## Visualization of Graphs

## Lecture 4:

Straight-Line Drawings of Planar Graphs II:
 Schnyder Woods

Johannes Zink

Summer semester 2024


## Planar Straight-Line Drawings

Theorem. [De Fraysseix, Pach, Pollack '90]
Every $n$-vertex planar graph has a planar straight-line drawing of size $(2 n-4) \times(n-2)$.

## Theorem.

[Schnyder '90]
Every $n$-vertex planar graph has a planar straight-line drawing of size $(n-2) \times(2-2)(2 n-5) \times(2 n-5)$.

## Idea.

(easier to show)


- Fix outer triangle.
- Compute coordinates of inner vertices
- based on outer triangle and
- how much space there should be for other vertices
- using weighted barycentric coordinates.


## Barycentric Coordinates

Recall: barycenter $\left(x_{1}, \ldots, x_{k}\right)=\sum_{i=1}^{k} x_{i} / k$

Let $A, B, C$ form a triangle, and let $x$ lie in $\triangle A B C$. The barycentric coordinates of $x$ with respect to $\triangle A B C$ are a triple $(\alpha, \beta, \gamma) \in \mathbb{R}_{\geq 0}^{3}$ such that

- $\alpha+\beta+\gamma=1$ and

■ $x=\alpha A+\beta B+\gamma C$.


## Barycentric Representation

A barycentric representation of a graph $G$ is an assignment of barycentric coordinates to the vertices of $G$ :

$$
f: V(G) \rightarrow \mathbb{R}_{\geq 0}^{3}, \quad v \mapsto\left(v_{1}, v_{2}, v_{3}\right)
$$

with the following properties:
(B1) $v_{1}+v_{2}+v_{3}=1$ for all $v \in V(G)$,
(B2) for each $\{x, y\} \in E(G)$ and each $z \in V(G) \backslash\{x, y\}$,
 there exists a $k \in\{1,2,3\}$ with $x_{k}<z_{k}$ and $y_{k}<z_{k}$.

## Barycentric Representations of Planar Graphs

## Lemma.

Let $f: v \mapsto\left(v_{1}, v_{2}, v_{3}\right)$ be a barycentric representation of a planar graph $G$, and let $A, B, C \in \mathbb{R}^{2}$ be in general position. Then the mapping

$$
\phi: v \in V \mapsto v_{1} A+v_{2} B+v_{3} C
$$

yields a planar straight-line drawing of $G$ inside $\triangle A B C$.
■ No vertex $x$ can lie on an edge $\{u, v\}$. (Obvious by definition.)
■ No pair of edges $\{u, v\}$ and $\left\{u^{\prime}, v^{\prime}\right\}$ crosses:
no three points
on a line

$u_{i}^{\prime}>u_{i}, v_{i}, \quad v_{j}^{\prime}>u_{j}, v_{j}, \quad u_{k}>u_{k}^{\prime}, v_{k}^{\prime}, \quad v_{l}>u_{l}^{\prime}, v_{l}^{\prime}$
$\Rightarrow\{i, j\} \cap\{k, l\}=\emptyset$
w.l.o.g. $i=j=2 \Rightarrow u_{2}^{\prime}, v_{2}^{\prime}>u_{2}, v_{2} \Rightarrow$ separated by a straight line

How to find a barycentric representation?

## Schnyder Labeling

Let $f: v \mapsto\left(v_{1}, v_{2}, v_{3}\right)$ be a barycentric representation of a planar triangulation $G$, and let $A, B, C \in \mathbb{R}^{2}$ be in general position.

## Schnyder Labeling

Let $f: v \mapsto\left(v_{1}, v_{2}, v_{3}\right)$ be a barycentric representation of a planar triangulation $G$, and let $A, B, C \in \mathbb{R}^{2}$ be in general position. We can label each angle in each triangle $\triangle x y z$ uniquely with $k \in\{1,2,3\}$.


## Schnyder Labeling

Let $f: v \mapsto\left(v_{1}, v_{2}, v_{3}\right)$ be a barycentric representation of a planar triangulation $G$, and let $A, B, C \in \mathbb{R}^{2}$ be in general position.

We can label each angle in each triangle $\triangle x y z$ uniquely with $k \in\{1,2,3\}$.

A Schnyder labeling of a plane triangulation $G$ is a labeling of all
 internal angles with labels 1, 2, and 3 such that:
Faces: The three angles of an internal face are labeled 1, 2, and 3 in counterclockwise (ccw) order.

Vertices: The ccw order of labels around each vertex consists of


- a non-empty interval of 1 s ,
- followed by a non-empty interval of 2 s ,
- followed by a non-empty interval of 3 s .


## Schnyder Wood

A Schnyder labeling induces an edge labeling.
A Schnyder wood (or Schnyder realizer) of a plane triangulation $G$ is a partition of the inner edges of $G$ into three sets of oriented edges $T_{1}, T_{2}, T_{3}$ such that, for each inner vertex $v$ of $G$, it holds that
■ $v$ has one outgoing edge in each of $T_{1}, T_{2}$, and $T_{3}$.

- The ccw order of edges around $v$ is:

leaving in $T_{1}$, entering in $T_{3}$, leaving in $T_{2}$, entering in $T_{1}$, leaving in $T_{3}$, entering in $T_{2}$.



## Schnyder Wood - Example and Properties



## Schnyder Wood - Example and Properties



## Schnyder Wood - Example and Properties

- All inner edges incident to $a, b$, and $c$
 are incoming in the same set (color).
$\square T_{1}, T_{2}$, and $T_{3}$ are trees.
Each spans all inner vertices and one outer vertex (its root).



## Schnyder Wood - Existence

## Lemma.

## [Kampen 1976]

Let $G$ be a plane triangulation with vertices $a, b, c$ on the outer face. Then there exists a contractible edge $\{a, x\}$ in $G$ with $x \notin\{b, c\}$.

$\ldots$ requires that $a$ and $x$ have exactly two common neighbors.

## Schnyder Wood - Existence

Lemma.

## [Kampen 1976]

Let $G$ be a plane triangulation with vertices $a, b, c$ on the outer face.
Then there exists a contractible edge $\{a, x\}$ in $G$ with $x \notin\{b, c\}$.

## Theorem.

Every plane triangulation has a Schnyder labeling and a Schnyder wood.

Proof by induction on \# vertices via edge contractions.

$\ldots$ requires that $a$ and $x$ have exactly two common neighbors.

This constructive proof yields an algorithm for computing a Schnyder labeling. It can be implemented to run in $\mathcal{O}(n)$ time.

## Schnyder Wood - More Properties



- From each vertex $v$ there exists a unique
- directed red path $P_{1}(v)$ to $a$,
- directed blue path $P_{2}(v)$ to $b$, and
- directed green path $P_{3}(v)$ to $c$.
$P_{i}(v)$ : unique path from $v$ to root of $T_{i}$


## Lemma.

- $P_{1}(v), P_{2}(v), P_{3}(v)$ cross only at $v$.


## Schnyder Wood - More Properties

- From each vertex $v$ there exists a unique

- directed red path $P_{1}(v)$ to $a$,
- directed blue path $P_{2}(v)$ to $b$, and
- directed green path $P_{3}(v)$ to $c$.
$P_{i}(v)$ : unique path from $v$ to root of $T_{i}$ $R_{1}(v)$ : set of faces bounded by $\left\langle P_{2}(v), b c, P_{3}(v)\right\rangle$ $R_{2}(v)$ : set of faces bounded by $\left\langle P_{3}(v), c a, P_{1}(v)\right\rangle$ $R_{3}(v)$ : set of faces bounded by $\left\langle P_{1}(v), a b, P_{2}(v)\right\rangle$


## Lemma.

- $P_{1}(v), P_{2}(v), P_{3}(v)$ cross only at $v$.

■ For inner vertices $u \neq v$, it holds that $u \in R_{i}(v) \Rightarrow R_{i}(u) \subsetneq R_{i}(v)$.

## Schnyder Wood - More Properties

- From each vertex $v$ there exists a unique

- directed red path $P_{1}(v)$ to $a$,
- directed blue path $P_{2}(v)$ to $b$, and
- directed green path $P_{3}(v)$ to $c$.
$P_{i}(v)$ : unique path from $v$ to root of $T_{i}$ $R_{1}(v)$ : set of faces bounded by $\left\langle P_{2}(v), b c, P_{3}(v)\right\rangle$ $R_{2}(v)$ : set of faces bounded by $\left\langle P_{3}(v), c a, P_{1}(v)\right\rangle$ $R_{3}(v)$ : set of faces bounded by $\left\langle P_{1}(v), a b, P_{2}(v)\right\rangle$


## Lemma.

- $P_{1}(v), P_{2}(v), P_{3}(v)$ cross only at $v$.
- For inner vertices $u \neq v$, it holds that $u \in R_{i}(v) \Rightarrow R_{i}(u) \subsetneq R_{i}(v)$.


## Schnyder Wood - More Properties

- From each vertex $v$ there exists a unique

- directed red path $P_{1}(v)$ to $a$,
- directed blue path $P_{2}(v)$ to $b$, and
- directed green path $P_{3}(v)$ to $c$.
$P_{i}(v)$ : unique path from $v$ to root of $T_{i}$ $R_{1}(v)$ : set of faces bounded by $\left\langle P_{2}(v), b c, P_{3}(v)\right\rangle$ $R_{2}(v)$ : set of faces bounded by $\left\langle P_{3}(v), c a, P_{1}(v)\right\rangle$ $R_{3}(v)$ : set of faces bounded by $\left\langle P_{1}(v), a b, P_{2}(v)\right\rangle$


## Lemma.

- $P_{1}(v), P_{2}(v), P_{3}(v)$ cross only at $v$.
- For inner vertices $u \neq v$, it holds that $u \in R_{i}(v) \Rightarrow R_{i}(u) \subsetneq R_{i}(v)$.
$\square\left|R_{1}(v)\right|+\left|R_{2}(v)\right|+\left|R_{3}(v)\right|=2 n-5$


## Schnyder Drawing

## Theorem.

## [Schnyder '90]

For a plane triangulation $G$, the mapping

$$
f: v \mapsto\left(v_{1}, v_{2}, v_{3}\right)=\frac{1}{2 n-5}\left(\left|R_{1}(v)\right|,\left|R_{2}(v)\right|,\left|R_{3}(v)\right|\right)
$$

is a barycentric representation of $G$ and, thus, yields a planar straight-line drawing of $G$
(B1) $v_{1}+v_{2}+v_{3}=1$ for all $v \in V(G)$
(B2) for each $\{x, y\} \in E(G)$ and each $z \in V(G) \backslash\{x, y\}$ there exists $k \in\{1,2,3\}$ with $x_{k}<z_{k}$ and $y_{k}<z_{k}$
$\square\{x, y\}$ must lie in $R_{i}(z)$ for some $i \in\{1,2,3\}$


## Schnyder Drawing

Set $A=(0,0), B=(2 n-5,0)$, and $C=(0,2 n-5)$.

## Theorem.

## [Schnyder '90]

For a plane triangulation $G$, the mapping

$$
f: v \mapsto\left(v_{1}, v_{2}, v_{3}\right)=\frac{1}{2 n-5}\left(\left|R_{1}(v)\right|,\left|R_{2}(v)\right|,\left|R_{3}(v)\right|\right)
$$

is a barycentric representation of $G$ and, thus, yields a planar straight-line drawing of $G$ on the $(2 n-5) \times(2 n-5)$ grid.
(B1) $v_{1}+v_{2}+v_{3}=1$ for all $v \in V(G)$
(B2) for each $\{x, y\} \in E(G)$ and each $z \in V(G) \backslash\{x, y\}$ there exists $k \in\{1,2,3\}$ with $x_{k}<z_{k}$ and $y_{k}<z_{k}$
■ $\{x, y\}$ must lie in $R_{i}(z)$ for some $i \in\{1,2,3\}$
$\square x, y \in R_{i}(z) \Rightarrow R_{i}(x), R_{i}(y) \subsetneq R_{i}(z)$

$$
\Rightarrow\left|R_{i}(x)\right|,\left|R_{i}(y)\right|<\left|R_{i}(z)\right|
$$

## Schnyder Drawing - Example




## Schnyder Drawing - Example



## Weak Barycentric Representation

A weak barycentric representation of a graph $G$ is an assignment of barycentric coordinates to $V(G)$ :

$$
f: V(G) \rightarrow \mathbb{R}_{\geq 0}^{3}, \quad v \mapsto\left(v_{1}, v_{2}, v_{3}\right)
$$

with the following properties:
(W1) $v_{1}+v_{2}+v_{3}=1$ for all $v \in V(G)$,
(W2) for each $\{x, y\} \in E(G)$ and each $z \in V(G) \backslash\{x, y\}$,
interior
there exists a $k \in\{1,2,3\}$ with

$$
\left(x_{k}, x_{k+1}\right)<_{\operatorname{lex}}\left(z_{k}, z_{k+1}\right) \text { and }\left(y_{k}, y_{k+1}\right)<_{\operatorname{lex}}\left(z_{k}, z_{k+1}\right) \text {. }
$$

of triangle forbidden


## Lemma.

For a weak barycentric representation $f: v \mapsto\left(v_{1}, v_{2}, v_{3}\right)$ and a triangle $\triangle A B C$, the mapping $\phi: V(G) \rightarrow \mathbb{R}^{3}$ with

$$
v \mapsto v_{1} A+v_{2} B+v_{3} C
$$

yields a planar drawing of $G$ inside $\triangle A B C$.

## Counting Vertices



## Counting Vertices



## Counting Vertices


$P_{i}(v)$ : unique path from $v$ to root of $T_{i}$ $R_{1}(v)$ : subgraph bounded by $\left\langle P_{2}(v), b c, P_{3}(v)\right\rangle$ $R_{2}(v)$ : subgraph bounded by $\left\langle P_{3}(v), c a, P_{1}(v)\right\rangle$ $R_{3}(v)$ : subgraph bounded by $\left\langle P_{1}(v), a b, P_{2}(v)\right\rangle$ $v_{i}=\left|V\left(R_{i}(v)\right)\right|-\left|V\left(P_{i-1}(v)\right)\right|$ (indices modulo 3)

$$
\begin{aligned}
& v_{1}=10-3=7 \\
& v_{2}=6-3=3 \\
& v_{3}=8-3=5
\end{aligned}
$$

## Lemma.

- For inner vertices $u \neq v$, it holds that $u \in R_{i}(v) \Rightarrow\left(u_{i}, u_{i+1}\right)<_{\text {lex }}\left(v_{i}, v_{i+1}\right)$.


## Counting Vertices


$P_{i}(v)$ : unique path from $v$ to root of $T_{i}$ $R_{1}(v)$ : subgraph bounded by $\left\langle P_{2}(v), b c, P_{3}(v)\right\rangle$ $R_{2}(v)$ : subgraph bounded by $\left\langle P_{3}(v), c a, P_{1}(v)\right\rangle$ $R_{3}(v)$ : subgraph bounded by $\left\langle P_{1}(v), a b, P_{2}(v)\right\rangle$ $v_{i}=\left|V\left(R_{i}(v)\right)\right|-\left|V\left(P_{i-1}(v)\right)\right|$ (indices modulo 3)

$$
\begin{aligned}
& v_{1}=10-3=7 \\
& v_{2}=6-3=3 \\
& v_{3}=8-3=5
\end{aligned}
$$

## Lemma.

■ For inner vertices $u \neq v$, it holds that $u \in R_{i}(v) \Rightarrow\left(u_{i}, u_{i+1}\right)<_{\text {lex }}\left(v_{i}, v_{i+1}\right)$.

- $v_{1}+v_{2}+v_{3}=n-1$


## Schnyder Drawing*

Set $A=(0,0), B=(n-1,0)$, and $C=(0, n-1)$.

## Theorem.

[Schnyder '90]
For a plane triangulation $G$, the mapping

$$
f: v \mapsto \frac{1}{n-1}\left(v_{1}, v_{2}, v_{3}\right)
$$

is a weak barycentric representation of $G$ and, thus, yields a planar straight-line drawing of $G$ on the $(n-2) \times(n-2)$ grid.

## Schnyder Drawing ${ }^{\star}$ - Example



$$
\begin{array}{ll}
n=16, n-2=14 & f\left(v_{3}\right)=(7,7,1) \\
f(a)=(14,1,0) & f\left(v_{4}\right)=(6,7,2) \\
f(b)=(0,14,1) & f\left(v_{5}\right)=(2,10,3) \\
f(c)=(1,0,14) & \vdots
\end{array}
$$



## Results \& Variations

## Theorem.

## [De Fraysseix, Pach, Pollack '90]

Every $n$-vertex planar graph has a planar straight-line drawing of size $(2 n-4) \times(n-2)$. Such a drawing can be computed in $O(n)$ time.

## Theorem.

[Schnyder '90]
Every $n$-vertex planar graph has a planar straight-line drawing of size $(n-2) \times(n-2)$. Such a drawing can be computed in $O(n)$ time. Exercise!


## Results \& Variations

## Theorem.

## [De Fraysseix, Pach, Pollack '90]

Every $n$-vertex planar graph has a planar straight-line drawing of size $(2 n-4) \times(n-2)$. Such a drawing can be computed in $O(n)$ time.

## Theorem. <br> [Schnyder '90]

Every $n$-vertex planar graph has a planar straight-line drawing of size $(n-2) \times(n-2)$. Such a drawing can be computed in $O(n)$ time. $\cdot$

## Theorem.

[Brandenburg '08]
Every $n$-vertex planar graph has a planar straight-line drawing of size $4 n / 3 \times 2 n / 3$. Such a drawing can be computed in $O(n)$ time.

## Theorem.

[Dolev, Leighton, Trickey '84]
There exist $n$-vertex plane graphs such that any planar straight-line drawing of them has an area of at least $(2 n / 3-1) \times(2 n / 3-1)$.

Results \& Variations


## Results \& Variations

## Theorem.

Every $n$-vertex 3 -connected planar graph has a planar straight-line drawing of size $(2 n-4) \times(n-2)$ where all faces are drawn convex.
Such a drawing can be computed in $O(n)$ time.

## Theorem.

[Chrobak \& Kant '97]
Every $n$-vertex 3 -connected planar graph has a planar straight-line drawing of size $(n-2) \times(n-2)$ where all faces are drawn convex.
Such a drawing can be computed in $O(n)$ time.

## Theorem.

[Felsner '01]
Every 3-connected planar graph with $f$ faces has a planar straight-line drawing of size $(f-1) \times(f-1)$ where all faces are drawn convex. Such a drawing can be computed in $O(n)$ time.

## Literature

■ [PGD Ch. 4.3] for detailed explanation of Schnyder woods etc.
■ [Sch90] "Embedding planar graphs on the grid", Walter Schnyder, SoCG 1990 original paper on Schnyder realizer method.

