Approximation Algorithms Lecture 9: An Approximation Scheme for EUCLIDEAN TSP Part I: The Traveling Salesman Problem

Alexander Wolff

Winter term 2023/24

TRAVELING SALESMAN PROBLEM (TSP)

- **Question:** What's the fastest way to deliver all parcels to their destination?
- **Given**: A set of *n* houses (points) in \mathbb{R}^2 .
- Task:Find a tour (Hamiltonian cycle) of min. length.

TRAVELING SALESMAN PROBLEM (TSP)

- **Question:** What's the fastest way to deliver all parcels to their destination?
- **Given**: A set of *n* houses (points) in \mathbb{R}^2 .
- Task:Find a tour (Hamiltonian cycle) of min. length.

Distance between two points?

For every polynomial p(n), TSP cannot be approximated within factor $2^{p(n)}$ (unless P = NP).

There is a 3/2-approximation algorithm for METRIC TSP [Christofides'76]

METRIC TSP cannot be approximated within factor 123/122 (unless P = NP).

TRAVELING SALESMAN PROBLEM (TSP)

- **Question:** What's the fastest way to deliver all parcels to their destination?
- **Given**: A set of *n* houses (points) in \mathbb{R}^2 .
- Task:Find a tour (Hamiltonian cycle) of min. length.

Let's assume that the salesman flies \Rightarrow Euclidean distances.

Simplifying Assumptions

 Houses inside (L × L)-square
 L := 4n² = 2^k; k = 2 + 2 log₂ n

integer coordinates ("justification": homework)

Lecture 9: A PTAS for Euclidean TSP

Part II: Dissection

Basic Dissection

Portals

Let *m* be a power of 2 in the interval $[k/\varepsilon, 2k/\varepsilon]$.

Recall that $k = 2 + 2\log_2 n$. $\Rightarrow m \in O((\log n) / \varepsilon)$

- Portals on level-*i* line are at a distance of $L/(2^i m)$.
- Every level-*i* square has size $L/2^i \times L/2^i$.
- A level-*i* square has $\leq 4m$ portals on its boundary.

Lecture 9: A PTAS for Euclidean TSP

Part III: Well-Behaved Tours

Well-Behaved Tours

A tour is *well-behaved* if

- it involves all houses and a subset of the portals,
- no edge of the tour crosses a line of the basic dissection,
- it is crossing-free.

W.l.o.g. (homework): No portal visited more than twice

Computing a Well-Behaved Tour

Lemma. An optimal well-behaved tour can be computed in $2^{O(m)} = n^{O(1/\varepsilon)}$ time.

Sketch. Dynamic programming!

- Compute sub-structure of an optimal tour for each square in the dissection tree.
- These solutions can be efficiently propagated bottom-up through the dissection tree.

Lecture 9: A PTAS for Euclidean TSP

Part IV: Dynamic Program

Dynamic Program (I)

Dynamic Program (II)

Compute

- for each square *Q* in the dissection and
- for each crossing-free pairing *P* of *Q*,

an optimal path cover that respects *P*.

Dynamic Program (III)

Lemma. An optimal well-behaved tour can be computed in $2^{O(m)} = n^{O(1/\varepsilon)}$ time.

Lecture 9: A PTAS for Euclidean TSP

Part V: Shifted Dissections

Shifted Dissections

а

The best well-behaved tour can be a bad approximation.

Consider an (*a*, *b*)-shifted dissection:

 $\begin{array}{l} x \mapsto (x+a) \bmod L \\ y \mapsto (y+b) \bmod L \end{array}$

Squares in the dissection tree are "wrapped around".

Dynamic program must be modified accordingly.

Shifted Dissections (II)

Lemma. Let π be an optimal tour, and let $N(\pi)$ be the number of crossings of π with the lines of the $(L \times L)$ -grid. Then we have $N(\pi) \leq \sqrt{2} \cdot \text{OPT}$.

Proof.

- Consider a tour as an ordered cyclic sequence.
- Each edge *e* generates $N_e \leq \Delta x + \Delta y$ crossings.
- Crossings at the endpoint of an edge are counted for the next edge. $0 \le (\Delta x - \Delta y)^2$

N_e² ≤ (Δx + Δy)² ≤ 2(Δx² + Δy²) = 2|e|².
 N(π) = Σ_{e∈π} N_e ≤ Σ_{e∈π} √2|e|² = √2 · OPT.

 Δx

e

 π

 Δy

Lecture 9: A PTAS for Euclidean TSP

Part VI: Approximation Factor

Shifted Dissections (III)

Theorem. Let $a, b \in [0, L - 1]$ be chosen independently and uniformly at random. Then the expected cost of an optimal well-behaved tour with respect to the (a, b)-shifted dissection is $\leq (1 + 2\sqrt{2\varepsilon})$ OPT.

Proof.

Consider optimal tour π . Make π well-behaved by moving each intersection point with the $(L \times L)$ -grid to the nearest portal.

Detour per intersection \leq inter-portal distance.

Shifted Dissections (III)

- Consider an intersection point between π and a line *l* of the $(L \times L)$ -grid.
- With probability *at most* $2^i/L$, the line *l* is a level-*i* line. ⇒ Increase in tour length $\leq L/(2^im)$ (inter-portal distance).
 - Thus, the expected increase in tour length due to this intersection is at most: $m \in [k/\epsilon, 2k/\epsilon]$

$$\sum_{i=0}^{k} \frac{2^{i}}{L} \cdot \frac{L}{2^{i}m} \leq \frac{k+1}{m} \leq 2\varepsilon.$$

Summing over all $N(\pi) \le \sqrt{2} \cdot \text{OPT}$ intersection points and applying linearity of expectation yields the claim.

Polynomial-Time Approximation Scheme

Theorem. Let $a, b \in [0, L - 1]$ be chosen independently and uniformly at random. Then the expected cost of an optimal well-behaved tour with respect to the (a, b)-shifted dissection is $\leq (1 + 2\sqrt{2}\varepsilon)$ OPT.

Theorem. There is a *deterministic* algorithm (PTAS) for EUCLIDEAN TSP that provides, for every $\varepsilon > 0$, a $(1 + \varepsilon)$ -approximation in $n^{O(1/\varepsilon)}$ time.

Proof.

Try all L^2 many (a, b)-shifted dissections. By the previous theorem and the pigeon-hole principle, one of them is good enough.

Literature

- William J. Cook: Pursuit of the Traveling Salesman: Mathematics at the Limits of Computation. Princeton University Press, 2011.
- Sanjeev Arora: Polynomial Time Approximation Schemes for Euclidean Traveling Salesman and other Geometric Problems. J. ACM, 45(5):753–782, 1998.
- Joseph S. B. Mitchell: Guillotine Subdivisions Approximate Polygonal Subdivisions: A Simple Polynomial-Time Approximation Scheme for Geometric TSP, *k*-MST, and Related Problems. SIAM J. Comput., 28(4):1298–1309, 1999.
 - Sanjeev Arora: Nearly linear time approximation schemes for Euclidean TSP and other geometric problems. Network Design 1–2, 1997 Randomized, $O(n(\log n)^{O(1/\epsilon)})$ time.

Literature (cont'd)

- Runtime $O(n^{O(1/\varepsilon^2)})$
- Sanjeev Arora, Michelangelo Grigni, David Karger, Philip Klein, Andrzej Woloszyn: Polynomial time approximation scheme for Weighted Planar Graph TSP. Proc. SODA, p. 33–41, 1998.
- Nicos Christofides: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical Report 388, Graduate School of Industrial Administration, CMU, February 1976.
 - Anatoliy Serdyukov: On some extremal walks in graphs. Upravlyaemye Sistemy, 17:76–79, 1978 (submitted January 27, 1976)
- René van Bevern, Viktoriia A. Slugina: A historical note on the 3/2-approximation algorithm for the metric traveling salesman problem. Historia Mathematica, 53:118–127, 2020. https://arxiv.org/abs/2004.02437
- Anna R. Karlin, Nathan Klein, Shayan Oveis Gharan:
 A (slightly) improved approximation algorithm for metric TSP.
 Proc. STOC, p. 32–45, 2021: approx. factor 1.5 10⁻³⁶, best paper award!