
DATA SCIENCE FOR DIGITAL HUMANITIES 1

INTRO TO MACHINE LEARNING

TEXT CLASSIFICATION & CLUSTERING

PROF. DR. GORAN GLAVAŠ

Refresher: machine learning basics

2

▪ Supervised machine learning

• We have labeled data as input

• Supervised ML algorithms learn the mapping between input

representations and output labels

• Classification: output – discrete label (no ordering between labels)

• Regression: output – an integer or real value (obviously, there is

ordering between labels)

▪ Unsupervised machine learning

• We have no labels (i.e., we have unlabeled data) at input

• Clustering: grouping instances by the similarity of their

representations

• Outlier detection: recognizing instances that are very dissimilar from

all other instances in the dataset

Refresher: machine learning basics

3

▪ Supervised machine learning models „learn” the mapping between input

values and output values

• A single input to the classifier is called an instance or example

(denoted „x”)

• An instance is represented as an n-dimensional feature vector

x = (x1, x2, ..., xn)

▪ The desired output is called the target label (or just label, denoted y)

▪ A classifier h maps an instance x to a label y – h : x → y

▪ „Learning” – model has parameters θ (denoted h(x| θ)) whose values are

optimized to maximize the prediction accuracy of the output labels, given

instance

Refresher: machine learning basics

4

Supervised classification

Binary classification: just two output labels (yes/no, 0/1)

Multi-class classification: each instance has one of K labels

Multi-label classification: an instance can have more than one label at once

Sequence labeling: input a sequence of instances and output a sequence of labels

Text Classification and Clustering

5

For both classification and clustering we represent texts/documents as numeric vectors:

1. Sparse text/document representations

• Sparse Bag-of-words vectors

• Term-frequency (TF) – Inverse Document Frequency (IDF) weighting

• For classification: traditional ML models/algorithms, e.g., logistic regression

• For clustering: we compare the sparse TF-IDF vectors of documents

2. Dense text/document representations

• Document representations aggregated from dense word embeddings or

generated with pre-trained deep neural encoders (e.g., BERT)

• For classification: neural ML models, e.g., multi-layer perceptron, CNN, RNN

• For clustering: we compare dense document vectors (embeddings)

Click to edit Master title style

Sparse text representations

Sparse text representations

7

▪ V – vocabulary (set) of all words that we find in our collection of documents

▪ E.g., V = {„a”, „aachen”, „an”, „animal”, ..., „zuma”, „zygot”}

▪ Sparse document vectors are |V|-dimensional vectors, in which each

dimension corresponds to one word from the vocabulary V

dj = [w1,j, w2,j, ..., w|V|-1,j, w|V|,j]

▪ Weight wi,j captures the „importance” of the i-th vocabulary word for the j-th

document in the collection

▪ If the i-th word does not appear in the j-th document, then wi,j = 0

„a” „an” ... „zuma” „zygot”

Sparse text representations

8

▪ V – vocabulary (set) of all words that we find in our collection of documents

▪ E.g., V = {„a”, „aachen”, „an”, „animal”, ..., „zuma”, „zygot”}

dj = [w1,j, w2,j, ..., w|V|-1,j, w|V|,j]

▪ Weight wi,j captures the „importance” of the i-th vocabulary word for the j-th

document in the collection

▪ If the i-th word does appear in the j-th document, what should wi,j look like?

„a” „an” ... „zuma” „zygot”

Sparse text representations

9

▪ If the i-th word does appear in the j-th document, what should wi,j look like?

▪ Two assumptions:

1. The term is more relevant for the document, the more frequently

it appears in the document

2. The term is more relevant for the document the less commonly it

occurs across other documents

▪ These two assumptions give rise to the popular and effective weighting

scheme called TF-IDF:

• Term frequency (TF, assumption 1)

• Inverse document frequency (IDF, assumption 2)

Sparse text representations

10

TF-IDF(wordi, documentj) = TF(wordi, documentj) * IDF(wordi)

TF(wordi, documentj) =
freq(wordi, documentj)
max. 𝑤𝑜𝑟𝑑 𝑓𝑟𝑒𝑞 (𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑖)

IDF(wordi) = log
|𝐷|

|{𝑑 ∈ 𝐷 ∶ 𝑤𝑜𝑟𝑑𝑖 ∈ 𝑑}|

dj = [w1,j, w2,j, ..., w|V|-1,j, w|V|,j]

„a” „an” ... „zuma” „zygot”

TF(„a”, dj) * IDF(„a”) TF(„zygot”, dj) * IDF(„zygot”)...

Click to edit Master title style

Traditional text classification

Traditional Text Classification

12

Traditional text classification:

1. Sparse text/document representations

• Sparse Bag-of-words vectors

• Term-frequency (TF) – Inverse Document Frequency (IDF) weighting

2. Traditional classification algorithms:

• Logistic regression (despite the name, a classification model)

• (Linear) Support Vector Machines

Logistic regression

13

▪ Despite its name, logistic regression is a classification algorithm

▪ We will focus on binary classification – logistic regression computes the

probability that some instance x belongs to some class (y = 1)

h(x| θ) = P(y = 1 | x) =
1

1+exp(−𝜽T𝐱)
= σ(𝜽T𝐱)

▪ Logistic regression is based on a logistic function: σ(a) = 1 / (1 + e-a)

▪ The logistic function maps the input value to the output interval [-1, 1]

Logistic regression

14

▪ LR for text classification

▪ We will focus on binary classification – logistic regression computes the

probability that some instance x belongs to some class (y = 1)

h(x| θ) = P(y = 1 | x) =
1

1+exp(−𝜽T𝐱)
= σ(𝜽T𝐱)

▪ In text classification, the instance x, representing a single document, is the

TF-IDF vector of that document,

• So each component of x = [x1, x2, ..., x|V|] is the TF-IDF score of

one vocabulary word in that document

• I.e., xi = wi,j = TF(wordi, documentj) * IDF(wordi)

Logistic regression

15

▪ LR for text classification

h(x| θ) = P(y = 1 | x) =
1

1+exp(−𝜽T𝐱)
= σ(𝜽T𝐱)

▪ Looking at the logistic regression formula (and the properties of log. function):

h(x|θ) > 0.5 (i.e., instance x belongs to the class) if and only if 𝜽T𝐱 > 0

h(x|θ) < 0.5 (i.e., instance x doesn’t belong to the class) if and only if 𝜽T𝐱 < 0

▪ But what are the LR’s parameters 𝜽 = [𝜃1, 𝜃2, ..., 𝜃|V|]?

• One parameter for each vocabulary word

› 𝜃1 captures how indicative the wordi is for the class of the

document (class 1)

• Their „optimal” values need to be learned on the „training set”

Click to edit Master title style

Dense text representations and deep
text classification

Modern (Deep) Text Classification

17

Modern text classification:

1. Dense text/document representations

• Documents represented as sequences of word embeddings

2. Deep learning encoding / classification algorithms:

• Convolutional neural networks

• Recurrent neural networks

• Attention networks (so-called Transformers)

Convolutional Neural Networks

18

▪ Convolutional neural networks (CNNs) use convolution instead of general

matrix multiplication in at least one layer

▪ Convolution = sum over elements of the element-wise product of two matrices

▪ Convolution between two M x N matrices, A and B is then:

Conv(A, B) = σ𝑖=1
𝑀 σ𝑗=1

𝑁 𝐴𝑖𝑗 ∗ 𝐵𝑖𝑗

▪ Using convolutions instead of general matrix multiplication better models

components of complex (hiearchical) structures

• NLP: Texts → paragraphs → sentences → words

• CV: Images → objects → regions → contures → ... → pixels

Convolutional neural networks

▪ CNN are used to derive latent (dense) representations of larger portions of text

by aggregating local sequences

• Modelling local dependencies

▪ Input: Sequence of word embedding vectors

▪ Parameters: filter matrices (F) with which subsequences of input are convoluted

F3

F2

F2

1-max pooling

Convolutional neural networks

▪ Filters: CNN parameter matrices of size K x d, where K is small number, typically

between 3 and 5 and d is the length of word embedding vectors

• K is called the size of the filter

• One CNN typically has many filters, often of different sizes

• E.g., 32 filters of size 3, 64 filters of size 4, and 32 filters of size 5

▪ Convolution layer:

• Each filter strides down the input sequence and produces a convolution

score with each input subsequence of size K

• Let FK be one filter (matrix) od size K (i.e., dimensions K x d)

• Let X[a:b] be the submatrix of the input matrix X consisting of rowa a to b

• We then compute the vector of following convolutions

C(FK) = [Conv(X[1:K], FK); Conv(X[2:K+1], FK); Conv(X[3:K+2], FK); ...; Conv(X[N-K+1:N], FK)]

Convolutional neural networks

▪ Pooling layer:

• Each filter FK will produce a vector of convolution scores C(FK) over

the input sequence

• We want to keep only the „most salient” local sequences

• That’s why we tipically select only k largest values from the

convolution vector of each filter – this is called k-max pooling

• Most often 1-max pooling is used (only the largest value is kept)

▪ Latent text representation:

• We concatenate the results of pooling for each of the filters into a

single vector which is the latent representation of the text

• This is the final representation xCNN of our document, which goes into

the classifier

Convolutional neural networks

▪ Deep CNNs

• When we chain more than one convolutional layer

• Outputs of one convolution layer become input for another convolution

layer

• Each convolution layer has its own set of filters

▪ Classification

• CNN itself is not a classifier,

• It merely builds an informative dense latent representation of the text

(i.e., dense vector representing the input text)

• To make a prediction, we couple CNN with a feed-forward

classification network

▪

CNN-based Text Classification

▪ Let xCNN be the latent vector produced by the CNN and WFF and bFF be the

weight matrix and bias vector of the feed-forward classifier:

▪ The classification prediction is then given by:

y = Softmax(xCNN WFF + bFF)

▪ The parameters of the CNN and the feed-forward network are then jointly

optimized during training

Click to edit Master title style

Text clustering

Cluster Analysis („Clustering”)

▪ Cluster analysis (or, colloquially, clustering) is a multivariate statistical

technique that allows automated generation of groupings in data

▪ Components of clustering:

1. An abstract representation of an object using which the object is

compared to other objects

2. A function that measures the distance or similarity between the

objects based on their abstract representations

3. A clustering algorithm that groups the objects based on the

similarities / distances computed from their representations

4. (optional) Constraints with respect to cluster membership, cluster

proximity, shape of the clusters, etc.

Text Clustering

▪ Representations of text for clustering are usually the same as for text

classification (only we lack the labels)

• Sparse vectors (binary or weighted, e.g., using TF-IDF)

• Dense vectors (latent or semantic representations, e.g., word

embedding average)

▪ Common distance/similarity functions

• Cosine similarity/distance

• Euclidean distance, Jaccard coefficient, Kullback-Leibler divergence, ...

▪ Clustering algorithms:

1. Sequential – e.g., single pass clustering

2. Hierarchical – e.g., agglomerative clustering, divisive clustering

3. Cost-function optimization clustering – e.g., K-means

IR & WS, Lecture 8: Latent and Semantic Retrieval

Single pass clustering

▪ Simplest clustering algorithm

▪ The number of clusters does not need to be predefined

▪Algorithm:

1. Start by putting the first text t1 into the first cluster c1 = {t1}

2. For all other texts, t2, ..., tn, one by one

I. Measure the distance/similarity with all existing clusters c1, ..., ck

▪ The similarity with the cluster is avg/max of similarities with instances in cluster

II. Identify the cluster ci with which the current text tj has the largest

similarity (or smallest distance)

III. If the similarity between tj and ci is above some predefined threshold λ,

add the text tj to cluster ci

K-Means

▪ Arguably the most famous and widely used clustering algorithm

▪ Requires the number of clusters k to be predefined – K clusters, S = {S1, S2, ...,

Sk}, represented by mean vectors μ1, μ2, ..., μk

▪ K-means clusters instances (x1, x2, ..., xn) by finding the partition S that

minimizes the within-cluster distances (maximizing the within-cluster similarities):

▪ Q: How to find optimal clusters (minimize the sum of within-cluster distances)?

▪ A: Using iterative optimization

K-Means

▪ Algorithm for learning the centroids:

1. Randomly pick K mean vectors μ1, μ2, ..., μk in the same space (i.e., of

same dimensionality) as instance vectors x

• K-means++ is an extension that more intelligently chooses the initial

mean vectors

2. Iterate the following two steps until convergence:

I. Assign each instance xj to the cluster with the closest mean vector μi :

II. For each cluster, update the mean vector of a cluster

› Set the mean vector to the mean of the instances in the cluster

K-Means

30

Example from: https://www.projectrhea.org/rhea/index.php/SlectureDavidRunyanCS662Spring14

https://www.projectrhea.org/rhea/index.php/SlectureDavidRunyanCS662Spring14

	Standardabschnitt
	Slide 1: data science for digital humanities 1 intro TO MACHINE LEARNING TEXT CLASSIFICATION & CLUSTERING
	Slide 2: Refresher: machine learning basics
	Slide 3: Refresher: machine learning basics
	Slide 4: Refresher: machine learning basics
	Slide 5: Text Classification and Clustering
	Slide 6: Sparse text representations
	Slide 7: Sparse text representations
	Slide 8: Sparse text representations
	Slide 9: Sparse text representations
	Slide 10: Sparse text representations
	Slide 11: Traditional text classification
	Slide 12: Traditional Text Classification
	Slide 13: Logistic regression
	Slide 14: Logistic regression
	Slide 15: Logistic regression
	Slide 16: Dense text representations and deep text classification
	Slide 17: Modern (Deep) Text Classification
	Slide 18: Convolutional Neural Networks
	Slide 19: Convolutional neural networks
	Slide 20: Convolutional neural networks
	Slide 21: Convolutional neural networks
	Slide 22: Convolutional neural networks
	Slide 23: CNN-based Text Classification
	Slide 24: Text clustering
	Slide 25: Cluster Analysis („Clustering”)
	Slide 26: Text Clustering
	Slide 27: Single pass clustering
	Slide 28: K-Means
	Slide 29: K-Means
	Slide 30: K-Means

