Lecture 8: Approximation Schemes and the KNAPSACK Problem Part I: KNAPSACK #### KNAPSACK #### Given: - A set $S = \{a_1, \ldots, a_n\}$ of **objects**. - For every object $a_i$ a size size $(a_i) \in \mathbb{N}^+$ - For every object $a_i$ a **profit** profit $(a_i) \in \mathbb{N}^+$ - A knapsack capacity $B \in \mathbb{N}^+$ #### Task: Find a subset of objects whose **total size** is at most *B* and whose **total profit** is maximum. NP-hard Lecture 8: Approximation Schemes and the KNAPSACK Problem Part II: Pseudo-Polynomial Algorithms and Strong NP-Hardness ### Pseudo-Polynomial Algorithms Let $\Pi$ be an optimization problem whose instances can be represented by **objects** (such as sets, elements, edges, nodes) and **numbers** (such as costs, weights, profits). ``` |/|: The size of an instance I \in D_{\Pi}, where all numbers in / are encoded in binary. (5 = 101_b \Rightarrow |I| = 3) |/|<sub>u</sub>: The size of an instance I \in D_{\Pi}, where all numbers in / are encoded in unary. (5 = 11111_u \Rightarrow |I|_u = 5) ``` The running time of a polynomial algorithm for $\Pi$ is polynomial in |I|. The running time of a **pseudo-polynomial algorithm** is polynomial in $|I|_u$ . The running time of a pseudo-polynomial algorithm may not be polynomial in |I|. ### Strong NP-Hardness An optimization problem is called **strongly NP-hard** if it remains NP-hard under unary encoding. An optimization problem is called **weakly NP-hard** if it is NP-hard under binary encoding but has a pseudo-polynomial algorithm. **Theorem.** A strongly NP-hard problem has no pseudo-polynomial algorithm unless P = NP. Lecture 8: Approximation Schemes and the KNAPSACK Problem Part III: Pseudo-Polynomial Algorithm for KNAPSACK #### Pseudo-Polynomial Alg. for KNAPSACK Let $P := \max_i \operatorname{profit}(a_i) \Rightarrow P \leq \operatorname{OPT} \leq nP$ For every i = 1, ..., n and every $p \in \{1, ..., nP\}$ , let $S_{i,p}$ be a subset of $\{a_1, ..., a_i\}$ whose total profit is precisely p and whose total size is minimum among all subsets with these properties. Such a set may not exist. Let A[i, p] be the total size of $S_{i,p}$ (set $A[i, p] = \infty$ if no such set exists). If all A[i, p] are known, then we can compute $$\mathsf{OPT} = \mathsf{max}\{\, p \mid A[n,p] \leq B \,\}.$$ #### Pseudo-Polynomial Alg. for KNAPSACK A[1, p] can be computed for every $p \in \{0, ..., nP\}$ . Set $A[i, p] := \infty$ for p < 0 (for convenience). $$A[i+1, p] = \min\{A[i, p], \text{ size}(a_{i+1}) + A[i, p - \text{profit}(a_{i+1})]\}$$ - $\Rightarrow$ All values A[i, p] can be computed in total time $O(n^2P)$ . - $\Rightarrow$ OPT can be computed in $O(n^2P)$ total time. **Theorem.** KNAPSACK can be solved optimally in pseudo-polynomial time $O(n^2P)$ . Corollary. KNAPSACK is weakly NP-hard. ### Pseudo-Polynomial Alg. for KNAPSACK **Theorem.** KNAPSACK can be solved optimally in pseudo-polynomial time $O(n^2P)$ . **Observe.** The running time $O(n^2P)$ is polynomial in n if P is polynomial in n. Lecture 8: Approximation Schemes and the KNAPSACK Problem Part IV: Approximation Schemes #### Approximation Schemes Let $\Pi$ be an optimization problem. An algorithm $\mathcal{A}$ is called a **polynomial-time approximation scheme** (PTAS) for $\Pi$ if it outputs, for every input $(I, \varepsilon)$ with $I \in D_{\Pi}$ and $\varepsilon > 0$ , a solution $s \in S_{\Pi}(I)$ such that - $obj_{\Pi}(I,s) \leq (1+\varepsilon) \cdot OPT$ if $\Pi$ is a minimization problem, - $\operatorname{obj}_{\Pi}(I,s) \geq (1-\varepsilon) \cdot \operatorname{OPT}$ if $\Pi$ is a maximization problem, and the runtime of $\mathcal{A}$ is polynomial in |I| for **every fixed** $\varepsilon > 0$ . $\mathcal{A}$ is called **fully polynomial-time approximation scheme** (FPTAS) if its running time is polynomial in |I| and $1/\varepsilon$ . #### Example running times - $O(n^{1/\varepsilon}) \rightsquigarrow PTAS$ - $O(n^3/\varepsilon^2) \sim \text{FPTAS}$ - $O(2^{1/\varepsilon}n^4) \rightarrow PTAS$ Lecture 8: Approximation Schemes and the KNAPSACK Problem Part V: FPTAS for KNAPSACK ### An FPTAS for KNAPSACK via Scaling ``` KnapsackScaling (I, \varepsilon) // scaling factor K = \varepsilon P/n profit'(a_i) = |profit(a_i)/K| Compute optimal solution S' for I w.r.t. profit(\cdot). return 5' Lemma. profit(S') \geq (1 - \varepsilon) \cdot \mathsf{OPT}. Proof. Let OPT = \{o_1, \ldots, o_\ell\}. Obs. 1. For i = 1, ..., \ell, profit(o_i) - K \leq K \cdot \text{profit}'(o_i) \leq \text{profit}(o_i) \Rightarrow K \cdot \sum_{i} \operatorname{profit}'(o_i) \geq \operatorname{OPT} - \ell K \geq \operatorname{OPT} - nK = \operatorname{OPT} - \varepsilon P. Obs. 2. \operatorname{profit}(S') \geq K \cdot \operatorname{profit}'(S') \geq K \cdot \sum_i \operatorname{profit}'(o_i) \Rightarrow \operatorname{profit}(S') \ge \operatorname{OPT} - \varepsilon P \ge \operatorname{OPT} - \varepsilon \operatorname{OPT} = (1 - \varepsilon) \cdot \operatorname{OPT} ``` **Theorem.** KnapsackScaling is an FPTAS for KNAPSACK with running time $O(n^3/\varepsilon) = O\left(n^2 \cdot \frac{P}{\varepsilon P/n}\right)$ . Lecture 8: Approximation Schemes and the KNAPSACK Problem Part VI: Connections Between the Concepts ### FPTAS and Pseudo-Poly. Algorithms **Theorem.** Let p be a polynomial and let $\Pi$ be an NP-hard minimization problem with integral objective function and $OPT(I) < p(|I|_u)$ for all instances I of $\Pi$ . If $\Pi$ has an FPTAS, then there is a pseudo-polynomial algorithm for $\Pi$ . #### Proof. Assume that there is an FPTAS for $\Pi$ (in $q(|I|, 1/\varepsilon)$ time). Set $$\varepsilon = 1/p(|I|_u)$$ . $$\Rightarrow ALG \le (1 + \varepsilon)OPT < OPT + \varepsilon p(|I|_u) = OPT + 1.$$ $$\Rightarrow$$ ALG = OPT. Running time: $q(|I|, p(|I|_u))$ , so poly( $|I|_u$ ). ### FPTAS and Strong NP-Hardness **Theorem.** A strongly NP-hard problem has no pseudo-polynomial algorithm unless P = NP. **Theorem.** Let p be a polynomial and let $\Pi$ be an NP-hard minimization problem with integral objective function and $OPT(I) < p(|I|_u)$ for all instances I of $\Pi$ . If $\Pi$ has an FPTAS, then there is a pseudo-polynomial algorithm for $\Pi$ . Corollary. Let $\Pi$ be an NP-hard optimization problem that fulfills the restrictions above. If $\Pi$ is strongly NP-hard, then there is no FPTAS for $\Pi$ (unless P = NP).