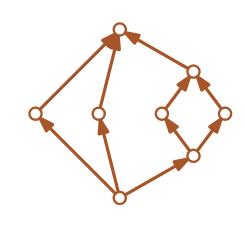
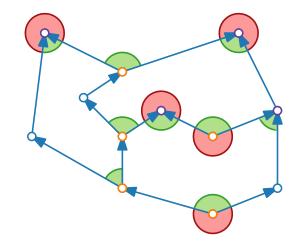


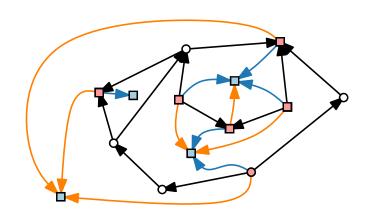
Visualization of Graphs

Lecture 5: Upward Planar Drawings





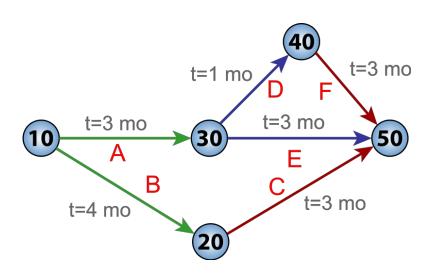
Part I: Recognition



Summer semester 2024

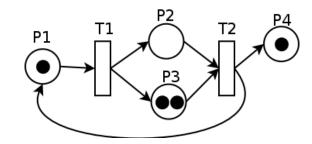
Upward Planar Drawings – Motivation

- What may the direction of edges in a directed graph represent?
 - Time
 - Flow
 - Hierarchy
 - ...
- We aim for drawings where the general direction is preserved.



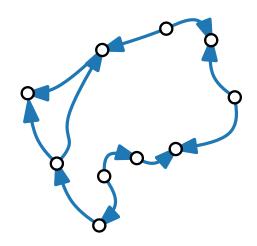
PERT diagram

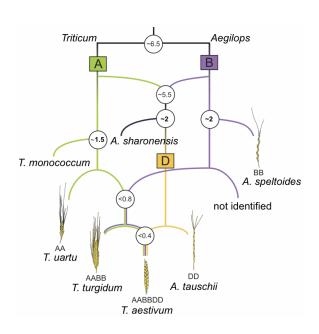
Program Evaluation and Review Technique (Project management)



Petri net

Place/Transition net (Modeling languages for distributed systems)





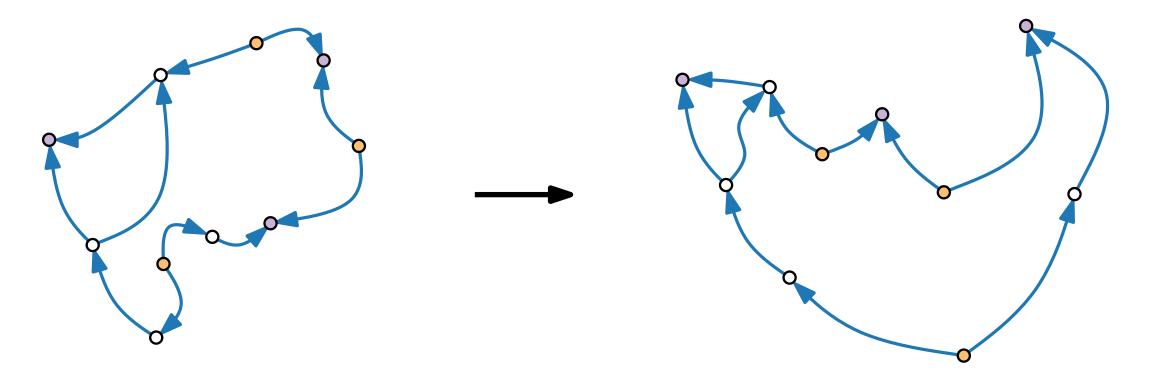
Phylogenetic network

Ancestral trees / networks (Biology)

Upward Planar Drawings – Definition

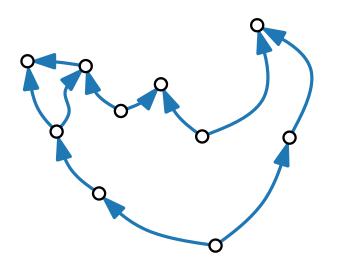
A directed graph (digraph) is upward planar when it admits a drawing

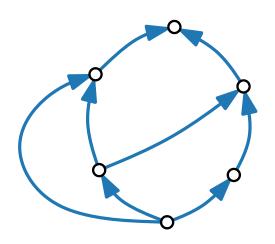
- that is planar and
- where each edge is drawn as an upward y-monotone curve.

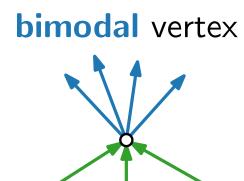


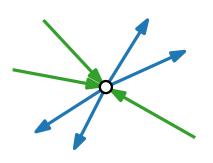
Upward Planarity – Necessary Conditions

- For an (embedded) digraph to be upward planar, it needs to
 - be planar
 - be acyclic
 - have a bimodal embedding
- **Let up** but these conditions are *not sufficient*. \rightarrow **Exercise**









Upward Planarity – Characterization

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G, the following statements are equivalent:

- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.

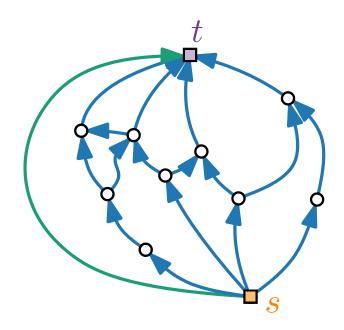
Additionally: Embedded such

that s and t are on the outer face f_0 .

or:

Edge (s, t) exists.

acyclic digraph with a single source \boldsymbol{s} and a single sink t

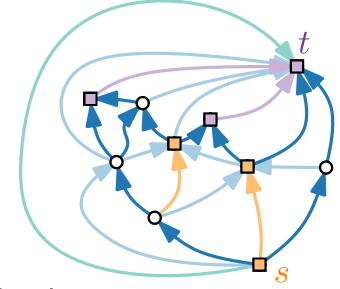


Upward Planarity – Characterization

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G, the following statements are equivalent:

- (1) G is upward planar.
- (2) G admits an upward planar straight-line drawing.
- (3) G is a spanning subgraph of a planar st-digraph.



Proof.

 $(2) \Rightarrow (1)$ By definition. $(1) \Rightarrow (3)$ For the proof idea, see the example above.

 $(3) \Rightarrow (2)$ Triangulate & construct drawing:

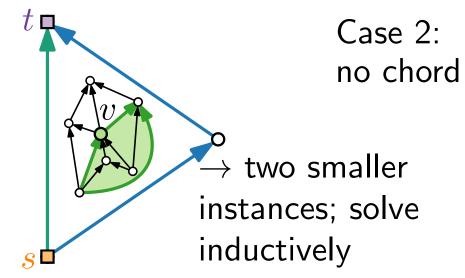
Case 1:

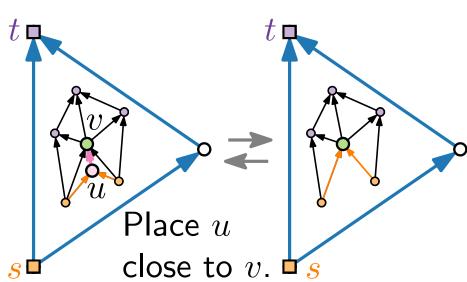
Idea: Contract uv!

Claim.

Can be drawn chord in pre-specified triangle.

Induction on the number of vertices n.





Upward Planarity – Complexity

Theorem.

[Garg & Tamassia, 1995]

Given a planar acyclic digraph G, it is NP-hard to decide whether G is upward planar.

Theorem 2. [Bertolazzi, Di Battista, Mannino, Tamassia, 1994]

Given an *embedded* planar digraph G, it can be tested in quadratic time whether G is upward planar.

Corollary.

Given a *triconnected* planar digraph G, it can be tested in quadratic time whether G is upward planar.

Theorem.

[Hutton & Lubiw, 1996]

Given an acyclic single-source digraph G, it can be tested in linear time whether G is upward planar.

The Problem

Fixed Embedding Upward Planarity Testing.

Let G be a plane digraph, let F be the set of faces of G, and let f_0 be the outer face of G. Test whether G is upward planar (w.r.t. to F and f_0).

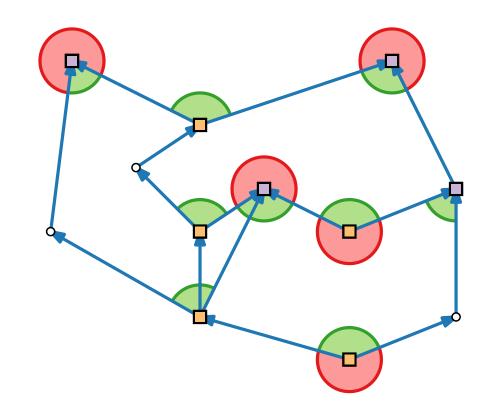
Plan.

- lacktriangle Find a property that any upward planar drawing of G satisfies.
- Formalize this property.
- Specify an algorithm to test this property.

Angles, Local Sources & Sinks

Definitions.

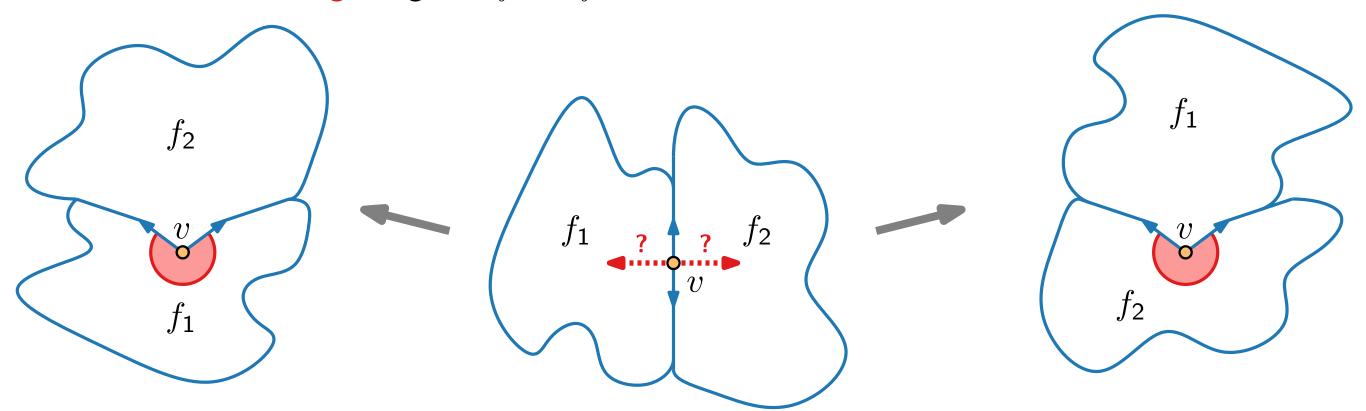
- A vertex v is a local source w.r.t. to a face f if v has two outgoing edges on ∂f . boundary of f
- A vertex v is a **local sink** w.r.t. to a face f if v has two incoming edges on ∂f .
- An angle α at a local source/sink is **large** if $\alpha > \pi$ and **small** otherwise.
- L(v) = # large angles at v
- lacksquare L(f) = # large angles in f
- lacksquare S(v) = # small angles at v
- lacksquare S(f) = # small angles at f



Lemma 1. L(f) + S(f) = 2A(f)

Assignment Problem

- Observe that the global sources and global sinks have precisely one large angle
- All other vertices have only small angles.
- Let v be a global source and let it be incident to faces f_1 and f_2 .
- Does v have a large angle in f_1 or f_2 ?

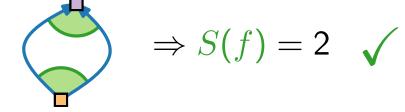


Lemma 2.

$$L(f) - S(f) = \begin{cases} -2 & \text{if } f \neq f_0, \\ +2 & \text{if } f = f_0. \end{cases}$$
 $L(f) = 0$

Proof by induction on L(f).

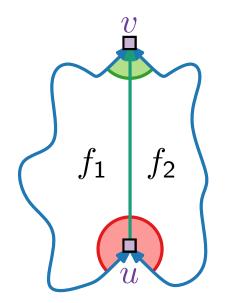
$$L(f) = 0$$



 $L(f) \geq 1$

Split f with edge from a large angle at a "low" sink u to...

 \blacksquare sink v with small angle:



$$-2 -2$$

$$L(f) - S(f) = L(f_1) + L(f_2) + 1$$

$$-(S(f_1) + S(f_2) - 1)$$

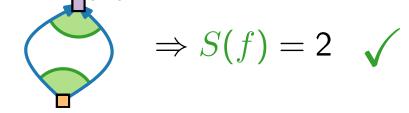
$$= -2 - 2 + 2 = -2$$

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2 & \text{if } f \neq f_0, \\ +2 & \text{if } f = f_0. \end{cases}$$

Proof by induction on L(f).

$$L(f) = 0$$



$$\blacksquare$$
 $L(f) \geq 1$

Split f with edge from a large angle at a "low" sink u to...

 \blacksquare sink v with small/large angle:

$$-2 -2$$

$$L(f) - S(f) = L(f_1) + L(f_2) + 1$$

$$-(S(f_1) + S(f_2) - 1)$$

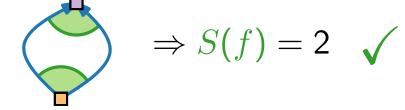
$$= -2 - 2 + 2 = -2$$

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2 & \text{if } f \neq f_0, \\ +2 & \text{if } f = f_0. \end{cases}$$

Proof by induction on L(f).

$$L(f) = 0$$



$$L(f) \geq 1$$

Split f with edge from a large angle at a "low" sink u to...

 \blacksquare source v with small/large angle:

$$f_1$$
 f_2

$$-2 -2$$

$$L(f) - S(f) = L(f_1) + L(f_2) + 2$$

$$-(S(f_1) + S(f_2))$$

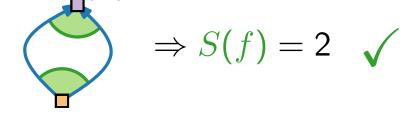
$$= -2 - 2 + 2 = -2$$

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2 & \text{if } f \neq f_0, \\ +2 & \text{if } f = f_0. \end{cases}$$

Proof by induction on L(f).

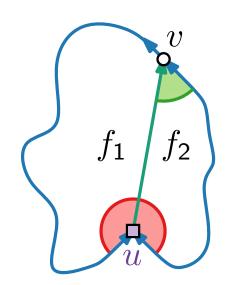
$$L(f) = 0$$



$$\blacksquare$$
 $L(f) \geq 1$

Split f with edge from a large angle at a "low" sink u to...

vertex v that is neither source nor sink:



$$-2 -2$$

$$L(f) - S(f) = L(f_1) + L(f_2) + 1$$

$$-(S(f_1) + S(f_2) - 1)$$

$$= -2 - 2 + 2 = -2$$

- Otherwise "high" source u exists. o symmetric
- \blacksquare Similar argument for the outer face f_0 .

Number of Large Angles

Lemma 3.

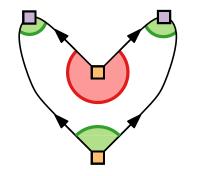
In every upward planar drawing of G, it holds that

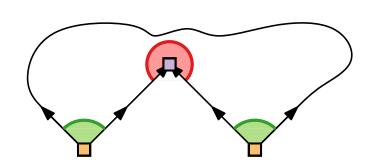
- for each vertex $v: L(v) = \begin{cases} 0 & \text{if } v \text{ is an inner vertex,} \\ 1 & \text{if } v \text{ is a gobal source } / \text{sink;} \end{cases}$
- for each face $f\colon L(f)=egin{cases} A(f)-1 & \text{if } f
 eq f_0,\ A(f)+1 & \text{if } f=f_0. \end{cases}$

Proof. Lemma 1:
$$L(f) + S(f) = 2A(f)$$

Lemma 2: $L(f) - S(f) = \pm 2$.

$$\Rightarrow 2L(f) = 2A(f) \pm 2$$
.





Assignment of Large Angles to Faces

Let S be the set of (global) sources, and let T be the set of (global) sinks.

Definition.

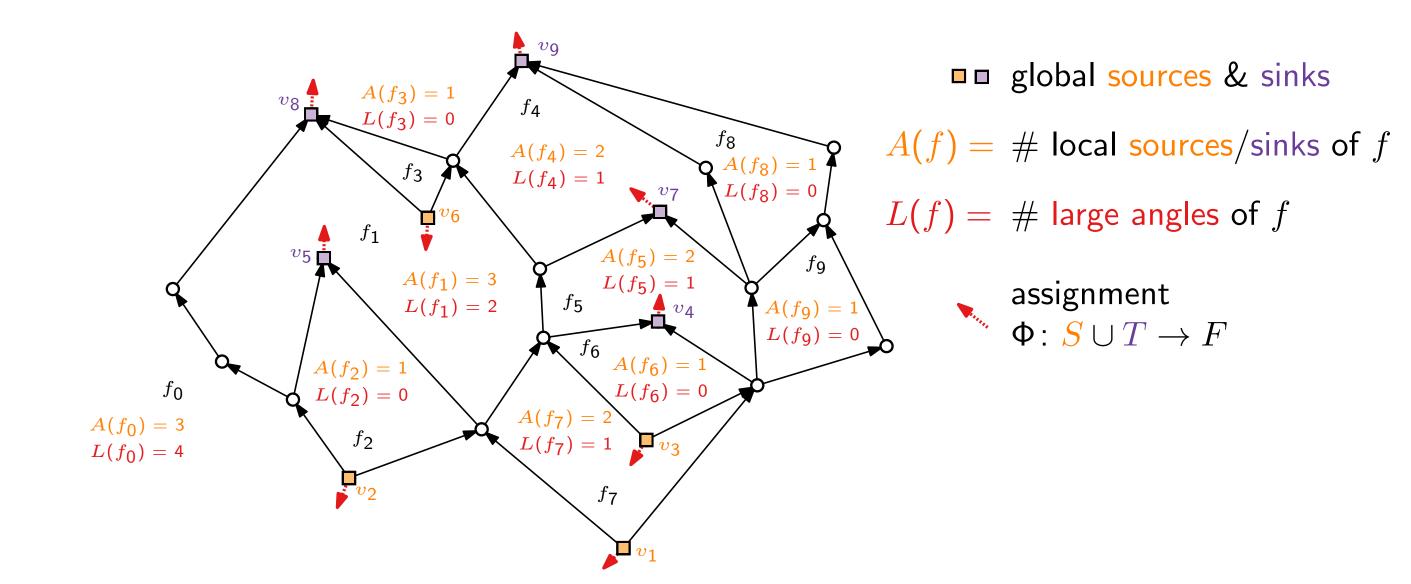
A consistent assignment $\Phi: S \cup T \to F$ is a mapping with

 $\Phi \colon v \mapsto \text{ incident face, where } v \text{ forms a large angle}$

such that

$$|\Phi^{-1}(f)| = L(f) = egin{cases} A(f) - 1 & ext{if } f
eq f_0, \ A(f) + 1 & ext{if } f = f_0. \end{cases}$$

Example of Angle-to-Face Assignment



Result Characterization

Theorem 3.

Let G be an acyclic plane digraph with embedding given by F and f_0 .

Then G is upward planar (respecting F and f_0)

 $\Leftrightarrow G$ is bimodal and there exists a consistent assignment Φ .

Proof.

 \Rightarrow : As constructed before.

←: Idea:

- \blacksquare Construct planar st-digraph that is a supergraph of G.
- Apply equivalence from Theorem 1.

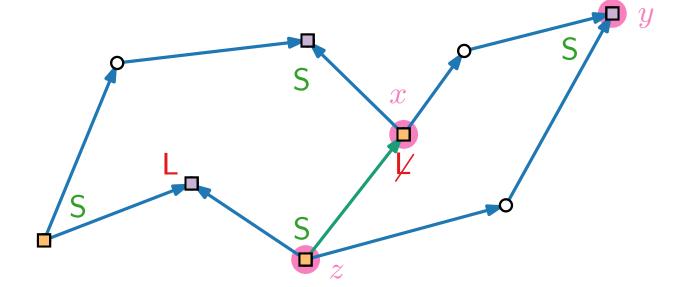
G is upward planar. $\Leftrightarrow G$ is a spanning subgraph of a planar st-digraph.

Refinement Algorithm: $\Phi, F, f_0 \rightarrow \text{st-digraph}$

Let f be a face.

Consider the clockwise angle sequence σ_f of L / S on local sources and sinks of f.

- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:
- $\blacksquare x \text{ source} \Rightarrow \text{insert edge } (z, x)$

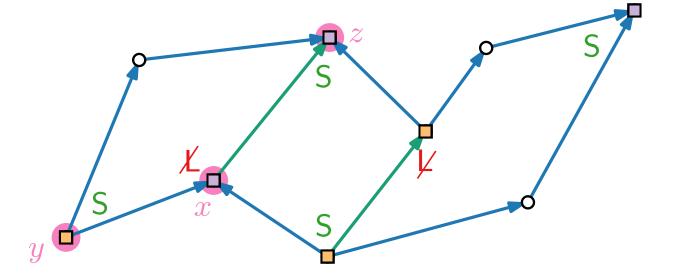


Refinement Algorithm: $\Phi, F, f_0 \rightarrow \text{st-digraph}$

Let f be a face.

Consider the clockwise angle sequence σ_f of L / S on local sources and sinks of f.

- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:
- $\blacksquare x \text{ source} \Rightarrow \text{insert edge } (z, x)$
- $\blacksquare x \text{ sink } \Rightarrow \text{insert edge } (x, z).$



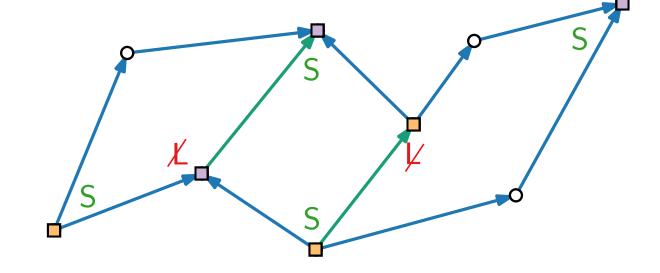
Refinement Algorithm: $\Phi, F, f_0 \rightarrow \text{st-digraph}$

Let f be a face.

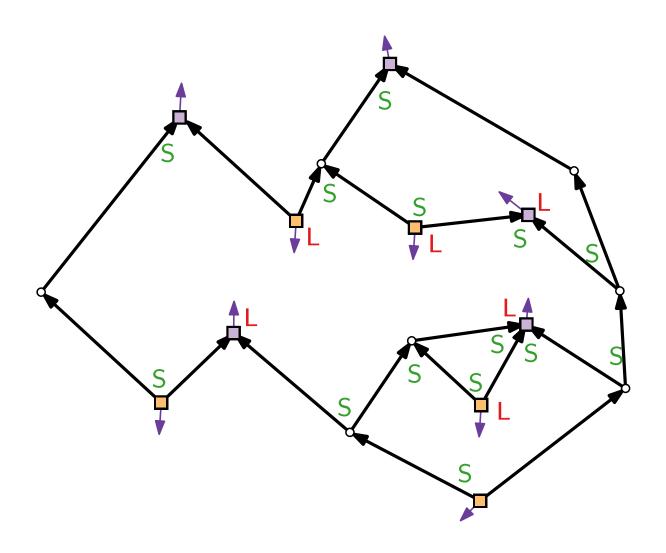
Consider the clockwise angle sequence σ_f of L / S on local sources and sinks of f.

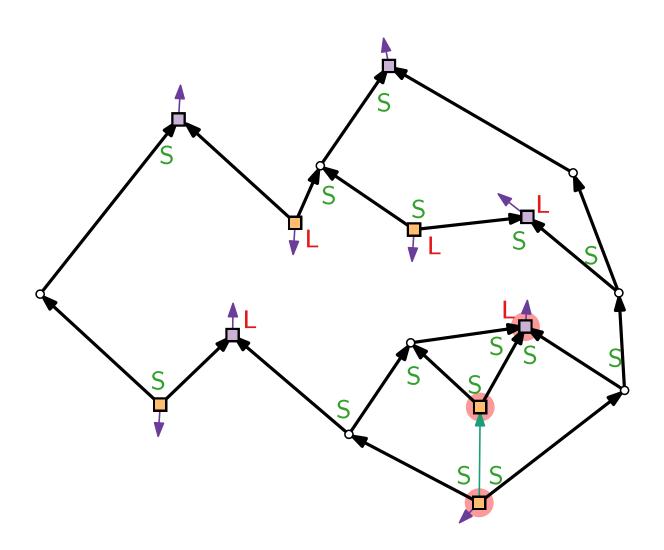
- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:
- $\blacksquare x \text{ source} \Rightarrow \text{insert edge } (z, x)$
- $\blacksquare x \text{ sink } \Rightarrow \text{insert edge } (x, z).$
- Refine outer face f_0 similarly.

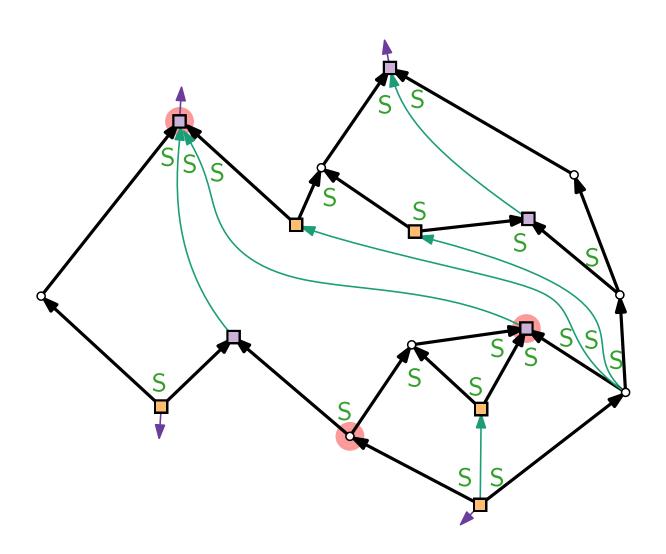
\rightarrow Exercise

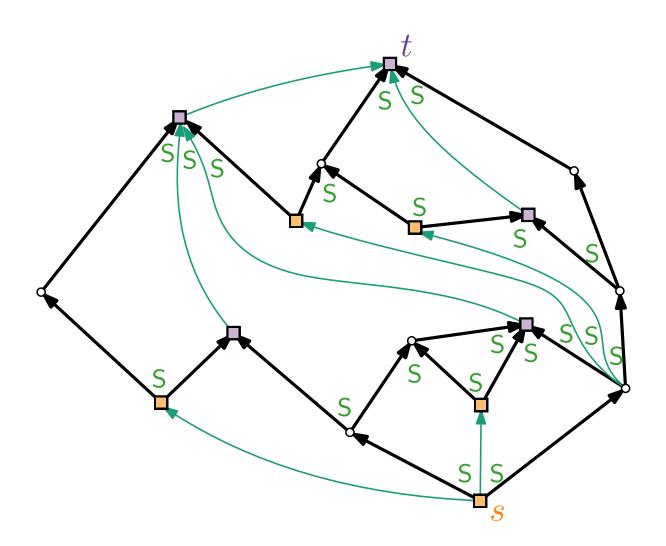


- \blacksquare Refine all faces. \Rightarrow G is contained in a planar st-digraph.
- Planarity, acyclicity, bimodality are invariants under construction.









Result Upward Planarity Test

Theorem 2. [Bertolazzi, Di Battista, Mannino, Tamassia '94] Given an *embedded* planar digraph G, we can test in quadratic time whether G is upward planar.

Proof.

- Test for bimodality.
- \blacksquare Test for a consistent assignment Φ (via flow network).
- \blacksquare If G bimodal and Φ exists, refine G to plane st-digraph H.
- \blacksquare Draw H upward planar.
- Deleted edges added in refinement step.

Finding a Consistent Assignment

Idea. Flow (v, f) = 1

from global source / sink v to the incident face f its large angle gets assigned to.

nodes of flow network edges of flow network

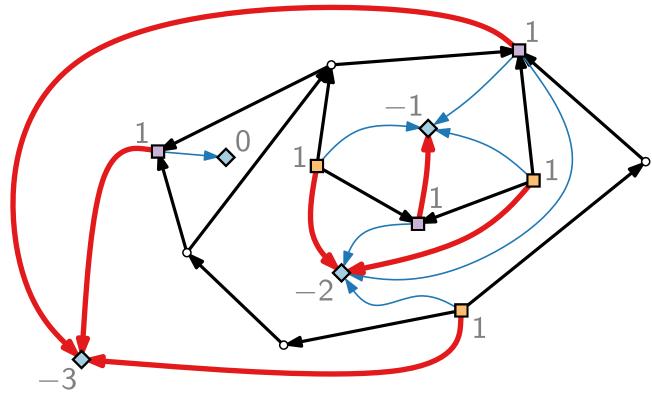
lower/upper bounds on edge capcities

Flow network.
$$N_{F,f_0}(G) = ((W,E');b;\ell;u)$$

- $W = \{v \in V(G) \mid v \text{ source or sink}\} \cup F(G)$ $E' = \{(v, f) \mid v \text{ incident to } f\}$
- $\ell(e) = 0 \ \forall e \in E'$
- $u(e) = 1 \ \forall e \in E'$

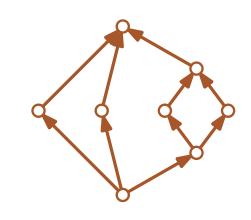
$$b(w) = \begin{cases} 1 & \forall w \in W \cap V(G) \\ -(A(w) - 1) & \forall w \in F(G) \setminus \{f_0\} \\ -(A(w) + 1) & w = f_0 \end{cases}$$

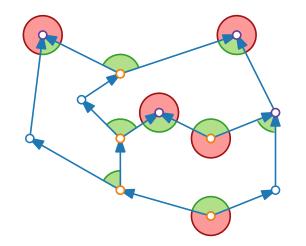
Example.



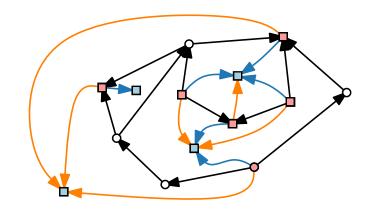
Visualization of Graphs

Lecture 5: Upward Planar Drawings





Part II: Series-Parallel Graphs



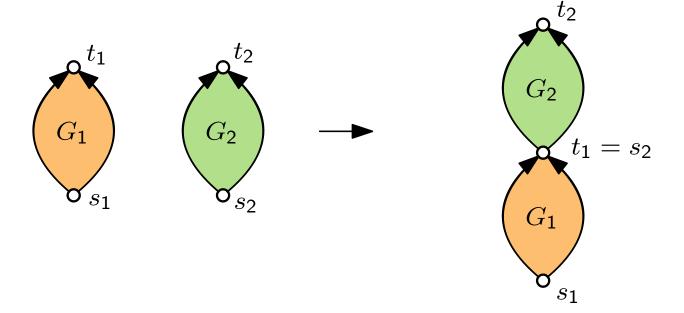
Series-Parallel Graphs

A graph G is series-parallel if

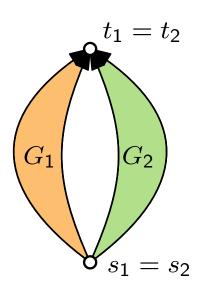
- \blacksquare it contains a single (directed) edge (s, t), or
- it consists of two series-parallel graphs G_1 , G_2 with sources s_1 , s_2 and sinks t_1 , t_2 that are combined using one of the following rules:

Convince yourself that series-parallel graphs are (upward) planar!

Series composition



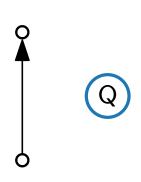
Parallel composition

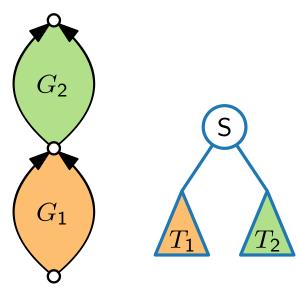


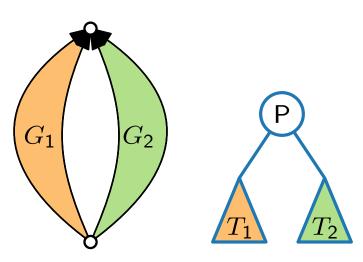
Series-Parallel Graphs – Decomposition Tree

A decomposition tree of G is a binary tree T with nodes of three types: S, P and Q.

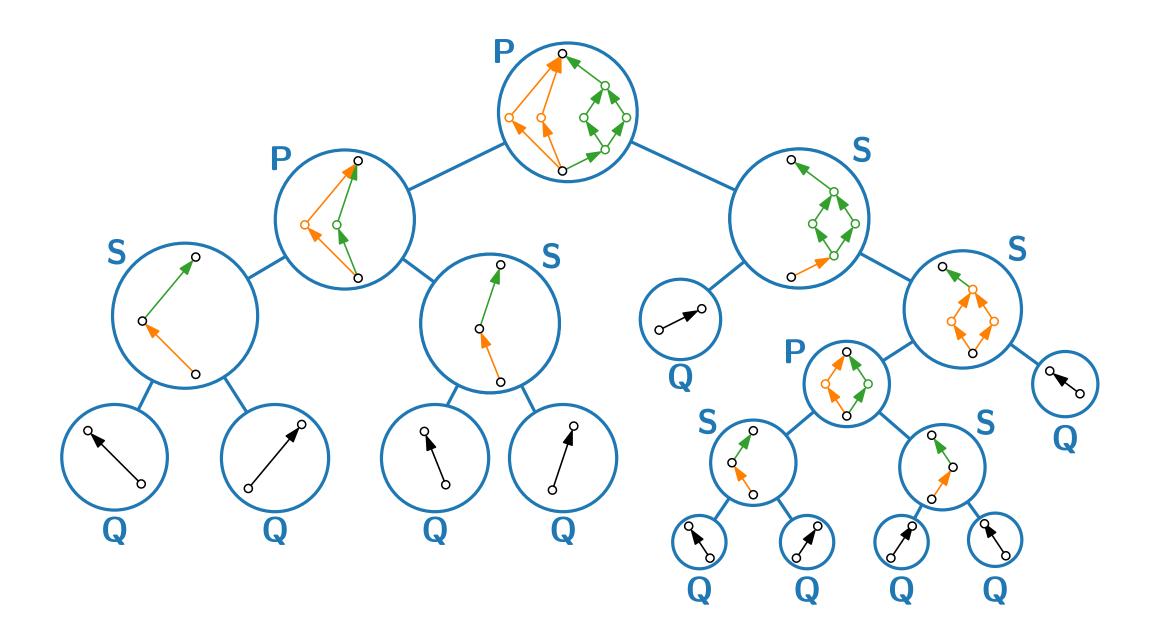
- A Q-node represents a single edge.
- An S-node represents a series composition; its children T_1 and T_2 represent G_1 and G_2 .
- A P-node represents a parallel composition; its children T_1 and T_2 represent G_1 and G_2



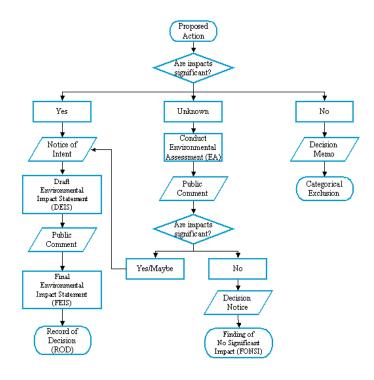




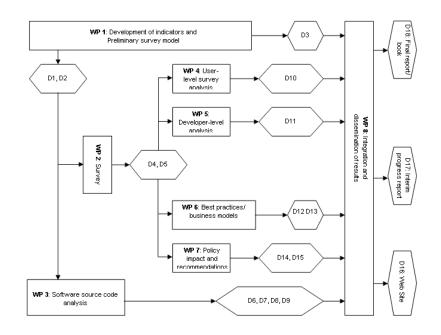
Series-Parallel Graphs – Decomposition Example



Series-Parallel Graphs – Applications



Flowcharts



PERT-Diagrams

(Program Evaluation and Review Technique)

Computational complexity:

Series-parallel graphs often admit linear-time algorithms for NP-hard problems, e.g., minimum maximal matching, maximum independent set, Hamiltonian completion.

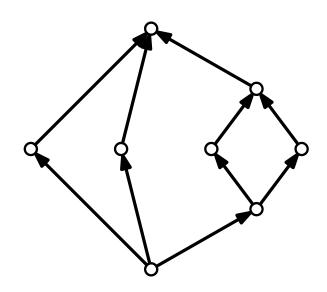
Series-Parallel Graphs – Drawing Style

Drawing conventions

- Planarity
- Straight-line edges
- Upward

Drawing aesthetics to optimize

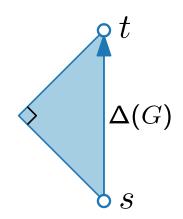
- Area
- Symmetry



Series-Parallel Graphs – Straight-Line Drawings

Divide & conquer algorithm using the decomposition tree

Invariant: draw G inside a right-angled isosceles bounding triangle $\Delta(G)$ with s at the bottom and t at the top



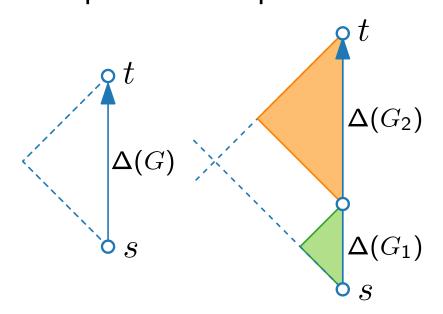
Base case: Q-nodes

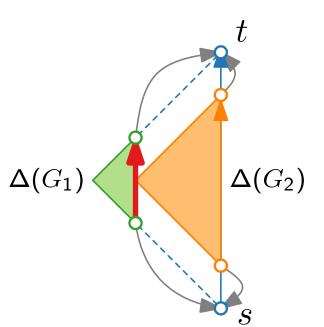
Divide: Draw G_1 and G_2 first

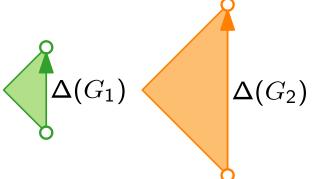
Conquer:

S-nodes: series compositions

P-nodes: parallel compositions







Do you see any problem? single edge

change embedding!

Series-Parallel Graphs – Straight-Line Drawings

Divide & conquer algorithm using the decomposition tree

Invariant: draw G inside a right-angled isosceles bounding triangle $\Delta(G)$ with s at the bottom and t at the top

 $\Delta(G)$

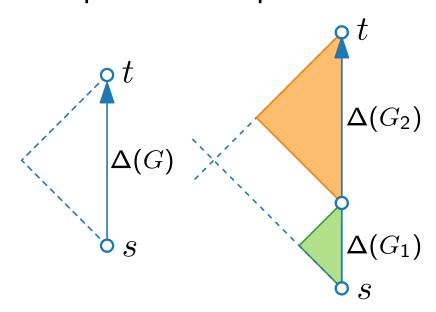
Base case: Q-nodes

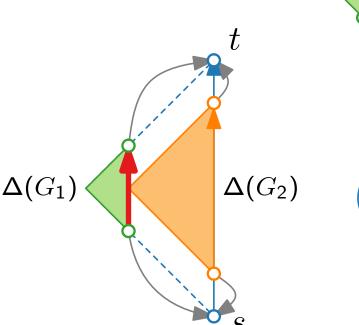
Divide: Draw G_1 and G_2 first

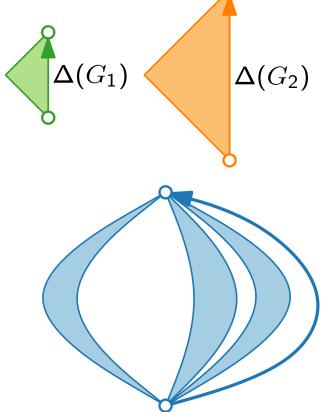
Conquer:

S-nodes: series compositions

P-nodes: parallel compositions

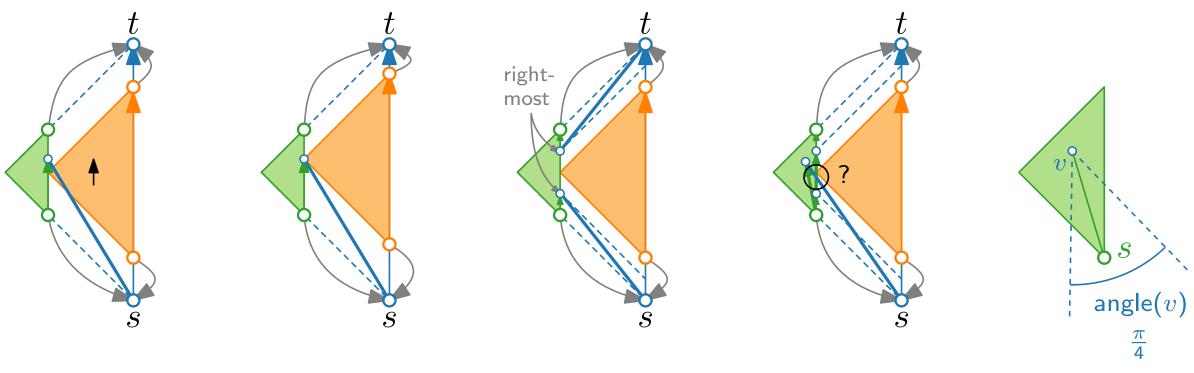






Series-Parallel Graphs – Straight-Line Drawings

What makes parallel composition possible without creating crossings?



■ This condition **is** preserved during the induction step.

Assume the following holds: the only vertex in angle(v) is s

Lemma.

The drawing produced by the algorithm is planar.

Series-Parallel Graphs – Result

Theorem.

Let G be a series-parallel graph. Then G (with **variable embedding**) admits a drawing Γ that

- is upward planar,
- is straight-line, and
- uses quadratic area.
- Isomorphic components of G have congruent drawings up to translation.

Γ can be computed in linear time.

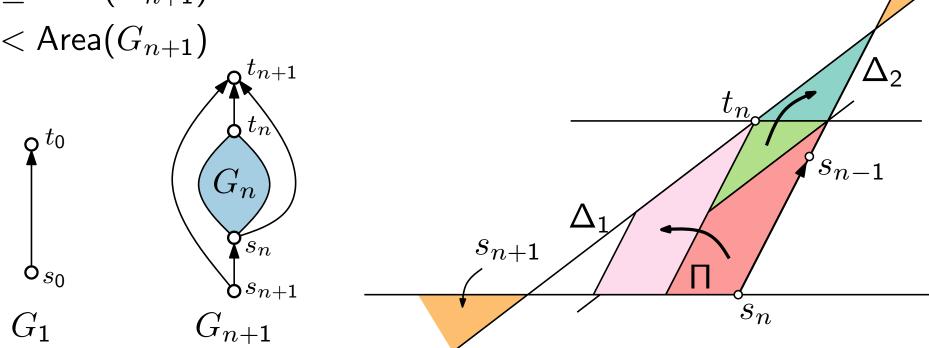
Series-Parallel Graphs – Fixed Embedding

Theorem.

[Bertolazzi, Di Battista, Mannino, Tamassia '94]

For any $n \ge 1$, there exists a 2n-vertex series-parallel graph G_n in an embedding such that any upward planar straight-line drawing of G_n that respects the given embedding requires $\Omega(4^n)$ area.

- lacksquare 2 · Area (G_n) < Area (Π)
- lacksquare 2 · Area (Π) \leq Area (G_{n+1})
- $\Rightarrow 4 \cdot Area(G_n) < Area(G_{n+1})$



Discussion

There exist fixed-parameter (FPT) algorithms to test upward planarity of general digraphs with the parameter being the number of triconnected components.

[Healy, Lynch 2005, Didimo et al. 2009]

- Finding a consistent assignment (Theorem 2) can be sped up to $\mathcal{O}(n+r^{1.5})$, where r=# sources. [Abbasi, Healy, Rextin 2010]
- Many related concepts have been studied: upward drawings of mixed graphs, upward drawings with layers for the vertices, upward planarity on cylinder/torus, ...

Literature

- See [GD Ch. 6] for detailed explanation on upward planarity.
- See [GD Ch. 3] for divide and conquer methods of series-parallel graphs

Orginal papers referenced:

- [Kelly '87] Fundamentals of Planar Ordered Sets
- [Di Battista & Tamassia '88] Algorithms for Plane Representations of Acyclic Digraphs
- [Garg &Tamassia '95]
 On the Computational Complexity of Upward and Rectilinear Planarity Testing
- [Hutton & Lubiw '96] Upward Planar Drawing of Single-Source Acyclic Digraphs
- [Bertolazzi, Di Battista, Mannino, Tamassia '94]
 Upward Drawings of Triconnected Digraphs
- [Healy & Lynch '05] Building Blocks of Upward Planar Digraphs
- [Didimo, Giordano, Liotta '09] Upward Spirality and Upward Planarity Testing
- [Abbasi, Healy, Rextin '10]
 Improving the running time of embedded upward planarity testing