Visualization of Graphs

Lecture 2:
 Force-Directed Drawing Algorithms

Part I:
Spring Embedders

Johannes Zink

Summer semester 2024

General Layout Problem

Input: Graph G

Output: Clear and readable straight-line drawing of G

General Layout Problem

Input: Graph G

Output: Clear and readable straight-line drawing of G
Drawing aesthetics to optimize:
■ adjacent vertices are close

- non-adjacent vertices are far apart

■ edges short, straight-line, similar length

- densely connected parts (clusters) form communities
- as few crossings as possible

■ nodes distributed evenly
Optimization criteria partially contradict each other.

Fixed Edge Lengths?

Input: Graph G, required length $\ell(e)$ for each edge $e \in E(G)$.
Output: Drawing of G that realizes the given edge lengths.

NP-hard for
■ uniform edge lengths in any dimension

- uniform edge lengths in planar drawings
- edge lengths in $\{1,2\}$

Physical Analogy

Idea.

[Eades '84]
"To embed a graph we replace the vertices by steel rings and replace each edge with a spring to form a mechanical system... The vertices are placed in some initial layout and let go so that the spring forces on the rings move the system to a minimal energy state."

Physical Analogy

Idea.

[Eades '84]
"To embed a graph we replace the vertices by steel rings and replace each edge with a spring to form a mechanical system... The vertices are placed in some initial layout and let go so that the spring forces on the rings move the system to a minimal energy state."

Physical Analogy

Idea.

[Eades '84]
"To embed a graph we replace the vertices by steel rings and replace each edge with a spring to form a mechanical system... The vertices are placed in some initial layout and let go so that the spring forces on the rings move the system to a minimal energy state."

So-called spring-embedder algorithms that work according to this or similar principles are among the most frequently used graph-drawing methods in practice.

Attractive forces.

 pairs $\{u, v\}$ of adjacent vertices:

Repulsive forces.
any pair $\{x, y\}$ of vertices:

Force-Directed Algorithms

Spring Embedder by Eades - Model

■ Repulsive forces

$$
f_{\mathrm{rep}}\left(p_{u}, p_{v}\right)=\frac{c_{\mathrm{rep}}}{\left\|p_{v}-p_{u}\right\|^{2}} \cdot \overrightarrow{p_{v} p_{u}}
$$

■ Attractive forces
spring constant (e.g., 1.0)

$$
\begin{aligned}
f_{\text {spring }}\left(p_{u}, p_{v}\right) & =c_{\text {spring }} \cdot \log \frac{\left\|p_{v}-p_{u}\right\|}{\ell} \cdot \overrightarrow{p_{u} p_{v}} \\
f_{\text {attr }}\left(p_{u}, p_{v}\right) & =f_{\text {spring }}\left(p_{u}, p_{v}\right)-f_{\text {rep }}\left(p_{u}, p_{v}\right)
\end{aligned}
$$

ForceDirected $\left(\operatorname{graph} G, p=\left(p_{v}\right)_{v \in V}, \varepsilon>0, K \in \mathbb{N}\right)$ $t \leftarrow 1$
while $t \leq K$ and $\max _{v \in V(G)}\left\|F_{v}(t-1)\right\|>\varepsilon$ do foreach $u \in V(G)$ do
$F_{u}(t) \leftarrow \sum_{v \in V(G)} f_{\text {rep }}\left(p_{u}, p_{v}\right)+\sum_{v \in \operatorname{Adj}[u]} f_{\text {attr }}\left(p_{u}, p_{v}\right)$ foreach $u \in V(G)$ do
$p_{u} \leftarrow p_{u}+\delta(t) \cdot F_{u}(t)$
$t \leftarrow t+1$
return p

Notation.

- $\overrightarrow{p_{u} p_{v}}=$ unit vector pointing from u to v
- $\left\|p_{v}-p_{u}\right\|=$ Euclidean distance between u and v

■ $\ell=$ ideal spring length for edges

■ Resulting displacement vector

$$
F_{u}=\sum_{v \in V(G)} f_{\mathrm{rep}}\left(p_{u}, p_{v}\right)+\sum_{v \in \operatorname{Adj}[u]} f_{\mathrm{attr}}\left(p_{u}, p_{v}\right)
$$

Spring Embedder by Eades - Force Diagram

$$
f_{\text {attr }}\left(p_{u}, p_{v}\right)=f_{\text {spring }}\left(p_{u}, p_{v}\right)-f_{\text {rep }}\left(p_{u}, p_{v}\right)
$$

Force

Spring Embedder by Eades - Discussion

Advantages.

■ very simple algorithm
■ good results for small and medium-sized graphs
■ empirically good representation of symmetry and structure

Disadvantages.

■ System may not be stable at the end.

- May converge to a local minimum that is not a global minimum.

■ Computing $f_{\text {spring }}$ takes $\mathcal{O}(|E(G)|)$ time; computing $f_{\text {rep }}$ takes $\mathcal{O}\left(|V(G)|^{2}\right)$ time.

Influence.

■ original paper by Peter Eades [Eades '84] got ≈ 2000 citations

- basis for many further ideas

Variant by Fruchterman \& Reingold

ForceDirected (graph $\left.G, p=\left(p_{v}\right)_{v \in V}, \varepsilon>0, K \in \mathbb{N}\right)$ $t \leftarrow 1$
while $t \leq K$ and $\max _{v \in V(G)}\left\|F_{v}(t-1)\right\|>\varepsilon$ do foreach $u \in V(G)$ do
$F_{u}(t) \leftarrow \sum_{v \in V(G)} f_{\text {rep }}\left(p_{u}, p_{v}\right)+\sum_{v \in \operatorname{Adj}[u]} f_{\text {attr }}\left(p_{u}, p_{v}\right)$ foreach $u \in V(G)$ do
$p_{u} \leftarrow p_{u}+\delta(t) \cdot F_{u}(t)$
$t \leftarrow t+1$
return p

Notation.

■ Attractive forces

$$
f_{\text {attr }}\left(p_{u}, p_{v}\right)=\frac{\left\|p_{v}-p_{u}\right\|^{2}}{\ell} \cdot \overrightarrow{p_{u} p_{v}}
$$

- $\left\|p_{u}-p_{v}\right\|=$ Euclidean distance between u and v
- $\overrightarrow{p_{u} p_{v}}=$ unit vector pointing from u to v
- $\ell=$ ideal spring length for edges

■ Resulting displacement vector

$$
F_{u}=\sum_{v \in V(G)} f_{\text {rep }}\left(p_{u}, p_{v}\right)+\sum_{v \in \operatorname{Adj}[u]} f_{\text {attr }}\left(p_{u}, p_{v}\right)
$$

Fruchterman \& Reingold - Force Diagram

$f_{\text {spring }}\left(p_{u}, p_{v}\right)=f_{\text {attr }}\left(p_{u}, p_{v}\right)+f_{\text {rep }}\left(p_{u}, p_{v}\right)$

Adaptability

degree of vertex u, i.e., $|\operatorname{Adj}[u]|$

Inertia. ("Trägheit")

- Define vertex mass $\Phi(u)=1+\operatorname{deg}(u) / 2$
- Set $f_{\text {attr }}\left(u, p_{v}\right)=f_{\text {attr }}\left(p_{u}, p_{v}\right) \cdot 1 / \Phi(u)$

Gravitation.

■ Define centroid $\sigma_{V}=1 /|V(G)| \cdot \sum_{v \in V(G)} p_{v}$
■ Add force $f_{\mathrm{grav}}(v)=c_{\mathrm{grav}} \cdot \Phi(v) \cdot \overrightarrow{p_{v} \sigma_{V}}$
Restricted drawing area.
If F_{v} points beyond area R, clip vector appropriately at the border of R.

And many more...

■ magnetic orientation of edges [GD Ch. 10.4]

- other energy models
- planarity preserving

■ speed-ups

Speeding up "Convergence" by Adaptive Displacement $\delta_{v}(t)$

```
ForceDirected (graph \(\left.G, p=\left(p_{v}\right)_{v \in V}, \varepsilon>0, K \in \mathbb{N}\right)\)
    \(t \leftarrow 1\)
    while \(t \leq K\) and \(\max _{v \in V(G)}\left\|F_{v}(t-1)\right\|>\varepsilon\) do
        foreach \(u \in V(G)\) do
        \(F_{u}(t) \leftarrow \sum_{v \in V(G)} f_{\text {rep }}\left(p_{u}, p_{v}\right)+\sum_{v \in \operatorname{Adj}[u]} f_{\text {attr }}\left(p_{u}, p_{v}\right)\)
    foreach \(u \in V(G)\) do
        \(p_{u} \leftarrow p_{u}+\delta(t) \cdot F_{u}(t)\)
    \(t \leftarrow t+1\)
    return \(p\)
```

Speeding up "Convergence" by Adaptive Displacement $\delta_{v}(t)$ [Frick, Ludwig, Mehldau '95]

Same direction.
\rightarrow increase temperature $\delta_{v}(t)$

Speeding up "Convergence" by Adaptive Displacement $\delta_{v}(t)$

 [Frick, Ludwig, Mehldau '95]

Same direction.
\rightarrow increase temperature $\delta_{v}(t)$
Oscillation.
\rightarrow decrease temperature $\delta_{v}(t)$

Speeding up "Convergence" by Adaptive Displacement $\delta_{v}(t)$

[Frick, Ludwig, Mehldau '95]

Same direction.
\rightarrow increase temperature $\delta_{v}(t)$
Oscillation.
\rightarrow decrease temperature $\delta_{v}(t)$

Rotation.

- count rotations
- if applicable
\rightarrow decrease temperature $\delta_{v}(t)$

Speeding up "Convergence" via Grids

[Fruchterman \& Reingold '91]

■ divide plane into a grid
■ consider repulsive forces only to vertices in neighboring cells
\square and only if the distance is less than some threshold

Discussion.

■ good idea to improve actual runtime

- asymptotic runtime does not improve
- might introduce oscillation and thus a quality loss

Speeding up Repulsive-Force Computation with Quad Trees

[Barnes, Hut '86]

Speeding up Repulsive-Force Computation with Quad Trees

[Barnes, Hut '86]

$s_{\text {init }}$

- height $h \leq \log _{2}\left(\frac{s_{\text {init }}}{d_{\text {min }}}\right)+\frac{3}{2}$
- $h \in \mathcal{O}(\log n)$ if vertices evenly distributed in the initial box
- time/space in $\mathcal{O}(h n)$
- compressed quad tree can be computed in $\mathcal{O}(n \log n)$ time

Speeding up Repulsive-Force Computation with Quad Trees

[Barnes, Hut '86]

for each child R_{i} of a vertex on path from root to u.

Visualization of Graphs

Lecture 2:
 Force-Directed Drawing Algorithms

Part II:
Tutte Embeddings

Idea

Consider a fixed triangle (a, b, c) with a common neighbor v

Where would you place $v ?$

$\operatorname{barycenter}\left(x_{1}, \ldots, x_{k}\right)=\sum_{i=1}^{k} x_{i} / k$
William T. Tutte

Idea.

Repeatedly place every vertex at barycenter of neighbors.

Tutte's Forces

Goal.

$$
\begin{aligned}
p_{u} & =\operatorname{barycenter}(\operatorname{Adj}[u]) \\
& =\sum_{v \in \operatorname{Adj}[u]} p_{v} / \operatorname{deg}(u)
\end{aligned}
$$

$$
\begin{aligned}
F_{u}(t) & =\sum_{v \in \operatorname{Adj}[u]} p_{v} / \operatorname{deg}(u)-p_{u} \\
& =\sum_{v \in \operatorname{Adj}[u]}\left(p_{v}-p_{u}\right) / \operatorname{deg}(u) \\
& =\sum_{v \in \operatorname{Adj}[u]} \frac{\left\|p_{u}-p_{v}\right\|}{\operatorname{deg}(u)} \overrightarrow{p_{u} p_{v}}
\end{aligned}
$$

■ Repulsive forces $f_{\text {rep }}\left(p_{u}, p_{v}\right)=0$
■ Attractive forces

$$
f_{\mathrm{attr}}\left(p_{u}, p_{v}\right)=\left\{\begin{array}{l}
0 \\
\frac{\left\|p_{u}-p_{v}\right\|}{\operatorname{deg}(u)} \overrightarrow{p_{u} p_{v}}
\end{array}\right.
$$

```
ForceDirected (graph \(\left.G, p=\left(p_{v}\right)_{v \in V}, \varepsilon>0, K \in \mathbb{N}\right)\)
    \(t \leftarrow 1\)
    while \(t \leq K\) and \(\max _{v \in V(G)}\left\|F_{v}(t-1)\right\|>\varepsilon\) do
    foreach \(u \in V(G)\) do
        \(F_{u}(t) \leftarrow \sum_{v \in V(G)} f_{\text {rep }}\left(p_{u}, p_{v}\right)+\sum_{v \in \operatorname{Adj}[u]} f_{\text {attr }}\left(p_{u}, p_{v}\right)\)
    foreach \(u \in V(G)\) do
        \(p_{u} \leftarrow p_{u}+\downarrow \subset 1 \cdot F_{u}(t)\)
        \(t \leftarrow t+1\)
    return \(p\)
                                \(\operatorname{barycenter}\left(x_{1}, \ldots, x_{k}\right)=\sum_{i=1}^{k} x_{i} / k\)
ForceDirected(graph \(\left.G, p=\left(p_{v}\right)_{v \in V}, \varepsilon>0, K \in \mathbb{N}\right)\)
\(t \leftarrow 1\)
while \(t \leq K\) and \(\max _{v \in V(G)}\left\|F_{v}(t-1)\right\|>\varepsilon\) do
foreach \(u \in V(G)\) do
\[
F_{u}(t) \leftarrow \sum_{v \in V(G)} f_{\text {rep }}\left(p_{u}, p_{v}\right)+\sum_{v \in \operatorname{Adj}[u]} f_{\mathrm{attr}}\left(p_{u}, p_{v}\right)
\]
foreach \(u \in V(G)\) do
\[
p_{u} \leftarrow p_{u}+\delta<1 \cdot F_{u}(t)
\]
\(t \leftarrow t+1\)
return \(p\)
\[
\operatorname{barycenter}\left(x_{1}, \ldots, x_{k}\right)=\sum_{i=1}^{k} x_{i} / k
\]
```

Global minimum: $p_{u}=(0,0) \forall u \in V(G)$

if u fixed, otherwise.

Solution: fix coordinates of outer face!

$$
\begin{aligned}
& \overrightarrow{p_{u} p_{v}}=\text { unit vector pointing } \\
& \text { from } u \text { to } v \\
& \left\|p_{u}-p_{v}\right\|=\text { Euclidean distance } \\
& \text { between } u \text { and } v
\end{aligned}
$$

System of Linear Equations

Goal. $p_{u}=\left(x_{u}, y_{u}\right)$
$p_{u}=\operatorname{barycenter}(\operatorname{Adj}[u])=\sum_{v \in \operatorname{Adj}[u]} p_{v} / \operatorname{deg}(u)$

$$
A x=b \quad A y=b \quad b=(0)_{n}
$$

$$
\begin{aligned}
& x_{u}=\sum_{v \in \operatorname{Adj}[u]} x_{v} / \operatorname{deg}(u) \Leftrightarrow \operatorname{deg}(u) \cdot x_{u}=\sum_{v \in \operatorname{Adj}[u]} x_{v} \Leftrightarrow \operatorname{deg}(u) \cdot x_{u}-\sum_{v \in \operatorname{Adj}[u]} x_{v}=0 \\
& y_{u}=\sum_{v \in \operatorname{Adj}[u]} y_{v} / \operatorname{deg}(u) \Leftrightarrow \operatorname{deg}(u) \cdot y_{u}=\sum_{v \in \operatorname{Adj}[u]} y_{v} \Leftrightarrow \operatorname{deg}(u) \cdot y_{u}-\sum_{v \in \operatorname{Adj}[u]} y_{v}=0
\end{aligned}
$$

$\left.\begin{array}{l}u_{1} \\ u_{2} \\ u_{3} \\ u_{4} \\ u_{5} \\ u_{6}\end{array} \begin{array}{rrrrrr}u_{1} & u_{2} & u_{3} & u_{4} & u_{5} & u_{6} \\ 3 & -1 & -1 & 0 & -1 & 0 \\ -1 & 3 & -1 & -1 & 0 & 0 \\ -1 & -1 & 3 & 0 & 0 & -1 \\ 0 & -1 & 0 & 3 & -1 & -1 \\ -1 & 0 & 0 & -1 & 2 & 0 \\ 0 & 0 & -1 & -1 & 0 & 2\end{array}\right)$

$$
\begin{aligned}
& A_{i i}=\operatorname{deg}\left(u_{i}\right) \\
& A_{i j, i \neq j}= \begin{cases}-1 & u_{i} u_{j} \in E \\
0 & u_{i} u_{j} \notin E\end{cases}
\end{aligned}
$$

n variables, n constraints, $\operatorname{det}(A)=0$ \Rightarrow no unique solution

System of Linear Equations

Theorem.

$=$ Tutti drawing
Goal. $p_{u}=\left(x_{u}, y_{u}\right)$
$p_{u}=\operatorname{barycenter}(\operatorname{Adj}[u])=$
Tutte's barycentric algorithm admits a unique solution.
It can be computed in polynomial time.
$x_{u}=\sum_{v \in \operatorname{Adj}[u]} x_{v} / \operatorname{deg}(u) \Leftrightarrow \operatorname{deg}(u) \cdot x_{u}=\sum_{v \in \operatorname{Adj}[u]} x_{v} \Leftrightarrow \operatorname{deg}(u) \cdot x_{u}-\sum_{v \in \operatorname{Adj}[u]} x_{v}=0$
$y_{u}=\sum_{v \in \operatorname{Adj}[u]} y_{v} / \operatorname{deg}(u) \Leftrightarrow \operatorname{deg}(u) \cdot y_{u}=\sum_{v \in \operatorname{Adj}[u]} y_{v} \Leftrightarrow \operatorname{deg}(u) \cdot y_{u}-\sum_{v \in \operatorname{Adj}[u]} y_{v}=0$

k variables, k constraints, $\operatorname{det}(A)>0$
$k=\#$ free vertices
\Rightarrow unique solution
$A_{i i}=\operatorname{deg}\left(u_{i}\right)$
$A_{i j, i \neq j}= \begin{cases}-1 & u_{i} u_{j} \in E \\ 0 & u_{i} u_{j} \notin E\end{cases}$
Solution:

1. No need to change fixed vertices.
2. Constraints that depend on fixed vertices are constant and can be moved into b.

3-Connected Planar Graphs

(up to the choice of the outer face and mirroring)
G planar:
G can be drawn such that no two edges cross each other.
G connected: $\exists u-v$ path for every vertex pair $\{u, v\}$.
k-connected: $\quad G-\left\{v_{1}, \ldots, v_{k-1}\right\}$ is connected for any $k-1$ vertices $v_{1} \ldots, v_{k-1}$. Or (equivalently if $G \neq K_{k}$):
There are at least k vertex-disjoint $u-v$ paths for every vertex pair $\{u, v\}$.

Theorem.
 [Whitney 1933]

Every 3-connected planar graph
has a unique planar embedding.

Proof sketch.

Γ_{1}, Γ_{2} planar embeddings of G.
Let C be a face of Γ_{2}, but not of Γ_{1}. u inside C in Γ_{1}, v outside C in Γ_{1} both on same side in Γ_{2}

Tutte's Theorem

Theorem.

[Tutte 1963]
Let G be a 3-connected planar graph, and let C be a face of its unique embedding.
If we fix C on a strictly convex polygon, then the Tutte drawing of G is planar and all its faces are strictly convex.

Properties of Tutte Drawings

Property 1. Let $v \in V(G)$ be free (i.e., not fixed), ℓ line through $\exists u \in \operatorname{Adj}[v] \cap \ell^{+} \Rightarrow \exists w \in \operatorname{Adj}[v] \cap \ell^{-}$.
Otherwise, all forces pull v to the same side
Property 2. All free vertices lie inside

Proof of Tutte's Theorem

Lemma. Let $u v$ be a non-boundary edge, ℓ line through $u v$. Then the two faces f_{1}, f_{2} incident to $u v$ lie completely on opposite sides of ℓ.

Property 1. Let v be a free vertex, ℓ line through v. $\exists x \in \operatorname{Adj}[v] \cap \ell^{+} \Rightarrow \exists w \in \operatorname{Adj}[v] \cap \ell^{-}$.
Property 3. Let ℓ be any line.
Let V_{ℓ} be the set of vertices on one side of ℓ. Then $G\left[V_{\ell}\right]$ is connected.
x and w on different sides of $\ell \Rightarrow f_{1}, f_{2}$ have angles $<\pi$ at v.
Lemma. All faces are strictly convex.

Lemma. The drawing is planar.

Assume that point p lies in two faces.
Property 2. All free vertices lie inside C.
$\Rightarrow q$ lies in one (i.e., the outer) face.
When jumping an edge, \#faces doesn't change.
$\Rightarrow p$ lies in one face. 4

Discussion

■ In practice, force-directed graph drawing methods are very often used.
■ Numerous variants, adaptations, and extensions exist.

- They are well-suited for small and medium-size graphs (up to ≈ 100 vertices).

■ A way to deal with larger graphs, is to coarsen the graph by merging vertices and first to draw the coarsened graph and then to unpack and draw the vertices to the original graph.

■ In practice, the related technique of multidimensional scaling (MDS) is often used, too. There, for every pair of vertices, an optimal distance (the distance in the graph) is determined and a drawing with these optimal distances is computed in high-dimensional space. Afterwards this drawing is projected into the plane.

- From a theoretical perspective, Tutte drawings posses many powerful properties.

■ If a graph is not 3-connected, we can (temporarily) add sufficiently many edges.
■ In practice, Tutte drawings are hardly used because the inner parts often become tiny.

Literature

Main sources:
■ [GD Ch. 10] Force-Directed Methods
■ [DG Ch. 4] Drawing on Physical Analogies
Original papers:
■ [Eades 1984] A heuristic for graph drawing
■ [Fruchterman, Reingold 1991] Graph drawing by force-directed placement
■ [Tutte 1963] How to draw a graph

