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Strong NP-Hardness

An optimization problem is called strongly NP-hard if it
remains NP-hard under unary encoding.

An optimization problem is called weakly NP-hard if it is
NP-hard under binary encoding but has a pseudo-polynomial
algorithm.

Theorem. A strongly NP-hard problem has no
pseudo-polynomial algorithm unless P = NP.




6/16

Approximation Algorithms

| ecture 8:
Approximation Schemes and
the KNAPSACK Problem

Part |1l
Pseudo-Polynomial Algorithm for KNAPSACK



7/16

Pseudo-Polynomial Alg. for KNAPSACK

Let P := max; profit(a;)




7/16

Pseudo-Polynomial Alg. for KNAPSACK

Let P := max; profit(a;)




7/16

Pseudo-Polynomial Alg. for KNAPSACK

Let / := max;profit(a;) = <OPT<




7/16

Pseudo-Polynomial Alg. for KNAPSACK

Let P :=max;profit(a;) = P <OPT<nP




7/16

Pseudo-Polynomial Alg. for KNAPSACK
Let 7 := max; profit(a;) = P <OPT<nP

Forevery i=1,..., n and every ped{l,..., nP},




7/16

Pseudo-Polynomial Alg. for KNAPSACK
Let 7 := max; profit(a;) = P <OPT<nP

Forevery i=1,..., n and every ped{l,..., nP},
let S; , be a subset of {a1,..., a;} whose total profit is
precisely p




7/16

Pseudo-Polynomial Alg. for KNAPSACK
Let 7 := max; profit(a;) = P <OPT<nP

Forevery i=1,..., n and every ped{l,..., nP},
let S; , be a subset of {a1,..., a;} whose total profit is
precisely p




7/16

Pseudo-Polynomial Alg. for KNAPSACK
Let 7 := max; profit(a;) = P <OPT<nP

For every i=1,..., n and every ped{l,..., nP},
let S; , be a subset of {a1,..., a;} whose total profit is
precisely p and whose total size iIs minimum among all subsets

with these properties.




7/16

Pseudo-Polynomial Alg. for KNAPSACK
Let 7 := max; profit(a;) = P <OPT<nP

For every i=1,..., n and every ped{l,..., nP},
let S; , be a subset of {a1,..., a;} whose total profit is
precisely p and whose total size iIs minimum among all subsets

with these properties.




7/16

Pseudo-Polynomial Alg. for KNAPSACK

Let /7 := max; = <OPT<n
Foreveryi=1,..., nand every pe{l,..., nP},
let S; , be a subset of {a1,..., a;} whose total profit is

precisely p and whose total size iIs minimum among all subsets
with these properties. Such a set may not exist.




7/16

Pseudo-Polynomial Alg. for KNAPSACK

Let /7 := max; = <OPT<n
Foreveryi=1,..., nand every pe{l,..., nP},
let S; , be a subset of {a1,..., a;} whose total profit is

precisely p and whose total size iIs minimum among all subsets
with these properties. Such a set may not exist.

Let
(set
exists).




7/16

Pseudo-Polynomial Alg. for KNAPSACK

Let /7 := max; = <OPT<n
Foreveryi=1,..., nand every pe{l,..., nP},
let S; , be a subset of {a1,..., a;} whose total profit is

precisely p and whose total size iIs minimum among all subsets
with these properties. Such a set may not exist.

Let
(set
exists).




7/16

Pseudo-Polynomial Alg. for KNAPSACK

Let /7 := max; = <OPT<n
For every i=1,...,nand every pe{l,...,nP},
let S;, be a subset of {a;,...,a;} whose total profit is

precisely p and whose total size iIs minimum among all subsets
with these properties. Such a set may not exist.

Let
(set
exists).

If all are known, then we can

compute
OPT =



7/16

Pseudo-Polynomial Alg. for KNAPSACK

Let /7 := max; = <OPT<n
Foreveryi=1,..., nand every pe{l,..., nP},
let S; , be a subset of {a1,..., a;} whose total profit is

precisely p and whose total size iIs minimum among all subsets
with these properties. Such a set may not exist.

Let
(set
exists).

If all are known, then we can

compute
OPT =max{p| < B}.
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can be computed for every p € {0, ..., nP}.
Set for p <0
= min{ , + }
= All values can be computed in total time O(n?P).
= OPT can be computed in 2 .
O(n*P) total time. @ Sia /\@
di-1 B
° —
Theorem. KNAPSACK can be solved optimally in
pseudo-polynomial time O(n? /). j
‘Corollary. KNAPSACK is weakly NP-hard. :
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Pseudo-Polynomial Alg. for KNAPSACK

Theorem. KNAPSACK can be solved optimally in
pseudo-polynomial time O(n? /).

Observe. The running time O(n?F) is polynomial in n
if /7 is polynomial in n.




10/16

Approximation Algorithms

| ecture 8:
Approximation Schemes and
the KNAPSACK Problem

Part IV:
Approximation Schemes



11/16

Approximation Schemes

Let /] be an optimization problem.



11/16

Approximation Schemes

Let /] be an optimization problem. An algorithm A is called a
polynomial-time approximation scheme (PTAS) for [1

if it outputs, for every input (/,c) with / € Dy and £ > 0,

a solution s € 5(/) such that



11/16

Approximation Schemes

Let /] be an optimization problem. An algorithm A is called a
polynomial-time approximation scheme (PTAS) for [1

if it outputs, for every input (/,c) with / € Dy and £ > 0,

a solution s € 5(/) such that

m <(1+¢)-OPT if I1is a minimization problem,



11/16

Approximation Schemes

Let /] be an optimization problem. An algorithm A is called a
polynomial-time approximation scheme (PTAS) for [1
if it outputs, for every input (/,c) with / € Dy and £ > 0,
a solution s € 5(/) such that
m <(1+¢)-OPT if I1is a minimization problem,
m >(1-¢)-OPT if [Tis a maximization problem,



Approximation Schemes

Let /] be an optimization problem. An algorithm A is called a
polynomial-time approximation scheme (PTAS) for [1
if it outputs, for every input (/,c) with / € Dy and £ > 0,
a solution s € 5(/) such that
m <(1+¢)-OPT if I1is a minimization problem,
m >(1-¢)-OPT if [Tis a maximization problem,

11/16

and the runtime of A is polynomial in |/| for every fixed ¢ > 0.



Approximation Schemes

Let /] be an optimization problem. An algorithm A is called a
polynomial-time approximation scheme (PTAS) for [1
if it outputs, for every input (/,c) with / € Dy and £ > 0,
a solution s € 5(/) such that
m <(1+¢)-OPT if I1is a minimization problem,
m >(1-¢)-OPT if [1is a maximization problem,

11/16

and the runtime of A is polynomial in |/| for every fixed ¢ > 0.

A is called fully polynomial-time approximation scheme
(FPTAS) if its running time is polynomial in |/| and 1/¢.



Approximation Schemes

Let /] be an optimization problem. An algorithm A is called a
polynomial-time approximation scheme (PTAS) for [1
if it outputs, for every input (/,c) with / € Dy and £ > 0,
a solution s € 5(/) such that
m <(1+¢)-OPT if I1is a minimization problem,
m >(1-¢)-OPT if [Tis a maximization problem,

11/16

and the runtime of A is polynomial in |/| for every fixed ¢ > 0.

A is called fully polynomial-time approximation scheme
(FPTAS) if its running time is polynomial in |/| and 1/¢.

Example running times
s O(nt?) ~

m O(n’/e?) ~

o O(2l/€n4) ~



Approximation Schemes

Let /] be an optimization problem. An algorithm A is called a
polynomial-time approximation scheme (PTAS) for [1
if it outputs, for every input (/,c) with / € Dy and £ > 0,
a solution s € 5(/) such that
m <(1+¢)-OPT if I1is a minimization problem,
m >(1-¢)-OPT if [Tis a maximization problem,

11/16

and the runtime of A is polynomial in |/| for every fixed ¢ > 0.

A is called fully polynomial-time approximation scheme
(FPTAS) if its running time is polynomial in |/| and 1/¢.

Example running times
s O(n*?) ~ PTAS
m O(n’/e?) ~
o O(2l/€n4) ~



Approximation Schemes

Let /] be an optimization problem. An algorithm A is called a
polynomial-time approximation scheme (PTAS) for [1
if it outputs, for every input (/,c) with / € Dy and £ > 0,
a solution s € 5(/) such that
m <(1+¢)-OPT if I1is a minimization problem,
m >(1-¢)-OPT if [Tis a maximization problem,

11/16

and the runtime of A is polynomial in |/| for every fixed ¢ > 0.

A is called fully polynomial-time approximation scheme
(FPTAS) if its running time is polynomial in |/| and 1/¢.

Example running times
s O(n*?) ~ PTAS

m O(n/s?) ~ FPTAS
o O(2l/€n4) ~



Approximation Schemes

Let /] be an optimization problem. An algorithm A is called a
polynomial-time approximation scheme (PTAS) for [1
if it outputs, for every input (/,c) with / € Dy and £ > 0,
a solution s € 5(/) such that
m <(1+¢)-OPT if I1is a minimization problem,
m >(1-¢)-OPT if [Tis a maximization problem,

11/16

and the runtime of A is polynomial in |/| for every fixed ¢ > 0.

A is called fully polynomial-time approximation scheme
(FPTAS) if its running time is polynomial in |/| and 1/¢.

Example running times
s O(n*?) ~ PTAS

m O(n/s?) ~ FPTAS
s 0(2n*) ~ PTAS



12/16

Approximation Algorithms

| ecture 8:
Approximation Schemes and
the KNAPSACK Problem

Part V:
FPTAS for KNAPSACK



13/16

An FPTAS for KNAPSACK via Scaling

FPTAS idea: Scale profits to polynomial size (as required by
the error parameter ¢). ..



13/16

An FPTAS for KNAPSACK via Scaling

_____________________________________________________________________________________________

FPTAS idea: Scale profits to polynomial size (as required by
the error parameter ¢). ..



13/16

An FPTAS for KNAPSACK via Scaling

_____________________________________________________________________________________________

‘KnapsackScaling (/, ¢)
- K=¢P/n

FPTAS idea: Scale profits to polynomial size (as required by
the error parameter ¢). ..



13/16

An FPTAS for KNAPSACK via Scaling

_____________________________________________________________________________________________

‘KnapsackScaling (/, ¢)
. K=¢P/n // scaling factor

FPTAS idea: Scale profits to polynomial size (as required by
the error parameter ¢). ..



13/16

An FPTAS for KNAPSACK via Scaling

_____________________________________________________________________________________________

‘KnapsackScaling (/, ¢)
. K=¢P/n // scaling factor

FPTAS idea: Scale profits to polynomial size (as required by
the error parameter ¢). ..



13/16

An FPTAS for KNAPSACK via Scaling

_____________________________________________________________________________________________

‘KnapsackScaling (/, ¢)
. K=¢P/n // scaling factor

FPTAS idea: Scale profits to polynomial size (as required by
the error parameter ¢). ..



13/16

An FPTAS for KNAPSACK via Scaling

_____________________________________________________________________________________________

‘KnapsackScaling (/, ¢)
. K=¢P/n // scaling factor

= /K]

Compute optimal solution S’ for | w.r.t.

FPTAS idea: Scale profits to polynomial size (as required by
the error parameter ¢). ..



13/16

An FPTAS for KNAPSACK via Scaling

_____________________________________________________________________________________________

‘KnapsackScaling (/, ¢)
. K=¢P/n // scaling factor
= | /K]
Compute optimal solution S’ for | w.r.t.
return S’

FPTAS idea: Scale profits to polynomial size (as required by
the error parameter ¢). ..



An FPTAS for KNAPSACK via Scaling

___________________________________________________________________________________________

‘KnapsackScaling (/, ¢)
. K=¢P/n // scaling factor

=| /K]
Compute optimal solution S’ for | w.r.t.
return S’

13/16

FPTAS idea: Scale profits to polynomial size (as required by
the error parameter ¢). ..



An FPTAS for KNAPSACK via Scaling

_____________________________________________________________________________

‘KnapsackScaling (/, ¢)
 K=¢ /n // scaling factor

= /K]

Compute optimal solution S’ for | w.r.t.

13/16

retumn ST
[Lemma >(1l-¢)-OPT
Proof Let OPT ={oy,..., oy}

FPTAS idea: Scale profits to polynomial size (as required by

the error parameter ¢). ..



13/16

An FPTAS for KNAPSACK via Scaling

_____________________________________________________________________

‘KnapsackScaling (/, ¢)
 K=¢ /n // scaling factor

= /K]

Compute optimal solution S’ for | w.r.t.

_retwns
[Lemma >(1l-¢)-OPT
Proof Let OPT ={oy,..., oy}
Obs. 1. Fori=1,..., /, < K- <

FPTAS idea: Scale profits to polynomial size (as required by

the error parameter ¢). ..



13/16

An FPTAS for KNAPSACK via Scaling

_____________________________________________________________________

‘KnapsackScaling (/, ¢)
 K=¢ /n // scaling factor

= /K]

Compute optimal solution S’ for | w.r.t.

_retwns
[Lemma >(1l-¢)-OPT
Proof Let OPT ={oy,..., oy}
Obs. 1. Fori=1,..., /, < K- <

FPTAS idea: Scale profits to polynomial size (as required by

the error parameter ¢). ..



13/16

An FPTAS for KNAPSACK via Scaling

_____________________________________________________________________

‘KnapsackScaling (/, ¢)
 K=¢ /n // scaling factor

= /K]

Compute optimal solution S’ for | w.r.t.

_retwns
[Lemma >(1l-¢)-OPT
Proof Let OPT ={oq,..., o}
Obs. 1. Fori=1,..., /, -K < K- <

FPTAS idea: Scale profits to polynomial size (as required by

the error parameter ¢). ..



13/16

An FPTAS for KNAPSACK via Scaling

_____________________________________________________________________

‘KnapsackScaling (/, ¢)
 K=¢ /n // scaling factor

= /K]

Compute optimal solution S’ for | w.r.t.

_return S
[Lemma >(1l-¢)-OPT
Proof. Let OPT ={oy,..., oy}
Obs. 1. Fori=1,..., /, -K < K- <

FPTAS idea: Scale profits to polynomial size (as required by

the error parameter ¢). ..



13/16

An FPTAS for KNAPSACK via Scaling

_____________________________________________________________________

‘KnapsackScaling (/, ¢)
 K=¢ /n // scaling factor

= /K]

Compute optimal solution S’ for | w.r.t.

_return S
[Lemma >(1l-¢)-OPT
Proof. Let OPT ={oy,..., oy}
Obs. 1. Fori=1,..., /, -K < K- <
= K - Z,’ > OPT = /K >

FPTAS idea: Scale profits to polynomial size (as required by

the error parameter ¢). ..



13/16

An FPTAS for KNAPSACK via Scaling

_____________________________________________________________________

‘KnapsackScaling (/, ¢)
 K=¢ /n // scaling factor

= /K]

Compute optimal solution S’ for | w.r.t.

_return S
[Lemma >(1l-¢)-OPT
Proof. Let OPT ={oy,..., oy}
Obs. 1. Fori=1,..., /, -K < K- <
- K.Y, > OPT- ¢K > OPT - nK =

FPTAS idea: Scale profits to polynomial size (as required by

the error parameter ¢). ..



13/16

An FPTAS for KNAPSACK via Scaling

_____________________________________________________________________________________________

‘KnapsackScaling (/, ¢)
K = eP/n // scaling factor

profit’(a;) = | profit(a;) /K|
Compute optimal solution S for / w.r.t. profit’(-).

_returns’
[Lemma. profit(5") > (1 -¢) - OPT. ]
Proof. Let OPT ={oq,..., or}.

Obs. 1. Fori=1,..., ¢, profit(o;) — K < K- profit’ (o;) < profit(o;)
= K.Y profit'(o;) > OPT - /K> OPT - nK =0OPT - ¢P.

FPTAS idea: Scale profits to polynomial size (as required by
the error parameter ¢). ..



13/16

An FPTAS for KNAPSACK via Scaling

_____________________________________________________________________________________________

‘KnapsackScaling (/, ¢)
K = eP/n // scaling factor

profit’(a;) = | profit(a;) /K|
Compute optimal solution S for / w.r.t. profit’(-).

_returns’
[Lemma. profit(5") > (1 -¢) - OPT. ]
Proof. Let OPT ={oq,..., or}.

Obs. 1. Fori=1,..., ¢, profit(o;) — K < K- profit’ (o;) < profit(o;)
= K.Y profit'(o;) > OPT - /K> OPT - nK =0OPT - ¢P.

Obs. 2. > K- profit’(o,-)

FPTAS idea: Scale profits to polynomial size (as required by
the error parameter ¢). ..



13/16

An FPTAS for KNAPSACK via Scaling

_____________________________________________________________________________________________

‘KnapsackScaling (/, ¢)
K = eP/n // scaling factor

profit’(a;) = | profit(a;) /K|
Compute optimal solution S for / w.r.t. profit’(-).

_returns’
[Lemma. profit(5") > (1 -¢) - OPT. ]
Proof. Let OPT ={oq,..., or}.

Obs. 1. Fori=1,..., ¢, profit(o;) — K < K- profit’ (o;) < profit(o;)
= K.Y profit'(o;) > OPT - /K> OPT - nK =0OPT - ¢P.
Obs. 2. > K - profit’(S") > K - 3, profit’ (o;)

FPTAS idea: Scale profits to polynomial size (as required by
the error parameter ¢). ..



13/16

An FPTAS for KNAPSACK via Scaling

_____________________________________________________________________________________________

‘KnapsackScaling (/, ¢)
K = eP/n // scaling factor

profit’(a;) = | profit(a;) /K|
Compute optimal solution S for / w.r.t. profit’(-).

_returns’
[Lemma. profit(5") > (1 -¢) - OPT. ]
Proof. Let OPT ={oq,..., or}.

Obs. 1. Fori=1,..., ¢, profit(o;) — K < K- profit’ (o;) < profit(o;)
= K.Y profit'(o;) > OPT - /K> OPT - nK =0OPT - ¢P.
Obs. 2. profit(S") > K - profit’(S") > K - 3, profit’ (o;)

FPTAS idea: Scale profits to polynomial size (as required by
the error parameter ¢). ..



13/16

An FPTAS for KNAPSACK via Scaling

_____________________________________________________________________________________________

‘KnapsackScaling (/, ¢)
K = eP/n // scaling factor

profit’(a;) = | profit(a;) /K|
Compute optimal solution S for / w.r.t. profit’(-).

_returns’
[Lemma. profit(5") > (1 -¢) - OPT. ]
Proof. Let OPT ={oq,..., or}.

Obs. 1. Fori=1,..., ¢, profit(o;) — K < K- profit’ (o;) < profit(o;)
= K.Y profit'(o;) > OPT - /K> OPT - nK =0OPT - ¢P.
Obs. 2. profit(S") > K - profit’(S") > K - 3; profit’ (o;)
= profit(5’) >

FPTAS idea: Scale profits to polynomial size (as required by
the error parameter ¢). ..



13/16

An FPTAS for KNAPSACK via Scaling

_____________________________________________________________________________________________

‘KnapsackScaling (/, ¢)
K = eP/n // scaling factor

profit’(a;) = | profit(a;) /K|
Compute optimal solution S for / w.r.t. profit’(-).

_return ST
(Lemma.  profit(S') 2 (1-¢)-OPT. |
Proof. Let OPT ={oq,..., or}.

Obs. 1. Fori=1,..., ¢, profit(o;) — K < K- profit’ (o;) < profit(o;)
= K.Y profit'(o;) > OPT - /K> OPT - nK =0OPT - ¢P.
Obs. 2. profit(S") > K - profit’(S") > K - 3; profit’ (o;)
= profit(5’) > OPT — eP >

FPTAS idea: Scale profits to polynomial size (as required by
the error parameter ¢). ..



13/16

An FPTAS for KNAPSACK via Scaling

_____________________________________________________________________________________________

‘KnapsackScaling (/, ¢)
K = eP/n // scaling factor

profit’(a;) = | profit(a;) /K|
Compute optimal solution S for / w.r.t. profit’(-).

_return ST
(Lemma.  profit(S') 2 (1-¢)-OPT. |
Proof. Let OPT ={oq,..., or}.

Obs. 1. Fori=1,..., ¢, profit(o;) — K < K- profit'(o;) < profit(o;)
= K.Y profit'(o;) > OPT - /K> OPT - nK =0OPT - ¢P.
Obs. 2. profit(S") > K - profit’(S") > K - 3, profit’ (o;)
= profit(S5") > OPT - eP > OPT - ¢ OPT =

FPTAS idea: Scale profits to polynomial size (as required by
the error parameter ¢). ..



13/16

An FPTAS for KNAPSACK via Scaling

_____________________________________________________________________________________________

‘KnapsackScaling (/, ¢)
K = eP/n // scaling factor

profit’(a;) = | profit(a;) /K|
Compute optimal solution S for / w.r.t. profit’(-).

_return ST
(Lemma.  profit(S') 2 (1-¢)-OPT. |
Proof. Let OPT ={oq,..., or}.

Obs. 1. Fori=1,..., ¢, profit(o;) — K < K- profit’ (o;) < profit(o;)
= K.Y profit'(o;) > OPT - /K> OPT - nK =0OPT - ¢P.
Obs. 2. profit(S") > K - profit’(S") > K - 3; profit’ (o;)
= profit(S') 2 OPT = eP > OPT - ¢ OPT = (1 —¢)-OPT

FPTAS idea: Scale profits to polynomial size (as required by
the error parameter ¢). ..



13/16

An FPTAS for KNAPSACK via Scaling

_____________________________________________________________________________________________

‘KnapsackScaling (/, ¢)
K = eP/n // scaling factor

profit’(a;) = | profit(a;) /K|
Compute optimal solution S for / w.r.t. profit’(-).

_returns’
[Lemma. profit(5") > (1 -¢) - OPT. ]
Proof. Let OPT ={oq,..., or}.

Obs. 1. Fori=1,..., ¢, profit(o;) — K < K- profit’ (o;) < profit(o;)
= K.Y profit'(o;) > OPT - /K> OPT - nK =0OPT - ¢P.
Obs. 2. profit(S") > K - profit’(S") > K - 3; profit’ (o;)
= profit(S') 2 OPT = eP > OPT - ¢ OPT = (1 —¢)-OPT

‘Theorem. KnapsackScaling is an FPTAS for KNAPSACK with!
running time O(n>/<)

\. J/




13/16

An FPTAS for KNAPSACK via Scaling

_____________________________________________________________________________________________

‘KnapsackScaling (/, ¢)
K = eP/n // scaling factor

profit’(a;) = | profit(a;) /K|
Compute optimal solution S for / w.r.t. profit’(-).

_returns’
[Lemma. profit(5") > (1 -¢) - OPT. ]
Proof. Let OPT ={oq,..., or}.

Obs. 1. Fori=1,..., ¢, profit(o;) — K < K- profit’ (o;) < profit(o;)
= K.Y profit'(o;) > OPT - /K> OPT - nK =0OPT - ¢P.
Obs. 2. profit(S") > K - profit’(S") > K - 3; profit’ (o;)
= profit(S') 2 OPT = eP > OPT - ¢ OPT = (1 —¢)-OPT

‘Theorem. KnapsackScaling is an FPTAS for KNAPSACK with!

running time O(n®/c) = O (n2 : elf/n)'

\. J/




14/16

Approximation Algorithms

| ecture 8:
Approximation Schemes and
the KNAPSACK Problem

Part VI:
Connections Between the Concepts
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FPTAS and Strong NP-Hardness

Theorem. A strongly NP-hard problem has no
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[Theorem.

A strongly NP-hard problem has no
pseudo-polynomial algorithm unless P = NP.

\.

.
Theorem.

Let © be a polynomial and let /7 be an NP-hard
minimization problem with integral objective
function and OPT (/) < »(|/|,) for all instances /
of []. If [l has an FPTAS, then there is a

pseudo-polynomial algorithm for /7.

\

J

p
Corollary.

Let /] be an NP-hard optimization problem that

fulfills the restrictions above.
If /'] is strongly NP-hard, then there is no FPTAS

for /1 (unless P = NP).

\
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