

Visualization of Graphs

Lecture 4:

Straight-Line Drawings of Planar Graphs II:

Schnyder Woods

Johannes Zink

Summer semester 2024

Theorem.

[De Fraysseix, Pach, Pollack '90]

Every n-vertex planar graph has a planar straight-line drawing of size $(2n-4)\times(n-2)$.

Theorem.

[Schnyder '90]

Every n-vertex planar graph has a planar straight-line drawing of size $(n-2) \times (n-2)$.

Theorem.

[De Fraysseix, Pach, Pollack '90]

Every n-vertex planar graph has a planar straight-line drawing of size $(2n-4)\times(n-2)$.

Theorem.

[Schnyder '90]

Every n-vertex planar graph has a planar straight-line drawing of size $(n-2) \times (n-2)$.

Theorem.

[De Fraysseix, Pach, Pollack '90]

Every n-vertex planar graph has a planar straight-line drawing of size $(2n-4)\times(n-2)$.

Theorem.

[Schnyder '90]

Every n-vertex planar graph has a planar straight-line drawing of size $(n-2) \times (n-2)$.

Idea.

Fix outer triangle.

Theorem.

[De Fraysseix, Pach, Pollack '90]

Every n-vertex planar graph has a planar straight-line drawing of size $(2n-4)\times(n-2)$.

Theorem.

[Schnyder '90]

Every n-vertex planar graph has a planar straight-line drawing of size $(n-2) \times (n-2)$.

Idea.

- Fix outer triangle.
- Compute coordinates of inner vertices
 - based on outer triangle and

Theorem.

[De Fraysseix, Pach, Pollack '90]

Every n-vertex planar graph has a planar straight-line drawing of size $(2n-4)\times(n-2)$.

Theorem.

[Schnyder '90]

Every n-vertex planar graph has a planar straight-line drawing of size $(n-2) \times (n-2)$.

Idea.

- Fix outer triangle.
- Compute coordinates of inner vertices
 - based on outer triangle and
 - how much space there should be for other vertices

Theorem.

[De Fraysseix, Pach, Pollack '90]

Every n-vertex planar graph has a planar straight-line drawing of size $(2n-4)\times(n-2)$.

Theorem.

[Schnyder '90]

Every n-vertex planar graph has a planar straight-line drawing of size $(n-2) \times (n-2)$.

Idea.

- Fix outer triangle.
- Compute coordinates of inner vertices
 - based on outer triangle and
 - how much space there should be for other vertices
 - using weighted barycentric coordinates.

Theorem.

[De Fraysseix, Pach, Pollack '90]

Every n-vertex planar graph has a planar straight-line drawing of size $(2n-4)\times(n-2)$.

Theorem.

[Schnyder '90]

Every n-vertex planar graph has a planar straight-line drawing of size $(n-2)\times (n-2)$ $(2n-5)\times (2n-5)$.

Idea.

(easier to show)

- Fix outer triangle.
- Compute coordinates of inner vertices
 - based on outer triangle and
 - how much space there should be for other vertices
 - using weighted barycentric coordinates.

Recall: barycenter $(x_1, \ldots, x_k) = \sum_{i=1}^k x_i/k$

Recall: barycenter $(x_1, \ldots, x_k) = \sum_{i=1}^k x_i/k$

Let A, B, C form a triangle, and let x lie in $\triangle ABC$.

Recall: barycenter $(x_1, \ldots, x_k) = \sum_{i=1}^k x_i/k$

Let A, B, C form a triangle, and let x lie in $\triangle ABC$.

Recall: barycenter $(x_1, \ldots, x_k) = \sum_{i=1}^k x_i/k$

- $\alpha + \beta + \gamma = 1$ and

Recall: barycenter $(x_1, \ldots, x_k) = \sum_{i=1}^k x_i/k$

- $\alpha + \beta + \gamma = 1$ and

Recall: barycenter $(x_1, \ldots, x_k) = \sum_{i=1}^k x_i/k$

- $\alpha + \beta + \gamma = 1$ and

Recall: barycenter $(x_1, \ldots, x_k) = \sum_{i=1}^k x_i/k$

- $\alpha + \beta + \gamma = 1$ and

Recall: barycenter $(x_1, \ldots, x_k) = \sum_{i=1}^k x_i/k$

- $\alpha + \beta + \gamma = 1$ and

Recall: barycenter $(x_1, \ldots, x_k) = \sum_{i=1}^k x_i/k$

- $\alpha + \beta + \gamma = 1$ and

Recall: barycenter $(x_1, \ldots, x_k) = \sum_{i=1}^k x_i/k$

- $\alpha + \beta + \gamma = 1$ and

Recall: barycenter $(x_1, \ldots, x_k) = \sum_{i=1}^k x_i/k$

- $\alpha + \beta + \gamma = 1$ and
- $x = \alpha A + \beta B + \gamma C$.

Recall: barycenter $(x_1, \ldots, x_k) = \sum_{i=1}^k x_i/k$

- $\alpha + \beta + \gamma = 1$ and
- $x = \alpha A + \beta B + \gamma C$.

A **barycentric representation** of a graph G is an assignment of barycentric coordinates to the vertices of G:

$$f: V(G) \to \mathbb{R}^3_{\geq 0}, \ v \mapsto (v_1, v_2, v_3)$$

with the following properties:

A **barycentric representation** of a graph G is an assignment of barycentric coordinates to the vertices of G:

$$f: V(G) \to \mathbb{R}^3_{\geq 0}, \ v \mapsto (v_1, v_2, v_3)$$

with the following properties:

(B1)
$$v_1 + v_2 + v_3 = 1$$
 for all $v \in V(G)$,

A **barycentric representation** of a graph G is an assignment of barycentric coordinates to the vertices of G:

$$f: V(G) \to \mathbb{R}^3_{\geq 0}, \ v \mapsto (v_1, v_2, v_3)$$

with the following properties:

(B1)
$$v_1 + v_2 + v_3 = 1$$
 for all $v \in V(G)$,

(B2) for each $\{x,y\} \in E(G)$ and each $z \in V(G) \setminus \{x,y\}$,

A **barycentric representation** of a graph G is an assignment of barycentric coordinates to the vertices of G:

$$f: V(G) \to \mathbb{R}^3_{\geq 0}, \ v \mapsto (v_1, v_2, v_3)$$

with the following properties:

(B1)
$$v_1 + v_2 + v_3 = 1$$
 for all $v \in V(G)$,

A **barycentric representation** of a graph G is an assignment of barycentric coordinates to the vertices of G:

$$f: V(G) \to \mathbb{R}^3_{\geq 0}, \ v \mapsto (v_1, v_2, v_3)$$

with the following properties:

(B1)
$$v_1 + v_2 + v_3 = 1$$
 for all $v \in V(G)$,

A **barycentric representation** of a graph G is an assignment of barycentric coordinates to the vertices of G:

$$f: V(G) \to \mathbb{R}^3_{\geq 0}, \ v \mapsto (v_1, v_2, v_3)$$

with the following properties:

(B1)
$$v_1 + v_2 + v_3 = 1$$
 for all $v \in V(G)$,

A barycentric representation of a graph G is an assignment of barycentric coordinates to the vertices of G:

$$f: V(G) \to \mathbb{R}^3_{\geq 0}, \ v \mapsto (v_1, v_2, v_3)$$

with the following properties:

(B1)
$$v_1 + v_2 + v_3 = 1$$
 for all $v \in V(G)$,

A **barycentric representation** of a graph G is an assignment of barycentric coordinates to the vertices of G:

$$f: V(G) \to \mathbb{R}^3_{\geq 0}, \ v \mapsto (v_1, v_2, v_3)$$

with the following properties:

(B1)
$$v_1 + v_2 + v_3 = 1$$
 for all $v \in V(G)$,

Lemma.

Let $f: v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph G, and let $A, B, C \in \mathbb{R}^2$ be in general position.

Lemma.

Let $f: v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph G, and let $A, B, C \in \mathbb{R}^2$ be in general position.

Lemma.

Let $f: v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph G, and let $A, B, C \in \mathbb{R}^2$ be in general position. Then the mapping

$$\phi \colon v \in V \mapsto v_1 A + v_2 B + v_3 C$$

Lemma.

Let $f: v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph G, and let $A, B, C \in \mathbb{R}^2$ be in general position. Then the mapping

$$\phi \colon v \in V \mapsto v_1 A + v_2 B + v_3 C$$

yields a planar straight-line drawing of G inside $\triangle ABC$.

■ No vertex x can lie on an edge $\{u, v\}$.

Lemma.

Let $f: v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph G, and let $A, B, C \in \mathbb{R}^2$ be in general position. Then the mapping

$$\phi \colon v \in V \mapsto v_1 A + v_2 B + v_3 C$$

yields a planar straight-line drawing of G inside $\triangle ABC$.

No vertex x can lie on an edge $\{u,v\}$. (Obvious by definition.)

Lemma.

Let $f: v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph G, and let $A, B, C \in \mathbb{R}^2$ be in general position. Then the mapping

$$\phi \colon v \in V \mapsto v_1 A + v_2 B + v_3 C$$

- lacksquare No vertex x can lie on an edge $\{u,v\}$. (Obvious by definition.)
- No pair of edges $\{u, v\}$ and $\{u', v'\}$ crosses:

Lemma.

Let $f: v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph G, and let $A, B, C \in \mathbb{R}^2$ be in general position. Then the mapping

$$\phi \colon v \in V \mapsto v_1 A + v_2 B + v_3 C$$

- No vertex x can lie on an edge $\{u,v\}$. (Obvious by definition.)
- No pair of edges $\{u, v\}$ and $\{u', v'\}$ crosses:

Lemma.

Let $f: v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph G, and let $A, B, C \in \mathbb{R}^2$ be in general position. Then the mapping

$$\phi \colon v \in V \mapsto v_1 A + v_2 B + v_3 C$$

- No vertex x can lie on an edge $\{u,v\}$. (Obvious by definition.)
- No pair of edges $\{u, v\}$ and $\{u', v'\}$ crosses:

Lemma.

Let $f: v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph G, and let $A, B, C \in \mathbb{R}^2$ be in general position. Then the mapping

$$\phi \colon v \in V \mapsto v_1 A + v_2 B + v_3 C$$

yields a planar straight-line drawing of G inside $\triangle ABC$.

- No vertex x can lie on an edge $\{u,v\}$. (Obvious by definition.)
- No pair of edges $\{u, v\}$ and $\{u', v'\}$ crosses:

$$u'_i > u_i, v_i, \quad v'_j > u_j, v_j, \quad u_k > u'_k, v'_k, \quad v_l > u'_l, v'_l$$

Lemma.

Let $f: v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph G, and let $A, B, C \in \mathbb{R}^2$ be in general position. Then the mapping

$$\phi \colon v \in V \mapsto v_1 A + v_2 B + v_3 C$$

yields a planar straight-line drawing of G inside $\triangle ABC$.

- No vertex x can lie on an edge $\{u,v\}$. (Obvious by definition.)
- No pair of edges $\{u, v\}$ and $\{u', v'\}$ crosses:

$$u'_{i} > u_{i}, v_{i}, \quad v'_{j} > u_{j}, v_{j}, \quad u_{k} > u'_{k}, v'_{k}, \quad v_{l} > u'_{l}, v'_{l}$$

$$\Rightarrow \{i, j\} \cap \{k, l\} = \emptyset$$

Lemma.

Let $f: v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph G, and let $A, B, C \in \mathbb{R}^2$ be in general position. Then the mapping

$$\phi \colon v \in V \mapsto v_1 A + v_2 B + v_3 C$$

yields a planar straight-line drawing of G inside $\triangle ABC$.

- No vertex x can lie on an edge $\{u,v\}$. (Obvious by definition.)
- No pair of edges $\{u,v\}$ and $\{u',v'\}$ crosses:

$$u_i' > u_i, v_i, \quad v_j' > u_j, v_j, \quad u_k > u_k', v_k', \quad v_l > u_l', v_l'$$

$$\Rightarrow \{i, j\} \cap \{k, l\} = \emptyset$$
w.l.o.g. $i = j = 2 \Rightarrow u_2', v_2' > u_2, v_2$

Lemma.

Let $f: v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph G, and let $A, B, C \in \mathbb{R}^2$ be in general position. Then the mapping

$$\phi \colon v \in V \mapsto v_1 A + v_2 B + v_3 C$$

yields a planar straight-line drawing of G inside $\triangle ABC$.

- No vertex x can lie on an edge $\{u,v\}$. (Obvious by definition.)
- No pair of edges $\{u, v\}$ and $\{u', v'\}$ crosses:

$$u'_{i} > u_{i}, v_{i}, \quad v'_{j} > u_{j}, v_{j}, \quad u_{k} > u'_{k}, v'_{k}, \quad v_{l} > u'_{l}, v'_{l}$$

$$\Rightarrow \{i, j\} \cap \{k, l\} = \emptyset$$

w.l.o.g. $i = j = 2 \Rightarrow u'_2, v'_2 > u_2, v_2 \Rightarrow$ separated by a straight line

Lemma.

Let $f: v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph G, and let $A, B, C \in \mathbb{R}^2$ be in general position. Then the mapping

$$\phi \colon v \in V \mapsto v_1 A + v_2 B + v_3 C$$

yields a planar straight-line drawing of G inside $\triangle ABC$.

- No vertex x can lie on an edge $\{u,v\}$. (Obvious by definition.)
- No pair of edges $\{u, v\}$ and $\{u', v'\}$ crosses:

$$u'_{i} > u_{i}, v_{i}, \quad v'_{j} > u_{j}, v_{j}, \quad u_{k} > u'_{k}, v'_{k}, \quad v_{l} > u'_{l}, v'_{l}$$

$$\Rightarrow \{i, j\} \cap \{k, l\} = \emptyset$$

w.l.o.g. $i = j = 2 \Rightarrow u'_2, v'_2 > u_2, v_2 \Rightarrow$ separated by a straight line

How to find a barycentric representation?

 $y_2 > x_2, z_2$

Schnyder Labeling

 $z_3 > x_3, y_3$

Schnyder Labeling

Let $f: v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar triangulation G, and let $A, B, C \in \mathbb{R}^2$ be in general position. $x_1 > y_1, z_1$ $y_2 > x_2, z_2$

Let $f: v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar triangulation G, and let $A, B, C \in \mathbb{R}^2$ be in general position.

We can label each angle in each triangle $\triangle xyz$ uniquely with $k \in \{1, 2, 3\}$.

$$z_3 > x_3, y_3$$

Let $f: v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar triangulation G, and let $A, B, C \in \mathbb{R}^2$ be in general position.

We can label each angle in each triangle $\triangle xyz$ uniquely with $k \in \{1, 2, 3\}$.

A **Schnyder labeling** of a plane triangulation G is a labeling of all internal angles with labels 1, 2, and 3 such that:

Let $f: v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar triangulation G, and let $A, B, C \in \mathbb{R}^2$ be in general position.

We can label each angle in each triangle $\triangle xyz$ uniquely with $k \in \{1, 2, 3\}$.

A **Schnyder labeling** of a plane triangulation G is a labeling of all internal angles with labels 1, 2, and 3 such that:

Faces: The three angles of an internal face are labeled 1, 2, and 3 in counterclockwise (ccw) order.

Let $f: v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar triangulation G, and let $A, B, C \in \mathbb{R}^2$ be in general position.

We can label each angle in each triangle $\triangle xyz$ uniquely with $k \in \{1, 2, 3\}$.

A **Schnyder labeling** of a plane triangulation G is a labeling of all internal angles with labels 1, 2, and 3 such that:

Faces: The three angles of an internal face are labeled 1, 2, and 3 in counterclockwise (ccw) order.

Let $f: v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar triangulation G, and let $A, B, C \in \mathbb{R}^2$ be in general position.

We can label each angle in each triangle $\triangle xyz$ uniquely with $k \in \{1, 2, 3\}$.

A **Schnyder labeling** of a plane triangulation G is a labeling of all internal angles with labels 1, 2, and 3 such that:

Faces: The three angles of an internal face are labeled 1, 2, and 3 in counterclockwise (ccw) order.

Vertices: The ccw order of labels around each vertex consists of

Let $f: v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar triangulation G, and let $A, B, C \in \mathbb{R}^2$ be in general position.

We can label each angle in each triangle $\triangle xyz$ uniquely with $k \in \{1, 2, 3\}$.

A **Schnyder labeling** of a plane triangulation G is a labeling of all internal angles with labels 1, 2, and 3 such that:

Faces: The three angles of an internal face are labeled 1, 2, and 3 in counterclockwise (ccw) order.

Vertices: The ccw order of labels around each vertex consists of

a non-empty interval of 1s,

Let $f: v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar triangulation G, and let $A, B, C \in \mathbb{R}^2$ be in general position.

We can label each angle in each triangle $\triangle xyz$ uniquely with $k \in \{1, 2, 3\}$.

A **Schnyder labeling** of a plane triangulation G is a labeling of all internal angles with labels 1, 2, and 3 such that:

Faces: The three angles of an internal face are labeled 1, 2, and 3 in counterclockwise (ccw) order.

Vertices: The ccw order of labels around each vertex consists of

- a non-empty interval of 1s,
- followed by a non-empty interval of 2s,

Let $f: v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar triangulation G, and let $A, B, C \in \mathbb{R}^2$ be in general position.

We can label each angle in each triangle $\triangle xyz$ uniquely with $k \in \{1, 2, 3\}$.

A **Schnyder labeling** of a plane triangulation G is a labeling of all internal angles with labels 1, 2, and 3 such that:

Faces: The three angles of an internal face are labeled 1, 2, and 3 in counterclockwise (ccw) order.

Vertices: The ccw order of labels around each vertex consists of

- a non-empty interval of 1s,
- followed by a non-empty interval of 2s,
- followed by a non-empty interval of 3s.

A Schnyder labeling induces an edge labeling.

A Schnyder labeling induces an edge labeling.

A Schnyder wood (or Schnyder realizer) of a plane triangulation G is a partition of the inner edges of G into three sets of oriented edges T_1 , T_2 , T_3 such that, for each inner vertex v of G, it holds that

■ v has one outgoing edge in each of T_1 , T_2 , and T_3 .

A Schnyder labeling induces an edge labeling.

- v has one outgoing edge in each of T_1 , T_2 , and T_3 .
- \blacksquare The ccw order of edges around v is:

A Schnyder labeling induces an edge labeling.

- v has one outgoing edge in each of T_1 , T_2 , and T_3 .
- The ccw order of edges around v is: leaving in T_1 , entering in T_3 ,

A Schnyder labeling induces an edge labeling.

- v has one outgoing edge in each of T_1 , T_2 , and T_3 .
- The ccw order of edges around v is: leaving in T_1 , entering in T_3 , leaving in T_2 , entering in T_1 ,

A Schnyder labeling induces an edge labeling.

- v has one outgoing edge in each of T_1 , T_2 , and T_3 .
- The ccw order of edges around v is: leaving in T_1 , entering in T_3 , leaving in T_2 , entering in T_1 , leaving in T_3 , entering in T_2 .

Schnyder Wood – Example and Properties

Schnyder Wood – Example and Properties

All inner edges incident to a, b, and c are incoming in the same set (color).

Schnyder Wood – Example and Properties

- All inner edges incident to a, b, and c are incoming in the same set (color).
- T_1 , T_2 , and T_3 are trees. Each spans all inner vertices and one outer vertex (its root).

 \dots requires that a and x have exactly two common neighbors.

Lemma.

[Kampen 1976]

Let G be a plane triangulation with vertices a, b, c on the outer face. Then there exists a **contractible edge** $\{a,x\}$ in G with $x \notin \{b,c\}$.

 \dots requires that a and x have exactly two common neighbors.

Lemma.

[Kampen 1976]

Let G be a plane triangulation with vertices a, b, c on the outer face. Then there exists a **contractible edge** $\{a,x\}$ in G with $x \notin \{b,c\}$.

Theorem.

Every plane triangulation has a Schnyder labeling and a Schnyder wood.

Lemma.

[Kampen 1976]

Let G be a plane triangulation with vertices a, b, c on the outer face. Then there exists a **contractible edge** $\{a,x\}$ in G with $x \notin \{b,c\}$.

Theorem.

Every plane triangulation has a Schnyder labeling and a Schnyder wood.

Proof by induction on # vertices via edge contractions.

Lemma.

[Kampen 1976]

Let G be a plane triangulation with vertices a, b, c on the outer face. Then there exists a **contractible edge** $\{a,x\}$ in G with $x \notin \{b,c\}$.

Theorem.

Every plane triangulation has a Schnyder labeling and a Schnyder wood.

Proof by induction on # vertices via edge contractions.

Lemma.

[Kampen 1976]

Let G be a plane triangulation with vertices a, b, c on the outer face. Then there exists a **contractible edge** $\{a,x\}$ in G with $x \notin \{b,c\}$.

Theorem.

Every plane triangulation has a Schnyder labeling and a Schnyder wood.

Proof by induction on # vertices via edge contractions.

Lemma.

[Kampen 1976]

Let G be a plane triangulation with vertices a, b, c on the outer face. Then there exists a **contractible edge** $\{a,x\}$ in G with $x \notin \{b,c\}$.

Theorem.

Every plane triangulation has a Schnyder labeling and a Schnyder wood.

Proof by induction on # vertices via edge contractions.

Lemma.

[Kampen 1976]

Let G be a plane triangulation with vertices a, b, c on the outer face. Then there exists a **contractible edge** $\{a,x\}$ in G with $x \notin \{b,c\}$.

Theorem.

Every plane triangulation has a Schnyder labeling and a Schnyder wood.

Proof by induction on # vertices via edge contractions.

Lemma.

[Kampen 1976]

Let G be a plane triangulation with vertices a, b, c on the outer face. Then there exists a **contractible edge** $\{a,x\}$ in G with $x \notin \{b,c\}$.

Theorem.

Every plane triangulation has a Schnyder labeling and a Schnyder wood.

Proof by induction on # vertices via edge contractions.

Lemma.

[Kampen 1976]

Let G be a plane triangulation with vertices a, b, c on the outer face. Then there exists a **contractible edge** $\{a,x\}$ in G with $x \notin \{b,c\}$.

Theorem.

Every plane triangulation has a Schnyder labeling and a Schnyder wood.

Proof by induction on # vertices via edge contractions.

Lemma.

[Kampen 1976]

Let G be a plane triangulation with vertices a, b, c on the outer face. Then there exists a **contractible edge** $\{a,x\}$ in G with $x \notin \{b,c\}$.

Theorem.

Every plane triangulation has a Schnyder labeling and a Schnyder wood.

Proof by induction on # vertices via edge contractions.

Lemma.

[Kampen 1976]

Let G be a plane triangulation with vertices a, b, c on the outer face. Then there exists a **contractible edge** $\{a,x\}$ in G with $x \notin \{b,c\}$.

Theorem.

Every plane triangulation has a Schnyder labeling and a Schnyder wood.

Proof by induction on # vertices via edge contractions.

 \dots requires that a and x have exactly two common neighbors.

This constructive proof yields an algorithm for computing a Schnyder labeling. It can be implemented to run in $\mathcal{O}(n)$ time.

 \rightarrow Exercise \bigcirc

lacktriangle From each vertex v there exists a unique

From each vertex v there exists a unique – directed red path $P_1(v)$ to a,

- lacktriangle From each vertex v there exists a unique
 - directed red path $P_1(v)$ to a,
 - directed blue path $P_2(v)$ to b, and

- lacktriangle From each vertex v there exists a unique
 - directed red path $P_1(v)$ to a,
 - directed blue path $P_2(v)$ to b, and
 - directed green path $P_3(v)$ to c.

- lacktriangle From each vertex v there exists a unique
 - directed red path $P_1(v)$ to a,
 - directed blue path $P_2(v)$ to b, and
 - directed green path $P_3(v)$ to c.

 $P_i(v)$: unique path from v to root of T_i

- \blacksquare From each vertex v there exists a unique
 - directed red path $P_1(v)$ to a,
 - directed blue path $P_2(v)$ to b, and
 - directed green path $P_3(v)$ to c.

 $P_i(v)$: unique path from v to root of T_i

Lemma.

- \blacksquare From each vertex v there exists a unique
 - directed red path $P_1(v)$ to a,
 - directed blue path $P_2(v)$ to b, and
 - directed green path $P_3(v)$ to c.

 $P_i(v)$: unique path from v to root of T_i

Lemma.

- \blacksquare From each vertex v there exists a unique
 - directed red path $P_1(v)$ to a,
 - directed blue path $P_2(v)$ to b, and
 - directed green path $P_3(v)$ to c.

 $P_i(v)$: unique path from v to root of T_i $R_1(v)$: set of faces bounded by $\langle P_2(v), bc, P_3(v) \rangle$

Lemma.

- \blacksquare From each vertex v there exists a unique
 - directed red path $P_1(v)$ to a,
 - directed blue path $P_2(v)$ to b, and
 - directed green path $P_3(v)$ to c.

 $P_i(v)$: unique path from v to root of T_i

 $R_1(v)$: set of faces bounded by $\langle P_2(v), bc, P_3(v) \rangle$

 $R_2(v)$: set of faces bounded by $\langle P_3(v), ca, P_1(v) \rangle$

Lemma.

- \blacksquare From each vertex v there exists a unique
 - directed red path $P_1(v)$ to a,
 - directed blue path $P_2(v)$ to b, and
 - directed green path $P_3(v)$ to c.

 $P_i(v)$: unique path from v to root of T_i

 $R_1(v)$: set of faces bounded by $\langle P_2(v), bc, P_3(v) \rangle$

 $R_2(v)$: set of faces bounded by $\langle P_3(v), ca, P_1(v) \rangle$

 $R_3(v)$: set of faces bounded by $\langle P_1(v), ab, P_2(v) \rangle$

Lemma.

- \blacksquare From each vertex v there exists a unique
 - directed red path $P_1(v)$ to a,
 - directed blue path $P_2(v)$ to b, and
 - directed green path $P_3(v)$ to c.

 $P_i(v)$: unique path from v to root of T_i

 $R_1(v)$: set of faces bounded by $\langle P_2(v), bc, P_3(v) \rangle$

 $R_2(v)$: set of faces bounded by $\langle P_3(v), ca, P_1(v) \rangle$

 $R_3(v)$: set of faces bounded by $\langle P_1(v), ab, P_2(v) \rangle$

- $\blacksquare P_1(v), P_2(v), P_3(v)$ cross only at v.
- For inner vertices $u \neq v$, it holds that $u \in R_i(v) \Rightarrow R_i(u) \subseteq R_i(v)$.

- \blacksquare From each vertex v there exists a unique
 - directed red path $P_1(v)$ to a,
 - directed blue path $P_2(v)$ to b, and
 - directed green path $P_3(v)$ to c.

 $P_i(v)$: unique path from v to root of T_i

 $R_1(v)$: set of faces bounded by $\langle P_2(v), bc, P_3(v) \rangle$

 $R_2(v)$: set of faces bounded by $\langle P_3(v), ca, P_1(v) \rangle$

 $R_3(v)$: set of faces bounded by $\langle P_1(v), ab, P_2(v) \rangle$

- $\blacksquare P_1(v), P_2(v), P_3(v)$ cross only at v.
- For inner vertices $u \neq v$, it holds that $u \in R_i(v) \Rightarrow R_i(u) \subsetneq R_i(v)$.

- \blacksquare From each vertex v there exists a unique
 - directed red path $P_1(v)$ to a,
 - directed blue path $P_2(v)$ to b, and
 - directed green path $P_3(v)$ to c.

 $P_i(v)$: unique path from v to root of T_i

 $R_1(v)$: set of faces bounded by $\langle P_2(v), bc, P_3(v) \rangle$

 $R_2(v)$: set of faces bounded by $\langle P_3(v), ca, P_1(v) \rangle$

 $R_3(v)$: set of faces bounded by $\langle P_1(v), ab, P_2(v) \rangle$

- $\blacksquare P_1(v), P_2(v), P_3(v)$ cross only at v.
- For inner vertices $u \neq v$, it holds that $u \in R_i(v) \Rightarrow R_i(u) \subseteq R_i(v)$.

- \blacksquare From each vertex v there exists a unique
 - directed red path $P_1(v)$ to a,
 - directed blue path $P_2(v)$ to b, and
 - directed green path $P_3(v)$ to c.

 $P_i(v)$: unique path from v to root of T_i

 $R_1(v)$: set of faces bounded by $\langle P_2(v), bc, P_3(v) \rangle$

 $R_2(v)$: set of faces bounded by $\langle P_3(v), ca, P_1(v) \rangle$

 $R_3(v)$: set of faces bounded by $\langle P_1(v), ab, P_2(v) \rangle$

- $\blacksquare P_1(v), P_2(v), P_3(v)$ cross only at v.
- For inner vertices $u \neq v$, it holds that $u \in R_i(v) \Rightarrow R_i(u) \subseteq R_i(v)$.

- \blacksquare From each vertex v there exists a unique
 - directed red path $P_1(v)$ to a,
 - directed blue path $P_2(v)$ to b, and
 - directed green path $P_3(v)$ to c.

 $P_i(v)$: unique path from v to root of T_i

 $R_1(v)$: set of faces bounded by $\langle P_2(v), bc, P_3(v) \rangle$

 $R_2(v)$: set of faces bounded by $\langle P_3(v), ca, P_1(v) \rangle$

 $R_3(v)$: set of faces bounded by $\langle P_1(v), ab, P_2(v) \rangle$

- $\blacksquare P_1(v), P_2(v), P_3(v)$ cross only at v.
- For inner vertices $u \neq v$, it holds that $u \in R_i(v) \Rightarrow R_i(u) \subsetneq R_i(v)$.
- $|R_1(v)| + |R_2(v)| + |R_3(v)| =$

Schnyder Wood – More Properties

- \blacksquare From each vertex v there exists a unique
 - directed red path $P_1(v)$ to a,
 - directed blue path $P_2(v)$ to b, and
 - directed green path $P_3(v)$ to c.

 $P_i(v)$: unique path from v to root of T_i

 $R_1(v)$: set of faces bounded by $\langle P_2(v), bc, P_3(v) \rangle$

 $R_2(v)$: set of faces bounded by $\langle P_3(v), ca, P_1(v) \rangle$

 $R_3(v)$: set of faces bounded by $\langle P_1(v), ab, P_2(v) \rangle$

Lemma.

- $\blacksquare P_1(v), P_2(v), P_3(v)$ cross only at v.
- For inner vertices $u \neq v$, it holds that $u \in R_i(v) \Rightarrow R_i(u) \subsetneq R_i(v)$.
- $|R_1(v)| + |R_2(v)| + |R_3(v)| = 2n 5$

Schnyder Wood – More Properties

- \blacksquare From each vertex v there exists a unique
 - directed red path $P_1(v)$ to a,
 - directed blue path $P_2(v)$ to b, and
 - directed green path $P_3(v)$ to c.

 $P_i(v)$: unique path from v to root of T_i

 $R_1(v)$: set of faces bounded by $\langle P_2(v), bc, P_3(v) \rangle$

 $R_2(v)$: set of faces bounded by $\langle P_3(v), ca, P_1(v) \rangle$

 $R_3(v)$: set of faces bounded by $\langle P_1(v), ab, P_2(v) \rangle$

Lemma.

- $\blacksquare P_1(v), P_2(v), P_3(v)$ cross only at v.
- For inner vertices $u \neq v$, it holds that $u \in R_i(v) \Rightarrow R_i(u) \subseteq R_i(v)$.
- $|R_1(v)| + |R_2(v)| + |R_3(v)| = 2n 5$

Schnyder Wood – More Properties

- \blacksquare From each vertex v there exists a unique
 - directed red path $P_1(v)$ to a,
 - directed blue path $P_2(v)$ to b, and
 - directed green path $P_3(v)$ to c.

 $P_i(v)$: unique path from v to root of T_i

 $R_1(v)$: set of faces bounded by $\langle P_2(v), bc, P_3(v) \rangle$

 $R_2(v)$: set of faces bounded by $\langle P_3(v), ca, P_1(v) \rangle$

 $R_3(v)$: set of faces bounded by $\langle P_1(v), ab, P_2(v) \rangle$

Lemma.

- $\blacksquare P_1(v), P_2(v), P_3(v)$ cross only at v.
- For inner vertices $u \neq v$, it holds that $u \in R_i(v) \Rightarrow R_i(u) \subsetneq R_i(v)$.
- $|R_1(v)| + |R_2(v)| + |R_3(v)| = 2n 5$

Theorem.

[Schnyder '90]

For a plane triangulation G, the mapping

$$f: v \mapsto (v_1, v_2, v_3) = \frac{1}{2n-5}(|R_1(v)|, |R_2(v)|, |R_3(v)|)$$

Theorem.

[Schnyder '90]

For a plane triangulation G, the mapping

$$f: v \mapsto (v_1, v_2, v_3) = \frac{1}{2n-5}(|R_1(v)|, |R_2(v)|, |R_3(v)|)$$

(B1)
$$v_1 + v_2 + v_3 = 1$$
 for all $v \in V(G)$

Theorem.

[Schnyder '90]

For a plane triangulation G, the mapping

$$f: v \mapsto (v_1, v_2, v_3) = \frac{1}{2n-5}(|R_1(v)|, |R_2(v)|, |R_3(v)|)$$

(B1)
$$v_1 + v_2 + v_3 = 1$$
 for all $v \in V(G)$

Theorem.

[Schnyder '90]

For a plane triangulation G, the mapping

$$f: v \mapsto (v_1, v_2, v_3) = \frac{1}{2n-5}(|R_1(v)|, |R_2(v)|, |R_3(v)|)$$

is a barycentric representation of ${\cal G}$ and, thus, yields a planar straight-line drawing of ${\cal G}$

(B1)
$$v_1 + v_2 + v_3 = 1$$
 for all $v \in V(G)$

(B2) for each $\{x,y\} \in E(G)$ and each $z \in V(G) \setminus \{x,y\}$ there exists $k \in \{1,2,3\}$ with $x_k < z_k$ and $y_k < z_k$

Theorem.

[Schnyder '90]

For a plane triangulation G, the mapping

$$f: v \mapsto (v_1, v_2, v_3) = \frac{1}{2n-5}(|R_1(v)|, |R_2(v)|, |R_3(v)|)$$

(B1)
$$v_1 + v_2 + v_3 = 1$$
 for all $v \in V(G)$

- (B2) for each $\{x,y\} \in E(G)$ and each $z \in V(G) \setminus \{x,y\}$ there exists $k \in \{1,2,3\}$ with $x_k < z_k$ and $y_k < z_k$
 - $\{x,y\}$ must lie in $R_i(z)$ for some $i \in \{1,2,3\}$

Theorem.

[Schnyder '90]

For a plane triangulation G, the mapping

$$f: v \mapsto (v_1, v_2, v_3) = \frac{1}{2n-5}(|R_1(v)|, |R_2(v)|, |R_3(v)|)$$

(B1)
$$v_1 + v_2 + v_3 = 1$$
 for all $v \in V(G)$

- (B2) for each $\{x,y\} \in E(G)$ and each $z \in V(G) \setminus \{x,y\}$ there exists $k \in \{1,2,3\}$ with $x_k < z_k$ and $y_k < z_k$
 - $\{x,y\}$ must lie in $R_i(z)$ for some $i \in \{1,2,3\}$

Theorem.

[Schnyder '90]

For a plane triangulation G, the mapping

$$f: v \mapsto (v_1, v_2, v_3) = \frac{1}{2n-5}(|R_1(v)|, |R_2(v)|, |R_3(v)|)$$

(B1)
$$v_1 + v_2 + v_3 = 1$$
 for all $v \in V(G)$

- (B2) for each $\{x,y\} \in E(G)$ and each $z \in V(G) \setminus \{x,y\}$ there exists $k \in \{1,2,3\}$ with $x_k < z_k$ and $y_k < z_k$
 - $\{x,y\}$ must lie in $R_i(z)$ for some $i \in \{1,2,3\}$

Theorem.

[Schnyder '90]

For a plane triangulation G, the mapping

$$f: v \mapsto (v_1, v_2, v_3) = \frac{1}{2n-5}(|R_1(v)|, |R_2(v)|, |R_3(v)|)$$

(B1)
$$v_1 + v_2 + v_3 = 1$$
 for all $v \in V(G)$

- (B2) for each $\{x,y\} \in E(G)$ and each $z \in V(G) \setminus \{x,y\}$ there exists $k \in \{1,2,3\}$ with $x_k < z_k$ and $y_k < z_k$
 - $\{x,y\}$ must lie in $R_i(z)$ for some $i \in \{1,2,3\}$

Theorem.

[Schnyder '90]

For a plane triangulation G, the mapping

$$f: v \mapsto (v_1, v_2, v_3) = \frac{1}{2n-5}(|R_1(v)|, |R_2(v)|, |R_3(v)|)$$

(B1)
$$v_1 + v_2 + v_3 = 1$$
 for all $v \in V(G)$

- (B2) for each $\{x,y\} \in E(G)$ and each $z \in V(G) \setminus \{x,y\}$ there exists $k \in \{1,2,3\}$ with $x_k < z_k$ and $y_k < z_k$
 - $\{x,y\}$ must lie in $R_i(z)$ for some $i \in \{1,2,3\}$
 - $\mathbf{x}, y \in R_i(z) \Rightarrow R_i(x), R_i(y) \subsetneq R_i(z)$

Theorem.

[Schnyder '90]

For a plane triangulation G, the mapping

$$f: v \mapsto (v_1, v_2, v_3) = \frac{1}{2n-5}(|R_1(v)|, |R_2(v)|, |R_3(v)|)$$

(B1)
$$v_1 + v_2 + v_3 = 1$$
 for all $v \in V(G)$

- (B2) for each $\{x,y\} \in E(G)$ and each $z \in V(G) \setminus \{x,y\}$ there exists $k \in \{1,2,3\}$ with $x_k < z_k$ and $y_k < z_k$
 - $\{x,y\}$ must lie in $R_i(z)$ for some $i \in \{1,2,3\}$
 - $x, y \in R_i(z) \Rightarrow R_i(x), R_i(y) \subsetneq R_i(z)$ $\Rightarrow |R_i(x)|, |R_i(y)| < |R_i(z)|$

Theorem.

[Schnyder '90]

For a plane triangulation G, the mapping

$$f: v \mapsto (v_1, v_2, v_3) = \frac{1}{2n-5}(|R_1(v)|, |R_2(v)|, |R_3(v)|)$$

(B1)
$$v_1 + v_2 + v_3 = 1$$
 for all $v \in V(G)$

- (B2) for each $\{x,y\} \in E(G)$ and each $z \in V(G) \setminus \{x,y\}$ there exists $k \in \{1,2,3\}$ with $x_k < z_k$ and $y_k < z_k$
 - $\{x,y\}$ must lie in $R_i(z)$ for some $i \in \{1,2,3\}$
 - $x, y \in R_i(z) \Rightarrow R_i(x), R_i(y) \subsetneq R_i(z)$ $\Rightarrow |R_i(x)|, |R_i(y)| < |R_i(z)|$

Set
$$A = (0,0)$$
, $B = (2n - 5,0)$, and $C = (0,2n - 5)$.

Theorem.

[Schnyder '90]

For a plane triangulation G, the mapping

$$f: v \mapsto (v_1, v_2, v_3) = \frac{1}{2n-5}(|R_1(v)|, |R_2(v)|, |R_3(v)|)$$

(B1)
$$v_1 + v_2 + v_3 = 1$$
 for all $v \in V(G)$

- (B2) for each $\{x,y\} \in E(G)$ and each $z \in V(G) \setminus \{x,y\}$ there exists $k \in \{1,2,3\}$ with $x_k < z_k$ and $y_k < z_k$
 - \blacksquare $\{x,y\}$ must lie in $R_i(z)$ for some $i \in \{1,2,3\}$
 - $x, y \in R_i(z) \Rightarrow R_i(x), R_i(y) \subsetneq R_i(z)$ $\Rightarrow |R_i(x)|, |R_i(y)| < |R_i(z)|$

Set
$$A = (0,0)$$
, $B = (2n - 5,0)$, and $C = (0,2n - 5)$.

Theorem.

[Schnyder '90]

For a plane triangulation G, the mapping

$$f: v \mapsto (v_1, v_2, v_3) = \frac{1}{2n-5}(|R_1(v)|, |R_2(v)|, |R_3(v)|)$$

is a barycentric representation of G and, thus, yields a planar straight-line drawing of G on the $(2n-5)\times(2n-5)$ grid.

(B1)
$$v_1 + v_2 + v_3 = 1$$
 for all $v \in V(G)$

- (B2) for each $\{x,y\} \in E(G)$ and each $z \in V(G) \setminus \{x,y\}$ there exists $k \in \{1,2,3\}$ with $x_k < z_k$ and $y_k < z_k$
 - $\{x,y\}$ must lie in $R_i(z)$ for some $i \in \{1,2,3\}$
 - $x, y \in R_i(z) \Rightarrow R_i(x), R_i(y) \subsetneq R_i(z)$ $\Rightarrow |R_i(x)|, |R_i(y)| < |R_i(z)|$

$$n = 7$$
; $2n - 5 =$

12 - 4

 $f(v_3) = (2, 6, 1)$ $f(v_7) = (0, 0, 9)$

 $f(v_3) = (2, 6, 1)$ $f(v_7) = (0, 0, 9)$

 $f(v_3) = (2, 6, 1)$ $f(v_7) = (0, 0, 9)$

$$f(v_2) = (0, 9, 0)$$

$$f(v_3) = (2, 6, 1)$$

$$f(v_6) = (4, 1, 4)$$

$$f(v_3) = (2, 6, 1)$$
 $f(v_7) = (0, 0, 9)$

$$f(v_1) = (9, 0, 0)$$

$$f(v_5) = (1, 2, 6)$$

$$f(v_2) = (0, 9, 0)$$

$$f(v_6) = (4, 1, 4)$$

$$f(v_3) = (2, 6, 1)$$
 $f(v_7) = (0, 0, 9)$

$$f(v_7) = (0, 0, 9)$$

Schnyder Drawing – Example

$$f(v_2) = (0, 9, 0)$$
 $f(v_6) = (4, 1, 4)$

$$f(v_3) = (2, 6, 1)$$
 $f(v_7) = (0, 0, 9)$

Schnyder Drawing – Example

 $f(v_2) = (0, 9, 0)$ $f(v_6) = (4, 1, 4)$

 $f(v_3) = (2, 6, 1)$ $f(v_7) = (0, 0, 9)$

Schnyder Drawing – Example

 $f(v_3) = (2, 6, 1)$ $f(v_7) = (0, 0, 9)$

A weak barycentric representation of a graph G is an assignment of barycentric coordinates to V(G):

$$f: V(G) \to \mathbb{R}^3_{\geq 0}, \ v \mapsto (v_1, v_2, v_3)$$

with the following properties:

A weak barycentric representation of a graph G is an assignment of barycentric coordinates to V(G):

$$f: V(G) \to \mathbb{R}^3_{\geq 0}, \ v \mapsto (v_1, v_2, v_3)$$

with the following properties:

(W1)
$$v_1 + v_2 + v_3 = 1$$
 for all $v \in V(G)$,

A weak barycentric representation of a graph G is an assignment of barycentric coordinates to V(G):

$$f: V(G) \to \mathbb{R}^3_{\geq 0}, \ v \mapsto (v_1, v_2, v_3)$$

with the following properties:

(W1)
$$v_1 + v_2 + v_3 = 1$$
 for all $v \in V(G)$,

(W2) for each $\{x,y\} \in E(G)$ and each $z \in V(G) \setminus \{x,y\}$,

A weak barycentric representation of a graph G is an assignment of barycentric coordinates to V(G):

$$f: V(G) \to \mathbb{R}^3_{\geq 0}, \ v \mapsto (v_1, v_2, v_3)$$

with the following properties:

(W1)
$$v_1 + v_2 + v_3 = 1$$
 for all $v \in V(G)$,

(W2) for each $\{x,y\} \in E(G)$ and each $z \in V(G) \setminus \{x,y\}$, there exists a $k \in \{1,2,3\}$ with

$$(x_k, x_{k+1}) <_{\text{lex}} (z_k, z_{k+1}) \text{ and } (y_k, y_{k+1}) <_{\text{lex}} (z_k, z_{k+1}).$$

A weak barycentric representation of a graph G is an assignment of barycentric coordinates to V(G):

$$f: V(G) \to \mathbb{R}^3_{\geq 0}, \ v \mapsto (v_1, v_2, v_3)$$

with the following properties:

(W1)
$$v_1 + v_2 + v_3 = 1$$
 for all $v \in V(G)$,

(W2) for each $\{x,y\} \in E(G)$ and each $z \in V(G) \setminus \{x,y\}$, there exists a $k \in \{1,2,3\}$ with

$$(x_k, x_{k+1}) <_{\text{lex}} (z_k, z_{k+1}) \text{ and } (y_k, y_{k+1}) <_{\text{lex}} (z_k, z_{k+1}).$$

i.e., either $y_k < z_k$ or $y_k = z_k$ and $y_{k+1} < z_{k+1}$

A weak barycentric representation of a graph G is an assignment of barycentric coordinates to V(G):

$$f: V(G) \to \mathbb{R}^3_{\geq 0}, \ v \mapsto (v_1, v_2, v_3)$$

with the following properties:

(W1)
$$v_1 + v_2 + v_3 = 1$$
 for all $v \in V(G)$,

(W2) for each $\{x,y\} \in E(G)$ and each $z \in V(G) \setminus \{x,y\}$, there exists a $k \in \{1,2,3\}$ with

$$(x_k, x_{k+1}) <_{\text{lex}} (z_k, z_{k+1}) \text{ and } (y_k, y_{k+1}) <_{\text{lex}} (z_k, z_{k+1}).$$

A weak barycentric representation of a graph G is an assignment of barycentric coordinates to V(G):

$$f: V(G) \to \mathbb{R}^3_{\geq 0}, \ v \mapsto (v_1, v_2, v_3)$$

with the following properties:

(W1)
$$v_1 + v_2 + v_3 = 1$$
 for all $v \in V(G)$,

(W2) for each $\{x,y\} \in E(G)$ and each $z \in V(G) \setminus \{x,y\}$, there exists a $k \in \{1,2,3\}$ with

$$(x_k, x_{k+1}) <_{\text{lex}} (z_k, z_{k+1}) \text{ and } (y_k, y_{k+1}) <_{\text{lex}} (z_k, z_{k+1}).$$

A weak barycentric representation of a graph G is an assignment of barycentric coordinates to V(G):

$$f: V(G) \to \mathbb{R}^3_{\geq 0}, \ v \mapsto (v_1, v_2, v_3)$$

with the following properties:

(W1)
$$v_1 + v_2 + v_3 = 1$$
 for all $v \in V(G)$,

(W2) for each $\{x,y\} \in E(G)$ and each $z \in V(G) \setminus \{x,y\}$, there exists a $k \in \{1,2,3\}$ with

$$(x_k, x_{k+1}) <_{\text{lex}} (z_k, z_{k+1}) \text{ and } (y_k, y_{k+1}) <_{\text{lex}} (z_k, z_{k+1}).$$

A weak barycentric representation of a graph G is an assignment of barycentric coordinates to V(G):

$$f: V(G) \to \mathbb{R}^3_{\geq 0}, \ v \mapsto (v_1, v_2, v_3)$$

with the following properties:

(W1)
$$v_1 + v_2 + v_3 = 1$$
 for all $v \in V(G)$,

(W2) for each $\{x,y\} \in E(G)$ and each $z \in V(G) \setminus \{x,y\}$, there exists a $k \in \{1,2,3\}$ with

$$(x_k, x_{k+1}) <_{\text{lex}} (z_k, z_{k+1}) \text{ and } (y_k, y_{k+1}) <_{\text{lex}} (z_k, z_{k+1}).$$

A weak barycentric representation of a graph G is an assignment of barycentric coordinates to V(G):

$$f: V(G) \to \mathbb{R}^3_{\geq 0}, \ v \mapsto (v_1, v_2, v_3)$$

with the following properties:

(W1)
$$v_1 + v_2 + v_3 = 1$$
 for all $v \in V(G)$,

(W2) for each $\{x,y\} \in E(G)$ and each $z \in V(G) \setminus \{x,y\}$, there exists a $k \in \{1,2,3\}$ with

$$(x_k, x_{k+1}) <_{\text{lex}} (z_k, z_{k+1}) \text{ and } (y_k, y_{k+1}) <_{\text{lex}} (z_k, z_{k+1}).$$

A weak barycentric representation of a graph G is an assignment of barycentric coordinates to V(G):

$$f: V(G) \to \mathbb{R}^3_{\geq 0}, \ v \mapsto (v_1, v_2, v_3)$$

with the following properties:

(W1)
$$v_1 + v_2 + v_3 = 1$$
 for all $v \in V(G)$,

(W2) for each $\{x,y\} \in E(G)$ and each $z \in V(G) \setminus \{x,y\}$, there exists a $k \in \{1,2,3\}$ with

$$(x_k, x_{k+1}) <_{\text{lex}} (z_k, z_{k+1}) \text{ and } (y_k, y_{k+1}) <_{\text{lex}} (z_k, z_{k+1}).$$

Lemma.

For a weak barycentric representation $f: v \mapsto (v_1, v_2, v_3)$ and a triangle $\triangle ABC$, the mapping $\phi: V(G) \to \mathbb{R}^3$ with

$$v \mapsto v_1 A + v_2 B + v_3 C$$

yields a planar drawing of G inside $\triangle ABC$.

A weak barycentric representation of a graph G is an assignment of barycentric coordinates to V(G):

$$f: V(G) \to \mathbb{R}^3_{\geq 0}, \ v \mapsto (v_1, v_2, v_3)$$

with the following properties:

(W1)
$$v_1 + v_2 + v_3 = 1$$
 for all $v \in V(G)$,

(W2) for each $\{x,y\} \in E(G)$ and each $z \in V(G) \setminus \{x,y\}$, there exists a $k \in \{1,2,3\}$ with

$$(x_k, x_{k+1}) <_{\text{lex}} (z_k, z_{k+1}) \text{ and } (y_k, y_{k+1}) <_{\text{lex}} (z_k, z_{k+1}).$$

Lemma.

For a weak barycentric representation $f: v \mapsto (v_1, v_2, v_3)$ and a triangle $\triangle ABC$, the mapping $\phi: V(G) \to \mathbb{R}^3$ with

$$v \mapsto v_1 A + v_2 B + v_3 C$$

yields a planar drawing of G inside $\triangle ABC$.

i.e., either $y_k < z_k$ or $y_k = z_k$ and $y_{k+1} < z_{k+1}$ indices modulo 3

Proof. \rightarrow *Exercise!*

 $P_i(v)$: unique path from v to root of T_i $R_1(v)$: subgraph bounded by $\langle P_2(v), bc, P_3(v) \rangle$ $R_2(v)$: subgraph bounded by $\langle P_3(v), ca, P_1(v) \rangle$ $R_3(v)$: subgraph bounded by $\langle P_1(v), ab, P_2(v) \rangle$

 $P_i(v)$: unique path from v to root of T_i $R_1(v)$: subgraph bounded by $\langle P_2(v), bc, P_3(v) \rangle$ $R_2(v)$: subgraph bounded by $\langle P_3(v), ca, P_1(v) \rangle$ $R_3(v)$: subgraph bounded by $\langle P_1(v), ab, P_2(v) \rangle$ $v_i = |V(R_i(v))| - |V(P_{i-1}(v))|$ (indices modulo 3)

 $P_i(v)$: unique path from v to root of T_i $R_1(v)$: subgraph bounded by $\langle P_2(v), bc, P_3(v) \rangle$ $R_2(v)$: subgraph bounded by $\langle P_3(v), ca, P_1(v) \rangle$ $R_3(v)$: subgraph bounded by $\langle P_1(v), ab, P_2(v) \rangle$ $v_i = |V(R_i(v))| - |V(P_{i-1}(v))|$ (indices modulo 3)

$$v_1 = 10 - 3 = 7$$

$$v_2 = 6 - 3 = 3$$

$$v_3 = 8 - 3 = 5$$

 $P_i(v)$: unique path from v to root of T_i $R_1(v)$: subgraph bounded by $\langle P_2(v), bc, P_3(v) \rangle$ $R_2(v)$: subgraph bounded by $\langle P_3(v), ca, P_1(v) \rangle$ $R_3(v)$: subgraph bounded by $\langle P_1(v), ab, P_2(v) \rangle$ $v_i = |V(R_i(v))| - |V(P_{i-1}(v))|$ (indices modulo 3)

$$v_1 = 10 - 3 = 7$$
 $v_2 = 6 - 3 = 3$
 $v_3 = 8 - 3 = 5$

Lemma.

 $P_i(v)$: unique path from v to root of T_i $R_1(v)$: subgraph bounded by $\langle P_2(v), bc, P_3(v) \rangle$ $R_2(v)$: subgraph bounded by $\langle P_3(v), ca, P_1(v) \rangle$ $R_3(v)$: subgraph bounded by $\langle P_1(v), ab, P_2(v) \rangle$ $v_i = |V(R_i(v))| - |V(P_{i-1}(v))|$ (indices modulo 3)

$$v_1 = 10 - 3 = 7$$
 $v_2 = 6 - 3 = 3$
 $v_3 = 8 - 3 = 5$

Lemma.

 $P_i(v)$: unique path from v to root of T_i $R_1(v)$: subgraph bounded by $\langle P_2(v), bc, P_3(v) \rangle$ $R_2(v)$: subgraph bounded by $\langle P_3(v), ca, P_1(v) \rangle$ $R_3(v)$: subgraph bounded by $\langle P_1(v), ab, P_2(v) \rangle$ $v_i = |V(R_i(v))| - |V(P_{i-1}(v))|$ (indices modulo 3)

$$v_1 = 10 - 3 = 7$$
 $v_2 = 6 - 3 = 3$
 $v_3 = 8 - 3 = 5$

Lemma.

 $P_i(v)$: unique path from v to root of T_i $R_1(v)$: subgraph bounded by $\langle P_2(v), bc, P_3(v) \rangle$ $R_2(v)$: subgraph bounded by $\langle P_3(v), ca, P_1(v) \rangle$ $R_3(v)$: subgraph bounded by $\langle P_1(v), ab, P_2(v) \rangle$ $v_i = |V(R_i(v))| - |V(P_{i-1}(v))|$ (indices modulo 3)

$$v_1 = 10 - 3 = 7$$
 $v_2 = 6 - 3 = 3$
 $v_3 = 8 - 3 = 5$

Lemma.

 $P_i(v)$: unique path from v to root of T_i $R_1(v)$: subgraph bounded by $\langle P_2(v), bc, P_3(v) \rangle$ $R_2(v)$: subgraph bounded by $\langle P_3(v), ca, P_1(v) \rangle$ $R_3(v)$: subgraph bounded by $\langle P_1(v), ab, P_2(v) \rangle$ $v_i = |V(R_i(v))| - |V(P_{i-1}(v))|$ (indices modulo 3)

$$v_1 = 10 - 3 = 7$$
 $v_2 = 6 - 3 = 3$
 $v_3 = 8 - 3 = 5$

Lemma.

 $P_i(v)$: unique path from v to root of T_i $R_1(v)$: subgraph bounded by $\langle P_2(v), bc, P_3(v) \rangle$ $R_2(v)$: subgraph bounded by $\langle P_3(v), ca, P_1(v) \rangle$ $R_3(v)$: subgraph bounded by $\langle P_1(v), ab, P_2(v) \rangle$ $v_i = |V(R_i(v))| - |V(P_{i-1}(v))|$ (indices modulo 3)

$$v_1 = 10 - 3 = 7$$
 $v_2 = 6 - 3 = 3$
 $v_3 = 8 - 3 = 5$

Lemma.

 $P_i(v)$: unique path from v to root of T_i $R_1(v)$: subgraph bounded by $\langle P_2(v), bc, P_3(v) \rangle$ $R_2(v)$: subgraph bounded by $\langle P_3(v), ca, P_1(v) \rangle$ $R_3(v)$: subgraph bounded by $\langle P_1(v), ab, P_2(v) \rangle$ $v_i = |V(R_i(v))| - |V(P_{i-1}(v))|$ (indices modulo 3)

$$v_1 = 10 - 3 = 7$$
 $v_2 = 6 - 3 = 3$
 $v_3 = 8 - 3 = 5$

Lemma.

$$v_1 + v_2 + v_3 =$$

 $P_i(v)$: unique path from v to root of T_i $R_1(v)$: subgraph bounded by $\langle P_2(v), bc, P_3(v) \rangle$ $R_2(v)$: subgraph bounded by $\langle P_3(v), ca, P_1(v) \rangle$ $R_3(v)$: subgraph bounded by $\langle P_1(v), ab, P_2(v) \rangle$ $v_i = |V(R_i(v))| - |V(P_{i-1}(v))|$ (indices modulo 3)

$$v_1 = 10 - 3 = 7$$
 $v_2 = 6 - 3 = 3$
 $v_3 = 8 - 3 = 5$

Lemma.

$$v_1 + v_2 + v_3 = n - 1$$

 $P_i(v)$: unique path from v to root of T_i $R_1(v)$: subgraph bounded by $\langle P_2(v), bc, P_3(v) \rangle$ $R_2(v)$: subgraph bounded by $\langle P_3(v), ca, P_1(v) \rangle$ $R_3(v)$: subgraph bounded by $\langle P_1(v), ab, P_2(v) \rangle$ $v_i = |V(R_i(v))| - |V(P_{i-1}(v))|$ (indices modulo 3)

$$v_1 = 10 - 3 = 7$$
 $v_2 = 6 - 3 = 3$

$$v_3 = 8 - 3 = 5$$

Lemma.

$$v_1 + v_2 + v_3 = n - 1$$

 $P_i(v)$: unique path from v to root of T_i $R_1(v)$: subgraph bounded by $\langle P_2(v), bc, P_3(v) \rangle$ $R_2(v)$: subgraph bounded by $\langle P_3(v), ca, P_1(v) \rangle$ $R_3(v)$: subgraph bounded by $\langle P_1(v), ab, P_2(v) \rangle$ $v_i = |V(R_i(v))| - |V(P_{i-1}(v))|$ (indices modulo 3)

$$v_1 = 10 - 3 = 7$$
 $v_2 = 6 - 3 = 3$

 $v_3 = 8 - 3 = 5$

Lemma.

$$v_1 + v_2 + v_3 = n - 1$$

Schnyder Drawing*

Set
$$A = (0,0)$$
, $B = (n-1,0)$, and $C = (0, n-1)$.

Theorem.

[Schnyder '90]

For a plane triangulation G, the mapping

$$f \colon v \mapsto \frac{1}{n-1}(v_1, v_2, v_3)$$

is a weak barycentric representation of G and, thus, yields a planar straight-line drawing of G on the $(n-2)\times(n-2)$ grid.

Theorem.

[De Fraysseix, Pach, Pollack '90]

Every n-vertex planar graph has a planar straight-line drawing of size $(2n-4)\times(n-2)$. Such a drawing can be computed in O(n) time.

Theorem.

[Schnyder '90]

Every n-vertex planar graph has a planar straight-line drawing of size $(n-2)\times(n-2)$. Such a drawing can be computed in O(n) time.

Theorem.

[De Fraysseix, Pach, Pollack '90]

Every n-vertex planar graph has a planar straight-line drawing of size $(2n-4)\times(n-2)$. Such a drawing can be computed in O(n) time.

Theorem.

[Schnyder '90]

Every n-vertex planar graph has a planar straight-line drawing of size $(n-2)\times(n-2)$. Such a drawing can be computed in O(n) time.

Exercise!

Theorem.

[De Fraysseix, Pach, Pollack '90]

Every n-vertex planar graph has a planar straight-line drawing of size $(2n-4)\times(n-2)$. Such a drawing can be computed in O(n) time.

Theorem.

[Schnyder '90]

Every n-vertex planar graph has a planar straight-line drawing of size $(n-2)\times(n-2)$. Such a drawing can be computed in O(n) time.

Exercise!

Theorem.

[Brandenburg '08]

Every n-vertex planar graph has a planar straight-line drawing of size $4n/3 \times 2n/3$. Such a drawing can be computed in O(n) time.

Theorem.

[De Fraysseix, Pach, Pollack '90]

Every n-vertex planar graph has a planar straight-line drawing of size $(2n-4)\times(n-2)$. Such a drawing can be computed in O(n) time.

Theorem.

[Schnyder '90]

Every n-vertex planar graph has a planar straight-line drawing of size $(n-2)\times(n-2)$. Such a drawing can be computed in O(n) time.

Exercise!

Theorem.

[Brandenburg '08]

Every n-vertex planar graph has a planar straight-line drawing of size $4n/3 \times 2n/3$. Such a drawing can be computed in O(n) time.

Theorem.

[Dolev, Leighton, Trickey '84]

There exist n-vertex plane graphs such that any planar straight-line drawing of them has an area of at least $(2n/3-1)\times(2n/3-1)$.

Theorem.

[De Fraysseix, Pach, Pollack '90]

Every n-vertex planar graph has a planar straight-line drawing of size $(2n-4)\times(n-2)$. Such a drawing can be computed in O(n) time.

Theorem.

[Schnyder '90]

Every n-vertex planar graph has a planar straight-line drawing of size $(n-2)\times(n-2)$. Such a drawing can be computed in O(n) time.

Exercise!

Theorem.

[Brandenburg '08]

Every n-vertex planar graph has a planar straight-line drawing of size $4n/3 \times 2n/3$. Such a drawing can be computed in O(n) time.

Theorem.

[Dolev, Leighton, Trickey '84]

There exist n-vertex plane graphs such that any planar straight-line drawing of them has an area of at least $(2n/3-1)\times(2n/3-1)$.

[Frati, Patrignani '07] Area at least $n^2/9 + \Omega(n)$ in the variable-embedding setting.

Theorem.

[Kant '96]

Every n-vertex 3-connected planar graph has a planar straight-line drawing of size $(2n-4) \times (n-2)$ where all faces are drawn convex. Such a drawing can be computed in O(n) time.

Theorem.

[Kant '96]

Every n-vertex 3-connected planar graph has a planar straight-line drawing of size $(2n-4) \times (n-2)$ where all faces are drawn convex. Such a drawing can be computed in O(n) time.

Theorem.

[Chrobak & Kant '97]

Every n-vertex 3-connected planar graph has a planar straight-line drawing of size $(n-2) \times (n-2)$ where all faces are drawn convex.

Such a drawing can be computed in O(n) time.

Theorem.

[Kant '96]

Every n-vertex 3-connected planar graph has a planar straight-line drawing of size $(2n-4) \times (n-2)$ where all faces are drawn convex. Such a drawing can be computed in O(n) time.

Theorem.

[Chrobak & Kant '97]

Every n-vertex 3-connected planar graph has a planar straight-line drawing of size $(n-2) \times (n-2)$ where all faces are drawn convex.

Such a drawing can be computed in O(n) time.

Theorem.

[Felsner '01]

Every 3-connected planar graph with f faces has a planar straight-line drawing of size $(f-1) \times (f-1)$ where all faces are drawn convex. Such a drawing can be computed in O(n) time.

Literature

- [PGD Ch. 4.3] for detailed explanation of Schnyder woods etc.
- [Sch90] "Embedding planar graphs on the grid", Walter Schnyder, SoCG 1990 original paper on Schnyder realizer method.