
1

Alexander Wolff Winter 2023/24

Lecture 12:
SteinerForest via Primal–Dual

Part I:
SteinerForest

Approximation Algorithms

2 - 1

SteinerForest

Given:

4

41

1
3

1
1

3

3

5

A graph G = (V, E) with edge costs c : E→N and
a set R = {(s1, t1), . . . , (sk, tk)} of k vertex pairs.

2 - 2

SteinerForest

Given:

4

41

1
3

1
1

3

3

5

A graph G = (V, E) with edge costs c : E→N and
a set R = {(s1, t1), . . . , (sk, tk)} of k vertex pairs.

2 - 3

SteinerForest

Given:

s1

t1

s2

t2

s3

t3
4

41

1
3

1
1

3

3

5

A graph G = (V, E) with edge costs c : E→N and
a set R = {(s1, t1), . . . , (sk, tk)} of k vertex pairs.

2 - 4

SteinerForest

Given:

Task:

s1

t1

s2

t2

s3

t3
4

41

1
3

1
1

3

3

5

A graph G = (V, E) with edge costs c : E→N and
a set R = {(s1, t1), . . . , (sk, tk)} of k vertex pairs.

Find an edge set F ⊆ E of minimum total cost c(F)
such that the subgraph (V, F) connects every pair
(si, ti), i = 1, . . . , k.

2 - 5

SteinerForest

Given:

Task:

s1

t1

s2

t2

s3

t3
4

41

1
3

1
1

3

3

5

A graph G = (V, E) with edge costs c : E→N and
a set R = {(s1, t1), . . . , (sk, tk)} of k vertex pairs.

Find an edge set F ⊆ E of minimum total cost c(F)
such that the subgraph (V, F) connects every pair
(si, ti), i = 1, . . . , k.

2 - 6

SteinerForest

Given:

Task:

s1

t1

s2

t2

s3

t3
4

41

1
3

1
1

3

3

5

A graph G = (V, E) with edge costs c : E→N and
a set R = {(s1, t1), . . . , (sk, tk)} of k vertex pairs.

Find an edge set F ⊆ E of minimum total cost c(F)
such that the subgraph (V, F) connects every pair
(si, ti), i = 1, . . . , k.

2 - 7

SteinerForest

Given:

Task:

s1

t1

s2

t2

s3

t3
4

41

1
3

1
1

3

3

5

Special cases?

A graph G = (V, E) with edge costs c : E→N and
a set R = {(s1, t1), . . . , (sk, tk)} of k vertex pairs.

Find an edge set F ⊆ E of minimum total cost c(F)
such that the subgraph (V, F) connects every pair
(si, ti), i = 1, . . . , k.

2 - 8

SteinerForest

Given:

Task:

s1

t1

s2

t2

s3

t3
4

41

1
3

1
1

3

3

5

Special cases?

ShortestPath (R = {s, t})

A graph G = (V, E) with edge costs c : E→N and
a set R = {(s1, t1), . . . , (sk, tk)} of k vertex pairs.

Find an edge set F ⊆ E of minimum total cost c(F)
such that the subgraph (V, F) connects every pair
(si, ti), i = 1, . . . , k.

2 - 9

SteinerForest

Given:

Task:

s1

t1

s2

t2

s3

t3
4

41

1
3

1
1

3

3

5

Special cases?

ShortestPath (R = {s, t})

MinSpanningTree (R = E)

A graph G = (V, E) with edge costs c : E→N and
a set R = {(s1, t1), . . . , (sk, tk)} of k vertex pairs.

Find an edge set F ⊆ E of minimum total cost c(F)
such that the subgraph (V, F) connects every pair
(si, ti), i = 1, . . . , k.

2 - 10

SteinerForest

Given:

Task:

s1

t1

s2

t2

s3

t3
4

41

1
3

1
1

3

3

5

Special cases?

ShortestPath (R = {s, t})

MinSpanningTree (R = E)

SteinerTree (R = T × T)

A graph G = (V, E) with edge costs c : E→N and
a set R = {(s1, t1), . . . , (sk, tk)} of k vertex pairs.

Find an edge set F ⊆ E of minimum total cost c(F)
such that the subgraph (V, F) connects every pair
(si, ti), i = 1, . . . , k.

3 - 1

Approaches?
■ Merge k shortest si–ti paths

s1

t1

s2

t2

s3

t3
4

41

1
3

1
1

3

3

5

3 - 2

Approaches?
■ Merge k shortest si–ti paths

■ SteinerTree on the set of terminals

s1

t1

s2

t2

s3

t3
4

41

1
3

1
1

3

3

5

3 - 3

Approaches?
■ Merge k shortest si–ti paths

■ SteinerTree on the set of terminals

Homework: Both above approaches perform poorly :-(

s1

t1

s2

t2

s3

t3
4

41

1
3

1
1

3

3

5

3 - 4

Approaches?
■ Merge k shortest si–ti paths

■ SteinerTree on the set of terminals

Homework: Both above approaches perform poorly :-(

Difficulty:
Which terminals belong to the same tree of the forest?

s1

t1

s2

t2

s3

t3
4

41

1
3

1
1

3

3

5

4

Lecture 12:
SteinerForest via Primal–Dual

Part II:
Primal and Dual LP

Approximation Algorithms

5 - 1

An ILP

minimize ∑
e∈E

cexe

subject to ∑
e∈δ(S)

xe ≥ 1 S ∈ Si, i ∈ {1, . . . , k}

xe ∈ {0, 1} e ∈ E

5 - 2

An ILP

minimize ∑
e∈E

cexe

subject to ∑
e∈δ(S)

xe ≥ 1 S ∈ Si, i ∈ {1, . . . , k}

xe ∈ {0, 1} e ∈ E

5 - 3

An ILP

minimize ∑
e∈E

cexe

subject to ∑
e∈δ(S)

xe ≥ 1 S ∈ Si, i ∈ {1, . . . , k}

xe ∈ {0, 1} e ∈ E

5 - 4

An ILP

minimize ∑
e∈E

cexe

subject to ∑
e∈δ(S)

xe ≥ 1 S ∈ Si, i ∈ {1, . . . , k}

xe ∈ {0, 1} e ∈ E

si

ti

5 - 5

An ILP

minimize ∑
e∈E

cexe

subject to ∑
e∈δ(S)

xe ≥ 1 S ∈ Si, i ∈ {1, . . . , k}

xe ∈ {0, 1} e ∈ E

si

ti

S

5 - 6

An ILP

minimize ∑
e∈E

cexe

subject to ∑
e∈δ(S)

xe ≥ 1 S ∈ Si, i ∈ {1, . . . , k}

xe ∈ {0, 1} e ∈ E

si

ti

S

5 - 7

An ILP

minimize ∑
e∈E

cexe

subject to ∑
e∈δ(S)

xe ≥ 1 S ∈ Si, i ∈ {1, . . . , k}

xe ∈ {0, 1} e ∈ E

si

ti

S

δ(S)

5 - 8

An ILP

minimize ∑
e∈E

cexe

subject to ∑
e∈δ(S)

xe ≥ 1 S ∈ Si, i ∈ {1, . . . , k}

xe ∈ {0, 1} e ∈ E

si

ti

S

δ(S)

and δ(S) := {(u, v) ∈ E : u ∈ S and v /∈ S}

5 - 9

An ILP

minimize ∑
e∈E

cexe

subject to ∑
e∈δ(S)

xe ≥ 1 S ∈ Si, i ∈ {1, . . . , k}

xe ∈ {0, 1} e ∈ E

si

ti

S

δ(S)

and δ(S) := {(u, v) ∈ E : u ∈ S and v /∈ S}

5 - 10

An ILP

minimize ∑
e∈E

cexe

subject to ∑
e∈δ(S)

xe ≥ 1 S ∈ Si, i ∈ {1, . . . , k}

xe ∈ {0, 1} e ∈ E

si

ti

S

δ(S)

and δ(S) := {(u, v) ∈ E : u ∈ S and v /∈ S}

5 - 11

An ILP

minimize ∑
e∈E

cexe

subject to ∑
e∈δ(S)

xe ≥ 1 S ∈ Si, i ∈ {1, . . . , k}

xe ∈ {0, 1} e ∈ E

si

ti

S

δ(S)

and δ(S) := {(u, v) ∈ E : u ∈ S and v /∈ S}

5 - 12

An ILP

minimize ∑
e∈E

cexe

subject to ∑
e∈δ(S)

xe ≥ 1 S ∈ Si, i ∈ {1, . . . , k}

xe ∈ {0, 1} e ∈ E

where Si := {S ⊆ V : si ∈ S, ti ̸∈ S}

si

ti

S

δ(S)

and δ(S) := {(u, v) ∈ E : u ∈ S and v /∈ S}

5 - 13

An ILP

minimize ∑
e∈E

cexe

subject to ∑
e∈δ(S)

xe ≥ 1 S ∈ Si, i ∈ {1, . . . , k}

xe ∈ {0, 1} e ∈ E

where Si := {S ⊆ V : si ∈ S, ti ̸∈ S}

si

ti

S

δ(S)

and δ(S) := {(u, v) ∈ E : u ∈ S and v /∈ S}

⇝ exponentially many constraints!

6 - 1

LP-Relaxation and Dual LP

minimize ∑
e∈E

cexe

subject to ∑
e∈δ(S)

xe ≥ 1 S ∈ Si, i ∈ {1, . . . , k}

xe ≥ 0 e ∈ E

6 - 2

LP-Relaxation and Dual LP

minimize ∑
e∈E

cexe

subject to ∑
e∈δ(S)

xe ≥ 1 S ∈ Si, i ∈ {1, . . . , k}

xe ≥ 0 e ∈ E

(yS)

6 - 3

LP-Relaxation and Dual LP

minimize ∑
e∈E

cexe

subject to ∑
e∈δ(S)

xe ≥ 1 S ∈ Si, i ∈ {1, . . . , k}

xe ≥ 0 e ∈ E

(yS)

maximize ∑
S∈Si

i∈{1,...,k}

yS

subject to ∑
S : e∈δ(S)

yS ≤ ce e ∈ E

yS ≥ 0 S ∈ Si, i ∈ {1, . . . , k}

6 - 4

LP-Relaxation and Dual LP

minimize ∑
e∈E

cexe

subject to ∑
e∈δ(S)

xe ≥ 1 S ∈ Si, i ∈ {1, . . . , k}

xe ≥ 0 e ∈ E

(yS)

maximize ∑
S∈Si

i∈{1,...,k}

yS

subject to ∑
S : e∈δ(S)

yS ≤ ce e ∈ E

yS ≥ 0 S ∈ Si, i ∈ {1, . . . , k}

6 - 5

LP-Relaxation and Dual LP

minimize ∑
e∈E

cexe

subject to ∑
e∈δ(S)

xe ≥ 1 S ∈ Si, i ∈ {1, . . . , k}

xe ≥ 0 e ∈ E

(yS)

maximize ∑
S∈Si

i∈{1,...,k}

yS

subject to ∑
S : e∈δ(S)

yS ≤ ce e ∈ E

yS ≥ 0 S ∈ Si, i ∈ {1, . . . , k}

7 - 1

Intuition for the Dual
maximize ∑

S∈Si
i∈{1,...,k}

yS

subject to ∑
S : e∈δ(S)

yS ≤ ce e ∈ E

yS ≥ 0 S ∈ Si, i ∈ {1, . . . , k}

7 - 2

Intuition for the Dual

The graph is a network of bridges, spanning the moats.

maximize ∑
S∈Si

i∈{1,...,k}

yS

subject to ∑
S : e∈δ(S)

yS ≤ ce e ∈ E

yS ≥ 0 S ∈ Si, i ∈ {1, . . . , k}

7 - 3

Intuition for the Dual

The graph is a network of bridges, spanning the moats.

maximize ∑
S∈Si

i∈{1,...,k}

yS

subject to ∑
S : e∈δ(S)

yS ≤ ce e ∈ E

yS ≥ 0 S ∈ Si, i ∈ {1, . . . , k}

7 - 4

Intuition for the Dual

The graph is a network of bridges, spanning the moats.

S

maximize ∑
S∈Si

i∈{1,...,k}

yS

subject to ∑
S : e∈δ(S)

yS ≤ ce e ∈ E

yS ≥ 0 S ∈ Si, i ∈ {1, . . . , k}

7 - 5

Intuition for the Dual

The graph is a network of bridges, spanning the moats.

S

maximize ∑
S∈Si

i∈{1,...,k}

yS

subject to ∑
S : e∈δ(S)

yS ≤ ce e ∈ E

yS ≥ 0 S ∈ Si, i ∈ {1, . . . , k}

7 - 6

Intuition for the Dual

The graph is a network of bridges, spanning the moats.

S

maximize ∑
S∈Si

i∈{1,...,k}

yS

subject to ∑
S : e∈δ(S)

yS ≤ ce e ∈ E

yS ≥ 0 S ∈ Si, i ∈ {1, . . . , k}

7 - 7

Intuition for the Dual

The graph is a network of bridges, spanning the moats.

S

δ(S) = set
of edges /
bridges
over the
moat
around S

maximize ∑
S∈Si

i∈{1,...,k}

yS

subject to ∑
S : e∈δ(S)

yS ≤ ce e ∈ E

yS ≥ 0 S ∈ Si, i ∈ {1, . . . , k}

7 - 8

Intuition for the Dual

The graph is a network of bridges, spanning the moats.

yS = width of the moat around S

S

δ(S) = set
of edges /
bridges
over the
moat
around S

maximize ∑
S∈Si

i∈{1,...,k}

yS

subject to ∑
S : e∈δ(S)

yS ≤ ce e ∈ E

yS ≥ 0 S ∈ Si, i ∈ {1, . . . , k}

7 - 9

Intuition for the Dual

The graph is a network of bridges, spanning the moats.

yS = width of the moat around S

S
yS

δ(S) = set
of edges /
bridges
over the
moat
around S

maximize ∑
S∈Si

i∈{1,...,k}

yS

subject to ∑
S : e∈δ(S)

yS ≤ ce e ∈ E

yS ≥ 0 S ∈ Si, i ∈ {1, . . . , k}

7 - 10

Intuition for the Dual

The graph is a network of bridges, spanning the moats.

yS = width of the moat around S

S
yS

δ(S) = set
of edges /
bridges
over the
moat
around S

maximize ∑
S∈Si

i∈{1,...,k}

yS

subject to ∑
S : e∈δ(S)

yS ≤ ce e ∈ E

yS ≥ 0 S ∈ Si, i ∈ {1, . . . , k}

7 - 11

Intuition for the Dual

The graph is a network of bridges, spanning the moats.

yS = width of the moat around S

S
yS

δ(S) = set
of edges /
bridges
over the
moat
around S

maximize ∑
S∈Si

i∈{1,...,k}

yS

subject to ∑
S : e∈δ(S)

yS ≤ ce e ∈ E

yS ≥ 0 S ∈ Si, i ∈ {1, . . . , k}

ce

7 - 12

Intuition for the Dual

The graph is a network of bridges, spanning the moats.

yS = width of the moat around S

S
yS

δ(S) = set
of edges /
bridges
over the
moat
around S

maximize ∑
S∈Si

i∈{1,...,k}

yS

subject to ∑
S : e∈δ(S)

yS ≤ ce e ∈ E

yS ≥ 0 S ∈ Si, i ∈ {1, . . . , k}

ce
yS

7 - 13

Intuition for the Dual

The graph is a network of bridges, spanning the moats.

yS = width of the moat around S

S
yS

δ(S) = set
of edges /
bridges
over the
moat
around S

maximize ∑
S∈Si

i∈{1,...,k}

yS

subject to ∑
S : e∈δ(S)

yS ≤ ce e ∈ E

yS ≥ 0 S ∈ Si, i ∈ {1, . . . , k}

ce
yS

yS′

7 - 14

Intuition for the Dual

The graph is a network of bridges, spanning the moats.

yS = width of the moat around S

S
yS

δ(S) = set
of edges /
bridges
over the
moat
around S

maximize ∑
S∈Si

i∈{1,...,k}

yS

subject to ∑
S : e∈δ(S)

yS ≤ ce e ∈ E

yS ≥ 0 S ∈ Si, i ∈ {1, . . . , k}

ce
yS

yS′

yS′′

7 - 15

Intuition for the Dual

The graph is a network of bridges, spanning the moats.

yS = width of the moat around S

S
yS

δ(S) = set
of edges /
bridges
over the
moat
around S

maximize ∑
S∈Si

i∈{1,...,k}

yS

subject to ∑
S : e∈δ(S)

yS ≤ ce e ∈ E

yS ≥ 0 S ∈ Si, i ∈ {1, . . . , k}

ce
yS

yS′

yS′′

7 - 16

Intuition for the Dual

The graph is a network of bridges, spanning the moats.

yS = width of the moat around S

S
yS

δ(S) = set
of edges /
bridges
over the
moat
around S

maximize ∑
S∈Si

i∈{1,...,k}

yS

subject to ∑
S : e∈δ(S)

yS ≤ ce e ∈ E

yS ≥ 0 S ∈ Si, i ∈ {1, . . . , k}

ce
yS

yS′

yS′′

7 - 17

Intuition for the Dual

The graph is a network of bridges, spanning the moats.

yS = width of the moat around S

S
yS

δ(S) = set
of edges /
bridges
over the
moat
around S

maximize ∑
S∈Si

i∈{1,...,k}

yS

subject to ∑
S : e∈δ(S)

yS ≤ ce e ∈ E

yS ≥ 0 S ∈ Si, i ∈ {1, . . . , k}

ce
yS

yS′

yS′′

7 - 18

Intuition for the Dual

The graph is a network of bridges, spanning the moats.

yS = width of the moat around S

S
yS

δ(S) = set
of edges /
bridges
over the
moat
around S

maximize ∑
S∈Si

i∈{1,...,k}

yS

subject to ∑
S : e∈δ(S)

yS ≤ ce e ∈ E

yS ≥ 0 S ∈ Si, i ∈ {1, . . . , k}

ce
yS

yS′

yS′′

8

Lecture 12:
SteinerForest via Primal–Dual

Part III:
A First Primal–Dual Approach

Approximation Algorithms

9 - 1

Complementary Slackness (Reminder)

minimize c⊺x
subject to Ax ≥ b

x ≥ 0

maximize b⊺y
subject to A⊺y ≤ c

y ≥ 0

9 - 2

Complementary Slackness (Reminder)

minimize c⊺x
subject to Ax ≥ b

x ≥ 0

maximize b⊺y
subject to A⊺y ≤ c

y ≥ 0

Let x = (x1, . . . , xn) and y = (y1, . . . , ym) be valid solutions
for the primal and dual program (resp.). Then x and y are
optimal if and only if the following conditions are met:

Primal CS:
For each j = 1, . . . , n: either xj = 0 or ∑m

i=1 aijyi = cj

Dual CS:
For each i = 1, . . . , m: either yi = 0 or ∑n

j=1 aijxj = bi

Theorem.

10 - 1

A First Primal–Dual Approach

Complementary slackness: xe > 0 ⇒

10 - 2

A First Primal–Dual Approach

Complementary slackness: xe > 0 ⇒ ∑S : e∈δ(S) yS = ce.

10 - 3

A First Primal–Dual Approach

Complementary slackness: xe > 0 ⇒

⇒ pick “critical” edges (and only those)

∑S : e∈δ(S) yS = ce.

10 - 4

A First Primal–Dual Approach

Complementary slackness: xe > 0 ⇒

⇒ pick “critical” edges (and only those)

Idea: iteratively build a feasible integral primal solution.

∑S : e∈δ(S) yS = ce.

10 - 5

A First Primal–Dual Approach

Complementary slackness: xe > 0 ⇒

⇒ pick “critical” edges (and only those)

Idea: iteratively build a feasible integral primal solution.

How to find a violated primal constraint? (∑e∈δ(S) xe < 1)

∑S : e∈δ(S) yS = ce.

10 - 6

A First Primal–Dual Approach

Complementary slackness: xe > 0 ⇒

⇒ pick “critical” edges (and only those)

Idea: iteratively build a feasible integral primal solution.

How to find a violated primal constraint? (∑e∈δ(S) xe < 1)

■ Consider related connected component C!

∑S : e∈δ(S) yS = ce.

10 - 7

A First Primal–Dual Approach

Complementary slackness: xe > 0 ⇒

⇒ pick “critical” edges (and only those)

Idea: iteratively build a feasible integral primal solution.

How to find a violated primal constraint? (∑e∈δ(S) xe < 1)

■ Consider related connected component C!

How do we iteratively improve the dual solution?

∑S : e∈δ(S) yS = ce.

10 - 8

A First Primal–Dual Approach

Complementary slackness: xe > 0 ⇒

⇒ pick “critical” edges (and only those)

Idea: iteratively build a feasible integral primal solution.

How to find a violated primal constraint? (∑e∈δ(S) xe < 1)

■ Consider related connected component C!

How do we iteratively improve the dual solution?

■ Increase yC (until some edge in δ(C) becomes critical)!

∑S : e∈δ(S) yS = ce.

11 - 1

A First Primal–Dual Approach

PrimalDualSteinerForestNaive(graph G, costs c, pairs R)
y← 0, F ← ∅
while some (si, ti) ∈ R not connected in (V, F) do

C ← comp. in (V, F) with |C ∩ {si, ti}| = 1 for some i
Increase yC

until ∑
S : e′∈δ(S)

yS = ce′ for some e′ ∈ δ(C).

F ← F ∪ {e′}
return F

11 - 2

A First Primal–Dual Approach

PrimalDualSteinerForestNaive(graph G, costs c, pairs R)
y← 0, F ← ∅
while some (si, ti) ∈ R not connected in (V, F) do

C ← comp. in (V, F) with |C ∩ {si, ti}| = 1 for some i
Increase yC

until ∑
S : e′∈δ(S)

yS = ce′ for some e′ ∈ δ(C).

F ← F ∪ {e′}
return F

11 - 3

A First Primal–Dual Approach

PrimalDualSteinerForestNaive(graph G, costs c, pairs R)
y← 0, F ← ∅
while some (si, ti) ∈ R not connected in (V, F) do

C ← comp. in (V, F) with |C ∩ {si, ti}| = 1 for some i
Increase yC

until ∑
S : e′∈δ(S)

yS = ce′ for some e′ ∈ δ(C).

F ← F ∪ {e′}
return F

11 - 4

A First Primal–Dual Approach

PrimalDualSteinerForestNaive(graph G, costs c, pairs R)
y← 0, F ← ∅
while some (si, ti) ∈ R not connected in (V, F) do

C ← comp. in (V, F) with |C ∩ {si, ti}| = 1 for some i
Increase yC

until ∑
S : e′∈δ(S)

yS = ce′ for some e′ ∈ δ(C).

F ← F ∪ {e′}
return F

11 - 5

A First Primal–Dual Approach

PrimalDualSteinerForestNaive(graph G, costs c, pairs R)
y← 0, F ← ∅
while some (si, ti) ∈ R not connected in (V, F) do

C ← comp. in (V, F) with |C ∩ {si, ti}| = 1 for some i
Increase yC

until ∑
S : e′∈δ(S)

yS = ce′ for some e′ ∈ δ(C).

F ← F ∪ {e′}
return F

11 - 6

A First Primal–Dual Approach

PrimalDualSteinerForestNaive(graph G, costs c, pairs R)
y← 0, F ← ∅
while some (si, ti) ∈ R not connected in (V, F) do

C ← comp. in (V, F) with |C ∩ {si, ti}| = 1 for some i
Increase yC

until ∑
S : e′∈δ(S)

yS = ce′ for some e′ ∈ δ(C).

F ← F ∪ {e′}
return F

11 - 7

A First Primal–Dual Approach

PrimalDualSteinerForestNaive(graph G, costs c, pairs R)
y← 0, F ← ∅
while some (si, ti) ∈ R not connected in (V, F) do

C ← comp. in (V, F) with |C ∩ {si, ti}| = 1 for some i
Increase yC

until ∑
S : e′∈δ(S)

yS = ce′ for some e′ ∈ δ(C).

F ← F ∪ {e′}
return F

11 - 8

A First Primal–Dual Approach

PrimalDualSteinerForestNaive(graph G, costs c, pairs R)
y← 0, F ← ∅
while some (si, ti) ∈ R not connected in (V, F) do

C ← comp. in (V, F) with |C ∩ {si, ti}| = 1 for some i
Increase yC

until ∑
S : e′∈δ(S)

yS = ce′ for some e′ ∈ δ(C).

F ← F ∪ {e′}
return F

Running time??

11 - 9

A First Primal–Dual Approach

PrimalDualSteinerForestNaive(graph G, costs c, pairs R)
y← 0, F ← ∅
while some (si, ti) ∈ R not connected in (V, F) do

C ← comp. in (V, F) with |C ∩ {si, ti}| = 1 for some i
Increase yC

until ∑
S : e′∈δ(S)

yS = ce′ for some e′ ∈ δ(C).

F ← F ∪ {e′}
return F

Running time??
Trick: Handle all yS with yS = 0 implicitly.

12 - 1

Analysis
The cost of the solution F can be written as

12 - 2

Analysis
The cost of the solution F can be written as

∑
e∈F

ce
CS
= ∑

e∈F
∑

S : e∈δ(S)
yS = ∑

S
|δ(S) ∩ F| · yS.

12 - 3

Analysis
The cost of the solution F can be written as

∑
e∈F

ce
CS
= ∑

e∈F
∑

S : e∈δ(S)
yS = ∑

S
|δ(S) ∩ F| · yS.

12 - 4

Analysis
The cost of the solution F can be written as

∑
e∈F

ce
CS
= ∑

e∈F
∑

S : e∈δ(S)
yS = ∑

S
|δ(S) ∩ F| · yS.

12 - 5

Analysis
The cost of the solution F can be written as

∑
e∈F

ce
CS
= ∑

e∈F
∑

S : e∈δ(S)
yS = ∑

S
|δ(S) ∩ F| · yS.

12 - 6

Analysis
The cost of the solution F can be written as

∑
e∈F

ce
CS
= ∑

e∈F
∑

S : e∈δ(S)
yS = ∑

S
|δ(S) ∩ F| · yS.

Compare to the value of the dual objective function ∑S yS.

12 - 7

Analysis
The cost of the solution F can be written as

∑
e∈F

ce
CS
= ∑

e∈F
∑

S : e∈δ(S)
yS = ∑

S
|δ(S) ∩ F| · yS.

Compare to the value of the dual objective function ∑S yS.

There are examples with |δ(S) ∩ F| = k for each yS > 0 :-(
Homework!

12 - 8

Analysis
The cost of the solution F can be written as

∑
e∈F

ce
CS
= ∑

e∈F
∑

S : e∈δ(S)
yS = ∑

S
|δ(S) ∩ F| · yS.

Compare to the value of the dual objective function ∑S yS.

There are examples with |δ(S) ∩ F| = k for each yS > 0 :-(

But: Average degree of “active components” is less than 2.

Homework!

12 - 9

Analysis
The cost of the solution F can be written as

∑
e∈F

ce
CS
= ∑

e∈F
∑

S : e∈δ(S)
yS = ∑

S
|δ(S) ∩ F| · yS.

Compare to the value of the dual objective function ∑S yS.

There are examples with |δ(S) ∩ F| = k for each yS > 0 :-(

But: Average degree of “active components” is less than 2.

⇒ Increase yC for all active components C simultaneously!

Homework!

13

Lecture 12:
SteinerForest via Primal–Dual

Part IV:
Primal–Dual with Synchronized Increases

Approximation Algorithms

14 - 1

Primal–Dual with Synchronized Increases
PrimalDualSteinerForest(graph G, edge costs c, pairs R)

y← 0, F ← ∅, ℓ← 0
while some (si, ti) ∈ R not connected in (V, F) do

ℓ← ℓ+ 1
C ← {comp. C in (V, F) with |C ∩ {si, ti}| = 1 for some i}
Increase yC for all C ∈ C simultaneously

until ∑
S : eℓ∈δ(S)

yS = ceℓ for some eℓ ∈ δ(C), C ∈ C.

F ← F ∪ {eℓ}
F′ ← F
// Pruning
for j← ℓ downto 1 do

if F′ \ {ej} is feasible solution then
F′ ← F′ \ {ej}

return F′

14 - 2

Primal–Dual with Synchronized Increases
PrimalDualSteinerForest(graph G, edge costs c, pairs R)

y← 0, F ← ∅, ℓ← 0
while some (si, ti) ∈ R not connected in (V, F) do

ℓ← ℓ+ 1
C ← {comp. C in (V, F) with |C ∩ {si, ti}| = 1 for some i}
Increase yC for all C ∈ C simultaneously

until ∑
S : eℓ∈δ(S)

yS = ceℓ for some eℓ ∈ δ(C), C ∈ C.

F ← F ∪ {eℓ}
F′ ← F
// Pruning
for j← ℓ downto 1 do

if F′ \ {ej} is feasible solution then
F′ ← F′ \ {ej}

return F′

14 - 3

Primal–Dual with Synchronized Increases
PrimalDualSteinerForest(graph G, edge costs c, pairs R)

y← 0, F ← ∅, ℓ← 0
while some (si, ti) ∈ R not connected in (V, F) do

ℓ← ℓ+ 1
C ← {comp. C in (V, F) with |C ∩ {si, ti}| = 1 for some i}
Increase yC for all C ∈ C simultaneously

until ∑
S : eℓ∈δ(S)

yS = ceℓ for some eℓ ∈ δ(C), C ∈ C.

F ← F ∪ {eℓ}
F′ ← F
// Pruning
for j← ℓ downto 1 do

if F′ \ {ej} is feasible solution then
F′ ← F′ \ {ej}

return F′

14 - 4

Primal–Dual with Synchronized Increases
PrimalDualSteinerForest(graph G, edge costs c, pairs R)

y← 0, F ← ∅, ℓ← 0
while some (si, ti) ∈ R not connected in (V, F) do

ℓ← ℓ+ 1
C ← {comp. C in (V, F) with |C ∩ {si, ti}| = 1 for some i}
Increase yC for all C ∈ C simultaneously

until ∑
S : eℓ∈δ(S)

yS = ceℓ for some eℓ ∈ δ(C), C ∈ C.

F ← F ∪ {eℓ}
F′ ← F
// Pruning
for j← ℓ downto 1 do

if F′ \ {ej} is feasible solution then
F′ ← F′ \ {ej}

return F′

14 - 5

Primal–Dual with Synchronized Increases
PrimalDualSteinerForest(graph G, edge costs c, pairs R)

y← 0, F ← ∅, ℓ← 0
while some (si, ti) ∈ R not connected in (V, F) do

ℓ← ℓ+ 1
C ← {comp. C in (V, F) with |C ∩ {si, ti}| = 1 for some i}
Increase yC for all C ∈ C simultaneously

until ∑
S : eℓ∈δ(S)

yS = ceℓ for some eℓ ∈ δ(C), C ∈ C.

F ← F ∪ {eℓ}
F′ ← F
// Pruning
for j← ℓ downto 1 do

if F′ \ {ej} is feasible solution then
F′ ← F′ \ {ej}

return F′

14 - 6

Primal–Dual with Synchronized Increases
PrimalDualSteinerForest(graph G, edge costs c, pairs R)

y← 0, F ← ∅, ℓ← 0
while some (si, ti) ∈ R not connected in (V, F) do

ℓ← ℓ+ 1
C ← {comp. C in (V, F) with |C ∩ {si, ti}| = 1 for some i}
Increase yC for all C ∈ C simultaneously

until ∑
S : eℓ∈δ(S)

yS = ceℓ for some eℓ ∈ δ(C), C ∈ C.

F ← F ∪ {eℓ}
F′ ← F
// Pruning
for j← ℓ downto 1 do

if F′ \ {ej} is feasible solution then
F′ ← F′ \ {ej}

return F′

14 - 7

Primal–Dual with Synchronized Increases
PrimalDualSteinerForest(graph G, edge costs c, pairs R)

y← 0, F ← ∅, ℓ← 0
while some (si, ti) ∈ R not connected in (V, F) do

ℓ← ℓ+ 1
C ← {comp. C in (V, F) with |C ∩ {si, ti}| = 1 for some i}
Increase yC for all C ∈ C simultaneously

until ∑
S : eℓ∈δ(S)

yS = ceℓ for some eℓ ∈ δ(C), C ∈ C.

F ← F ∪ {eℓ}
F′ ← F
// Pruning
for j← ℓ downto 1 do

if F′ \ {ej} is feasible solution then
F′ ← F′ \ {ej}

return F′

14 - 8

Primal–Dual with Synchronized Increases
PrimalDualSteinerForest(graph G, edge costs c, pairs R)

y← 0, F ← ∅, ℓ← 0
while some (si, ti) ∈ R not connected in (V, F) do

ℓ← ℓ+ 1
C ← {comp. C in (V, F) with |C ∩ {si, ti}| = 1 for some i}
Increase yC for all C ∈ C simultaneously

until ∑
S : eℓ∈δ(S)

yS = ceℓ for some eℓ ∈ δ(C), C ∈ C.

F ← F ∪ {eℓ}
F′ ← F
// Pruning
for j← ℓ downto 1 do

if F′ \ {ej} is feasible solution then
F′ ← F′ \ {ej}

return F′

14 - 9

Primal–Dual with Synchronized Increases
PrimalDualSteinerForest(graph G, edge costs c, pairs R)

y← 0, F ← ∅, ℓ← 0
while some (si, ti) ∈ R not connected in (V, F) do

ℓ← ℓ+ 1
C ← {comp. C in (V, F) with |C ∩ {si, ti}| = 1 for some i}
Increase yC for all C ∈ C simultaneously

until ∑
S : eℓ∈δ(S)

yS = ceℓ for some eℓ ∈ δ(C), C ∈ C.

F ← F ∪ {eℓ}
F′ ← F
// Pruning
for j← ℓ downto 1 do

if F′ \ {ej} is feasible solution then
F′ ← F′ \ {ej}

return F′

15 - 1

Illustration

s1

t1 s2 t2

s3

t3

G = K6 with Euclidean edge costs

15 - 2

Illustration

s1

t1 s2 t2

s3

t3

G = K6 with Euclidean edge costs

15 - 3

Illustration

s1

t1 s2 t2

s3

t3

G = K6 with Euclidean edge costs

15 - 4

Illustration

s1

t1 s2 t2

s3

t3

G = K6 with Euclidean edge costs

15 - 5

Illustration

s1

t1 s2 t2

s3

t3

G = K6 with Euclidean edge costs

15 - 6

Illustration

s1

t1 s2 t2

s3

t3

G = K6 with Euclidean edge costs

15 - 7

Illustration

s1

t1 s2 t2

s3

t3

G = K6 with Euclidean edge costs

15 - 8

Illustration

s1

t1 s2 t2

s3

t3

G = K6 with Euclidean edge costs

15 - 9

Illustration

s1

t1 s2 t2

s3

t3

G = K6 with Euclidean edge costs

15 - 10

Illustration

s1

t1 s2 t2

s3

t3

G = K6 with Euclidean edge costs

16

Lecture 12:
SteinerForest via Primal–Dual

Part V:
Structure Lemma

Approximation Algorithms

17 - 1

Structure Lemma
Lemma. For the set C in any iteration of the algorithm:

∑
C∈C
|δ(C) ∩ F′| ≤ 2|C| .

17 - 2

Structure Lemma
Lemma. For the set C in any iteration of the algorithm:

∑
C∈C
|δ(C) ∩ F′| ≤ 2|C| .

17 - 3

Structure Lemma
Lemma. For the set C in any iteration of the algorithm:

∑
C∈C
|δ(C) ∩ F′| ≤ 2|C| .

17 - 4

Structure Lemma

Proof. First the intuition. . .

Lemma. For the set C in any iteration of the algorithm:

∑
C∈C
|δ(C) ∩ F′| ≤ 2|C| .

17 - 5

Structure Lemma

Proof. First the intuition. . .

Lemma. For the set C in any iteration of the algorithm:

∑
C∈C
|δ(C) ∩ F′| ≤ 2|C| .

17 - 6

Structure Lemma

Proof. First the intuition. . .

Lemma. For the set C in any iteration of the algorithm:

∑
C∈C
|δ(C) ∩ F′| ≤ 2|C| .

17 - 7

Structure Lemma

Proof. First the intuition. . .

F′ ∩ C

Lemma. For the set C in any iteration of the algorithm:

∑
C∈C
|δ(C) ∩ F′| ≤ 2|C| .

17 - 8

Structure Lemma

Proof. First the intuition. . .

F′ ∩ C

Lemma. For the set C in any iteration of the algorithm:

∑
C∈C
|δ(C) ∩ F′| ≤ 2|C| .

17 - 9

Structure Lemma

Proof. First the intuition. . .

F′ ∩ C
F− F′

Lemma. For the set C in any iteration of the algorithm:

∑
C∈C
|δ(C) ∩ F′| ≤ 2|C| .

17 - 10

Structure Lemma

Proof. First the intuition. . .

F′ ∩ C
F− F′

Lemma. For the set C in any iteration of the algorithm:

∑
C∈C
|δ(C) ∩ F′| ≤ 2|C| .

17 - 11

Structure Lemma

Proof. First the intuition. . .

δ(C) ∩ F′

F′ ∩ C
F− F′

Lemma. For the set C in any iteration of the algorithm:

∑
C∈C
|δ(C) ∩ F′| ≤ 2|C| .

17 - 12

Structure Lemma

Proof. First the intuition. . .

δ(C) ∩ F′

F′ ∩ C
F− F′

Lemma. For the set C in any iteration of the algorithm:

∑
C∈C
|δ(C) ∩ F′| ≤ 2|C| .

17 - 13

Structure Lemma

Proof. First the intuition. . .

δ(C) ∩ F′

F′ ∩ C
F− F′

Every connected component C of F is a forest in F′.
⇝ average degree ≤ 2

Lemma. For the set C in any iteration of the algorithm:

∑
C∈C
|δ(C) ∩ F′| ≤ 2|C| .

17 - 14

Structure Lemma

Proof. First the intuition. . .

δ(C) ∩ F′

F′ ∩ C
F− F′

Every connected component C of F is a forest in F′.
⇝ average degree ≤ 2

Lemma. For the set C in any iteration of the algorithm:

∑
C∈C
|δ(C) ∩ F′| ≤ 2|C| .

17 - 15

Structure Lemma

Proof. First the intuition. . .

δ(C) ∩ F′

F′ ∩ C
F− F′

Every connected component C of F is a forest in F′.
⇝ average degree ≤ 2

Difficulty: Some C are not in C.

Lemma. For the set C in any iteration of the algorithm:

∑
C∈C
|δ(C) ∩ F′| ≤ 2|C| .

18 - 1

Proof of the Structure Lemma

Proof.

Lemma. For the set C in any iteration of the algorithm:

∑
C∈C
|δ(C) ∩ F′| ≤ 2|C| .

18 - 2

Proof of the Structure Lemma

Proof.
For i = 1, . . . , ℓ, consider i-th iteration (when ei was added to F).

Lemma. For the set C in any iteration of the algorithm:

∑
C∈C
|δ(C) ∩ F′| ≤ 2|C| .

18 - 3

Proof of the Structure Lemma

Proof.
For i = 1, . . . , ℓ, consider i-th iteration (when ei was added to F).

Let Fi = {e1, . . . , ei}, Gi = (V, Fi), and G∗i = (V, Fi ∪ F′).

Lemma. For the set C in any iteration of the algorithm:

∑
C∈C
|δ(C) ∩ F′| ≤ 2|C| .

18 - 4

Proof of the Structure Lemma

Proof.
For i = 1, . . . , ℓ, consider i-th iteration (when ei was added to F).

Let Fi = {e1, . . . , ei}, Gi = (V, Fi), and G∗i = (V, Fi ∪ F′).

Lemma. For the set C in any iteration of the algorithm:

∑
C∈C
|δ(C) ∩ F′| ≤ 2|C| .

18 - 5

Proof of the Structure Lemma

Proof.
For i = 1, . . . , ℓ, consider i-th iteration (when ei was added to F).

Let Fi = {e1, . . . , ei}, Gi = (V, Fi), and G∗i = (V, Fi ∪ F′).

Gi

Lemma. For the set C in any iteration of the algorithm:

∑
C∈C
|δ(C) ∩ F′| ≤ 2|C| .

18 - 6

Proof of the Structure Lemma

Proof.
For i = 1, . . . , ℓ, consider i-th iteration (when ei was added to F).

Let Fi = {e1, . . . , ei}, Gi = (V, Fi), and G∗i = (V, Fi ∪ F′).

G∗i

Lemma. For the set C in any iteration of the algorithm:

∑
C∈C
|δ(C) ∩ F′| ≤ 2|C| .

18 - 7

Proof of the Structure Lemma

Proof.
For i = 1, . . . , ℓ, consider i-th iteration (when ei was added to F).

Let Fi = {e1, . . . , ei}, Gi = (V, Fi), and G∗i = (V, Fi ∪ F′).

Contract every component C of Gi in G∗i to a single vertex⇝ G′i .

G∗i

Lemma. For the set C in any iteration of the algorithm:

∑
C∈C
|δ(C) ∩ F′| ≤ 2|C| .

18 - 8

Proof of the Structure Lemma

Proof.
For i = 1, . . . , ℓ, consider i-th iteration (when ei was added to F).

Let Fi = {e1, . . . , ei}, Gi = (V, Fi), and G∗i = (V, Fi ∪ F′).

Contract every component C of Gi in G∗i to a single vertex⇝ G′i .

G∗i

G′i

Lemma. For the set C in any iteration of the algorithm:

∑
C∈C
|δ(C) ∩ F′| ≤ 2|C| .

18 - 9

Proof of the Structure Lemma

Proof.
For i = 1, . . . , ℓ, consider i-th iteration (when ei was added to F).

Let Fi = {e1, . . . , ei}, Gi = (V, Fi), and G∗i = (V, Fi ∪ F′).

Contract every component C of Gi in G∗i to a single vertex⇝ G′i .
(Ignore components C with δ(C) ∩ F′ = ∅.)

G∗i

G′i

Lemma. For the set C in any iteration of the algorithm:

∑
C∈C
|δ(C) ∩ F′| ≤ 2|C| .

18 - 10

Proof of the Structure Lemma

Proof.
For i = 1, . . . , ℓ, consider i-th iteration (when ei was added to F).

Let Fi = {e1, . . . , ei}, Gi = (V, Fi), and G∗i = (V, Fi ∪ F′).

Contract every component C of Gi in G∗i to a single vertex⇝ G′i .
(Ignore components C with δ(C) ∩ F′ = ∅.)

G∗i

G′i

Lemma. For the set C in any iteration of the algorithm:

∑
C∈C
|δ(C) ∩ F′| ≤ 2|C| .

18 - 11

Proof of the Structure Lemma

Proof.
For i = 1, . . . , ℓ, consider i-th iteration (when ei was added to F).

Let Fi = {e1, . . . , ei}, Gi = (V, Fi), and G∗i = (V, Fi ∪ F′).

Contract every component C of Gi in G∗i to a single vertex⇝ G′i .
(Ignore components C with δ(C) ∩ F′ = ∅.)

G∗i

G′i

Claim. G′i is a forest.

Lemma. For the set C in any iteration of the algorithm:

∑
C∈C
|δ(C) ∩ F′| ≤ 2|C| .

18 - 12

Proof of the Structure Lemma

Proof.
For i = 1, . . . , ℓ, consider i-th iteration (when ei was added to F).

Let Fi = {e1, . . . , ei}, Gi = (V, Fi), and G∗i = (V, Fi ∪ F′).

Contract every component C of Gi in G∗i to a single vertex⇝ G′i .

Note: ∑C comp. |δ(C) ∩ F′| = ∑v∈V(G′i)
degG′ (v)

(Ignore components C with δ(C) ∩ F′ = ∅.)

G∗i

G′i

Claim. G′i is a forest.

Lemma. For the set C in any iteration of the algorithm:

∑
C∈C
|δ(C) ∩ F′| ≤ 2|C| .

18 - 13

Proof of the Structure Lemma

Proof.
For i = 1, . . . , ℓ, consider i-th iteration (when ei was added to F).

Let Fi = {e1, . . . , ei}, Gi = (V, Fi), and G∗i = (V, Fi ∪ F′).

Contract every component C of Gi in G∗i to a single vertex⇝ G′i .

Note: ∑C comp. |δ(C) ∩ F′| = ∑v∈V(G′i)
degG′ (v)

(Ignore components C with δ(C) ∩ F′ = ∅.)

G∗i

G′i

Claim. G′i is a forest.

= 2|E(G′i)|

Lemma. For the set C in any iteration of the algorithm:

∑
C∈C
|δ(C) ∩ F′| ≤ 2|C| .

18 - 14

Proof of the Structure Lemma

Proof.
For i = 1, . . . , ℓ, consider i-th iteration (when ei was added to F).

Let Fi = {e1, . . . , ei}, Gi = (V, Fi), and G∗i = (V, Fi ∪ F′).

Contract every component C of Gi in G∗i to a single vertex⇝ G′i .

Note: ∑C comp. |δ(C) ∩ F′| = ∑v∈V(G′i)
degG′ (v)

(Ignore components C with δ(C) ∩ F′ = ∅.)

G∗i

G′i

Claim. G′i is a forest.

= 2|E(G′i)| < 2|V(G′i)|

Lemma. For the set C in any iteration of the algorithm:

∑
C∈C
|δ(C) ∩ F′| ≤ 2|C| .

18 - 15

Proof of the Structure Lemma

Proof.
For i = 1, . . . , ℓ, consider i-th iteration (when ei was added to F).

Let Fi = {e1, . . . , ei}, Gi = (V, Fi), and G∗i = (V, Fi ∪ F′).

Contract every component C of Gi in G∗i to a single vertex⇝ G′i .

Note: ∑C comp. |δ(C) ∩ F′| = ∑v∈V(G′i)
degG′ (v)

(Ignore components C with δ(C) ∩ F′ = ∅.)

G∗i

G′i

Claim. G′i is a forest.

= 2|E(G′i)| < 2|V(G′i)|

Lemma. For the set C in any iteration of the algorithm:

∑
C∈C
|δ(C) ∩ F′| ≤ 2|C| .

18 - 16

Proof of the Structure Lemma

Proof.
For i = 1, . . . , ℓ, consider i-th iteration (when ei was added to F).

Let Fi = {e1, . . . , ei}, Gi = (V, Fi), and G∗i = (V, Fi ∪ F′).

Contract every component C of Gi in G∗i to a single vertex⇝ G′i .

Note: ∑C comp. |δ(C) ∩ F′| = ∑v∈V(G′i)
degG′ (v)

(Ignore components C with δ(C) ∩ F′ = ∅.)

G∗i

G′i

Claim. G′i is a forest.

= 2|E(G′i)| < 2|V(G′i)|

Lemma. For the set C in any iteration of the algorithm:

∑
C∈C
|δ(C) ∩ F′| ≤ 2|C| .

18 - 17

Proof of the Structure Lemma

Proof.
For i = 1, . . . , ℓ, consider i-th iteration (when ei was added to F).

Let Fi = {e1, . . . , ei}, Gi = (V, Fi), and G∗i = (V, Fi ∪ F′).

Contract every component C of Gi in G∗i to a single vertex⇝ G′i .

Note: ∑C comp. |δ(C) ∩ F′| = ∑v∈V(G′i)
degG′ (v)

(Ignore components C with δ(C) ∩ F′ = ∅.)

G∗i

G′i
active

Claim. G′i is a forest.

= 2|E(G′i)| < 2|V(G′i)|

Lemma. For the set C in any iteration of the algorithm:

∑
C∈C
|δ(C) ∩ F′| ≤ 2|C| .

18 - 18

Proof of the Structure Lemma

Proof.
For i = 1, . . . , ℓ, consider i-th iteration (when ei was added to F).

Let Fi = {e1, . . . , ei}, Gi = (V, Fi), and G∗i = (V, Fi ∪ F′).

Contract every component C of Gi in G∗i to a single vertex⇝ G′i .

Note: ∑C comp. |δ(C) ∩ F′| = ∑v∈V(G′i)
degG′ (v)

(Ignore components C with δ(C) ∩ F′ = ∅.)

G∗i

G′i
active

inactive

G∗i

Claim. G′i is a forest.

= 2|E(G′i)| < 2|V(G′i)|

Lemma. For the set C in any iteration of the algorithm:

∑
C∈C
|δ(C) ∩ F′| ≤ 2|C| .

18 - 19

Proof of the Structure Lemma

Proof.
For i = 1, . . . , ℓ, consider i-th iteration (when ei was added to F).

Let Fi = {e1, . . . , ei}, Gi = (V, Fi), and G∗i = (V, Fi ∪ F′).

Contract every component C of Gi in G∗i to a single vertex⇝ G′i .

Note: ∑C comp. |δ(C) ∩ F′| = ∑v∈V(G′i)
degG′ (v)

(Ignore components C with δ(C) ∩ F′ = ∅.)

G′i
active

inactive

G∗iClaim. Inactive vertices have degree ≥ 2.

Claim. G′i is a forest.

= 2|E(G′i)| < 2|V(G′i)|

Lemma. For the set C in any iteration of the algorithm:

∑
C∈C
|δ(C) ∩ F′| ≤ 2|C| .

18 - 20

Proof of the Structure Lemma

Proof.
For i = 1, . . . , ℓ, consider i-th iteration (when ei was added to F).

Let Fi = {e1, . . . , ei}, Gi = (V, Fi), and G∗i = (V, Fi ∪ F′).

Contract every component C of Gi in G∗i to a single vertex⇝ G′i .

Note: ∑C comp. |δ(C) ∩ F′| = ∑v∈V(G′i)
degG′ (v)

⇒ ∑v active degG′ (v) ≤
2 · |V(G′)| − 2 · #(inactive) = 2|C|.

(Ignore components C with δ(C) ∩ F′ = ∅.)

G′i
active

inactive

G∗iClaim. Inactive vertices have degree ≥ 2.

Claim. G′i is a forest.

= 2|E(G′i)| < 2|V(G′i)|

Lemma. For the set C in any iteration of the algorithm:

∑
C∈C
|δ(C) ∩ F′| ≤ 2|C| .

18 - 21

Proof of the Structure Lemma

Proof.
For i = 1, . . . , ℓ, consider i-th iteration (when ei was added to F).

Let Fi = {e1, . . . , ei}, Gi = (V, Fi), and G∗i = (V, Fi ∪ F′).

Contract every component C of Gi in G∗i to a single vertex⇝ G′i .

Note: ∑C comp. |δ(C) ∩ F′| = ∑v∈V(G′i)
degG′ (v)

⇒ ∑v active degG′ (v) ≤
2 · |V(G′)| − 2 · #(inactive) = 2|C|.

(Ignore components C with δ(C) ∩ F′ = ∅.)

G′i
active

inactive

G∗iClaim. Inactive vertices have degree ≥ 2.

Claim. G′i is a forest.

= 2|E(G′i)| < 2|V(G′i)|

Lemma. For the set C in any iteration of the algorithm:

∑
C∈C
|δ(C) ∩ F′| ≤ 2|C| .

18 - 22

Proof of the Structure Lemma

Proof.
For i = 1, . . . , ℓ, consider i-th iteration (when ei was added to F).

Let Fi = {e1, . . . , ei}, Gi = (V, Fi), and G∗i = (V, Fi ∪ F′).

Contract every component C of Gi in G∗i to a single vertex⇝ G′i .

Note: ∑C comp. |δ(C) ∩ F′| = ∑v∈V(G′i)
degG′ (v)

⇒ ∑v active degG′ (v) ≤
2 · |V(G′)| − 2 · #(inactive) = 2|C|.

(Ignore components C with δ(C) ∩ F′ = ∅.)

G′i
active

inactive

G∗iClaim. Inactive vertices have degree ≥ 2.

Claim. G′i is a forest.

= 2|E(G′i)| < 2|V(G′i)|

Lemma. For the set C in any iteration of the algorithm:

∑
C∈C
|δ(C) ∩ F′| ≤ 2|C| .

19

Lecture 12:
SteinerForest via Primal–Dual

Part VI:
Analysis

Approximation Algorithms

20 - 1

Analysis

Proof.

Theorem. The Primal–Dual algorithm with
synchronized increases yields a
2-approximation for SteinerForest.

20 - 2

Analysis

Proof.
As mentioned before,

∑
e∈F′

ce
CS
= ∑

e∈F′
∑

S : e∈δ(S)
yS = ∑

S
|δ(S) ∩ F′| · yS.

Theorem. The Primal–Dual algorithm with
synchronized increases yields a
2-approximation for SteinerForest.

20 - 3

Analysis

Proof.
As mentioned before,

∑
e∈F′

ce
CS
= ∑

e∈F′
∑

S : e∈δ(S)
yS = ∑

S
|δ(S) ∩ F′| · yS.

We prove by induction over the number of iterations of the
algorithm that

Theorem. The Primal–Dual algorithm with
synchronized increases yields a
2-approximation for SteinerForest.

20 - 4

Analysis

Proof.
As mentioned before,

∑
e∈F′

ce
CS
= ∑

e∈F′
∑

S : e∈δ(S)
yS = ∑

S
|δ(S) ∩ F′| · yS.

We prove by induction over the number of iterations of the
algorithm that

∑
S
|δ(S) ∩ F′| · yS ≤ 2 ∑

S
yS. (∗)

Theorem. The Primal–Dual algorithm with
synchronized increases yields a
2-approximation for SteinerForest.

20 - 5

Analysis

Proof.
As mentioned before,

∑
e∈F′

ce
CS
= ∑

e∈F′
∑

S : e∈δ(S)
yS = ∑

S
|δ(S) ∩ F′| · yS.

We prove by induction over the number of iterations of the
algorithm that

∑
S
|δ(S) ∩ F′| · yS ≤ 2 ∑

S
yS. (∗)

Theorem. The Primal–Dual algorithm with
synchronized increases yields a
2-approximation for SteinerForest.

20 - 6

Analysis

Proof.
As mentioned before,

∑
e∈F′

ce
CS
= ∑

e∈F′
∑

S : e∈δ(S)
yS = ∑

S
|δ(S) ∩ F′| · yS.

We prove by induction over the number of iterations of the
algorithm that

∑
S
|δ(S) ∩ F′| · yS ≤ 2 ∑

S
yS. (∗)

From that, the claim of the theorem follows.

Theorem. The Primal–Dual algorithm with
synchronized increases yields a
2-approximation for SteinerForest.

21 - 1

Analysis

∑
S
|δ(S) ∩ F′| · yS ≤ 2 ∑

S
yS. (∗)Proof.

Theorem. The Primal–Dual algorithm with
synchronized increases yields a
2-approximation for SteinerForest.

21 - 2

Analysis

∑
S
|δ(S) ∩ F′| · yS ≤ 2 ∑

S
yS.

Base case trivial since we start with yS = 0 for every S.

(∗)Proof.

Theorem. The Primal–Dual algorithm with
synchronized increases yields a
2-approximation for SteinerForest.

21 - 3

Analysis

∑
S
|δ(S) ∩ F′| · yS ≤ 2 ∑

S
yS.

Base case trivial since we start with yS = 0 for every S.

Assume that (∗) holds at the start of the current iteration.

(∗)Proof.

Theorem. The Primal–Dual algorithm with
synchronized increases yields a
2-approximation for SteinerForest.

21 - 4

Analysis

∑
S
|δ(S) ∩ F′| · yS ≤ 2 ∑

S
yS.

Base case trivial since we start with yS = 0 for every S.

Assume that (∗) holds at the start of the current iteration.

(∗)

In the current iteration, we increase yC for every C ∈ C by
the same amount, say ε ≥ 0.

Proof.

Theorem. The Primal–Dual algorithm with
synchronized increases yields a
2-approximation for SteinerForest.

21 - 5

Analysis

∑
S
|δ(S) ∩ F′| · yS ≤ 2 ∑

S
yS.

Base case trivial since we start with yS = 0 for every S.

Assume that (∗) holds at the start of the current iteration.

(∗)

In the current iteration, we increase yC for every C ∈ C by
the same amount, say ε ≥ 0.

This increases the left side of (∗) by ε · ∑
C∈C
|δ(C) ∩ F′|

Proof.

Theorem. The Primal–Dual algorithm with
synchronized increases yields a
2-approximation for SteinerForest.

21 - 6

Analysis

∑
S
|δ(S) ∩ F′| · yS ≤ 2 ∑

S
yS.

Base case trivial since we start with yS = 0 for every S.

Assume that (∗) holds at the start of the current iteration.

(∗)

In the current iteration, we increase yC for every C ∈ C by
the same amount, say ε ≥ 0.

This increases the left side of (∗) by ε · ∑
C∈C
|δ(C) ∩ F′|

Proof.

Theorem. The Primal–Dual algorithm with
synchronized increases yields a
2-approximation for SteinerForest.

21 - 7

Analysis

∑
S
|δ(S) ∩ F′| · yS ≤ 2 ∑

S
yS.

Base case trivial since we start with yS = 0 for every S.

Assume that (∗) holds at the start of the current iteration.

(∗)

In the current iteration, we increase yC for every C ∈ C by
the same amount, say ε ≥ 0.

This increases the left side of (∗) by ε · ∑
C∈C
|δ(C) ∩ F′|

and the right side by ε · 2|C|.

Proof.

Theorem. The Primal–Dual algorithm with
synchronized increases yields a
2-approximation for SteinerForest.

21 - 8

Analysis

∑
S
|δ(S) ∩ F′| · yS ≤ 2 ∑

S
yS.

Base case trivial since we start with yS = 0 for every S.

Assume that (∗) holds at the start of the current iteration.

(∗)

In the current iteration, we increase yC for every C ∈ C by
the same amount, say ε ≥ 0.

This increases the left side of (∗) by ε · ∑
C∈C
|δ(C) ∩ F′|

and the right side by ε · 2|C|.

Proof.

Theorem. The Primal–Dual algorithm with
synchronized increases yields a
2-approximation for SteinerForest.

21 - 9

Analysis

∑
S
|δ(S) ∩ F′| · yS ≤ 2 ∑

S
yS.

Base case trivial since we start with yS = 0 for every S.

Assume that (∗) holds at the start of the current iteration.

(∗)

In the current iteration, we increase yC for every C ∈ C by
the same amount, say ε ≥ 0.

This increases the left side of (∗) by ε · ∑
C∈C
|δ(C) ∩ F′|

and the right side by ε · 2|C|.

Proof.

Theorem. The Primal–Dual algorithm with
synchronized increases yields a
2-approximation for SteinerForest.

Structure lemma ⇒

21 - 10

Analysis

∑
S
|δ(S) ∩ F′| · yS ≤ 2 ∑

S
yS.

Base case trivial since we start with yS = 0 for every S.

Assume that (∗) holds at the start of the current iteration.

(∗)

In the current iteration, we increase yC for every C ∈ C by
the same amount, say ε ≥ 0.

This increases the left side of (∗) by ε · ∑
C∈C
|δ(C) ∩ F′|

and the right side by ε · 2|C|.

Proof.

Theorem. The Primal–Dual algorithm with
synchronized increases yields a
2-approximation for SteinerForest.

(∗) also holds after the current iteration.Structure lemma ⇒

22 - 1

Summary
Theorem. The Primal–Dual algorithm with

synchronized increases yields a
2-approximation for SteinerForest.

22 - 2

Summary

Is our analysis tight?

Theorem. The Primal–Dual algorithm with
synchronized increases yields a
2-approximation for SteinerForest.

22 - 3

Summary

t2 = s1

t1 = sn

tn = sn−1

. . .

Is our analysis tight?

t3 = s2

Theorem. The Primal–Dual algorithm with
synchronized increases yields a
2-approximation for SteinerForest.

22 - 4

Summary

t2 = s1

t1 = sn

tn = sn−1

. . .

Is our analysis tight?

t3 = s2

Theorem. The Primal–Dual algorithm with
synchronized increases yields a
2-approximation for SteinerForest.

22 - 5

Summary

t2 = s1

t1 = sn

tn = sn−1

. . .

Is our analysis tight?

t3 = s2

Theorem. The Primal–Dual algorithm with
synchronized increases yields a
2-approximation for SteinerForest.

22 - 6

Summary

1t2 = s1

t1 = sn

tn = sn−1

. . .

Is our analysis tight?

t3 = s2

Theorem. The Primal–Dual algorithm with
synchronized increases yields a
2-approximation for SteinerForest.

22 - 7

Summary

1t2 = s1

t1 = sn

tn = sn−1

. . .

Is our analysis tight?

t3 = s2

Theorem. The Primal–Dual algorithm with
synchronized increases yields a
2-approximation for SteinerForest.

22 - 8

Summary

1
2− εt2 = s1

t1 = sn

tn = sn−1

. . .

Is our analysis tight?

t3 = s2

Theorem. The Primal–Dual algorithm with
synchronized increases yields a
2-approximation for SteinerForest.

22 - 9

Summary

1
2− εt2 = s1

t1 = sn

tn = sn−1

. . .

Is our analysis tight?

ALG = (2− ε)(n− 1)t3 = s2

Theorem. The Primal–Dual algorithm with
synchronized increases yields a
2-approximation for SteinerForest.

22 - 10

Summary

1
2− εt2 = s1

t1 = sn

tn = sn−1

. . .

Is our analysis tight?

ALG = (2− ε)(n− 1)t3 = s2
OPT = n

Theorem. The Primal–Dual algorithm with
synchronized increases yields a
2-approximation for SteinerForest.

22 - 11

Summary

1
2− εt2 = s1

t1 = sn

tn = sn−1

. . .

Is our analysis tight?

ALG = (2− ε)(n− 1)t3 = s2
OPT = n

Can we do better?

Theorem. The Primal–Dual algorithm with
synchronized increases yields a
2-approximation for SteinerForest.

22 - 12

Summary

1
2− εt2 = s1

t1 = sn

tn = sn−1

. . .

Is our analysis tight?

ALG = (2− ε)(n− 1)t3 = s2
OPT = n

Can we do better?
No better approximation factor is known. :-(

Theorem. The Primal–Dual algorithm with
synchronized increases yields a
2-approximation for SteinerForest.

22 - 13

Summary

1
2− εt2 = s1

t1 = sn

tn = sn−1

. . .

Is our analysis tight?

ALG = (2− ε)(n− 1)t3 = s2
OPT = n

Can we do better?
No better approximation factor is known. :-(
The integrality gap is 2− 1/n.

Theorem. The Primal–Dual algorithm with
synchronized increases yields a
2-approximation for SteinerForest.

22 - 14

Summary

1
2− εt2 = s1

t1 = sn

tn = sn−1

. . .

Is our analysis tight?

ALG = (2− ε)(n− 1)t3 = s2
OPT = n

Can we do better?
No better approximation factor is known. :-(
The integrality gap is 2− 1/n.

Theorem. The Primal–Dual algorithm with
synchronized increases yields a
2-approximation for SteinerForest.

SteinerForest (as SteinerTree) cannot be approximated
within factor 96

95 ≈ 1.0105 (unless P=NP). [Chlebı́k, Chlebı́ková ’08]

	SteinerForest
	Approaches?

	Primal and Dual LP
	An ILP
	LP-Relaxation and Dual LP
	Intuition for the Dual

	A First Primal-Dual Approach
	Complementary Slackness (Reminder)
	Complementary Slackness (Reminder)

	A First Primal--Dual Approach
	A First Primal--Dual Approach

	A First Primal--Dual Approach
	Analysis

	Primal-Dual with Synchronized Increases
	Primal--Dual with Synchronized Increases
	Illustration

	Structure Lemma
	Proof of the Structure Lemma
	Proof of the Structure Lemma

	Analysis
	Summary

