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Planar Straight-Line Drawings

Every n-vertex planar graph has a planar straight-line
drawing of size (2n — 4) x (n — 2).

Theorem. [Schnyder "90]
Every n-vertex planar graph has a planar straight line

drawing of size D*@(Zn — (2n — 5).

Idea. (eaS|er to show)

B Fix outer triangle.
B Compute coordinates of inner vertices
— based on outer triangle and
— how much space there should be for other vertices

— using weighted barycentric coordinates.
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Let f: v — (v1,v2,03) be a barycentric representation of a J C
planar graph G, and let A, B, (' € R? be in general position.

Then the mapping
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Let f: v — (v1,v2,03) be a barycentric representation of a J
planar graph G, and let A, B, (' € R? be in general position.

Then the mapping
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Let f: v — (v1,v2,03) be a barycentric representation of a J
planar graph G, and let A, B, (' € R? be in general position.

Then the mapping

4
/U o
24

d:veV v A+ B+ 03¢ 7 /
yields a planar straight-line drawing of G inside AABC' u/cv\\\
A7 B

o How to find a
= {i,7} N{k, 1} =10 barycentric
w.lo.g. 1 =7 =2 = uj, v, > uy, v, = separated by a straight line  representation?
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Let f: v — (v1,v2,v3) be a barycentric representation of a planar
triangulation G, and let A, B, C' € R? be in general position.

z
We can label each angle in each triangle Azyz uniquely 3
with k € {1,2,3}. o 1 5
A Schnyder labeling of a plane triangulation G is a labeling of all 7y
internal angles with labels 1, 2, and 3 such that:

Faces: The three angles of an internal face are labeled 1, 2, and 3 AL[ 1

in counterclockwise (ccw) order. 2

Vertices: The ccw order of labels around each vertex consists of 73

B a non-empty interval of Is,
m followed by a non-empty interval of 2s,

B followed by a non-empty interval of 3s.
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Schnyder Wood

A Schnyder labeling induces an edge labeling.

A Schnyder wood (or Schnyder realizer) of a plane

triangulation G is a partition of the inner edges of G 3
into three sets of oriented edges 17, 1>, 15 such that, 1 >
for each inner vertex v of (G, it holds that 2

B v has one outgoing edge in each of 711, 15, and 75.

B The ccw order of edges around v is:
leaving in 17, entering in 13, leaving in 15,
entering in 11, leaving in 13, entering in 15.
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B All inner edges incident to a, b, and ¢
are incoming in the same set (color).
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Schnyder Wood — Example and Properties

B All inner edges incident to a, b, and ¢
are incoming in the same set (color).

m /i, I>, and 753 are trees.
Each spans all inner vertices and one
outer vertex (its root).

A1
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T3 »/2233
T
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Schnyder Wood — Existence

Lemma. [Kampen 1976]
Let G be a plane triangulation with vertices a, b, ¢ on the outer face.
Then there exists a contractible edge {a,z} in G with x & {b, c}.

Theorem.
Every plane triangulation has a Schnyder labeling and a Schnyder wood.

Proof by induction on # vertices via edge contractions.

... requires that a and = have exactly two common neighbors.

This constructive
proof yields an
algorithm for
computing a
Schnyder labeling.
It can be imple-
mented to run in
O(n) time.

— Exercise @
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Weak Barycentric Representation

A weak barycentric representation of a graph G is an interior
assignment of barycentric coordinates to V(G): of triangle

forbidden
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Weak Barycentric Representation

A weak barycentric representation of a graph GG is an interior
assignment of barycentric coordinates to V(G): of triangle
_ 3 forbidden
f:V(G) = Ry, v (v1,v2,03) y
with the following properties: T
(W1) v1 + v +v3 =1 forall v € V(G), / & \
(W2) for each {x,y} € E(G) and each z € V(G) \ {x,y}, A /N B

there exists a k € {1,2,3} with

(k> Tha1) <iex (28, 2k+1) and (Yk, Yrt1) <iex (2K, 2k+1)- i.e., either yx < zx or

Yr = 2k and yr41 < Zg41
Lemma. A\ /
For a weak barycentric representation f: v — (v1, v2,v3) and o
a triangle AABC', the mapping ¢: V(G) — R3 with ndices modulo 3
v—= v A+ v B+ vC
yields a planar drawing of GG inside AABC'.

13-11



Weak Barycentric Representation

A weak barycentric representation of a graph G is an interior
assignment of barycentric coordinates to V(G): of triangle
_ 3 forbidden
f:V(G) = Ry, v (v1,v2,03) y
with the following properties: T
(W1) v1 + v +v3 =1 forall v € V(G), / & \
(W2) for each {x,y} € E(G) and each z € V(G) \ {x,y}, A /N B

there exists a k € {1,2,3} with

(k> Tha1) <iex (28, 2k+1) and (Yk, Yrt1) <iex (2K, 2k+1)- i.e., either yx < zx or

Yr = 2k and yr41 < Zg41
Lemma. A\ /A
For a weak barycentric representation f: v — (v1, v2,v3) and o
a triangle AABC', the mapping ¢: V(G) — R3 with ndices modulo 3
v—= v A+ v B+ vC

; . . Proof. — Exercise!
yields a planar drawing of GG inside AABC'.

13-12



Counting Vertices

14 -



Counting Vertices

14 -

P;(v): unique path from v to root of T;

Ri(v): subgrap
Ry (v): subgrap
Rs(v): subgrap

N
N

N

pouna
pouNda

pouNa

ed
ed
ed

by (P> (v), be, P3(v))

)
DY <P3(U)7 ca, Pl(v»
y (P1(v), ab, P>(v))



14 -

Counting Vertices

P;(v): unique path from v to root of T;

Ri(v): subgraph bounded by (F»(v), be, P5(v))
. R>(v): subgraph bounded by (Ps(v), ca, P1(v))
3(V) R3(v): subgraph bounded by (P;(v),ab, P>(v))
) vi = [V(Ri(v))] = [V(Pia(v))]
R(v) r )
Pi(v) A5 R (v)
P2 U
Ra(o) (v)




14 -

Counting Vertices

P;(v): unique path from v to root of T;

R1(v): subgraph bounded by (P> (v), be, P3(v))
Ry(v): subgraph bounded by (/3(v), ca, P (v))
Ps(v). R3(v): subgraph bounded by (P (v), ab, P>(v))
) vi = |[V(Ri(v))| = [V(FPi-1(v))
R2(U) ) Y V1 =
Py(v) A~ Ry (v)
PQ(U)
R3(v)




14 -

Counting Vertices

P;(v): unique path from v to root of T;

R1(v): subgraph bounded by (P> (v), be, P3(v))

R>(v): subgraph bounded by (Ps(v), ca, P1(v))

Ps(v). R3(v): subgraph bounded by (P (v), ab, P>(v))

) vi = [V(Ri(v))| = [V (Pie1(v))]
(@) (0] v]- —
(e
Py (v) Ry (v)
Pafw)




14 -

Counting Vertices

P;(v): unique path from v to root of T;

C
2 R1(v): subgraph bounded by (P> (v), be, P3(v))
R>(v): subgraph bounded by (Ps(v), ca, P1(v))
Ps(v). R3(v): subgraph bounded by (P (v), ab, P>(v))
) vi = |[V(Ri(v))| = [V(FPi-1(v))
3 \, U1 — 10—-3=7
Py(v) B Ry (v)
Pafw)




14 -

Counting Vertices

P;(v): unique path from v to root of T;

R1(v): subgraph bounded by (P> (v), be, P3(v))

Ry(v): subgraph bounded by (/3(v), ca, P (v))
o R3(v): subgraph bounded by (P (v),ab, P>(v))

vi = |[V(Ri(v))| = [V(FPi-1(v))

2 )\, U1 — 10-3=7

Uy =




14 -

Counting Vertices

P;(v): unique path from v to root of T;

R1(v): subgraph bounded by (P> (v), be, P3(v))

Ry(v): subgraph bounded by (/3(v), ca, P (v))
o R3(v): subgraph bounded by (P (v),ab, P>(v))

vi = |[V(Ri(v))| = [V(FPi-1(v))

3 )\ V1 — 10—3 =7
= 6-3=3




Counting Vertices

14 -

P;(v): unique path from v to root of T;

R1(v): subgraph bounded by (P> (v), be, P3(v))
R>(v): subgraph bounded by (Ps(v), ca, P1(v))
Ps(0)_ R3(v): subgraph bounded by (P (v), ab, P>(v))
) vi = [V(Ri(v))| = [V (Pie1(v))]
3 )\ U1 — 10—-3=7
Pi(v) va v, = 6—3=23
O o} © U3 —
PQ(?J)
R3(v)




Counting Vertices

14 - 10

P;(v): unique path from v to root of T;

R1(v): subgraph bounded by (P> (v), be, P3(v))
R>(v): subgraph bounded by (Ps(v), ca, P1(v))
Ps(0)_ R3(v): subgraph bounded by (P (v), ab, P>(v))
) vi = [V(Ri(v))| = [V (Pie1(v))]
2 )\, U1 — 10-3=7
Pi(v) va v, = 6—3=23
. o ° v3= 8—3=5
PQ(U)
R3(v)




Counting Vertices

14 - 11

P;(v): unique path from v to root of T;

Ri(v): subgrap
Rz( ): subgrap
( ): subgrap

N bounc
N bound

N bounc

ed
ed
ed

by (P2(v), be, P3(v))
by (P3(v), ca, P (v))

by (P (v), ab, P>(v))

V(Ri(v))] = [V(Pi1(v))]
U1 — 10—-3=7

Rl (U) vy = 6
U3 — 3
Lemma.

—3=3
—3=5

m For inner vertices u # v, it holds that
u € Ri(v) = (ui; uit1) <iex (vi,vit1).




Counting Vertices

14 - 12

P;(v): unique path from v to root of T;

Ri(v): subgrap
Rz( ): subgrap
( ): subgrap

N bounc
N bound

N bounc

ed
ed
ed

by (P2(v), be, P3(v))
by (P3(v), ca, P (v))

by (P (v), ab, P>(v))

V(Ri(v))] = [V(Piea(v))]

U1 — 10—-3=7

Rl(’U) Uy = b—3=3
o © U3 — 8 — 3 — 5
Lemma.
Py(w) m For inner vertices u # v, it holds that

(NS Ri(v) — (uiyuz’—l—l) <lex (Uz', Uz’+1)-




Counting Vertices

14 - 13

P;(v): unique path from v to root of T;

Ri(v): subgrap
Rz( ): subgrap
( ): subgrap

N bounc
N bound

N bounc

ed
ed
ed

by (P2(v), be, P3(v))
by (P3(v), ca, P (v))

by (P (v), ab, P>(v))

V(Ri(v))] = [V(Pi1(v))]
U1 — 10—-3=7

Rl (U) vy = 6
U3 — 3
Lemma.

—3=3
—3=5

m For inner vertices u # v, it holds that
u € Ri(v) = (ui; uit1) <iex (vi,vit1).




Counting Vertices

14 - 14

P;(v): unique path from v to root of T;

Ri(v): subgrap
Rz( ): subgrap
( ): subgrap

N bounc
N bound

N bounc

ed
ed
ed

by (P2(v), be, P3(v))
by (P3(v), ca, P (v))

by (P (v), ab, P>(v))

V(Ri(v))] = [V(Pi1(v))]
U1 — 10—-3=7

Rl (U) vy = 6
U3 — 3
Lemma.

—3=3
—3=5

m For inner vertices u # v, it holds that
u € Ri(v) = (ui; uit1) <iex (vi,vit1).




14 - 15

Counting Vertices

P;(v): unique path from v to root of T;

R1(v): subgraph bounded by (P> (v), be, P3(v))

Rz( ): subgraph bounded by (P5(v), ca, Pi(v))
Ps(0)_ ( ): subgraph bounded by (P (v), ab, P>(v))

u V(Ri(v))| = [V (Pi-1(v))]
vp= 10-3=7

= 6—-3=3

5 © 13 = 8—3=5

Lemma.

Por{w) m For inner vertices u # v, it holds that
u € Ri(v) = (ui, wit1) <iex (Vi) Vit1)-




14 - 16

Counting Vertices

P;(v): unique path from v to root of T;

R1(v): subgraph bounded by (P> (v), be, P3(v))
Ry(v): subgraph bounded by (/3(v), ca, P (v))
R3(v): subgraph bounded by (P (v),ab, P>(v))
vi = |[V(Ri(v))| = [V(FPi-1(v))

U1 — 10—-3=7

1= 6—3=3
U3 — 8—3=05
Lemma.

®m For inner vertices u # v, it holds that
u € Ri(v) = (ui; uir1) <iex (Vi) vit1).




Counting Vertices

14 - 17

P;(v): unique path from v to root of T;

Ri(v): subgrap
Rz( ): subgrap
( ): subgrap

N bounc
N bound

N bounc

ed
ed
ed

by (P2(v), be, P3(v))
by (P3(v), ca, P (v))

by (P (v), ab, P>(v))

V(Ri(v))] = [V(Pi1(v))]
U1 — 10—-3=7

Rl (U) vy = 6
U3 — 3
Lemma.

—3=3
—3=5

m For inner vertices u # v, it holds that
u € Ri(v) = (ui; uit1) <iex (vi,vit1).

b

B v -V TvU3=



Counting Vertices

14 - 18

P;(v): unique path from v to root of T;

Ri(v): subgrap
Rz( ): subgrap
( ): subgrap

N bounc
N bound

N bounc

ed
ed
ed

by (P2(v), be, P3(v))
by (P3(v), ca, P (v))

by (P (v), ab, P>(v))

V(Ri(v))] = [V(Pi1(v))]
U1 — 10—-3=7

Rl (U) vy = 6
U3 — 3
Lemma.

—3=3
—3=5

m For inner vertices u # v, it holds that
u € Ri(v) = (ui; uit1) <iex (vi,vit1).

b Bvit+twvw+uys=n—1



14 - 19

Counting Vertices

P;(v): unique path from v to root of T;

R1(v): subgraph bounded by (P> (v), be, P3(v))

Rz( ): subgraph bounded by (/5(v), ca, Pi(v))
( ): subgraph bounded by (P;(v), ab, P>(v))

= [V(Ri(v))]| = [V(Pi-1(v))]

U1 — 10—-3=7

Uy = b—3=3
U3 — 8—3=05
Lemma.

m For inner vertices u # v, it holds that
(NS Ri(v) — (uiyui—l—l) <lex (Uz', Uz’+1)-
a b .U1—|—7}2—|—U3:n—1




14 - 20

Counting Vertices

P;(v): unique path from v to root of T;

R1(v): subgraph bounded by (P> (v), be, P3(v))

Rz( ): subgraph bounded by (/5(v), ca, Pi(v))
( ): subgraph bounded by (P;(v), ab, P>(v))

= [V(Ri(v))]| = [V(Pi-1(v))]

U1 — 10—-3=7

Uy = b—3=3
U3 — 8—3=05
Lemma.

m For inner vertices u # v, it holds that
u € Ri(v) = (ui; uit1) <iex (vi,vit1).

az3 =0 b B v, +tuvwt+uvyz=n-—1




Schnyder Drawing*

Set A=(0,0), B=(n—1,0),and C = (0,n —1).

15



Schnyder Drawing™ — Example




Schnyder Drawing™ — Example




Schnyder Drawing™ — Example




16 - 4

Schnyder Drawing™ — Example
15 1.

10 |




16 -5

Schnyder Drawing™ — Example
15 1.

10 |

n=106, n—-—2=14
f(a) = (14,1,0)



16-6

Schnyder Drawing™ — Example
15 1.

10 |

n=106, n—-—2=14
f(a) = (14,1,0)



Schnyder Drawing™ — Example

15
10 |
5 n=106 n—-2=14
§ fla) = (14,1,0)
= f(b) = (0,14,1)




Schnyder Drawing* — Example

n=16,n—2 =14
fla) = (14,1,0)
f(b) — (07 14, 1)
f(c) =(1,0,14)




Schnyder Drawing* — Example

n=16 n—-2=14 f(v3)=(7,7,1)
f(a) = (14,1,0)
f(b) =(0,14,1)
f(c) =(1,0,14)




Schnyder Drawing* — Example

n=16 n—-2=14 f(v3)=(7,7,1)
f(a) — (147 1, O) f(’U4) — (67 7 2)
f(b) — (07 14, 1)
f(c) =(1,0,14)




Schnyder Drawing* — Example

n=16n—-2=14 f(v3)=(7,7,1)
fla)=(14,1,0)  f(va) =(6,7,2)
f(b) = (0,14,1) fvs) = (2,10,3)
f(c) =(1,0,14)




Schnyder Drawing* — Example

n=16n—-2=14 f(v3)=(7,7,1)
fla)=(14,1,0)  f(va) =(6,7,2)
f(b) = (0,14,1) fvs) = (2,10,3)
f(c) =(1,0,14) :




Schnyder Drawing* — Example

n=16n—-2=14 f(v3)=(7,7,1)
fla)=(14,1,0)  f(va) =(6,7,2)
f(b) = (0,14,1) fvs) = (2,10,3)
f(c) =(1,0,14) :




Schnyder Drawing* — Example

n=16n—-2=14 f(v3)=(7,7,1)
fla)=(14,1,0)  f(va) =(6,7,2)
f(b) = (0,14,1) fvs) = (2,10,3)
f(c) =(1,0,14) :




Schnyder Drawing* — Example

n=16n—-2=14 f(v3)=(7,7,1)
fla)=(14,1,0)  f(va) =(6,7,2)
f(b) = (0,14,1) fvs) = (2,10,3)
f(c) =(1,0,14) :




Schnyder Drawing* — Example

n=16n—-2=14 f(v3)=(7,7,1)
fla)=(14,1,0)  f(va) =(6,7,2)
f(b) = (0,14,1) fvs) = (2,10,3)
f(c) =(1,0,14) :




Schnyder Drawing* — Example

n=16n—-2=14 f(v3)=(7,7,1)
fla)=(14,1,0)  f(va) =(6,7,2)
f(b) = (0,14,1) fvs) = (2,10,3)
f(c) =(1,0,14) :




Schnyder Drawing* — Example

n=16n—-2=14 f(v3)=(7,7,1)
fla)=(14,1,0)  f(va) =(6,7,2)
f(b) = (0,14,1) fvs) = (2,10,3)
f(c) =(1,0,14) :




Schnyder Drawing* — Example

n=16n—-2=14 f(v3)=(7,7,1)
fla)=(14,1,0)  f(va) =(6,7,2)
f(b) = (0,14,1) fvs) = (2,10,3)
f(c) =(1,0,14) :




Schnyder Drawing* — Example

a = vy b = vo
n=16n—-2=14 f(vs)=(7,7,1)
fla) =(14,1,0)  f(va) =(6,7,2)

f(b) = (0,14,1) fvs) = (2,10,3)
f(c) = (1,0,14) '




Schnyder Drawing* — Example

a = vy b = vo
n=16n—-2=14 f(vs)=(7,7,1)
fla) =(14,1,0)  f(va) =(6,7,2)

f(b) = (0,14,1) fvs) = (2,10,3)
f(c) = (1,0,14) '



Schnyder Drawing* — Example

15
c
10
a = v b=,
2 n=16,n—-2=14 f(v3)=(7,7,1)
f(a) = (14,1,0) f(va) = (6,7,2)

f(b) =(0,14,1) f(vs) = (2,10,3)
0 a 5 10 15 f(c) =(1,0,14) '



Results & Variations

Theorem. [De Fraysseix, Pach, Pollack '90]
Every n-vertex planar graph has a planar straight-line drawing of size
(2n — 4) x (n — 2). Such a drawing can be computed in O(n) time.

Theorem. [Schnyder "90]
Every n-vertex planar graph has a planar straight-line drawing of size
(n — 2) x (n — 2). Such a drawing can be computed in O(n) time.
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Theorem. [Brandenburg '08]
Every n-vertex planar graph has a planar straight-line drawing of size
4n /3 x 2n/3. Such a drawing can be computed in O(n) time.

Theorem. [Dolev, Leighton, Trickey '84]
There exist n-vertex plane graphs such that any planar straight-line
drawing of them has an area of at least (2n/3 — 1) x (2n/3 — 1).
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Theorem. [Dolev, Leighton, Trickey '84]
There exist n-vertex plane graphs such that any planar straight-line
drawing of them has an area of at least (2n/3 — 1) x (2n/3 — 1).

[Frati, Patrignani '07]  Area at least n?/9 + Q(n) in the variable-embedding setting.
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Results & Variations

Theorem. [Kant '96]
Every n-vertex 3-connected planar graph has a planar straight-line drawing
of size (2n — 4) x (n — 2) where all faces are drawn convex.

Such a drawing can be computed in O(n) time.

Theorem. [Chrobak & Kant '97]
Every n-vertex 3-connected planar graph has a planar straight-line drawing
of size (n — 2) x (n — 2) where all faces are drawn convex.

Such a drawing can be computed in O(n) time.

Theorem. [Felsner '01]
Every 3-connected planar graph with f faces has a planar straight-line
drawing of size (f — 1) x (f — 1) where all faces are drawn convex.

Such a drawing can be computed in O(n) time.
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| iterature

B [PGD Ch. 4.3] for detailed explanation of Schnyder woods etc.

B [Sch90] “Embedding planar graphs on the grid”, Walter Schnyder, SoCG 1990 —
original paper on Schnyder realizer method.
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