Approximation Algorithms

Lecture 9:
An Approximation Scheme for Euclidean TSP

Part I:
The Traveling Salesman Problem

Traveling Salesman Problem (TSP)

Question: What's the fastest way to deliver all parcels to their destination?

Given: \quad A set of n houses (points) in \mathbb{R}^{2}.
Task: Find a tour (Hamiltonian cycle) of min. length.

Traveling Salesman Problem (TSP)

Question: What's the fastest way to deliver all parcels to their destination?

Given: A set of n houses (points) in \mathbb{R}^{2}.
Task: Find a tour (Hamiltonian cycle) of min. length.
Distance between two points?

For every polynomial $p(n)$, TSP cannot be approximated within factor $2^{p(n)}$ (unless $\mathrm{P}=\mathrm{NP}$).

There is a $3 / 2$-approximation algorithm for Metric TSP [Christofides'76]

Metric TSP cannot be approximated within factor $123 / 122$ (unless $\mathrm{P}=\mathrm{NP}$).

Traveling Salesman Problem (TSP)

Question: What's the fastest way to deliver all parcels to their destination?
Given: A set of n houses (points) in \mathbb{R}^{2}.
Task: Find a tour (Hamiltonian cycle) of min. length.
Let's assume that the salesman flies \Rightarrow Euclidean distances.

Simplifying Assumptions

- Houses inside ($L \times L$)-square
- $L:=4 n^{2}=2^{k}$;
$k=2+2 \log _{2} n$
Goal:
$(1+\varepsilon)$ -
approximation!
- integer coordinates
("justification": homework)

Approximation Algorithms

Lecture 9:
A PTAS for Euclidean TSP

Part II:
Dissection

Basic Dissection

Portals

Let m be a power of 2 in the interval $[k / \varepsilon, 2 k / \varepsilon]$.

Recall that $k=2+2 \log _{2} n$.
$\Rightarrow m \in O((\log n) / \varepsilon)$

- Portals on level-i line are at a distance of $L /\left(2^{i} m\right)$.

Every level- i square has size $L / 2^{i} \times L / 2^{i}$.

A level- i square has $\leq 4 m$ portals on its boundary.

Approximation Algorithms

Lecture 9:
A PTAS for Euclidean TSP

Part III:
Well-Behaved Tours

Well-Behaved Tours

Crossing
 No crossing

A tour is well-behaved if
\square it involves all houses and a subset of the portals,

- no edge of the tour crosses a line of the basic dissection,
\square it is crossing-free.
W.l.o.g. (homework):

No portal visited more than twice

Computing a Well-Behaved Tour

Lemma. An optimal well-behaved tour can be computed in $2^{O(m)}=n^{O(1 / \varepsilon)}$ time.

Sketch.

- Dynamic programming!
- Compute sub-structure of an optimal tour for each square in the dissection tree.
- These solutions can be efficiently propagated bottom-up through the dissection tree.

Approximation Algorithms

Lecture 9:
A PTAS for Euclidean TSP

Part IV:
Dynamic Program

Dynamic Program (I)

Each well-behaved tour induces the following in each square Q of the dissection:

- a path cover of the houses in Q,
- ...such that each portal of Q is visited 0,1 or 2 times,
$\Rightarrow \max .3^{4 m} \in 3^{O((\log n) / \varepsilon)}=n^{O(1 / \varepsilon)}$ possibilities

Dynamic Program (II)

Compute

- for each square Q in the dissection and
- for each crossing-free pairing P of Q, an optimal path cover that respects P.

Dynamic Program (III)

For a given square Q and pairing P :

- Iterate over all $\left(n^{O(1 / \varepsilon)}\right)^{4}=n^{O(1 / \varepsilon)}$ crossing-free pairings of the child squares.
- Minimize the cost over all such pairings that additionally respect P.
- Correctness follows by induction.

Lemma. An optimal well-behaved tour can be
computed in $2^{O(m)}=n^{O(1 / \varepsilon)}$ time.

Approximation Algorithms

Lecture 9:
A PTAS for Euclidean TSP

Part V:
Shifted Dissections

Shifted Dissections

- The best well-behaved tour can be a bad approximation.
- Consider an (a, b)-shifted dissection:

$$
\begin{aligned}
& x \mapsto(x+a) \bmod L \\
& y \mapsto(y+b) \bmod L
\end{aligned}
$$

- Squares in the dissection tree are "wrapped around".
- Dynamic program must be modified accordingly.

Shifted Dissections (II)

Lemma. Let π be an optimal tour, and let $N(\pi)$ be the number of crossings of π with the lines of the $(L \times L)$-grid. Then we have $N(\pi) \leq \sqrt{2} \cdot$ OPT.

Proof.

\square Consider a tour as an ordered cyclic sequence.

- Each edge e generates $N_{e} \leq \Delta x+\Delta y$ crossings.
- Crossings at the endpoint of an edge are counted for the next edge.

π
■ $N_{e}^{2} \leq(\Delta x+\Delta y)^{2} \leq 2\left(\Delta x^{2}+\Delta y^{2}\right)=2|e|^{2}$.
$\square N(\pi)=\sum_{e \in \pi} N_{e} \leq \sum_{e \in \pi} \sqrt{2|e|^{2}}=\sqrt{2} \cdot \mathrm{OPT}$.

Approximation Algorithms

Lecture 9:
A PTAS for Euclidean TSP

Part VI:
Approximation Factor

Shifted Dissections (III)

Theorem. Let $a, b \in[0, L-1]$ be chosen independently and uniformly at random. Then the expected cost of an optimal well-behaved tour with respect to the (a, b)-shifted dissection is $\leq(1+2 \sqrt{2} \varepsilon)$ OPT.

Proof. Consider optimal tour π. Make π well-behaved by moving each intersection point with the $(L \times L)$-grid to the nearest portal.

Detour per intersection \leq inter-portal distance.

Shifted Dissections (III)

- Consider an intersection point between π and a line l of the $(L \times L)$-grid.
- With probability at most $2^{i} / L$, the line l is a level- i line. \Rightarrow Increase in tour length $\leq L /\left(2^{i} m\right)$ (inter-portal distance).
- Thus, the expected increase in tour length due to this intersection is at most: $m \in[k / \varepsilon, 2 k / \varepsilon]$

$$
\sum_{i=0}^{k} \frac{2^{i}}{L} \cdot \frac{L}{2^{i} m} \leq \frac{k+1}{m} \leq 2 \varepsilon
$$

- Summing over all $N(\pi) \leq \sqrt{2} \cdot$ OPT intersection points and applying linearity of expectation yields the claim.

Polynomial-Time Approximation Scheme

Theorem. Let $a, b \in[0, L-1]$ be chosen independently and uniformly at random. Then the expected cost of an optimal well-behaved tour with respect to the (a, b)-shifted dissection is $\leq(1+2 \sqrt{2} \varepsilon)$ OPT.

Theorem. There is a deterministic algorithm (PTAS) for Euclidean TSP that provides, for every $\varepsilon>0$, a $(1+\varepsilon)$-approximation in $n^{O(1 / \varepsilon)}$ time.

Proof. Try all L^{2} many (a, b)-shifted dissections. By the previous theorem and the pigeon-hole principle, one of them is good enough.

Literature

\square William J. Cook: Pursuit of the Traveling Salesman: Mathematics at the Limits of Computation.
Princeton University Press, 2011.
\square Sanjeev Arora: Polynomial Time Approximation Schemes for Euclidean Traveling Salesman and other Geometric Problems. J. ACM, 45(5):753-782, 1998.

■ Joseph S. B. Mitchell: Guillotine Subdivisions Approximate Polygonal Subdivisions: A Simple Polynomial-Time Approximation Scheme for Geometric TSP, k-MST, and Related Problems. SIAM J. Comput., 28(4):1298-1309, 1999.

- Sanjeev Arora: Nearly linear time approximation schemes for Euclidean TSP and other geometric problems.

Literature (cont'd)

Runtime $O\left(n^{O\left(1 / \varepsilon^{2}\right)}\right)$

- Sanjeev Arora, Michelangelo Grigni, David Karger, Philip Klein, Andrzej Woloszyn: Polynomial time approximation scheme for Weighted Planar Graph TSP. Proc. SODA, p. 33-41, 1998.
- Nicos Christofides: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical Report 388, Graduate School of Industrial Administration, CMU, February 1976.
- Anatoliy Serdyukov: On some extremal walks in graphs. Upravlyaemye Sistemy, 17:76-79, 1978 (submitted January 27, 1976)

■ René van Bevern, Viktoriia A. Slugina: A historical note on the 3/2-approximation algorithm for the metric traveling salesman problem. Historia Mathematica, 53:118-127, 2020.
https: / / arxiv.org / abs / 2004.02437

- Anna R. Karlin, Nathan Klein, Shayan Oveis Gharan:

A (slightly) improved approximation algorithm for metric TSP.
Proc. STOC, p. 32-45, 2021: approx. factor $1.5-10^{-36}$, best paper award!

