
1

Visualization of Graphs

Lecture 1b:
Drawing Trees

Johannes Zink

Summer semester 2024

Part I:
Layered Drawings



2 - 42

(Rooted) Trees

Leaf: vertex of degree 1

Rooted tree: tree with a designated root

root
Parent: neighbor on the path to the root

uparent(u)

Child: neighbor not on the path to the root

children(u)

Ancestor: vertex on the path to the root

ancestors(u)

Successor: vertex on the path away from the root

successors(u)

Depth: length of the path to the root

depth(u) = 3

Height: maximum depth of a leaf

height(T ) = 5

3 types of tree traversals:

preorder inorder postorder

node – left – right left – node – right left – right – node

Binary Tree: at most two children per vertex (left and right child)

T :



3 - 39

First Grid Layout of Binary Trees

0

1
2
3

0

1
2
3

0

1
2
3

preorder inorder postorder

1. Choose y-coordinates:

2. Choose x-coordinates:

y(u) = depth(u)

0

1
2
3



5 - 13

Layered Drawings – Drawing Style

� What are properties of the layout?

� What are the drawing conventions?

� What are aesthetics to optimize?

Drawing conventions

� Vertices lie on layers and
have integer coordinates

� Parent centered above children
(if there is more than one child)

� Edges are straight-line segments

� Isomorphic subtrees have identical
drawings

Drawing aesthetics to optimize

� Area
� Symmetries

0

1
2
3



6 - 8

Layered Drawings – Algorithm

Input: A binary tree T
Output: A layered drawing of T

Base case: A single vertex

Conquer:

Divide: Recursively apply the algorithm to
draw the left and right subtrees



6 - 11

Layered Drawings – Algorithm

Input: A binary tree T
Output: A layered drawing of T

Base case: A single vertex

Conquer:

2

some agreed distance

parent centered
w.r.t. its children

sometimes 3 apart for grid drawing!

Divide: Recursively apply the algorithm to
draw the left and right subtrees



7 - 22

Layered Drawings – Algorithm Details

vPhase 1 – postorder traversal:

� For each vertex v, compute horizontal displacement
of left child vl and right child vr.

� At every vertex v store left and right contour of sub-
tree T (v).

−1

+1−1

+1 +1

+1

−1

−1

v
� A contour is a linked list of vertex coordinates/offsets.

� x-offset(vl) = −ddv/2e, x-offset(vr) = ddv/2e

−2 +2

� Find dv = min. horiz. distance between vl and vr.

Phase 2 – preorder traversal:

� Compute x- and y-coordinates

4

vl vr

vl vr



7 - 33

Layered Drawings – Algorithm Details

Phase 1 – postorder traversal:

� For each vertex v, compute horizontal displacement
of left child vl and right child vr.

� At every vertex v store left and right contour of sub-
tree T (v).

� A contour is a linked list of vertex coordinates/offsets.

� x-offset(vl) = −ddv/2e, x-offset(vr) = ddv/2e

� Find dv = min. horiz. distance between vl and vr.

Phase 2 – preorder traversal:

� Compute x- and y-coordinates

Runtime?

� How often do we take a step along a contour? in total O(n) times! where n = #vertices

v

−1

+1−1

+1 +1

+1

−1

−1

v

−2 +2

4

vl vr

vl vr



8 - 17

Layered Drawings – Result

Theorem. [Reingold & Tilford ’81]
Let T be a binary tree with n vertices. We can construct a
drawing Γ of T in O(n) time such that:

� Γ is planar, straight-line and strictly downward

� Γ is layered: y-coordinate of vertex v is −depth(v)

� Horizontal and vertical distances are at least 1

� Each vertex with > 1 child is centered w.r.t. its children

� Area of Γ is in O(n2) – but not optimal!

� Simply isomorphic subtrees have congruent drawings,
up to translation

� Axially isomorphic subtrees have congruent drawings,
up to translation and reflection

NP-hard



8 - 27

Layered Drawings – Result

Theorem. [Reingold & Tilford ’81]
Let T be a binary tree with n vertices. We can construct a
drawing Γ of T in O(n) time such that:

� Γ is planar, straight-line and strictly downward

� Γ is layered: y-coordinate of vertex v is −depth(v)

� Horizontal and vertical distances are at least 1

� Each vertex with > 1 child is centered w.r.t. its children

� Area of Γ is in O(n2) – but not optimal!

� Simply isomorphic subtrees have congruent drawings,
up to translation

� Axially isomorphic subtrees have congruent drawings,
up to translation and reflection

rooted

extension to non-binary rooted trees

NP-hard



9

Visualization of Graphs

Part II:
HV-Drawings

Lecture 1b:
Drawing Trees



10 - 11

HV-Drawings – Drawing Style

Applications

� Cons cell diagram in LISP

� Cons (constructs) are memory objects that
hold two values or pointers to values

1 3

5

1

9 12

10 11

4 6 7 8 /

/

/

/

/

Source: after gajon.org/trees-linked-lists-common-lisp/

Drawing conventions

� Children are vertically or horizontally
aligned with their parent

� The bounding boxes of the subtrees
of the children are disjoint

� Edges are strictly down- or
rightwards

Drawing aesthetics to optimize

� Height, width, area



11 - 6

HV-Drawings – Algorithm

Divide: Recursively apply the algorithm to
draw the left and right subtrees

Input: A binary tree T
Output: An HV-drawing of T

Base case:

Conquer: horizontal combination vertical combination



12 - 22

HV-Drawings – Right-Heavy HV-Layout

Lemma. Let T be a binary tree. The drawing
constructed by the right-heavy approach has

� width at most n− 1 and

� height at most log2 n.

at least ·2

at least ·2

at least ·2

Right-heavy approach

� Always apply horizontal combination

� Place the larger subtree to the right
Size of subtree := number of vertices

How to implement this
in linear time?

← This can change the embedding!



13 - 7

HV-Drawings – Result

Theorem.
Let T be a binary tree with n vertices. The right-heavy
algorithm constructs in O(n) time a drawing Γ of T s.t.:

� Γ is an HV-drawing
(planar, orthogonal, strictly right-/downward)

� Width is at most n− 1

� Height is at most log2 n

� Area is in O(n log n)

� Simply and axially isomorphic subtrees have congruent
drawings up to translation

worst-case optimal [exercise]



13 - 15

HV-Drawings – Result

Theorem.
Let T be a binary tree with n vertices. The right-heavy
algorithm constructs in O(n) time a drawing Γ of T s.t.:

� Γ is an HV-drawing
(planar, orthogonal, strictly right-/downward)

� Width is at most n− 1

� Height is at most log2 n

� Area is in O(n log n)

� Simply and axially isomorphic subtrees have congruent
drawings up to translation

General rooted tree
largest
subtree

Optimal area?

Not with divide & conquer approach, but can
be computed with Dynamic Programming.

rooted

2nd largest

worst-case optimal [exercise]



14

Visualization of Graphs

Part III:
Radial Layouts

Lecture 1b:
Drawing Trees



16 - 5

Radial Layouts – Drawing Style

Drawing conventions

� Vertices lie on circular layers
according to their depth

� Drawing is planar

Drawing aesthetics to optimize

� Balanced distribution of the vertices

How can an algorithm optimize the
distribution of the vertices?



17 - 20

Radial Layouts – Algorithm Attempt

1
9

1
1

1
1 1

3
5

7

11
1
10

9
10 ·

1
8

9
10 ·

7
8 ·

1
6

Idea

� Reserve area corresponding to size `(u) of T (u):

τu =
`(u)

`(v)− 1

� Place u in the middle of its area

v

u
`(u)



18 - 4

Radial Layouts – How To Avoid Crossings

v

u

p

q



18 - 14

Radial Layouts – How To Avoid Crossings

ρ i τu
2

v

u

� τu – angle of the wedge
corresponding to vertex u

� ρi – radius of layer i

� cos(τu/2) = ρi/ρi+1

� τu = min
{

`(u)
`(v)−1 · τv, 2 arccos ρi

ρi+1

}

� `(u) – number of nodes in the
subtree rooted at u

q

p
� Alternative:

ρ
i+

1

αu

αmax

αmin

αmin = αu − arccos ρi
ρi+1

αmax = αu + arccos ρi
ρi+1



19 - 19

Radial Layouts – Pseudocode

RadialTreeLayout(tree T , root r ∈ T , radii ρ1 < · · · < ρk)

postorder(r)
preorder(r, 0, 0, 2π)
return (dv, αv)v∈V (T )

// vertex positions in polar coordinates

postorder(vertex v)
`(v)← 1
foreach child w of v do

postorder(w)
`(v)← `(v) + `(w)

preorder(vertex v, t, αmin, αmax)

dv ← max{0, ρt}
αv ← (αmin + αmax)/2
if t > 0 then
αmin←max{αmin, αv−arccos ρt

ρt+1
}

αmax←min{αmax, αv+arccos ρt
ρt+1
}

left ← αmin

foreach child w of v do

right ← left + `(w)
`(v)−1

·(αmax − αmin)

preorder(w, t+ 1, left , right)
left ← right

// output

Runtime? O(n)

Correctness? X



20 - 4

Radial Layouts – Result

Theorem.
Let T be a rooted tree with n vertices. The algorithm
RadialTreeLayout constructs in O(n) time a drawing Γ of T s.t.:

� Γ is a radial, crossing-free drawing,

� vertices lie on circles according to their depth, and

� the area of Γ is quadratic in max-degree(T ) × height(T )
(see [GD Ch. 3.1.3] for the details).



22

Literature

� [GD, Chapter 3] divide and conquer methods for rooted trees and series-parallel graphs

� [Reingold, Tilford ’81] “Tidier Drawings of Trees”
– original paper for level-based layout algo

� [Reingold, Supowit ’83] “The complexity of drawing trees nicely”
– linear program and NP-hardness proof for area minimization

� treevis.net – compendium of drawing methods for trees


	Layered Drawings of Trees
	(Rooted) Trees
	First Grid Layout of Binary Trees
	Drawing Style
	Algorithm
	Algorithm Details
	Result

	HV-Drawings
	Drawing Style
	Algorithm
	Right-Heavy HV-Layout
	Result

	Radial Layouts
	Drawing Style
	Algorithm Attempt
	How To Avoid Crossings
	Pseudocode
	Result

	Literature

