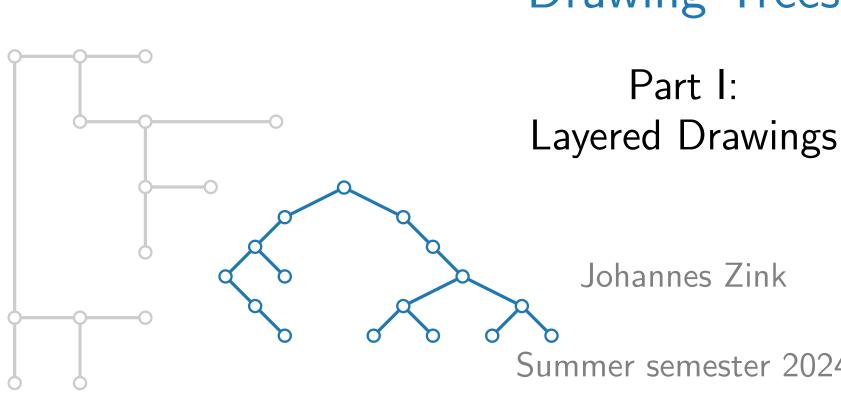


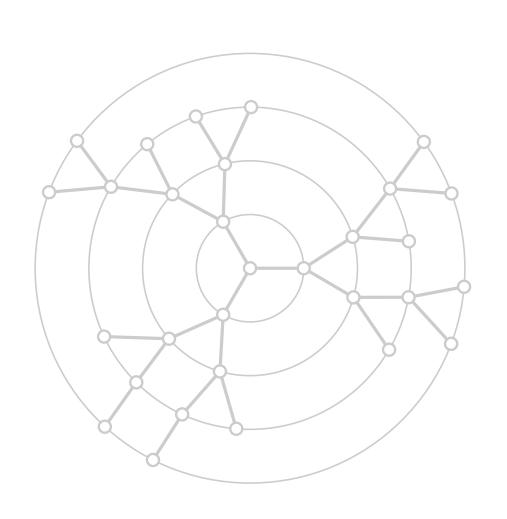
Visualization of Graphs

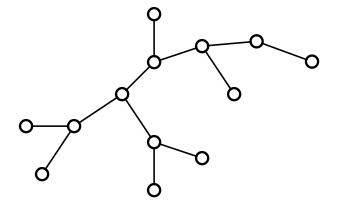
Lecture 1b:

Drawing Trees

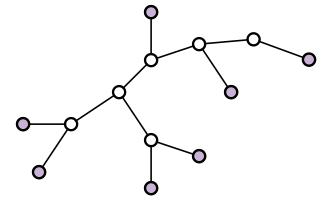
Summer semester 2024





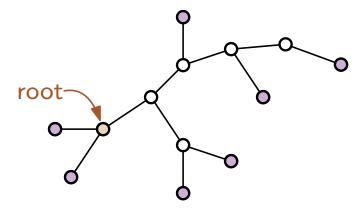


Leaf: vertex of degree 1



Leaf: vertex of degree 1

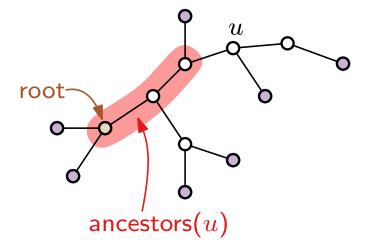
Rooted tree: tree with a designated root



Leaf: vertex of degree 1

Rooted tree: tree with a designated root

Ancestor: vertex on the path to the root

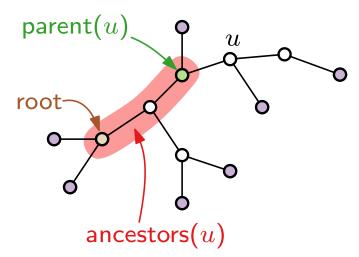


Leaf: vertex of degree 1

Rooted tree: tree with a designated root

Ancestor: vertex on the path to the root

Parent: neighbor on the path to the root



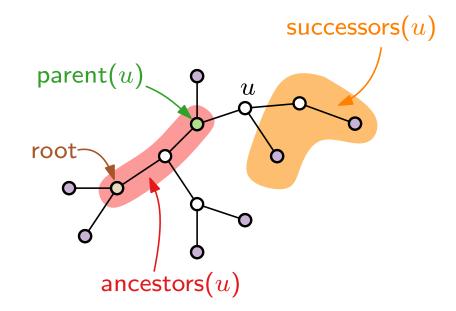
Leaf: vertex of degree 1

Rooted tree: tree with a designated root

Ancestor: vertex on the path to the root

Parent: neighbor on the path to the root

Successor: vertex on the path away from the root



Leaf: vertex of degree 1

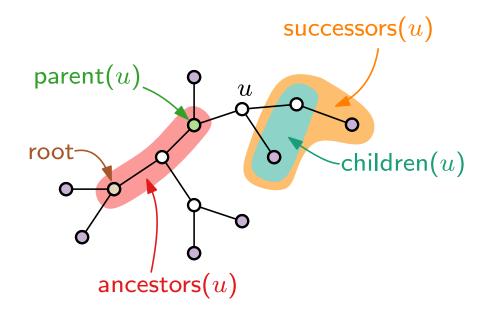
Rooted tree: tree with a designated root

Ancestor: vertex on the path to the root

Parent: neighbor on the path to the root

Successor: vertex on the path away from the root

Child: neighbor not on the path to the root



Leaf: vertex of degree 1

Rooted tree: tree with a designated root

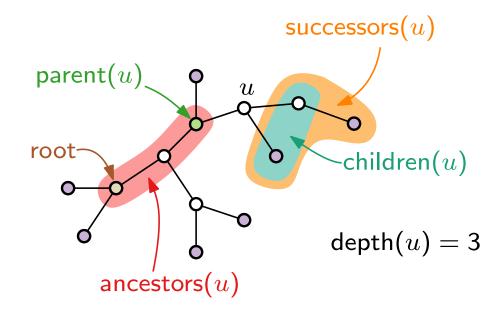
Ancestor: vertex on the path to the root

Parent: neighbor on the path to the root

Successor: vertex on the path away from the root

Child: neighbor not on the path to the root

Depth: length of the path to the root



Leaf: vertex of degree 1

Rooted tree: tree with a designated root

Ancestor: vertex on the path to the root

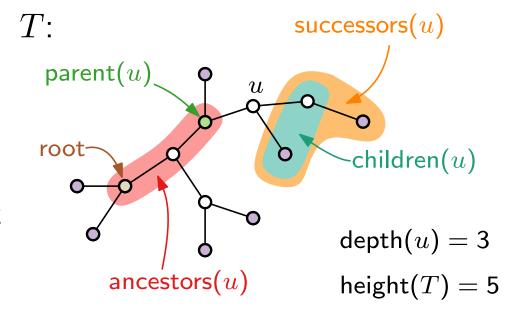
Parent: neighbor on the path to the root

Successor: vertex on the path away from the root

Child: neighbor not on the path to the root

Depth: length of the path to the root

Height: maximum depth of a leaf



Leaf: vertex of degree 1

Rooted tree: tree with a designated root

Ancestor: vertex on the path to the root

Parent: neighbor on the path to the root

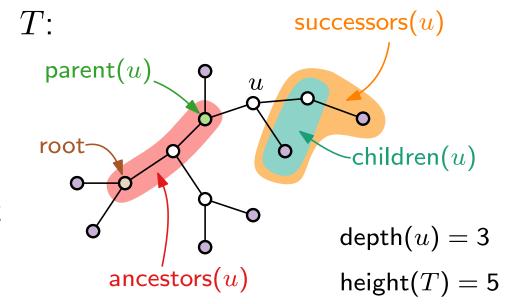
Successor: vertex on the path away from the root

Child: neighbor not on the path to the root

Depth: length of the path to the root

Height: maximum depth of a leaf

Binary Tree: at most two children per vertex (left and right child)



Leaf: vertex of degree 1

Rooted tree: tree with a designated root

Ancestor: vertex on the path to the root

Parent: neighbor on the path to the root

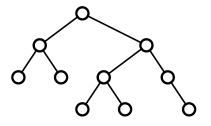
Successor: vertex on the path away from the root

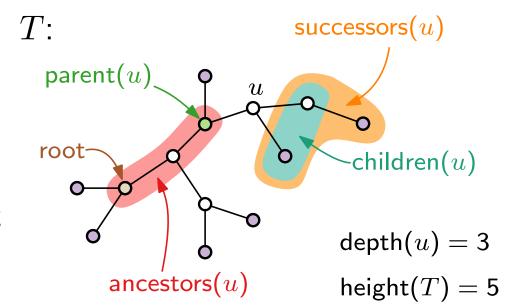
Child: neighbor not on the path to the root

Depth: length of the path to the root

Height: maximum depth of a leaf

Binary Tree: at most two children per vertex (left and right child)





Leaf: vertex of degree 1

Rooted tree: tree with a designated root

Ancestor: vertex on the path to the root

Parent: neighbor on the path to the root

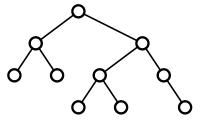
Successor: vertex on the path away from the root

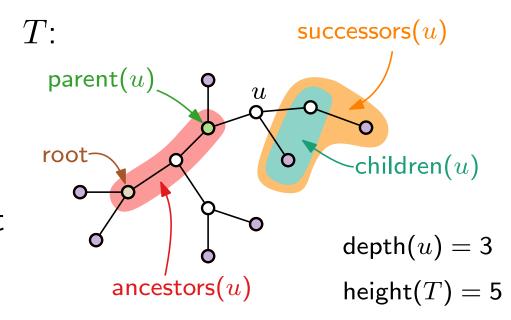
Child: neighbor not on the path to the root

Depth: length of the path to the root

Height: maximum depth of a leaf

Binary Tree: at most two children per vertex (left and right child)





Leaf: vertex of degree 1

Rooted tree: tree with a designated root

Ancestor: vertex on the path to the root

Parent: neighbor on the path to the root

Successor: vertex on the path away from the root

Child: neighbor not on the path to the root

Depth: length of the path to the root

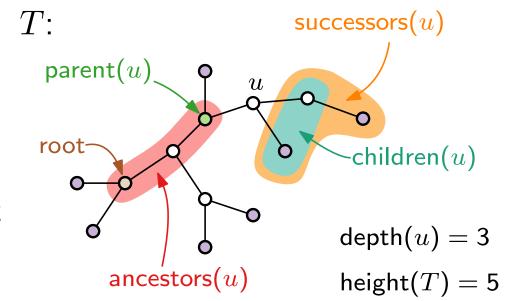
Height: maximum depth of a leaf

Binary Tree: at most two children per vertex (left and right child)

3 types of tree traversals:

preorder

node – left – right



Leaf: vertex of degree 1

Rooted tree: tree with a designated root

Ancestor: vertex on the path to the root

Parent: neighbor on the path to the root

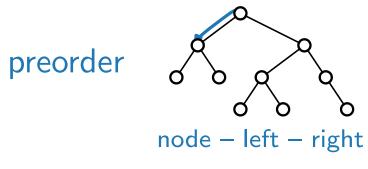
Successor: vertex on the path away from the root

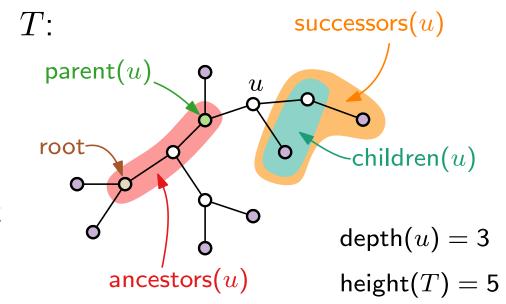
Child: neighbor not on the path to the root

Depth: length of the path to the root

Height: maximum depth of a leaf

Binary Tree: at most two children per vertex (left and right child)





Leaf: vertex of degree 1

Rooted tree: tree with a designated root

Ancestor: vertex on the path to the root

Parent: neighbor on the path to the root

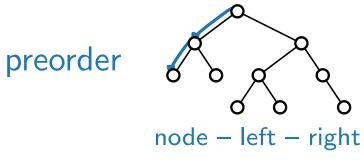
Successor: vertex on the path away from the root

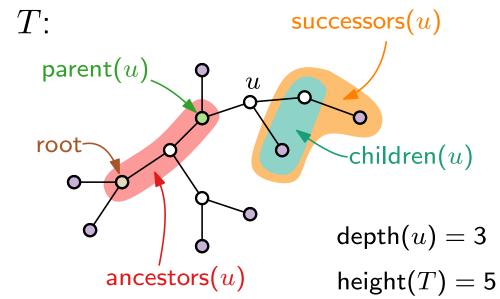
Child: neighbor not on the path to the root

Depth: length of the path to the root

Height: maximum depth of a leaf

Binary Tree: at most two children per vertex (left and right child)





Leaf: vertex of degree 1

Rooted tree: tree with a designated root

Ancestor: vertex on the path to the root

Parent: neighbor on the path to the root

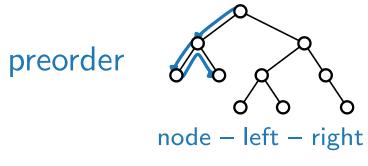
Successor: vertex on the path away from the root

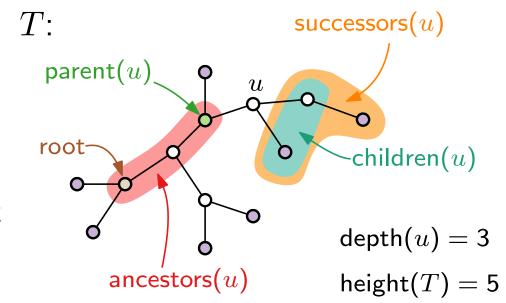
Child: neighbor not on the path to the root

Depth: length of the path to the root

Height: maximum depth of a leaf

Binary Tree: at most two children per vertex (left and right child)





Leaf: vertex of degree 1

Rooted tree: tree with a designated root

Ancestor: vertex on the path to the root

Parent: neighbor on the path to the root

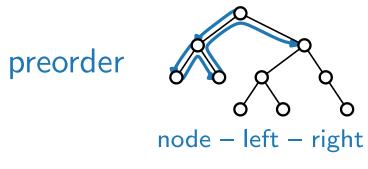
Successor: vertex on the path away from the root

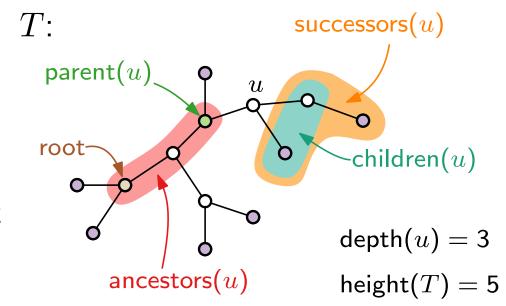
Child: neighbor not on the path to the root

Depth: length of the path to the root

Height: maximum depth of a leaf

Binary Tree: at most two children per vertex (left and right child)





Leaf: vertex of degree 1

Rooted tree: tree with a designated root

Ancestor: vertex on the path to the root

Parent: neighbor on the path to the root

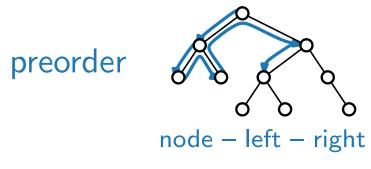
Successor: vertex on the path away from the root

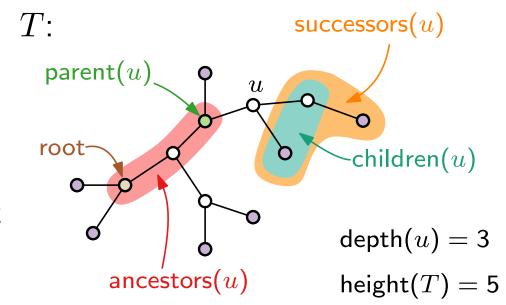
Child: neighbor not on the path to the root

Depth: length of the path to the root

Height: maximum depth of a leaf

Binary Tree: at most two children per vertex (left and right child)





Leaf: vertex of degree 1

Rooted tree: tree with a designated root

Ancestor: vertex on the path to the root

Parent: neighbor on the path to the root

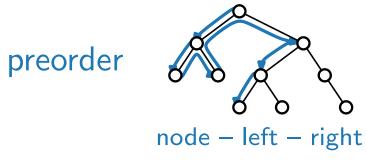
Successor: vertex on the path away from the root

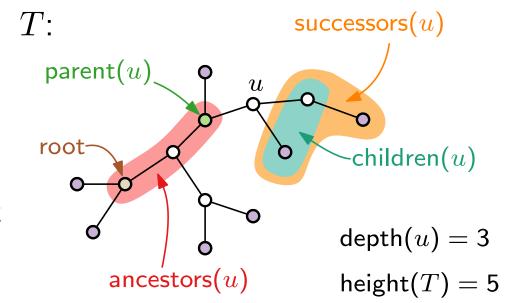
Child: neighbor not on the path to the root

Depth: length of the path to the root

Height: maximum depth of a leaf

Binary Tree: at most two children per vertex (left and right child)





Leaf: vertex of degree 1

Rooted tree: tree with a designated root

Ancestor: vertex on the path to the root

Parent: neighbor on the path to the root

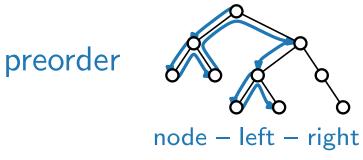
Successor: vertex on the path away from the root

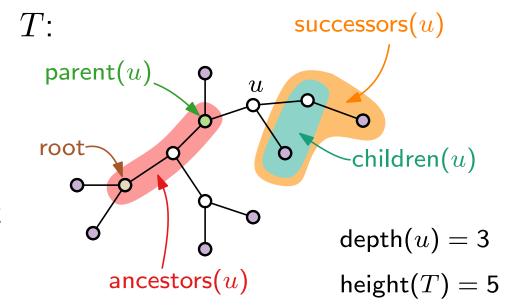
Child: neighbor not on the path to the root

Depth: length of the path to the root

Height: maximum depth of a leaf

Binary Tree: at most two children per vertex (left and right child)





Leaf: vertex of degree 1

Rooted tree: tree with a designated root

Ancestor: vertex on the path to the root

Parent: neighbor on the path to the root

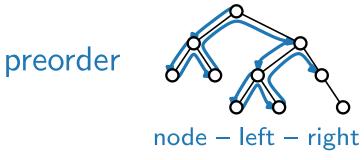
Successor: vertex on the path away from the root

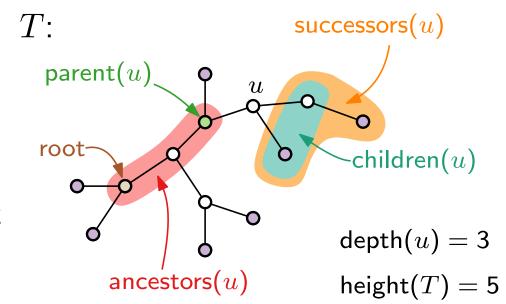
Child: neighbor not on the path to the root

Depth: length of the path to the root

Height: maximum depth of a leaf

Binary Tree: at most two children per vertex (left and right child)





Leaf: vertex of degree 1

Rooted tree: tree with a designated root

Ancestor: vertex on the path to the root

Parent: neighbor on the path to the root

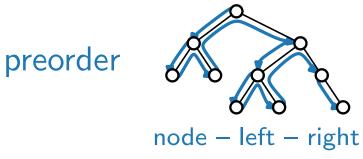
Successor: vertex on the path away from the root

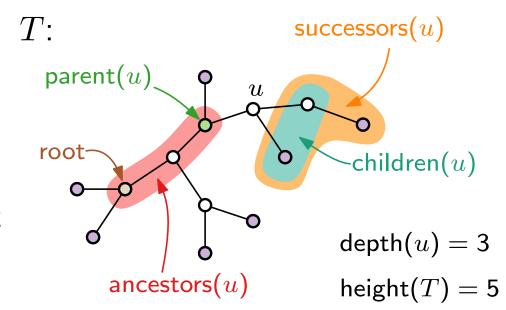
Child: neighbor not on the path to the root

Depth: length of the path to the root

Height: maximum depth of a leaf

Binary Tree: at most two children per vertex (left and right child)





Leaf: vertex of degree 1

Rooted tree: tree with a designated root

Ancestor: vertex on the path to the root

Parent: neighbor on the path to the root

Successor: vertex on the path away from the root

Child: neighbor not on the path to the root

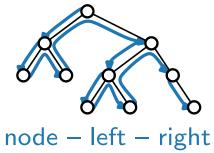
Depth: length of the path to the root

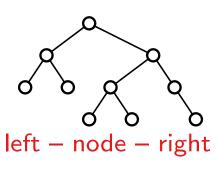
Height: maximum depth of a leaf

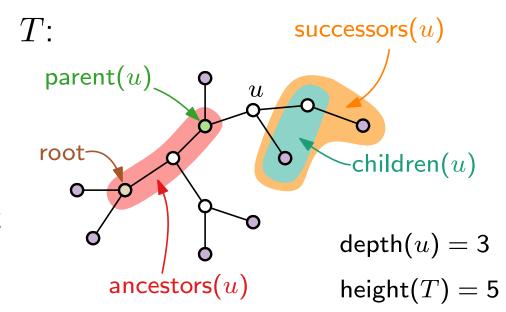
Binary Tree: at most two children per vertex (left and right child)

3 types of tree traversals:

preorder







Leaf: vertex of degree 1

Rooted tree: tree with a designated root

Ancestor: vertex on the path to the root

Parent: neighbor on the path to the root

Successor: vertex on the path away from the root

Child: neighbor not on the path to the root

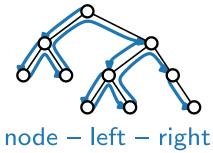
Depth: length of the path to the root

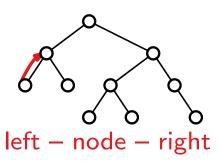
Height: maximum depth of a leaf

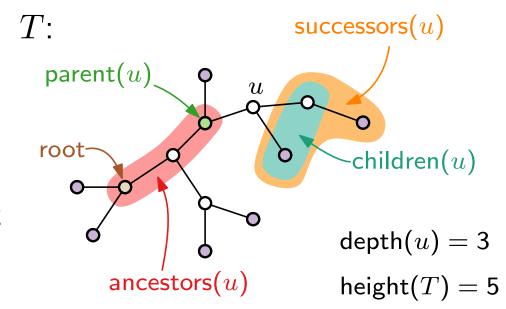
Binary Tree: at most two children per vertex (left and right child)

3 types of tree traversals:

preorder







Leaf: vertex of degree 1

Rooted tree: tree with a designated root

Ancestor: vertex on the path to the root

Parent: neighbor on the path to the root

Successor: vertex on the path away from the root

Child: neighbor not on the path to the root

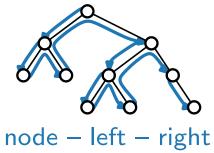
Depth: length of the path to the root

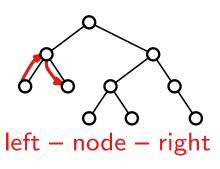
Height: maximum depth of a leaf

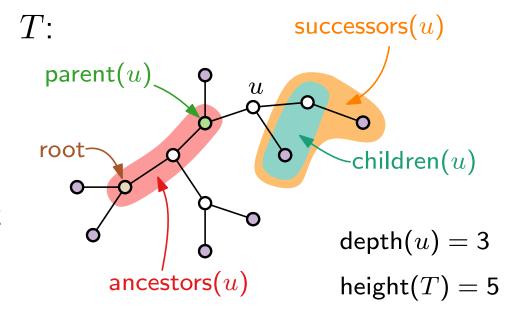
Binary Tree: at most two children per vertex (left and right child)

3 types of tree traversals:

preorder







Leaf: vertex of degree 1

Rooted tree: tree with a designated root

Ancestor: vertex on the path to the root

Parent: neighbor on the path to the root

Successor: vertex on the path away from the root

Child: neighbor not on the path to the root

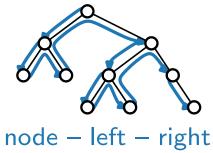
Depth: length of the path to the root

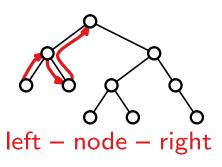
Height: maximum depth of a leaf

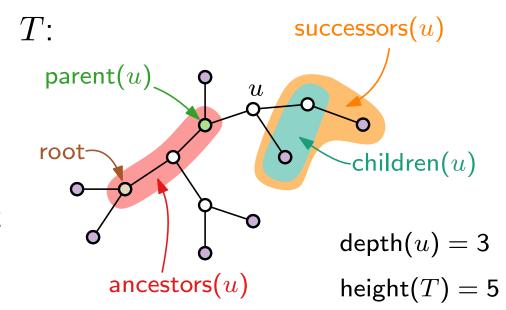
Binary Tree: at most two children per vertex (left and right child)

3 types of tree traversals:

preorder







Leaf: vertex of degree 1

Rooted tree: tree with a designated root

Ancestor: vertex on the path to the root

Parent: neighbor on the path to the root

Successor: vertex on the path away from the root

Child: neighbor not on the path to the root

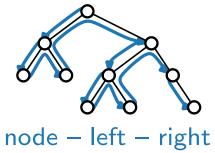
Depth: length of the path to the root

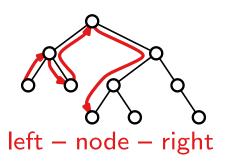
Height: maximum depth of a leaf

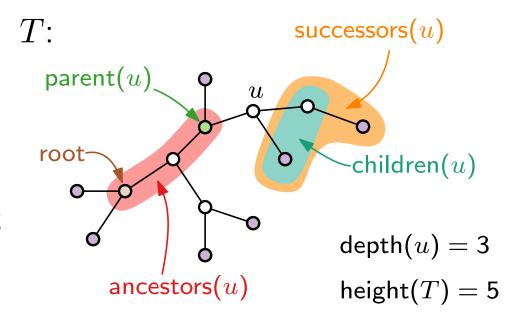
Binary Tree: at most two children per vertex (left and right child)

3 types of tree traversals:

preorder







Leaf: vertex of degree 1

Rooted tree: tree with a designated root

Ancestor: vertex on the path to the root

Parent: neighbor on the path to the root

Successor: vertex on the path away from the root

Child: neighbor not on the path to the root

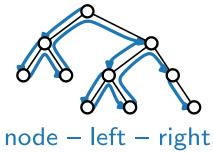
Depth: length of the path to the root

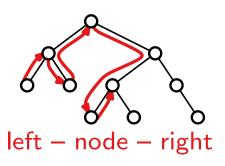
Height: maximum depth of a leaf

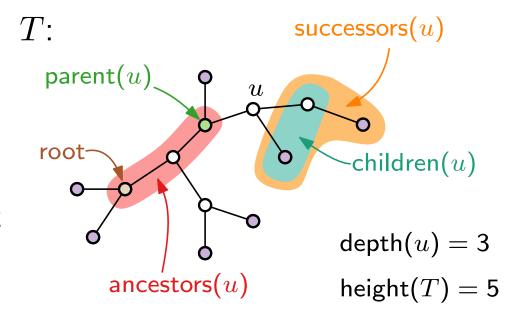
Binary Tree: at most two children per vertex (left and right child)

3 types of tree traversals:

preorder







Leaf: vertex of degree 1

Rooted tree: tree with a designated root

Ancestor: vertex on the path to the root

Parent: neighbor on the path to the root

Successor: vertex on the path away from the root

Child: neighbor not on the path to the root

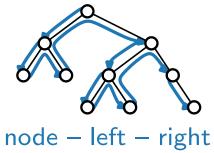
Depth: length of the path to the root

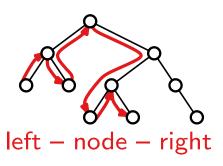
Height: maximum depth of a leaf

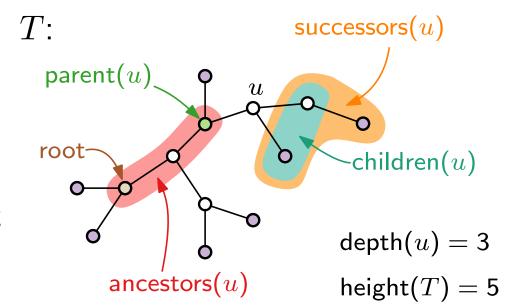
Binary Tree: at most two children per vertex (left and right child)

3 types of tree traversals:

preorder







Leaf: vertex of degree 1

Rooted tree: tree with a designated root

Ancestor: vertex on the path to the root

Parent: neighbor on the path to the root

Successor: vertex on the path away from the root

Child: neighbor not on the path to the root

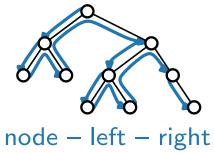
Depth: length of the path to the root

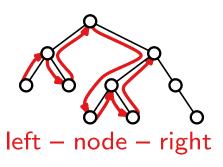
Height: maximum depth of a leaf

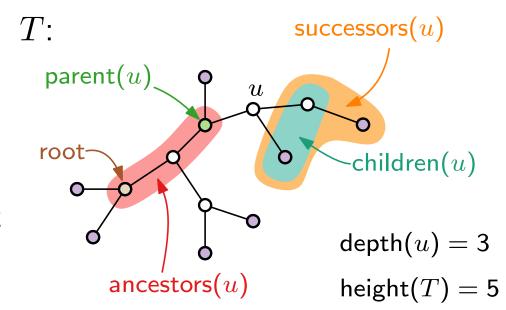
Binary Tree: at most two children per vertex (left and right child)

3 types of tree traversals:

preorder







Leaf: vertex of degree 1

Rooted tree: tree with a designated root

Ancestor: vertex on the path to the root

Parent: neighbor on the path to the root

Successor: vertex on the path away from the root

Child: neighbor not on the path to the root

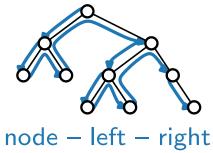
Depth: length of the path to the root

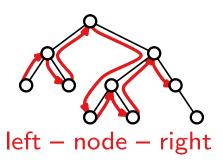
Height: maximum depth of a leaf

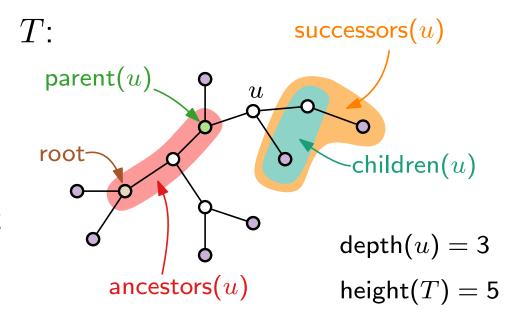
Binary Tree: at most two children per vertex (left and right child)

3 types of tree traversals:

preorder







Leaf: vertex of degree 1

Rooted tree: tree with a designated root

Ancestor: vertex on the path to the root

Parent: neighbor on the path to the root

Successor: vertex on the path away from the root

Child: neighbor not on the path to the root

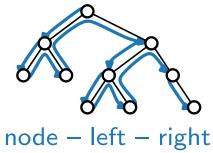
Depth: length of the path to the root

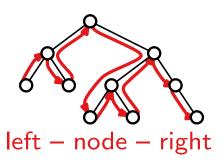
Height: maximum depth of a leaf

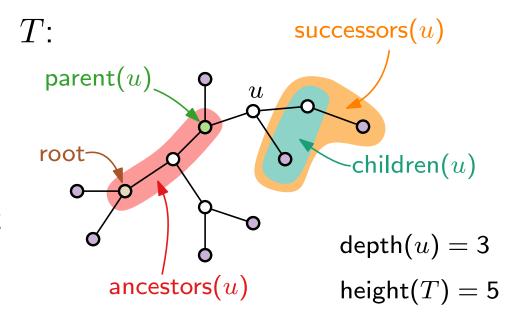
Binary Tree: at most two children per vertex (left and right child)

3 types of tree traversals:

preorder







Leaf: vertex of degree 1

Rooted tree: tree with a designated root

Ancestor: vertex on the path to the root

Parent: neighbor on the path to the root

Successor: vertex on the path away from the root

Child: neighbor not on the path to the root

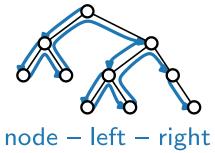
Depth: length of the path to the root

Height: maximum depth of a leaf

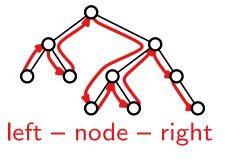
Binary Tree: at most two children per vertex (left and right child)

3 types of tree traversals:

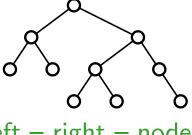
preorder



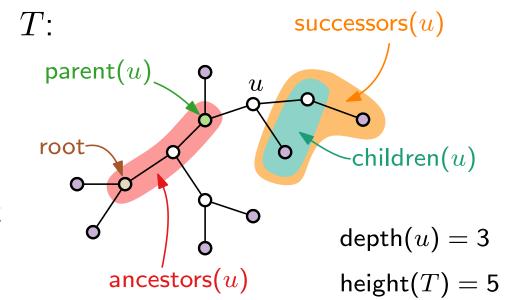
inorder



postorder



left – right – node



Leaf: vertex of degree 1

Rooted tree: tree with a designated root

Ancestor: vertex on the path to the root

Parent: neighbor on the path to the root

Successor: vertex on the path away from the root

Child: neighbor not on the path to the root

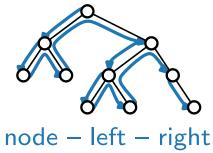
Depth: length of the path to the root

Height: maximum depth of a leaf

Binary Tree: at most two children per vertex (left and right child)

3 types of tree traversals:

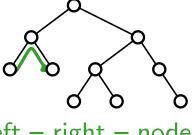
preorder



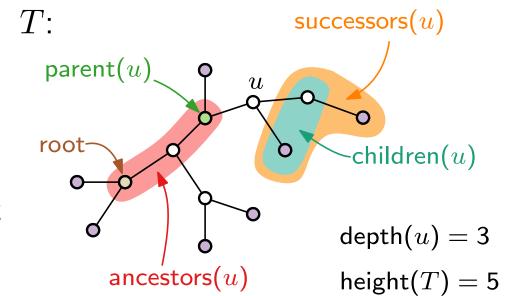
inorder



postorder



left – right – node



Leaf: vertex of degree 1

Rooted tree: tree with a designated root

Ancestor: vertex on the path to the root

Parent: neighbor on the path to the root

Successor: vertex on the path away from the root

Child: neighbor not on the path to the root

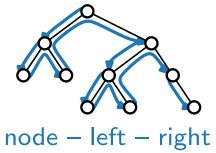
Depth: length of the path to the root

Height: maximum depth of a leaf

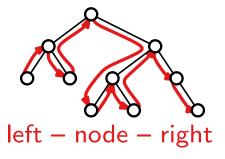
Binary Tree: at most two children per vertex (left and right child)

3 types of tree traversals:

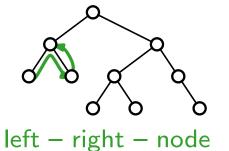
preorder

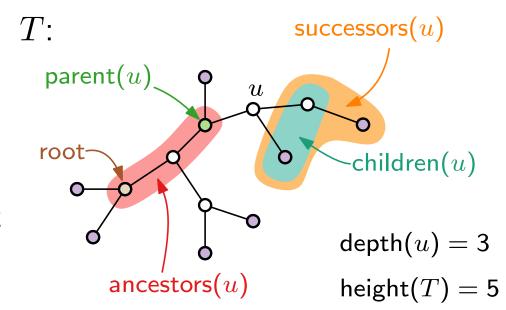


inorder



postorder





Leaf: vertex of degree 1

Rooted tree: tree with a designated root

Ancestor: vertex on the path to the root

Parent: neighbor on the path to the root

Successor: vertex on the path away from the root

Child: neighbor not on the path to the root

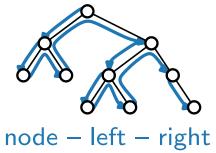
Depth: length of the path to the root

Height: maximum depth of a leaf

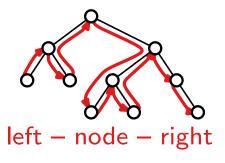
Binary Tree: at most two children per vertex (left and right child)

3 types of tree traversals:

preorder

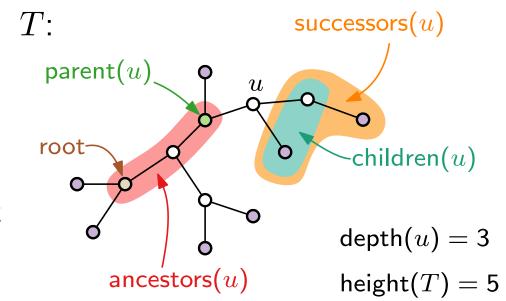


inorder



postorder

left – right – node



Leaf: vertex of degree 1

Rooted tree: tree with a designated root

Ancestor: vertex on the path to the root

Parent: neighbor on the path to the root

Successor: vertex on the path away from the root

Child: neighbor not on the path to the root

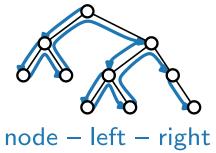
Depth: length of the path to the root

Height: maximum depth of a leaf

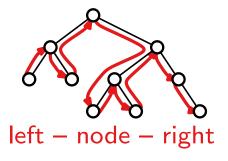
Binary Tree: at most two children per vertex (left and right child)

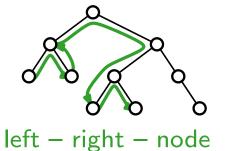
3 types of tree traversals:

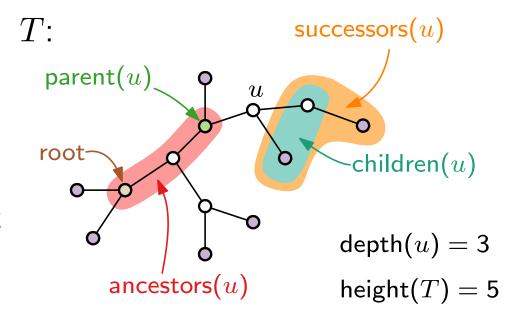
preorder



inorder







Leaf: vertex of degree 1

Rooted tree: tree with a designated root

Ancestor: vertex on the path to the root

Parent: neighbor on the path to the root

Successor: vertex on the path away from the root

Child: neighbor not on the path to the root

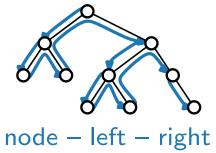
Depth: length of the path to the root

Height: maximum depth of a leaf

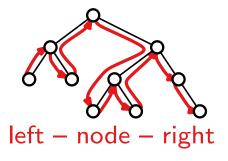
Binary Tree: at most two children per vertex (left and right child)

3 types of tree traversals:

preorder

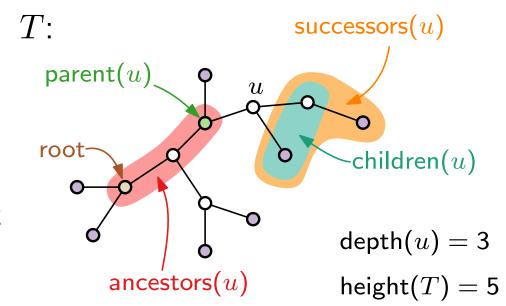


inorder



postorder

left – right – node



Leaf: vertex of degree 1

Rooted tree: tree with a designated root

Ancestor: vertex on the path to the root

Parent: neighbor on the path to the root

Successor: vertex on the path away from the root

Child: neighbor not on the path to the root

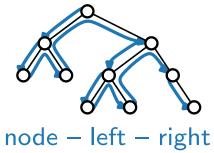
Depth: length of the path to the root

Height: maximum depth of a leaf

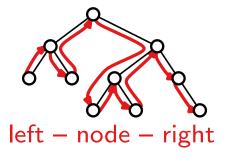
Binary Tree: at most two children per vertex (left and right child)

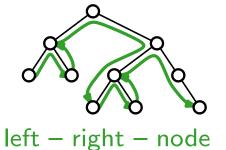
3 types of tree traversals:

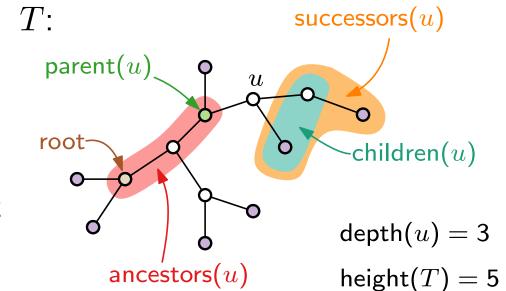
preorder



inorder







Leaf: vertex of degree 1

Rooted tree: tree with a designated root

Ancestor: vertex on the path to the root

Parent: neighbor on the path to the root

Successor: vertex on the path away from the root

Child: neighbor not on the path to the root

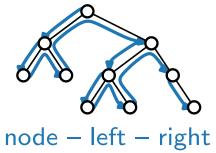
Depth: length of the path to the root

Height: maximum depth of a leaf

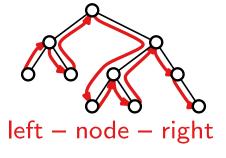
Binary Tree: at most two children per vertex (left and right child)

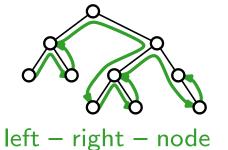
3 types of tree traversals:

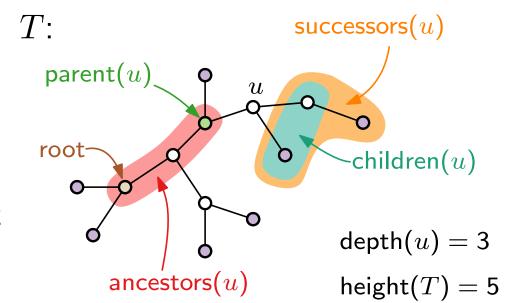
preorder



inorder







Leaf: vertex of degree 1

Rooted tree: tree with a designated root

Ancestor: vertex on the path to the root

Parent: neighbor on the path to the root

Successor: vertex on the path away from the root

Child: neighbor not on the path to the root

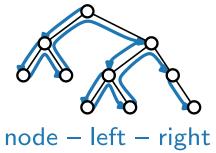
Depth: length of the path to the root

Height: maximum depth of a leaf

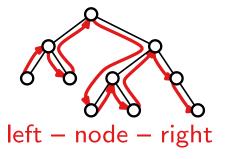
Binary Tree: at most two children per vertex (left and right child)

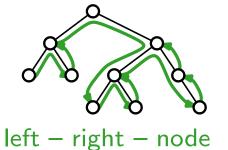
3 types of tree traversals:

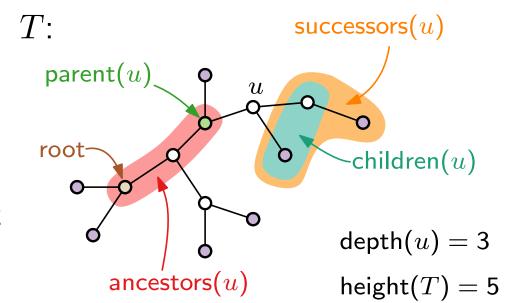
preorder



inorder







Leaf: vertex of degree 1

Rooted tree: tree with a designated root

Ancestor: vertex on the path to the root

Parent: neighbor on the path to the root

Successor: vertex on the path away from the root

Child: neighbor not on the path to the root

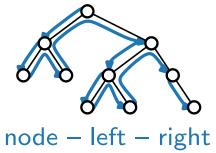
Depth: length of the path to the root

Height: maximum depth of a leaf

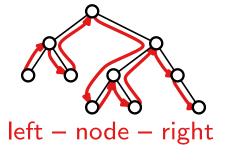
Binary Tree: at most two children per vertex (left and right child)

3 types of tree traversals:

preorder

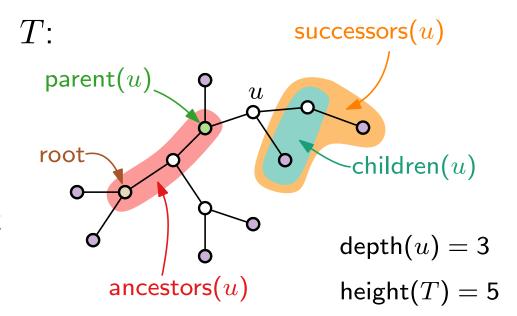


inorder



postorder

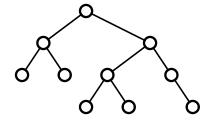
left – right – node



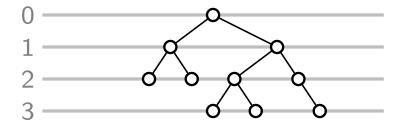
1. Choose y-coordinates:

1. Choose y-coordinates: y(u) = depth(u)

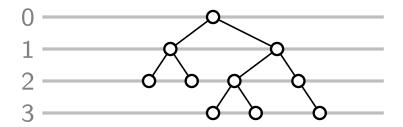
1. Choose y-coordinates: y(u) = depth(u)



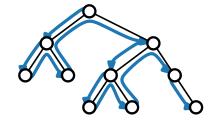
1. Choose y-coordinates: y(u) = depth(u)



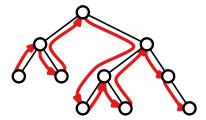
1. Choose y-coordinates: y(u) = depth(u)

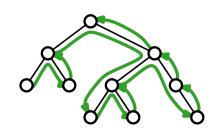


2. Choose x-coordinates:

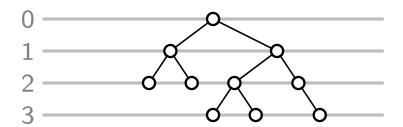


inorder

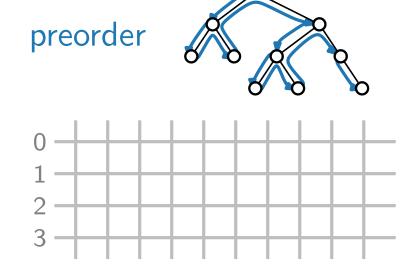




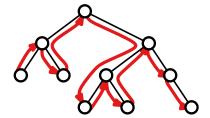
1. Choose y-coordinates: y(u) = depth(u)

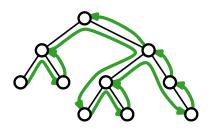


2. Choose x-coordinates:

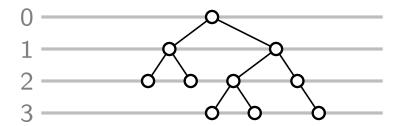


inorder

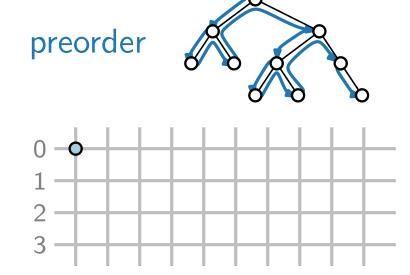




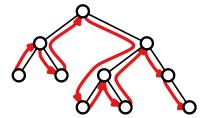
1. Choose y-coordinates: y(u) = depth(u)

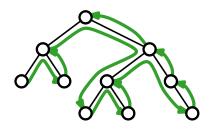


2. Choose x-coordinates:

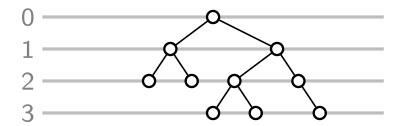


inorder

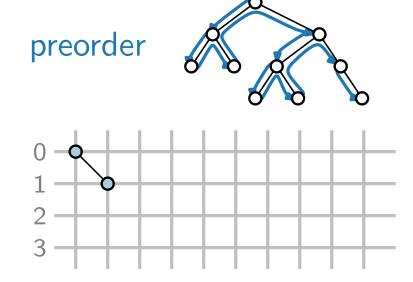




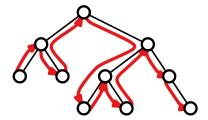
1. Choose y-coordinates: y(u) = depth(u)

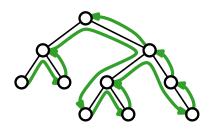


2. Choose x-coordinates:

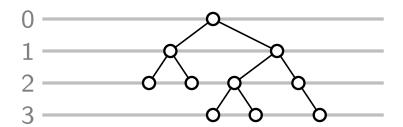


inorder

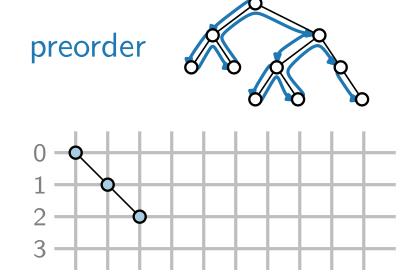




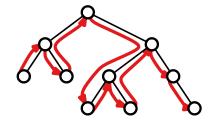
1. Choose y-coordinates: y(u) = depth(u)

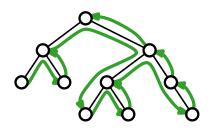


2. Choose x-coordinates:

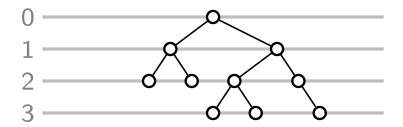


inorder

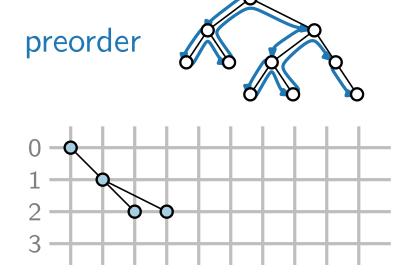




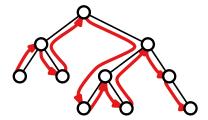
1. Choose y-coordinates: y(u) = depth(u)

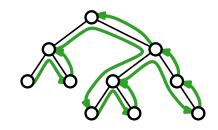


2. Choose x-coordinates:

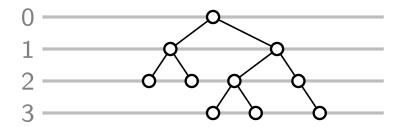


inorder

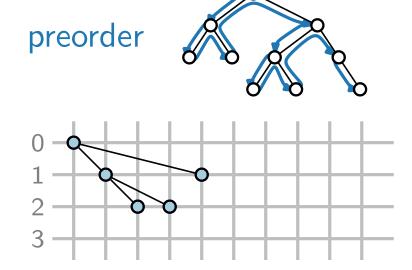




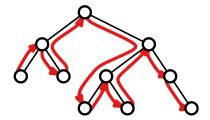
1. Choose y-coordinates: y(u) = depth(u)

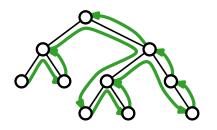


2. Choose x-coordinates:

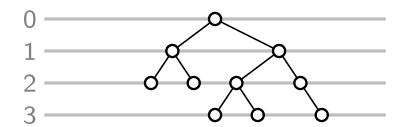


inorder

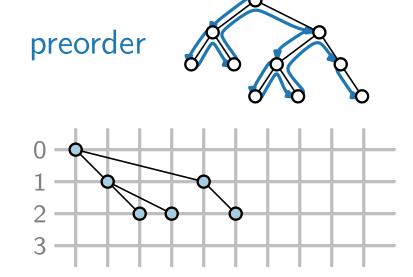




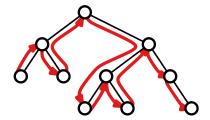
1. Choose y-coordinates: y(u) = depth(u)

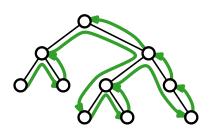


2. Choose x-coordinates:

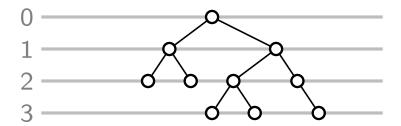


inorder



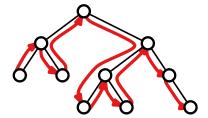


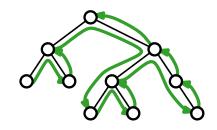
1. Choose y-coordinates: y(u) = depth(u)



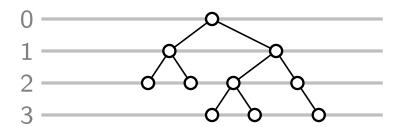
2. Choose x-coordinates:

inorder



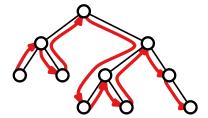


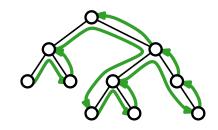
1. Choose y-coordinates: y(u) = depth(u)



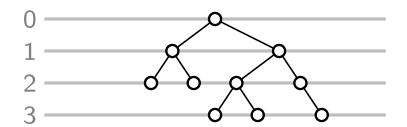
2. Choose x-coordinates:

inorder

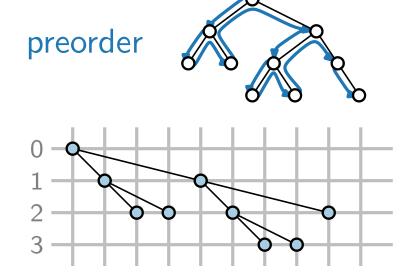




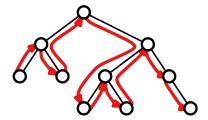
1. Choose y-coordinates: y(u) = depth(u)

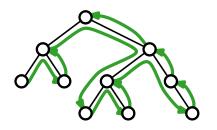


2. Choose x-coordinates:

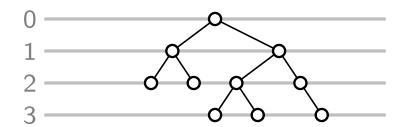


inorder



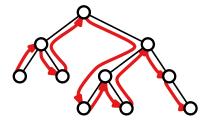


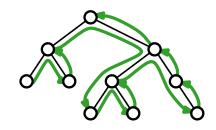
1. Choose y-coordinates: y(u) = depth(u)



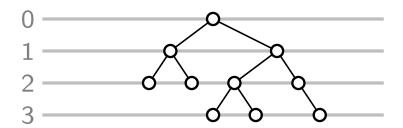
2. Choose x-coordinates:

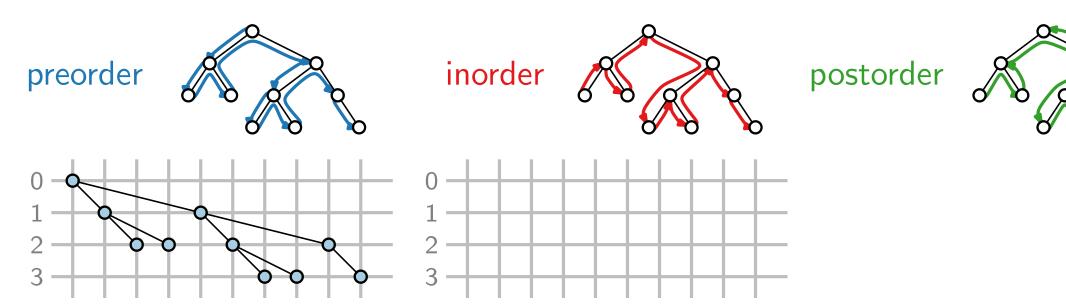
inorder



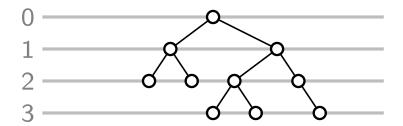


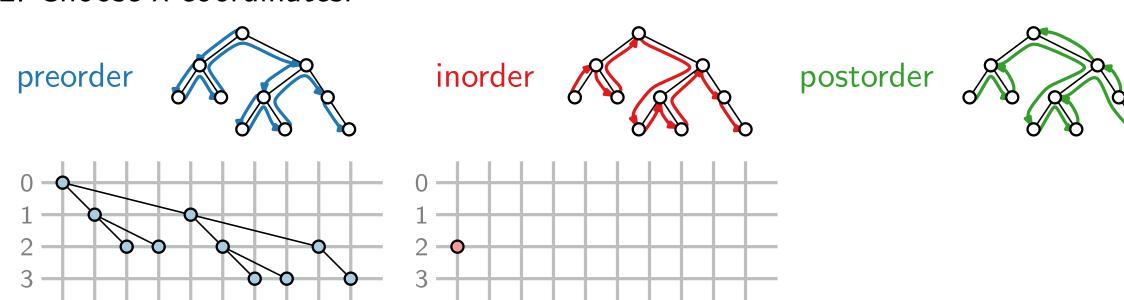
1. Choose y-coordinates: y(u) = depth(u)



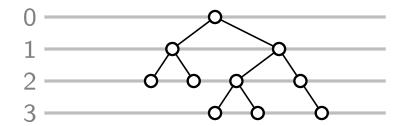


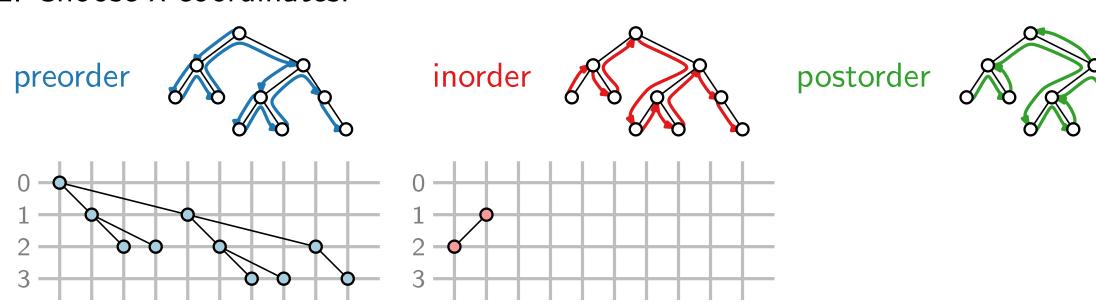
1. Choose y-coordinates: y(u) = depth(u)



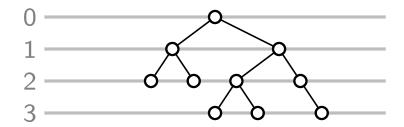


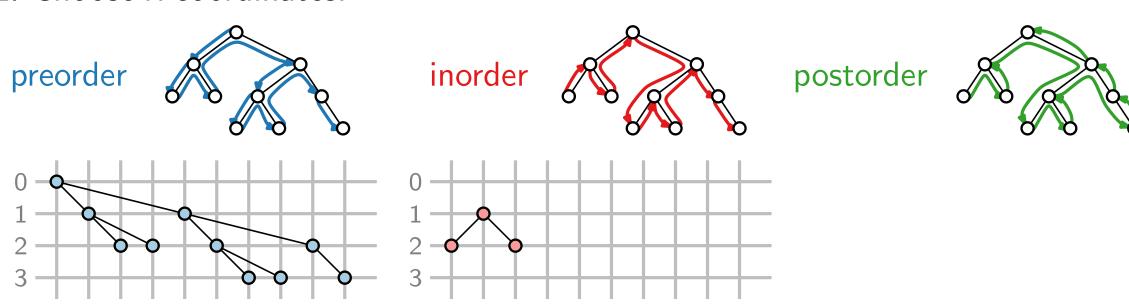
1. Choose y-coordinates: y(u) = depth(u)



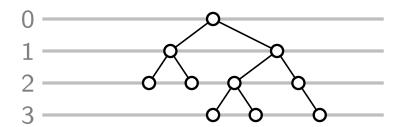


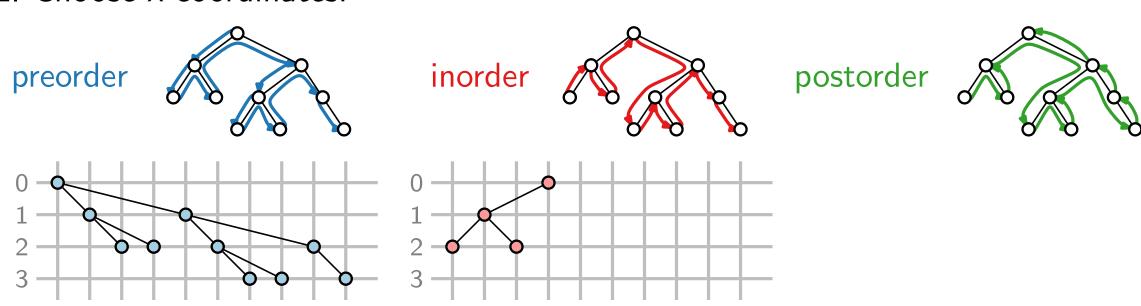
1. Choose y-coordinates: y(u) = depth(u)



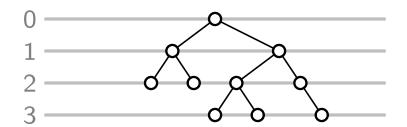


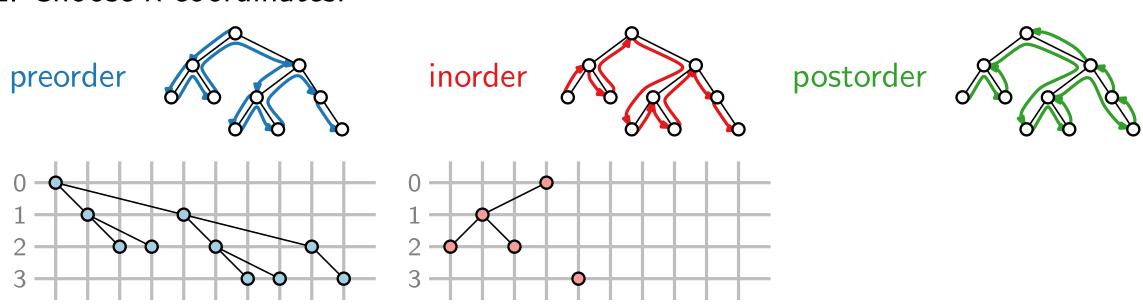
1. Choose y-coordinates: y(u) = depth(u)



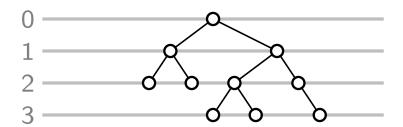


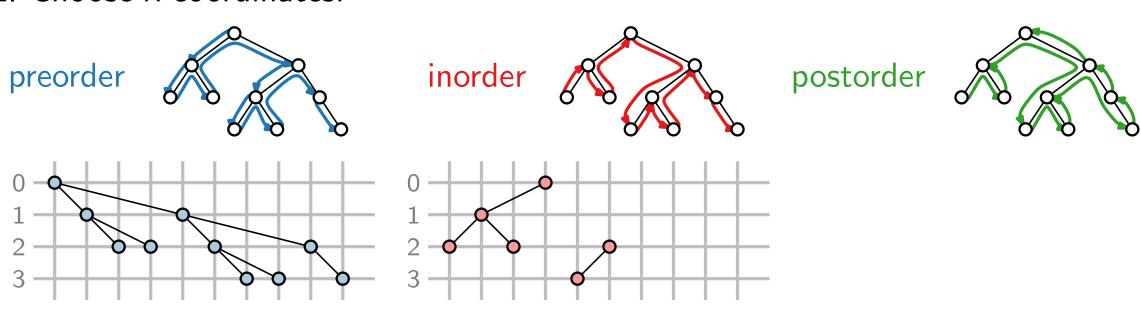
1. Choose y-coordinates: y(u) = depth(u)



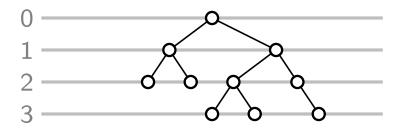


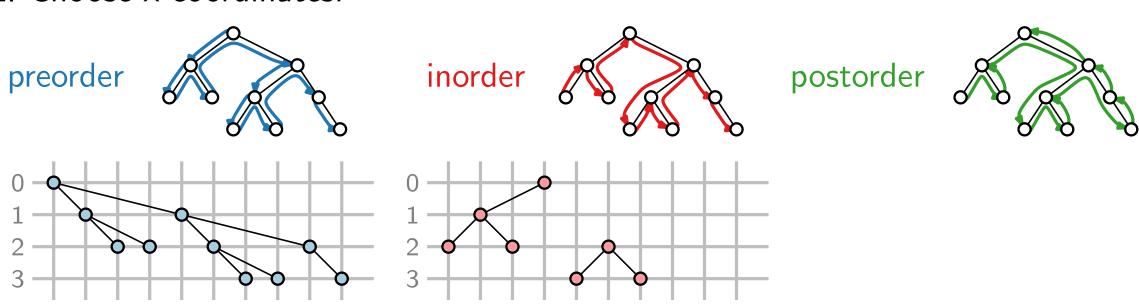
1. Choose y-coordinates: y(u) = depth(u)



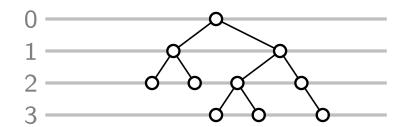


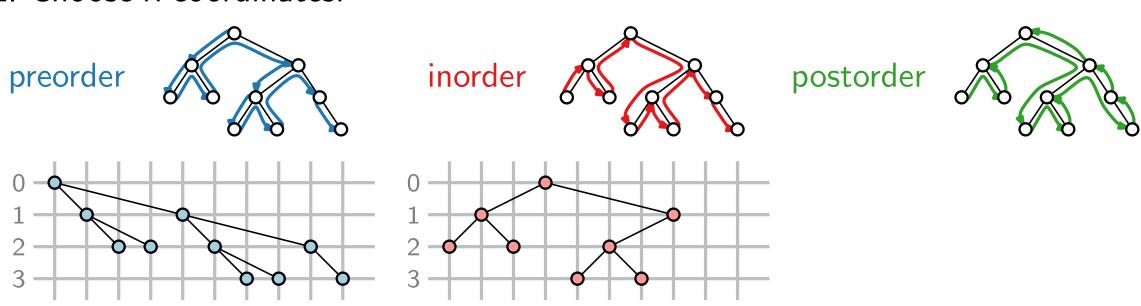
1. Choose y-coordinates: y(u) = depth(u)



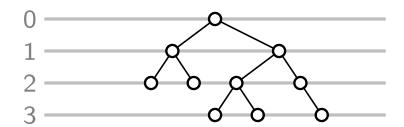


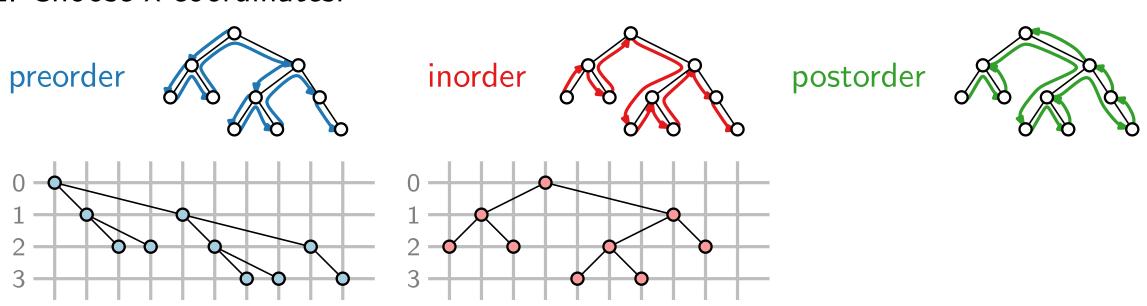
1. Choose y-coordinates: y(u) = depth(u)



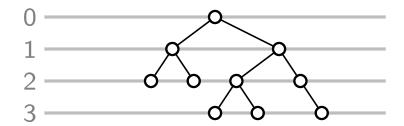


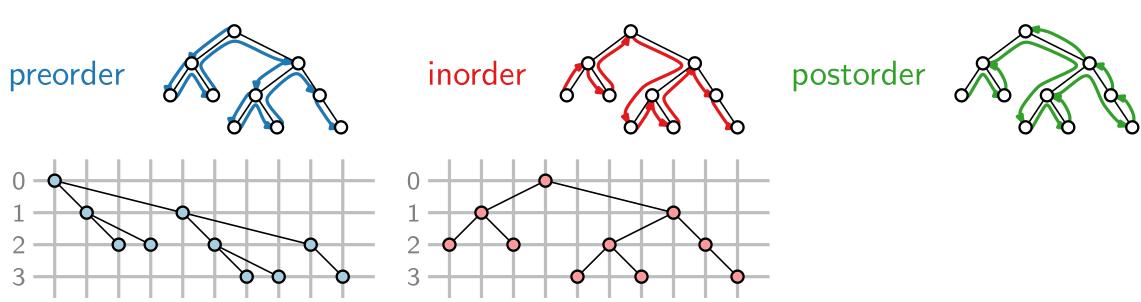
1. Choose y-coordinates: y(u) = depth(u)



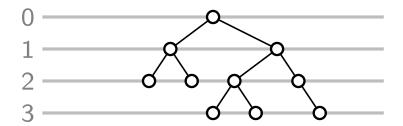


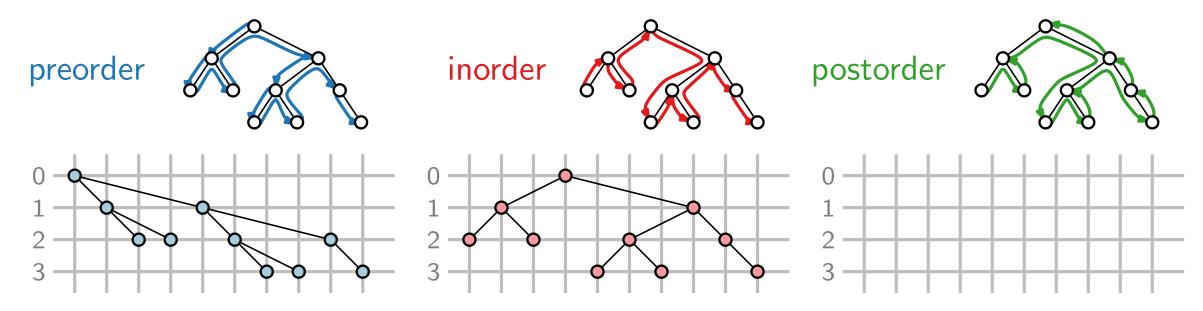
1. Choose y-coordinates: y(u) = depth(u)



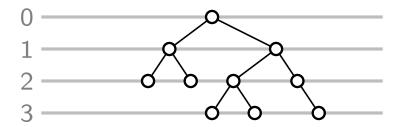


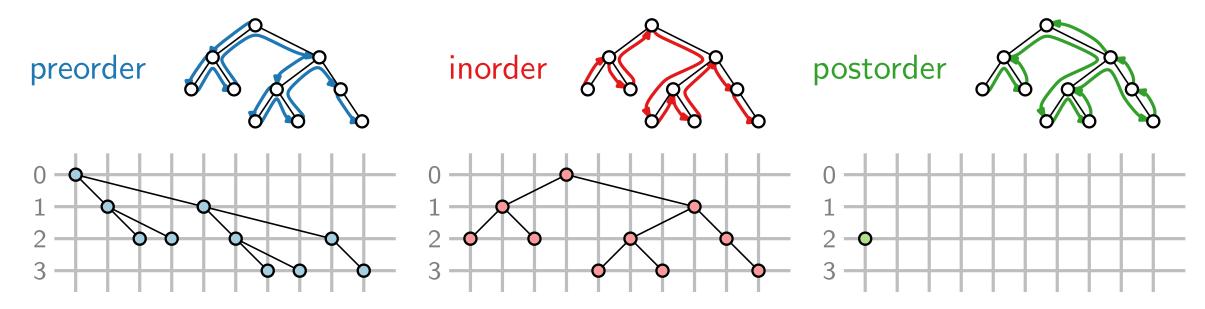
1. Choose y-coordinates: y(u) = depth(u)



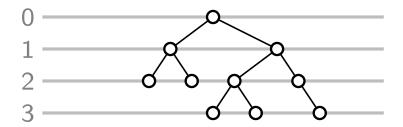


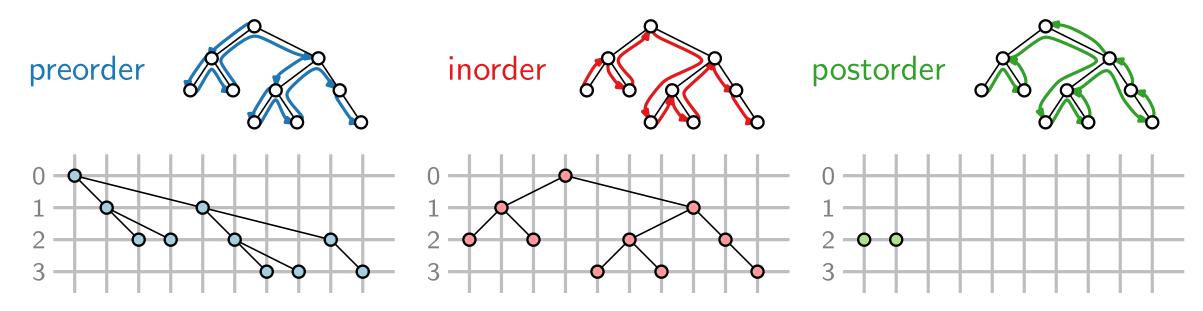
1. Choose y-coordinates: y(u) = depth(u)



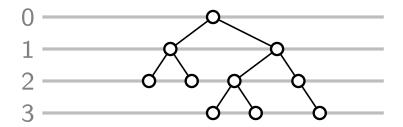


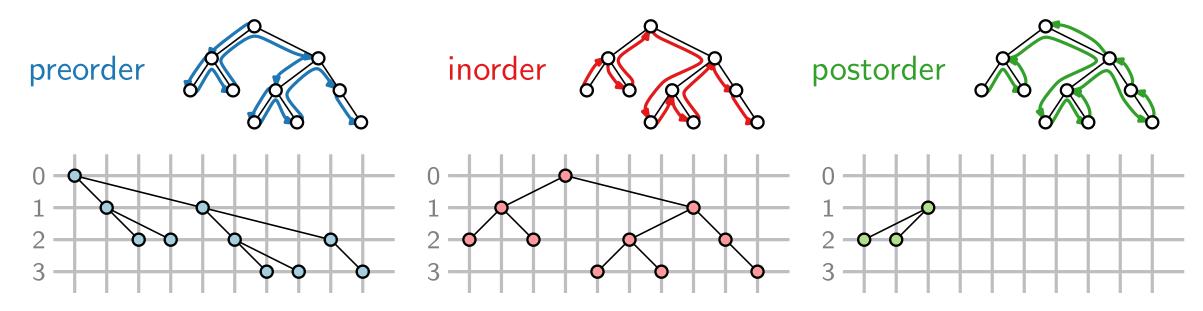
1. Choose y-coordinates: y(u) = depth(u)



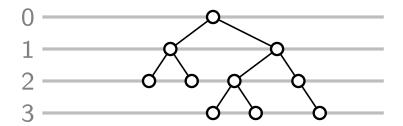


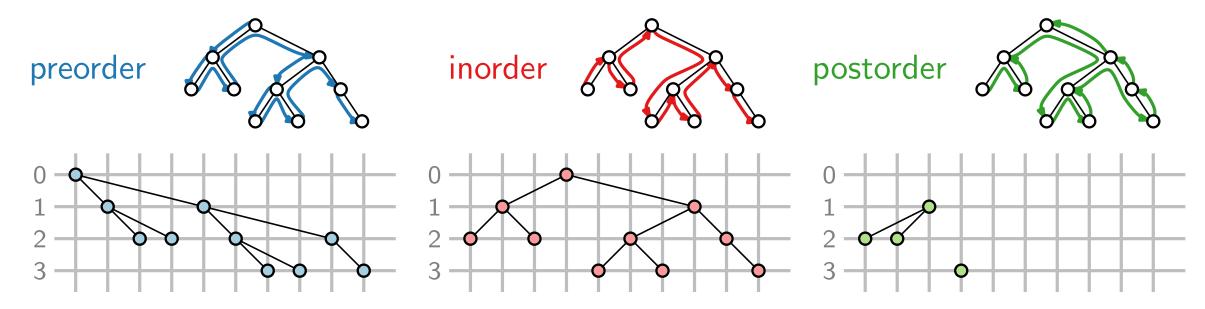
1. Choose y-coordinates: y(u) = depth(u)



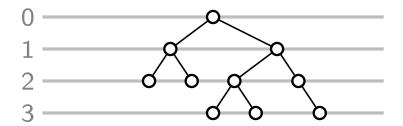


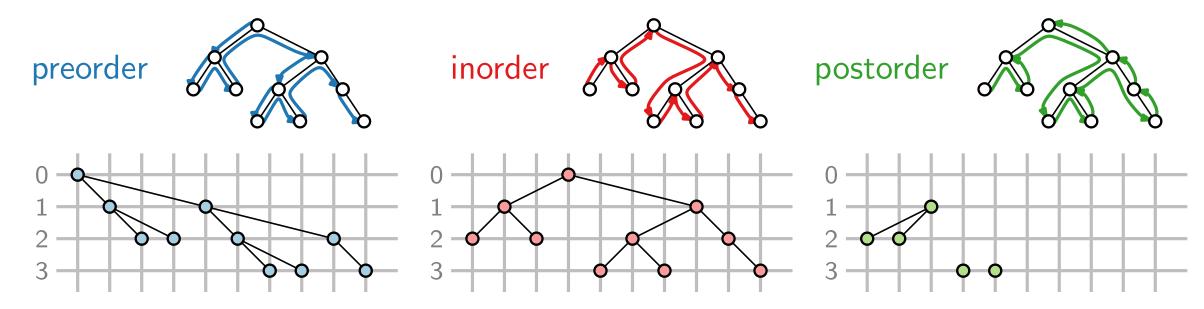
1. Choose y-coordinates: y(u) = depth(u)



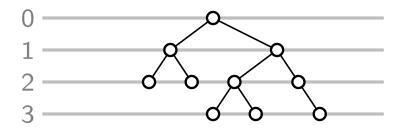


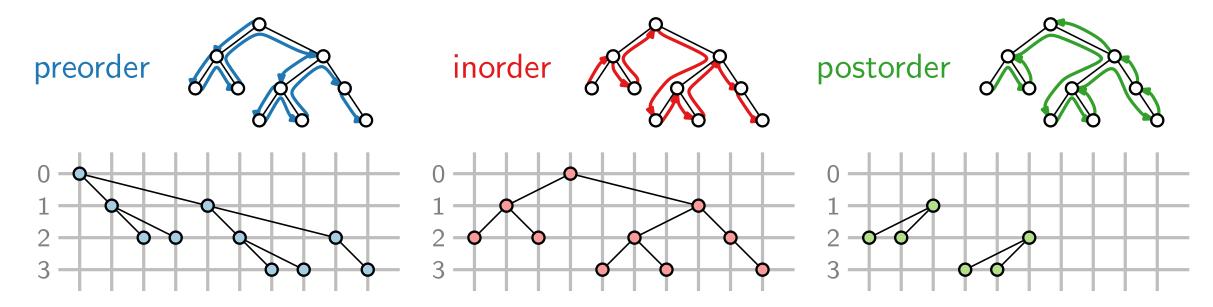
1. Choose y-coordinates: y(u) = depth(u)



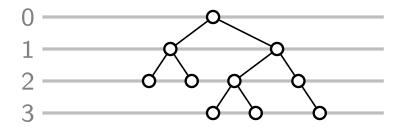


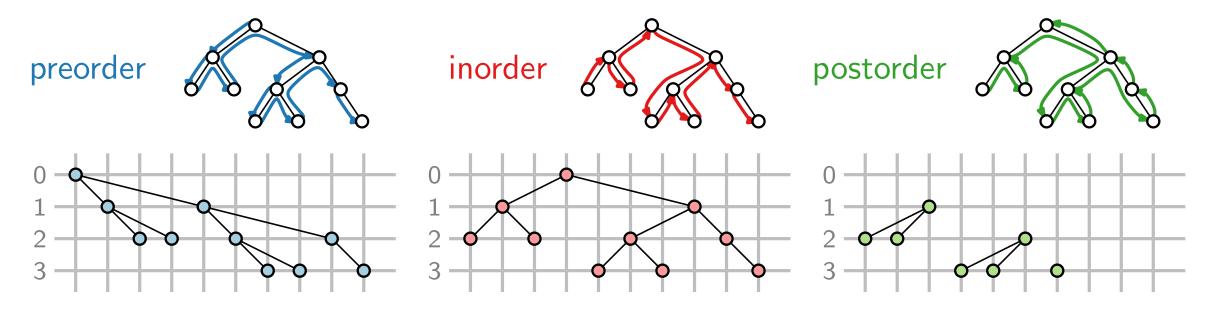
1. Choose y-coordinates: y(u) = depth(u)



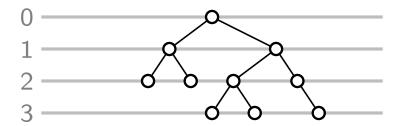


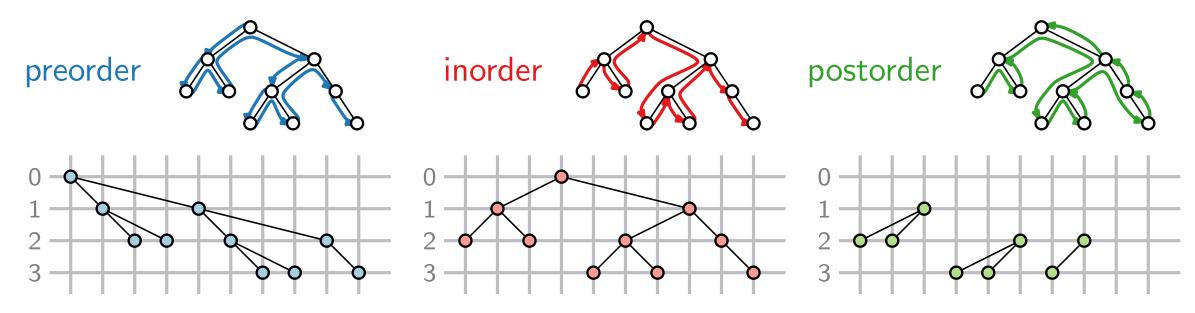
1. Choose y-coordinates: y(u) = depth(u)



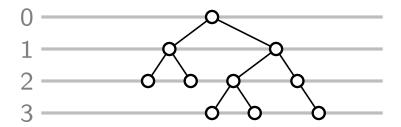


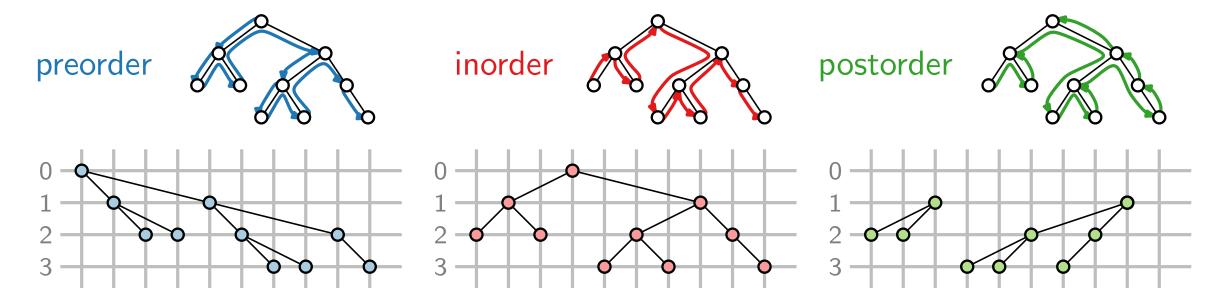
1. Choose y-coordinates: y(u) = depth(u)



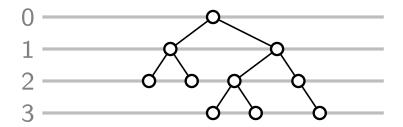


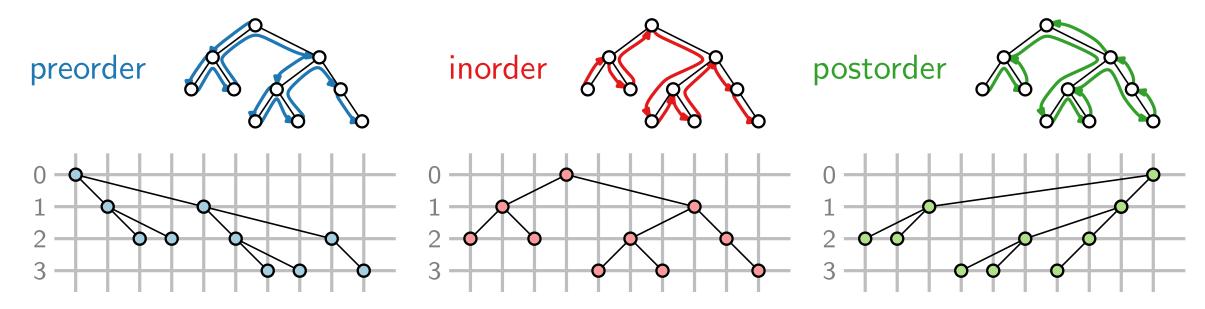
1. Choose y-coordinates: y(u) = depth(u)



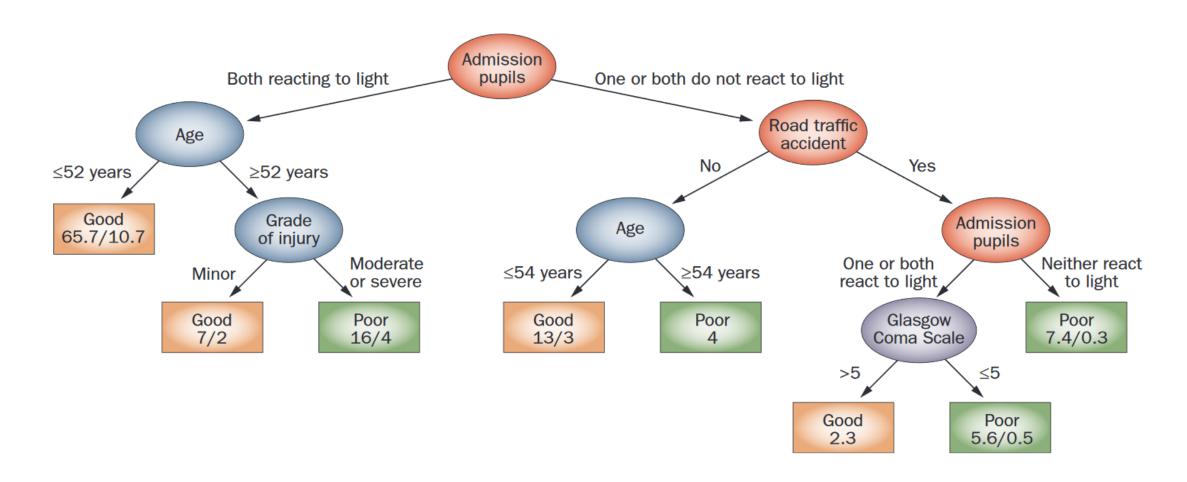


1. Choose y-coordinates: y(u) = depth(u)





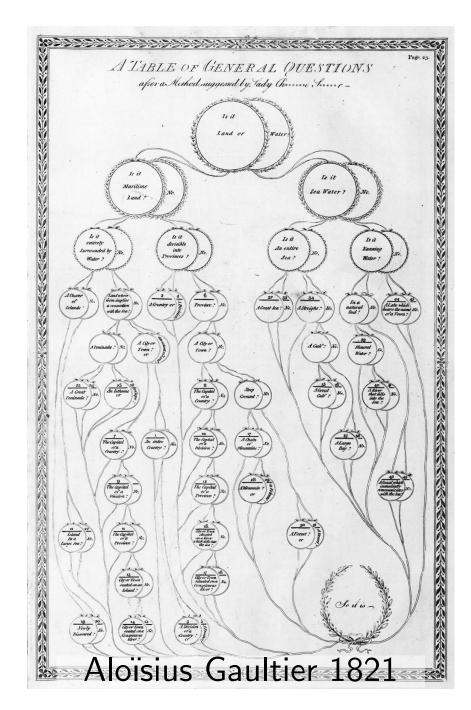
Layered Drawings – Applications

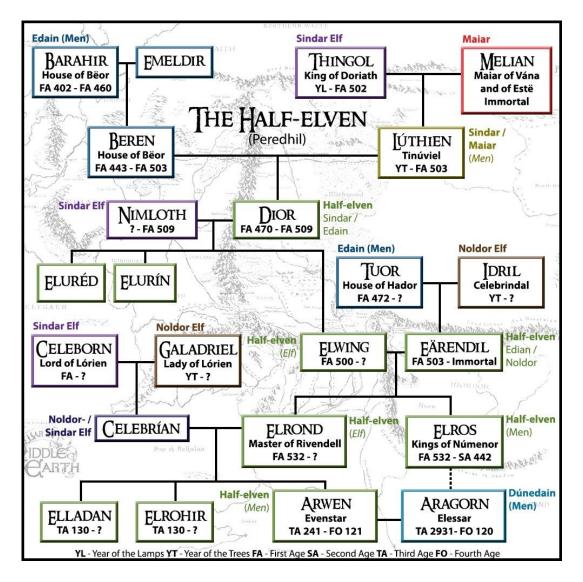


Decision tree for outcome prediction after traumatic brain injury

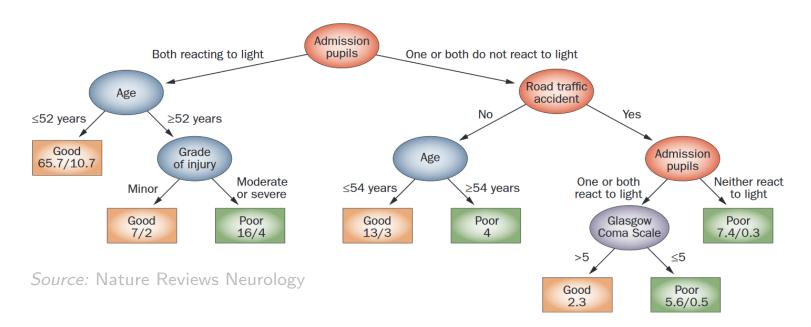
Source: Nature Reviews Neurology

Layered Drawings – Applications

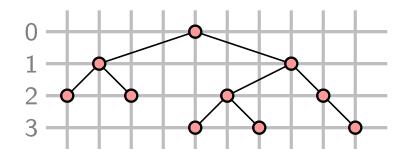


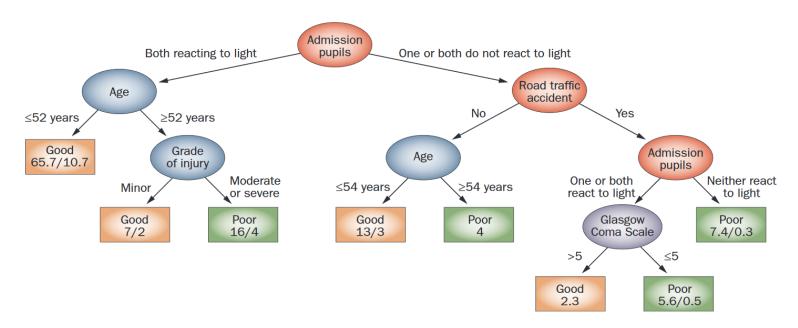


Family tree of elves and half-elves (The Hobbit & Lord of the Rings)

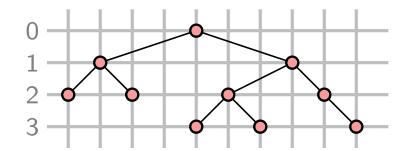


What are properties of the layout?

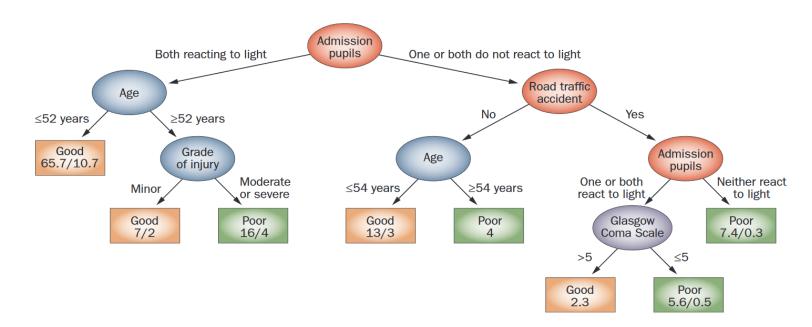




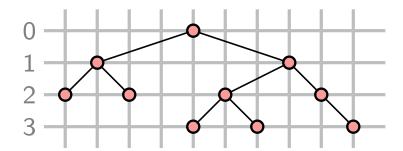
- What are properties of the layout?
- What are the drawing conventions?

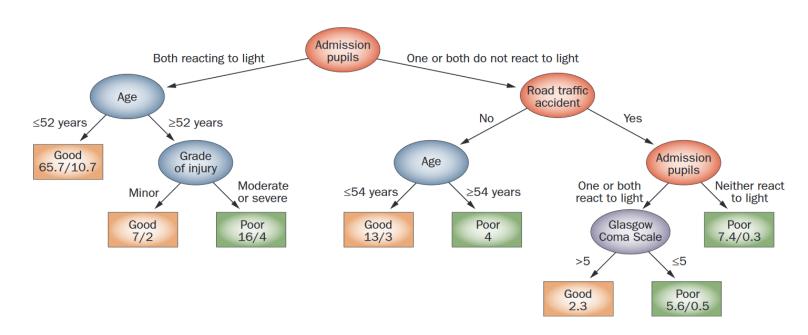


5 - 2

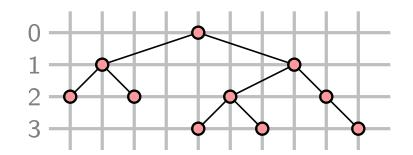


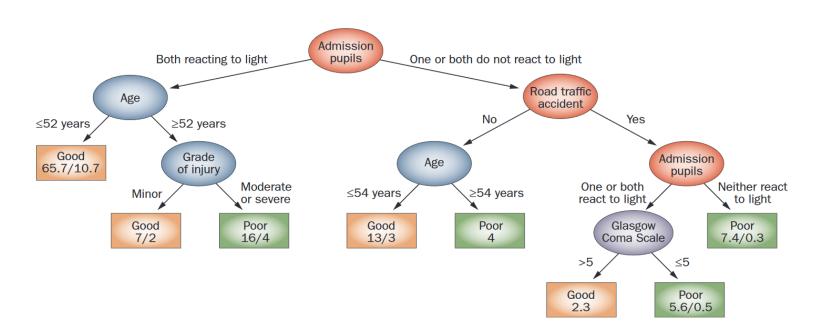
- What are properties of the layout?
- What are the drawing conventions?
- What are aesthetics to optimize?



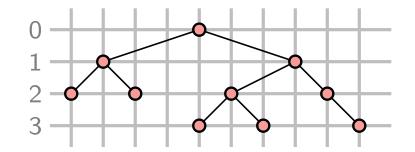


- What are properties of the layout?
- What are the drawing conventions?
- What are aesthetics to optimize?



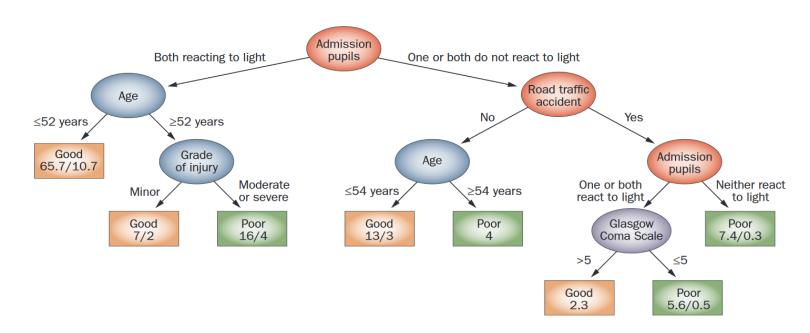


- What are properties of the layout?
- What are the drawing conventions?
- What are aesthetics to optimize?



Drawing conventions

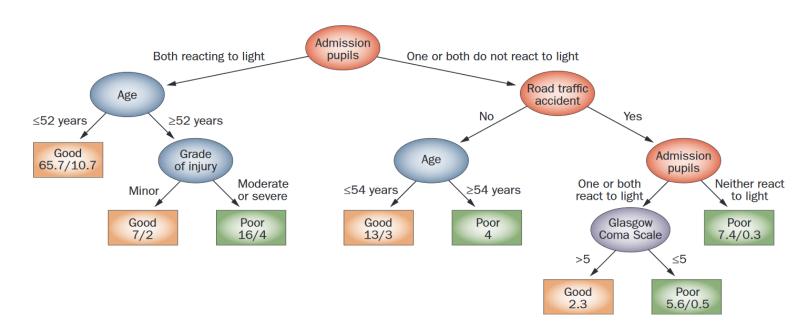
Vertices lie on layers and have integer coordinates



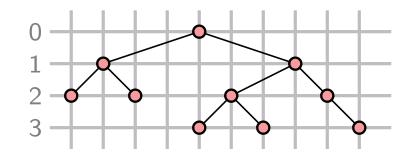
- What are properties of the layout?
- What are the drawing conventions?
- What are aesthetics to optimize?



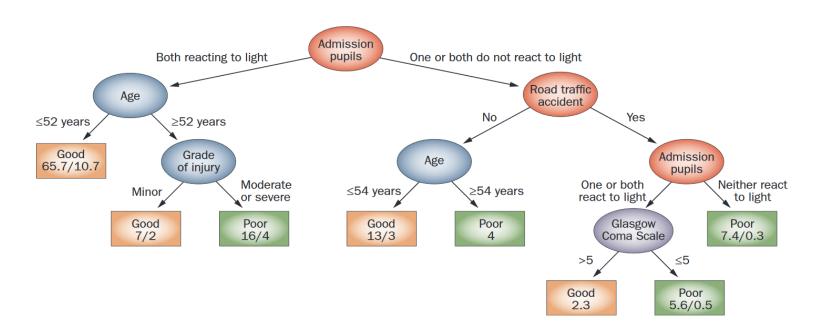
- Vertices lie on layers and have integer coordinates
- Parent centered above children (if there is more than one child)



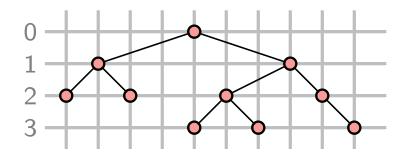
- What are properties of the layout?
- What are the drawing conventions?
- What are aesthetics to optimize?



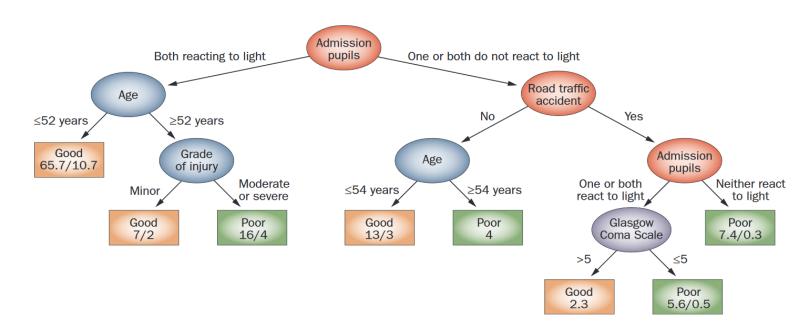
- Vertices lie on layers and have integer coordinates
- Parent centered above children (if there is more than one child)
- Edges are straight-line segments



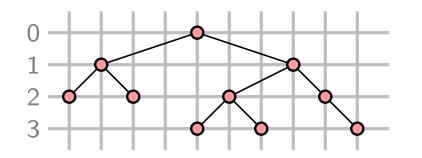
- What are properties of the layout?
- What are the drawing conventions?
- What are aesthetics to optimize?



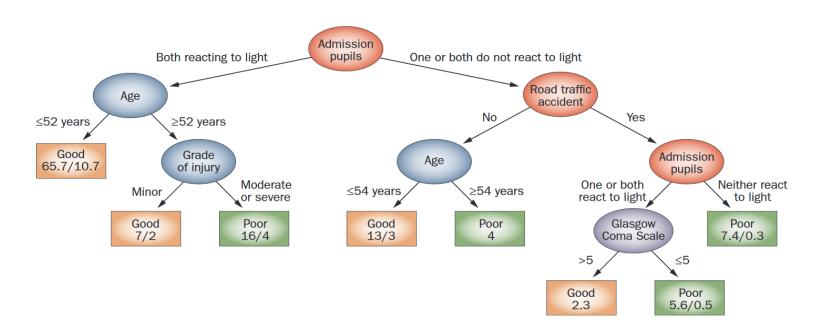
- Vertices lie on layers and have integer coordinates
- Parent centered above children (if there is more than one child)
- Edges are straight-line segments
- Isomorphic subtrees have identical drawings



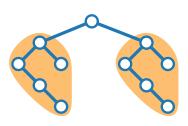
- What are properties of the layout?
- What are the drawing conventions?
- What are aesthetics to optimize?

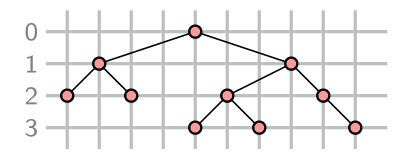


- Vertices lie on layers and have integer coordinates
- Parent centered above children (if there is more than one child)
- Edges are straight-line segments
- Isomorphic subtrees have identical drawings

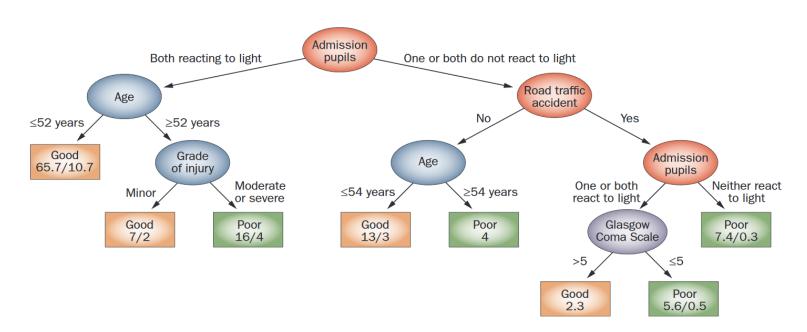


- What are properties of the layout?
- What are the drawing conventions?
- What are aesthetics to optimize?

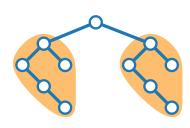


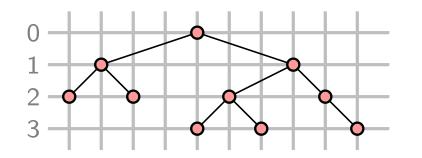


- Vertices lie on layers and have integer coordinates
- Parent centered above children (if there is more than one child)
- Edges are straight-line segments
- Isomorphic subtrees have identical drawings



- What are properties of the layout?
- What are the drawing conventions?
- What are aesthetics to optimize?

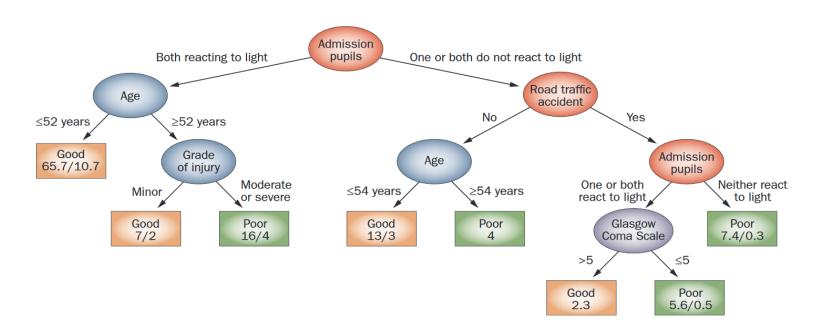




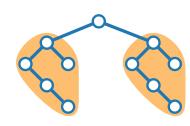
Drawing conventions

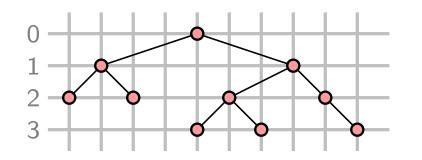
- Vertices lie on layers and have integer coordinates
- Parent centered above children (if there is more than one child)
- Edges are straight-line segments
- Isomorphic subtrees have identical drawings

Drawing aesthetics to optimize



- What are properties of the layout?
- What are the drawing conventions?
- What are aesthetics to optimize?



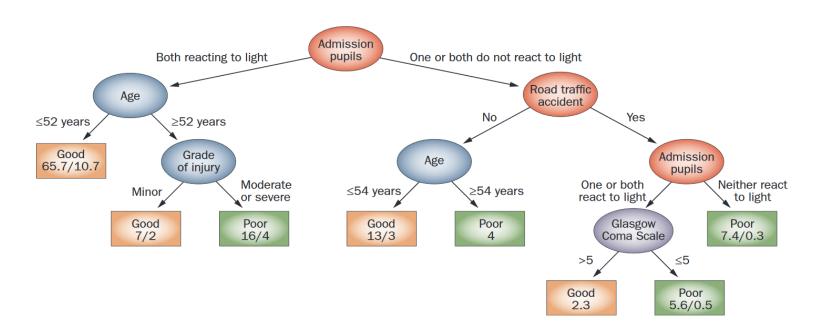


Drawing conventions

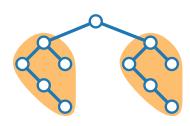
- Vertices lie on layers and have integer coordinates
- Parent centered above children (if there is more than one child)
- Edges are straight-line segments
- Isomorphic subtrees have identical drawings

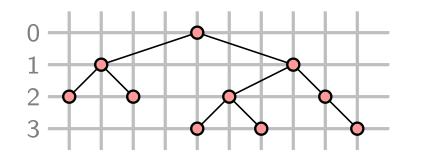
Drawing aesthetics to optimize

Area



- What are properties of the layout?
- What are the drawing conventions?
- What are aesthetics to optimize?





Drawing conventions

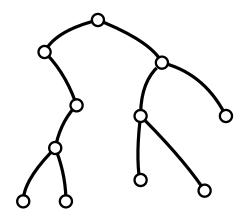
- Vertices lie on layers and have integer coordinates
- Parent centered above children (if there is more than one child)
- Edges are straight-line segments
- Isomorphic subtrees have identical drawings

Drawing aesthetics to optimize

- Area
- Symmetries

Input: A binary tree T

Output: A layered drawing of T

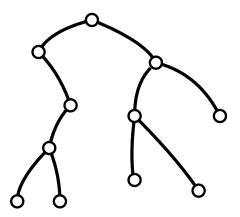


Input: A binary tree T

Output: A layered drawing of T

Base case:

Divide:

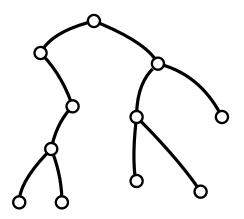


Input: A binary tree T

Output: A layered drawing of T

Base case: A single vertex

Divide:



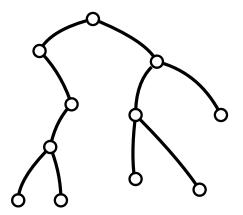
Input: A binary tree T

Output: A layered drawing of T

Base case: A single vertex o

Divide: Recursively apply the algorithm to

draw the left and right subtrees



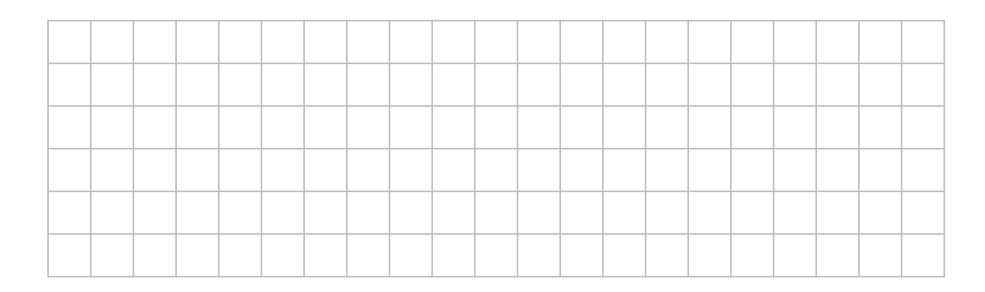
Input: A binary tree T

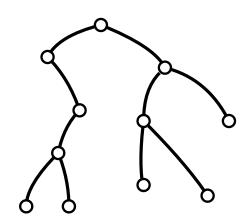
Output: A layered drawing of T

Base case: A single vertex

Divide: Recursively apply the algorithm to

draw the left and right subtrees





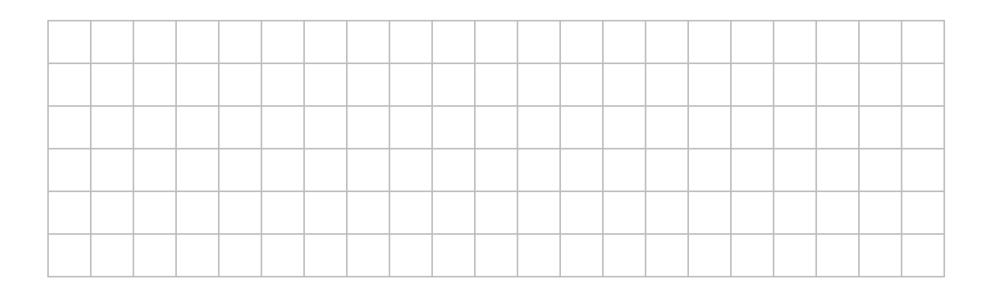
Input: A binary tree T

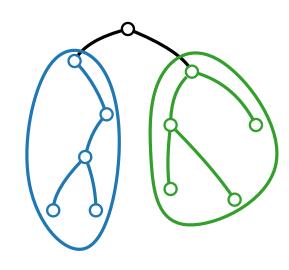
Output: A layered drawing of T

Base case: A single vertex o

Divide: Recursively apply the algorithm to

draw the left and right subtrees





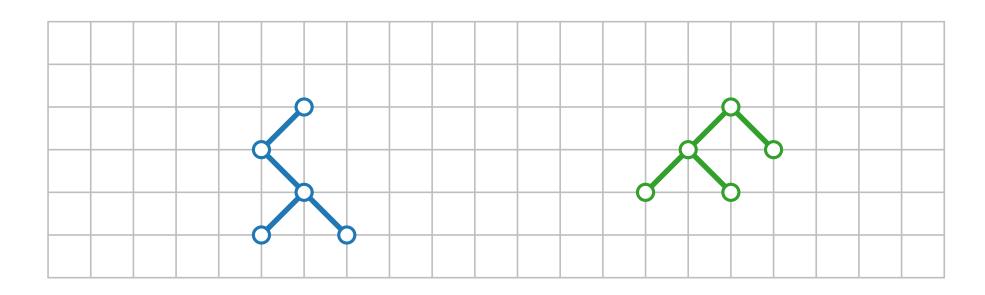
Input: A binary tree T

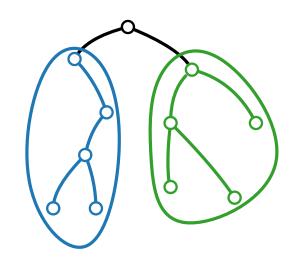
Output: A layered drawing of T

Base case: A single vertex o

Divide: Recursively apply the algorithm to

draw the left and right subtrees





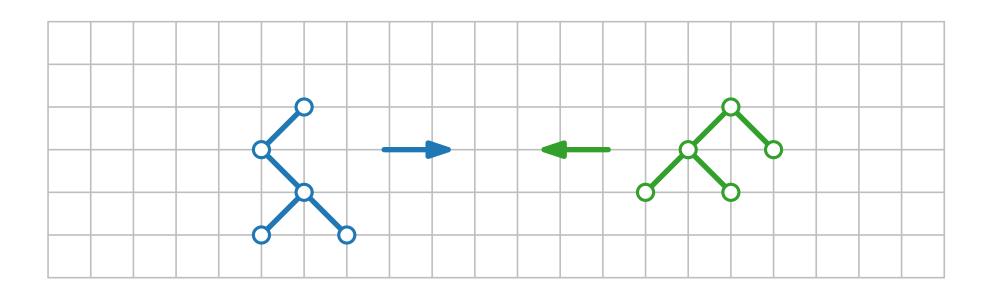
Input: A binary tree T

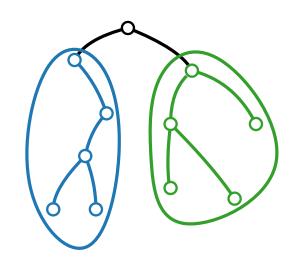
Output: A layered drawing of T

Base case: A single vertex o

Divide: Recursively apply the algorithm to

draw the left and right subtrees





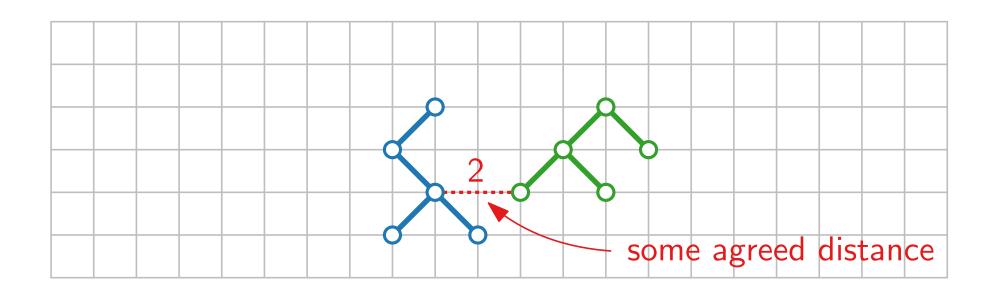
Input: A binary tree T

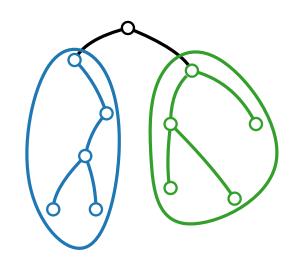
Output: A layered drawing of T

Base case: A single vertex

Divide: Recursively apply the algorithm to

draw the left and right subtrees





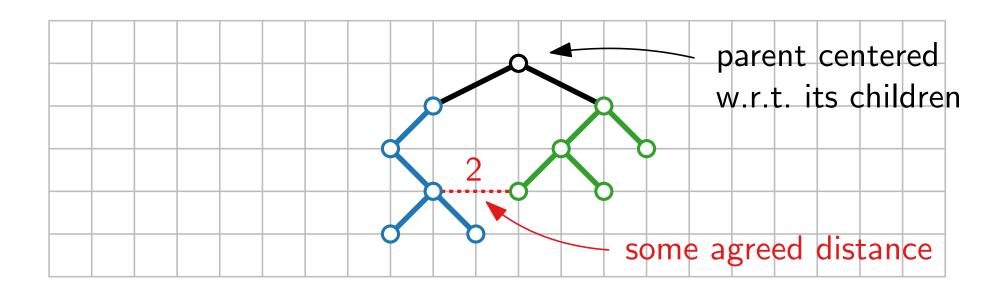
Input: A binary tree T

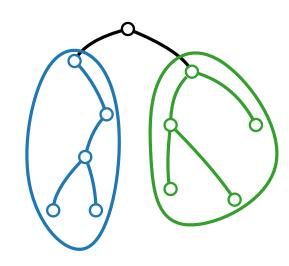
Output: A layered drawing of T

Base case: A single vertex o

Divide: Recursively apply the algorithm to

draw the left and right subtrees





Input: A binary tree T

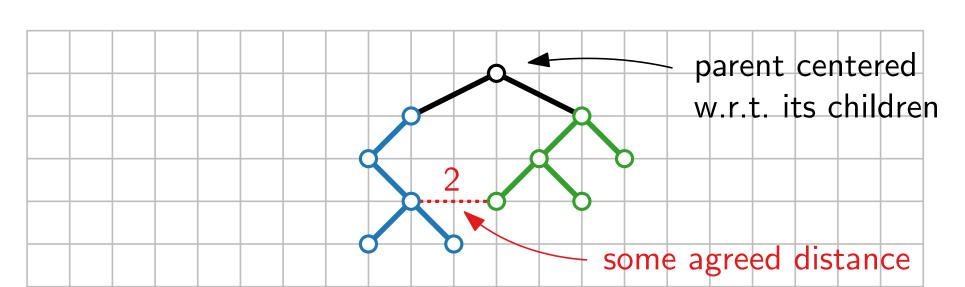
Output: A layered drawing of T

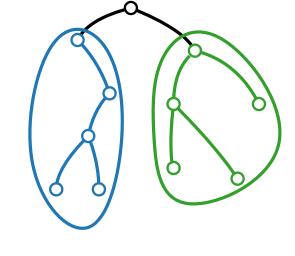
Base case: A single vertex o

Divide: Recursively apply the algorithm to

draw the left and right subtrees

Conquer:

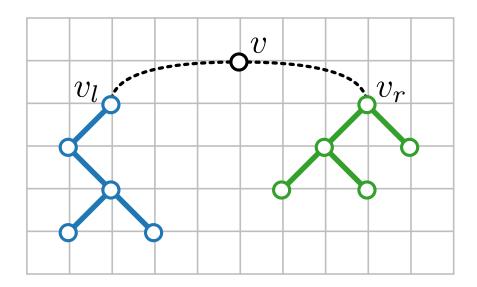




sometimes 3 apart for grid drawing!

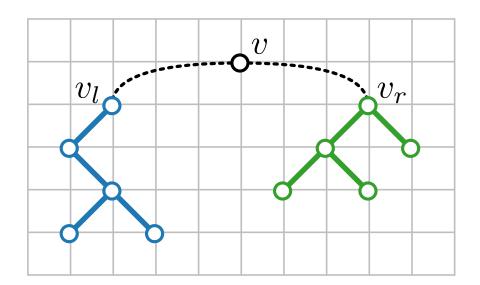
Phase 1 – postorder traversal:

For each vertex v, compute horizontal displacement of left child v_l and right child v_r .



Phase 1 – postorder traversal:

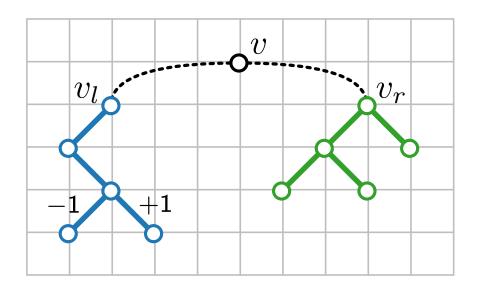
For each vertex v, compute horizontal displacement of left child v_l and right child v_r .



Phase 2 – preorder traversal:

Phase 1 – postorder traversal:

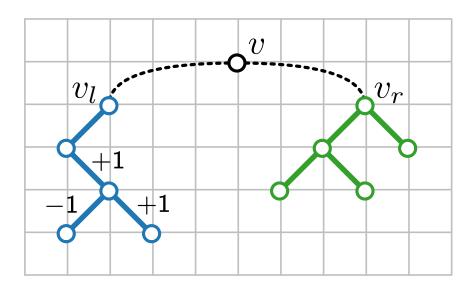
For each vertex v, compute horizontal displacement of left child v_l and right child v_r .



Phase 2 – preorder traversal:

Phase 1 – postorder traversal:

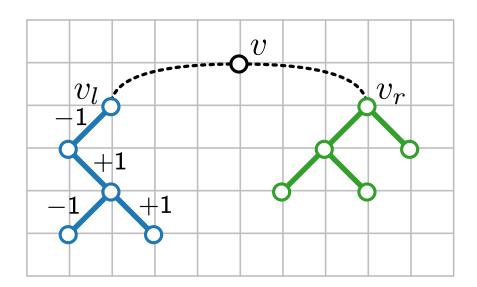
For each vertex v, compute horizontal displacement of left child v_l and right child v_r .



Phase 2 – preorder traversal:

Phase 1 – postorder traversal:

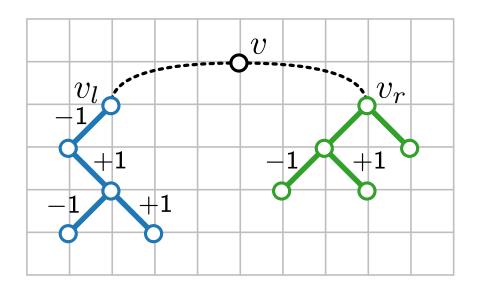
For each vertex v, compute horizontal displacement of left child v_l and right child v_r .



Phase 2 – preorder traversal:

Phase 1 – postorder traversal:

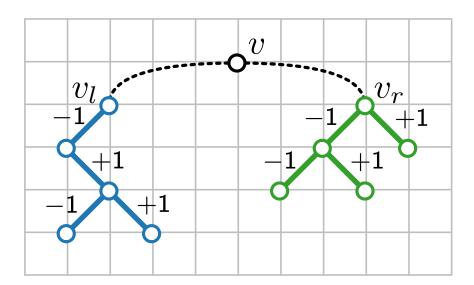
For each vertex v, compute horizontal displacement of left child v_l and right child v_r .



Phase 2 – preorder traversal:

Phase 1 – postorder traversal:

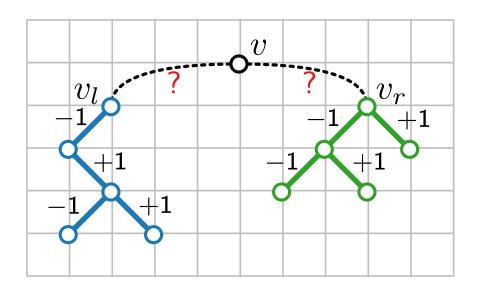
For each vertex v, compute horizontal displacement of left child v_l and right child v_r .



Phase 2 – preorder traversal:

Phase 1 – postorder traversal:

For each vertex v, compute horizontal displacement of left child v_l and right child v_r .

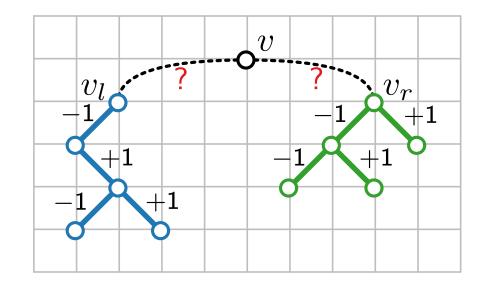


Phase 2 – preorder traversal:

Phase 1 – postorder traversal:

For each vertex v, compute horizontal displacement of left child v_l and right child v_r .

- At every vertex v store left and right contour of subtree T(v).
- A contour is a linked list of vertex coordinates/offsets.



Phase 1 – postorder traversal:

For each vertex v, compute horizontal displacement of left child v_l and right child v_r .

- At every vertex v store left and right contour of subtree T(v).
- A contour is a linked list of vertex coordinates/offsets.

Phase 2 – preorder traversal:

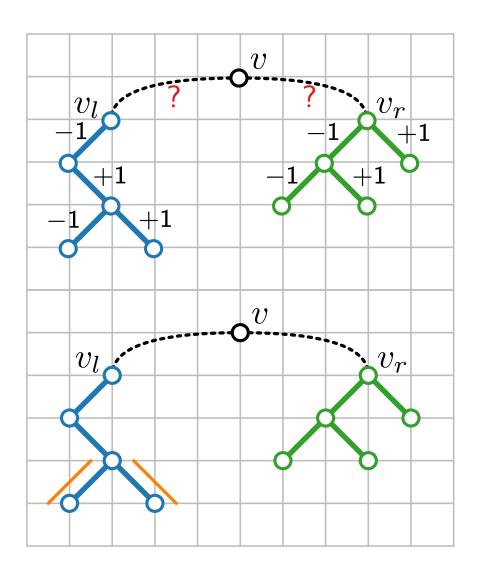


Phase 1 – postorder traversal:

For each vertex v, compute horizontal displacement of left child v_l and right child v_r .

- At every vertex v store left and right contour of subtree T(v).
- A contour is a linked list of vertex coordinates/offsets.

Phase 2 – preorder traversal:

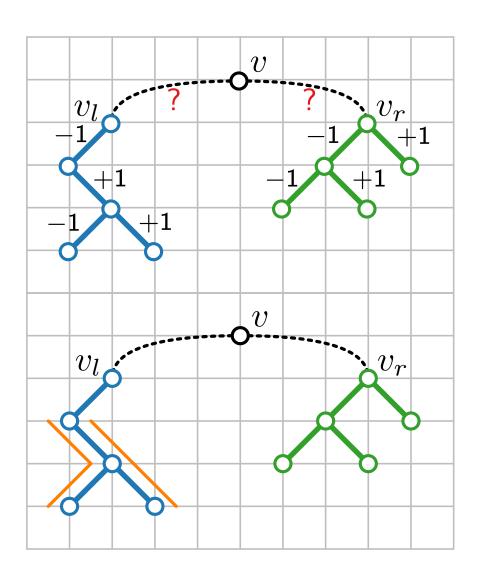


Phase 1 – postorder traversal:

For each vertex v, compute horizontal displacement of left child v_l and right child v_r .

- At every vertex v store left and right contour of subtree T(v).
- A contour is a linked list of vertex coordinates/offsets.

Phase 2 – preorder traversal:

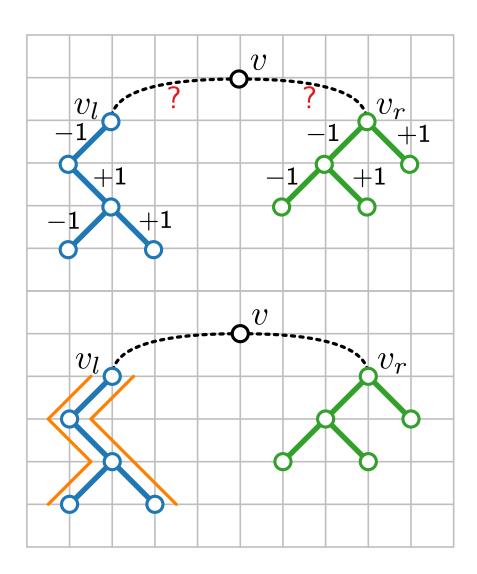


Phase 1 – postorder traversal:

For each vertex v, compute horizontal displacement of left child v_l and right child v_r .

- At every vertex v store left and right contour of subtree T(v).
- A contour is a linked list of vertex coordinates/offsets.

Phase 2 – preorder traversal:

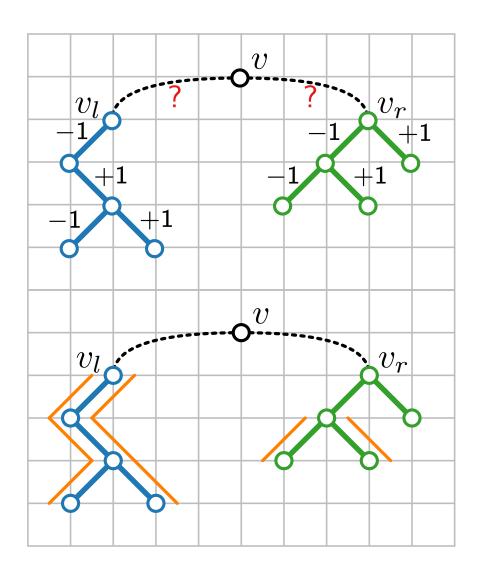


Phase 1 – postorder traversal:

For each vertex v, compute horizontal displacement of left child v_l and right child v_r .

- At every vertex v store left and right contour of subtree T(v).
- A contour is a linked list of vertex coordinates/offsets.

Phase 2 – preorder traversal:

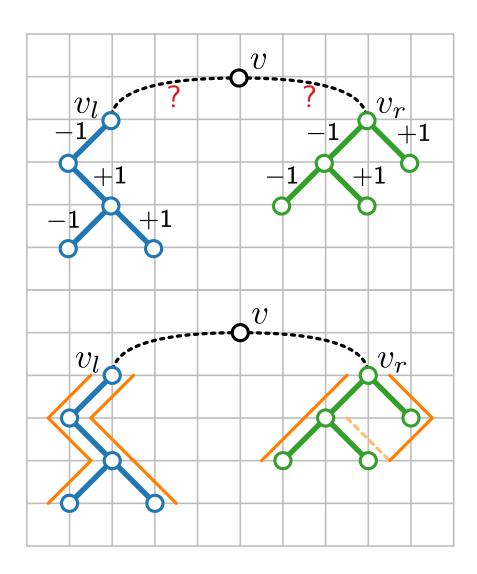


Phase 1 – postorder traversal:

For each vertex v, compute horizontal displacement of left child v_l and right child v_r .

- At every vertex v store left and right contour of subtree T(v).
- A contour is a linked list of vertex coordinates/offsets.

Phase 2 – preorder traversal:

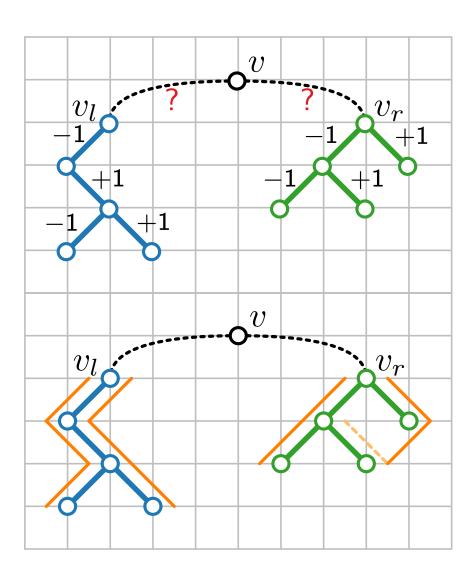


Phase 1 – postorder traversal:

For each vertex v, compute horizontal displacement of left child v_l and right child v_r .

- At every vertex v store left and right contour of subtree T(v).
- A contour is a linked list of vertex coordinates/offsets.
- Find $d_v = \min$. horiz. distance between v_l and v_r .

Phase 2 – preorder traversal:

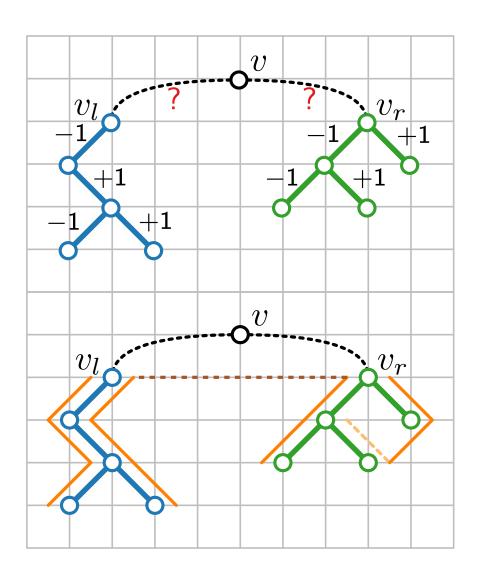


Phase 1 – postorder traversal:

For each vertex v, compute horizontal displacement of left child v_l and right child v_r .

- At every vertex v store left and right contour of subtree T(v).
- A contour is a linked list of vertex coordinates/offsets.
- Find $d_v = \min$. horiz. distance between v_l and v_r .

Phase 2 – preorder traversal:

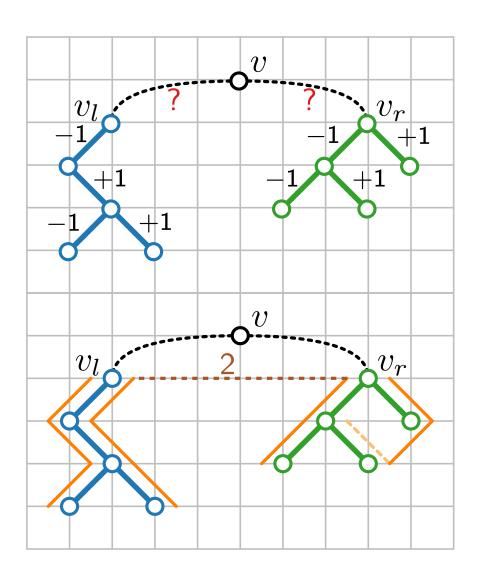


Phase 1 – postorder traversal:

For each vertex v, compute horizontal displacement of left child v_l and right child v_r .

- At every vertex v store left and right contour of subtree T(v).
- A contour is a linked list of vertex coordinates/offsets.
- lacktriangle Find $d_v = \min$. horiz. distance between v_l and v_r .

Phase 2 – preorder traversal:

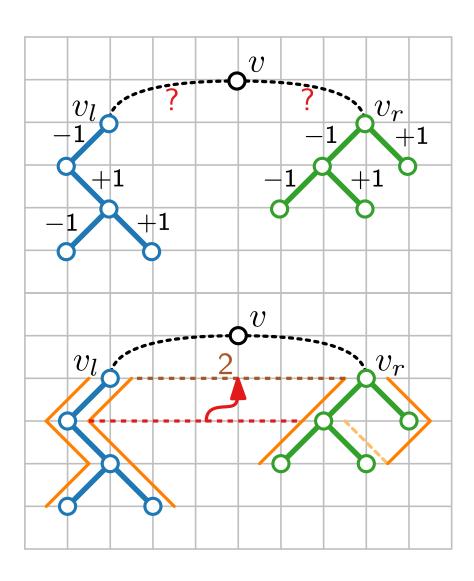


Phase 1 – postorder traversal:

For each vertex v, compute horizontal displacement of left child v_l and right child v_r .

- At every vertex v store left and right contour of subtree T(v).
- A contour is a linked list of vertex coordinates/offsets.
- lacktriangle Find $d_v = \min$. horiz. distance between v_l and v_r .

Phase 2 – preorder traversal:

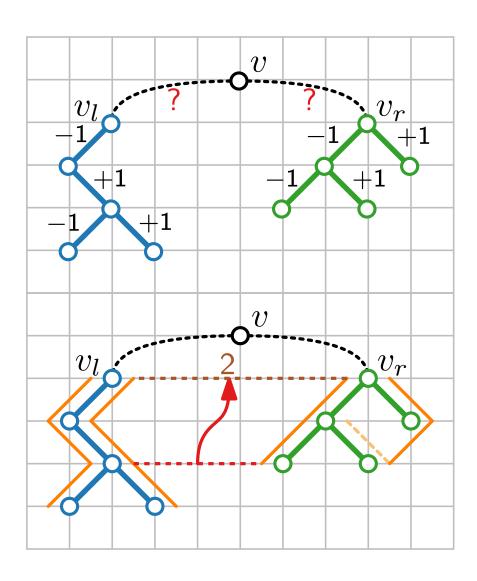


Phase 1 – postorder traversal:

For each vertex v, compute horizontal displacement of left child v_l and right child v_r .

- At every vertex v store left and right contour of subtree T(v).
- A contour is a linked list of vertex coordinates/offsets.
- lacktriangle Find $d_v = \min$. horiz. distance between v_l and v_r .

Phase 2 – preorder traversal:

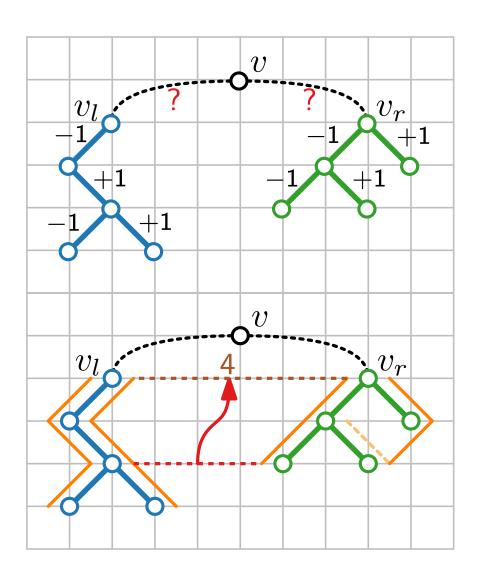


Phase 1 – postorder traversal:

For each vertex v, compute horizontal displacement of left child v_l and right child v_r .

- At every vertex v store left and right contour of subtree T(v).
- A contour is a linked list of vertex coordinates/offsets.
- lacktriangle Find $d_v = \min$. horiz. distance between v_l and v_r .

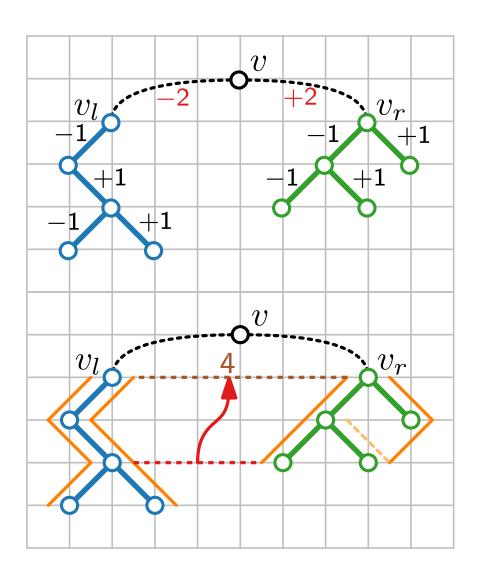
Phase 2 – preorder traversal:



Phase 1 – postorder traversal:

- For each vertex v, compute horizontal displacement of left child v_l and right child v_r .
- \blacksquare x-offset $(v_l) = -\lceil d_v/2 \rceil$, x-offset $(v_r) = \lceil d_v/2 \rceil$
- At every vertex v store left and right contour of subtree T(v).
- A contour is a linked list of vertex coordinates/offsets.
- lacktriangle Find $d_v = \min$. horiz. distance between v_l and v_r .

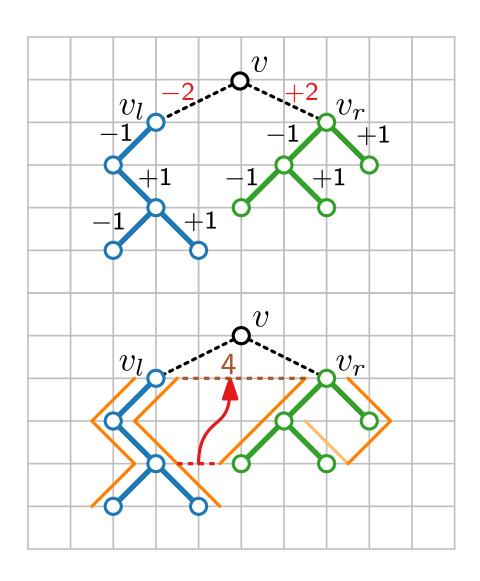
Phase 2 – preorder traversal:



Phase 1 – postorder traversal:

- For each vertex v, compute horizontal displacement of left child v_l and right child v_r .
- lacksquare x-offset $(v_l) = -\lceil d_v/2 \rceil$, x-offset $(v_r) = \lceil d_v/2 \rceil$
- At every vertex v store left and right contour of subtree T(v).
- A contour is a linked list of vertex coordinates/offsets.
- lacktriangle Find $d_v = \min$. horiz. distance between v_l and v_r .

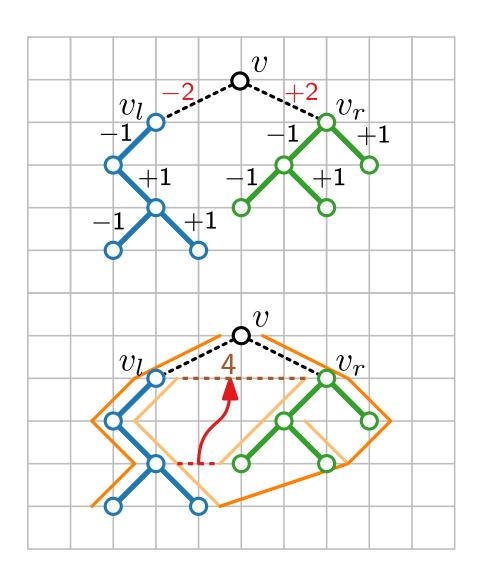
Phase 2 – preorder traversal:



Phase 1 – postorder traversal:

- For each vertex v, compute horizontal displacement of left child v_l and right child v_r .
- \blacksquare x-offset $(v_l) = -\lceil d_v/2 \rceil$, x-offset $(v_r) = \lceil d_v/2 \rceil$
- At every vertex v store left and right contour of subtree T(v).
- A contour is a linked list of vertex coordinates/offsets.
- Find $d_v = \min$. horiz. distance between v_l and v_r .

Phase 2 – preorder traversal:



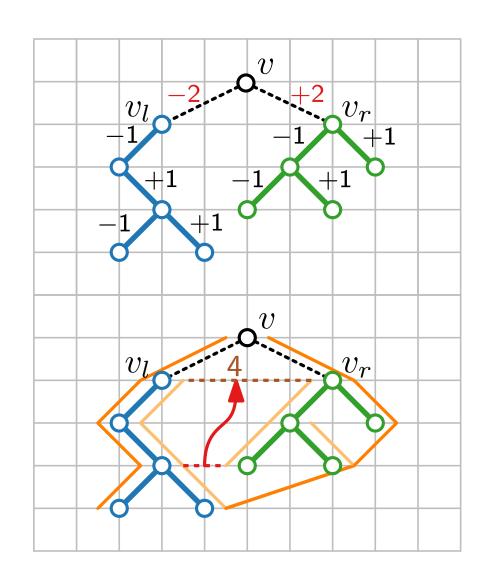
Phase 1 – postorder traversal:

- For each vertex v, compute horizontal displacement of left child v_l and right child v_r .
- \blacksquare x-offset $(v_l) = -\lceil d_v/2 \rceil$, x-offset $(v_r) = \lceil d_v/2 \rceil$
- At every vertex v store left and right contour of subtree T(v).
- A contour is a linked list of vertex coordinates/offsets.
- lacktriangle Find $d_v = \min$. horiz. distance between v_l and v_r .

Phase 2 – preorder traversal:

Compute x- and y-coordinates

Runtime?



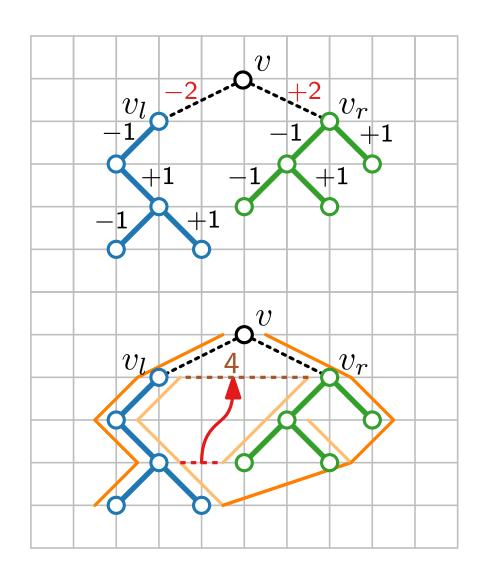
Phase 1 – postorder traversal:

- For each vertex v, compute horizontal displacement of left child v_l and right child v_r .
- \blacksquare x-offset $(v_l) = -\lceil d_v/2 \rceil$, x-offset $(v_r) = \lceil d_v/2 \rceil$
- At every vertex v store left and right contour of subtree T(v).
- A contour is a linked list of vertex coordinates/offsets.
- lacktriangle Find $d_v = \min$. horiz. distance between v_l and v_r .

Phase 2 – preorder traversal:

Compute x- and y-coordinates

Runtime?



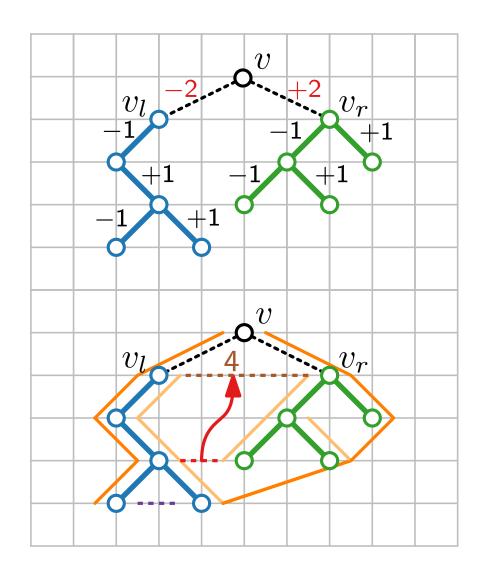
Phase 1 – postorder traversal:

- For each vertex v, compute horizontal displacement of left child v_l and right child v_r .
- lacksquare x-offset $(v_l) = -\lceil d_v/2 \rceil$, x-offset $(v_r) = \lceil d_v/2 \rceil$
- At every vertex v store left and right contour of subtree T(v).
- A contour is a linked list of vertex coordinates/offsets.
- lacktriangle Find $d_v = \min$. horiz. distance between v_l and v_r .

Phase 2 – preorder traversal:

Compute x- and y-coordinates

Runtime?



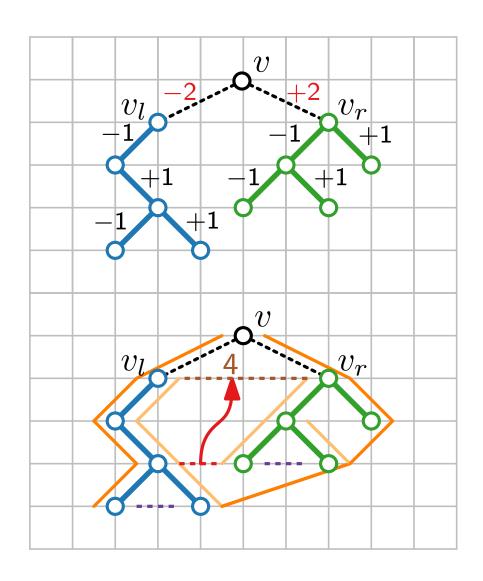
Phase 1 – postorder traversal:

- For each vertex v, compute horizontal displacement of left child v_l and right child v_r .
- \blacksquare x-offset $(v_l) = -\lceil d_v/2 \rceil$, x-offset $(v_r) = \lceil d_v/2 \rceil$
- At every vertex v store left and right contour of subtree T(v).
- A contour is a linked list of vertex coordinates/offsets.
- lacktriangle Find $d_v = \min$. horiz. distance between v_l and v_r .

Phase 2 – preorder traversal:

Compute x- and y-coordinates

Runtime?



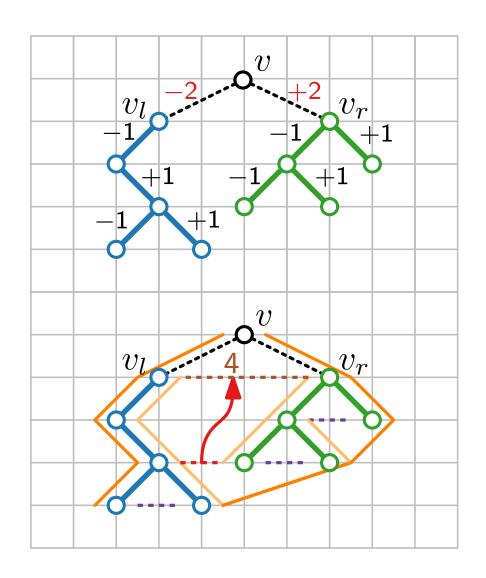
Phase 1 – postorder traversal:

- For each vertex v, compute horizontal displacement of left child v_l and right child v_r .
- \blacksquare x-offset $(v_l) = -\lceil d_v/2 \rceil$, x-offset $(v_r) = \lceil d_v/2 \rceil$
- At every vertex v store left and right contour of subtree T(v).
- A contour is a linked list of vertex coordinates/offsets.
- Find $d_v = \min$. horiz. distance between v_l and v_r .

Phase 2 – preorder traversal:

Compute x- and y-coordinates

Runtime?



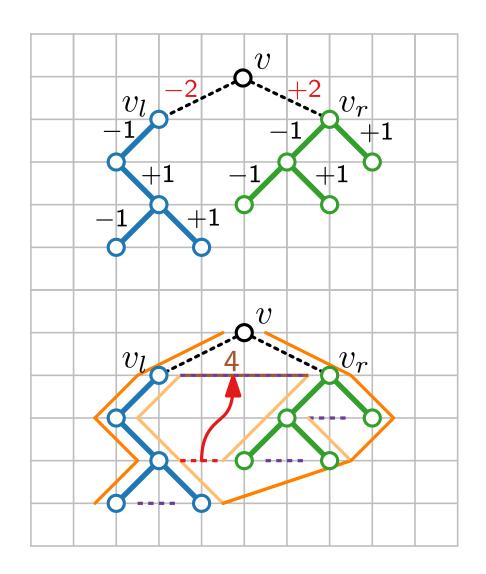
Phase 1 – postorder traversal:

- For each vertex v, compute horizontal displacement of left child v_l and right child v_r .
- \blacksquare x-offset $(v_l) = -\lceil d_v/2 \rceil$, x-offset $(v_r) = \lceil d_v/2 \rceil$
- At every vertex v store left and right contour of subtree T(v).
- A contour is a linked list of vertex coordinates/offsets.
- lacktriangle Find $d_v = \min$. horiz. distance between v_l and v_r .

Phase 2 – preorder traversal:

Compute x- and y-coordinates

Runtime?



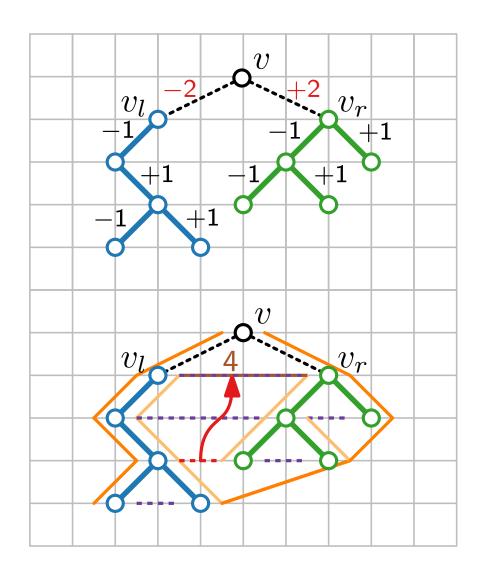
Phase 1 – postorder traversal:

- For each vertex v, compute horizontal displacement of left child v_l and right child v_r .
- \blacksquare x-offset $(v_l) = -\lceil d_v/2 \rceil$, x-offset $(v_r) = \lceil d_v/2 \rceil$
- At every vertex v store left and right contour of subtree T(v).
- A contour is a linked list of vertex coordinates/offsets.
- lacktriangle Find $d_v = \min$. horiz. distance between v_l and v_r .

Phase 2 – preorder traversal:

Compute x- and y-coordinates

Runtime?



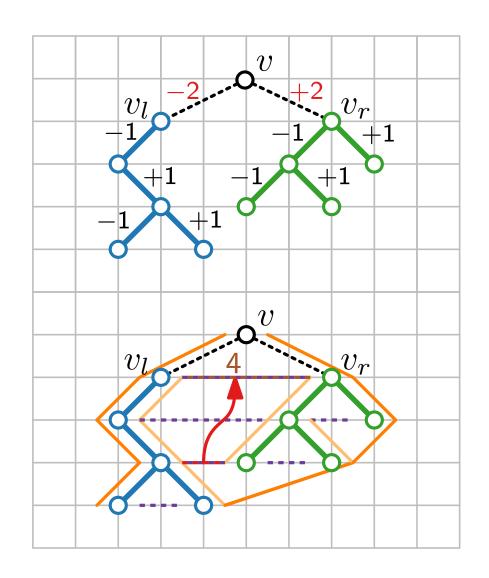
Phase 1 – postorder traversal:

- For each vertex v, compute horizontal displacement of left child v_l and right child v_r .
- \blacksquare x-offset $(v_l) = -\lceil d_v/2 \rceil$, x-offset $(v_r) = \lceil d_v/2 \rceil$
- At every vertex v store left and right contour of subtree T(v).
- A contour is a linked list of vertex coordinates/offsets.
- lacktriangle Find $d_v = \min$. horiz. distance between v_l and v_r .

Phase 2 – preorder traversal:

Compute x- and y-coordinates

Runtime?



Phase 1 – postorder traversal:

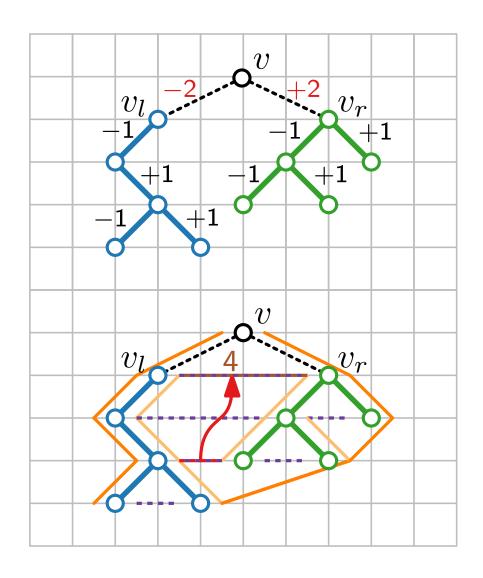
- For each vertex v, compute horizontal displacement of left child v_l and right child v_r .
- \blacksquare x-offset $(v_l) = -\lceil d_v/2 \rceil$, x-offset $(v_r) = \lceil d_v/2 \rceil$
- At every vertex v store left and right contour of subtree T(v).
- A contour is a linked list of vertex coordinates/offsets.
- Find $d_v = \min$. horiz. distance between v_l and v_r .

Phase 2 – preorder traversal:

Compute x- and y-coordinates

Runtime?

How often do we take a step along a contour?



in total $\mathcal{O}(n)$ times! where n=# vertices

Layered Drawings – Result

Theorem.

[Reingold & Tilford '81]

Let T be a binary tree with n vertices. We can construct a drawing Γ of T in $\mathcal{O}(n)$ time such that:

Layered Drawings – Result

Theorem.

[Reingold & Tilford '81]

Let T be a binary tree with n vertices. We can construct a drawing Γ of T in $\mathcal{O}(n)$ time such that:

Γ is planar, straight-line and strictly downward

Layered Drawings – Result

Theorem.

[Reingold & Tilford '81]

Let T be a binary tree with n vertices. We can construct a drawing Γ of T in $\mathcal{O}(n)$ time such that:

- Γ is planar, straight-line and strictly downward
- \blacksquare Γ is layered: y-coordinate of vertex v is -depth(v)

Theorem.

[Reingold & Tilford '81]

- Γ is planar, straight-line and strictly downward
- \blacksquare Γ is layered: y-coordinate of vertex v is -depth(v)
- Horizontal and vertical distances are at least 1

Theorem.

[Reingold & Tilford '81]

- Γ is planar, straight-line and strictly downward
- \blacksquare Γ is layered: y-coordinate of vertex v is -depth(v)
- Horizontal and vertical distances are at least 1
- \blacksquare Each vertex with > 1 child is centered w.r.t. its children

Theorem.

[Reingold & Tilford '81]

- Γ is planar, straight-line and strictly downward
- \blacksquare Γ is layered: y-coordinate of vertex v is -depth(v)
- Horizontal and vertical distances are at least 1
- \blacksquare Each vertex with > 1 child is centered w.r.t. its children
- Area of Γ is in $\mathcal{O}(n^2)$

Theorem.

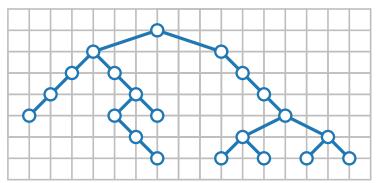
[Reingold & Tilford '81]

- Γ is planar, straight-line and strictly downward
- \blacksquare Γ is layered: y-coordinate of vertex v is -depth(v)
- Horizontal and vertical distances are at least 1
- Each vertex with > 1 child is centered w.r.t. its children
- **Area of** Γ is in $\mathcal{O}(n^2)$ but not optimal!

Theorem.

[Reingold & Tilford '81]

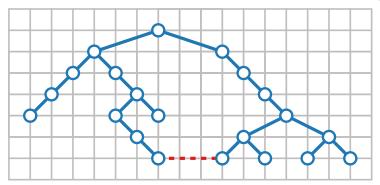
- Γ is planar, straight-line and strictly downward
- \blacksquare Γ is layered: y-coordinate of vertex v is -depth(v)
- Horizontal and vertical distances are at least 1
- \blacksquare Each vertex with > 1 child is centered w.r.t. its children
- Area of Γ is in $\mathcal{O}(n^2)$ but not optimal!



Theorem.

[Reingold & Tilford '81]

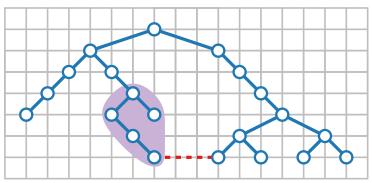
- Γ is planar, straight-line and strictly downward
- \blacksquare Γ is layered: y-coordinate of vertex v is -depth(v)
- Horizontal and vertical distances are at least 1
- \blacksquare Each vertex with > 1 child is centered w.r.t. its children
- Area of Γ is in $\mathcal{O}(n^2)$ but not optimal!



Theorem.

[Reingold & Tilford '81]

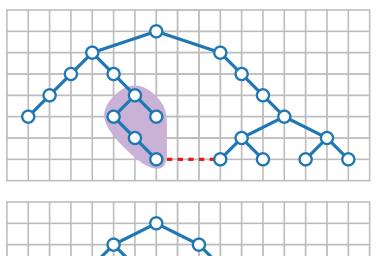
- Γ is planar, straight-line and strictly downward
- \blacksquare Γ is layered: y-coordinate of vertex v is -depth(v)
- Horizontal and vertical distances are at least 1
- \blacksquare Each vertex with > 1 child is centered w.r.t. its children
- Area of Γ is in $\mathcal{O}(n^2)$ but not optimal!

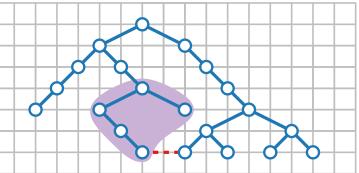


Theorem.

[Reingold & Tilford '81]

- Γ is planar, straight-line and strictly downward
- \blacksquare Γ is layered: y-coordinate of vertex v is -depth(v)
- Horizontal and vertical distances are at least 1
- \blacksquare Each vertex with > 1 child is centered w.r.t. its children
- Area of Γ is in $\mathcal{O}(n^2)$ but not optimal!

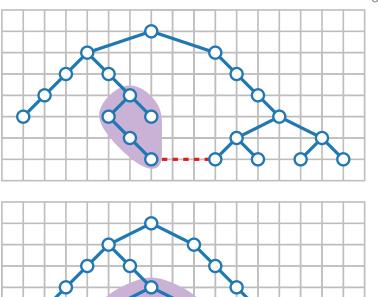


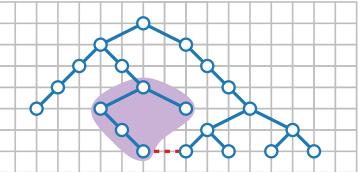


Theorem.

Reingold & Tilford '81]

- Γ is planar, straight-line and strictly downward
- Γ is layered: y-coordinate of vertex v is -depth(v)
- Horizontal and vertical distances are at least 1
- Each vertex with > 1 child is centered w.r.t. its children
- Area of Γ is in $\mathcal{O}(n^2)$ but not optimal! \blacktriangleleft NP-hard

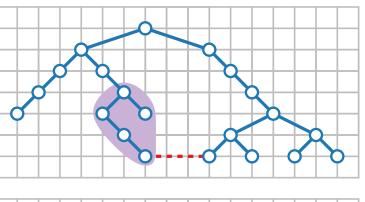


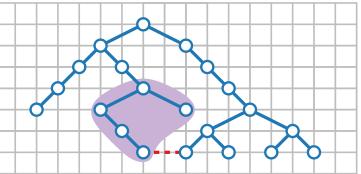


Theorem.

[Reingold & Tilford '81]

- Γ is planar, straight-line and strictly downward
- \blacksquare Γ is layered: y-coordinate of vertex v is -depth(v)
- Horizontal and vertical distances are at least 1
- \blacksquare Each vertex with > 1 child is centered w.r.t. its children
- Area of Γ is in $\mathcal{O}(n^2)$ but not optimal! \blacktriangleleft NP-hard
- Simply isomorphic subtrees have congruent drawings, up to translation

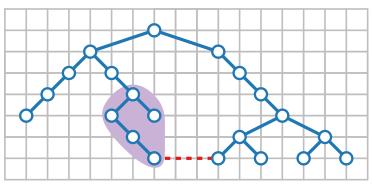


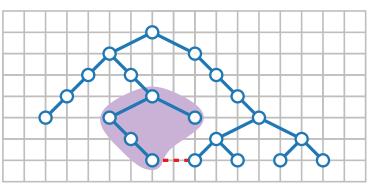


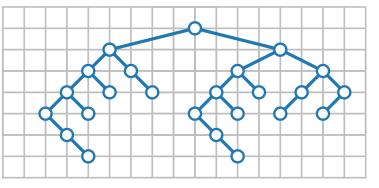
Theorem.

[Reingold & Tilford '81]

- Γ is planar, straight-line and strictly downward
- \blacksquare Γ is layered: y-coordinate of vertex v is -depth(v)
- Horizontal and vertical distances are at least 1
- \blacksquare Each vertex with > 1 child is centered w.r.t. its children
- Area of Γ is in $\mathcal{O}(n^2)$ but not optimal! \blacktriangleleft NP-hard
- Simply isomorphic subtrees have congruent drawings, up to translation



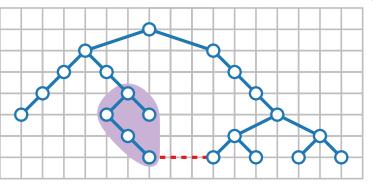


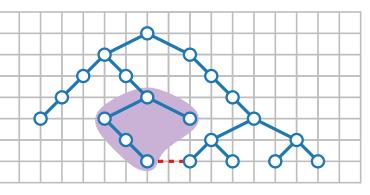


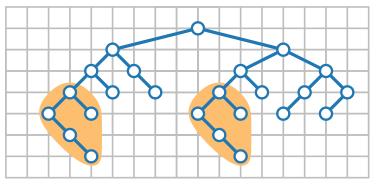
Theorem.

[Reingold & Tilford '81]

- Γ is planar, straight-line and strictly downward
- \blacksquare Γ is layered: y-coordinate of vertex v is -depth(v)
- Horizontal and vertical distances are at least 1
- \blacksquare Each vertex with > 1 child is centered w.r.t. its children
- Area of Γ is in $\mathcal{O}(n^2)$ but not optimal! \blacktriangleleft NP-hard
- Simply isomorphic subtrees have congruent drawings, up to translation



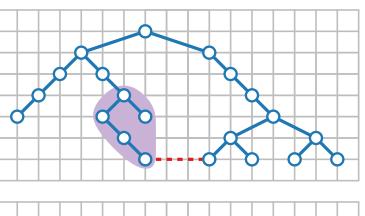


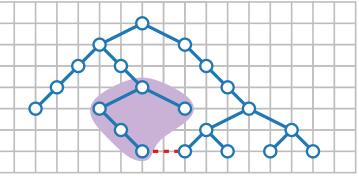


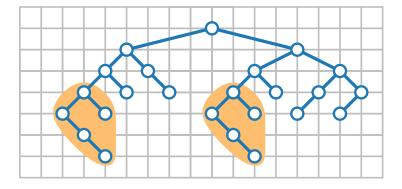
Theorem.

[Reingold & Tilford '81]

- Γ is planar, straight-line and strictly downward
- \blacksquare Γ is layered: y-coordinate of vertex v is -depth(v)
- Horizontal and vertical distances are at least 1
- \blacksquare Each vertex with > 1 child is centered w.r.t. its children
- Area of Γ is in $\mathcal{O}(n^2)$ but not optimal! \blacktriangleleft NP-hard
- Simply isomorphic subtrees have congruent drawings, up to translation
- Axially isomorphic subtrees have congruent drawings, up to translation and reflection



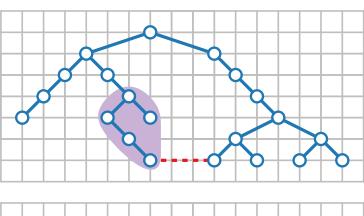


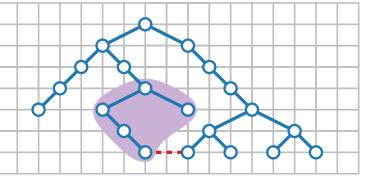


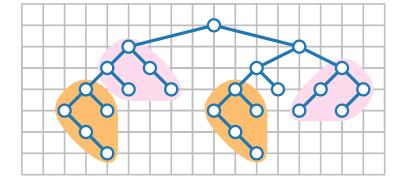
Theorem.

[Reingold & Tilford '81]

- Γ is planar, straight-line and strictly downward
- \blacksquare Γ is layered: y-coordinate of vertex v is -depth(v)
- Horizontal and vertical distances are at least 1
- \blacksquare Each vertex with > 1 child is centered w.r.t. its children
- Area of Γ is in $\mathcal{O}(n^2)$ but not optimal! \blacktriangleleft NP-hard
- Simply isomorphic subtrees have congruent drawings, up to translation
- Axially isomorphic subtrees have congruent drawings, up to translation and reflection



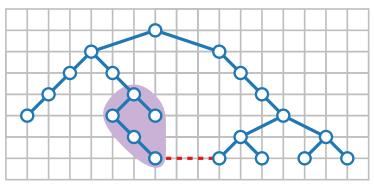


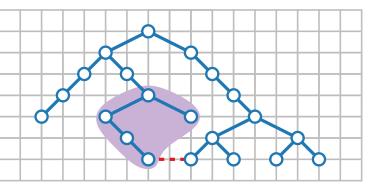


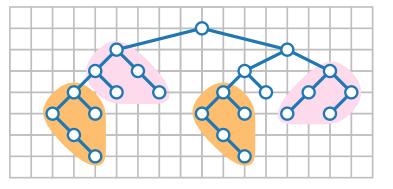
Theorem. rooted

[Reingold & Tilford '81]

- Γ is planar, straight-line and strictly downward
- \blacksquare Γ is layered: y-coordinate of vertex v is -depth(v)
- Horizontal and vertical distances are at least 1
- \blacksquare Each vertex with > 1 child is centered w.r.t. its children
- Area of Γ is in $\mathcal{O}(n^2)$ but not optimal! \blacktriangleleft NP-hard
- Simply isomorphic subtrees have congruent drawings, up to translation
- Axially isomorphic subtrees have congruent drawings, up to translation and reflection





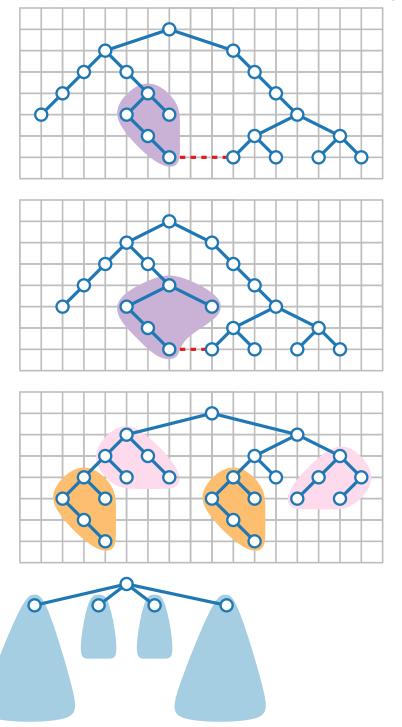


Theorem. rooted

[Reingold & Tilford '81]

Let T be a binary tree with n vertices. We can construct a drawing Γ of T in $\mathcal{O}(n)$ time such that:

- Γ is planar, straight-line and strictly downward
- \blacksquare Γ is layered: y-coordinate of vertex v is -depth(v)
- Horizontal and vertical distances are at least 1
- \blacksquare Each vertex with > 1 child is centered w.r.t. its children
- Area of Γ is in $\mathcal{O}(n^2)$ but not optimal! \blacktriangleleft NP-hard
- Simply isomorphic subtrees have congruent drawings, up to translation
- Axially isomorphic subtrees have congruent drawings,
 up to translation and reflection

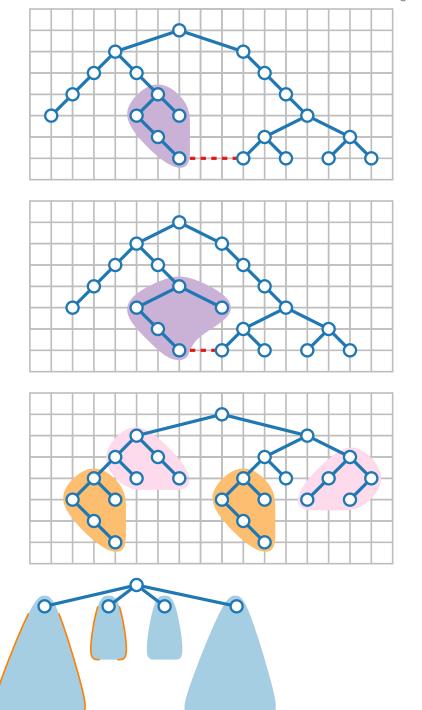


extension to non-binary rooted trees

Theorem. rooted

[Reingold & Tilford '81]

- Γ is planar, straight-line and strictly downward
- \blacksquare Γ is layered: y-coordinate of vertex v is -depth(v)
- Horizontal and vertical distances are at least 1
- \blacksquare Each vertex with > 1 child is centered w.r.t. its children
- Area of Γ is in $\mathcal{O}(n^2)$ but not optimal! \blacktriangleleft NP-hard
- Simply isomorphic subtrees have congruent drawings, up to translation
- Axially isomorphic subtrees have congruent drawings,
 up to translation and reflection

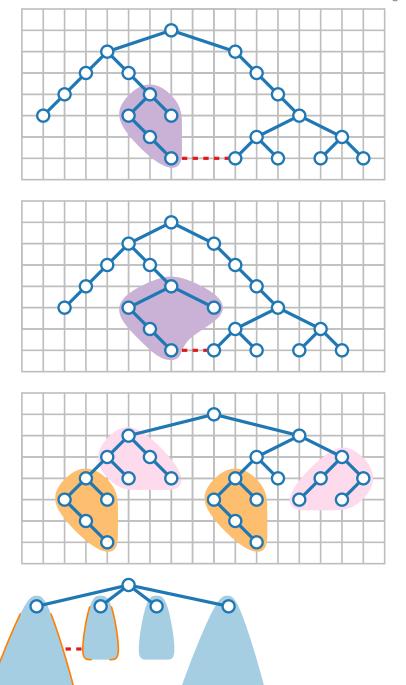


extension to non-binary rooted trees

Theorem. rooted

[Reingold & Tilford '81]

- Γ is planar, straight-line and strictly downward
- \blacksquare Γ is layered: y-coordinate of vertex v is -depth(v)
- Horizontal and vertical distances are at least 1
- \blacksquare Each vertex with > 1 child is centered w.r.t. its children
- Area of Γ is in $\mathcal{O}(n^2)$ but not optimal! \blacktriangleleft NP-hard
- Simply isomorphic subtrees have congruent drawings, up to translation
- Axially isomorphic subtrees have congruent drawings, up to translation and reflection

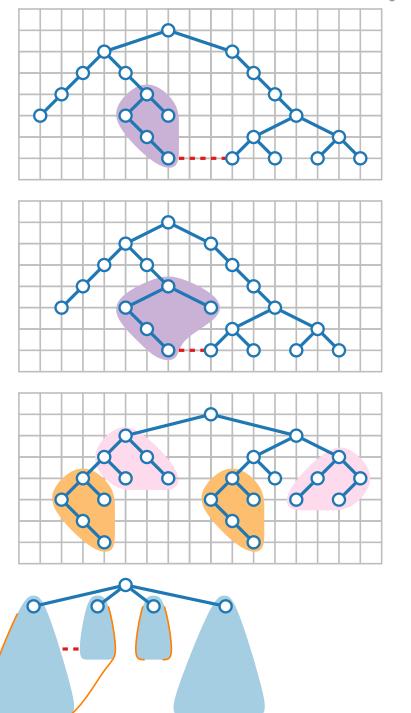


extension to non-binary rooted trees

Theorem. rooted

[Reingold & Tilford '81]

- Γ is planar, straight-line and strictly downward
- \blacksquare Γ is layered: y-coordinate of vertex v is -depth(v)
- Horizontal and vertical distances are at least 1
- \blacksquare Each vertex with > 1 child is centered w.r.t. its children
- Area of Γ is in $\mathcal{O}(n^2)$ but not optimal! \blacktriangleleft NP-hard
- Simply isomorphic subtrees have congruent drawings, up to translation
- Axially isomorphic subtrees have congruent drawings,
 up to translation and reflection

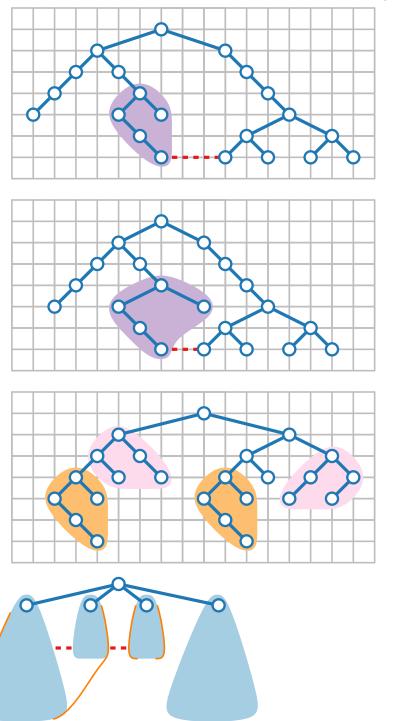


extension to non-binary rooted trees

Theorem. rooted

[Reingold & Tilford '81]

- Γ is planar, straight-line and strictly downward
- \blacksquare Γ is layered: y-coordinate of vertex v is -depth(v)
- Horizontal and vertical distances are at least 1
- \blacksquare Each vertex with > 1 child is centered w.r.t. its children
- Area of Γ is in $\mathcal{O}(n^2)$ but not optimal! \blacktriangleleft NP-hard
- Simply isomorphic subtrees have congruent drawings, up to translation
- Axially isomorphic subtrees have congruent drawings,
 up to translation and reflection

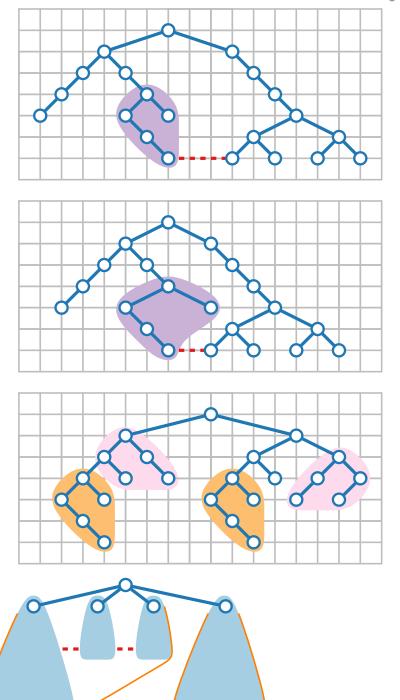


extension to non-binary rooted trees

Theorem. rooted

[Reingold & Tilford '81]

- Γ is planar, straight-line and strictly downward
- \blacksquare Γ is layered: y-coordinate of vertex v is -depth(v)
- Horizontal and vertical distances are at least 1
- \blacksquare Each vertex with > 1 child is centered w.r.t. its children
- Area of Γ is in $\mathcal{O}(n^2)$ but not optimal! \blacktriangleleft NP-hard
- Simply isomorphic subtrees have congruent drawings, up to translation
- Axially isomorphic subtrees have congruent drawings, up to translation and reflection

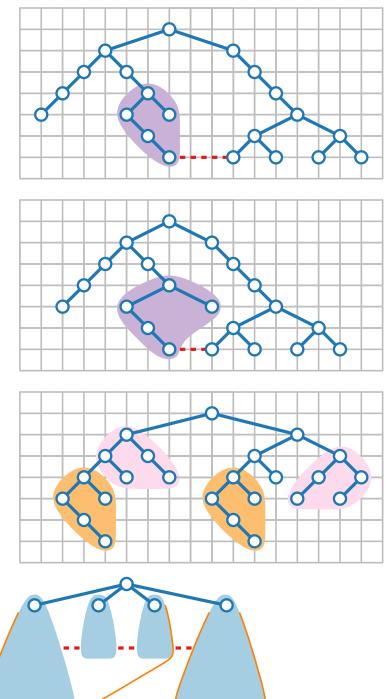


extension to non-binary rooted trees

Theorem. rooted

[Reingold & Tilford '81]

- Γ is planar, straight-line and strictly downward
- \blacksquare Γ is layered: y-coordinate of vertex v is -depth(v)
- Horizontal and vertical distances are at least 1
- \blacksquare Each vertex with > 1 child is centered w.r.t. its children
- Area of Γ is in $\mathcal{O}(n^2)$ but not optimal! \blacktriangleleft NP-hard
- Simply isomorphic subtrees have congruent drawings, up to translation
- Axially isomorphic subtrees have congruent drawings, up to translation and reflection

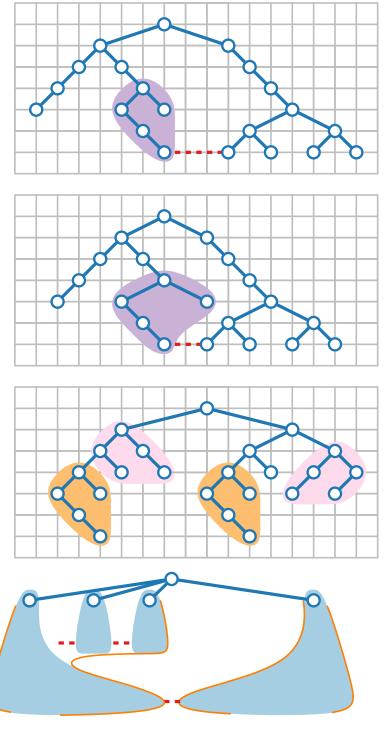


extension to non-binary rooted trees

Theorem. rooted

[Reingold & Tilford '81]

- Γ is planar, straight-line and strictly downward
- \blacksquare Γ is layered: y-coordinate of vertex v is -depth(v)
- Horizontal and vertical distances are at least 1
- \blacksquare Each vertex with > 1 child is centered w.r.t. its children
- Area of Γ is in $\mathcal{O}(n^2)$ but not optimal! \blacktriangleleft NP-hard
- Simply isomorphic subtrees have congruent drawings, up to translation
- Axially isomorphic subtrees have congruent drawings, up to translation and reflection

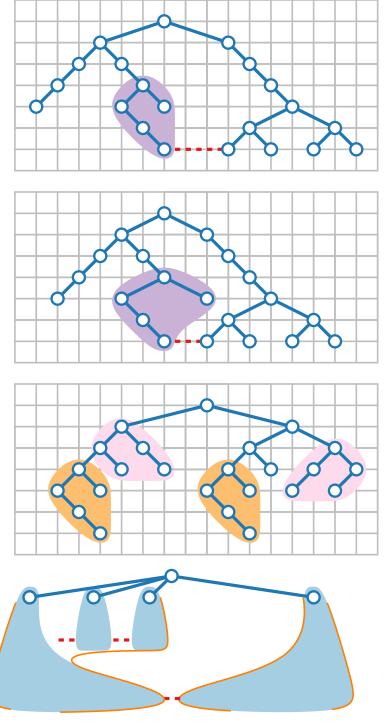


extension to non-binary rooted trees

Theorem. rooted

[Reingold & Tilford '81]

- Γ is planar, straight-line and strictly downward
- \blacksquare Γ is layered: y-coordinate of vertex v is -depth(v)
- Horizontal and vertical distances are at least 1
- \blacksquare Each vertex with > 1 child is centered w.r.t. its children
- Area of Γ is in $\mathcal{O}(n^2)$ but not optimal! \blacktriangleleft NP-hard
- Simply isomorphic subtrees have congruent drawings, up to translation
- Axially isomorphic subtrees have congruent drawings, up to translation and reflection



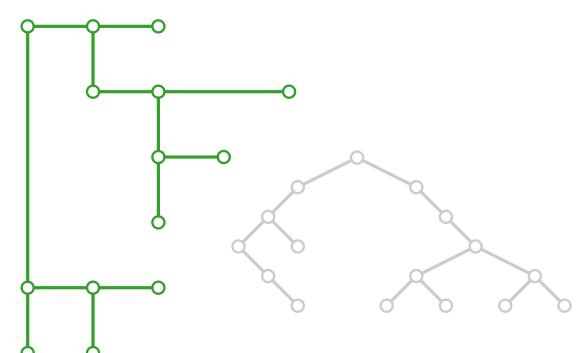
extension to non-binary rooted trees

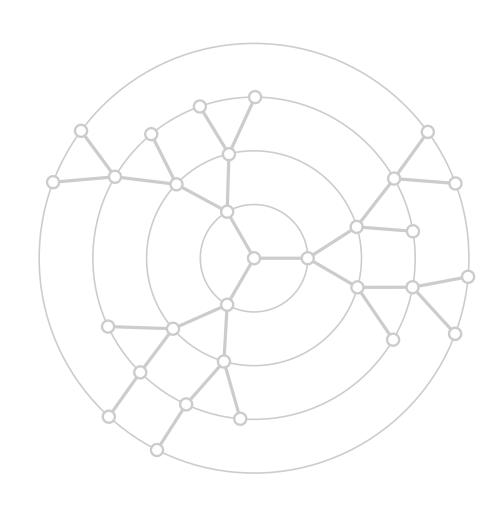
Visualization of Graphs

Lecture 1b:

Drawing Trees

Part II: HV-Drawings





Applications

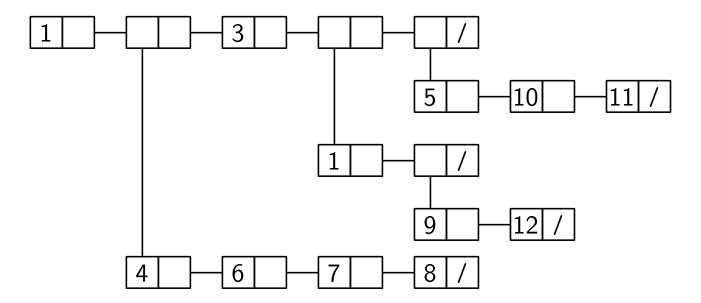
Cons cell diagram in LISP

Applications

- Cons cell diagram in LISP
- Cons (constructs) are memory objects that hold two values or pointers to values

Applications

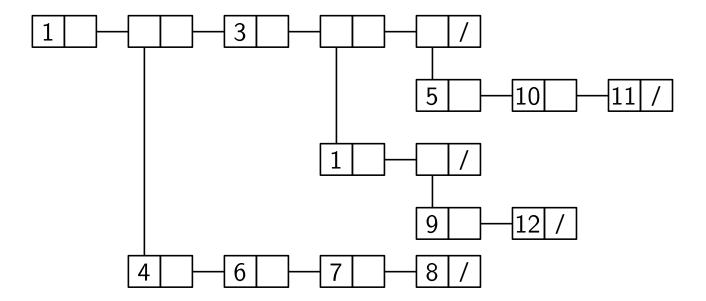
- Cons cell diagram in LISP
- Cons (constructs) are memory objects that hold two values or pointers to values



Source: after gajon.org/trees-linked-lists-common-lisp/

Applications

- Cons cell diagram in LISP
- Cons (constructs) are memory objects that hold two values or pointers to values

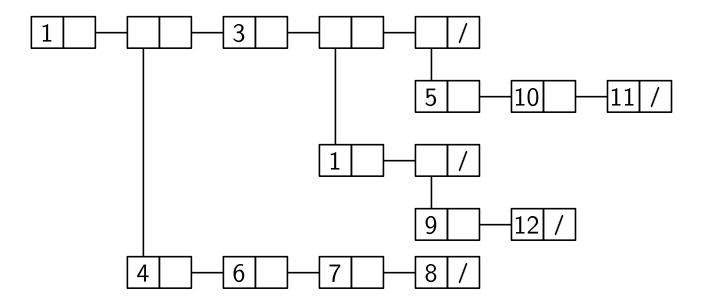


Source: after gajon.org/trees-linked-lists-common-lisp/

Drawing conventions

Applications

- Cons cell diagram in LISP
- Cons (constructs) are memory objects that hold two values or pointers to values



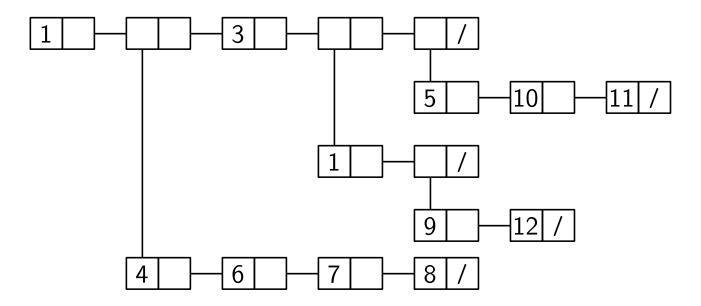
Source: after gajon.org/trees-linked-lists-common-lisp/

Drawing conventions

Children are vertically or horizontally aligned with their parent

Applications

- Cons cell diagram in LISP
- Cons (constructs) are memory objects that hold two values or pointers to values



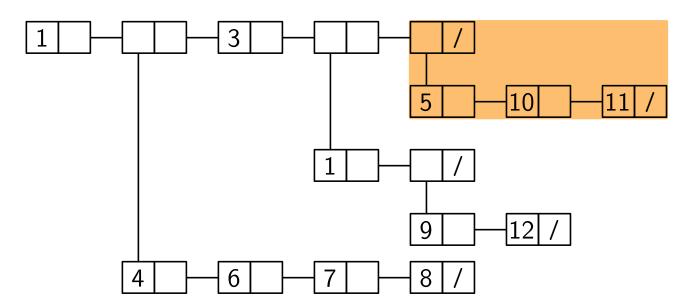
Source: after gajon.org/trees-linked-lists-common-lisp/

Drawing conventions

- Children are vertically or horizontally aligned with their parent
- The bounding boxes of the subtrees of the children are disjoint

Applications

- Cons cell diagram in LISP
- Cons (constructs) are memory objects that hold two values or pointers to values



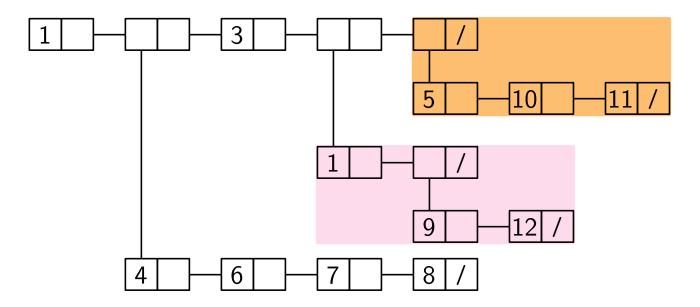
Source: after gajon.org/trees-linked-lists-common-lisp/

Drawing conventions

- Children are vertically or horizontally aligned with their parent
- The bounding boxes of the subtrees of the children are disjoint

Applications

- Cons cell diagram in LISP
- Cons (constructs) are memory objects that hold two values or pointers to values



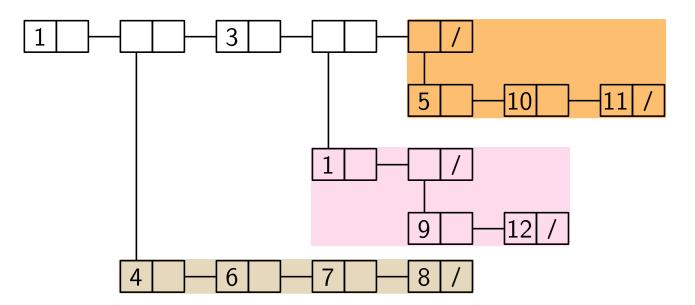
Source: after gajon.org/trees-linked-lists-common-lisp/

Drawing conventions

- Children are vertically or horizontally aligned with their parent
- The bounding boxes of the subtrees of the children are disjoint

Applications

- Cons cell diagram in LISP
- Cons (constructs) are memory objects that hold two values or pointers to values



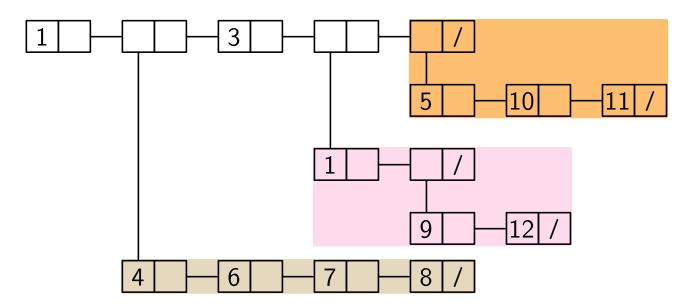
Source: after gajon.org/trees-linked-lists-common-lisp/

Drawing conventions

- Children are vertically or horizontally aligned with their parent
- The bounding boxes of the subtrees of the children are disjoint

Applications

- Cons cell diagram in LISP
- Cons (constructs) are memory objects that hold two values or pointers to values



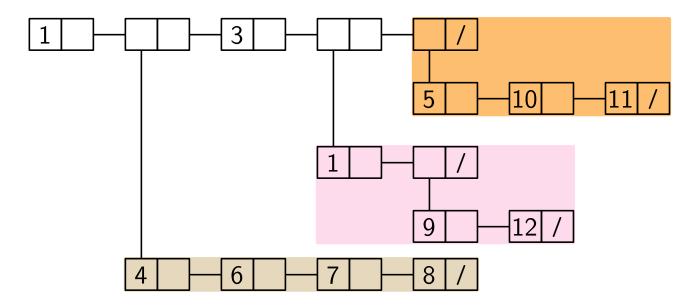
Source: after gajon.org/trees-linked-lists-common-lisp/

Drawing conventions

- Children are vertically or horizontally aligned with their parent
- The bounding boxes of the subtrees of the children are disjoint
- Edges are strictly down- or rightwards

Applications

- Cons cell diagram in LISP
- Cons (constructs) are memory objects that hold two values or pointers to values



Source: after gajon.org/trees-linked-lists-common-lisp/

Drawing conventions

- Children are vertically or horizontally aligned with their parent
- The bounding boxes of the subtrees of the children are disjoint
- Edges are strictly down- or rightwards

Drawing aesthetics to optimize

Height, width, area

Input: A binary tree T

Output: An HV-drawing of T

Input: A binary tree T

Output: An HV-drawing of T

Base case: 9

Input: A binary tree T

Output: An HV-drawing of T

Base case: 9

Divide: Recursively apply the algorithm to

draw the left and right subtrees

Input: A binary tree T

Output: An HV-drawing of T

Base case: Q

Divide: Recursively apply the algorithm to

draw the left and right subtrees

Conquer:

Input: A binary tree T

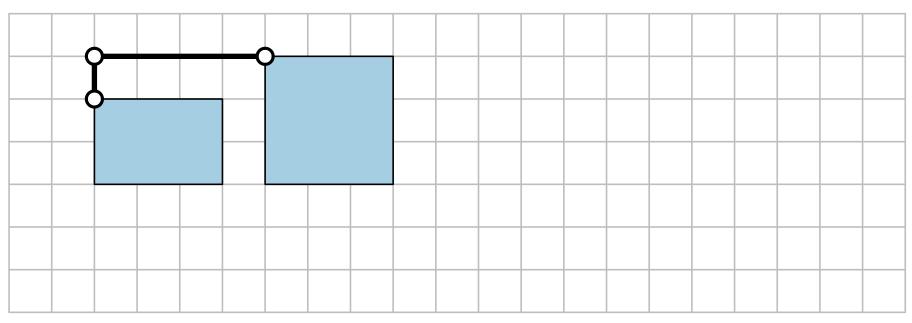
Output: An HV-drawing of T

Base case: Q

Divide: Recursively apply the algorithm to

draw the left and right subtrees

Conquer: horizontal combination



Input: A binary tree T

Output: An HV-drawing of T

Base case: Q

Divide: Recursively apply the algorithm to

draw the left and right subtrees

Conquer: horizontal combination vertical combination



Right-heavy approach

Always apply horizontal combination

- Always apply horizontal combination
- Place the larger subtree to the right

- Always apply horizontal combination
- Place the larger subtree to the right ← *This can change the embedding!*

- Always apply horizontal combination
- Place the larger subtree to the right ← This can change the embedding!

 Size of subtree := number of vertices

Right-heavy approach

- Always apply horizontal combination
- Place the larger subtree to the right ← This can change the embedding!

 Size of subtree := number of vertices

0

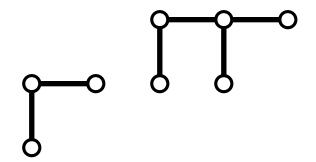
 C

- Always apply horizontal combination
- Place the larger subtree to the right ← This can change the embedding!

 Size of subtree := number of vertices

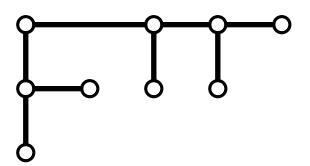
- Always apply horizontal combination
- Place the larger subtree to the right ← This can change the embedding!

 Size of subtree := number of vertices

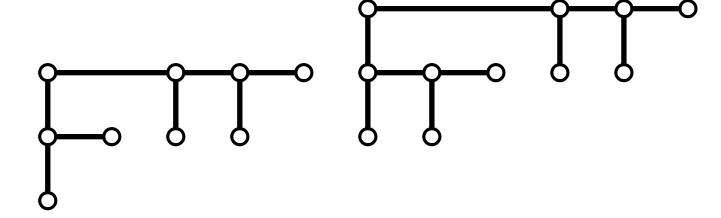


- Always apply horizontal combination
- Place the larger subtree to the right ← This can change the embedding!

 Size of subtree := number of vertices

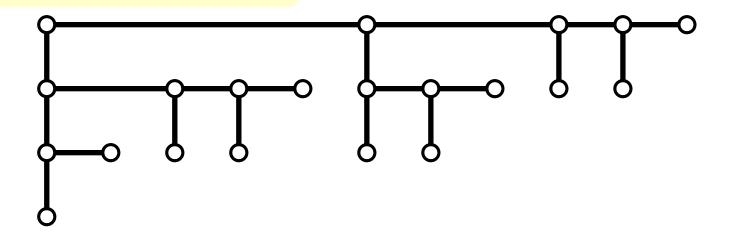


- Always apply horizontal combination
- Place the larger subtree to the right \leftarrow This can change the embedding! Size of subtree := number of vertices



- Always apply horizontal combination
- Place the larger subtree to the right ← This can change the embedding!

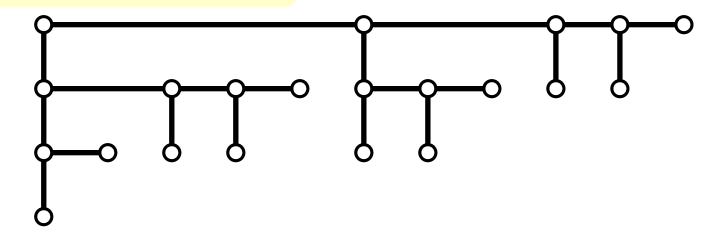
 Size of subtree := number of vertices



Right-heavy approach

- Always apply horizontal combination
- Place the larger subtree to the right ← This can change the embedding!

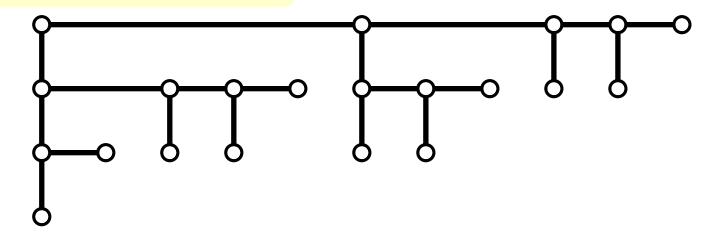
 Size of subtree := number of vertices



- width at most and
- height at most

Right-heavy approach

- Always apply horizontal combination
- Place the larger subtree to the right ← This can change the embedding!
 Size of subtree := number of vertices

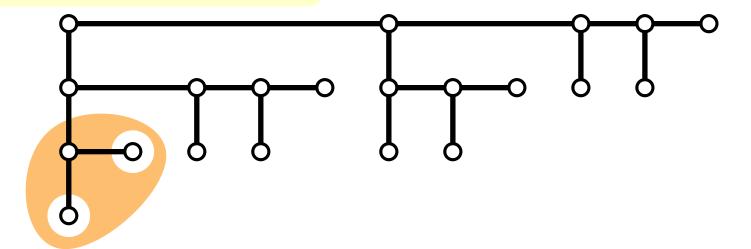


- lacksquare width at most n-1 and
- height at most

Right-heavy approach

- Always apply horizontal combination
- Place the larger subtree to the right ← This can change the embedding!

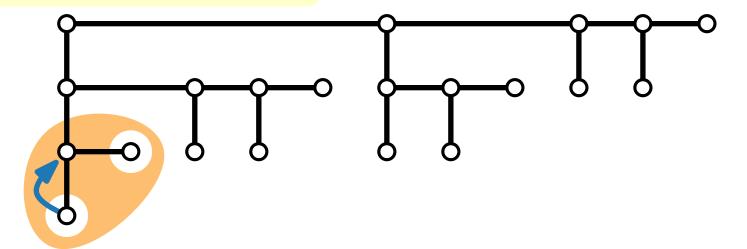
 Size of subtree := number of vertices



- lacksquare width at most n-1 and
- height at most

Right-heavy approach

- Always apply horizontal combination
- Place the larger subtree to the right ← This can change the embedding!
 Size of subtree := number of vertices

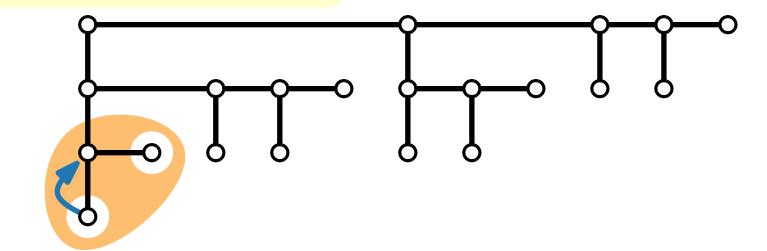


- lacksquare width at most n-1 and
- height at most

Right-heavy approach

- Always apply horizontal combination
- Place the larger subtree to the right ← This can change the embedding!

 Size of subtree := number of vertices



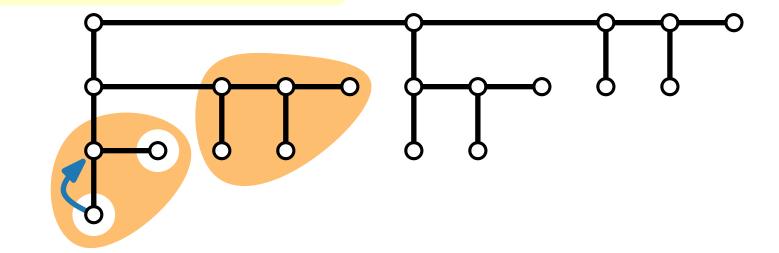
at least ·2

- lacksquare width at most n-1 and
- height at most

Right-heavy approach

- Always apply horizontal combination
- Place the larger subtree to the right ← This can change the embedding!

 Size of subtree := number of vertices



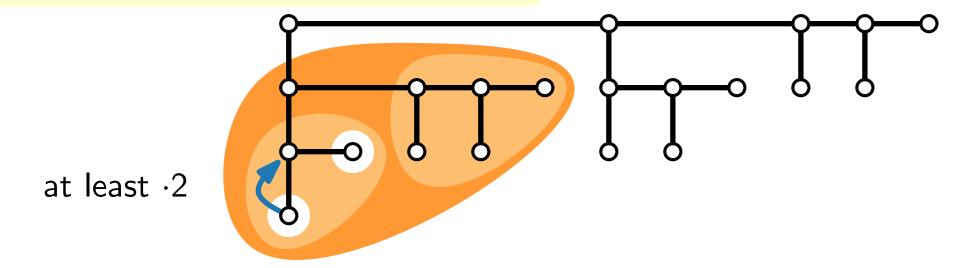
at least ·2

- lacksquare width at most n-1 and
- height at most

Right-heavy approach

- Always apply horizontal combination
- Place the larger subtree to the right ← This can change the embedding!

 Size of subtree := number of vertices

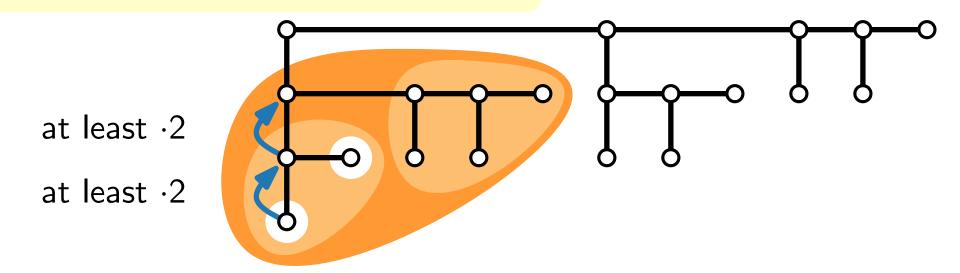


- \blacksquare width at most n-1 and
- height at most

Right-heavy approach

- Always apply horizontal combination
- Place the larger subtree to the right ← This can change the embedding!

 Size of subtree := number of vertices



- lacksquare width at most n-1 and
- height at most

Right-heavy approach

Always apply horizontal combination

■ Place the larger subtree to the right ← This can change the embedding!

Size of subtree := number of vertices

at least ·2

at least ·2

- \blacksquare width at most n-1 and
- height at most

Right-heavy approach

Always apply horizontal combination

■ Place the larger subtree to the right ← This can change the embedding!

Size of subtree := number of vertices

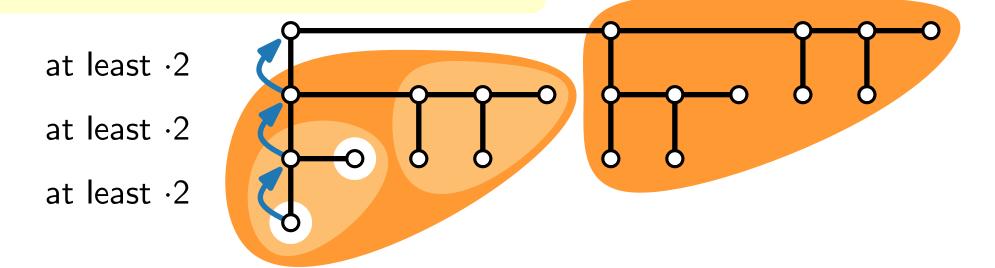
at least ·2
at least ·2
at least ·2

- \blacksquare width at most n-1 and
- height at most

Right-heavy approach

- Always apply horizontal combination
- Place the larger subtree to the right ← This can change the embedding!

 Size of subtree := number of vertices



- \blacksquare width at most n-1 and
- \blacksquare height at most $\log_2 n$.

in linear time?

HV-Drawings – Right-Heavy HV-Layout

Right-heavy approach

Always apply horizontal combination

■ Place the larger subtree to the right ← This can change the embedding!

Size of subtree := number of vertices

at least ·2

at least ·2

at least ·2

- \blacksquare width at most n-1 and
- \blacksquare height at most $\log_2 n$.

Theorem.

Theorem.

Let T be a binary tree with n vertices. The right-heavy algorithm constructs in O(n) time a drawing Γ of T s.t.:

Γ is an HV-drawing (planar, orthogonal, strictly right-/downward)

Theorem.

- Γ is an HV-drawing (planar, orthogonal, strictly right-/downward)
- Width is at most n-1

Theorem.

- Γ is an HV-drawing (planar, orthogonal, strictly right-/downward)
- Width is at most n-1
- Height is at most $\log_2 n$

Theorem.

- Γ is an HV-drawing (planar, orthogonal, strictly right-/downward)
- lacksquare Width is at most n-1
- Height is at most $\log_2 n$
- lacksquare Area is in $\mathcal{O}(n \log n)$

Theorem.

- Γ is an HV-drawing (planar, orthogonal, strictly right-/downward)
- lacksquare Width is at most n-1
- Height is at most $\log_2 n$
- \blacksquare Area is in $\mathcal{O}(n \log n)$ \blacktriangleleft worst-case optimal [exercise]

Theorem.

- Γ is an HV-drawing (planar, orthogonal, strictly right-/downward)
- lacksquare Width is at most n-1
- Height is at most $\log_2 n$
- \blacksquare Area is in $\mathcal{O}(n \log n)$ \blacktriangleleft worst-case optimal [exercise]
- Simply and axially isomorphic subtrees have congruent drawings up to translation

Theorem. rooted

- Γ is an HV-drawing (planar, orthogonal, strictly right-/downward)
- lacksquare Width is at most n-1
- Height is at most $\log_2 n$
- \blacksquare Area is in $\mathcal{O}(n \log n)$ \blacktriangleleft worst-case optimal [exercise]
- Simply and axially isomorphic subtrees have congruent drawings up to translation

Theorem. rooted

Let T be a binary tree with n vertices. The right-heavy algorithm constructs in O(n) time a drawing Γ of T s.t.:

- Γ is an HV-drawing (planar, orthogonal, strictly right-/downward)
- lacksquare Width is at most n-1
- Height is at most $\log_2 n$
- \blacksquare Area is in $\mathcal{O}(n \log n)$ \blacktriangleleft worst-case optimal [exercise]
- Simply and axially isomorphic subtrees have congruent drawings up to translation

Theorem. rooted

Let T be a binary tree with n vertices. The right-heavy algorithm constructs in O(n) time a drawing Γ of T s.t.:

- Γ is an HV-drawing (planar, orthogonal, strictly right-/downward)
- Width is at most n-1
- Height is at most $\log_2 n$
- \blacksquare Area is in $\mathcal{O}(n \log n)$ \blacktriangleleft worst-case optimal [exercise]
- Simply and axially isomorphic subtrees have congruent drawings up to translation

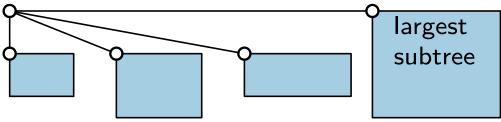
General rooted tree

largest subtree

Theorem. rooted

Let T be a binary tree with n vertices. The right-heavy algorithm constructs in O(n) time a drawing Γ of T s.t.:

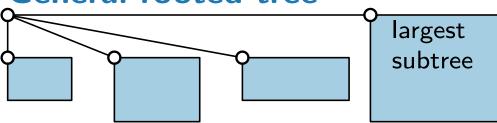
- Γ is an HV-drawing (planar, orthogonal, strictly right-/downward)
- lacksquare Width is at most n-1
- Height is at most $\log_2 n$
- \blacksquare Area is in $\mathcal{O}(n \log n)$ \blacktriangleleft worst-case optimal [exercise]
- Simply and axially isomorphic subtrees have congruent drawings up to translation



Theorem. rooted

Let T be a binary tree with n vertices. The right-heavy algorithm constructs in O(n) time a drawing Γ of T s.t.:

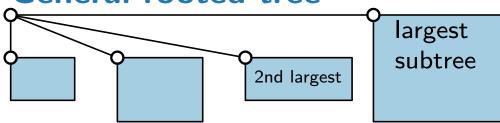
- Γ is an HV-drawing (planar, orthogonal, strictly right-/downward)
- Width is at most n-1
- Height is at most $\log_2 n$
- lacktriangle Area is in $\mathcal{O}(n \log n)$ lacktriangle worst-case optimal [exercise]
- Simply and axially isomorphic subtrees have congruent drawings up to translation



Theorem. rooted

Let T be a binary tree with n vertices. The right-heavy algorithm constructs in O(n) time a drawing Γ of T s.t.:

- Γ is an HV-drawing (planar, orthogonal, strictly right-/downward)
- Width is at most n-1
- Height is at most $\log_2 n$
- \blacksquare Area is in $\mathcal{O}(n \log n)$ \blacktriangleleft worst-case optimal [exercise]
- Simply and axially isomorphic subtrees have congruent drawings up to translation



Theorem. rooted

Let T be a binary tree with n vertices. The right-heavy algorithm constructs in O(n) time a drawing Γ of T s.t.:

- Γ is an HV-drawing (planar, orthogonal, strictly right-/downward)
- lacksquare Width is at most n-1
- Height is at most $\log_2 n$
- \blacksquare Area is in $\mathcal{O}(n \log n)$ \blacktriangleleft worst-case optimal [exercise]
- Simply and axially isomorphic subtrees have congruent drawings up to translation

General rooted tree | largest | subtree |

Optimal area?

Theorem. rooted

Let T be a binary tree with n vertices. The right-heavy algorithm constructs in O(n) time a drawing Γ of T s.t.:

- Γ is an HV-drawing (planar, orthogonal, strictly right-/downward)
- lacksquare Width is at most n-1
- Height is at most $\log_2 n$
- Area is in $\mathcal{O}(n \log n)$ ◆ worst-case optimal [exercise]
- Simply and axially isomorphic subtrees have congruent drawings up to translation

General rooted tree | largest | subtree |

Optimal area?

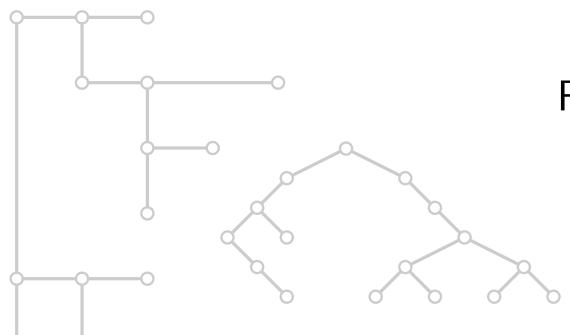
Not with divide & conquer approach, but can be computed with Dynamic Programming.

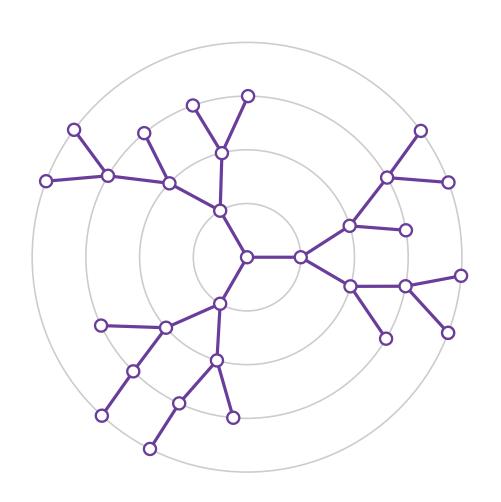
Visualization of Graphs

Lecture 1b:

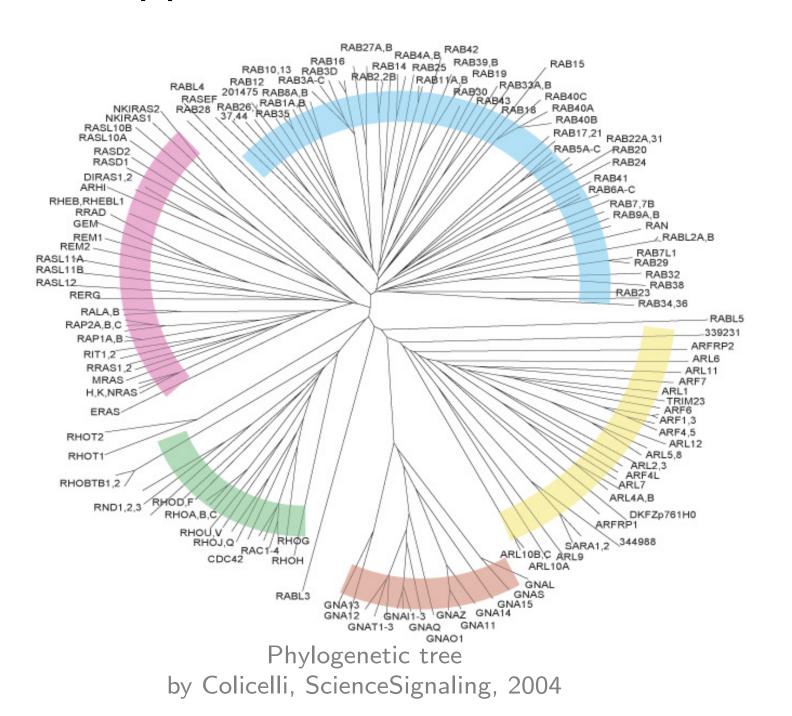
Drawing Trees

Part III: Radial Layouts

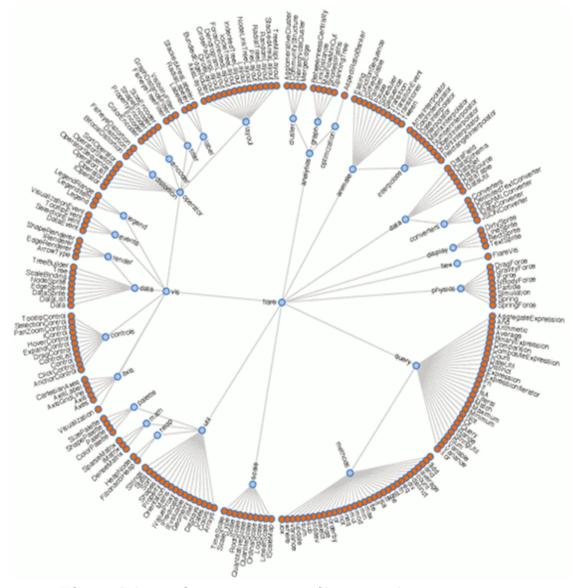




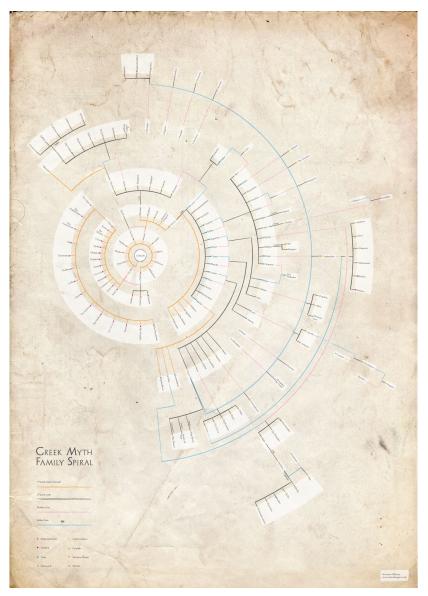
Radial Layouts – Applications



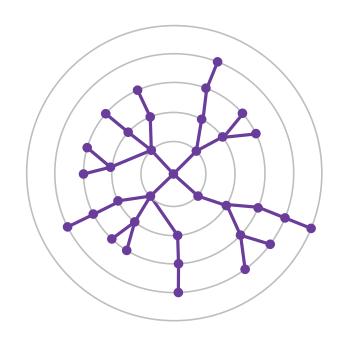
Radial Layouts – Applications



Flare Visualization Toolkit code structure by Heer, Bostock and Ogievetsky, 2010

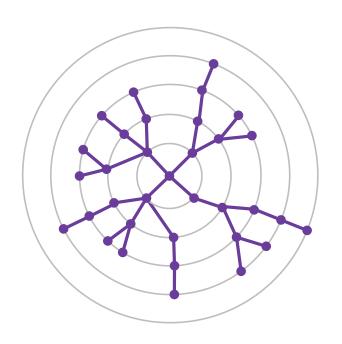


Greek Myth Family by Ribecca, 2011



Drawing conventions

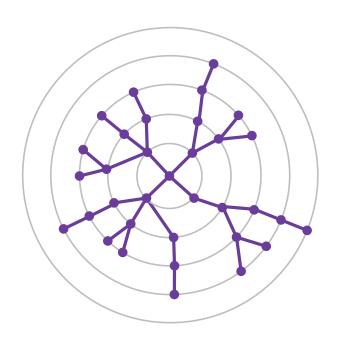
Drawing aesthetics to optimize



Drawing conventions

Vertices lie on circular layers according to their depth

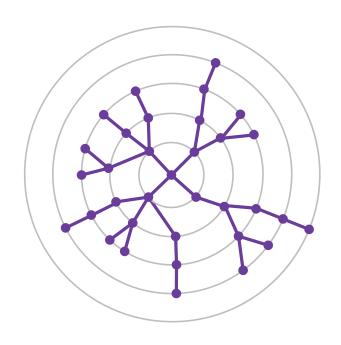
Drawing aesthetics to optimize



Drawing conventions

- Vertices lie on circular layers according to their depth
- Drawing is planar

Drawing aesthetics to optimize

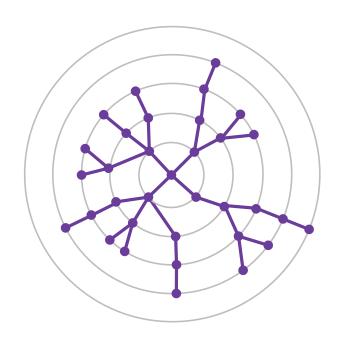


Drawing conventions

- Vertices lie on circular layers according to their depth
- Drawing is planar

Drawing aesthetics to optimize

Balanced distribution of the vertices



Drawing conventions

- Vertices lie on circular layers according to their depth
- Drawing is planar

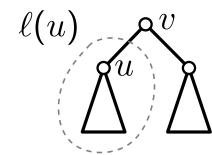
Drawing aesthetics to optimize

Balanced distribution of the vertices

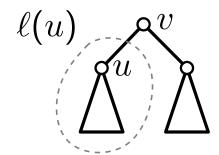
How can an algorithm optimize the distribution of the vertices?

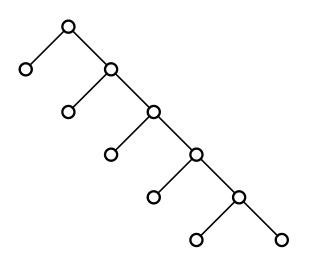
Idea

Idea

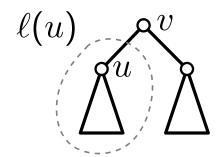


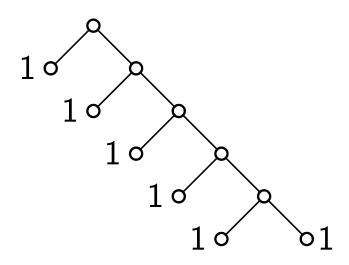
Idea



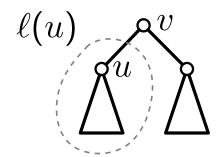


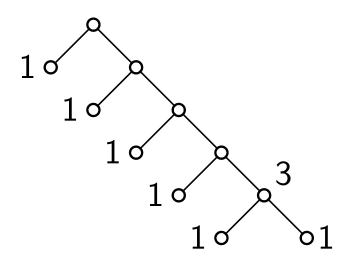
Idea



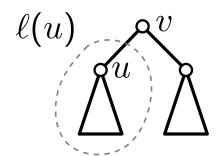


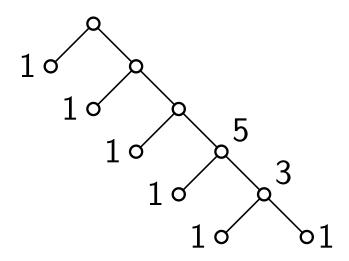
Idea



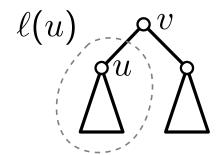


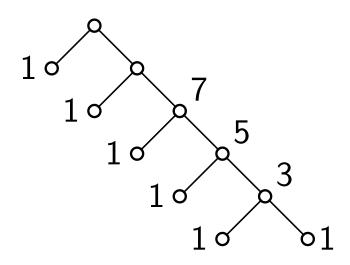
Idea



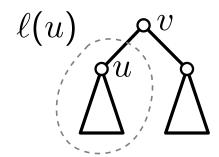


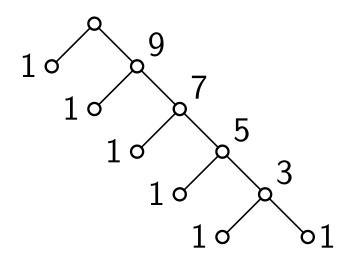
Idea



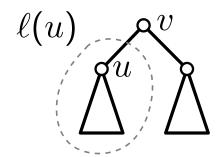


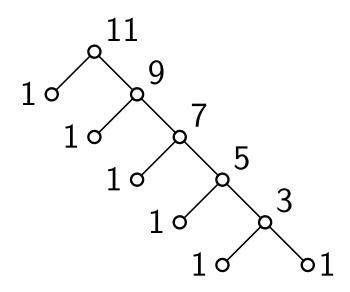
Idea





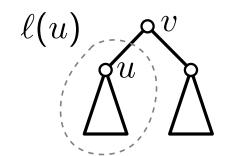
Idea

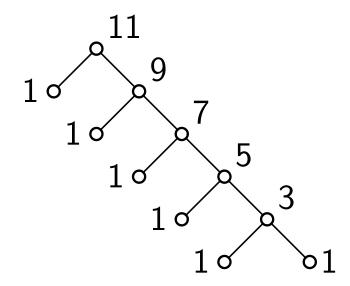




Idea

$$\tau_u = \frac{\ell(u)}{\ell(v) - 1}$$



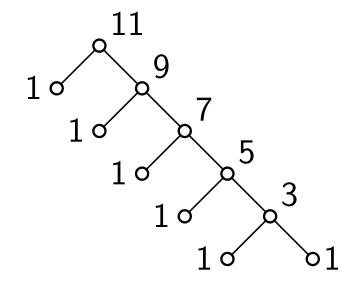


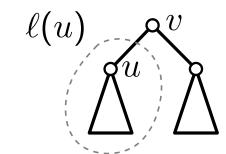
Idea

Reserve area corresponding to size $\ell(u)$ of T(u):

$$au_u = rac{\ell(u)}{\ell(v) - 1}$$

lacktriangle Place u in the middle of its area

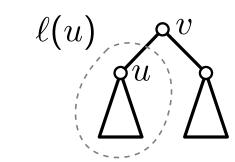


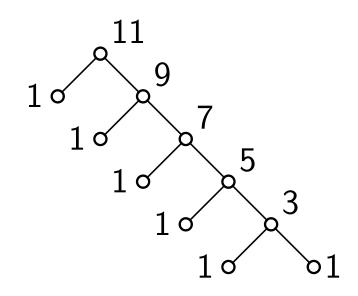


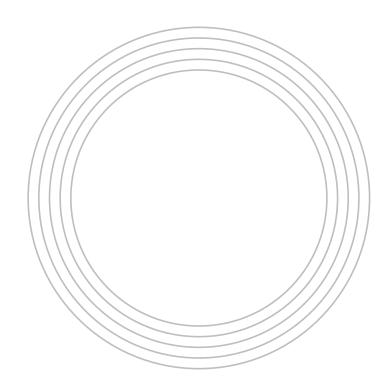
Idea

Reserve area corresponding to size $\ell(u)$ of T(u):

$$au_u = rac{\ell(u)}{\ell(v) - 1}$$



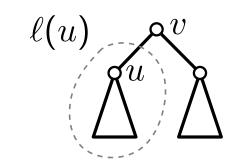


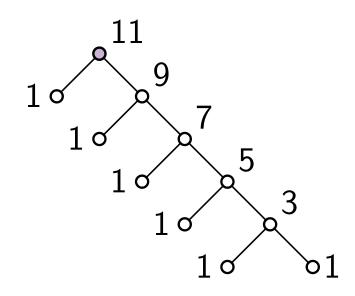


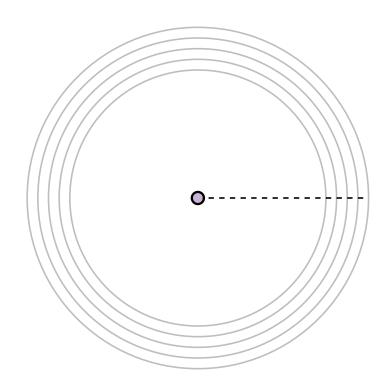
Idea

Reserve area corresponding to size $\ell(u)$ of T(u):

$$\tau_u = \frac{\ell(u)}{\ell(v) - 1}$$



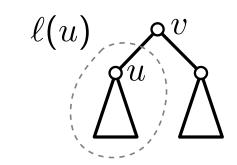


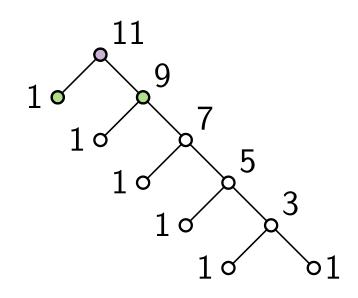


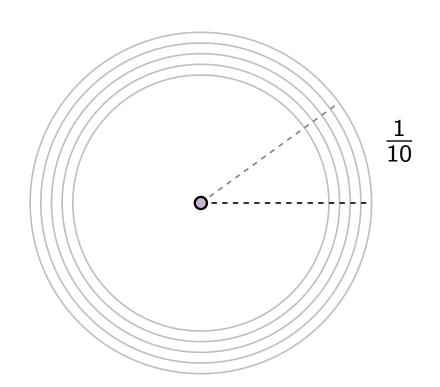
Idea

Reserve area corresponding to size $\ell(u)$ of T(u):

$$au_u = rac{\ell(u)}{\ell(v) - 1}$$



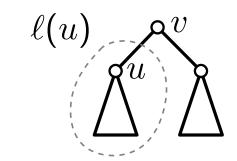


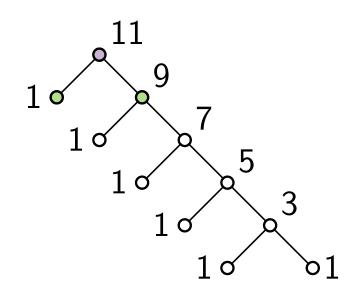


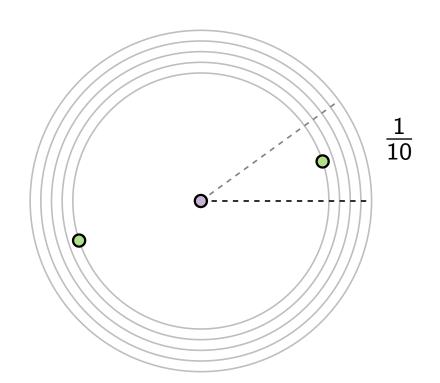
Idea

Reserve area corresponding to size $\ell(u)$ of T(u):

$$au_u = rac{\ell(u)}{\ell(v) - 1}$$



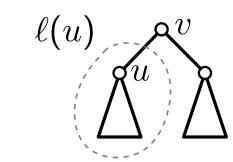


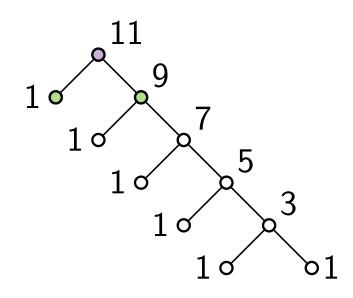


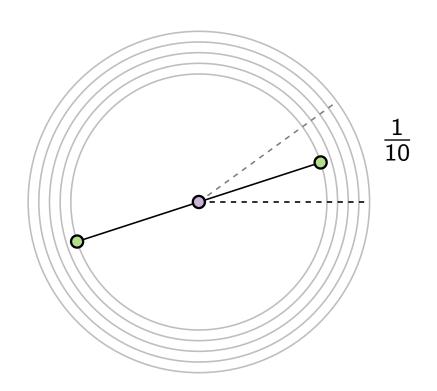
Idea

Reserve area corresponding to size $\ell(u)$ of T(u):

$$au_u = rac{\ell(u)}{\ell(v) - 1}$$





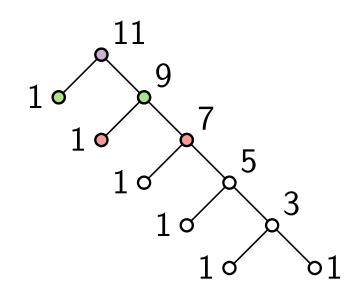


Idea

Reserve area corresponding to size $\ell(u)$ of T(u):

$$au_u = rac{\ell(u)}{\ell(v) - 1}$$

lacktriangle Place u in the middle of its area

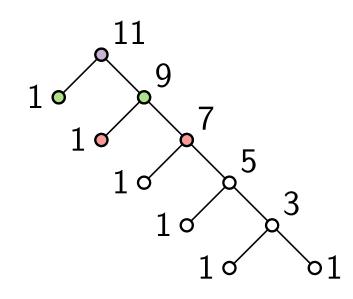


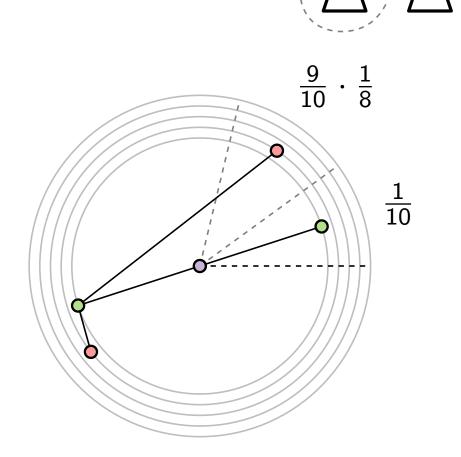


Idea

Reserve area corresponding to size $\ell(u)$ of T(u):

$$au_u = rac{\ell(u)}{\ell(v) - 1}$$

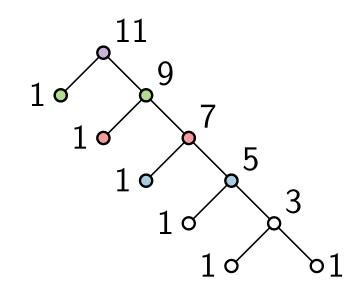


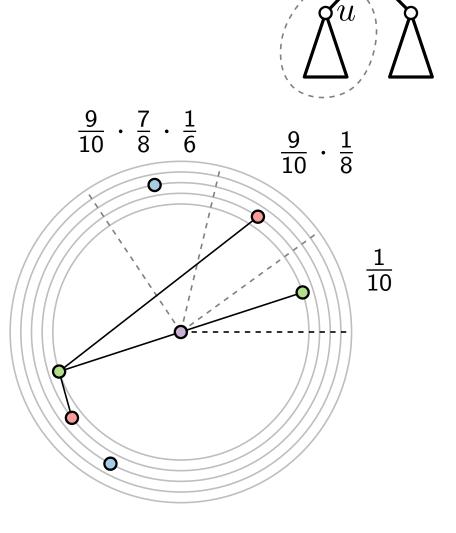


Idea

Reserve area corresponding to size $\ell(u)$ of T(u):

$$au_u = rac{\ell(u)}{\ell(v) - 1}$$

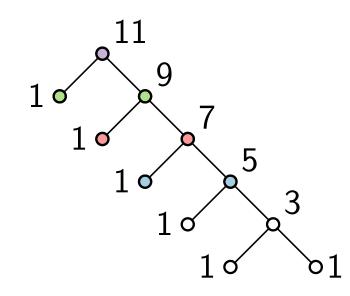


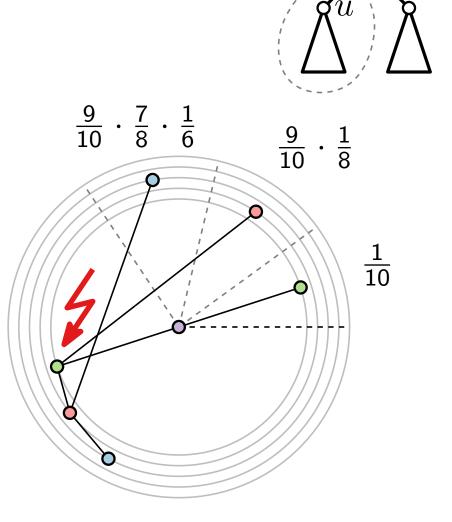


Idea

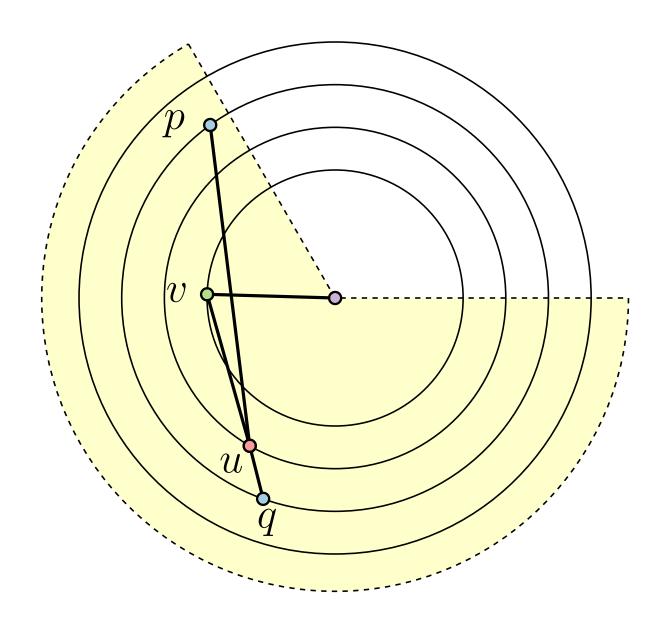
Reserve area corresponding to size $\ell(u)$ of T(u):

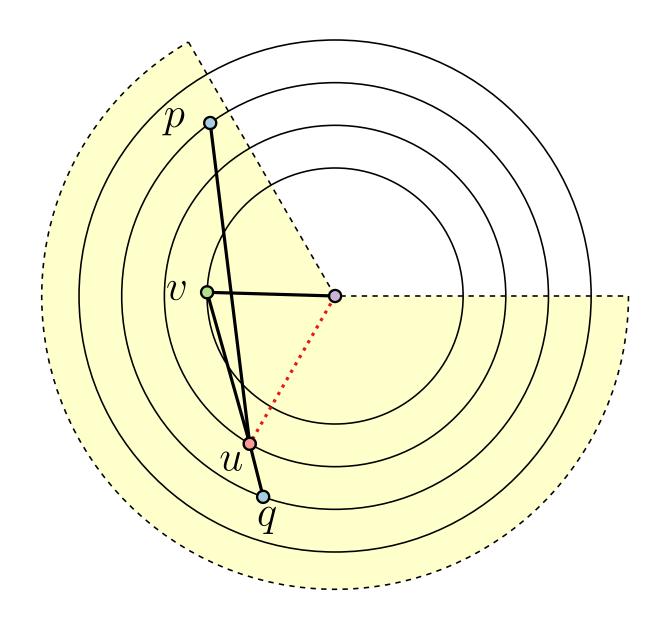
$$au_u = rac{\ell(u)}{\ell(v)-1}$$

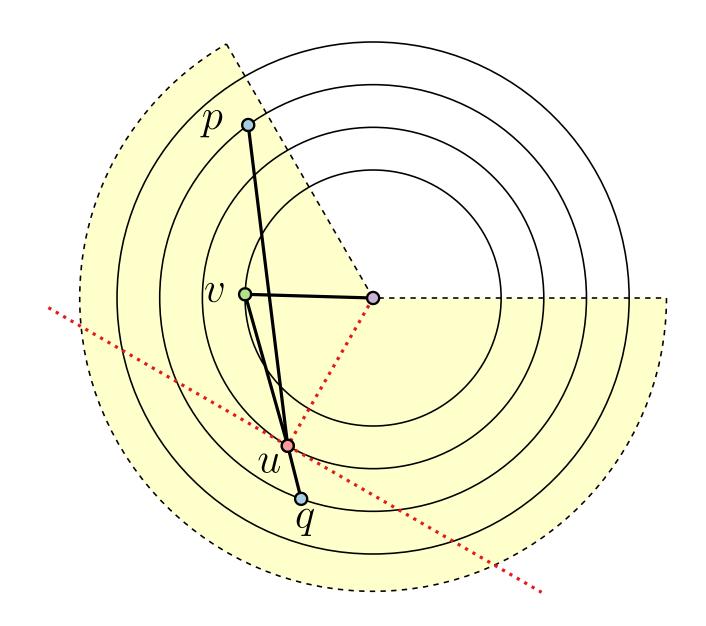


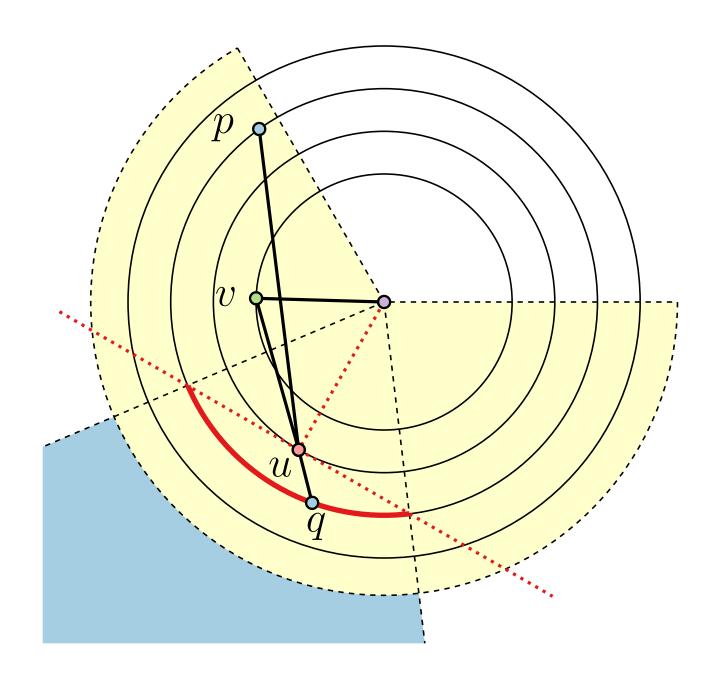


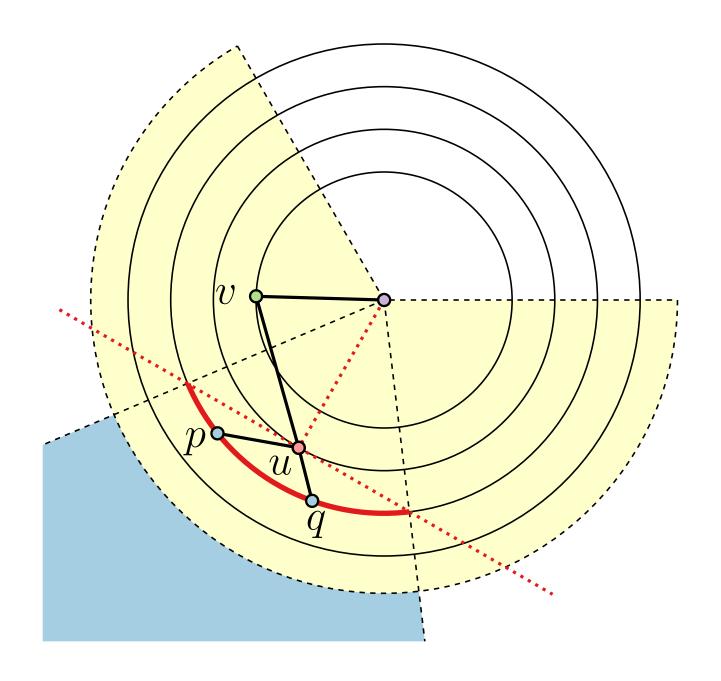
Radial Layouts – How To Avoid Crossings

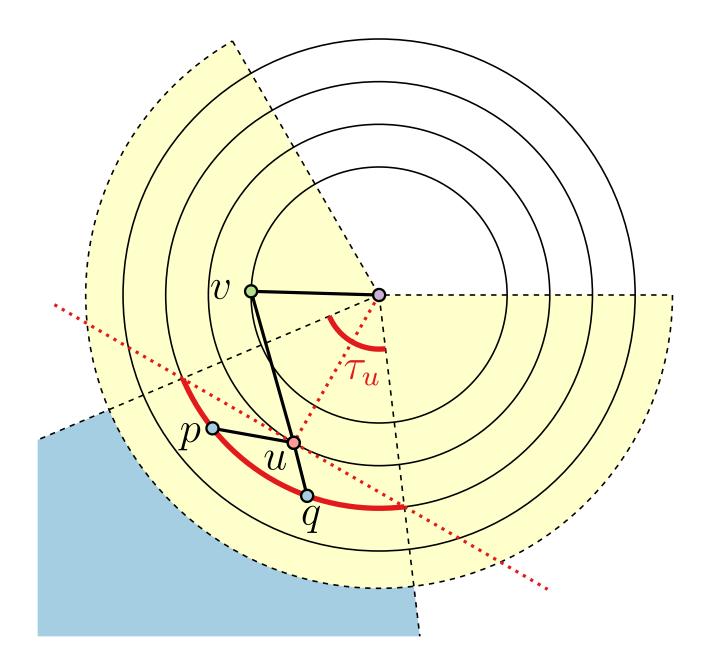




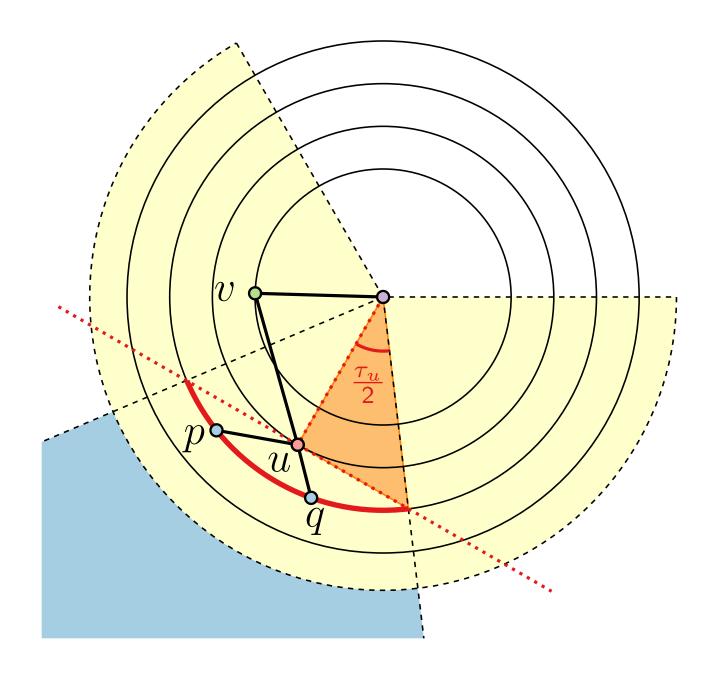




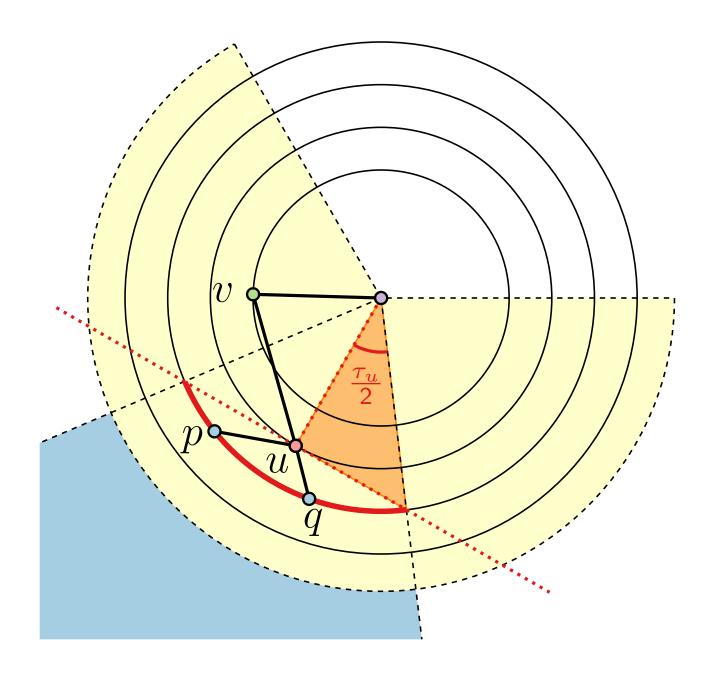




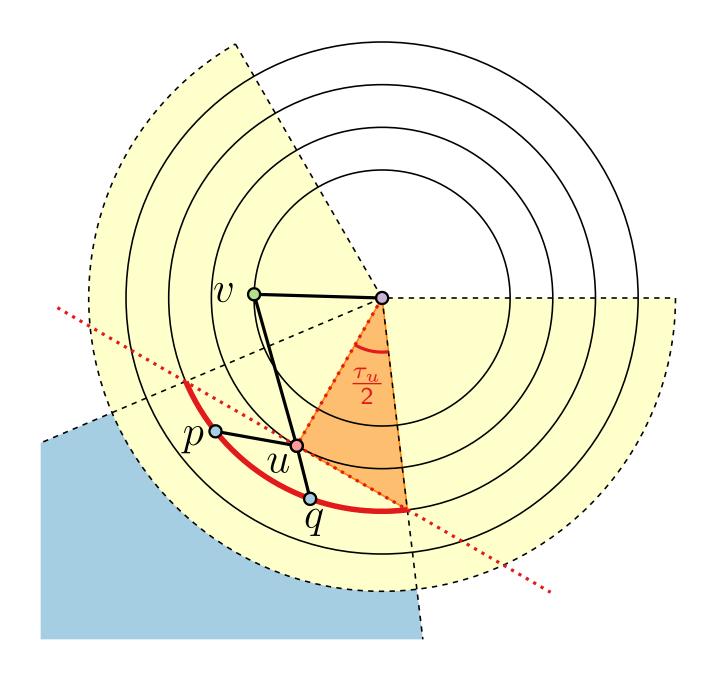
 τ_u - angle of the wedge corresponding to vertex u



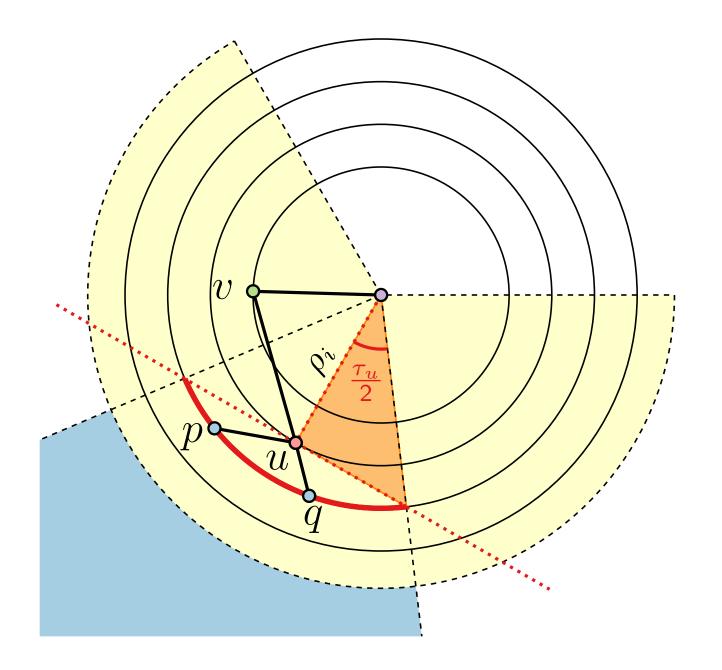
 τ_u - angle of the wedge corresponding to vertex u



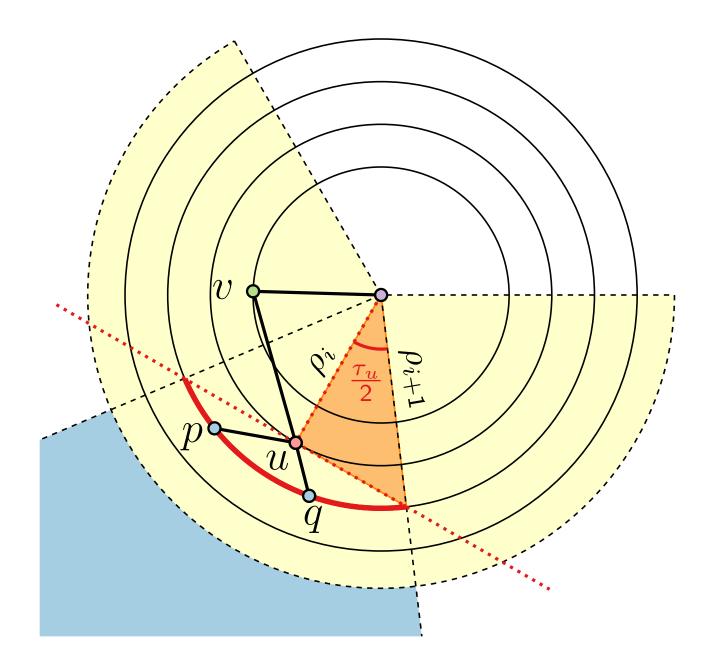
- τ_u angle of the wedge corresponding to vertex u
- $\ell(u)$ number of nodes in the subtree rooted at u



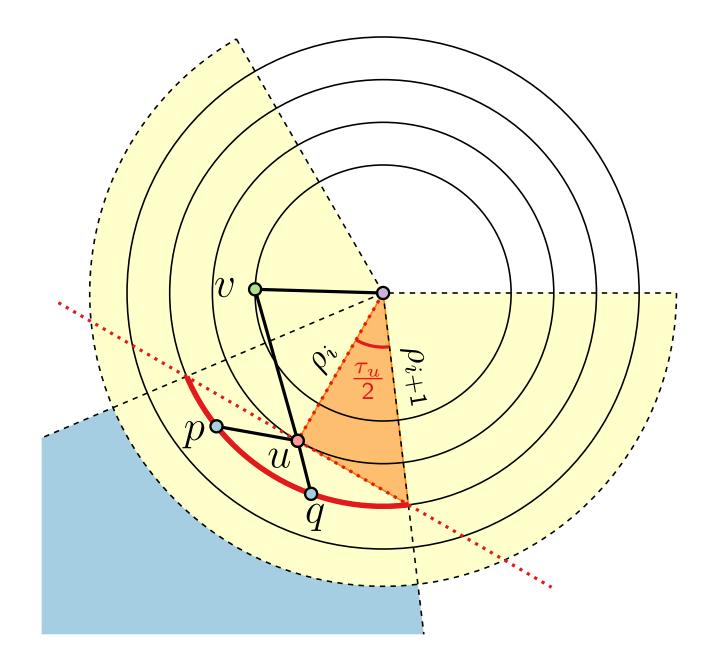
- τ_u angle of the wedge corresponding to vertex u
- $\ell(u)$ number of nodes in the subtree rooted at u
- ho_i radius of layer i



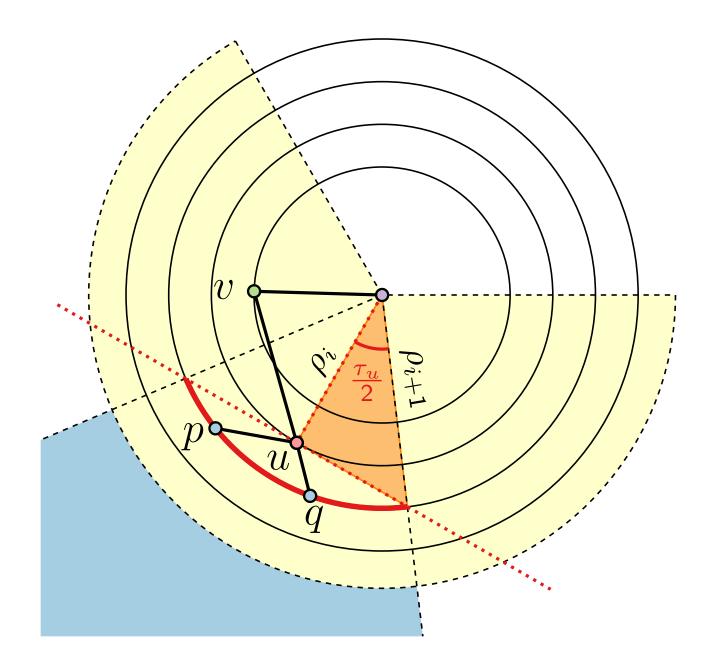
- τ_u angle of the wedge corresponding to vertex u
- $\ell(u)$ number of nodes in the subtree rooted at u
- ho_i radius of layer i



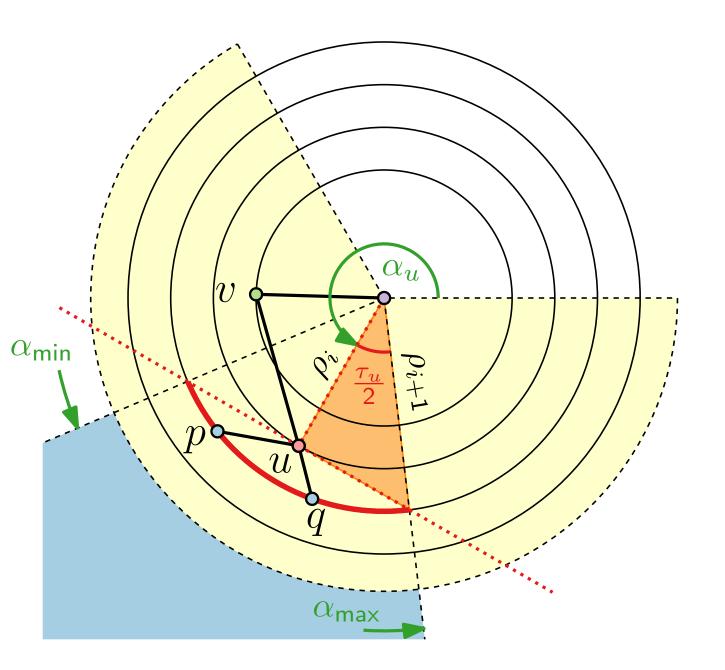
- τ_u angle of the wedge corresponding to vertex u
- $\ell(u)$ number of nodes in the subtree rooted at u
- ho_i radius of layer i



- τ_u angle of the wedge corresponding to vertex u
- $\ell(u)$ number of nodes in the subtree rooted at u
- $ightharpoonup
 ho_i$ radius of layer i
- $\cos(\tau_u/2) = \rho_i/\rho_{i+1}$



- τ_u angle of the wedge corresponding to vertex u
- $\ell(u)$ number of nodes in the subtree rooted at u
- $ightharpoonup
 ho_i$ radius of layer i
- $\cos(\tau_u/2) = \rho_i/\rho_{i+1}$



- τ_u angle of the wedge corresponding to vertex u
- $\ell(u)$ number of nodes in the subtree rooted at u
- $ightharpoonup
 ho_i$ radius of layer i
- $cos(\tau_u/2) = \rho_i/\rho_{i+1}$
- Alternative:

$$\alpha_{\min} = \alpha_u - \arccos \frac{\rho_i}{\rho_{i+1}}$$

$$\alpha_{\max} = \alpha_u + \arccos \frac{\rho_i}{\rho_{i+1}}$$

```
RadialTreeLayout(tree T, root r \in T, radii \rho_1 < \cdots < \rho_k)

postorder(r)

preorder(r, 0, 0, 2\pi)

return (d_v, \alpha_v)_{v \in V(T)}

// vertex positions in polar coordinates
```

```
RadialTreeLayout(tree T, root r \in T, radii \rho_1 < \cdots < \rho_k)

postorder(r)

preorder(r, 0, 0, 2\pi)

return (d_v, \alpha_v)_{v \in V(T)}

// vertex positions in polar coordinates
```

```
RadialTreeLayout(tree T, root r \in T, radii \rho_1 < \cdots < \rho_k)

postorder(r)

preorder(r, 0, 0, 2\pi)

return (d_v, \alpha_v)_{v \in V(T)}

// vertex positions in polar coordinates
```

```
preorder(vertex v, t, \alpha_{\min}, \alpha_{\max})
RadialTreeLayout(tree T, root r \in T, radii \rho_1 < \cdots < \rho_k)
    postorder(r)
   preorder(r, 0, 0, 2\pi)
   return (d_v, \alpha_v)_{v \in V(T)}
    // vertex positions in polar coordinates
postorder(vertex v)
   \ell(v) \leftarrow 1
   foreach child w of v do
       postorder(w)
      \ell(v) \leftarrow \ell(v) + \ell(w)
```

```
RadialTreeLayout(tree T, root r \in T, radii \rho_1 < \cdots < \rho_k)

postorder(r)

preorder(r, 0, 0, 2\pi)

return (d_v, \alpha_v)_{v \in V(T)}

// vertex positions in polar coordinates
```

```
preorder(vertex v, t, \alpha_{\sf min}, \alpha_{\sf max})
     d_v \leftarrow \max\{0, \rho_t\}
```

```
RadialTreeLayout(tree T, root r \in T, radii \rho_1 < \cdots < \rho_k)

postorder(r)

preorder(r, 0, 0, 2\pi)

return (d_v, \alpha_v)_{v \in V(T)}

// vertex positions in polar coordinates
```

```
preorder(vertex v, t, \alpha_{\sf min}, \alpha_{\sf max})
      d_v \leftarrow \max\{0, \rho_t\}\alpha_v \leftarrow (\alpha_{\min} + \alpha_{\max})/2
```

postorder(w)

 $\ell(v) \leftarrow \ell(v) + \ell(w)$

```
RadialTreeLayout(tree T, root r \in T, radii \rho_1 < \cdots < \rho_k)

postorder(r)

preorder(r, 0, 0, 2\pi)

return (d_v, \alpha_v)_{v \in V(T)}

// vertex positions in polar coordinates

postorder(vertex v)

\ell(v) \leftarrow 1

foreach child w of v do
```

```
preorder(vertex v, t, \alpha_{\min}, \alpha_{\max})
     d_v \leftarrow \max\{0, \rho_t\}
     \alpha_v \leftarrow (\alpha_{\mathsf{min}} + \alpha_{\mathsf{max}})/2
```

foreach child w of v do

 $\ell(v) \leftarrow \ell(v) + \ell(w)$

postorder(w)

```
RadialTreeLayout(tree T, root r \in T, radii \rho_1 < \cdots < \rho_k)

postorder(r)

preorder(r, 0, 0, 2\pi)

return (d_v, \alpha_v)_{v \in V(T)}

// vertex positions in polar coordinates

postorder(vertex v)

\ell(v) \leftarrow 1
```

```
preorder(vertex v, t, \alpha_{\min}, \alpha_{\max})
     d_v \leftarrow \max\{0, \rho_t\}\alpha_v \leftarrow (\alpha_{\min} + \alpha_{\max})/2
                                                                  // output
```

postorder(w)

 $\ell(v) \leftarrow \ell(v) + \ell(w)$

```
RadialTreeLayout(tree T, root r \in T, radii \rho_1 < \cdots < \rho_k)

postorder(r)

preorder(r, 0, 0, 2\pi)

return (d_v, \alpha_v)_{v \in V(T)}

// vertex positions in polar coordinates

postorder(vertex v)

\ell(v) \leftarrow 1

foreach child w of v do
```

```
preorder(vertex v, t, \alpha_{\sf min}, \alpha_{\sf max})
     d_v \leftarrow \max\{0, \rho_t\}
                                                        // output
    \alpha_v \leftarrow (\alpha_{\mathsf{min}} + \alpha_{\mathsf{max}})/2
     if t > 0 then
```

```
RadialTreeLayout(tree T, root r \in T, radii \rho_1 < \cdots < \rho_k)

postorder(r)

preorder(r, 0, 0, 2\pi)

return (d_v, \alpha_v)_{v \in V(T)}

// vertex positions in polar coordinates
```

```
preorder(vertex v, t, \alpha_{\min}, \alpha_{\max})
     d_v \leftarrow \max\{0, \rho_t\}
                                                               // output
     \alpha_v \leftarrow (\alpha_{\mathsf{min}} + \alpha_{\mathsf{max}})/2
      if t > 0 then
           \alpha_{\min} \leftarrow \max\{\alpha_{\min}, \alpha_v - \arccos\frac{\rho_t}{\rho_{t+1}}\}
          \alpha_{\max} \leftarrow \min\{\alpha_{\max}, \alpha_v + \arccos\frac{\rho_t}{\rho_{t+1}}\}
```

```
RadialTreeLayout(tree T, root r \in T, radii \rho_1 < \cdots < \rho_k)

postorder(r)

preorder(r, 0, 0, 2\pi)

return (d_v, \alpha_v)_{v \in V(T)}

// vertex positions in polar coordinates
```

```
preorder(vertex v, t, \alpha_{\sf min}, \alpha_{\sf max})
     d_v \leftarrow \max\{0, \rho_t\}
                                                                 // output
      \alpha_v \leftarrow (\alpha_{\mathsf{min}} + \alpha_{\mathsf{max}})/2
      if t > 0 then
            \alpha_{\min} \leftarrow \max\{\alpha_{\min}, \alpha_v - \arccos\frac{\rho_t}{\rho_{t+1}}\}
          \alpha_{\max} \leftarrow \min\{\alpha_{\max}, \alpha_v + \arccos \frac{\rho_t}{\rho_{t+1}}\}
      left \leftarrow \alpha_{\min}
```

```
RadialTreeLayout(tree T, root r \in T, radii \rho_1 < \cdots < \rho_k)

postorder(r)

preorder(r, 0, 0, 2\pi)

return (d_v, \alpha_v)_{v \in V(T)}

// vertex positions in polar coordinates
```

```
preorder(vertex v, t, \alpha_{\min}, \alpha_{\max})
     d_v \leftarrow \max\{0, \rho_t\}
                                                             // output
     \alpha_v \leftarrow (\alpha_{\mathsf{min}} + \alpha_{\mathsf{max}})/2
      if t > 0 then
           \alpha_{\min} \leftarrow \max\{\alpha_{\min}, \alpha_v - \arccos\frac{\rho_t}{\rho_{t+1}}\}
         \alpha_{\max} \leftarrow \min\{\alpha_{\max}, \alpha_v + \arccos\frac{\rho_t}{\rho_{t+1}}\}
      left \leftarrow \alpha_{\mathsf{min}}
      foreach child w of v do
```

```
RadialTreeLayout(tree T, root r \in T, radii \rho_1 < \cdots < \rho_k)

postorder(r)

preorder(r, 0, 0, 2\pi)

return (d_v, \alpha_v)_{v \in V(T)}

// vertex positions in polar coordinates
```

```
preorder(vertex v, t, \alpha_{\min}, \alpha_{\max})
     d_v \leftarrow \max\{0, \rho_t\}
                                                               // output
     \alpha_v \leftarrow (\alpha_{\mathsf{min}} + \alpha_{\mathsf{max}})/2
      if t > 0 then
           \alpha_{\min} \leftarrow \max\{\alpha_{\min}, \alpha_v - \arccos\frac{\rho_t}{\rho_{t+1}}\}
          \alpha_{\max} \leftarrow \min\{\alpha_{\max}, \alpha_v + \arccos \frac{\rho_t}{\rho_{t+1}}\}
      left \leftarrow \alpha_{\min}
      foreach child w of v do
           right \leftarrow left + \frac{\ell(w)}{\ell(v)-1} \cdot (\alpha_{\mathsf{max}} - \alpha_{\mathsf{min}})
```

```
RadialTreeLayout(tree T, root r \in T, radii \rho_1 < \cdots < \rho_k)

postorder(r)

preorder(r, 0, 0, 2\pi)

return (d_v, \alpha_v)_{v \in V(T)}

// vertex positions in polar coordinates
```

```
preorder(vertex v, t, \alpha_{\min}, \alpha_{\max})
     d_v \leftarrow \max\{0, \rho_t\}
                                                           // output
     \alpha_v \leftarrow (\alpha_{\mathsf{min}} + \alpha_{\mathsf{max}})/2
      if t > 0 then
           \alpha_{\min} \leftarrow \max\{\alpha_{\min}, \alpha_v - \arccos\frac{\rho_t}{\rho_{t+1}}\}
         \alpha_{\max} \leftarrow \min\{\alpha_{\max}, \alpha_v + \arccos \frac{\rho_t}{\rho_{t+1}}\}
     left \leftarrow \alpha_{\min}
     foreach child w of v do
           right \leftarrow left + \frac{\ell(w)}{\ell(v)-1} \cdot (\alpha_{\mathsf{max}} - \alpha_{\mathsf{min}})
           preorder(w, t + 1, left, right)
```

```
RadialTreeLayout(tree T, root r \in T, radii \rho_1 < \cdots < \rho_k)

postorder(r)

preorder(r, 0, 0, 2\pi)

return (d_v, \alpha_v)_{v \in V(T)}

// vertex positions in polar coordinates
```

```
preorder(vertex v, t, \alpha_{\min}, \alpha_{\max})
     d_v \leftarrow \max\{0, \rho_t\}
                                                         // output
     \alpha_v \leftarrow (\alpha_{\mathsf{min}} + \alpha_{\mathsf{max}})/2
      if t > 0 then
          \alpha_{\min} \leftarrow \max\{\alpha_{\min}, \alpha_v - \arccos\frac{\rho_t}{\rho_{t+1}}\}
         \alpha_{\max} \leftarrow \min\{\alpha_{\max}, \alpha_v + \arccos \frac{\rho_t}{\rho_{t+1}}\}
     left \leftarrow \alpha_{\min}
     foreach child w of v do
          right \leftarrow left + \frac{\ell(w)}{\ell(v)-1} \cdot (\alpha_{\max} - \alpha_{\min})
         preorder(w, t + 1, left, right)
           left \leftarrow right
```

```
RadialTreeLayout(tree T, root r \in T, radii \rho_1 < \cdots < \rho_k)

postorder(r)

preorder(r, 0, 0, 2\pi)

return (d_v, \alpha_v)_{v \in V(T)}

// vertex positions in polar coordinates
```

Runtime?

```
preorder(vertex v, t, \alpha_{\min}, \alpha_{\max})
     d_v \leftarrow \max\{0, \rho_t\}
                                                         // output
     \alpha_v \leftarrow (\alpha_{\mathsf{min}} + \alpha_{\mathsf{max}})/2
      if t > 0 then
          \alpha_{\min} \leftarrow \max\{\alpha_{\min}, \alpha_v - \arccos\frac{\rho_t}{\rho_{t+1}}\}
         \alpha_{\max} \leftarrow \min\{\alpha_{\max}, \alpha_v + \arccos \frac{\rho_t}{\rho_{t+1}}\}
     left \leftarrow \alpha_{\min}
     foreach child w of v do
          right \leftarrow left + \frac{\ell(w)}{\ell(v)-1} \cdot (\alpha_{\max} - \alpha_{\min})
         preorder(w, t + 1, left, right)
           left \leftarrow right
```

```
RadialTreeLayout(tree T, root r \in T, radii \rho_1 < \cdots < \rho_k)

postorder(r)

preorder(r, 0, 0, 2\pi)

return (d_v, \alpha_v)_{v \in V(T)}

// vertex positions in polar coordinates
```

```
\ell(v) \leftarrow 1
\ell(v) \leftarrow 1
\ell(v) \leftarrow 0
\ell(v) \leftarrow 0
\ell(v) \leftarrow \ell(v) \leftarrow \ell(v)
```

Runtime? $\mathcal{O}(n)$

```
preorder(vertex v, t, \alpha_{\min}, \alpha_{\max})
     d_v \leftarrow \max\{0, \rho_t\}
                                                          // output
     \alpha_v \leftarrow (\alpha_{\mathsf{min}} + \alpha_{\mathsf{max}})/2
      if t > 0 then
           \alpha_{\min} \leftarrow \max\{\alpha_{\min}, \alpha_v - \arccos\frac{\rho_t}{\rho_{t+1}}\}
         \alpha_{\max} \leftarrow \min\{\alpha_{\max}, \alpha_v + \arccos \frac{\rho_t}{\rho_{t+1}}\}
     left \leftarrow \alpha_{\min}
     foreach child w of v do
          right \leftarrow left + \frac{\ell(w)}{\ell(v)-1} \cdot (\alpha_{\mathsf{max}} - \alpha_{\mathsf{min}})
         preorder(w, t + 1, left, right)
           left \leftarrow right
```

```
RadialTreeLayout(tree T, root r \in T, radii \rho_1 < \cdots < \rho_k)

postorder(r)

preorder(r, 0, 0, 2\pi)

return (d_v, \alpha_v)_{v \in V(T)}

// vertex positions in polar coordinates
```

Runtime? $\mathcal{O}(n)$

Correctness?

```
preorder(vertex v, t, \alpha_{\min}, \alpha_{\max})
     d_v \leftarrow \max\{0, \rho_t\}
                                                           // output
     \alpha_v \leftarrow (\alpha_{\mathsf{min}} + \alpha_{\mathsf{max}})/2
      if t > 0 then
           \alpha_{\min} \leftarrow \max\{\alpha_{\min}, \alpha_v - \arccos\frac{\rho_t}{\rho_{t+1}}\}
         \alpha_{\max} \leftarrow \min\{\alpha_{\max}, \alpha_v + \arccos \frac{\rho_t}{\rho_{t+1}}\}
     left \leftarrow \alpha_{\min}
     foreach child w of v do
           right \leftarrow left + \frac{\ell(w)}{\ell(v)-1} \cdot (\alpha_{\mathsf{max}} - \alpha_{\mathsf{min}})
          preorder(w, t + 1, left, right)
           left \leftarrow right
```

```
RadialTreeLayout(tree T, root r \in T, radii \rho_1 < \cdots < \rho_k)

postorder(r)

preorder(r, 0, 0, 2\pi)

return (d_v, \alpha_v)_{v \in V(T)}

// vertex positions in polar coordinates
```

```
Runtime? \mathcal{O}(n)
Correctness?
```

```
preorder(vertex v, t, \alpha_{\min}, \alpha_{\max})
     d_v \leftarrow \max\{0, \rho_t\}
                                                              // output
     \alpha_v \leftarrow (\alpha_{\mathsf{min}} + \alpha_{\mathsf{max}})/2
      if t > 0 then
           \alpha_{\min} \leftarrow \max\{\alpha_{\min}, \alpha_v - \arccos\frac{\rho_t}{\rho_{t+1}}\}
         \alpha_{\mathsf{max}} \leftarrow \mathsf{min}\{\alpha_{\mathsf{max}}, \alpha_v + \mathsf{arccos}\,\frac{\rho_t}{\rho_{t+1}}\}
      left \leftarrow \alpha_{\min}
      foreach child w of v do
           right \leftarrow left + \frac{\ell(w)}{\ell(v)-1} \cdot (\alpha_{\mathsf{max}} - \alpha_{\mathsf{min}})
          preorder(w, t + 1, left, right)
            left \leftarrow right
```

Theorem.

Let T be a rooted tree with n vertices. The algorithm RadialTreeLayout constructs in O(n) time a drawing Γ of T s.t.:

Theorem.

Let T be a rooted tree with n vertices. The algorithm RadialTreeLayout constructs in O(n) time a drawing Γ of T s.t.:

Γ is a radial, crossing-free drawing,

_

Theorem.

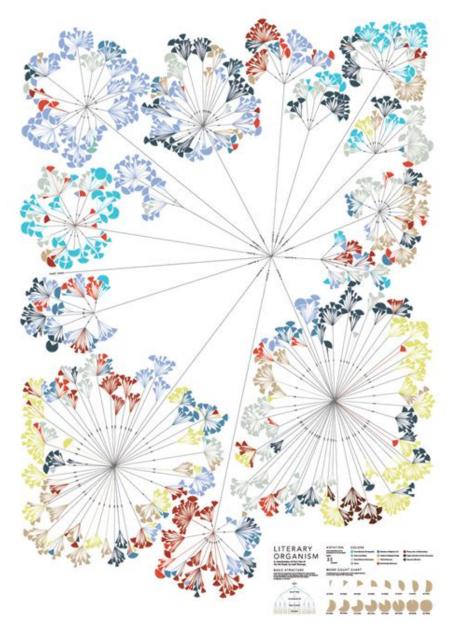
Let T be a rooted tree with n vertices. The algorithm RadialTreeLayout constructs in O(n) time a drawing Γ of T s.t.:

- Γ is a radial, crossing-free drawing,
- vertices lie on circles according to their depth, and

Theorem.

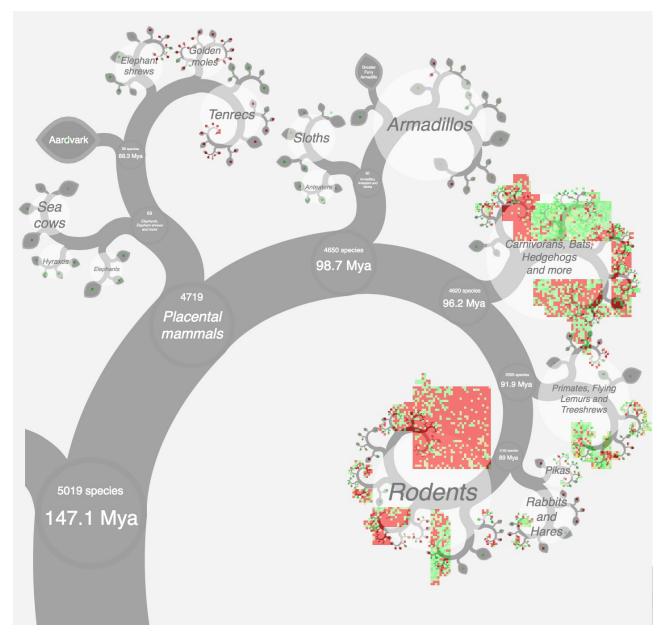
Let T be a rooted tree with n vertices. The algorithm RadialTreeLayout constructs in O(n) time a drawing Γ of T s.t.:

- Γ is a radial, crossing-free drawing,
- vertices lie on circles according to their depth, and
- the area of Γ is quadratic in max-degree(T) \times height(T) (see [GD Ch. 3.1.3] for the details).



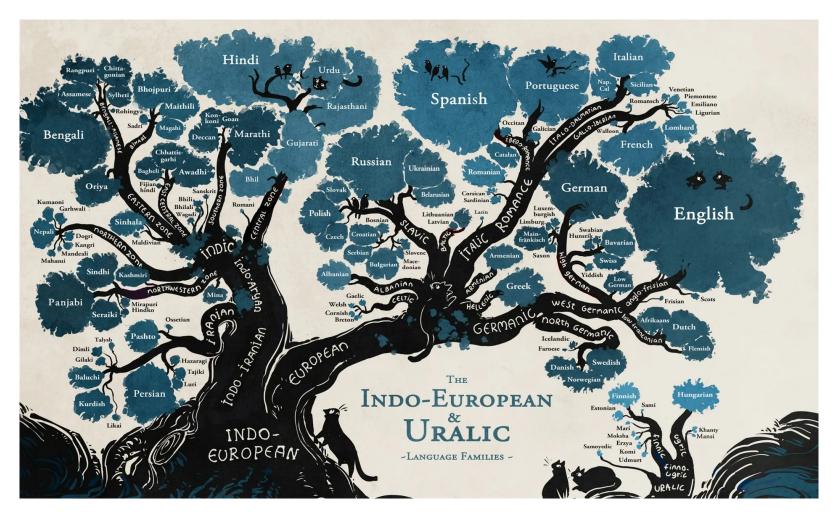
Writing Without Words: The project explores methods to visualize the differences in writing styles of different authors.

Similar to balloon layout

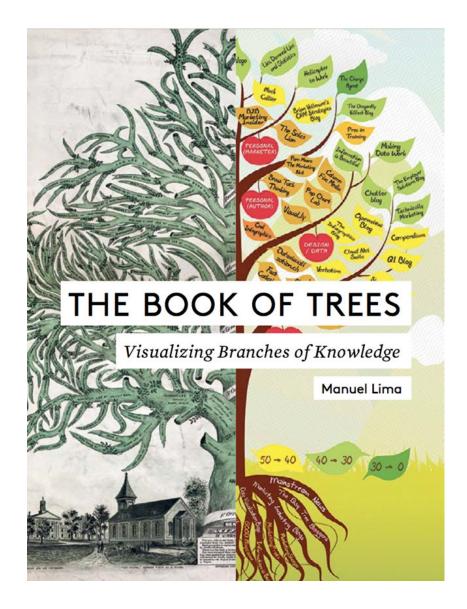


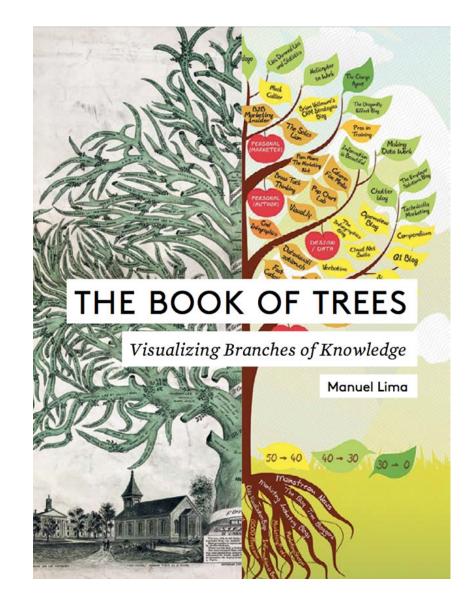
A phylogenetically organized display of data for all placental mammal species.

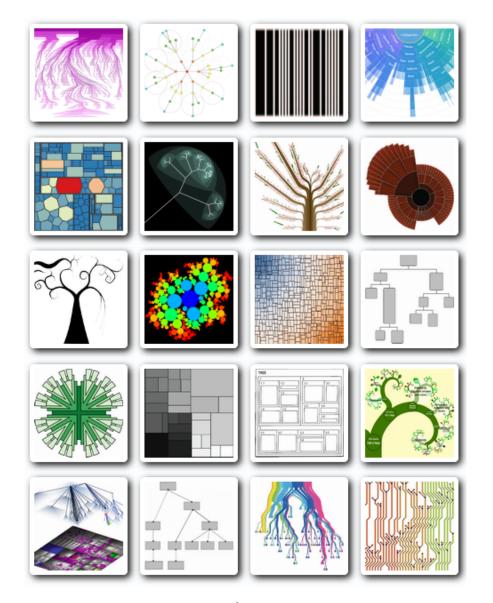
Fractal layout



A language family tree – in pictures







treevis.net

Literature

- [GD, Chapter 3] divide and conquer methods for rooted trees and series-parallel graphs
- [Reingold, Tilford '81] "Tidier Drawings of Trees"
 - original paper for level-based layout algo
- [Reingold, Supowit '83] "The complexity of drawing trees nicely"
 - linear program and NP-hardness proof for area minimization
- treevis.net compendium of drawing methods for trees