1/16

Approximation Algorithms

| ecture 8:
Approximation Schemes and
the KNAPSACK Problem

Part |
KNAPSACK

Alexander Wolff Winter 2023 /24

2/16

KNAPSACK

Given: m Aset S={ay,..., a,} of objects.

N}
%

q. &

-

2/16

KNAPSACK

Given: m Aset S={ay,..., a,} of objects.
m For every object a; a

N}
%

q. &

<>

2/16

KNAPSACK

Given: m Aset S={ay,..., a,} of objects.
m For every object a; a
m For every object a; a profit profit(a;) ¢ N7

2/16

KNAPSACK

Given: Aset S=1{a,..., a,} of objects.
For every object a; a
For every object a; a profit profit(a;) ¢ N©

A knapsack capacity B € N*

2/16

KNAPSACK

Given:

Task:

m Aset S={ay,..., a,} of objects.

m For every object a; a

m For every object a; a profit profit(a;) ¢ N7
m A knapsack capacity B € N*

Find a subset of objects
whose is at 31 &
most B and whose total @

profit is maximum.

2/16

KNAPSACK

Given: m Aset S={ay,..., a,} of objects.

m For every object a; a

m For every object a; a profit profit(a;) ¢ N7
o

A knapsack capacity B € N*

Task: Find a subset of objects
whose is at $ 1
most B and whose total
profit is maximum.

2/16

KNAPSACK

Given: m Aset S={ay,..., a,} of objects.

m For every object a; a

m For every object a; a profit profit(a;) ¢ N7
o

A knapsack capacity B € N*

Task: Find a subset of objects
whose is at $ 1
most B and whose total
profit is maximum.

g .)
NP-hard

Approximation Algorithms

| ecture 8:
Approximation Schemes and
the KNAPSACK Problem

Part Il
Pseudo-Polynomial Algorithms and
Strong NP-Hardness

3/16

4/16

Pseudo-Polynomial Algorithms

Let /] be an optimization problem whose instances can be
represented by objects (such as sets, elements, edges, nodes)
and numbers (such as costs, weights, profits).

4/16

Pseudo-Polynomial Algorithms

Let /] be an optimization problem whose instances can be
represented by objects (such as sets, elements, edges, nodes)
and (such as costs, weights, profits).

/|: The size of an instance / € Dy, where all numbers in / are
encoded in binary.

4/16

Pseudo-Polynomial Algorithms

Let /] be an optimization problem whose instances can be
represented by objects (such as sets, elements, edges, nodes)
and numbers (such as costs, weights, profits).

/|: The size of an instance / € Dy, where all numbers in / are
encoded in binary. (52101, = |I] =3)

4/16

Pseudo-Polynomial Algorithms

Let /] be an optimization problem whose instances can be
represented by objects (such as sets, elements, edges, nodes)

and (such as costs, weights, profits).
/|: The size of an instance / € Dy, where all numbers in / are
encoded in binary. (52101, = |I] =3)

/|,: The size of an instance / € D, where all numbers in / are

encoded in unary. @al a

4/16

Pseudo-Polynomial Algorithms

Let /] be an optimization problem whose instances can be
represented by objects (such as sets, elements, edges, nodes)

and (such as costs, weights, profits).
/|: The size of an instance / € Dy, where all numbers in / are
encoded in binary. (52101, = |I] =3)

/|,: The size of an instance / € D, where all numbers in / are
encoded in unary. (5211111, = |/|, =5)

4/16

Pseudo-Polynomial Algorithms

Let /] be an optimization problem whose instances can be
represented by objects (such as sets, elements, edges, nodes)

and (such as costs, weights, profits).

/|: The size of an instance / € Dy, where all numbers in / are
encoded in binary. (52101, = |I] =3)

/|,: The size of an instance / € D, where all numbers in / are
encoded in unary. (5211111, = |/|, =5)

The running time of a polynomial algorithm for /] is
polynomial in |/].

4/16

Pseudo-Polynomial Algorithms

Let /] be an optimization problem whose instances can be
represented by objects (such as sets, elements, edges, nodes)

and (such as costs, weights, profits).

/|: The size of an instance / € Dy, where all numbers in / are
encoded in binary. (52101, = |I] =3)

/|,: The size of an instance / € D, where all numbers in / are
encoded in unary. (5211111, = |/|, =5)

The running time of a polynomial algorithm for /] is
polynomial in |/].

The running time of a pseudo-polynomial algorithm is
polynomial in |/],.

4/16

Pseudo-Polynomial Algorithms

Let /] be an optimization problem whose instances can be
represented by objects (such as sets, elements, edges, nodes)

and (such as costs, weights, profits).

/|: The size of an instance / € Dy, where all numbers in / are
encoded in binary. (52101, = |I] =3)

/|,: The size of an instance / € D, where all numbers in / are
encoded in unary. (5211111, = |/|, =5)

The running time of a polynomial algorithm for /] is
polynomial in |/].

The running time of a pseudo-polynomial algorithm is
polynomial in |/],.

The running time of a pseudo-polynomial algorithm may not
be polynomial in |/|.

5/16

Strong NP-Hardness

An optimization problem is called strongly NP-hard if it
remains NP-hard under unary encoding.

5/16

Strong NP-Hardness

An optimization problem is called strongly NP-hard if it
remains NP-hard under unary encoding.

An optimization problem is called weakly NP-hard if it is
NP-hard under binary encoding but has a pseudo-polynomial
algorithm.

5/16

Strong NP-Hardness

An optimization problem is called strongly NP-hard if it
remains NP-hard under unary encoding.

An optimization problem is called weakly NP-hard if it is
NP-hard under binary encoding but has a pseudo-polynomial
algorithm.

Theorem. A strongly NP-hard problem has no
pseudo-polynomial algorithm unless P = NP.

6/16

Approximation Algorithms

| ecture 8:
Approximation Schemes and
the KNAPSACK Problem

Part |1l
Pseudo-Polynomial Algorithm for KNAPSACK

7/16

Pseudo-Polynomial Alg. for KNAPSACK

Let P := max; profit(a;)

7/16

Pseudo-Polynomial Alg. for KNAPSACK

Let P := max; profit(a;)

7/16

Pseudo-Polynomial Alg. for KNAPSACK

Let / := max;profit(a;) = <OPT<

7/16

Pseudo-Polynomial Alg. for KNAPSACK

Let P :=max;profit(a;) = P <OPT<nP

7/16

Pseudo-Polynomial Alg. for KNAPSACK
Let 7 := max; profit(a;) = P <OPT<nP

Forevery i=1,..., n and every ped{l,..., nP},

7/16

Pseudo-Polynomial Alg. for KNAPSACK
Let 7 := max; profit(a;) = P <OPT<nP

Forevery i=1,..., n and every ped{l,..., nP},
let S; , be a subset of {a1,..., a;} whose total profit is
precisely p

7/16

Pseudo-Polynomial Alg. for KNAPSACK
Let 7 := max; profit(a;) = P <OPT<nP

Forevery i=1,..., n and every ped{l,..., nP},
let S; , be a subset of {a1,..., a;} whose total profit is
precisely p

7/16

Pseudo-Polynomial Alg. for KNAPSACK
Let 7 := max; profit(a;) = P <OPT<nP

For every i=1,..., n and every ped{l,..., nP},
let S; , be a subset of {a1,..., a;} whose total profit is
precisely p and whose total size iIs minimum among all subsets

with these properties.

7/16

Pseudo-Polynomial Alg. for KNAPSACK
Let 7 := max; profit(a;) = P <OPT<nP

For every i=1,..., n and every ped{l,..., nP},
let S; , be a subset of {a1,..., a;} whose total profit is
precisely p and whose total size iIs minimum among all subsets

with these properties.

7/16

Pseudo-Polynomial Alg. for KNAPSACK

Let /7 := max; = <OPT<n
Foreveryi=1,..., nand every pe{l,..., nP},
let S; , be a subset of {a1,..., a;} whose total profit is

precisely p and whose total size iIs minimum among all subsets
with these properties. Such a set may not exist.

7/16

Pseudo-Polynomial Alg. for KNAPSACK

Let /7 := max; = <OPT<n
Foreveryi=1,..., nand every pe{l,..., nP},
let S; , be a subset of {a1,..., a;} whose total profit is

precisely p and whose total size iIs minimum among all subsets
with these properties. Such a set may not exist.

Let
(set
exists).

7/16

Pseudo-Polynomial Alg. for KNAPSACK

Let /7 := max; = <OPT<n
Foreveryi=1,..., nand every pe{l,..., nP},
let S; , be a subset of {a1,..., a;} whose total profit is

precisely p and whose total size iIs minimum among all subsets
with these properties. Such a set may not exist.

Let
(set
exists).

7/16

Pseudo-Polynomial Alg. for KNAPSACK

Let /7 := max; = <OPT<n
For every i=1,...,nand every pe{l,...,nP},
let S;, be a subset of {a;,...,a;} whose total profit is

precisely p and whose total size iIs minimum among all subsets
with these properties. Such a set may not exist.

Let
(set
exists).

If all are known, then we can

compute
OPT =

7/16

Pseudo-Polynomial Alg. for KNAPSACK

Let /7 := max; = <OPT<n
Foreveryi=1,..., nand every pe{l,..., nP},
let S; , be a subset of {a1,..., a;} whose total profit is

precisely p and whose total size iIs minimum among all subsets
with these properties. Such a set may not exist.

Let
(set
exists).

If all are known, then we can

compute
OPT =max{p| < B}.

8/16

Pseudo-Polynomial Alg. for KNAPSACK

can be computed for every p € {0, ..., nP}.

8/16

Pseudo-Polynomial Alg. for KNAPSACK

can be computed for every p € {0, ..., nP}.

Set for p <0 (for convenience).

8/16

Pseudo-Polynomial Alg. for KNAPSACK

can be computed for every p € {0, ..., nP}.

Set for p <0 (for convenience).

8/16
Pseudo-Polynomial Alg. for KNAPSACK
can be computed for every p € {0, ..., nP}.
Set for p <0 (for convenience).

= min{

8/16
Pseudo-Polynomial Alg. for KNAPSACK
can be computed for every p € {0, ..., nP}.
Set for p <0 (for convenience).

= min{

8/16
Pseudo-Polynomial Alg. for KNAPSACK
can be computed for every p € {0, ..., nP}.
Set for p <0 (for convenience).

= min{ , +

8/16

Pseudo-Polynomial Alg. for KNAPSACK

can be computed for every p € {0, ..., nP}.

Set for p <0 (for convenience).

= min{ | + p — profit(aj;1)]}

8/16
Pseudo-Polynomial Alg. for KNAPSACK
can be computed for every p € {0, ..., nP}.
Set for p <0
= min{ | + p — profit(aj;1)]}

= All values can be computed in total time O(

8/16
Pseudo-Polynomial Alg. for KNAPSACK
can be computed for every p € {0, ..., nP}.
Set for p <0
= min{ | + p — profit(aj;1)]}

= All values can be computed in total time O(n?P).

8/16
Pseudo-Polynomial Alg. for KNAPSACK
can be computed for every p € {0, ..., nP}.
Set for p <0
= min{ , + p — profit(a;y1)]}
= All values can be computed in total time O(n?P).

= OPT can be computed in
O(n*P) total time.

8/16
Pseudo-Polynomial Alg. for KNAPSACK
can be computed for every p € {0, ..., nP}.
Set for p <0
= min{ , + p — profit(a;y1)]}
= All values can be computed in total time O(n?P).

= OPT can be computed in
O(n*P) total time.

Theorem. KNAPSACK can be solved optimally in
pseudo-polynomial time O(n? /).

3~

8/16

Pseudo-Polynomial Alg. for KNAPSACK

can be computed for every p € {0, ..., nP}.
Set for p <0
= min{ , + }
= All values can be computed in total time O(n?P).
= OPT can be computed in 2 .
O(n*P) total time. @ Sia /\@
di-1 B
° —
Theorem. KNAPSACK can be solved optimally in
pseudo-polynomial time O(n? /). j
‘Corollary. KNAPSACK is weakly NP-hard. :

9/16

Pseudo-Polynomial Alg. for KNAPSACK

Theorem. KNAPSACK can be solved optimally in
pseudo-polynomial time O(n?/").

9/16

Pseudo-Polynomial Alg. for KNAPSACK

Theorem. KNAPSACK can be solved optimally in
pseudo-polynomial time O(n? /).

Observe. The running time O(n?F) is polynomial in n
if /7 is polynomial in n.

10/16

Approximation Algorithms

| ecture 8:
Approximation Schemes and
the KNAPSACK Problem

Part IV:
Approximation Schemes

11/16

Approximation Schemes

Let /] be an optimization problem.

11/16

Approximation Schemes

Let /] be an optimization problem. An algorithm A is called a
polynomial-time approximation scheme (PTAS) for [1

if it outputs, for every input (/,c) with / € Dy and £ > 0,

a solution s € 5(/) such that

11/16

Approximation Schemes

Let /] be an optimization problem. An algorithm A is called a
polynomial-time approximation scheme (PTAS) for [1

if it outputs, for every input (/,c) with / € Dy and £ > 0,

a solution s € 5(/) such that

m <(1+¢)-OPT if I1is a minimization problem,

11/16

Approximation Schemes

Let /] be an optimization problem. An algorithm A is called a
polynomial-time approximation scheme (PTAS) for [1
if it outputs, for every input (/,c) with / € Dy and £ > 0,
a solution s € 5(/) such that
m <(1+¢)-OPT if I1is a minimization problem,
m >(1-¢)-OPT if [Tis a maximization problem,

Approximation Schemes

Let /] be an optimization problem. An algorithm A is called a
polynomial-time approximation scheme (PTAS) for [1
if it outputs, for every input (/,c) with / € Dy and £ > 0,
a solution s € 5(/) such that
m <(1+¢)-OPT if I1is a minimization problem,
m >(1-¢)-OPT if [Tis a maximization problem,

11/16

and the runtime of A is polynomial in |/| for every fixed ¢ > 0.

Approximation Schemes

Let /] be an optimization problem. An algorithm A is called a
polynomial-time approximation scheme (PTAS) for [1
if it outputs, for every input (/,c) with / € Dy and £ > 0,
a solution s € 5(/) such that
m <(1+¢)-OPT if I1is a minimization problem,
m >(1-¢)-OPT if [1is a maximization problem,

11/16

and the runtime of A is polynomial in |/| for every fixed ¢ > 0.

A is called fully polynomial-time approximation scheme
(FPTAS) if its running time is polynomial in |/| and 1/¢.

Approximation Schemes

Let /] be an optimization problem. An algorithm A is called a
polynomial-time approximation scheme (PTAS) for [1
if it outputs, for every input (/,c) with / € Dy and £ > 0,
a solution s € 5(/) such that
m <(1+¢)-OPT if I1is a minimization problem,
m >(1-¢)-OPT if [Tis a maximization problem,

11/16

and the runtime of A is polynomial in |/| for every fixed ¢ > 0.

A is called fully polynomial-time approximation scheme
(FPTAS) if its running time is polynomial in |/| and 1/¢.

Example running times
s O(nt?) ~

m O(n’/e?) ~

o O(2l/€n4) ~

Approximation Schemes

Let /] be an optimization problem. An algorithm A is called a
polynomial-time approximation scheme (PTAS) for [1
if it outputs, for every input (/,c) with / € Dy and £ > 0,
a solution s € 5(/) such that
m <(1+¢)-OPT if I1is a minimization problem,
m >(1-¢)-OPT if [Tis a maximization problem,

11/16

and the runtime of A is polynomial in |/| for every fixed ¢ > 0.

A is called fully polynomial-time approximation scheme
(FPTAS) if its running time is polynomial in |/| and 1/¢.

Example running times
s O(n*?) ~ PTAS
m O(n’/e?) ~
o O(2l/€n4) ~

Approximation Schemes

Let /] be an optimization problem. An algorithm A is called a
polynomial-time approximation scheme (PTAS) for [1
if it outputs, for every input (/,c) with / € Dy and £ > 0,
a solution s € 5(/) such that
m <(1+¢)-OPT if I1is a minimization problem,
m >(1-¢)-OPT if [Tis a maximization problem,

11/16

and the runtime of A is polynomial in |/| for every fixed ¢ > 0.

A is called fully polynomial-time approximation scheme
(FPTAS) if its running time is polynomial in |/| and 1/¢.

Example running times
s O(n*?) ~ PTAS

m O(n/s?) ~ FPTAS
o O(2l/€n4) ~

Approximation Schemes

Let /] be an optimization problem. An algorithm A is called a
polynomial-time approximation scheme (PTAS) for [1
if it outputs, for every input (/,c) with / € Dy and £ > 0,
a solution s € 5(/) such that
m <(1+¢)-OPT if I1is a minimization problem,
m >(1-¢)-OPT if [Tis a maximization problem,

11/16

and the runtime of A is polynomial in |/| for every fixed ¢ > 0.

A is called fully polynomial-time approximation scheme
(FPTAS) if its running time is polynomial in |/| and 1/¢.

Example running times
s O(n*?) ~ PTAS

m O(n/s?) ~ FPTAS
s 0(2n*) ~ PTAS

12/16

Approximation Algorithms

| ecture 8:
Approximation Schemes and
the KNAPSACK Problem

Part V:
FPTAS for KNAPSACK

13/16

An FPTAS for KNAPSACK via Scaling

FPTAS idea: Scale profits to polynomial size (as required by
the error parameter ¢). ..

13/16

An FPTAS for KNAPSACK via Scaling

FPTAS idea: Scale profits to polynomial size (as required by
the error parameter ¢). ..

13/16

An FPTAS for KNAPSACK via Scaling

‘KnapsackScaling (/, ¢)
- K=¢P/n

FPTAS idea: Scale profits to polynomial size (as required by
the error parameter ¢). ..

13/16

An FPTAS for KNAPSACK via Scaling

‘KnapsackScaling (/, ¢)
. K=¢P/n // scaling factor

FPTAS idea: Scale profits to polynomial size (as required by
the error parameter ¢). ..

13/16

An FPTAS for KNAPSACK via Scaling

‘KnapsackScaling (/, ¢)
. K=¢P/n // scaling factor

FPTAS idea: Scale profits to polynomial size (as required by
the error parameter ¢). ..

13/16

An FPTAS for KNAPSACK via Scaling

‘KnapsackScaling (/, ¢)
. K=¢P/n // scaling factor

FPTAS idea: Scale profits to polynomial size (as required by
the error parameter ¢). ..

13/16

An FPTAS for KNAPSACK via Scaling

‘KnapsackScaling (/, ¢)
. K=¢P/n // scaling factor

= /K]

Compute optimal solution S’ for | w.r.t.

FPTAS idea: Scale profits to polynomial size (as required by
the error parameter ¢). ..

13/16

An FPTAS for KNAPSACK via Scaling

‘KnapsackScaling (/, ¢)
. K=¢P/n // scaling factor
= | /K]
Compute optimal solution S’ for | w.r.t.
return S’

FPTAS idea: Scale profits to polynomial size (as required by
the error parameter ¢). ..

An FPTAS for KNAPSACK via Scaling

‘KnapsackScaling (/, ¢)
. K=¢P/n // scaling factor

=| /K]
Compute optimal solution S’ for | w.r.t.
return S’

13/16

FPTAS idea: Scale profits to polynomial size (as required by
the error parameter ¢). ..

An FPTAS for KNAPSACK via Scaling

‘KnapsackScaling (/, ¢)
 K=¢ /n // scaling factor

= /K]

Compute optimal solution S’ for | w.r.t.

13/16

retumn ST
[Lemma >(1l-¢)-OPT
Proof Let OPT ={oy,..., oy}

FPTAS idea: Scale profits to polynomial size (as required by

the error parameter ¢). ..

13/16

An FPTAS for KNAPSACK via Scaling

‘KnapsackScaling (/, ¢)
 K=¢ /n // scaling factor

= /K]

Compute optimal solution S’ for | w.r.t.

_retwns
[Lemma >(1l-¢)-OPT
Proof Let OPT ={oy,..., oy}
Obs. 1. Fori=1,..., /, < K- <

FPTAS idea: Scale profits to polynomial size (as required by

the error parameter ¢). ..

13/16

An FPTAS for KNAPSACK via Scaling

‘KnapsackScaling (/, ¢)
 K=¢ /n // scaling factor

= /K]

Compute optimal solution S’ for | w.r.t.

_retwns
[Lemma >(1l-¢)-OPT
Proof Let OPT ={oy,..., oy}
Obs. 1. Fori=1,..., /, < K- <

FPTAS idea: Scale profits to polynomial size (as required by

the error parameter ¢). ..

13/16

An FPTAS for KNAPSACK via Scaling

‘KnapsackScaling (/, ¢)
 K=¢ /n // scaling factor

= /K]

Compute optimal solution S’ for | w.r.t.

_retwns
[Lemma >(1l-¢)-OPT
Proof Let OPT ={oq,..., o}
Obs. 1. Fori=1,..., /, -K < K- <

FPTAS idea: Scale profits to polynomial size (as required by

the error parameter ¢). ..

13/16

An FPTAS for KNAPSACK via Scaling

‘KnapsackScaling (/, ¢)
 K=¢ /n // scaling factor

= /K]

Compute optimal solution S’ for | w.r.t.

_return S
[Lemma >(1l-¢)-OPT
Proof. Let OPT ={oy,..., oy}
Obs. 1. Fori=1,..., /, -K < K- <

FPTAS idea: Scale profits to polynomial size (as required by

the error parameter ¢). ..

13/16

An FPTAS for KNAPSACK via Scaling

‘KnapsackScaling (/, ¢)
 K=¢ /n // scaling factor

= /K]

Compute optimal solution S’ for | w.r.t.

_return S
[Lemma >(1l-¢)-OPT
Proof. Let OPT ={oy,..., oy}
Obs. 1. Fori=1,..., /, -K < K- <
= K - Z,’ > OPT = /K >

FPTAS idea: Scale profits to polynomial size (as required by

the error parameter ¢). ..

13/16

An FPTAS for KNAPSACK via Scaling

‘KnapsackScaling (/, ¢)
 K=¢ /n // scaling factor

= /K]

Compute optimal solution S’ for | w.r.t.

_return S
[Lemma >(1l-¢)-OPT
Proof. Let OPT ={oy,..., oy}
Obs. 1. Fori=1,..., /, -K < K- <
- K.Y, > OPT- ¢K > OPT - nK =

FPTAS idea: Scale profits to polynomial size (as required by

the error parameter ¢). ..

13/16

An FPTAS for KNAPSACK via Scaling

‘KnapsackScaling (/, ¢)
K = eP/n // scaling factor

profit’(a;) = | profit(a;) /K|
Compute optimal solution S for / w.r.t. profit’(-).

_returns’
[Lemma. profit(5") > (1 -¢) - OPT.]
Proof. Let OPT ={oq,..., or}.

Obs. 1. Fori=1,..., ¢, profit(o;) — K < K- profit’ (o;) < profit(o;)
= K.Y profit'(o;) > OPT - /K> OPT - nK =0OPT - ¢P.

FPTAS idea: Scale profits to polynomial size (as required by
the error parameter ¢). ..

13/16

An FPTAS for KNAPSACK via Scaling

‘KnapsackScaling (/, ¢)
K = eP/n // scaling factor

profit’(a;) = | profit(a;) /K|
Compute optimal solution S for / w.r.t. profit’(-).

_returns’
[Lemma. profit(5") > (1 -¢) - OPT.]
Proof. Let OPT ={oq,..., or}.

Obs. 1. Fori=1,..., ¢, profit(o;) — K < K- profit’ (o;) < profit(o;)
= K.Y profit'(o;) > OPT - /K> OPT - nK =0OPT - ¢P.

Obs. 2. > K- profit’(o,-)

FPTAS idea: Scale profits to polynomial size (as required by
the error parameter ¢). ..

13/16

An FPTAS for KNAPSACK via Scaling

‘KnapsackScaling (/, ¢)
K = eP/n // scaling factor

profit’(a;) = | profit(a;) /K|
Compute optimal solution S for / w.r.t. profit’(-).

_returns’
[Lemma. profit(5") > (1 -¢) - OPT.]
Proof. Let OPT ={oq,..., or}.

Obs. 1. Fori=1,..., ¢, profit(o;) — K < K- profit’ (o;) < profit(o;)
= K.Y profit'(o;) > OPT - /K> OPT - nK =0OPT - ¢P.
Obs. 2. > K - profit’(S") > K - 3, profit’ (o;)

FPTAS idea: Scale profits to polynomial size (as required by
the error parameter ¢). ..

13/16

An FPTAS for KNAPSACK via Scaling

‘KnapsackScaling (/, ¢)
K = eP/n // scaling factor

profit’(a;) = | profit(a;) /K|
Compute optimal solution S for / w.r.t. profit’(-).

_returns’
[Lemma. profit(5") > (1 -¢) - OPT.]
Proof. Let OPT ={oq,..., or}.

Obs. 1. Fori=1,..., ¢, profit(o;) — K < K- profit’ (o;) < profit(o;)
= K.Y profit'(o;) > OPT - /K> OPT - nK =0OPT - ¢P.
Obs. 2. profit(S") > K - profit’(S") > K - 3, profit’ (o;)

FPTAS idea: Scale profits to polynomial size (as required by
the error parameter ¢). ..

13/16

An FPTAS for KNAPSACK via Scaling

‘KnapsackScaling (/, ¢)
K = eP/n // scaling factor

profit’(a;) = | profit(a;) /K|
Compute optimal solution S for / w.r.t. profit’(-).

_returns’
[Lemma. profit(5") > (1 -¢) - OPT.]
Proof. Let OPT ={oq,..., or}.

Obs. 1. Fori=1,..., ¢, profit(o;) — K < K- profit’ (o;) < profit(o;)
= K.Y profit'(o;) > OPT - /K> OPT - nK =0OPT - ¢P.
Obs. 2. profit(S") > K - profit’(S") > K - 3; profit’ (o;)
= profit(5’) >

FPTAS idea: Scale profits to polynomial size (as required by
the error parameter ¢). ..

13/16

An FPTAS for KNAPSACK via Scaling

‘KnapsackScaling (/, ¢)
K = eP/n // scaling factor

profit’(a;) = | profit(a;) /K|
Compute optimal solution S for / w.r.t. profit’(-).

_return ST
(Lemma. profit(S') 2 (1-¢)-OPT. |
Proof. Let OPT ={oq,..., or}.

Obs. 1. Fori=1,..., ¢, profit(o;) — K < K- profit’ (o;) < profit(o;)
= K.Y profit'(o;) > OPT - /K> OPT - nK =0OPT - ¢P.
Obs. 2. profit(S") > K - profit’(S") > K - 3; profit’ (o;)
= profit(5’) > OPT — eP >

FPTAS idea: Scale profits to polynomial size (as required by
the error parameter ¢). ..

13/16

An FPTAS for KNAPSACK via Scaling

‘KnapsackScaling (/, ¢)
K = eP/n // scaling factor

profit’(a;) = | profit(a;) /K|
Compute optimal solution S for / w.r.t. profit’(-).

_return ST
(Lemma. profit(S') 2 (1-¢)-OPT. |
Proof. Let OPT ={oq,..., or}.

Obs. 1. Fori=1,..., ¢, profit(o;) — K < K- profit'(o;) < profit(o;)
= K.Y profit'(o;) > OPT - /K> OPT - nK =0OPT - ¢P.
Obs. 2. profit(S") > K - profit’(S") > K - 3, profit’ (o;)
= profit(S5") > OPT - eP > OPT - ¢ OPT =

FPTAS idea: Scale profits to polynomial size (as required by
the error parameter ¢). ..

13/16

An FPTAS for KNAPSACK via Scaling

‘KnapsackScaling (/, ¢)
K = eP/n // scaling factor

profit’(a;) = | profit(a;) /K|
Compute optimal solution S for / w.r.t. profit’(-).

_return ST
(Lemma. profit(S') 2 (1-¢)-OPT. |
Proof. Let OPT ={oq,..., or}.

Obs. 1. Fori=1,..., ¢, profit(o;) — K < K- profit’ (o;) < profit(o;)
= K.Y profit'(o;) > OPT - /K> OPT - nK =0OPT - ¢P.
Obs. 2. profit(S") > K - profit’(S") > K - 3; profit’ (o;)
= profit(S') 2 OPT = eP > OPT - ¢ OPT = (1 —¢)-OPT

FPTAS idea: Scale profits to polynomial size (as required by
the error parameter ¢). ..

13/16

An FPTAS for KNAPSACK via Scaling

‘KnapsackScaling (/, ¢)
K = eP/n // scaling factor

profit’(a;) = | profit(a;) /K|
Compute optimal solution S for / w.r.t. profit’(-).

_returns’
[Lemma. profit(5") > (1 -¢) - OPT.]
Proof. Let OPT ={oq,..., or}.

Obs. 1. Fori=1,..., ¢, profit(o;) — K < K- profit’ (o;) < profit(o;)
= K.Y profit'(o;) > OPT - /K> OPT - nK =0OPT - ¢P.
Obs. 2. profit(S") > K - profit’(S") > K - 3; profit’ (o;)
= profit(S') 2 OPT = eP > OPT - ¢ OPT = (1 —¢)-OPT

‘Theorem. KnapsackScaling is an FPTAS for KNAPSACK with!
running time O(n>/<)

\. J/

13/16

An FPTAS for KNAPSACK via Scaling

‘KnapsackScaling (/, ¢)
K = eP/n // scaling factor

profit’(a;) = | profit(a;) /K|
Compute optimal solution S for / w.r.t. profit’(-).

_returns’
[Lemma. profit(5") > (1 -¢) - OPT.]
Proof. Let OPT ={oq,..., or}.

Obs. 1. Fori=1,..., ¢, profit(o;) — K < K- profit’ (o;) < profit(o;)
= K.Y profit'(o;) > OPT - /K> OPT - nK =0OPT - ¢P.
Obs. 2. profit(S") > K - profit’(S") > K - 3; profit’ (o;)
= profit(S') 2 OPT = eP > OPT - ¢ OPT = (1 —¢)-OPT

‘Theorem. KnapsackScaling is an FPTAS for KNAPSACK with!

running time O(n®/c) = O (n2 : elf/n)'

\. J/

14/16

Approximation Algorithms

| ecture 8:
Approximation Schemes and
the KNAPSACK Problem

Part VI:
Connections Between the Concepts

15/16

FPTAS and Pseudo-Poly. Algorithms

15/16

FPTAS and Pseudo-Poly. Algorithms

15/16

FPTAS and Pseudo-Poly. Algorithms

15/16

FPTAS and Pseudo-Poly. Algorithms

FPTAS and Pseudo-Poly. Algorithms

15/16

p
Theorem.

Let ©» be a polynomial and let /7 be an NP-hard
minimization problem with integral objective
function and OPT (/) < o(]/|,) for all instances /
of [1. If [1 has an FPTAS, then there is a
pseudo-polynomial algorithm for /7.

\

15/16

FPTAS and Pseudo-Poly. Algorithms

N

‘Theorem. Let p be a polynomial and let /7 be an NP-hard
minimization problem with integral objective
function and OPT (/) < o(]/|,) for all instances /
of /1. If [1 has an FPTAS, then there is a
pseudo-polynomial algorithm for /7.

Proof.
Assume that there is an FPTAS for 7 (in g(|/],1/2) time).

15/16

FPTAS and Pseudo-Poly. Algorithms

N

‘Theorem. Let p be a polynomial and let /7 be an NP-hard
minimization problem with integral objective
function and OPT (/) < o(]/|,) for all instances /
of /1. If [1 has an FPTAS, then there is a
pseudo-polynomial algorithm for /7.

Proof.
Assume that there is an FPTAS for 7 (in g(|/],1/2) time).

Set ¢ =

15/16

FPTAS and Pseudo-Poly. Algorithms

N

‘Theorem. Let p be a polynomial and let /7 be an NP-hard
minimization problem with integral objective
function and OPT (/) < o(]/|,) for all instances /
of /1. If [1 has an FPTAS, then there is a
pseudo-polynomial algorithm for /7.

Proof.
Assume that there is an FPTAS for 7 (in g(|/],1/2) time).

Set = =1/p(|/],).

15/16

FPTAS and Pseudo-Poly. Algorithms

N

‘Theorem. Let p be a polynomial and let /7 be an NP-hard
minimization problem with integral objective
function and OPT (/) < o(]/|,) for all instances /
of /1. If [1 has an FPTAS, then there is a
pseudo-polynomial algorithm for /7.

Proof.
Assume that there is an FPTAS for 7 (in g(|/],1/2) time).

Set ¢ =1/p(|/].).
= ALG < (1+2)OPT <

15/16

FPTAS and Pseudo-Poly. Algorithms

N

‘Theorem. Let p be a polynomial and let /7 be an NP-hard
minimization problem with integral objective
function and OPT (/) < o(|/|,) for all instances /

of [1. If [1 has an FPTAS, then there is a
pseudo-polynoyrial algorithm for /7.

Proof.
Assume that there islan FPTAS for /7 (in g(|/],1/2) time).

Set ¢ =1/p(|/].).
= ALG < (1+2)OPT <

15/16

FPTAS and Pseudo-Poly. Algorithms

N

‘Theorem. Let p be a polynomial and let /7 be an NP-hard
minimization problem with integral objective
function and OPT (/) < o(]/|,) for all instances /
of /1. If [1 has an FPTAS, then there is a
pseudo-polynomial algorithm for /7.

Proof.
Assume that there is an FPTAS for 7 (in g(|/],1/2) time).

Sete::l/ (‘l|u)
= ALG < (1+e)OPT < OPT+ ep(|/|y) =

15/16

FPTAS and Pseudo-Poly. Algorithms

N

‘Theorem. Let p be a polynomial and let /7 be an NP-hard
minimization problem with integral objective
function and OPT (/) < o(]/|,) for all instances /
of /1. If [1 has an FPTAS, then there is a
pseudo-polynomial algorithm for /7.

Proof.
Assume that there is an FPTAS for 7 (in g(|/],1/2) time).

Sete::l/ (‘l|u)
= ALG < (1+e)OPT < OPT+ ep(|/|y) =

15/16

FPTAS and Pseudo-Poly. Algorithms

N

‘Theorem. Let p be a polynomial and let /7 be an NP-hard
minimization problem with integral objective
function and OPT (/) < o(]/|,) for all instances /
of /1. If [1 has an FPTAS, then there is a
pseudo-polynomial algorithm for /7.

Proof.
Assume that there is an FPTAS for 7 (in g(|/],1/2) time).

Set ¢ =1/p(|/].).
= ALG < (1+2)OPT < OPT+ ep(|/|,) = OPT +1.

15/16

FPTAS and Pseudo-Poly. Algorithms

N

‘Theorem. Let p be a polynomial and let /7 be an NP-hard
minimization problem with integral objective
function and OPT (/) < o(]/|,) for all instances /
of /1. If [1 has an FPTAS, then there is a
pseudo-polynomial algorithm for /7.

Proof.
Assume that there is an FPTAS for 7 (in g(|/],1/2) time).

Set ¢ =1/p(|/].).
= ALG < (1+2)OPT < OPT+ ep(|/|,) = OPT +1.

= ALG=0PT.

15/16

FPTAS and Pseudo-Poly. Algorithms

N

‘Theorem. Let p be a polynomial and let /7 be an NP-hard
minimization problem with integral objective
function and OPT (/) < o(]/|,) for all instances /
of [1. If [1 has an FPTAS, then there is a

pseudo-polynomial algorithm for /7.

Proof.
Assume that there is an FPTAS for 7 (in g(|/],1/2) time).

Set ¢ =1/p(|/].).
= ALG < (1+2)OPT < OPT+ ep(|/|,) = OPT +1.

= ALG =0OPT.
Running time:

15/16

FPTAS and Pseudo-Poly. Algorithms

N

‘Theorem. Let p be a polynomial and let /7 be an NP-hard
minimization problem with integral objective
function and OPT (/) < o(]/|,) for all instances /
of [1. If [1 has an FPTAS, then there is a

pseudo-polynomial algorithm for /7.

Proof.

Assume that there is an FPTAS for 7 (in g(|/],1/2) time).
Set e =1/p(|/,).

= ALG < (1+2)OPT < OPT+ ep(|/|,) = OPT +1.

= ALG = OPT.
Running time: g(|/|, p(|/].))

15/16

FPTAS and Pseudo-Poly. Algorithms

N

‘Theorem. Let p be a polynomial and let /7 be an NP-hard
minimization problem with integral objective
function and OPT (/) < o(]/|,) for all instances /
of [1. If [1 has an FPTAS, then there is a

pseudo-polynomial algorithm for /7.

Proof.
Assume that there is an FPTAS for 7 (in g(|/],1/2) time).

Set ¢ =1/p(|/].).
= ALG < (1+2)OPT < OPT+ ep(|/|,) = OPT +1.

= ALG =0OPT.
Running time: g(|/|, p(|/].)), so

15/16

FPTAS and Pseudo-Poly. Algorithms

N

‘Theorem. Let p be a polynomial and let /7 be an NP-hard
minimization problem with integral objective
function and OPT (/) < o(]/|,) for all instances /
of [1. If [1 has an FPTAS, then there is a

pseudo-polynomial algorithm for /7.

Proof.
Assume that there is an FPTAS for 7 (in g(|/],1/2) time).

Set ¢ =1/p(|/].).
= ALG < (1+2)OPT < OPT+ ep(|/|,) = OPT +1.

= ALG =0OPT.
Running time: g(|/|, p(|/[.)), so poly(|/].).

16/16

FPTAS and Strong NP-Hardness

Theorem. A strongly NP-hard problem has no
pseudo-polynomial algorithm unless P = NP.

\

‘Theorem. Let p be a polynomial and let /7 be an NP-hard
minimization problem with integral objective
function and OPT (/) < »(|/|,) for all instances /
of []. If [l has an FPTAS, then there is a
pseudo-polynomial algorithm for /7.

FPTAS and Strong NP-Hardness

16/16

[Theorem.

A strongly NP-hard problem has no
pseudo-polynomial algorithm unless P = NP.

\.

.
Theorem.

Let © be a polynomial and let /7 be an NP-hard
minimization problem with integral objective
function and OPT (/) < »(|/|,) for all instances /
of []. If [l has an FPTAS, then there is a

pseudo-polynomial algorithm for /7.

\

J

p
Corollary.

Let /] be an NP-hard optimization problem that

fulfills the restrictions above.
If /'] is strongly NP-hard, then there is no FPTAS

for /1 (unless P = NP).

\

	Knapsack
	Pseudo-Polynomial Algorithms and Strong NP-Hardness
	Pseudo-Polynomial Algorithms
	Strong NP-Hardness

	Pseudo-Polynomial Algorithm for Knapsack
	Definitions
	Algorithm
	Examples

	Approximation Schemes
	FPTAS for Knapsack
	An FPTAS for \textsc{Knapsack} via Scaling
	Connections
	FPTAS and Pseudo-Polynomial Algorithms
	FPTAS and Strong NP-Hardness

