Approximation Algorithms

Lecture 7:

Scheduling Jobs on Parallel Machines

Part I:
ILP \& Parametric Pruning

Scheduling on Parallel Machines

Given: A set \mathcal{J} of jobs,

$$
\mathcal{J}=\left\{J_{1}, J_{2}, \ldots, J_{8}\right\}
$$

Scheduling on Parallel Machines

Given: A set \mathcal{J} of jobs, a set \mathcal{M} of machines, and

$$
\begin{aligned}
& \mathcal{J}=\left\{J_{1}, J_{2}, \ldots, J_{8}\right\} \\
& \mathcal{M}=\left\{M_{1}, M_{2}, M_{3}\right\}
\end{aligned}
$$

Scheduling on Parallel Machines

Given: A set \mathcal{J} of jobs, a set \mathcal{M} of machines, and for each $M_{i} \in \mathcal{M}$ and $J_{j} \in \mathcal{J}$ the processing time $p_{i j} \in \mathbb{N}^{+}$of J_{j} on M_{i}.

$$
\begin{aligned}
& \mathcal{J}=\left\{J_{1}, J_{2}, \ldots, J_{8}\right\} \\
& \mathcal{M}=\left\{M_{1}, M_{2}, M_{3}\right\} \\
& \left(p_{i j}\right)_{M_{i} \in \mathcal{M}, J_{j} \in \mathcal{J}}
\end{aligned}
$$

Scheduling on Parallel Machines

Given: A set \mathcal{J} of jobs, a set \mathcal{M} of machines, and for each $M_{i} \in \mathcal{M}$ and $J_{j} \in \mathcal{J}$ the processing time $p_{i j} \in \mathbb{N}^{+}$of J_{j} on M_{i}.
Task: A schedule $\sigma: \mathcal{J} \rightarrow \mathcal{M}$ of the jobs on the machines that minimizes the total time to completion (makespan), i.e., minimizes the maximum time a machine is in use.

$$
\begin{aligned}
& \mathcal{J}=\left\{J_{1}, J_{2}, \ldots, J_{8}\right\} \\
& \mathcal{M}=\left\{M_{1}, M_{2}, M_{3}\right\} \\
& \left(p_{i j}\right)_{M_{i} \in \mathcal{M}, J_{j} \in \mathcal{J}}
\end{aligned}
$$

Scheduling on Parallel Machines

Given: A set \mathcal{J} of jobs, a set \mathcal{M} of machines, and for each $M_{i} \in \mathcal{M}$ and $J_{j} \in \mathcal{J}$ the processing time $p_{i j} \in \mathbb{N}^{+}$of J_{j} on M_{i}.
Task: A schedule $\sigma: \mathcal{J} \rightarrow \mathcal{M}$ of the jobs on the machines that minimizes the total time to completion (makespan), i.e., minimizes the maximum time a machine is in use.
M_{1}

$$
\begin{aligned}
& \mathcal{J}=\left\{J_{1}, J_{2}, \ldots, J_{8}\right\} \\
& \mathcal{M}=\left\{M_{1}, M_{2}, M_{3}\right\}
\end{aligned}
$$

M_{2}
M_{3}

$$
\left(p_{i j}\right)_{M_{i} \in \mathcal{M}, J_{j} \in \mathcal{J}}
$$

Scheduling on Parallel Machines

Given: A set \mathcal{J} of jobs, a set \mathcal{M} of machines, and for each $M_{i} \in \mathcal{M}$ and $J_{j} \in \mathcal{J}$ the processing time $p_{i j} \in \mathbb{N}^{+}$of J_{j} on M_{i}.
Task: A schedule $\sigma: \mathcal{J} \rightarrow \mathcal{M}$ of the jobs on the machines that minimizes the total time to completion (makespan), i.e., minimizes the maximum time a machine is in use.

$$
\begin{aligned}
& \mathcal{J}=\left\{J_{1}, J_{2}, \ldots, J_{8}\right\} \\
& \mathcal{M}=\left\{M_{1}, M_{2}, M_{3}\right\}
\end{aligned}
$$

M_{2}
M_{3}

Scheduling on Parallel Machines

Given: A set \mathcal{J} of jobs, a set \mathcal{M} of machines, and for each $M_{i} \in \mathcal{M}$ and $J_{j} \in \mathcal{J}$ the processing time $p_{i j} \in \mathbb{N}^{+}$of J_{j} on M_{i}.
Task: A schedule $\sigma: \mathcal{J} \rightarrow \mathcal{M}$ of the jobs on the machines that minimizes the total time to completion (makespan), i.e., minimizes the maximum time a machine is in use.

$$
\begin{aligned}
& \mathcal{J}=\left\{J_{1}, J_{2}, \ldots, J_{8}\right\} \\
& \mathcal{M}=\left\{M_{1}, M_{2}, M_{3}\right\}
\end{aligned}
$$

M_{3}

Scheduling on Parallel Machines

Given: A set \mathcal{J} of jobs, a set \mathcal{M} of machines, and for each $M_{i} \in \mathcal{M}$ and $J_{j} \in \mathcal{J}$ the processing time $p_{i j} \in \mathbb{N}^{+}$of J_{j} on M_{i}.
Task: A schedule $\sigma: \mathcal{J} \rightarrow \mathcal{M}$ of the jobs on the machines that minimizes the total time to completion (makespan), i.e., minimizes the maximum time a machine is in use.

Scheduling on Parallel Machines

Given: A set \mathcal{J} of jobs, a set \mathcal{M} of machines, and for each $M_{i} \in \mathcal{M}$ and $J_{j} \in \mathcal{J}$ the processing time $p_{i j} \in \mathbb{N}^{+}$of J_{j} on M_{i}.
Task: A schedule $\sigma: \mathcal{J} \rightarrow \mathcal{M}$ of the jobs on the machines that minimizes the total time to completion (makespan), i.e., minimizes the maximum time a machine is in use.

Formulation as ILP

minimize $\quad t$

subject to

Formulation as ILP

minimize $\quad t$

subject to

$$
x_{i j} \in\{0,1\}, \quad M_{i} \in \mathcal{M}, J_{j} \in \mathcal{J}
$$

Formulation as ILP

minimize $\quad t$

subject to

$$
\begin{aligned}
& J_{j} \in \mathcal{J} \\
& M_{i} \in \mathcal{M}
\end{aligned}
$$

$$
x_{i j} \in\{0,1\}, \quad M_{i} \in \mathcal{M}, J_{j} \in \mathcal{J}
$$

Formulation as ILP

minimize t

subject to $\quad \sum_{M_{i} \in \mathcal{M}} x_{i j}=1, \quad J_{j} \in \mathcal{J}$
$M_{i} \in \mathcal{M}$
$x_{i j} \in\{0,1\}, \quad M_{i} \in \mathcal{M}, J_{j} \in \mathcal{J}$

Formulation as ILP

minimize $\quad t$

subject to $\quad \sum_{M_{i} \in \mathcal{M}} x_{i j}=1, \quad J_{j} \in \mathcal{J}$
$\sum_{J_{j} \in \mathcal{J}} x_{i j} p_{i j} \leq t, \quad M_{i} \in \mathcal{M}$
$x_{i j} \in\{0,1\}, \quad M_{i} \in \mathcal{M}, J_{j} \in \mathcal{J}$

Formulation as ILP

minimize $\quad t$

subject to $\quad \sum_{M_{i} \in \mathcal{M}} x_{i j}=1, \quad J_{j} \in \mathcal{J}$

$$
\begin{aligned}
& \sum_{J_{j} \in \mathcal{J}} x_{i j} p_{i j} \leq t, \quad M_{i} \in \mathcal{M} \\
& x_{i j} \in\{0,1\}, \quad M_{i} \in \mathcal{M}, J_{j} \in \mathcal{J}
\end{aligned}
$$

Task: Prove that the integrality gap is unbounded!

Formulation as ILP

minimize $\quad t$

subject to

$$
\begin{array}{ll}
\sum_{M_{i} \in \mathcal{M}} x_{i j}=1, & J_{j} \in \mathcal{J} \\
\sum_{J_{j} \in \mathcal{J}} x_{i j} p_{i j} \leq t, & M_{i} \in \mathcal{M} \\
x_{i j} \in\{0,1\}, & M_{i} \in \mathcal{M}, J_{j} \in \mathcal{J}
\end{array}
$$

Task: Prove that the integrality gap is unbounded!
Solution: m machines and one job with processing time m

Formulation as ILP

minimize $\quad t$

subject to

$$
\begin{array}{ll}
\sum_{M_{i} \in \mathcal{M}} x_{i j}=1, & J_{j} \in \mathcal{J} \\
\sum_{J_{j} \in \mathcal{J}} x_{i j} p_{i j} \leq t, & M_{i} \in \mathcal{M} \\
x_{i j} \in\{0,1\}, & M_{i} \in \mathcal{M}, J_{j} \in \mathcal{J}
\end{array}
$$

Task: Prove that the integrality gap is unbounded!
Solution: m machines and one job with processing time m $\Rightarrow \mathrm{OPT}=m$ and $\mathrm{OPT}_{\text {frac }}=1$.

Parametric Pruning

Strengthen the ILP \rightarrow implicit (non-linear) constraint: If $p_{i j}>t$, then set $x_{i j}=0$.

Parametric Pruning

Strengthen the ILP \rightarrow implicit (non-linear) constraint:
If $p_{i j}>t$, then set $x_{i j}=0$.
Introduce new parameter $T \in \mathbb{N}$ as a lower bound on OPT.

Parametric Pruning

Strengthen the ILP \rightarrow implicit (non-linear) constraint:
If $p_{i j}>t$, then set $x_{i j}=0$.
Introduce new parameter $T \in \mathbb{N}$ as a lower bound on OPT.
Define $S_{T}:=\left\{(i, j): M_{i} \in \mathcal{M}, J_{j} \in \mathcal{J}, p_{i j} \leq T\right\}$.

Parametric Pruning

Strengthen the ILP \rightarrow implicit (non-linear) constraint:
If $p_{i j}>t$, then set $x_{i j}=0$.
Introduce new parameter $T \in \mathbb{N}$ as a lower bound on OPT.
Define $S_{T}:=\left\{(i, j): M_{i} \in \mathcal{M}, J_{j} \in \mathcal{J}, p_{i j} \leq T\right\}$.
Define the "pruned" relaxation $\operatorname{LP}(T)$:

minimize

$$
\begin{array}{ll}
\sum_{M_{i} \in \mathcal{M}} x_{i j}=1, & J_{j} \in \mathcal{J} \\
\sum_{J_{j} \in \mathcal{J}} x_{i j} p_{i j} \leq t, & M_{i} \in \mathcal{M} \\
x_{i j} \in\{0,1\}, & M_{i} \in \mathcal{M}, J_{j} \in \mathcal{J}
\end{array}
$$

Parametric Pruning

Strengthen the ILP \rightarrow implicit (non-linear) constraint:
If $p_{i j}>t$, then set $x_{i j}=0$.
Introduce new parameter $T \in \mathbb{N}$ as a lower bound on OPT.
Define $S_{T}:=\left\{(i, j): M_{i} \in \mathcal{M}, J_{j} \in \mathcal{J}, p_{i j} \leq T\right\}$.
Define the "pruned" relaxation $\operatorname{LP}(T)$:

minimize

$$
\begin{aligned}
& \sum_{M_{i} \in \mathcal{M}} x_{i j}=1, \quad J_{j} \in \mathcal{J} \\
& \sum_{J_{j} \in \mathcal{J}} x_{i j} p_{i j} \leq t, \quad M_{i} \in \mathcal{M} \\
& x_{i j} \in \mathcal{O}_{0}, \mathcal{K}_{\mathrm{K}} \geq 0 \quad M_{i} \in \mathcal{M}, J_{j} \in \mathcal{J}
\end{aligned}
$$

Parametric Pruning

Strengthen the ILP \rightarrow implicit (non-linear) constraint:
If $p_{i j}>t$, then set $x_{i j}=0$.
Introduce new parameter $T \in \mathbb{N}$ as a lower bound on OPT.
Define $S_{T}:=\left\{(i, j): M_{i} \in \mathcal{M}, J_{j} \in \mathcal{J}, p_{i j} \leq T\right\}$.
Define the "pruned" relaxation $\operatorname{LP}(T)$:

minimize

t

subject to

$$
\begin{aligned}
& \sum_{M_{i} \in \mathcal{M}} x_{i j}=1, \quad J_{j} \in \mathcal{J} \\
& \sum_{J_{j} \in \mathcal{J}} x_{i j} p_{i j} \leq t, \quad M_{i} \in \mathcal{M} \\
& x_{i j} \in 0, \mathcal{Z} \geq 0 \quad(i, j) \in S_{T}
\end{aligned}
$$

Parametric Pruning

Strengthen the ILP \rightarrow implicit (non-linear) constraint:
If $p_{i j}>t$, then set $x_{i j}=0$.
Introduce new parameter $T \in \mathbb{N}$ as a lower bound on OPT.
Define $S_{T}:=\left\{(i, j): M_{i} \in \mathcal{M}, J_{j} \in \mathcal{J}, p_{i j} \leq T\right\}$.
Define the "pruned" relaxation $\operatorname{LP}(T)$:
minimize $\quad t$
subject to $\quad \sum x_{i j}=1, \quad J_{j} \in \mathcal{J}$
$i:(i, j) \in S_{T}$
$\sum_{J_{j} \in \mathcal{J}} x_{i j} p_{i j} \leq t, \quad M_{i} \in \mathcal{M}$
$x_{i j} \equiv\left\{0, \xi_{1} \geq 0\right.$ Min $(i, j) \in S_{T}$

Parametric Pruning

Strengthen the ILP \rightarrow implicit (non-linear) constraint:
If $p_{i j}>t$, then set $x_{i j}=0$.
Introduce new parameter $T \in \mathbb{N}$ as a lower bound on OPT.
Define $S_{T}:=\left\{(i, j): M_{i} \in \mathcal{M}, J_{j} \in \mathcal{J}, p_{i j} \leq T\right\}$.
Define the "pruned" relaxation $\operatorname{LP}(T)$:

minimize $\quad t$

subject to $\quad \sum x_{i j}=1, \quad J_{j} \in \mathcal{J}$
$i:(i, j) \in S_{T} \sum_{\text {Th }}$
$j:(i, j) \in \sum_{S T \in S} x_{i j} p_{i j} \leq t, \quad M_{i} \in \mathcal{M}$
$x_{i j} \equiv\left\{0, \xi_{k} \geq 0 \quad \overline{M_{i}}(i, j) \in S_{T}\right.$

Parametric Pruning

Strengthen the ILP \rightarrow implicit (non-linear) constraint:
If $p_{i j}>t$, then set $x_{i j}=0$.
Introduce new parameter $T \in \mathbb{N}$ as a lower bound on OPT.
Define $S_{T}:=\left\{(i, j): M_{i} \in \mathcal{M}, J_{j} \in \mathcal{J}, p_{i j} \leq T\right\}$.
Define the "pruned" relaxation $\operatorname{LP}(T)$:

minimize $\quad t$

subject to $\quad \sum x_{i j}=1, \quad J_{j} \in \mathcal{J}$
$i:(i, j) \in S_{T} \sum_{\text {I }}$
$j:(i, j) \in \sum_{S T J \in S} x_{i j} p_{i j} \leq$ A $T M_{i} \in \mathcal{M}$
$x_{i j} \in\left\{0, \xi_{k} \geq 0 \quad M_{i}(i, j) \in S_{T}\right.$

Parametric Pruning

Strengthen the ILP \rightarrow implicit (non-linear) constraint:
If $p_{i j}>t$, then set $x_{i j}=0$.
Introduce new parameter $T \in \mathbb{N}$ as a lower bound on OPT.
Define $S_{T}:=\left\{(i, j): M_{i} \in \mathcal{M}, J_{j} \in \mathcal{J}, p_{i j} \leq T\right\}$.
Define the "pruned" relaxation $\operatorname{LP}(T)$:

minimaza

subject to $\quad \sum x_{i j}=1, \quad J_{j} \in \mathcal{J}$
$i:(i, j) \in S_{\text {T }} \sum_{1}$
$j:(i, j) \in \sum_{S T J \in S} x_{i j} p_{i j} \leq \not \subset T M_{i} \in \mathcal{M}$
$x_{i j} \in\left\{0, \xi_{k} \geq 0 \quad M_{i}(i, j) \in S_{T}\right.$

Parametric Pruning

Strengthen the ILP \rightarrow implicit (non-linear) constraint:
If $p_{i j}>t$, then set $x_{i j}=0$.
Introduce new parameter $T \in \mathbb{N}$ as a lower bound on OPT.
Define $S_{T}:=\left\{(i, j): M_{i} \in \mathcal{M}, J_{j} \in \mathcal{J}, p_{i j} \leq T\right\}$.
Define the "pruned" relaxation $\operatorname{LP}(T)$:

$$
\begin{aligned}
\sum_{i:(i, j) \in S_{T}} x_{i j} & =1, \quad J_{j} \in \mathcal{J} \\
\sum_{j:(i, j) \in S_{T}} x_{i j} p_{i j} & \leq T, \quad M_{i} \in \mathcal{M} \\
x_{i j} & \geq 0, \quad(i, j) \in S_{T}
\end{aligned}
$$

Parametric Pruning

Strengthen the ILP \rightarrow implicit (non-linear) constraint:
If $p_{i j}>t$, then set $x_{i j}=0$.
Introduce new parameter $T \in \mathbb{N}$ as a lower bound on OPT.
Define $S_{T}:=\left\{(i, j): M_{i} \in \mathcal{M}, J_{j} \in \mathcal{J}, p_{i j} \leq T\right\}$.
Define the "pruned" relaxation $\operatorname{LP}(T)$:

$$
\begin{aligned}
\sum_{i:(i, j) \in S_{T}} x_{i j} & =1, \quad J_{j} \in \mathcal{J} \\
\sum_{j:(i, j) \in S_{T}} x_{i j} p_{i j} & \leq T, \quad M_{i} \in \mathcal{M} \\
x_{i j} & \geq 0, \quad(i, j) \in S_{T}
\end{aligned}
$$

Note:

$\operatorname{LP}(T)$ has no objective function; we just need to check whether a feasible solution exists.

Parametric Pruning

Strengthen the ILP \rightarrow implicit (non-linear) constraint:
If $p_{i j}>t$, then set $x_{i j}=0$.
Introduce new parameter $T \in \mathbb{N}$ as a lower bound on OPT.
Define $S_{T}:=\left\{(i, j): M_{i} \in \mathcal{M}, J_{j} \in \mathcal{J}, p_{i j} \leq T\right\}$.
Define the "pruned" relaxation $\operatorname{LP}(T)$:

$\sum_{i:(i, j) \in S_{T}} x_{i j}$	$=1, \quad J_{j} \in \mathcal{J}$
$\sum_{j:(i, j) \in S_{T}} x_{i j} p_{i j} \leq T, \quad$	$M_{i} \in \mathcal{M}$
$x_{i j} \geq 0$,	$(i, j) \in S_{T}$

Note:
 LP (T) has no objective function; we just need to check whether a feasible solution exists.

But why does this LP give a good integrality gap?

Approximation Algorithms

Lecture 7:

Scheduling Jobs on Parallel Machines

Part II:
Properties of Extreme-Point Solutions

Properties of Extreme Point Solutions

Use binary search to find the smallest T so that $\operatorname{LP}(T)$ has a solution.

$$
\begin{aligned}
& \operatorname{LP}(T): \\
& \sum_{i:(i, j) \in S_{T}} x_{i j}=1, \quad J_{j} \in \mathcal{J} \\
& \sum_{j:(i, j) \in S_{T}} x_{i j} p_{i j} \leq T, \quad M_{i} \in \mathcal{M} \\
& x_{i j} \geq 0, \quad(i, j) \in S_{T}
\end{aligned}
$$

Properties of Extreme Point Solutions

Use binary search to find the smallest T so that $\operatorname{LP}(T)$ has a solution. Let T^{*} be this value of T.

$$
\begin{aligned}
& \sum_{i P(T):} x_{i j}=1, \quad J_{j} \in \mathcal{J} \\
& \sum_{j:(i, j) \in S_{T}} x_{i j} p_{i j} \leq T, \quad M_{i} \in \mathcal{M} \\
& x_{i j} \geq 0, \quad(i, j) \in S_{T}
\end{aligned}
$$

Properties of Extreme Point Solutions

Use binary search to find the smallest T so that $\operatorname{LP}(T)$ has a solution. Let T^{*} be this value of T. What are the bounds for our search?

$$
\begin{aligned}
& \sum_{i:(i, j) \in S_{T}} x_{i j}=1, \quad J_{j} \in \mathcal{J} \\
& \sum_{j:(i, j) \in S_{T}} x_{i j} p_{i j} \leq T, \quad M_{i} \in \mathcal{M} \\
& x_{i j} \geq 0, \quad(i, j) \in S_{T}
\end{aligned}
$$

Properties of Extreme Point Solutions

Use binary search to find the smallest T so that $\operatorname{LP}(T)$ has a solution. Let T^{*} be this value of T. What are the bounds for our search?
Observe: $\quad T^{*} \leq$ OPT

$$
\begin{aligned}
& \operatorname{LP}(T): \\
& \sum_{i:(i, j) \in S_{T}} x_{i j}=1, \quad J_{j} \in \mathcal{J} \\
& \sum_{j:(i, j) \in S_{T}} x_{i j} p_{i j} \leq T, \quad M_{i} \in \mathcal{M} \\
& \\
& x_{i j} \geq 0, \quad(i, j) \in S_{T}
\end{aligned}
$$

Properties of Extreme Point Solutions

Use binary search to find the smallest T so that $\operatorname{LP}(T)$ has a solution. Let T^{*} be this value of T. What are the bounds for our search?
Observe: $\quad T^{*} \leq$ OPT
Idea: Round an extreme-point solution of $\operatorname{LP}\left(T^{*}\right)$ to a schedule whose makespan is at most $2 T^{*}$.
$\operatorname{LP}(T)$:

$$
\sum x_{i j}=1, \quad J_{j} \in \mathcal{J}
$$

$$
i:(i, j) \in S_{T}
$$

$$
\sum x_{i j} p_{i j} \leq T, \quad M_{i} \in \mathcal{M}
$$

$j:(i, j) \in S_{T}$

$$
x_{i j} \geq 0, \quad(i, j) \in S_{T}
$$

Properties of Extreme Point Solutions

Use binary search to find the smallest T so that $\operatorname{LP}(T)$ has a solution. Let T^{*} be this value of T.

What are the bounds for our search?
Observe: $\quad T^{*} \leq$ OPT
Idea: Round an extreme-point solution of $\operatorname{LP}\left(T^{*}\right)$ to a schedule whose makespan is at most $2 T^{*}$.
$\operatorname{LP}(T)$:
$\sum x_{i j}=1, \quad J_{j} \in \mathcal{J}$
$i:(i, j) \in S_{T}$

$$
x_{i j} p_{i j} \leq T, \quad M_{i} \in \mathcal{M}
$$

$j:(i, j) \in S_{T}$

$$
x_{i j} \geq 0, \quad(i, j) \in S_{T}
$$

Lemma 1.
Every extreme-point solution of $\operatorname{LP}(T)$ has at most
$|\mathcal{J}|+|\mathcal{M}|$ positive variables.

Properties of Extreme Point Solutions

Use binary search to find the smallest T so that $\operatorname{LP}(T)$ has a solution. Let T^{*} be this value of T.

What are the bounds for our search?
Observe: $\quad T^{*} \leq$ OPT
Idea: Round an extreme-point solution of $\operatorname{LP}\left(T^{*}\right)$ to a schedule whose makespan is at most $2 T^{*}$.
$\operatorname{LP}(T)$:
$\sum x_{i j}=1, \quad J_{j} \in \mathcal{J}$
$\sum_{i:(i, j) \in S_{T}}$
$\sum x_{i j} p_{i j} \leq T, \quad M_{i} \in \mathcal{M}$
$j:(i, j) \in S_{T}$

$$
x_{i j} \geq 0, \quad(i, j) \in S_{T}
$$

Lemma 1.
Every extreme-point solution of $\operatorname{LP}(T)$ has at most
$|\mathcal{J}|+|\mathcal{M}|$ positive variables.

Lemma 2.

Every extreme-point solution of $\operatorname{LP}(T)$ sets at least $|\mathcal{J}|-|\mathcal{M}|$ jobs integrally.

Lemma 1

$$
\begin{aligned}
\sum_{i:(i, j) \in S_{T}} x_{i j} & =1, \quad J_{j} \in \mathcal{J} \\
\sum_{j:(i, j) \in S_{T}} x_{i j} p_{i j} & \leq T, \quad M_{i} \in \mathcal{M} \\
x_{i j} & \geq 0, \quad(i, j) \in S_{T}
\end{aligned}
$$

Lemma 1.

Every extreme-point solution of $\operatorname{LP}(T)$ has at most $|\mathcal{J}|+|\mathcal{M}|$ positive variables.

Lemma 1

$$
\begin{aligned}
\sum_{i:(i, j) \in S_{T}} x_{i j} & =1, \quad J_{j} \in \mathcal{J} \\
\sum_{j:(i, j) \in S_{T}} x_{i j} p_{i j} & \leq T, \quad M_{i} \in \mathcal{M} \\
x_{i j} & \geq 0, \quad(i, j) \in S_{T}
\end{aligned}
$$

Lemma 1.

Every extreme-point solution of $\operatorname{LP}(T)$ has at most $|\mathcal{J}|+|\mathcal{M}|$ positive variables.

Proof.
$L(T):\left|S_{T}\right|$ variables

Lemma 1

$$
\begin{aligned}
\sum_{i:(i, j) \in S_{T}} x_{i j} & =1, \quad J_{j} \in \mathcal{J} \\
\sum_{j:(i, j) \in S_{T}} x_{i j} p_{i j} & \leq T, \quad M_{i} \in \mathcal{M} \\
x_{i j} & \geq 0, \quad(i, j) \in S_{T}
\end{aligned}
$$

Lemma 1.
Every extreme-point solution of $\operatorname{LP}(T)$ has at most $|\mathcal{J}|+|\mathcal{M}|$ positive variables.
Proof.
$L(T):\left|S_{T}\right|$ variables
extreme-point solution: $\left|S_{T}\right|$ inequalities tight

Lemma 1

$$
x_{i j}=1, \quad J_{j} \in \mathcal{J}
$$

$$
\sum x_{i j} p_{i j} \leq T, \quad M_{i} \in \mathcal{M}
$$

$j:(i, j) \in S_{T}$

$$
x_{i j} \geq 0, \quad(i, j) \in S_{T}
$$

Lemma 1.

Every extreme-point solution of $\operatorname{LP}(T)$ has at most $|\mathcal{J}|+|\mathcal{M}|$ positive variables.

Proof.

$L(T):\left|S_{T}\right|$ variables
extreme-point solution: $\left|S_{T}\right|$ inequalities tight at most $|\mathcal{J}|$ inequalities

Lemma 1

$$
\begin{aligned}
\sum_{(i, j) \in S_{T}} x_{i j}=1, \quad J_{j} \in \mathcal{J} \\
\sum_{(i, j) \in S_{T}} x_{i j} p_{i j} \leq T, \quad M_{i} \in \mathcal{M} \\
x_{i j} \geq 0, \quad(i, j) \in S_{T}
\end{aligned}
$$

Lemma 1.
Every extreme-point solution of $\operatorname{LP}(T)$ has at most $|\mathcal{J}|+|\mathcal{M}|$ positive variables.

Proof.

$L(T):\left|S_{T}\right|$ variables

extreme-point solution: $\left|S_{T}\right|$ inequalities tight at most $|\mathcal{J}|$ inequalities
at most $|\mathcal{M}|$ inequalities

Lemma 1

$$
\begin{aligned}
\sum_{i:(i, j) \in S_{T}} x_{i j} & =1, \quad J_{j} \in \mathcal{J} \\
\sum_{(i, j) \in S_{T}} x_{i j} p_{i j} & \leq T, \quad M_{i} \in \mathcal{M} \\
x_{i j} \geq 0, & (i, j) \in S_{T}
\end{aligned}
$$

Lemma 1.
Every extreme-point solution of $\operatorname{LP}(T)$ has at most $|\mathcal{J}|+|\mathcal{M}|$ positive variables.

Proof.

$L(T):\left|S_{T}\right|$ variables

extreme-point solution: $\left|S_{T}\right|$ inequalities tight at most $|\mathcal{J}|$ inequalities
at most $|\mathcal{M}|$ inequalities
\Rightarrow At least $\left|S_{T}\right|-|\mathcal{J}|-|\mathcal{M}|$ variables are 0 .

Lemma 1

$$
\begin{aligned}
\sum_{i:(i, j) \in S_{T}} x_{i j} & =1, \quad J_{j} \in \mathcal{J} \\
\sum_{(i, j) \in S_{T}} x_{i j} p_{i j} & \leq T, \quad M_{i} \in \mathcal{M} \\
x_{i j} \geq 0, & (i, j) \in S_{T}
\end{aligned}
$$

Lemma 1.
Every extreme-point solution of $\operatorname{LP}(T)$ has at most $|\mathcal{J}|+|\mathcal{M}|$ positive variables.

Proof.

$L(T):\left|S_{T}\right|$ variables

extreme-point solution: $\left|S_{T}\right|$ inequalities tight at most $|\mathcal{J}|$ inequalities
at most $|\mathcal{M}|$ inequalities
\Rightarrow At least $\left|S_{T}\right|-|\mathcal{J}|-|\mathcal{M}|$ variables are 0 . \Rightarrow At most $|\mathcal{J}|+|\mathcal{M}|$ variables are positive.

Lemma 2

$$
\begin{aligned}
\sum_{i: j, j \in S_{T}} x_{i j} & =1, & J_{j} \in \mathcal{J} \\
\sum_{j:(i, j) \in S_{T}} x_{i j} p_{i j} & \leq T, & M_{i} \in \mathcal{M} \\
x_{i j} & \geq 0, & (i, j) \in S_{T}
\end{aligned}
$$

Lemma 2.

Every extreme-point solution of $\operatorname{LP}(T)$ sets at least $|\mathcal{J}|-|\mathcal{M}|$ jobs integrally.

Lemma 2

$$
\begin{aligned}
\sum_{i:(i,) \in S_{T}} x_{i j} & =1, & J_{j} \in \mathcal{J} \\
\sum_{j:(i, j) \in S_{T}} x_{i j} p_{i j} & \leq T, & M_{i} \in \mathcal{M} \\
x_{i j} & \geq 0, & (i, j) \in S_{T}
\end{aligned}
$$

Lemma 2.

Every extreme-point solution of $\operatorname{LP}(T)$ sets at least $|\mathcal{J}|-|\mathcal{M}|$ jobs integrally.
Proof. Let x be an extreme-point solution of $\operatorname{LP}(T)$.

Lemma 2

$$
\begin{aligned}
\sum_{i: j, j \in S_{T}} x_{i j} & =1, & J_{j} \in \mathcal{J} \\
\sum_{j:(i, j) \in S_{T}} x_{i j} p_{i j} & \leq T, & M_{i} \in \mathcal{M} \\
x_{i j} & \geq 0, & (i, j) \in S_{T}
\end{aligned}
$$

Lemma 2.

Every extreme-point solution of $\operatorname{LP}(T)$ sets at least $|\mathcal{J}|-|\mathcal{M}|$ jobs integrally.
Proof. Let x be an extreme-point solution of $\operatorname{LP}(T)$. Assume x has α integral jobs und β fractional jobs.

Lemma 2

$$
\begin{aligned}
\sum_{i:(i, j) \in S_{T}} x_{i j} & =1, & J_{j} \in \mathcal{J} \\
\sum_{j:(i, j) \in S_{T}} x_{i j} p_{i j} & \leq T, & M_{i} \in \mathcal{M} \\
x_{i j} & \geq 0, & (i, j) \in S_{T}
\end{aligned}
$$

Lemma 2.

Every extreme-point solution of $\operatorname{LP}(T)$ sets at least $|\mathcal{J}|-|\mathcal{M}|$ jobs integrally.
Proof. Let x be an extreme-point solution of $\operatorname{LP}(T)$. Assume x has α integral jobs und β fractional jobs. $\Rightarrow \alpha+\beta=|\mathcal{J}|$

Lemma 2

$$
\begin{aligned}
\sum_{i:(i, j) \in S_{T}} x_{i j} & =1, \quad J_{j} \in \mathcal{J} \\
\sum_{j:(i, j) \in S_{T}} x_{i j} p_{i j} & \leq T, \quad M_{i} \in \mathcal{M} \\
x_{i j} & \geq 0, \quad(i, j) \in S_{T}
\end{aligned}
$$

Lemma 2.

Every extreme-point solution of $\operatorname{LP}(T)$ sets at least $|\mathcal{J}|-|\mathcal{M}|$ jobs integrally.
Proof. Let x be an extreme-point solution of $\operatorname{LP}(T)$. Assume x has α integral jobs und β fractional jobs. $\Rightarrow \alpha+\beta=|\mathcal{J}|$
Each fractional job runs on at least two machines.

Lemma 2

$$
\begin{aligned}
\sum_{i:(i, j) \in S_{T}} x_{i j} & =1, \quad J_{j} \in \mathcal{J} \\
\sum_{j:(i, j) \in S_{T}} x_{i j} p_{i j} & \leq T, \quad M_{i} \in \mathcal{M} \\
x_{i j} & \geq 0, \quad(i, j) \in S_{T}
\end{aligned}
$$

Lemma 2.

Every extreme-point solution of $\operatorname{LP}(T)$ sets at least $|\mathcal{J}|-|\mathcal{M}|$ jobs integrally.
Proof. Let x be an extreme-point solution of $\operatorname{LP}(T)$. Assume x has α integral jobs und β fractional jobs. $\Rightarrow \alpha+\beta=|\mathcal{J}|$
Each fractional job runs on at least two machines. \Rightarrow For each such job, at least two variables are pos.

Lemma 2

$$
\begin{aligned}
\sum_{i:(i, j) \in S_{T}} x_{i j} & =1, \quad J_{j} \in \mathcal{J} \\
\sum_{j:(i, j) \in S_{T}} x_{i j} p_{i j} & \leq T, \quad M_{i} \in \mathcal{M} \\
x_{i j} & \geq 0, \quad(i, j) \in S_{T}
\end{aligned}
$$

Lemma 2.

Every extreme-point solution of $\operatorname{LP}(T)$ sets at least $|\mathcal{J}|-|\mathcal{M}|$ jobs integrally.
Proof. Let x be an extreme-point solution of $\operatorname{LP}(T)$. Assume x has α integral jobs und β fractional jobs. $\Rightarrow \alpha+\beta=|\mathcal{J}|$
Each fractional job runs on at least two machines. \Rightarrow For each such job, at least two variables are pos. $\Rightarrow \alpha+2 \beta \leq|\mathcal{J}|+|\mathcal{M}| \quad$ (Lemma 1)

Lemma 2

$$
\begin{aligned}
\sum_{i:(i, j) \in S_{T}} x_{i j} & =1, \quad J_{j} \in \mathcal{J} \\
\sum_{j:(i, j) \in S_{T}} x_{i j} p_{i j} & \leq T, \quad M_{i} \in \mathcal{M} \\
x_{i j} & \geq 0, \quad(i, j) \in S_{T}
\end{aligned}
$$

Lemma 2.

Every extreme-point solution of $\operatorname{LP}(T)$ sets at least $|\mathcal{J}|-|\mathcal{M}|$ jobs integrally.
Proof. Let x be an extreme-point solution of $\operatorname{LP}(T)$. Assume x has α integral jobs und β fractional jobs. $\Rightarrow \alpha+\beta=|\mathcal{J}|$
Each fractional job runs on at least two machines.
\Rightarrow For each such job, at least two variables are pos.
$\Rightarrow \alpha+2 \beta \leq|\mathcal{J}|+|\mathcal{M}| \quad$ (Lemma 1)
$\Rightarrow \beta \leq|\mathcal{M}|$

Lemma 2

$$
\begin{aligned}
\sum_{i:(i, j) \in S_{T}} x_{i j} & =1, \quad J_{j} \in \mathcal{J} \\
\sum_{j:(i, j) \in S_{T}} x_{i j} p_{i j} & \leq T, \quad M_{i} \in \mathcal{M} \\
x_{i j} & \geq 0, \quad(i, j) \in S_{T}
\end{aligned}
$$

Lemma 2.

Every extreme-point solution of $\operatorname{LP}(T)$ sets at least $|\mathcal{J}|-|\mathcal{M}|$ jobs integrally.
Proof. Let x be an extreme-point solution of $\operatorname{LP}(T)$. Assume x has α integral jobs und β fractional jobs. $\Rightarrow \alpha+\beta=|\mathcal{J}|$
Each fractional job runs on at least two machines.
\Rightarrow For each such job, at least two variables are pos.
$\Rightarrow \alpha+2 \beta \leq|\mathcal{J}|+|\mathcal{M}| \quad$ (Lemma 1)
$\Rightarrow \beta \leq|\mathcal{M}| \quad$ and $\quad \alpha \geq|\mathcal{J}|-|\mathcal{M}|$

Approximation Algorithms

Lecture 7:
Scheduling Jobs on Parallel Machines

Part III:
An Algorithm

Extreme Point Solutions of $\operatorname{LP}(T)$

Definition:
Bipartite graph $G=(\mathcal{M} \cup \mathcal{J}, E)$ with $(i, j) \in E \Leftrightarrow x_{i j} \neq 0$ (in extreme-point sol.).

Extreme Point Solutions of $\operatorname{LP}(T)$

Definition: Bipartite graph $G=(\mathcal{M} \cup \mathcal{J}, E)$ with $(i, j) \in E \Leftrightarrow x_{i j} \neq 0$ (in extreme-point sol.).

Jobs can be assigned integrally or fractionally.

Extreme Point Solutions of $\operatorname{LP}(T)$

Definition: Bipartite graph $G=(\mathcal{M} \cup \mathcal{J}, E)$ with $(i, j) \in E \Leftrightarrow x_{i j} \neq 0$ (in extreme-point sol.).

Jobs can be assigned integrally or fractionally.

$$
\left(\exists M_{i} \in \mathcal{M}: 0<x_{i j}<1\right)
$$

Extreme Point Solutions of $\operatorname{LP}(T)$

Definition: Bipartite graph $G=(\mathcal{M} \cup \mathcal{J}, E)$ with $(i, j) \in E \Leftrightarrow x_{i j} \neq 0$ (in extreme-point sol.).

Jobs can be assigned integrally or fractionally.

$$
\left(\exists M_{i} \in \mathcal{M}: 0<x_{i j}<1\right)
$$

Let $F \subseteq \mathcal{J}$ be the set of fractionally assigned jobs.

Extreme Point Solutions of $\operatorname{LP}(T)$

Definition: Bipartite graph $G=(\mathcal{M} \cup \mathcal{J}, E)$ with $(i, j) \in E \Leftrightarrow x_{i j} \neq 0$ (in extreme-point sol.).

Jobs can be assigned integrally or fractionally.

$$
\left(\exists M_{i} \in \mathcal{M}: 0<x_{i j}<1\right)
$$

Let $F \subseteq \mathcal{J}$ be the set of fractionally assigned jobs.
Let $H:=G[\mathcal{M} \cup F]$.

Extreme Point Solutions of $\operatorname{LP}(T)$

Definition: Bipartite graph $G=(\mathcal{M} \cup \mathcal{J}, E)$ with $(i, j) \in E \Leftrightarrow x_{i j} \neq 0$ (in extreme-point sol.).

Jobs can be assigned integrally or fractionally.

$$
\left(\exists M_{i} \in \mathcal{M}: 0<x_{i j}<1\right)
$$

Let $F \subseteq \mathcal{J}$ be the set of fractionally assigned jobs.
Let $H:=G[\mathcal{M} \cup F]$.
Observe:
(i, j) is an edge in $H \Leftrightarrow 0<x_{i j}<1$

Extreme Point Solutions of LP (T)

Definition: Bipartite graph $G=(\mathcal{M} \cup \mathcal{J}, E)$ with $(i, j) \in E \Leftrightarrow x_{i j} \neq 0$ (in extreme-point sol.).

Jobs can be assigned integrally or fractionally.

$$
\left(\exists M_{i} \in \mathcal{M}: 0<x_{i j}<1\right)
$$

Let $F \subseteq \mathcal{J}$ be the set of fractionally assigned jobs.
Let $H:=G[\mathcal{M} \cup F]$.
Observe: $\quad(i, j)$ is an edge in $H \Leftrightarrow 0<x_{i j}<1$
A matching in H is called F-perfect if it matches every vertex in F.

Extreme Point Solutions of LP(T)

Definition: Bipartite graph $G=(\mathcal{M} \cup \mathcal{J}, E)$ with $(i, j) \in E \Leftrightarrow x_{i j} \neq 0$ (in extreme-point sol.).
Jobs can be assigned integrally or fractionally.

$$
\left(\exists M_{i} \in \mathcal{M}: 0<x_{i j}<1\right)
$$

Let $F \subseteq \mathcal{J}$ be the set of fractionally assigned jobs.
Let $H:=G[\mathcal{M} \cup F]$.
Observe: $\quad(i, j)$ is an edge in $H \Leftrightarrow 0<x_{i j}<1$
A matching in H is called F-perfect if it matches every vertex in F.

Main step: \quad Show that H always has an F-perfect matching.

Extreme Point Solutions of LP(T)

Definition: Bipartite graph $G=(\mathcal{M} \cup \mathcal{J}, E)$ with $(i, j) \in E \Leftrightarrow x_{i j} \neq 0$ (in extreme-point sol.).
Jobs can be assigned integrally or fractionally.

$$
\left(\exists M_{i} \in \mathcal{M}: 0<x_{i j}<1\right)
$$

Let $F \subseteq \mathcal{J}$ be the set of fractionally assigned jobs.
Let $H:=G[\mathcal{M} \cup F]$.
Observe: $\quad(i, j)$ is an edge in $H \Leftrightarrow 0<x_{i j}<1$
A matching in H is called F-perfect if it matches every vertex in F.

Main step: \quad Show that H always has an F-perfect matching.
And why is this useful ...?

Algorithm
Assign job J_{j} to machine M_{i} that minimizes $p_{i j}$.

Algorithm

Assign job J_{j} to machine M_{i} that minimizes $p_{i j}$. Let τ be the makespan of this schedule.

Algorithm

Assign job J_{j} to machine M_{i} that minimizes $p_{i j}$.
Let τ be the makespan of this schedule.
Do a binary search in the interval $\left[\frac{\tau}{|\mathcal{M}|}, \tau\right]$ to find the smallest value T^{*} of $T \in \mathbb{Z}^{+}$s.t. $\operatorname{LP}(T)$ has a feasible solution.

Algorithm

Assign job J_{j} to machine M_{i} that minimizes $p_{i j}$. Let τ be the makespan of this schedule.

Do a binary search in the interval $\left[\frac{\tau}{|\mathcal{M}|}, \tau\right]$ to find the smallest value T^{*} of $T \in \mathbb{Z}^{+}$s.t. $\operatorname{LP}(T)$ has a feasible solution.

Find an extreme-point solution x for $\operatorname{LP}\left(T^{*}\right)$.

Algorithm

Assign job J_{j} to machine M_{i} that minimizes $p_{i j}$. Let τ be the makespan of this schedule.

Do a binary search in the interval $\left[\frac{\tau}{|\mathcal{M}|}, \tau\right]$ to find the smallest value T^{*} of $T \in \mathbb{Z}^{+}$s.t. $\operatorname{LP}(T)$ has a feasible solution.

Find an extreme-point solution x for $\operatorname{LP}\left(T^{*}\right)$.
Assign all integrally set jobs to machines as in x.

Algorithm

Assign job J_{j} to machine M_{i} that minimizes $p_{i j}$. Let τ be the makespan of this schedule.

Do a binary search in the interval $\left[\frac{\tau}{|\mathcal{M}|}, \tau\right]$ to find the smallest value T^{*} of $T \in \mathbb{Z}^{+}$s.t. $\operatorname{LP}(T)$ has a feasible solution.

Find an extreme-point solution x for $\operatorname{LP}\left(T^{*}\right)$.
Assign all integrally set jobs to machines as in x.
Construct the graph H and find an F-perfect matching P in it (see Lemma 4 later, F is set of fractionally assigned jobs)

Algorithm

Assign job J_{j} to machine M_{i} that minimizes $p_{i j}$. Let τ be the makespan of this schedule.

Do a binary search in the interval $\left[\frac{\tau}{|\mathcal{M}|}, \tau\right]$ to find the smallest value T^{*} of $T \in \mathbb{Z}^{+}$s.t. $\operatorname{LP}(T)$ has a feasible solution.

Find an extreme-point solution x for $\operatorname{LP}\left(T^{*}\right)$.
Assign all integrally set jobs to machines as in x.
Construct the graph H and find an F-perfect matching P in it (see Lemma 4 later, F is set of fractionally assigned jobs)

Assign the fractional jobs to machines using P.

Algorithm

Assign job J_{j} to machine M_{i} that minimizes $p_{i j}$. Let τ be the makespan of this schedule.

Do a binary search in the interval $\left[\frac{\tau}{|\mathcal{M}|}, \tau\right]$ to find the smallest value T^{*} of $T \in \mathbb{Z}^{+}$s.t. $\operatorname{LP}(T)$ has a feasible solution.

Find an extreme-point solution x for $\operatorname{LP}\left(T^{*}\right)$.
Assign all integrally set jobs to machines as in x.
Construct the graph H and find an F-perfect matching P in it (see Lemma 4 later, F is set of fractionally assigned jobs)

Assign the fractional jobs to machines using P.
Theorem. This is a factor- 2 approximation algorithm (assuming that we have an F-perfect matching).

Approximation Factor

$$
\begin{aligned}
\sum_{i:(i, j) \in S_{T}} x_{i j} & =1, \quad J_{j} \in \mathcal{J} \\
\sum_{j:(i, j) \in S_{T}} x_{i j} p_{i j} & \leq T, \quad M_{i} \in \mathcal{M} \\
x_{i j} & \geq 0, \quad(i, j) \in S_{T}
\end{aligned}
$$

Theorem. This is a factor- 2 approximation algorithm (assuming that we have an F-perfect matching).

Proof. $\quad T^{*} \leq \mathrm{OPT}$.

Approximation Factor

$$
\begin{aligned}
\sum_{i:(i, j) \in S_{T}} x_{i j} & =1, \quad J_{j} \in \mathcal{J} \\
\sum_{j:(i, j) \in S_{T}} x_{i j} p_{i j} & \leq T, \quad M_{i} \in \mathcal{M} \\
x_{i j} & \geq 0, \quad(i, j) \in S_{T}
\end{aligned}
$$

Theorem. This is a factor- 2 approximation algorithm (assuming that we have an F-perfect matching).

Proof. $T^{*} \leq \mathrm{OPT}$.
Let x be an extreme-point solution for $L P\left(T^{*}\right)$

Approximation Factor

Theorem. This is a factor- 2 approximation algorithm (assuming that we have an F-perfect matching).

Proof. $T^{*} \leq \mathrm{OPT}$.
Let x be an extreme-point solution for $\operatorname{LP}\left(T^{*}\right)$
Fractional solution: Makespan $\leq T^{*}$.

Approximation Factor

Theorem. This is a factor- 2 approximation algorithm (assuming that we have an F-perfect matching).

Proof. $T^{*} \leq \mathrm{OPT}$.
Let x be an extreme-point solution for $L P\left(T^{*}\right)$
Fractional solution: Makespan $\leq T^{*}$.
\Rightarrow Restriction to integral jobs has makespan $\leq T^{*}$.

Approximation Factor

Theorem. This is a factor- 2 approximation algorithm (assuming that we have an F-perfect matching).

Proof. $T^{*} \leq \mathrm{OPT}$.
Let x be an extreme-point solution for $L P\left(T^{*}\right)$
Fractional solution: Makespan $\leq T^{*}$.
\Rightarrow Restriction to integral jobs has makespan $\leq T^{*}$.
For each edge $(i, j) \in S_{T^{*}}$, it holds that $p_{i j} \leq T^{*}$.

Approximation Factor

Theorem. This is a factor- 2 approximation algorithm (assuming that we have an F-perfect matching).

Proof. $T^{*} \leq \mathrm{OPT}$.

Let x be an extreme-point solution for $L P\left(T^{*}\right)$
Fractional solution: Makespan $\leq T^{*}$.
\Rightarrow Restriction to integral jobs has makespan $\leq T^{*}$.
For each edge $(i, j) \in S_{T^{*},}$, it holds that $p_{i j} \leq T^{*}$.
Matching: at most one extra job per maschine.

Approximation Factor

Theorem. This is a factor-2 approximation algorithm (assuming that we have an F-perfect matching).

Proof. $T^{*} \leq \mathrm{OPT}$.

Let x be an extreme-point solution for $L P\left(T^{*}\right)$
Fractional solution: Makespan $\leq T^{*}$.
\Rightarrow Restriction to integral jobs has makespan $\leq T^{*}$.
For each edge $(i, j) \in S_{T^{*}}$, it holds that $p_{i j} \leq T^{*}$.
Matching: at most one extra job per maschine.
\Rightarrow total makespan $\leq 2 T^{*} \leq 2$ OPT

Approximation Algorithms

Lecture 7:

Scheduling Jobs on Parallel Machines

Part IV:
Pseudo-Trees and -Forests

Pseudo-Trees and -Forests

$14 / 16$

Pseudo-tree: a connected graph with at most as many edges as vertices.

Pseudo-Trees and -Forests

Pseudo-tree:
a connected graph with at most as many edges as vertices. (A pseudo-tree is either a tree or a tree plus a single edge.)

Pseudo-Trees and -Forests

Pseudo-tree:
a connected graph with at most as many edges as vertices. (A pseudo-tree is either a tree or a tree plus a single edge.)
Pseudo-forest:

Pseudo-Trees and -Forests

Pseudo-tree: a connected graph with at most as many edges as vertices. (A pseudo-tree is either a tree or a tree plus a single edge.)
Pseudo-forest: a collection of disjoint pseudo-trees.

Pseudo-Trees and -Forests

Pseudo-tree: a connected graph with at most as many edges as vertices. (A pseudo-tree is either a tree or a tree plus a single edge.)
Pseudo-forest: a collection of disjoint pseudo-trees.
Lemma 3.
The bipartite graph $G=(\mathcal{M} \cup \mathcal{J}, E)$ is a pseudo-forest.

Pseudo-Trees and -Forests

Pseudo-tree: a connected graph with at most as many edges as vertices. (A pseudo-tree is either a tree or a tree plus a single edge.)
Pseudo-forest: a collection of disjoint pseudo-trees.
Lemma 3.
The bipartite graph $G=(\mathcal{M} \cup \mathcal{J}, E)$ is a pseudo-forest.
Extreme-point solutions have $\leq|\mathcal{M}|+|\mathcal{J}|$ positive variables (Lemma 1).

Pseudo-Trees and -Forests

Pseudo-tree: a connected graph with at most as many edges as vertices. (A pseudo-tree is either a tree or a tree plus a single edge.)
Pseudo-forest: a collection of disjoint pseudo-trees.

Lemma 3.

The bipartite graph $G=(\mathcal{M} \cup \mathcal{J}, E)$ is a pseudo-forest.
Extreme-point solutions have $\leq|\mathcal{M}|+|\mathcal{J}|$ positive variables (Lemma 1).
Each conn. component C of G corresponds to an extreme-point solution.
(Suppose not. Then the solution that corresponds to C is the convex combination of other solutions. But this contradicts the definition of G.)

Pseudo-Trees and -Forests

Pseudo-tree: a connected graph with at most as many edges as vertices. (A pseudo-tree is either a tree or a tree plus a single edge.)
Pseudo-forest: a collection of disjoint pseudo-trees.
Lemma 3.
The bipartite graph $G=(\mathcal{M} \cup \mathcal{J}, E)$ is a pseudo-forest.
Extreme-point solutions have $\leq|\mathcal{M}|+|\mathcal{J}|$ positive variables (Lemma 1).
Each conn. component C of G corresponds to an extreme-point solution.
(Suppose not. Then the solution that corresponds to C is the convex combination of other solutions. But this contradicts the definition of G.)
$\Rightarrow C$ has at most as many edges (pos. var.) as vertices (jobs+machines).

Pseudo-Trees and -Forests

Pseudo-tree: a connected graph with at most as many edges as vertices. (A pseudo-tree is either a tree or a tree plus a single edge.)
Pseudo-forest: a collection of disjoint pseudo-trees.
Lemma 3.
The bipartite graph $G=(\mathcal{M} \cup \mathcal{J}, E)$ is a pseudo-forest.
Extreme-point solutions have $\leq|\mathcal{M}|+|\mathcal{J}|$ positive variables (Lemma 1). Each conn. component C of G corresponds to an extreme-point solution. (Suppose not. Then the solution that corresponds to C is the convex combination of other solutions. But this contradicts the definition of G.)
$\Rightarrow C$ has at most as many edges (pos. var.) as vertices (jobs+machines).
Lemma 4. The graph H has an F-perfect matching.

Pseudo-Trees and -Forests

Pseudo-tree: a connected graph with at most as many edges as vertices. (A pseudo-tree is either a tree or a tree plus a single edge.)
Pseudo-forest: a collection of disjoint pseudo-trees.

Lemma 3.

The bipartite graph $G=(\mathcal{M} \cup \mathcal{J}, E)$ is a pseudo-forest.
Extreme-point solutions have $\leq|\mathcal{M}|+|\mathcal{J}|$ positive variables (Lemma 1). Each conn. component C of G corresponds to an extreme-point solution. (Suppose not. Then the solution that corresponds to C is the convex combination of other solutions. But this contradicts the definition of G.)
$\Rightarrow C$ has at most as many edges (pos. var.) as vertices (jobs+machines).
Lemma 4. The graph H has an F-perfect matching.
In G, every vertex in $\mathcal{J} \backslash F$ is a leaf. $\quad \Rightarrow$

Pseudo-Trees and -Forests

Pseudo-tree: a connected graph with at most as many edges as vertices. (A pseudo-tree is either a tree or a tree plus a single edge.)
Pseudo-forest: a collection of disjoint pseudo-trees.

Lemma 3.

The bipartite graph $G=(\mathcal{M} \cup \mathcal{J}, E)$ is a pseudo-forest.
Extreme-point solutions have $\leq|\mathcal{M}|+|\mathcal{J}|$ positive variables (Lemma 1). Each conn. component C of G corresponds to an extreme-point solution. (Suppose not. Then the solution that corresponds to C is the convex combination of other solutions. But this contradicts the definition of G.)
$\Rightarrow C$ has at most as many edges (pos. var.) as vertices (jobs+machines).
Lemma 4. The graph H has an F-perfect matching.
In G, every vertex in $\mathcal{J} \backslash F$ is a leaf. $\stackrel{\text { remove leaves }}{\Rightarrow}$

Pseudo-Trees and -Forests

Pseudo-tree: a connected graph with at most as many edges as vertices. (A pseudo-tree is either a tree or a tree plus a single edge.)
Pseudo-forest: a collection of disjoint pseudo-trees.

Lemma 3.

The bipartite graph $G=(\mathcal{M} \cup \mathcal{J}, E)$ is a pseudo-forest.
Extreme-point solutions have $\leq|\mathcal{M}|+|\mathcal{J}|$ positive variables (Lemma 1). Each conn. component C of G corresponds to an extreme-point solution. (Suppose not. Then the solution that corresponds to C is the convex combination of other solutions. But this contradicts the definition of G.)
$\Rightarrow C$ has at most as many edges (pos. var.) as vertices (jobs+machines).
Lemma 4. The graph H has an F-perfect matching.
In G, every vertex in $\mathcal{J} \backslash F$ is a leaf. $\stackrel{\text { remove leaves }}{\Rightarrow} H$ is a pseudo-forest, too.

Pseudo-Trees and -Forests

Pseudo-tree: a connected graph with at most as many edges as vertices. (A pseudo-tree is either a tree or a tree plus a single edge.)
Pseudo-forest: a collection of disjoint pseudo-trees.

Lemma 3.

The bipartite graph $G=(\mathcal{M} \cup \mathcal{J}, E)$ is a pseudo-forest.
Extreme-point solutions have $\leq|\mathcal{M}|+|\mathcal{J}|$ positive variables (Lemma 1). Each conn. component C of G corresponds to an extreme-point solution. (Suppose not. Then the solution that corresponds to C is the convex combination of other solutions. But this contradicts the definition of G.)
$\Rightarrow C$ has at most as many edges (pos. var.) as vertices (jobs+machines).
Lemma 4. The graph H has an F-perfect matching.
In G, every vertex in $\mathcal{J} \backslash F$ is a leaf. $\stackrel{\text { remove leaves }}{\Rightarrow} H$ is a pseudo-forest, too. Vertices in F have minimum degree 2.

Pseudo-Trees and -Forests

Pseudo-tree: a connected graph with at most as many edges as vertices. (A pseudo-tree is either a tree or a tree plus a single edge.)
Pseudo-forest: a collection of disjoint pseudo-trees.

Lemma 3.

The bipartite graph $G=(\mathcal{M} \cup \mathcal{J}, E)$ is a pseudo-forest.
Extreme-point solutions have $\leq|\mathcal{M}|+|\mathcal{J}|$ positive variables (Lemma 1). Each conn. component C of G corresponds to an extreme-point solution. (Suppose not. Then the solution that corresponds to C is the convex combination of other solutions. But this contradicts the definition of G.)
$\Rightarrow C$ has at most as many edges (pos. var.) as vertices (jobs+machines).
Lemma 4. The graph H has an F-perfect matching.
In G, every vertex in $\mathcal{J} \backslash F$ is a leaf. $\stackrel{\text { remove leaves }}{\Rightarrow} H$ is a pseudo-forest, too.
Vertices in F have minimum degree 2. \Rightarrow The leaves in H are machines.

Pseudo-Trees and -Forests

Pseudo-tree: a connected graph with at most as many edges as vertices. (A pseudo-tree is either a tree or a tree plus a single edge.)
Pseudo-forest: a collection of disjoint pseudo-trees.

Lemma 3.

The bipartite graph $G=(\mathcal{M} \cup \mathcal{J}, E)$ is a pseudo-forest.
Extreme-point solutions have $\leq|\mathcal{M}|+|\mathcal{J}|$ positive variables (Lemma 1). Each conn. component C of G corresponds to an extreme-point solution. (Suppose not. Then the solution that corresponds to C is the convex combination of other solutions. But this contradicts the definition of G.) $\Rightarrow C$ has at most as many edges (pos. var.) as vertices (jobs+machines).
Lemma 4. The graph H has an F-perfect matching.
In G, every vertex in $\mathcal{J} \backslash F$ is a leaf. $\stackrel{\text { remove leaves }}{\Rightarrow} H$ is a pseudo-forest, too. Vertices in F have minimum degree 2. \Rightarrow The leaves in H are machines. After iteratively matching all leaves,

Pseudo-Trees and -Forests

Pseudo-tree: a connected graph with at most as many edges as vertices. (A pseudo-tree is either a tree or a tree plus a single edge.)
Pseudo-forest: a collection of disjoint pseudo-trees.

Lemma 3.

The bipartite graph $G=(\mathcal{M} \cup \mathcal{J}, E)$ is a pseudo-forest.
Extreme-point solutions have $\leq|\mathcal{M}|+|\mathcal{J}|$ positive variables (Lemma 1). Each conn. component C of G corresponds to an extreme-point solution. (Suppose not. Then the solution that corresponds to C is the convex combination of other solutions. But this contradicts the definition of G.) $\Rightarrow C$ has at most as many edges (pos. var.) as vertices (jobs+machines).
Lemma 4. The graph H has an F-perfect matching.
In G, every vertex in $\mathcal{J} \backslash F$ is a leaf. $\stackrel{\text { remove leaves }}{\Rightarrow} H$ is a pseudo-forest, too. Vertices in F have minimum degree 2. \Rightarrow The leaves in H are machines. After iteratively matching all leaves, only even cycles remain.

Pseudo-Trees and -Forests

Pseudo-tree: a connected graph with at most as many edges as vertices. (A pseudo-tree is either a tree or a tree plus a single edge.)
Pseudo-forest: a collection of disjoint pseudo-trees.

Lemma 3.

The bipartite graph $G=(\mathcal{M} \cup \mathcal{J}, E)$ is a pseudo-forest.
Extreme-point solutions have $\leq|\mathcal{M}|+|\mathcal{J}|$ positive variables (Lemma 1). Each conn. component C of G corresponds to an extreme-point solution. (Suppose not. Then the solution that corresponds to C is the convex combination of other solutions. But this contradicts the definition of G.) $\Rightarrow C$ has at most as many edges (pos. var.) as vertices (jobs+machines).
Lemma 4. The graph H has an F-perfect matching.
In G, every vertex in $\mathcal{J} \backslash F$ is a leaf. $\stackrel{\text { remove leaves }}{\Rightarrow} H$ is a pseudo-forest, too. Vertices in F have minimum degree 2. \Rightarrow The leaves in H are machines. After iteratively matching all leaves, only even cycles remain. (H is bipartite :-)

Scheduling on Parallel Machines

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Scheduling on Parallel Machines

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Tight?

Scheduling on Parallel Machines

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Tight?
Yes!
Instance I_{m} :

Scheduling on Parallel Machines

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Tight?
Yes!
Instance I_{m} :
m machines and $m^{2}-m+1$ jobs

Scheduling on Parallel Machines

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Tight?
Yes!
Instance I_{m} :
m machines and $m^{2}-m+1$ jobs
Job J_{1} has processing time m on every machine,

Scheduling on Parallel Machines

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Tight?
Yes!
Instance I_{m} :
m machines and $m^{2}-m+1$ jobs
Job J_{1} has processing time m on every machine, all other jobs have processing time 1 on every machine.

Scheduling on Parallel Machines

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Tight?
Yes!
Instance I_{m} :
m machines and $m^{2}-m+1$ jobs
Job J_{1} has processing time m on every machine, all other jobs have processing time 1 on every machine.
Optimum:

Scheduling on Parallel Machines

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Tight?
Yes!
Instance I_{m} :
m machines and $m^{2}-m+1$ jobs
Job J_{1} has processing time m on every machine, all other jobs have processing time 1 on every machine.
Optimum: one machine gets J_{1}, and all others spread evenly.

Scheduling on Parallel Machines

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Tight?
Yes!
Instance I_{m} :
m machines and $m^{2}-m+1$ jobs Job J_{1} has processing time m on every machine, all other jobs have processing time 1 on every machine.
Optimum: one machine gets J_{1}, and all others spread evenly.
\Rightarrow Makespan $=m$.

Scheduling on Parallel Machines

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Tight?
Yes!
Instance I_{m} :
m machines and $m^{2}-m+1$ jobs Job J_{1} has processing time m on every machine, all other jobs have processing time 1 on every machine.
Optimum: one machine gets J_{1}, and all others spread evenly. Algorithm:
\Rightarrow Makespan $=m$.

Scheduling on Parallel Machines

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Tight?
Yes!
Instance I_{m} :
m machines and $m^{2}-m+1$ jobs Job J_{1} has processing time m on every machine, all other jobs have processing time 1 on every machine.
Optimum: one machine gets J_{1}, and all others spread evenly.
Algorithm: $\quad \Rightarrow$ Makespan $=m$.
$\operatorname{LP}(T)$ has no feasible solution for any $T<m$.

Scheduling on Parallel Machines

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Tight?
Yes!
Instance I_{m} :
m machines and $m^{2}-m+1$ jobs Job J_{1} has processing time m on every machine, all other jobs have processing time 1 on every machine.
Optimum: one machine gets J_{1}, and all others spread evenly.

Algorithm:
 \Rightarrow Makespan $=m$.

$\operatorname{LP}(T)$ has no feasible solution for any $T<m$.
Extreme-point solution:
Assign $1 / m$ of J_{1} and $m-1$ other jobs to each machine.

Scheduling on Parallel Machines

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Tight?
Yes!
Instance I_{m} :
m machines and $m^{2}-m+1$ jobs Job J_{1} has processing time m on every machine, all other jobs have processing time 1 on every machine.
Optimum: one machine gets J_{1}, and all others spread evenly.

Algorithm:
 \Rightarrow Makespan $=m$.

$\operatorname{LP}(T)$ has no feasible solution for any $T<m$.
Extreme-point solution:
Assign $1 / m$ of J_{1} and $m-1$ other jobs to each machine. \Rightarrow Makespan $2 m-1$.

Scheduling on Parallel Machines

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Can we do better?

Scheduling on Parallel Machines

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Can we do better?
No better approximation algorithm is known.

Scheduling on Parallel Machines

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Can we do better?

No better approximation algorithm is known.
The problem cannot be approximated within factor $<3 / 2$
(unless $P=N P$).
[Lenstra, Shmoys \& Tardos '90]

Scheduling on Parallel Machines

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Can we do better?

No better approximation algorithm is known.
The problem cannot be approximated within factor $<3 / 2$ (unless $P=N P$).

For a constant number of machines, for every $\varepsilon>0$ there is a factor- $(1+\varepsilon)$ approximation algorithm.

Scheduling on Parallel Machines

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Can we do better?

No better approximation algorithm is known.
The problem cannot be approximated within factor $<3 / 2$ (unless $\mathrm{P}=\mathrm{NP}$).

For a constant number of machines, for every $\varepsilon>0$ there is a factor- $(1+\varepsilon)$ approximation algorithm.
[Horowitz \& Sahni '76]
For uniform machines, for every $\varepsilon>0$ there is a factor-($1+\varepsilon$) approximation algorithm.

Scheduling on Parallel Machines

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Can we do better?

No better approximation algorithm is known.
The problem cannot be approximated within factor $<3 / 2$ (unless $\mathrm{P}=\mathrm{NP}$).

For a constant number of machines, for every $\varepsilon>0$ there is a factor- $(1+\varepsilon)$ approximation algorithm.
[Horowitz \& Sahni '76]
For uniform machines, for every $\varepsilon>0$ there is a factor-($1+\varepsilon$) approximation algorithm.

