
1

Visualization of Graphs

Part I:
Spring Embedders

Lecture 2:
Force-Directed Drawing Algorithms

Johannes Zink

Summer semester 2024

2 - 2

General Layout Problem

Input:

Output: Clear and readable straight-line drawing of G

Graph G

2 - 10

General Layout Problem

Input:

Output: Clear and readable straight-line drawing of G

Drawing aesthetics to optimize:

� adjacent vertices are close

� non-adjacent vertices are far apart

� edges short, straight-line, similar length

� densely connected parts (clusters) form communities

� as few crossings as possible

� nodes distributed evenly

Optimization criteria partially contradict each other.

Graph G

3 - 9

Fixed Edge Lengths?

NP-hard for

� uniform edge lengths in any dimension [Johnson ’82]

� uniform edge lengths in planar drawings [Eades, Wormald ’90]

� edge lengths in {1, 2} [Saxe ’80]

Input:

Output:

Graph G, required length `(e) for each edge e ∈ E(G).

Drawing of G that realizes the given edge lengths.

4 - 4

Physical Analogy

Idea. [Eades ’84]
“To embed a graph we replace the vertices by steel rings and replace each edge with
a spring to form a mechanical system. . . The vertices are placed in some initial
layout and let go so that the spring forces on the rings move the system to a minimal
energy state.”

4 - 5

Physical Analogy

Idea. [Eades ’84]
“To embed a graph we replace the vertices by steel rings and replace each edge with
a spring to form a mechanical system. . . The vertices are placed in some initial
layout and let go so that the spring forces on the rings move the system to a minimal
energy state.”

4 - 12

Physical Analogy

Idea. [Eades ’84]
“To embed a graph we replace the vertices by steel rings and replace each edge with
a spring to form a mechanical system. . . The vertices are placed in some initial
layout and let go so that the spring forces on the rings move the system to a minimal
energy state.”

pairs {u, v} of adjacent vertices:

u v
fattr

Repulsive forces.

any pair {x, y} of vertices:

x
yfrep

So-called spring-embedder algorithms that
work according to this or similar principles are
among the most frequently used graph-drawing
methods in practice.

Attractive forces.

5 - 15

Force-Directed Algorithms

ForceDirected(graph G, p = (pv)v∈V , ε > 0, K ∈ N)

t← 1
while t ≤ K and maxv∈V (G) ‖Fv(t− 1)‖ > ε do

foreach u ∈ V (G) do
Fu(t)←

∑
v∈V (G) frep(pu, pv) +

∑
v∈Adj[u] fattr(pu, pv)

foreach u ∈ V (G) do
pu ← pu + δ(t) · Fu(t)

t← t+ 1

return p

end layout

initial layout; may be randomly chosen positions

u
cooling factor

δ(t)

t
u

max # iterations

vertices adjacent to u

threshold (assume Fv(0) =∞)

6 - 10

Spring Embedder by Eades – Model

� Repulsive forces

frep(pu, pv) =
crep

‖pv − pu‖2
· −−→pvpu

� Attractive forces

fspring(pu, pv) = cspring · log
‖pv − pu‖

`
· −−→pupv

fattr(pu, pv) = fspring(pu, pv)− frep(pu, pv)

� Resulting displacement vector

Fu =
∑

v∈V (G)

frep(pu, pv) +
∑

v∈Adj[u]

fattr(pu, pv)

Notation.

� −−→pupv = unit vector
pointing from u to v

� ‖pv − pu‖ = Euclidean
distance between u and v

� ` = ideal spring length
for edges

repulsion constant (e.g., 2.0)

spring constant (e.g., 1.0)

ForceDirected(graph G, p = (pv)v∈V , ε > 0, K ∈ N)

t← 1
while t ≤ K and maxv∈V (G) ‖Fv(t− 1)‖ > ε do

foreach u ∈ V (G) do
Fu(t)←

∑
v∈V (G) frep(pu, pv) +

∑
v∈Adj[u] fattr(pu, pv)

foreach u ∈ V (G) do
pu ← pu + δ(t) · Fu(t)

t← t+ 1

return p

7 - 5

Spring Embedder by Eades – Force Diagram

Distance
`

Force

p
u

ll
u

to
v

p
u

sh
u

aw
ay

fspring(pu, pv) = cspring · log
‖pv − pu‖

`
· −−→pupv

frep(pu, pv) =
crep

‖pv − pu‖2
· −−→pvpu

fattr(pu, pv) = fspring(pu, pv)− frep(pu, pv)

8 - 11

Spring Embedder by Eades – Discussion

Advantages.

� very simple algorithm

� good results for small and medium-sized graphs

� empirically good representation of symmetry and structure

Disadvantages.

� System may not be stable at the end.

� May converge to a local minimum that is not a global minimum.

� Computing fspring takes O(|E(G)|) time; computing frep takes O(|V (G)|2) time.

Influence.
� original paper by Peter Eades [Eades ’84] got ≈ 2000 citations

� basis for many further ideas

9 - 3

Variant by Fruchterman & Reingold
ForceDirected(graph G, p = (pv)v∈V , ε > 0, K ∈ N)

t← 1
while t ≤ K and maxv∈V (G) ‖Fv(t− 1)‖ > ε do

foreach u ∈ V (G) do
Fu(t)←

∑
v∈V (G) frep(pu, pv) +

∑
v∈Adj[u] fattr(pu, pv)

foreach u ∈ V (G) do
pu ← pu + δ(t) · Fu(t)

t← t+ 1

return p

� Repulsive forces

frep(pu, pv) =
`2

‖pv − pu‖
· −−→pvpu

� Attractive forces

fattr(pu, pv) =
‖pv − pu‖2

`
· −−→pupv

� Resulting displacement vector

Fu =
∑

v∈V (G)

frep(pu, pv) +
∑

v∈Adj[u]

fattr(pu, pv)

Notation.

� ‖pu − pv‖ = Euclidean
distance between u and v

� −−→pupv = unit vector
pointing from u to v

� ` = ideal spring length
for edges

10 - 4

Fruchterman & Reingold – Force Diagram

Distance
`

Force

p
u

ll
u

to
v

p
u

sh
u

aw
ay

frep(pu, pv) =
`2

‖pv − pu‖
· −−→pvpu

fattr(pu, pv) =
‖pv − pu‖2

`
· −−→pupv

fspring(pu, pv) = fattr(pu, pv) + frep(pu, pv)

11 - 6

Adaptability

Inertia. (“Trägheit”)

� Define vertex mass Φ(u) = 1 + deg(u)/2

� Set fattr(u, pv) = fattr(pu, pv) · 1/Φ(u)

Gravitation.

� Define centroid σV = 1/|V (G)| ·
∑

v∈V (G) pv

� Add force fgrav(v) = cgrav · Φ(v) · −−−→pvσV
Restricted drawing area.
If Fv points beyond area R, clip vector appropriately at the border of R.

v

Fv

And many more...

� magnetic orientation of edges [GD Ch. 10.4]

� other energy models

� planarity preserving

� speed-ups

R

degree of vertex u, i.e., |Adj[u]|

12 - 2

Speeding up “Convergence” by Adaptive Displacement δv(t)

δv(t)

ForceDirected(graph G, p = (pv)v∈V , ε > 0, K ∈ N)

t← 1
while t ≤ K and maxv∈V (G) ‖Fv(t− 1)‖ > ε do

foreach u ∈ V (G) do
Fu(t)←

∑
v∈V (G) frep(pu, pv) +

∑
v∈Adj[u] fattr(pu, pv)

foreach u ∈ V (G) do
pu ← pu + δ(t) · Fu(t)

t← t+ 1

return p

12 - 5

Speeding up “Convergence” by Adaptive Displacement δv(t)

Fv(t− 1)

Fv(t)

αv(t)

[Frick, Ludwig, Mehldau ’95]

Same direction.
→ increase temperature δv(t)

12 - 7

Speeding up “Convergence” by Adaptive Displacement δv(t)

Fv(t− 1)

Fv(t)

αv(t)

[Frick, Ludwig, Mehldau ’95]

Same direction.
→ increase temperature δv(t)

Oscillation.
→ decrease temperature δv(t)

12 - 9

Speeding up “Convergence” by Adaptive Displacement δv(t)

Fv(t− 1)

Fv(t)αv(t)

F ′v(t)

[Frick, Ludwig, Mehldau ’95]

Same direction.
→ increase temperature δv(t)

Oscillation.
→ decrease temperature δv(t)

Rotation.

� count rotations

� if applicable

→ decrease temperature δv(t)

13 - 6

Speeding up “Convergence” via Grids

v

[Fruchterman & Reingold ’91]

� divide plane into a grid

� consider repulsive forces only
to vertices in neighboring cells

� and only if the distance is less
than some threshold

Discussion.

� good idea to improve actual runtime

� asymptotic runtime does not improve

� might introduce oscillation and thus
a quality loss

14 - 6

Speeding up Repulsive-Force Computation with Quad Trees

QT
R0

R1 R2 R3 R4

R5

R12

R13

R16

R17 R18

[Barnes, Hut ’86]

� height h ≤ log2

(
sinit

dmin

)
+ 3

2

� h ∈ O(log n) if vertices evenly
distributed in the initial box

� time/space in O(hn)

� compressed quad tree can be
computed in O(n log n) timesinit

width/height of outer square

minimum distance btw. two pts.

14 - 9

Speeding up Repulsive-Force Computation with Quad Trees

QT
R0

R1 R2 R3 R4

R5

R12

R13

R16

R17 R18

[Barnes, Hut ’86]

� height h ≤ log2

(
sinit

dmin

)
+ 3

2

� h ∈ O(log n) if vertices evenly
distributed in the initial box

� time/space in O(hn)

� compressed quad tree can be
computed in O(n log n) timesinit

14 - 14

Speeding up Repulsive-Force Computation with Quad Trees

QT
R0

R1 R2 R3 R4

R5

R12

R13

R16

R17 R18

[Barnes, Hut ’86]

u

u

frep(Ri, pu) = |Ri| · frep(σRi , pu)

for each child Ri of a vertex on path from root to u.

centroid of Ri (pre-computed)

number of points in the subtree Ri

15

Visualization of Graphs

Part II:
Tutte Embeddings

Lecture 2:
Force-Directed Drawing Algorithms

16 - 11

Idea

William T. Tutte
1917 – 2002

Consider a fixed triangle (a, b, c)

with a common neighbor v v

a

b

c
barycenter(a, b, c)

barycenter(x1, . . . , xk) =
∑k

i=1 xi/k

Where would you place v?

Idea.
Repeatedly place every vertex at barycenter of neighbors.

17 - 14

Tutte’s Forces
ForceDirected(graph G, p = (pv)v∈V , ε > 0, K ∈ N)

t← 1
while t ≤ K and maxv∈V (G) ‖Fv(t− 1)‖ > ε do

foreach u ∈ V (G) do
Fu(t)←

∑
v∈V (G) frep(pu, pv) +

∑
v∈Adj[u] fattr(pu, pv)

foreach u ∈ V (G) do
pu ← pu + δ(t) · Fu(t)

t← t+ 1

return p

1

Goal.

pu = barycenter(Adj[u])

barycenter(x1, . . . , xk) =
∑k

i=1 xi/k

=
∑

v∈Adj[u] pv/ deg(u)

Fu(t) =
∑

v∈Adj[u] pv/ deg(u)− pu
=
∑

v∈Adj[u](pv − pu)/ deg(u)

� Repulsive forces frep(pu, pv) = 0

� Attractive forces

fattr(pu, pv) =

{
0 if u fixed,
‖pu−pv‖

deg(u)
−−→pupv otherwise.

Global minimum: pu = (0, 0) ∀u ∈ V (G)

Solution: fix coordinates of outer face!

−−→pupv = unit vector pointing
from u to v

‖pu−pv‖ = Euclidean distance
between u and v

=
∑

v∈Adj[u]

‖pu−pv‖
deg(u)

−−→pupv

18 - 34

System of Linear Equations

Goal.

pu = barycenter(Adj[u]) =
∑

v∈Adj[u] pv/ deg(u)

pu = (xu, yu)

xu =
∑

v∈Adj[u] xv/ deg(u)

yu =
∑

v∈Adj[u] yv/ deg(u)

⇔ deg(u) · xu =
∑

v∈Adj[u] xv
⇔ deg(u) · yu =

∑
v∈Adj[u] yv

⇔ deg(u) · xu −
∑

v∈Adj[u] xv = 0

⇔ deg(u) · yu −
∑

v∈Adj[u] yv = 0

Two systems of linear equations:

u1

u2

u3

u4

Ax = b


3 −1 −1 0 −1 0
−1 3 −1 −1 0 0
−1 −1 3 0 0 −1

0 −1 0 3 −1 −1
−1 0 0 −1 2 0

0 0 −1 −1 0 2


u5

u6

A
u1

u2

u3

u4

u5

u6

u1 u2 u3 u4 u5 u6

Aii = deg(ui)

Aij,i 6=j =

{
−1 uiuj ∈ E
0 uiuj /∈ E

Ay = b b = (0)n

Laplacian matrix of G

n variables, n constraints, det(A) = 0

⇒ no unique solution

18 - 44

System of Linear Equations

Goal.

pu = barycenter(Adj[u]) =
∑

v∈Adj[u] pv/ deg(u)

pu = (xu, yu)

xu =
∑

v∈Adj[u] xv/ deg(u)

yu =
∑

v∈Adj[u] yv/ deg(u)

⇔ deg(u) · xu =
∑

v∈Adj[u] xv
⇔ deg(u) · yu =

∑
v∈Adj[u] yv

⇔ deg(u) · xu −
∑

v∈Adj[u] xv = 0

⇔ deg(u) · yu −
∑

v∈Adj[u] yv = 0

Two systems of linear equations:

u1

u2

u3

u4

Ax = b


3 −1 −1 0 −1 0
−1 3 −1 −1 0 0
−1 −1 3 0 0 −1

0 −1 0 3 −1 −1
−1 0 0 −1 2 0

0 0 −1 −1 0 2


u5

u6

A
u1

u2

u3

u4

u5

u6

u1 u2 u3 u4 u5 u6

Aii = deg(ui)

Aij,i 6=j =

{
−1 uiuj ∈ E
0 uiuj /∈ E

Ay = b b = (0)n

Laplacian matrix of G

n variables, n constraints, det(A) = 0

⇒ no unique solution

k

k = #free vertices

k >

⇒

Theorem.
Tutte’s barycentric algorithm admits a unique solution.
It can be computed in polynomial time.

solve two systems of linear equations

Solution:
1. No need to change fixed
vertices.
2. Constraints that depend on
fixed vertices are constant
and can be moved into b.

= Tutte drawing

19 - 37

3-Connected Planar Graphs

v

3

4

G planar:

G connected:

G can be drawn such that
no two edges cross each other.

∃ u–v path for every vertex pair {u, v}.
k-connected: G− {v1, . . . , vk−1} is connected

for any k − 1 vertices v1 . . . , vk−1.
Or (equivalently if G 6= Kk):
There are at least k vertex-disjoint
u–v paths for every vertex pair {u, v}.

1

2

5

Proof sketch.
Γ1, Γ2 planar embeddings of G.

Let C be a face of Γ2, but not of Γ1.

Γ1

C

u

v

Γ2

C

u

u inside C in Γ1, v outside C in Γ1

both on same side in Γ2

[Whitney 1933]Theorem.
Every 3-connected planar graph
has a unique planar embedding.

(up to the choice of the outer face and mirroring)

20 - 5

Tutte’s Theorem

Theorem.

Let G be a 3-connected planar graph, and
let C be a face of its unique embedding.
If we fix C on a strictly convex polygon, then the Tutte drawing
of G is planar and all its faces are strictly convex.

[Tutte 1963]

21 - 13

Properties of Tutte Drawings

Property 1. Let v ∈ V (G) be free (i.e., not fixed), ` line through v. v
u w

Otherwise, all forces pull v to the same side . . .

Property 2. All free vertices lie inside C.

∃u ∈ Adj[v] ∩ `+ ⇒ ∃w ∈ Adj[v] ∩ `−.

`

`+

`−

22 - 42

Proof of Tutte’s Theorem

Lemma. Let uv be a non-boundary edge, ` line through uv.
Then the two faces f1, f2 incident to uv lie
completely on opposite sides of `.

Property 1. Let v be a free vertex, ` line through v.
∃x ∈ Adj[v] ∩ `+ ⇒ ∃w ∈ Adj[v] ∩ `−.

Property 3. Let ` be any line.
Let V` be the set of vertices on one side of `.
Then G[V`] is connected.

Lemma. The drawing is planar.

p
Assume that point p lies in two faces.

q

Property 2. All free vertices lie inside C.

⇒ q lies in one (i.e., the outer) face.

When jumping an edge, #faces doesn’t change.

⇒ p lies in one face.

v

w

x and w on different sides of `⇒ f1, f2 have angles < π at v.

x

u `
`

Lemma. All faces are strictly convex.

23 - 8

Discussion

� In practice, force-directed graph drawing methods are very often used.

� Numerous variants, adaptations, and extensions exist.

� They are well-suited for small and medium-size graphs (up to ≈ 100 vertices).

� A way to deal with larger graphs, is to coarsen the graph by merging vertices and first to
draw the coarsened graph and then to unpack and draw the vertices to the original graph.

� In practice, the related technique of multidimensional scaling (MDS) is often used, too.
There, for every pair of vertices, an optimal distance (the distance in the graph) is deter-
mined and a drawing with these optimal distances is computed in high-dimensional space.
Afterwards this drawing is projected into the plane.

� From a theoretical perspective, Tutte drawings posses many powerful properties.

� If a graph is not 3-connected, we can (temporarily) add sufficiently many edges.

� In practice, Tutte drawings are hardly used because the inner parts often become tiny.

24

Literature

Main sources:

� [GD Ch. 10] Force-Directed Methods

� [DG Ch. 4] Drawing on Physical Analogies

Original papers:

� [Eades 1984] A heuristic for graph drawing

� [Fruchterman, Reingold 1991] Graph drawing by force-directed placement

� [Tutte 1963] How to draw a graph

	Algorithmic Framework
	General Layout Problem

	Fixed Edge Lengths?
	Physical Analogy
	Force-Directed Algorithms Framework
	Model
	Force diagram
	Discussion
	Fruchterman \& Reingold
	Force diagram
	Adaptability
	Adaptive Displacement

	Speeding up ``Convergence'' via Grids
	Speeding up Repulsive-Force Computation with Quad Trees

	Tutte Embedding
	Idea
	Tutte's Forces
	System of Linear Equations
	3-Connected Planar Graphs
	Tutte's Theorem
	Properties of Tutte Drawings
	Proof of Tutte's Theorem

	Literature

