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Alexander Wolff Winter 2023/24

Lecture 12:
SteinerForest via Primal–Dual

Part I:
SteinerForest

Approximation Algorithms
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a set R = {(s1, t1), . . . , (sk, tk)} of k vertex pairs.
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such that the subgraph (V, F) connects every pair
(si, ti), i = 1, . . . , k.
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A graph G = (V, E) with edge costs c : E→N and
a set R = {(s1, t1), . . . , (sk, tk)} of k vertex pairs.
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ShortestPath (R = {s, t})

A graph G = (V, E) with edge costs c : E→N and
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Special cases?

ShortestPath (R = {s, t})

MinSpanningTree (R = E)

A graph G = (V, E) with edge costs c : E→N and
a set R = {(s1, t1), . . . , (sk, tk)} of k vertex pairs.

Find an edge set F ⊆ E of minimum total cost c(F)
such that the subgraph (V, F) connects every pair
(si, ti), i = 1, . . . , k.
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Special cases?

ShortestPath (R = {s, t})

MinSpanningTree (R = E)

SteinerTree (R = T × T)

A graph G = (V, E) with edge costs c : E→N and
a set R = {(s1, t1), . . . , (sk, tk)} of k vertex pairs.

Find an edge set F ⊆ E of minimum total cost c(F)
such that the subgraph (V, F) connects every pair
(si, ti), i = 1, . . . , k.
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Approaches?
■ Merge k shortest si–ti paths

■ SteinerTree on the set of terminals

Homework: Both above approaches perform poorly :-(

Difficulty:
Which terminals belong to the same tree of the forest?
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Lecture 12:
SteinerForest via Primal–Dual

Part II:
Primal and Dual LP

Approximation Algorithms
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minimize ∑
e∈E

cexe

subject to ∑
e∈δ(S)

xe ≥ 1 S ∈ Si, i ∈ {1, . . . , k}

xe ∈ {0, 1} e ∈ E

where Si := {S ⊆ V : si ∈ S, ti ̸∈ S}

si
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S
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and δ(S) := {(u, v) ∈ E : u ∈ S and v /∈ S}

⇝ exponentially many constraints!
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Complementary Slackness (Reminder)

minimize c⊺x
subject to Ax ≥ b

x ≥ 0

maximize b⊺y
subject to A⊺y ≤ c

y ≥ 0

Let x = (x1, . . . , xn) and y = (y1, . . . , ym) be valid solutions
for the primal and dual program (resp.). Then x and y are
optimal if and only if the following conditions are met:

Primal CS:
For each j = 1, . . . , n: either xj = 0 or ∑m

i=1 aijyi = cj

Dual CS:
For each i = 1, . . . , m: either yi = 0 or ∑n

j=1 aijxj = bi

Theorem.
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A First Primal–Dual Approach

Complementary slackness: xe > 0 ⇒

⇒ pick “critical” edges (and only those)

Idea: iteratively build a feasible integral primal solution.

How to find a violated primal constraint? (∑e∈δ(S) xe < 1)

■ Consider related connected component C!

How do we iteratively improve the dual solution?

■ Increase yC (until some edge in δ(C) becomes critical)!

∑S : e∈δ(S) yS = ce.



11 - 1

A First Primal–Dual Approach

PrimalDualSteinerForestNaive(graph G, costs c, pairs R)
y← 0, F ← ∅
while some (si, ti) ∈ R not connected in (V, F) do

C ← comp. in (V, F) with |C ∩ {si, ti}| = 1 for some i
Increase yC

until ∑
S : e′∈δ(S)

yS = ce′ for some e′ ∈ δ(C).

F ← F ∪ {e′}
return F
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y← 0, F ← ∅
while some (si, ti) ∈ R not connected in (V, F) do

C ← comp. in (V, F) with |C ∩ {si, ti}| = 1 for some i
Increase yC

until ∑
S : e′∈δ(S)

yS = ce′ for some e′ ∈ δ(C).

F ← F ∪ {e′}
return F

Running time??
Trick: Handle all yS with yS = 0 implicitly.
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ce
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= ∑

e∈F
∑

S : e∈δ(S)
yS = ∑

S
|δ(S) ∩ F| · yS.

Compare to the value of the dual objective function ∑S yS.

There are examples with |δ(S) ∩ F| = k for each yS > 0 :-(

But: Average degree of “active components” is less than 2.

⇒ Increase yC for all active components C simultaneously!

Homework!
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Primal–Dual with Synchronized Increases
PrimalDualSteinerForest(graph G, edge costs c, pairs R)

y← 0, F ← ∅, ℓ← 0
while some (si, ti) ∈ R not connected in (V, F) do

ℓ← ℓ+ 1
C ← {comp. C in (V, F) with |C ∩ {si, ti}| = 1 for some i}
Increase yC for all C ∈ C simultaneously

until ∑
S : eℓ∈δ(S)

yS = ceℓ for some eℓ ∈ δ(C), C ∈ C.

F ← F ∪ {eℓ}
F′ ← F
// Pruning
for j← ℓ downto 1 do

if F′ \ {ej} is feasible solution then
F′ ← F′ \ {ej}

return F′
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Structure Lemma

Proof. First the intuition. . .

δ(C) ∩ F′

F′ ∩ C
F− F′

Every connected component C of F is a forest in F′.
⇝ average degree ≤ 2

Difficulty: Some C are not in C.
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Lecture 12:
SteinerForest via Primal–Dual

Part VI:
Analysis

Approximation Algorithms
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SteinerForest (as SteinerTree) cannot be approximated
within factor 96

95 ≈ 1.0105 (unless P=NP). [Chlebı́k, Chlebı́ková ’08]
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