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Planar Graphs

G 1 (2,3,5) 1 (2
2 —(3,1,4) 2 — (3,
3 (4,1,2) 1 3= (4
4—)(5,3,2) 4._>(57
5 — (1,4) 5 — (1,
inner faces
G is planar: Connected region of the plane

it can be drawn in such a way that
no two edges intersect each other.

planar embedding:
clockwise orientation of adjacent
vertices around each vertex

A planar graph can have many
planar embeddings.

A planar embedding can have many
planar drawings!

bounded by edges

Euler’s polyhedra formula.
+#faces — #edges + #vertices = #conn.comp. + 1
f - m + n = c + 1

Proof. By induction on m: R

nduction hypothesis In :
m:Oj f:].andC:n J f/—/rn/<|—7llzcl—|—]_
m > 1= delete someedge e = m' =m —1

Po—oJ = ¢ =c+1 Wiéf’:f—l\/



Properties of Planar Graphs

Euler’s polyhedra formula.
+#faces — #edges + #vertices = #conn.comp. + 1

f - m + n = c +1
Theorem. GG simple planar graph with n > 3 vtc.
1. m<3n-6 2. f<2n—-4
3. There is a vertex of degree at most 5. 3

o

Proof. 1. Every edge incident to < 2 faces
Every face incident to > 3 edges 4
i:j;f}f;“cr: = 3f < #incidences < 2m ’
incidences =~ =>6<3c+3=3f—-3m+3n <2m —-3m+3n=3n—m
= m < 3n—06 Handshaking lemma.
2. 3f§2m§6n—}12ﬁ$f§2n—4 > wev(c) des(v) = 2[E|.
3. 2 vev(c) deg(v) =2m < bn — 12
1

= min,cy () deg(v) < average degree(G) = - Zvev(g) deg(v) <

on—12
n

<6
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Trla ngU|at|0nS Q)‘Ianar graph given with a planar embedding

A plane (inner) triangulation is a plane
graph where every (inner) face is a triangle.

A maximal planar graph is a planar
graph where adding any edge would
violate planarity.

Observation.
Any maximal plane graph is a plane
triangulation (and vice versa).

Lemma.
Any plane triangulation is 3-connected

and thus has a unique planar embedding
(up to mirroring).

We focus on plane triangulations:

Lemma.

Every plane graph is subgraph of a plane
triangulation.

G



Motivation

B Why planar and straight-line?

[Bennett, Ryall, Spaltzeholz and Gooch '07]

The Aesthetics of Graph Visualization
3.2. Edge Placement Heuristics

By far the most agreed-upon edge placement heuristic
s to(aiimiz T puber of edge crowsings)in a graph
[BMRW98, Har98, DH96, Pur(2, TR05, TBB88]|. The impor-
tance of avoiding edge crossings has also been extensively
validated in terms of user preference and performance (see
Section 4). Similarly, based on perceptual principles, it is
beneficial m within a
graph [Pur02, TRO5, TBB88]. Edge bends make edges more
difficult to follow because an edge with a sharp bend is more
likely to be perceived as two separate objects. This leads to
the heuristic of keeping edge bends uniform with respect to
the bend’s position on the edge and its angle [TRO5]. If an
edge must be bent to satisfy other aesthetic criteria, the an-
gle of the bend should be as little as possible, and the bend
placement should evenly divide the edge.

Drawing conventions
B No crossings = planar

B No bends = straight-line

Drawing aesthetics to optimize
B Area



Towards Straight-Line Drawings

Theorem.  [Kuratowski 1930]
G planar &
neither K5 nor K33 minor of GG

Characterization

Kazimierz Kuratowski (1896—-1980)

Theorem. [Hopcroft & Tarjan 1974]

Let G be a graph with n vertices. There is an
O(n)-time algorithm to test whether G is planar.

Also computes a planar embedding in O(n) time.

Theorem. [Wagner 1936, Fary 1948, Stein 1951]

Every planar graph has a planar drawing
where the edges are straight-line segments.

Drawing

The algorithms implied by these theorems produce drawings ‘?’"”"*

. T laus Wagner (1910-2000)
whose area is not bounded by any polynomial in n.



Planar Straight-Line Drawings

Theorem. [De Fraysseix, Pach, Pollack '90]
Every n-vertex planar graph has a planar straight-line
drawing of size (2n — 4) x (n — 2).

Idea.
B Find a canonical order (v1,...,v,) of the vertices of a triangulation.
B Start with the single edge (v1,v2). Let this be the graph G,.

m Let k€ {3,...,n}. To obtain Gi,1, add v, 1 to (G;. so that the
neighbors of v;. .1 are on the outer face of ;.

B The neighbors of vy 1 in G, form a path of length at least two.

Every n-vertex planar graph has a planar straight-line (next lecture)
drawing of size (n — 2) x (n — 2).

Vk+1




Canonical Order — Definition

Definition.

Let GG be a plane triangulation on n > 3 vertices.

An ordering ™ = (v1,v2,...,v,) of V(G) is a canonical order

if the following conditions hold for each k£ € {3,4,... ,n}: Vkt1

(C1) Vertices {v1,...,vr} induce a biconnected inner
triangulation; call it ;.

(C2) Edge (v1,v2) belongs to the outer face of ..

(C3) If K < n then vertex vy 1 lies in the outer face of (G, and
the neighbors of v, 1 form a path on the boundary of .




Canonical Order — Example

(C1) Vertices {vy,...,vr} induce a
biconnected inner triangulation; call it G;..

(C2) Edge (v1,v2) belongs to the outer face of
G..

(C3) If kK < n then vertex vi. 1 lies in the outer

face of (i, and the neighbors of v,

form a path on the boundary of G&;..
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Canonical Order — Example

(C1) Vertices {vy,...,vr} induce a

biconnected inner triangulation; call it G;..
v16 (C2) Edge (v1,v2) belongs to the outer face of
G.
1a (C3) If kK < n then vertex vi. 1 lies in the outer
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Canonical Order — Example

(C1) Vertices {vy,...,vr} induce a
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Canonical Order — Example |

(C1) Vertices {vy,...,vr} induce a

biconnected inner triangulation; call it G;..
v16 (C2) Edge (v1,v2) belongs to the outer face of
G.
1a (C3) If kK < n then vertex vi. 1 lies in the outer
V1 face of (i, and the neighbors of v,

form a path on the boundary of G&;..
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Canonical Order — Example

(C1) Vertices {vy,...,vr} induce a

biconnected inner triangulation; call it G;..

(C2) Edge (v1,v2) belongs to the outer face of
Gp.

(C3) If kK < n then vertex vi. 1 lies in the outer

face of (i, and the neighbors of v,

form a path on the boundary of G&;..

chord:

edge joining two
non-adjacent
vertices in a cycle

- 16



Canonical Order — Example

(C1) Vertices {vy,...,vr} induce a

biconnected inner triangulation; call it G;..

(C2) Edge (v1,v2) belongs to the outer face of
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Canonical Order — Example

(C1) Vertices {vy,...,vr} induce a

biconnected inner triangulation; call it G;..

(C2) Edge (v1,v2) belongs to the outer face of
Gp.
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Canonical Order — Example

(C1) Vertices {vy,...,vr} induce a

biconnected inner triangulation; call it G;..

(C2) Edge (v1,v2) belongs to the outer face of
Gp.

(C3) If kK < n then vertex vi. 1 lies in the outer
face of (i, and the neighbors of v,
form a path on the boundary of G&;..
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Canonical Order — Example

V16
U14
V12 V15
V13 \v17
U10
U9
Us
Usg o ©

(C1) Vertices {vy,...,vr} induce a

biconnected inner triangulation; call it G;..

(C2) Edge (v1,v2) belongs to the outer face of
Gp.

(C3) If kK < n then vertex vi. 1 lies in the outer
face of (i, and the neighbors of v,
form a path on the boundary of G&;..
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Canonical Order — Example

(C1) Vertices {vy,...,vr} induce a

biconnected inner triangulation; call it G;..

(C2) Edge (v1,v2) belongs to the outer face of
Gp.

(C3) If kK < n then vertex vi. 1 lies in the outer

face of (i, and the neighbors of v,

form a path on the boundary of G&;..

- 31



Canonical Order — Existence

(C1l) (i biconnected inner triangulation

Lemma (C2) (w1,v2) on outer face of GG,

Every plane triangulation has a canonical order. (C3) k <n = vpy1 in outer face of Gy,

neighbors of v;. .1 form path on
Consider any n-vertex plane triangulation. We show boundary of Gy

this statement by induction on k from n down to 3.

Induction base (k =n): Let GG,, = G, and let vy, v, v, be the
vertices of the outer face of (+,,. Conditions (C1)—(C3) hold.

Induction hypothesis:  Vertices v,,_1,...,vr11 have been chosen
such that conditions (C1)—(C3) hold for every i € {k+1,...,n}.

Induction step: Consider (5. We search for v;.. We need to show:
VU, 1. v not incident to
because v}, cut vertex chord is sufficient.
incident to a 2. Such v, exists.
G chord Gr1

V1 V2 U1 U2

10-21



11-23

Canonical Order — Existence

Claim 1. Claim 2.
If v i1s not incident to a chord, There exists a vertex in (-, that is not
then (&,._1 is biconnected. Incident to a chord as choice for vy.

Contradiction to neighbors of
v, forming a path on 0Gj_q!

V1 U2

(1 was not biconnected! _
This completes the proof of the lemma. [
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Canonical Order — Implementation

outer face

CanonicalOrder(G, (vy,v2,v,)) . W chord(v)=
iforeach v € V(G) do  # chords incident to v
. | chords(v) < 0; out(v) < false; < false - ® out(v) = true iff v on boun-

out(v1), out(vs), out(v,) « true dary of current outer face

for k = n downto 3 do  u = true iff v has
| choose v € V(G) \ {v1,v2} such that — false, = received a number > k
out(v) = true, chords(v) = 0 // use list of cand/dates
Vg — U, < true; out(v,) < false ,
let w,, ..., w, be the ordered unmarked neighbors of vk
forz—p—I—ltoq—ldo // O(n) time in total -
out(w;) < true // O(m) = O(n) in tota//i (w1 = v1) (we =v2)
foreach u € Adj[w;] \ {w;_1, w11} do«" - Lemma. |
| if out(u) then chords(w;)++, chords(u)++ - Algorithm CanonicalOrder
L - computes a canonical order of
 if p+1=gqthen chords(w, )=, chords(wg)-- - a plane graph in O(n) time.



Shift Method — Idea

Drawing invariants:
(1. is drawn such that

B v is at (0,0), vy is at (2k — 4,0),

B boundary of GG (minus edge {v1,v2}) is drawn
X-monotone,

B each edge on the boundary of (&}
(except {v1,v2}) is drawn with slopes +1.

Vk+1
o)

) Overlaps!
/ What could be the solution?




Shift Method — Idea

Drawing invariants:
(1. is drawn such that

B v is at (0,0), vy is at (2k — 4,0),

B boundary of GG (minus edge {v1,v2}) is drawn
X-monotone,

B each edge on the boundary of (&}
(except {v1,v2}) is drawn with slopes +1.

Vk+1
o)

What could be the solution?
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Shift Method — Idea

Drawing invariants: Will vy 1 lie on the grid?
(1. is drawn such that

B v is at (0,0), vy is at (2k — 4,0),

B boundary of GG (minus edge {v1,v2}) is drawn
X-monotone,

B each edge on the boundary of GG, B A >

(except {v1,v2}) is drawn with slopes +1.
\ Yes, because w, and w,
have even Manhattan

Vk+1

distance Az + Ay.

13-20



Shift Method — Example




Shift Method — Example

atin = e

E;\
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atin = e
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atin = e

E;\
SO




Shift Method — Example
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Shift Method — Example

atin = e
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Shift Method — Example

atin = e




Shift Method — Example




Shift Method — Example




Example

Shift Method —

atin = e




Shift Method — Example
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Shift Method — Planarity

Observations. Lemma.

B Each internal vertex is exactly once. let 0 <01 <0 <--- <0 €N,
s.t. 0pt1 —0p > 1,00 —0g—1 2> 1,
0q — 0p = 2 and even. If we shift

by 0, to the right, then we
get a planar straight-line drawing.

B Covering relation defines a tree in G
M andaforestin G,;, 1 <:1<n-—1.

Proof by induction:
If G1._1 is drawn planar and straight-line, then so is (5.

|deas:
— New edges don't intersect other edges (— invariants).
— Edges within each do not change.
Wt—1  — Other edges lie within triangles that only become
Wy flatter without causing new intersections.
< = <U
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Shift Method — Pseudocode

canonical order of V(G)

ShiftMethod(G, (v1,va, - . ., vy))

for k=1 to 3 do

L)+ o)

P(v1) = (0,0); P(v2) - (2,0), P(vs) « (1,1) &£
.~ for k =4 ton do

Let 0G_1 be v1 = w1, wo, ..., Wi_1, Wt = V>.

Let wp,...,w, be the neighbors of vy. ;
foreach v € U7~ , do // O(n?) in total ;
L z(v) < x(v) + 1 5
foreach v € |J;_, L(w;) do // O(n?) in tota/é

L x(v) < x(v) + 2

P(vr) < intersection of slope-+1 diagonals
through P(w,) and P(w,)

L L) e U L) U o
- return P(v1),..., P(vn)

Running Time?




Shift Method — Linear-Time Implementation

Idea 1.

To compute x(vi) and y(vg),

we need only y(w,), , and z(w,) — x(w,)
Idea 2.

Instead of storing explicit x-coordinates,
we store, for each vertex within a specific spanning tree,

17 -

the x-distance to its parent (v is the root).

After an x-distance is computed for each vy,
use preorder traversal to compute all x-coordinates.

(1) 2(vx) = 3(x(wq) + z(wp) + — y(wp))
(2) y(vk) = %(x(wq) — x(wp) + + y(wp))
(3) z(vr) — x(wp) = 3(x(wq) — x(wp) + — y(wp))
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Shift Method — Linear-Time Implementation

Relative x-distance tree.
For each vertex v store

B x-offset A (v) from parent  m y-coordinate y(v)

Calculations.
m A, (wp+1 )""", A, (wq)"""

B Ay (wp,wy) =Dp(wpr1) + ...+ Ap(wy)
B Au(vg) by (3) m y(vr) by (2) \ root Ao (w0 w0) #
: izEZQ) :)fija;zjjl))__ii?::) takes O(n) time in total @
(1) z(vr) = 5(x(wq) + x(wp) + ylw,) — y(wy))
(2) y(vk) = %(x(wQ) — z(wp) + y(wy) + y(wp))
(3) w(vn) — a(wp) = Ha(w,) — a(wy) + y(w,) — y(w,))

—

A (vr) Ay (wp, wy)
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Discussion

B The shift method by de Fraysseix, Pach, and Pollack provides an algorithmic tool to
efficiently draw a plane graph onto a polynomial-size grid using only straight-line edges.

B The linear-time implementation was later proposed by Chrobak and Payne.

B Although we are guaranteed to get a very small grid, only straight-line edges, and no edge
crossings, the resulting drawings are not always visually pleasing: the drawings tend to
have very small angles and a big variance in the size of the triangular faces.

B A quite different approach yielding similar results is by Schnyder (— next lecture).



| iterature

B [PGD Ch. 4.2] for detailed explanation of the shift method

B [de Fraysseix, Pach, Pollack 1990] “How to draw a planar graph on a grid”
— original paper introducing the shift method

B [Chrobak, Payne 1995] “A linear-time algorithm for drawing a planar graph on a grid”
— original paper on how to implement the shift method in linear time
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