: L(f)= \begin{cases}A(f)-1 & \text { if } f \neq f_{0}, \\ A(f)+1 & \text { if } f=f_{0} .\end{cases}$

Number of Large Angles

Lemma 3.

In every upward planar drawing of G, it holds that
for each vertex $v: L(v)= \begin{cases}0 & \text { if } v \text { is an inner vertex, } \\ 1 & \text { if } v \text { is a gobal source / sink; }\end{cases}$
for each face $f: L(f)= \begin{cases}A(f)-1 & \text { if } f \neq f_{0}, \\ A(f)+1 & \text { if } f=f_{0} .\end{cases}$
Proof.

Number of Large Angles

Lemma 3.

In every upward planar drawing of G, it holds that
for each vertex $v: L(v)= \begin{cases}0 & \text { if } v \text { is an inner vertex, } \\ 1 & \text { if } v \text { is a gobal source / sink; }\end{cases}$

- for each face $f: L(f)= \begin{cases}A(f)-1 & \text { if } f \neq f_{0}, \\ A(f)+1 & \text { if } f=f_{0} .\end{cases}$

Proof. Lemma 1: $L(f)+S(f)=2 A(f)$

Number of Large Angles

Lemma 3.

In every upward planar drawing of G, it holds that
for each vertex $v: L(v)= \begin{cases}0 & \text { if } v \text { is an inner vertex, } \\ 1 & \text { if } v \text { is a gobal source / sink; }\end{cases}$

- for each face $f: L(f)= \begin{cases}A(f)-1 & \text { if } f \neq f_{0}, \\ A(f)+1 & \text { if } f=f_{0} .\end{cases}$

Proof. Lemma 1: $L(f)+S(f)=2 A(f)$
Lemma 2: $L(f)-S(f)= \pm 2$.

Number of Large Angles

Lemma 3.

In every upward planar drawing of G, it holds that
for each vertex $v: L(v)= \begin{cases}0 & \text { if } v \text { is an inner vertex, } \\ 1 & \text { if } v \text { is a gobal source / sink; }\end{cases}$

- for each face $f: L(f)= \begin{cases}A(f)-1 & \text { if } f \neq f_{0}, \\ A(f)+1 & \text { if } f=f_{0} .\end{cases}$

Proof. Lemma 1: $L(f)+S(f)=2 A(f)$
Lemma 2: $L(f)-S(f)= \pm 2$.

Number of Large Angles

Lemma 3.

In every upward planar drawing of G, it holds that
for each vertex $v: L(v)= \begin{cases}0 & \text { if } v \text { is an inner vertex, } \\ 1 & \text { if } v \text { is a gobal source / sink; }\end{cases}$
for each face $f: L(f)= \begin{cases}A(f)-1 & \text { if } f \neq f_{0}, \\ A(f)+1 & \text { if } f=f_{0} .\end{cases}$
Proof. Lemma 1: $L(f)+S(f)=2 A(f)$
Lemma 2: $L(f)-S(f)= \pm 2$.

$$
\Rightarrow 2 L(f) \quad=2 A(f) \pm 2 .
$$

Assignment of Large Angles to Faces

Let S be the set of (global) sources, and let T be the set of (global) sinks.

Assignment of Large Angles to Faces

Let S be the set of (global) sources, and let T be the set of (global) sinks.
Definition.
A consistent assignment $\Phi: S \cup T \rightarrow F$ is a mapping with

Assignment of Large Angles to Faces

Let S be the set of (global) sources, and let T be the set of (global) sinks.

Definition.

A consistent assignment $\Phi: S \cup T \rightarrow F$ is a mapping with

$$
\Phi: v \mapsto \text { incident face, where } v \text { forms a large angle }
$$

such that

Assignment of Large Angles to Faces

Let S be the set of (global) sources, and let T be the set of (global) sinks.

Definition.

A consistent assignment $\Phi: S \cup T \rightarrow F$ is a mapping with

$$
\Phi: v \mapsto \text { incident face, where } v \text { forms a large angle }
$$

such that

$$
\left|\Phi^{-1}(f)\right|=
$$

Assignment of Large Angles to Faces

Let S be the set of (global) sources, and let T be the set of (global) sinks.

Definition.

A consistent assignment $\Phi: S \cup T \rightarrow F$ is a mapping with

$$
\Phi: v \mapsto \text { incident face, where } v \text { forms a large angle }
$$

such that

$$
\left|\Phi^{-1}(f)\right|=L(f)=
$$

Assignment of Large Angles to Faces

Let S be the set of (global) sources, and let T be the set of (global) sinks.

Definition.

A consistent assignment $\Phi: S \cup T \rightarrow F$ is a mapping with

$$
\Phi: v \mapsto \text { incident face, where } v \text { forms a large angle }
$$

such that

$$
\left|\Phi^{-1}(f)\right|=L(f)= \begin{cases}A(f)-1 & \text { if } f \neq f_{0} \\ A(f)+1 & \text { if } f=f_{0}\end{cases}
$$

Example of Angle-to-Face Assignment

Example of Angle-to-Face Assignment

global sources

Example of Angle-to-Face Assignment

ㅁㅁ global sources \& sinks

Example of Angle-to-Face Assignment

Result Characterization

Theorem 3.
Let G be an acyclic plane digraph with embedding given by F and f_{0}.

Result Characterization

Theorem 3.
Let G be an acyclic plane digraph with embedding given by F and f_{0}. Then G is upward planar (respecting F and f_{0})
$\Leftrightarrow G$ is bimodal and there exists a consistent assignment Φ.

Result Characterization

Theorem 3.
Let G be an acyclic plane digraph with embedding given by F and f_{0}. Then G is upward planar (respecting F and f_{0})
$\Leftrightarrow G$ is bimodal and there exists a consistent assignment Φ.

Proof.
\Rightarrow : As constructed before.

Result Characterization

Theorem 3.

Let G be an acyclic plane digraph with embedding given by F and f_{0}. Then G is upward planar (respecting F and f_{0})
$\Leftrightarrow G$ is bimodal and there exists a consistent assignment Φ.

Proof.
\Rightarrow : As constructed before.
\Leftarrow : Idea:
■ Construct planar st-digraph that is a supergraph of G.

Result Characterization

Theorem 3.

Let G be an acyclic plane digraph with embedding given by F and f_{0}. Then G is upward planar (respecting F and f_{0})
$\Leftrightarrow G$ is bimodal and there exists a consistent assignment Φ.

Proof.
\Rightarrow : As constructed before.
\Leftarrow : Idea:
■ Construct planar st-digraph that is a supergraph of G.

- Apply equivalence from Theorem 1.

$$
G \text { is upward planar. } \Leftrightarrow G \text { is a spanning subgraph of a planar st-digraph. }
$$

Refinement Algorithm: $\Phi, F, f_{0} \rightarrow$ st-digraph

Refinement Algorithm: $\Phi, F, f_{0} \rightarrow$ st-digraph

Let f be a face.
Consider the clockwise angle sequence σ_{f} of L / S on local sources and sinks of f.

Refinement Algorithm: $\Phi, F, f_{0} \rightarrow$ st-digraph

Let f be a face.
Consider the clockwise angle sequence σ_{f} of L / S on local sources and sinks of f.
■ Goal: Add edges to break large angles (sources and sinks).

Refinement Algorithm: $\Phi, F, f_{0} \rightarrow$ st-digraph

Let f be a face.
Consider the clockwise angle sequence σ_{f} of L / S on local sources and sinks of f.
■ Goal: Add edges to break large angles (sources and sinks).
■ For $f \neq f_{0}$ with $\left|\sigma_{f}\right| \geq 2$ containing $\langle\mathrm{L}, \mathrm{S}, \mathrm{S}\rangle$ at vertices x, y, z :

Refinement Algorithm: $\Phi, F, f_{0} \rightarrow$ st-digraph

Let f be a face.
Consider the clockwise angle sequence σ_{f} of L / S on local sources and sinks of f.
■ Goal: Add edges to break large angles (sources and sinks).
■ For $f \neq f_{0}$ with $\left|\sigma_{f}\right| \geq 2$ containing $\langle\mathrm{L}, \mathrm{S}, \mathrm{S}\rangle$ at vertices x, y, z :

Refinement Algorithm: $\Phi, F, f_{0} \rightarrow$ st-digraph

Let f be a face.
Consider the clockwise angle sequence σ_{f} of L / S on local sources and sinks of f.
■ Goal: Add edges to break large angles (sources and sinks).
■ For $f \neq f_{0}$ with $\left|\sigma_{f}\right| \geq 2$ containing $\langle\mathrm{L}, \mathrm{S}, \mathrm{S}\rangle$ at vertices x, y, z :
■ x source \Rightarrow insert edge (z, x)

Refinement Algorithm: $\Phi, F, f_{0} \rightarrow$ st-digraph

Let f be a face.
Consider the clockwise angle sequence σ_{f} of L / S on local sources and sinks of f.
■ Goal: Add edges to break large angles (sources and sinks).
■ For $f \neq f_{0}$ with $\left|\sigma_{f}\right| \geq 2$ containing $\langle\mathrm{L}, \mathrm{S}, \mathrm{S}\rangle$ at vertices x, y, z :
■ x source \Rightarrow insert edge (z, x)

Refinement Algorithm: $\Phi, F, f_{0} \rightarrow$ st-digraph

Let f be a face.
Consider the clockwise angle sequence σ_{f} of L / S on local sources and sinks of f.
■ Goal: Add edges to break large angles (sources and sinks).
■ For $f \neq f_{0}$ with $\left|\sigma_{f}\right| \geq 2$ containing $\langle\mathrm{L}, \mathrm{S}, \mathrm{S}\rangle$ at vertices x, y, z :
■ x source \Rightarrow insert edge (z, x)

Refinement Algorithm: $\Phi, F, f_{0} \rightarrow$ st-digraph

Let f be a face.
Consider the clockwise angle sequence σ_{f} of L / S on local sources and sinks of f.
■ Goal: Add edges to break large angles (sources and sinks).
■ For $f \neq f_{0}$ with $\left|\sigma_{f}\right| \geq 2$ containing $\langle\mathrm{L}, \mathrm{S}, \mathrm{S}\rangle$ at vertices x, y, z :
■ x source \Rightarrow insert edge (z, x)

Refinement Algorithm: $\Phi, F, f_{0} \rightarrow$ st-digraph

Let f be a face.
Consider the clockwise angle sequence σ_{f} of L / S on local sources and sinks of f.
■ Goal: Add edges to break large angles (sources and sinks).
■ For $f \neq f_{0}$ with $\left|\sigma_{f}\right| \geq 2$ containing $\langle\mathrm{L}, \mathrm{S}, \mathrm{S}\rangle$ at vertices x, y, z :
■ x source \Rightarrow insert edge (z, x)

Refinement Algorithm: $\Phi, F, f_{0} \rightarrow$ st-digraph

Let f be a face.
Consider the clockwise angle sequence σ_{f} of L / S on local sources and sinks of f.
■ Goal: Add edges to break large angles (sources and sinks).
■ For $f \neq f_{0}$ with $\left|\sigma_{f}\right| \geq 2$ containing $\langle\mathrm{L}, \mathrm{S}, \mathrm{S}\rangle$ at vertices x, y, z :

- x source \Rightarrow insert edge (z, x)

■ x sink \Rightarrow insert edge (x, z).

Refinement Algorithm: $\Phi, F, f_{0} \rightarrow$ st-digraph

Let f be a face.
Consider the clockwise angle sequence σ_{f} of L / S on local sources and sinks of f.
■ Goal: Add edges to break large angles (sources and sinks).
■ For $f \neq f_{0}$ with $\left|\sigma_{f}\right| \geq 2$ containing $\langle\mathrm{L}, \mathrm{S}, \mathrm{S}\rangle$ at vertices x, y, z :

- x source \Rightarrow insert edge (z, x)

■ x sink \Rightarrow insert edge (x, z).

Refinement Algorithm: $\Phi, F, f_{0} \rightarrow$ st-digraph

Let f be a face.
Consider the clockwise angle sequence σ_{f} of L / S on local sources and sinks of f.
■ Goal: Add edges to break large angles (sources and sinks).
■ For $f \neq f_{0}$ with $\left|\sigma_{f}\right| \geq 2$ containing $\langle\mathrm{L}, \mathrm{S}, \mathrm{S}\rangle$ at vertices x, y, z :

- x source \Rightarrow insert edge (z, x)

■ x sink \Rightarrow insert edge (x, z).

Refinement Algorithm: $\Phi, F, f_{0} \rightarrow$ st-digraph

Let f be a face.
Consider the clockwise angle sequence σ_{f} of L / S on local sources and sinks of f.
■ Goal: Add edges to break large angles (sources and sinks).
■ For $f \neq f_{0}$ with $\left|\sigma_{f}\right| \geq 2$ containing $\langle\mathrm{L}, \mathrm{S}, \mathrm{S}\rangle$ at vertices x, y, z :

- x source \Rightarrow insert edge (z, x)

■ x sink \Rightarrow insert edge (x, z).

Refinement Algorithm: $\Phi, F, f_{0} \rightarrow$ st-digraph

Let f be a face.
Consider the clockwise angle sequence σ_{f} of L / S on local sources and sinks of f.
■ Goal: Add edges to break large angles (sources and sinks).
■ For $f \neq f_{0}$ with $\left|\sigma_{f}\right| \geq 2$ containing $\langle\mathrm{L}, \mathrm{S}, \mathrm{S}\rangle$ at vertices x, y, z :

- x source \Rightarrow insert edge (z, x)

■ x sink \Rightarrow insert edge (x, z).
■ Refine outer face f_{0} similarly.

Refinement Algorithm: $\Phi, F, f_{0} \rightarrow$ st-digraph

Let f be a face.
Consider the clockwise angle sequence σ_{f} of L / S on local sources and sinks of f.
■ Goal: Add edges to break large angles (sources and sinks).
■ For $f \neq f_{0}$ with $\left|\sigma_{f}\right| \geq 2$ containing $\langle\mathrm{L}, \mathrm{S}, \mathrm{S}\rangle$ at vertices x, y, z :

- x source \Rightarrow insert edge (z, x)
- x sink \Rightarrow insert edge (x, z).

■ Refine outer face f_{0} similarly.
\rightarrow Exercise

Refinement Algorithm: $\Phi, F, f_{0} \rightarrow$ st-digraph

Let f be a face.
Consider the clockwise angle sequence σ_{f} of L / S on local sources and sinks of f.
■ Goal: Add edges to break large angles (sources and sinks).
■ For $f \neq f_{0}$ with $\left|\sigma_{f}\right| \geq 2$ containing $\langle\mathrm{L}, \mathrm{S}, \mathrm{S}\rangle$ at vertices x, y, z :
■ x source \Rightarrow insert edge (z, x)
■ x sink \Rightarrow insert edge (x, z).
■ Refine outer face f_{0} similarly.
\rightarrow Exercise

■ Refine all faces. $\Rightarrow G$ is contained in a planar st-digraph.

Refinement Algorithm: $\Phi, F, f_{0} \rightarrow$ st-digraph

Let f be a face.
Consider the clockwise angle sequence σ_{f} of L / S on local sources and sinks of f.
■ Goal: Add edges to break large angles (sources and sinks).
■ For $f \neq f_{0}$ with $\left|\sigma_{f}\right| \geq 2$ containing $\langle\mathrm{L}, \mathrm{S}, \mathrm{S}\rangle$ at vertices x, y, z :

- x source \Rightarrow insert edge (z, x)
- x sink \Rightarrow insert edge (x, z).

■ Refine outer face f_{0} similarly.
\rightarrow Exercise

■ Refine all faces. $\Rightarrow G$ is contained in a planar st-digraph.

- Planarity, acyclicity, bimodality are invariants under construction.

Refinement Example

Result Upward Planarity Test

Theorem 2. [Bertolazzi, Di Battista, Mannino, Tamassia '94]
Given an embedded planar digraph G,
we can test in quadratic time whether G is upward planar.

Result Upward Planarity Test

Theorem 2. [Bertolazzi, Di Battista, Mannino, Tamassia '94]
Given an embedded planar digraph G,
we can test in quadratic time whether G is upward planar.
Proof.

- Test for bimodality.

Result Upward Planarity Test

Theorem 2. [Bertolazzi, Di Battista, Mannino, Tamassia '94]
Given an embedded planar digraph G, we can test in quadratic time whether G is upward planar.

Proof.

- Test for bimodality.
- Test for a consistent assignment Φ (via flow network).

Result Upward Planarity Test

Theorem 2. [Bertolazzi, Di Battista, Mannino, Tamassia '94]
Given an embedded planar digraph G, we can test in quadratic time whether G is upward planar.

Proof.

- Test for bimodality.
- Test for a consistent assignment Φ (via flow network).

■ If G bimodal and Φ exists, refine G to plane st-digraph H.

Result Upward Planarity Test

Theorem 2. [Bertolazzi, Di Battista, Mannino, Tamassia '94]
Given an embedded planar digraph G, we can test in quadratic time whether G is upward planar.

Proof.

- Test for bimodality.
- Test for a consistent assignment Φ (via flow network).

■ If G bimodal and Φ exists, refine G to plane st-digraph H.
■ Draw H upward planar.

Result Upward Planarity Test

Theorem 2. [Bertolazzi, Di Battista, Mannino, Tamassia '94]
Given an embedded planar digraph G, we can test in quadratic time whether G is upward planar.

Proof.

- Test for bimodality.
- Test for a consistent assignment Φ (via flow network).

■ If G bimodal and Φ exists, refine G to plane st-digraph H.
■ Draw H upward planar.

- Deleted edges added in refinement step.

Finding a Consistent Assignment

Idea. Flow $(v, f)=1$
from global source / sink v to the incident face f its large angle gets assigned to.

Finding a Consistent Assignment

Idea. Flow $(v, f)=1$
from global source / sink v to the incident face f its large angle gets assigned to.

Flow network.
$N_{F, f_{0}}(G)=\left(\left(W, E^{\prime}\right) ; b ; \ell ; u\right)$

- $W=$

■ $E^{\prime}=$

- $\ell(e)=$
- $u(e)=$
- $b(w)=$

Finding a Consistent Assignment

Idea. Flow $(v, f)=1$

from global source / sink v to the incident face f its large angle gets assigned to.

nodes of flow network | edges of flow network |
| :--- |
| Flow network. |
| $N_{F, f_{0}}(G)=\left(\left(W, E^{\prime}\right) ; b ; \ell ; u\right)$ |
| $W=$ |
| $\square E^{\prime}=$ |
| $\ell(e)=$ |
| $\quad u(e)=$ | suplies/demands of nodes

■ $b(w)=$

Finding a Consistent Assignment

Idea. Flow $(v, f)=1$

from global source / sink v to the incident face f its large angle gets assigned to.

■ $W=$

- $E^{\prime}=$
- $\ell(e)=$
- $u(e)=$
$\square b(w)=$

Finding a Consistent Assignment

Idea. Flow $(v, f)=1$

from global source / sink v to the incident face f its large angle gets assigned to.
nodes of flow network edges of flow network
lower/upper bounds on edge capcities supplies/demands of nodes

Example.

Flow network.
$N_{F, f_{0}}(G)=\left(\left(W, E^{\prime}\right) ; b ; \ell ; u\right)$
■ $W=\{v \in V(G) \mid v$ source or $\underset{\square}{\operatorname{sink}}\} \cup$

- $E^{\prime}=$
- $\ell(e)=$
- $u(e)=$
- $b(w)=$

Finding a Consistent Assignment

Idea. Flow $(v, f)=1$

from global source / sink v to the incident face f its large angle gets assigned to.

$N_{F, f_{0}}(G)=\left(\left(W, E^{\prime}\right) ; b ; \ell ; u\right)$
■ $W=\left\{v \in V(G) \mid v \underset{\square}{\text { source }}\right.$ or $\left.\operatorname{sink}_{\square}\right\} \cup \underset{\diamond}{F}(G)$

- $E^{\prime}=$
- $\ell(e)=$
- $u(e)=$

■ $b(w)=$

Finding a Consistent Assignment

Idea. Flow $(v, f)=1$
from global source / sink v to the incident face f its large angle gets assigned to.

$N_{F, f_{0}}(G)=\left(\left(W, E^{\prime}\right) ; b ; \ell ; u\right)$
■ $W=\{v \in V(G) \mid v$ source or $\operatorname{sink}\} \cup F_{\square}(G)$
■ $E^{\prime}=\{(v, f) \mid v$ incident to $f\} \longrightarrow$

- $\ell(e)=$
- $u(e)=$
- $b(w)=$

Finding a Consistent Assignment

Idea. Flow $(v, f)=1$
from global source / sink v to the incident face f its large angle gets assigned to.

Flow network.

Example.

$N_{F, f_{0}}(G)=\left(\left(W, E^{\prime}\right) ; b ; \ell ; u\right)$
■ $W=\{v \in V(G) \mid v$ source or sink $\} \cup F_{\diamond}(G)$
■ $E^{\prime}=\{(v, f) \mid v$ incident to $f\} \longrightarrow$
$\square \ell(e)=0 \forall e \in E^{\prime}$
■ $u(e)=1 \forall e \in E^{\prime}$

■ $b(w)=$

Finding a Consistent Assignment

Idea. Flow $(v, f)=1$
from global source / sink v to the incident face f its large angle gets assigned to.
nodes of flow network edges of flow network lower/upper bounds on edge capcities
Flow network.

Example.

$N_{F, f_{0}}(G)=\left(\left(W, E^{\prime}\right) ; b ; \ell ; u\right)$
■ $W=\{v \in V(G) \mid v$ source or sink $\} \cup F_{\diamond}(G)$
■ $E^{\prime}=\{(v, f) \mid v$ incident to $f\} \longrightarrow$
$\square \ell(e)=0 \forall e \in E^{\prime}$

- $u(e)=1 \forall e \in E^{\prime}$
$\square b(w)=\left\{\begin{array}{l}1 \\ \end{array}\right.$

$$
\forall w \in W \cap V(G)
$$

Finding a Consistent Assignment

Idea. Flow $(v, f)=1$
from global source / sink v to the incident face f its large angle gets assigned to.
nodes of flow network edges of flow network lower/upper bounds on edge capcities
Flow network.

Example.

$N_{F, f_{0}}(G)=\left(\left(W, E^{\prime}\right) ; b ; \ell ; u\right)$
■ $W=\{v \in V(G) \mid v$ source or sink $\} \cup F_{\diamond}(G)$
■ $E^{\prime}=\{(v, f) \mid v$ incident to $f\} \longrightarrow$
$\square \ell(e)=0 \forall e \in E^{\prime}$

- $u(e)=1 \forall e \in E^{\prime}$
$\square b(w)= \begin{cases}1 & \forall w \in W \cap V(G) \\ -(A(w)-1) & \forall w \in F(G) \backslash\left\{f_{0}\right\}\end{cases}$

Finding a Consistent Assignment

Idea. Flow $(v, f)=1$
from global source / sink v to the incident face f its large angle gets assigned to.
nodes of flow network edges of flow network lower/upper bounds on edge capcities
Flow network.

Example.

$N_{F, f_{0}}(G)=\left(\left(W, E^{\prime}\right) ; b ; \ell ; u\right)$
■ $W=\{v \in V(G) \mid v$ source or sink $\} \cup F_{\diamond}(G)$
■ $E^{\prime}=\{(v, f) \mid v$ incident to $f\} \longrightarrow$
$\square \ell(e)=0 \forall e \in E^{\prime}$

- $u(e)=1 \forall e \in E^{\prime}$
$\square b(w)= \begin{cases}1 & \forall w \in W \cap V(G) \\ -(A(w)-1) & \forall w \in F(G) \backslash\left\{f_{0}\right\}\end{cases}$

Finding a Consistent Assignment

Idea. Flow $(v, f)=1$
from global source / sink v to the incident face f its large angle gets assigned to.
nodes of flow network edges of flow network lower/upper bounds on edge capcities
Flow network.

Example.

$N_{F, f_{0}}(G)=\left(\left(W, E^{\prime}\right) ; b ; \ell ; u\right)$
■ $W=\{v \in V(G) \mid v$ source or sink $\} \cup F_{\diamond}(G)$
■ $E^{\prime}=\{(v, f) \mid v$ incident to $f\} \longrightarrow$
$\square \ell(e)=0 \forall e \in E^{\prime}$
■ $u(e)=1 \forall e \in E^{\prime}$
$\square b(w)= \begin{cases}1 & \forall w \in W \cap V(G) \\ -(A(w)-1) & \forall w \in F(G) \backslash\left\{f_{0}\right\}\end{cases}$

Finding a Consistent Assignment

Idea. Flow $(v, f)=1$
from global source / sink v to the incident face f its large angle gets assigned to.
nodes of flow network edges of flow network lower/upper bounds on edge capcities
Flow network.

Example.

$N_{F, f_{0}}(G)=\left(\left(W, E^{\prime}\right) ; b ; \ell ; u\right)$
■ $W=\{v \in V(G) \mid v$ source or sink $\} \cup F_{\diamond}(G)$
■ $E^{\prime}=\{(v, f) \mid v$ incident to $f\} \longrightarrow$
$\square \ell(e)=0 \forall e \in E^{\prime}$

- $u(e)=1 \forall e \in E^{\prime}$
$\square b(w)= \begin{cases}1 & \forall w \in W \cap V(G) \\ -(A(w)-1) & \forall w \in F(G) \backslash\left\{f_{0}\right\}\end{cases}$

Finding a Consistent Assignment

Idea. Flow $(v, f)=1$
from global source / sink v to the incident face f its large angle gets assigned to.
nodes of flow network edges of flow network lower/upper bounds on edge capcities
Flow network.

Example.

$N_{F, f_{0}}(G)=\left(\left(W, E^{\prime}\right) ; b ; \ell ; u\right)$
■ $W=\{v \in V(G) \mid v$ source or sink $\} \cup F_{\diamond}(G)$
■ $E^{\prime}=\{(v, f) \mid v$ incident to $f\} \longrightarrow$
$\square \ell(e)=0 \forall e \in E^{\prime}$
■ $u(e)=1 \forall e \in E^{\prime}$
$\square b(w)= \begin{cases}1 & \forall w \in W \cap V(G) \\ -(A(w)-1) & \forall w \in F(G) \backslash\left\{f_{0}\right\} \\ -(A(w)+1) & w=f_{0}\end{cases}$

Finding a Consistent Assignment

Idea. Flow $(v, f)=1$
from global source / sink v to the incident face f its large angle gets assigned to.
nodes of flow network edges of flow network lower/upper bounds on edge capcities
Flow network.

Example.

$N_{F, f_{0}}(G)=\left(\left(W, E^{\prime}\right) ; b ; \ell ; u\right)$
■ $W=\{v \in V(G) \mid v$ source or sink $\} \cup F_{\diamond}(G)$
■ $E^{\prime}=\{(v, f) \mid v$ incident to $f\} \longrightarrow$
$\square \ell(e)=0 \forall e \in E^{\prime}$
■ $u(e)=1 \forall e \in E^{\prime}$
$\square b(w)= \begin{cases}1 & \forall w \in W \cap V(G) \\ -(A(w)-1) & \forall w \in F(G) \backslash\left\{f_{0}\right\} \\ -(A(w)+1) & w=f_{0}\end{cases}$

Finding a Consistent Assignment

Idea. Flow $(v, f)=1$
from global source / sink v to the incident face f its large angle gets assigned to.
nodes of flow network edges of flow network lower/upper bounds on edge capcities
Flow network.

Example.

$N_{F, f_{0}}(G)=\left(\left(W, E^{\prime}\right) ; b ; \ell ; u\right)$
■ $W=\{v \in V(G) \mid v$ source or sink $\} \cup F_{\diamond}(G)$
■ $E^{\prime}=\{(v, f) \mid v$ incident to $f\} \longrightarrow$
$\square \ell(e)=0 \forall e \in E^{\prime}$
■ $u(e)=1 \forall e \in E^{\prime}$
$\square b(w)= \begin{cases}1 & \forall w \in W \cap V(G) \\ -(A(w)-1) & \forall w \in F(G) \backslash\left\{f_{0}\right\} \\ -(A(w)+1) & w=f_{0}\end{cases}$

Visualization of Graphs

Lecture 5:
Upward Planar Drawings

Part II:
Series-Parallel Graphs

Series-Parallel Graphs

A graph G is series-parallel if

Series-Parallel Graphs

A graph G is series-parallel if
■ it contains a single (directed) edge (s, t), or

Series-Parallel Graphs

A graph G is series-parallel if

- it contains a single (directed) edge (s, t), or

■ it consists of two series-parallel graphs G_{1}, G_{2}

Series-Parallel Graphs

A graph G is series-parallel if

- it contains a single (directed) edge (s, t), or

■ it consists of two series-parallel graphs G_{1}, G_{2} with sources s_{1}, s_{2} and sinks t_{1}, t_{2}

Series-Parallel Graphs

A graph G is series-parallel if
■ it contains a single (directed) edge (s, t), or
■ it consists of two series-parallel graphs G_{1}, G_{2} with sources s_{1}, s_{2} and sinks t_{1}, t_{2} that are combined using one of the following rules:

Series-Parallel Graphs

A graph G is series-parallel if

- it contains a single (directed) edge (s, t), or

■ it consists of two series-parallel graphs G_{1}, G_{2} with sources s_{1}, s_{2} and sinks t_{1}, t_{2} that are combined using one of the following rules:

Series-Parallel Graphs

A graph G is series-parallel if

- it contains a single (directed) edge (s, t), or

■ it consists of two series-parallel graphs G_{1}, G_{2} with sources s_{1}, s_{2} and sinks t_{1}, t_{2} that are combined using one of the following rules:

Parallel composition

Series-Parallel Graphs

A graph G is series-parallel if

- it contains a single (directed) edge (s, t), or

■ it consists of two series-parallel graphs G_{1}, G_{2} with sources s_{1}, s_{2} and sinks t_{1}, t_{2} that are combined using one of the following rules:

Parallel composition

Series-Parallel Graphs - Decomposition Tree

A decomposition tree of G is a binary tree T with nodes of three types: S, P and Q .

Series-Parallel Graphs - Decomposition Tree

A decomposition tree of G is a binary tree T with nodes of three types: S, P and Q .

- A Q-node represents a single edge.

Q)

Series-Parallel Graphs - Decomposition Tree

A decomposition tree of G is a binary tree T with nodes of three types: S, P and Q .

- A Q-node represents a single edge.
- An S-node represents a series composition; its children T_{1} and T_{2} represent G_{1} and G_{2}.

Series-Parallel Graphs - Decomposition Tree

A decomposition tree of G is a binary tree T with nodes of three types: S, P and \mathbf{Q}.

- A Q-node represents a single edge.
- An S-node represents a series composition; its children T_{1} and T_{2} represent G_{1} and G_{2}.
- A P-node represents a parallel composition; its children T_{1} and T_{2} represent G_{1} and G_{2}

Series-Parallel Graphs - Decomposition Example

Series-Parallel Graphs - Applications

Flowcharts

PERT-Diagrams
(Program Evaluation and Review Technique)

Series-Parallel Graphs - Applications

Flowcharts

PERT-Diagrams
(Program Evaluation and Review Technique)

Computational complexity:
Series-parallel graphs often admit linear-time algorithms for NP-hard problems, e.g., minimum maximal matching, maximum independent set, Hamiltonian completion.

Series-Parallel Graphs - Drawing Style

Drawing conventions

Drawing aesthetics to optimize

Series-Parallel Graphs - Drawing Style

Drawing conventions
■ Planarity

Drawing aesthetics to optimize

Series-Parallel Graphs - Drawing Style

Drawing conventions

- Planarity
- Straight-line edges

Drawing aesthetics to optimize

Series-Parallel Graphs - Drawing Style

Drawing conventions

- Planarity
- Straight-line edges
- Upward

Drawing aesthetics to optimize

Series-Parallel Graphs - Drawing Style

Drawing conventions

- Planarity
- Straight-line edges
- Upward

Drawing aesthetics to optimize

- Area

Series-Parallel Graphs - Drawing Style

Drawing conventions

- Planarity
- Straight-line edges
- Upward

Drawing aesthetics to optimize

- Area
- Symmetry

Series-Parallel Graphs - Straight-Line Drawings

Divide \& conquer algorithm using the decomposition tree

Series-Parallel Graphs - Straight-Line Drawings

Divide \& conquer algorithm using the decomposition tree
■ Invariant: draw G inside a right-angled isosceles bounding triangle $\Delta(G)$ with s at the bottom and t at the top

Series-Parallel Graphs - Straight-Line Drawings

Divide \& conquer algorithm using the decomposition tree
■ Invariant: draw G inside a right-angled isosceles bounding triangle $\Delta(G)$ with s at the bottom and t at the top
Base case: Q-nodes

Series-Parallel Graphs - Straight-Line Drawings

Divide \& conquer algorithm using the decomposition tree
■ Invariant: draw G inside a right-angled isosceles bounding triangle $\Delta(G)$ with s at the bottom and t at the top
Base case: Q-nodes
Divide: Draw G_{1} and G_{2} first

Series-Parallel Graphs - Straight-Line Drawings

Divide \& conquer algorithm using the decomposition tree
■ Invariant: draw G inside a right-angled isosceles bounding triangle $\Delta(G)$ with s at the bottom and t at the top

Base case: Q-nodes
Divide: Draw G_{1} and G_{2} first

Series-Parallel Graphs - Straight-Line Drawings

Divide \& conquer algorithm using the decomposition tree
■ Invariant: draw G inside a right-angled isosceles bounding triangle $\Delta(G)$ with s at the bottom and t at the top

Base case: Q-nodes
Divide: Draw G_{1} and G_{2} first
Conquer:

Series-Parallel Graphs - Straight-Line Drawings

Divide \& conquer algorithm using the decomposition tree
■ Invariant: draw G inside a right-angled isosceles bounding triangle $\Delta(G)$ with s at the bottom and t at the top

Base case: Q-nodes
Divide: Draw G_{1} and G_{2} first
Conquer:

- S-nodes: series compositions

Series-Parallel Graphs - Straight-Line Drawings

Divide \& conquer algorithm using the decomposition tree
■ Invariant: draw G inside a right-angled isosceles bounding triangle $\Delta(G)$ with s at the bottom and t at the top

Base case: Q-nodes
Divide: Draw G_{1} and G_{2} first
Conquer:
■ S-nodes: series compositions

Series-Parallel Graphs - Straight-Line Drawings

Divide \& conquer algorithm using the decomposition tree
■ Invariant: draw G inside a right-angled isosceles bounding triangle $\Delta(G)$ with s at the bottom and t at the top

Base case: Q-nodes
Divide: Draw G_{1} and G_{2} first
Conquer:

- S-nodes: series compositions

Series-Parallel Graphs - Straight-Line Drawings

Divide \& conquer algorithm using the decomposition tree
■ Invariant: draw G inside a right-angled isosceles bounding triangle $\Delta(G)$ with s at the bottom and t at the top
Base case: Q-nodes
Divide: Draw G_{1} and G_{2} first

Conquer:

■ S-nodes: series compositions
■ P-nodes: parallel compositions

Series-Parallel Graphs - Straight-Line Drawings

Divide \& conquer algorithm using the decomposition tree
■ Invariant: draw G inside a right-angled isosceles bounding triangle $\Delta(G)$ with s at the bottom and t at the top

Base case: Q-nodes

Divide: Draw G_{1} and G_{2} first

Conquer:

■ S-nodes: series compositions
■ P-nodes: parallel compositions

Series-Parallel Graphs - Straight-Line Drawings

Divide \& conquer algorithm using the decomposition tree
■ Invariant: draw G inside a right-angled isosceles bounding triangle $\Delta(G)$ with s at the bottom and t at the top

Base case: Q-nodes

Divide: Draw G_{1} and G_{2} first

Conquer:

■ S-nodes: series compositions
■ P-nodes: parallel compositions

Series-Parallel Graphs - Straight-Line Drawings

Divide \& conquer algorithm using the decomposition tree
■ Invariant: draw G inside a right-angled isosceles bounding triangle $\Delta(G)$ with s at the bottom and t at the top

Base case: Q-nodes

Divide: Draw G_{1} and G_{2} first

Conquer:

■ S-nodes: series compositions

- P-nodes: parallel compositions

Series-Parallel Graphs - Straight-Line Drawings

Divide \& conquer algorithm using the decomposition tree
■ Invariant: draw G inside a right-angled isosceles bounding triangle $\Delta(G)$ with s at the bottom and t at the top

Base case: Q-nodes

Divide: Draw G_{1} and G_{2} first

Conquer:

■ S-nodes: series compositions

- P-nodes: parallel compositions

Do you see any problem?

Series-Parallel Graphs - Straight-Line Drawings

Divide \& conquer algorithm using the decomposition tree
■ Invariant: draw G inside a right-angled isosceles bounding triangle $\Delta(G)$ with s at the bottom and t at the top

Base case: Q-nodes

Divide: Draw G_{1} and G_{2} first

Conquer:

■ S-nodes: series compositions

- P-nodes: parallel compositions

Do you see any problem?
single edge

Series-Parallel Graphs - Straight-Line Drawings

Divide \& conquer algorithm using the decomposition tree
■ Invariant: draw G inside a right-angled isosceles bounding triangle $\Delta(G)$ with s at the bottom and t at the top

Base case: Q-nodes

Divide: Draw G_{1} and G_{2} first

Conquer:

■ S-nodes: series compositions

- P-nodes: parallel compositions

Do you see any problem?
single edge change embedding!

Series-Parallel Graphs - Straight-Line Drawings

Divide \& conquer algorithm using the decomposition tree
■ Invariant: draw G inside a right-angled isosceles bounding triangle $\Delta(G)$ with s at the bottom and t at the top

Base case: Q-nodes

Divide: Draw G_{1} and G_{2} first

Conquer:

■ S-nodes: series compositions

- P-nodes: parallel compositions

Series-Parallel Graphs - Straight-Line Drawings

Divide \& conquer algorithm using the decomposition tree
■ Invariant: draw G inside a right-angled isosceles bounding triangle $\Delta(G)$ with s at the bottom and t at the top

Base case: Q-nodes

Divide: Draw G_{1} and G_{2} first

Conquer:

■ S-nodes: series compositions
■ P-nodes: parallel compositions

Series-Parallel Graphs - Straight-Line Drawings

Divide \& conquer algorithm using the decomposition tree
■ Invariant: draw G inside a right-angled isosceles bounding triangle $\Delta(G)$ with s at the bottom and t at the top

Base case: Q-nodes

Divide: Draw G_{1} and G_{2} first

Conquer:

■ S-nodes: series compositions
■ P-nodes: parallel compositions

Series-Parallel Graphs - Straight-Line Drawings

- What makes parallel composition possible without creating crossings?

Series-Parallel Graphs - Straight-Line Drawings

■ What makes parallel composition possible without creating crossings?

Series-Parallel Graphs - Straight-Line Drawings

■ What makes parallel composition possible without creating crossings?

Series-Parallel Graphs - Straight-Line Drawings

■ What makes parallel composition possible without creating crossings?

Series-Parallel Graphs - Straight-Line Drawings

■ What makes parallel composition possible without creating crossings?

Series-Parallel Graphs - Straight-Line Drawings

■ What makes parallel composition possible without creating crossings?

Series-Parallel Graphs - Straight-Line Drawings

■ What makes parallel composition possible without creating crossings?

Series-Parallel Graphs - Straight-Line Drawings

■ What makes parallel composition possible without creating crossings?

Series-Parallel Graphs - Straight-Line Drawings

■ What makes parallel composition possible without creating crossings?

Series-Parallel Graphs - Straight-Line Drawings

■ What makes parallel composition possible without creating crossings?

Series-Parallel Graphs - Straight-Line Drawings

■ What makes parallel composition possible without creating crossings?

Series-Parallel Graphs - Straight-Line Drawings

\square What makes parallel composition possible without creating crossings?

Series-Parallel Graphs - Straight-Line Drawings

■ What makes parallel composition possible without creating crossings?

Series-Parallel Graphs - Straight-Line Drawings

■ What makes parallel composition possible without creating crossings?

Assume the following holds: the only vertex in angle (v) is s

Series-Parallel Graphs - Straight-Line Drawings

■ What makes parallel composition possible without creating crossings?

- This condition is preserved during the induction step.

Assume the following holds: the only vertex in angle (v) is s

Series-Parallel Graphs - Straight-Line Drawings

■ What makes parallel composition possible without creating crossings?

Assume the following holds: the only vertex in angle (v) is s

Lemma.

The drawing produced by the algorithm is planar.

Series-Parallel Graphs - Result

Theorem.
 Let G be a series-parallel graph. Then G (with variable embedding) admits a drawing Γ that

Series-Parallel Graphs - Result

```
Theorem.
Let G be a series-parallel graph. Then G (with variable
embedding) admits a drawing \Gamma that
- is upward planar,
```


Series-Parallel Graphs - Result

```
Theorem.
Let G be a series-parallel graph. Then G (with variable
embedding) admits a drawing \Gamma that
\square is upward planar,
| is straight-line, and
```


Series-Parallel Graphs - Result

```
Theorem.
Let G be a series-parallel graph. Then G (with variable
embedding) admits a drawing \Gamma that
\square is upward planar,
\square is straight-line, and
\square uses quadratic area.
```


Series-Parallel Graphs - Result

Theorem.

Let G be a series-parallel graph. Then G (with variable embedding) admits a drawing Γ that
■ is upward planar,

- is straight-line, and
- uses quadratic area.
- Isomorphic components of G have congruent drawings up to translation.

Series-Parallel Graphs - Result

Theorem.
Let G be a series-parallel graph. Then G (with variable embedding) admits a drawing Γ that

- is upward planar,
- is straight-line, and
- uses quadratic area.
- Isomorphic components of G have congruent drawings up to translation.
「 can be computed in linear time.

Series-Parallel Graphs - Fixed Embedding

Theorem. [Bertolazzi, Di Battista, Mannino, Tamassia '94]
For any $n \geq 1$, there exists a $2 n$-vertex series-parallel graph G_{n} in an embedding such that any upward planar straight-line drawing of G_{n} that respects the given embedding requires $\Omega\left(4^{n}\right)$ area.

Series-Parallel Graphs - Fixed Embedding

Theorem. [Bertolazzi, Di Battista, Mannino, Tamassia '94]
For any $n \geq 1$, there exists a $2 n$-vertex series-parallel graph G_{n} in an embedding such that any upward planar straight-line drawing of G_{n} that respects the given embedding requires $\Omega\left(4^{n}\right)$ area.

G_{1}

Series-Parallel Graphs - Fixed Embedding

Theorem. [Bertolazzi, Di Battista, Mannino, Tamassia '94]
For any $n \geq 1$, there exists a $2 n$-vertex series-parallel graph G_{n} in an embedding such that any upward planar straight-line drawing of G_{n} that respects the given embedding requires $\Omega\left(4^{n}\right)$ area.

G_{1}
G_{n+1}

Series-Parallel Graphs - Fixed Embedding

Theorem. [Bertolazzi, Di Battista, Mannino, Tamassia '94]
For any $n \geq 1$, there exists a $2 n$-vertex series-parallel graph G_{n} in an embedding such that any upward planar straight-line drawing of G_{n} that respects the given embedding requires $\Omega\left(4^{n}\right)$ area.

Series-Parallel Graphs - Fixed Embedding

Theorem. [Bertolazzi, Di Battista, Mannino, Tamassia '94]
For any $n \geq 1$, there exists a $2 n$-vertex series-parallel graph G_{n} in an embedding such that any upward planar straight-line drawing of G_{n} that respects the given embedding requires $\Omega\left(4^{n}\right)$ area.

Series-Parallel Graphs - Fixed Embedding

Theorem. [Bertolazzi, Di Battista, Mannino, Tamassia '94]
For any $n \geq 1$, there exists a $2 n$-vertex series-parallel graph G_{n} in an embedding such that any upward planar straight-line drawing of G_{n} that respects the given embedding requires $\Omega\left(4^{n}\right)$ area.

Series-Parallel Graphs - Fixed Embedding

Theorem. [Bertolazzi, Di Battista, Mannino, Tamassia '94]
For any $n \geq 1$, there exists a $2 n$-vertex series-parallel graph G_{n} in an embedding such that any upward planar straight-line drawing of G_{n} that respects the given embedding requires $\Omega\left(4^{n}\right)$ area.

Series-Parallel Graphs - Fixed Embedding

Theorem. [Bertolazzi, Di Battista, Mannino, Tamassia '94]
For any $n \geq 1$, there exists a $2 n$-vertex series-parallel graph G_{n} in an embedding such that any upward planar straight-line drawing of G_{n} that respects the given embedding requires $\Omega\left(4^{n}\right)$ area.

Series-Parallel Graphs - Fixed Embedding

Theorem. [Bertolazzi, Di Battista, Mannino, Tamassia '94]
For any $n \geq 1$, there exists a $2 n$-vertex series-parallel graph G_{n} in an embedding such that any upward planar straight-line drawing of G_{n} that respects the given embedding requires $\Omega\left(4^{n}\right)$ area.

Series-Parallel Graphs - Fixed Embedding

Theorem. [Bertolazzi, Di Battista, Mannino, Tamassia '94]
For any $n \geq 1$, there exists a $2 n$-vertex series-parallel graph G_{n} in an embedding such that any upward planar straight-line drawing of G_{n} that respects the given embedding requires $\Omega\left(4^{n}\right)$ area.

Series-Parallel Graphs - Fixed Embedding

Theorem. [Bertolazzi, Di Battista, Mannino, Tamassia '94]
For any $n \geq 1$, there exists a $2 n$-vertex series-parallel graph G_{n} in an embedding such that any upward planar straight-line drawing of G_{n} that respects the given embedding requires $\Omega\left(4^{n}\right)$ area.

Series-Parallel Graphs - Fixed Embedding

Theorem. [Bertolazzi, Di Battista, Mannino, Tamassia '94]

For any $n \geq 1$, there exists a $2 n$-vertex series-parallel graph G_{n} in an embedding such that any upward planar straight-line drawing of G_{n} that respects the given embedding requires $\Omega\left(4^{n}\right)$ area.

■ $2 \cdot \operatorname{Area}\left(G_{n}\right)<\operatorname{Area}(\Pi)$

Series-Parallel Graphs - Fixed Embedding

Theorem. [Bertolazzi, Di Battista, Mannino, Tamassia '94]

For any $n \geq 1$, there exists a $2 n$-vertex series-parallel graph G_{n} in an embedding such that any upward planar straight-line drawing of G_{n} that respects the given embedding requires $\Omega\left(4^{n}\right)$ area.

■ $2 \cdot \operatorname{Area}\left(G_{n}\right)<\operatorname{Area}(\Pi)$

Series-Parallel Graphs - Fixed Embedding

Theorem. [Bertolazzi, Di Battista, Mannino, Tamassia '94]

For any $n \geq 1$, there exists a $2 n$-vertex series-parallel graph G_{n} in an embedding such that any upward planar straight-line drawing of G_{n} that respects the given embedding requires $\Omega\left(4^{n}\right)$ area.

■ $2 \cdot \operatorname{Area}\left(G_{n}\right)<\operatorname{Area}(\Pi)$

Series-Parallel Graphs - Fixed Embedding

Theorem. [Bertolazzi, Di Battista, Mannino, Tamassia '94]

For any $n \geq 1$, there exists a $2 n$-vertex series-parallel graph G_{n} in an embedding such that any upward planar straight-line drawing of G_{n} that respects the given embedding requires $\Omega\left(4^{n}\right)$ area.

■ $2 \cdot \operatorname{Area}\left(G_{n}\right)<\operatorname{Area}(\Pi)$

Series-Parallel Graphs - Fixed Embedding

Theorem. [Bertolazzi, Di Battista, Mannino, Tamassia '94]
For any $n \geq 1$, there exists a $2 n$-vertex series-parallel graph G_{n} in an embedding such that any upward planar straight-line drawing of G_{n} that respects the given embedding requires $\Omega\left(4^{n}\right)$ area.

■ $2 \cdot \operatorname{Area}\left(G_{n}\right)<\operatorname{Area}(\Pi)$
■ $2 \cdot \operatorname{Area}(\Pi) \leq \operatorname{Area}\left(G_{n+1}\right)$

Series-Parallel Graphs - Fixed Embedding

Theorem. [Bertolazzi, Di Battista, Mannino, Tamassia '94]

For any $n \geq 1$, there exists a $2 n$-vertex series-parallel graph G_{n} in an embedding such that any upward planar straight-line drawing of G_{n} that respects the given embedding requires $\Omega\left(4^{n}\right)$ area.

■ $2 \cdot \operatorname{Area}\left(G_{n}\right)<\operatorname{Area}(\Pi)$
■ 2• $\operatorname{Area}(\Pi) \leq \operatorname{Area}\left(G_{n+1}\right)$
$\Rightarrow 4 \cdot \operatorname{Area}\left(G_{n}\right)<\operatorname{Area}\left(G_{n+1}\right)$

Discussion
■ There exist fixed-parameter (FPT) algorithms to test upward planarity of general digraphs with the parameter being the number of triconnected components.
[Healy, Lynch 2005, Didimo et al. 2009]

Discussion

■ There exist fixed-parameter (FPT) algorithms to test upward planarity of general digraphs with the parameter being the number of triconnected components.
[Healy, Lynch 2005, Didimo et al. 2009]

■ Finding a consistent assignment (Theorem 2) can be sped up to $\mathcal{O}\left(n+r^{1.5}\right)$, where $r=\#$ sources.
[Abbasi, Healy, Rextin 2010]

Discussion

■ There exist fixed-parameter (FPT) algorithms to test upward planarity of general digraphs with the parameter being the number of triconnected components.
[Healy, Lynch 2005, Didimo et al. 2009]

■ Finding a consistent assignment (Theorem 2) can be sped up to $\mathcal{O}\left(n+r^{1.5}\right)$, where $r=\#$ sources. [Abbasi, Healy, Rextin 2010]

■ Many related concepts have been studied: upward drawings of mixed graphs, upward drawings with layers for the vertices, upward planarity on cylinder/torus, ...

Literature

■ See [GD Ch. 6] for detailed explanation on upward planarity.

- See [GD Ch. 3] for divide and conquer methods of series-parallel graphs

Orginal papers referenced:
■ [Kelly '87] Fundamentals of Planar Ordered Sets
■ [Di Battista \&Tamassia '88] Algorithms for Plane Representations of Acyclic Digraphs

- [Garg \&Tamassia '95]

On the Computational Complexity of Upward and Rectilinear Planarity Testing
■ [Hutton \& Lubiw '96] Upward Planar Drawing of Single-Source Acyclic Digraphs
■ [Bertolazzi, Di Battista, Mannino, Tamassia '94]
Upward Drawings of Triconnected Digraphs
■ [Healy \& Lynch '05] Building Blocks of Upward Planar Digraphs
■ [Didimo, Giordano, Liotta '09] Upward Spirality and Upward Planarity Testing

- [Abbasi, Healy, Rextin '10]

Improving the running time of embedded upward planarity testing

[^0]: Program Evaluation and Review Technique

[^1]: Ancestral trees / networks

