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Lecture 11:
MaxSat via Randomized Rounding

Part I:
Maximum Satisfiability (MaxSat)

Approximation Algorithms



Maximum Satisfiability (MaxSat)
Given:

Task:

Literal:

Length of a clause = number of literals.

Problem is NP-hard since Satisfiability (Sat) is NP-hard:
Is a given formula in conjunctive normal form satisfiable?
E.g., (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x4).

Boolean variables x1, . . . , xn,
clauses C1, . . . , Cm with weight w1, . . . , wm.

Find an assignment of the variables x1, . . . , xn
such that the total weight of the satisfied clauses
is maximized.

Variable or negated variable – e.g., x1, x1.

Clause: Disjunction of literals – e.g., x1 ∨ x2 ∨ x3.
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A Simple Randomized Algorithm

Proof.
Let Yj ∈ {0, 1} be a random variable for the truth value of
clause Cj.

E[W] = E

[
m

∑
j=1

wjYj

]
=

m

∑
j=1

wjE[Yj] =
m

∑
j=1

wjPr[Cj satisfied]

lj := length(Cj) ⇒ Pr[Cj satisfied] = 1 − (1/2)lj ≥ 1/2.

Thus, E[W] ≥ 1
2 ∑m

j=1 wj ≥ OPT/2.

Theorem. Independently setting each variable to 1 (true)
with probability 1/2 provides an expected
1/2-approximation for MaxSat.

Let W be a random variable for the total weight of the
satisfied clauses.
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Derandomization by Conditional Expectation

Proof.

We set x1 deterministically, but x2, . . . , xn randomly.

Namely: set x1 = 1 ⇔ E[W | x1 = 1] ≥ E[W | x1 = 0].

E[W] =

If x1 was set to b1 ∈ {0, 1},
then E[W | x1 = b1] ≥ E[W] ≥ OPT/2.

(
E[W | x1 = 0] + E[W | x1 = 1]

)/
2. [because of the original

random choice of x1]

Theorem. The previous algorithm can be derandomized,
i.e., there is a deterministic 1/2-approximation
algorithm for MaxSat.



Derandomization by Conditional Expectation

Assume (by induction) that we have set x1, . . . , xi to
b1, . . . , bi such that

E[W | x1 = b1, . . . , xi = bi] ≥ OPT/2

Then (similar to the base case):(
E[W | x1 = b1, . . . , xi = bi, xi+1 = 0]

+E[W | x1 = b1, . . . , xi = bi, xi+1 = 1]
)/

2

= E[W | x1 = b1, . . . , xi = bi] ≥ OPT/2

So we set xi+1 = 1 ⇔
E[W | x1 = b1, . . . , xi = bi, xi+1 = 1]

≥ E[W | x1 = b1, . . . , xi = bi, xi+1 = 0]



Derandomization by Conditional Expectation

Thus, the algorithm can be derandomized if the
conditional expectation can be computed efficiently!

Consider a partial assignment x1 = b1, . . . , xi = bi and a
clause Cj.

If Cj is already satisfied, then it contributes exactly wj to
E[W | x1 = b1, . . . , xi = bi].

If Cj is not yet satisfied and contains k unassigned
variables, then it contributes exactly wj(1 − (1/2)k) to
E[W | x1 = b1, . . . , xi = bi].

The conditional expectation is simply the sum of the
contributions from each clause.



Summary
Using Conditional Expectation is a standard procedure with
which many randomized algorithms can be derandomized.

Requirement: respective conditional probabilities can be
appropriately estimated for each random decision.

The algorithm simply chooses the best option at each step.

Quality of the obtained solution is then at least as high as
the expected value.

The algorithm iteratively sets the variables and greedily
decides for the locally best assignment.

Global optimization?
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An ILP

maximize
m

∑
j=1

wjzj

subject to ∑
i∈Pj

yi + ∑
i∈Nj

(1 − yi) ≥ zj for j = 1, . . . , m

yi ∈ {0, 1}, for i = 1, . . . , n
zj ∈ {0, 1}, for j = 1, . . . , m

where Cj =
∨

i∈Pj

xi ∨
∨

i∈Nj

x̄i for j = 1, . . . , m.



... and its Relaxation

where Cj =
∨

i∈Pj

xi ∨
∨

i∈Nj

x̄i for j = 1, . . . , m.

maximize
m

∑
j=1

wjzj

subject to ∑
i∈Pj

yi + ∑
i∈Nj

(1 − yi) ≥ zj for j = 1, . . . , m

0 ≤ yi ≤ 1, for i = 1, . . . , n
0 ≤ zj ≤ 1, for j = 1, . . . , m



Randomized Rounding

︸ ︷︷ ︸
≈ 0.63

Theorem. Let (y∗, z∗) be an optimal solution to the
LP-relaxation. Independently setting each
variable xi to 1 with probability y∗i provides a
(1 − 1/e)-approximation for MaxSat.
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Mathematical Toolkit

Let f be a function that is concave on [0, 1]
(i.e. f ′′(x) ≤ 0 on [0, 1]) with f (0) = a and f (1) = a + b

a

a + b

0 1

f
⇒ f (x) ≥ bx + a for x ∈ [0, 1].

Arithmetic–Geometric Mean Inequality (AGMI):

For all non-negative numbers a1, . . . , ak:(
k

∏
i=1

ai

)1/k

≤ 1
k

(
k

∑
i=1

ai

)



Randomized Rounding (Proof)
Consider a fixed clause Cj of length lj. Then we have:

Pr[Cj not sat.] = ∏
i∈Pj

(1 − y∗i ) ∏
i∈Nj

y∗i

≤

 1
lj

∑
i∈Pj

(1 − y∗i ) + ∑
i∈Nj

y∗i

lj

=

1 − 1
lj

∑
i∈Pj

y∗i + ∑
i∈Nj

(1 − y∗i )

lj

≤
(

1 −
z∗j
lj

)lj

︸ ︷︷ ︸
≥ z∗j

AGMI

by LP constraints

(
k

∏
i=1

ai

)1/k

≤ 1
k

(
k

∑
i=1

ai

)



Randomized Rounding (Proof)

The function f (z∗j ) = 1 −
(

1 −
z∗j
lj

)lj

is concave on [0, 1].

Thus

Pr[Cj satisfied] ≥ f (z∗j ) ≥ f (1) · z∗j + f (0)

≥

1 −
(

1 − 1
lj

)lj
 z∗j

≥
(

1 − 1
e

)
z∗j

1 + x ≤ ex

x = − 1
lj
⇒ 1 − 1

lj
≤ e−1/lj



Randomized Rounding (Proof)
Therefore

E[W] =
m

∑
j=1

Pr[Cj satisfied] · wj

≥
(

1 − 1
e

) m

∑
j=1

wjz∗j

=

(
1 − 1

e

)
OPTLP

≥
(

1 − 1
e

)
OPT

LP objective function

Theorem. The previous algorithm can be derandomized
by the method of conditional expectation.
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Take the better of the two solutions!
Theorem. The better solution among the randomized

algorithm and the randomized LP-rounding
algorithm provides a 3/4 -approximation for
MaxSat.

We use another probabilistic argument.
With probability 1/2, choose the solution of the first
algorithm; otherwise the solution of the second algorithm.

The better solution is at least as good as the expectation of
the above randomized algorithm.

Proof.



Take the better of the two solutions!

︸ ︷︷ ︸

The probability that clause Cj is satisfied is at least:

1
2

1 −
(

1 − 1
lj

)lj
 z∗j +

(
1 − 2−lj

) .

For lj ∈ {1, 2}, a simple calculation yields exactly 3
4 z∗j .

For lj ≥ 3, 1 − (1 − 1/lj)
lj ≥ (1 − 1/e) and 1 − 2−lj ≥

︸ ︷︷ ︸
rand. alg.LP-rounding

(The rest follows similarly as in the proofs of the previous two theorems
by linearity of expectation.)

Thus, we have at least:
1
2

[(
1 − 1

e

)
+

7
8

]
z∗j ≈ 0.753z∗j ≥ 3

4
z∗j

7
8 .

z∗j ≥ 3
4

z∗j .

we claim!
︸ ︷︷ ︸



Visualization and Derandomization
– Randomized alg. is better for large values of lj.
– Randomized LP-rounding is better for small values of lj
⇒ higher probability of satisfying clause Cj.

The mean of the two
solutions is at least 3/4
for integer lj.

The maximum is at
least as large as the mean.

This algorithm, too, can
be derandomized by
conditional expectation.

1 −
(

1 − 1
lj

)lj

1 −
(

1
2

)lj

2
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Pr[Cj sat.]/z∗j

mean

lj
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