
1/16

Alexander Wolff Winter 2023/24

Lecture 7:
Scheduling Jobs on Parallel Machines

Part I:
ILP & Parametric Pruning

Approximation Algorithms

2/16

Scheduling on Parallel Machines

Given:

J = {J1, J2, . . . , J8}

A set J of jobs,
a set M of machines, and
for each Mi ∈M and Jj ∈ J

the processing time pi j ∈ N+ of Jj on Mi .

2/16

Scheduling on Parallel Machines

Given:

J = {J1, J2, . . . , J8}

M = {M1,M2,M3}

A set J of jobs,
a set M of machines, and
for each Mi ∈M and Jj ∈ J

the processing time pi j ∈ N+ of Jj on Mi .

2/16

Scheduling on Parallel Machines

Given:

J = {J1, J2, . . . , J8}

M = {M1,M2,M3}

(pi j)Mi∈M,Jj∈J

A set J of jobs,
a set M of machines, and
for each Mi ∈M and Jj ∈ J

the processing time pi j ∈ N+ of Jj on Mi .

2/16

Scheduling on Parallel Machines

Given:

Task:

J = {J1, J2, . . . , J8}

M = {M1,M2,M3}

(pi j)Mi∈M,Jj∈J

A set J of jobs,
a set M of machines, and
for each Mi ∈M and Jj ∈ J

the processing time pi j ∈ N+ of Jj on Mi .

A schedule σ : J →M of the jobs on the machines
that minimizes the total time to completion
(makespan), i.e., minimizes the maximum time a
machine is in use.

2/16

Scheduling on Parallel Machines

Given:

Task:

M1

M2

M3

J = {J1, J2, . . . , J8}

M = {M1,M2,M3}

(pi j)Mi∈M,Jj∈J

A set J of jobs,
a set M of machines, and
for each Mi ∈M and Jj ∈ J

the processing time pi j ∈ N+ of Jj on Mi .

A schedule σ : J →M of the jobs on the machines
that minimizes the total time to completion
(makespan), i.e., minimizes the maximum time a
machine is in use.

2/16

Scheduling on Parallel Machines

Given:

Task:

M1

M2

M3

p11 p13 p18
J = {J1, J2, . . . , J8}

M = {M1,M2,M3}

(pi j)Mi∈M,Jj∈J

A set J of jobs,
a set M of machines, and
for each Mi ∈M and Jj ∈ J

the processing time pi j ∈ N+ of Jj on Mi .

A schedule σ : J →M of the jobs on the machines
that minimizes the total time to completion
(makespan), i.e., minimizes the maximum time a
machine is in use.

2/16

Scheduling on Parallel Machines

Given:

Task:

M1

M2

M3

p11 p13 p18
J = {J1, J2, . . . , J8}

M = {M1,M2,M3}
p22 p27

(pi j)Mi∈M,Jj∈J

A set J of jobs,
a set M of machines, and
for each Mi ∈M and Jj ∈ J

the processing time pi j ∈ N+ of Jj on Mi .

A schedule σ : J →M of the jobs on the machines
that minimizes the total time to completion
(makespan), i.e., minimizes the maximum time a
machine is in use.

2/16

Scheduling on Parallel Machines

Given:

Task:

M1

M2

M3

p11 p13 p18
J = {J1, J2, . . . , J8}

M = {M1,M2,M3}
p22 p27

p34 p35 p36
(pi j)Mi∈M,Jj∈J

A set J of jobs,
a set M of machines, and
for each Mi ∈M and Jj ∈ J

the processing time pi j ∈ N+ of Jj on Mi .

A schedule σ : J →M of the jobs on the machines
that minimizes the total time to completion
(makespan), i.e., minimizes the maximum time a
machine is in use.

2/16

Scheduling on Parallel Machines

Given:

Task:

M1

M2

M3

p11 p13 p18
J = {J1, J2, . . . , J8}

M = {M1,M2,M3}
p22 p27

p34 p35 p36

makespan
(pi j)Mi∈M,Jj∈J

A set J of jobs,
a set M of machines, and
for each Mi ∈M and Jj ∈ J

the processing time pi j ∈ N+ of Jj on Mi .

A schedule σ : J →M of the jobs on the machines
that minimizes the total time to completion
(makespan), i.e., minimizes the maximum time a
machine is in use.

3/16

Formulation as ILP

minimize t

subject to
∑

Mi∈M

xi j = 1, Jj ∈ J∑
Jj∈J

xi jpi j ≤ t, Mi ∈M

xi j ∈ {0, 1}, Mi ∈M, Jj ∈ J

3/16

Formulation as ILP

minimize t

subject to
∑

Mi∈M

xi j = 1, Jj ∈ J∑
Jj∈J

xi jpi j ≤ t, Mi ∈M

xi j ∈ {0, 1}, Mi ∈M, Jj ∈ J

3/16

Formulation as ILP

minimize t

subject to
∑

Mi∈M

xi j = 1, Jj ∈ J∑
Jj∈J

xi jpi j ≤ t, Mi ∈M

xi j ∈ {0, 1}, Mi ∈M, Jj ∈ J

3/16

Formulation as ILP

minimize t

subject to
∑

Mi∈M

xi j = 1, Jj ∈ J∑
Jj∈J

xi jpi j ≤ t, Mi ∈M

xi j ∈ {0, 1}, Mi ∈M, Jj ∈ J

3/16

Formulation as ILP

minimize t

subject to
∑

Mi∈M

xi j = 1, Jj ∈ J∑
Jj∈J

xi jpi j ≤ t, Mi ∈M

xi j ∈ {0, 1}, Mi ∈M, Jj ∈ J

3/16

Formulation as ILP

minimize t

subject to
∑

Mi∈M

xi j = 1, Jj ∈ J∑
Jj∈J

xi jpi j ≤ t, Mi ∈M

xi j ∈ {0, 1}, Mi ∈M, Jj ∈ J

Task: Prove that the integrality gap is unbounded!

3/16

Formulation as ILP

minimize t

subject to
∑

Mi∈M

xi j = 1, Jj ∈ J∑
Jj∈J

xi jpi j ≤ t, Mi ∈M

xi j ∈ {0, 1}, Mi ∈M, Jj ∈ J

Task:

Solution: m machines and one job with processing time m

Prove that the integrality gap is unbounded!

3/16

Formulation as ILP

minimize t

subject to
∑

Mi∈M

xi j = 1, Jj ∈ J∑
Jj∈J

xi jpi j ≤ t, Mi ∈M

xi j ∈ {0, 1}, Mi ∈M, Jj ∈ J

Task:

Solution:

⇒ OPT = m and OPTfrac = 1.

m machines and one job with processing time m

Prove that the integrality gap is unbounded!

4/16

Parametric Pruning

Strengthen the ILP → implicit (non-linear) constraint:
If pi j > t, then set xi j = 0.

4/16

Parametric Pruning

Strengthen the ILP → implicit (non-linear) constraint:
If pi j > t, then set xi j = 0.

Introduce new parameter T ∈ N as a lower bound on OPT.

4/16

Parametric Pruning

Strengthen the ILP → implicit (non-linear) constraint:
If pi j > t, then set xi j = 0.

Introduce new parameter T ∈ N as a lower bound on OPT.

Define ST := { (i , j) : Mi ∈M, Jj ∈ J , pi j ≤ T }.

4/16

Parametric Pruning

Strengthen the ILP → implicit (non-linear) constraint:
If pi j > t, then set xi j = 0.

Introduce new parameter T ∈ N as a lower bound on OPT.

Define ST := { (i , j) : Mi ∈M, Jj ∈ J , pi j ≤ T }.

Define the “pruned” relaxation LP(T):

minimize t

subject to
∑

Mi∈M

xi j = 1, Jj ∈ J∑
Jj∈J

xi jpi j ≤ t, Mi ∈M

xi j ∈ {0, 1}, Mi ∈M, Jj ∈ J

4/16

Parametric Pruning

Strengthen the ILP → implicit (non-linear) constraint:
If pi j > t, then set xi j = 0.

Introduce new parameter T ∈ N as a lower bound on OPT.

Define ST := { (i , j) : Mi ∈M, Jj ∈ J , pi j ≤ T }.

Define the “pruned” relaxation LP(T):

minimize t

subject to
∑

Mi∈M

xi j = 1, Jj ∈ J∑
Jj∈J

xi jpi j ≤ t, Mi ∈M

xi j ∈ {0, 1}, Mi ∈M, Jj ∈ J≥ 0

4/16

Parametric Pruning

Strengthen the ILP → implicit (non-linear) constraint:
If pi j > t, then set xi j = 0.

Introduce new parameter T ∈ N as a lower bound on OPT.

Define ST := { (i , j) : Mi ∈M, Jj ∈ J , pi j ≤ T }.

Define the “pruned” relaxation LP(T):

minimize t

subject to
∑

Mi∈M

xi j = 1, Jj ∈ J∑
Jj∈J

xi jpi j ≤ t, Mi ∈M

xi j ∈ {0, 1}, Mi ∈M, Jj ∈ J≥ 0 (i , j) ∈ ST

4/16

Parametric Pruning

Strengthen the ILP → implicit (non-linear) constraint:
If pi j > t, then set xi j = 0.

Introduce new parameter T ∈ N as a lower bound on OPT.

Define ST := { (i , j) : Mi ∈M, Jj ∈ J , pi j ≤ T }.

Define the “pruned” relaxation LP(T):

minimize t

subject to
∑

Mi∈M

xi j = 1, Jj ∈ J∑
Jj∈J

xi jpi j ≤ t, Mi ∈M

xi j ∈ {0, 1}, Mi ∈M, Jj ∈ J

i : (i , j) ∈ ST

≥ 0 (i , j) ∈ ST

4/16

Parametric Pruning

Strengthen the ILP → implicit (non-linear) constraint:
If pi j > t, then set xi j = 0.

Introduce new parameter T ∈ N as a lower bound on OPT.

Define ST := { (i , j) : Mi ∈M, Jj ∈ J , pi j ≤ T }.

Define the “pruned” relaxation LP(T):

minimize t

subject to
∑

Mi∈M

xi j = 1, Jj ∈ J∑
Jj∈J

xi jpi j ≤ t, Mi ∈M

xi j ∈ {0, 1}, Mi ∈M, Jj ∈ J

i : (i , j) ∈ ST

j : (i , j) ∈ ST

≥ 0 (i , j) ∈ ST

4/16

Parametric Pruning

Strengthen the ILP → implicit (non-linear) constraint:
If pi j > t, then set xi j = 0.

Introduce new parameter T ∈ N as a lower bound on OPT.

Define ST := { (i , j) : Mi ∈M, Jj ∈ J , pi j ≤ T }.

Define the “pruned” relaxation LP(T):

minimize t

subject to
∑

Mi∈M

xi j = 1, Jj ∈ J∑
Jj∈J

xi jpi j ≤ t, Mi ∈M

xi j ∈ {0, 1}, Mi ∈M, Jj ∈ J

i : (i , j) ∈ ST

j : (i , j) ∈ ST

≥ 0 (i , j) ∈ ST

T

4/16

Parametric Pruning

Strengthen the ILP → implicit (non-linear) constraint:
If pi j > t, then set xi j = 0.

Introduce new parameter T ∈ N as a lower bound on OPT.

Define ST := { (i , j) : Mi ∈M, Jj ∈ J , pi j ≤ T }.

Define the “pruned” relaxation LP(T):

minimize t

subject to
∑

Mi∈M

xi j = 1, Jj ∈ J∑
Jj∈J

xi jpi j ≤ t, Mi ∈M

xi j ∈ {0, 1}, Mi ∈M, Jj ∈ J

i : (i , j) ∈ ST

j : (i , j) ∈ ST

≥ 0 (i , j) ∈ ST

T

4/16

Parametric Pruning

Strengthen the ILP → implicit (non-linear) constraint:
If pi j > t, then set xi j = 0.

Introduce new parameter T ∈ N as a lower bound on OPT.

Define ST := { (i , j) : Mi ∈M, Jj ∈ J , pi j ≤ T }.

Define the “pruned” relaxation LP(T):∑
i : (i ,j)∈ST

xi j = 1, Jj ∈ J

∑
j : (i ,j)∈ST

xi jpi j ≤ T , Mi ∈M

xi j ≥ 0, (i , j) ∈ ST

4/16

Parametric Pruning

Strengthen the ILP → implicit (non-linear) constraint:
If pi j > t, then set xi j = 0.

Introduce new parameter T ∈ N as a lower bound on OPT.

Define ST := { (i , j) : Mi ∈M, Jj ∈ J , pi j ≤ T }.

Define the “pruned” relaxation LP(T):∑
i : (i ,j)∈ST

xi j = 1, Jj ∈ J

∑
j : (i ,j)∈ST

xi jpi j ≤ T , Mi ∈M

xi j ≥ 0, (i , j) ∈ ST

Note:

LP(T) has no
objective function;
we just need to check
whether a feasible
solution exists.

4/16

Parametric Pruning

Strengthen the ILP → implicit (non-linear) constraint:
If pi j > t, then set xi j = 0.

Introduce new parameter T ∈ N as a lower bound on OPT.

Define ST := { (i , j) : Mi ∈M, Jj ∈ J , pi j ≤ T }.

Define the “pruned” relaxation LP(T):∑
i : (i ,j)∈ST

xi j = 1, Jj ∈ J

∑
j : (i ,j)∈ST

xi jpi j ≤ T , Mi ∈M

xi j ≥ 0, (i , j) ∈ ST

But why does this LP give a good integrality gap?

Note:

LP(T) has no
objective function;
we just need to check
whether a feasible
solution exists.

5/16

Lecture 7:
Scheduling Jobs on Parallel Machines

Part II:
Properties of Extreme-Point Solutions

Approximation Algorithms

6/16

Properties of Extreme Point Solutions

Use binary search to find the smallest T so that LP(T) has a
solution. Let T ∗ be this value of T .

LP(T):∑
i : (i ,j)∈ST

xi j = 1, Jj ∈ J

∑
j : (i ,j)∈ST

xi jpi j ≤ T , Mi ∈M

xi j ≥ 0, (i , j) ∈ ST

6/16

Properties of Extreme Point Solutions

Use binary search to find the smallest T so that LP(T) has a
solution. Let T ∗ be this value of T .

LP(T):∑
i : (i ,j)∈ST

xi j = 1, Jj ∈ J

∑
j : (i ,j)∈ST

xi jpi j ≤ T , Mi ∈M

xi j ≥ 0, (i , j) ∈ ST

6/16

Properties of Extreme Point Solutions

Use binary search to find the smallest T so that LP(T) has a
solution. Let T ∗ be this value of T .

What are the bounds for our search?

LP(T):∑
i : (i ,j)∈ST

xi j = 1, Jj ∈ J

∑
j : (i ,j)∈ST

xi jpi j ≤ T , Mi ∈M

xi j ≥ 0, (i , j) ∈ ST

6/16

Properties of Extreme Point Solutions

Use binary search to find the smallest T so that LP(T) has a
solution. Let T ∗ be this value of T .

Observe:
What are the bounds for our search?

LP(T):

T ∗ ≤ OPT

∑
i : (i ,j)∈ST

xi j = 1, Jj ∈ J

∑
j : (i ,j)∈ST

xi jpi j ≤ T , Mi ∈M

xi j ≥ 0, (i , j) ∈ ST

6/16

Properties of Extreme Point Solutions

Use binary search to find the smallest T so that LP(T) has a
solution. Let T ∗ be this value of T .

Observe:

Idea:

What are the bounds for our search?

LP(T):

T ∗ ≤ OPT

Round an extreme-point solution of LP(T ∗)
to a schedule whose makespan is at most 2T ∗.

∑
i : (i ,j)∈ST

xi j = 1, Jj ∈ J

∑
j : (i ,j)∈ST

xi jpi j ≤ T , Mi ∈M

xi j ≥ 0, (i , j) ∈ ST

6/16

Properties of Extreme Point Solutions

Use binary search to find the smallest T so that LP(T) has a
solution. Let T ∗ be this value of T .

Observe:

Idea:

What are the bounds for our search?

LP(T):

T ∗ ≤ OPT

Round an extreme-point solution of LP(T ∗)
to a schedule whose makespan is at most 2T ∗.

Lemma 1.
Every extreme-point solution
of LP(T) has at most
|J |+ |M| positive variables.

∑
i : (i ,j)∈ST

xi j = 1, Jj ∈ J

∑
j : (i ,j)∈ST

xi jpi j ≤ T , Mi ∈M

xi j ≥ 0, (i , j) ∈ ST

6/16

Properties of Extreme Point Solutions

Use binary search to find the smallest T so that LP(T) has a
solution. Let T ∗ be this value of T .

Observe:

Idea:

What are the bounds for our search?

LP(T):

T ∗ ≤ OPT

Round an extreme-point solution of LP(T ∗)
to a schedule whose makespan is at most 2T ∗.

Lemma 2.
Every extreme-point solution
of LP(T) sets at least
|J |−|M| jobs integrally.

Lemma 1.
Every extreme-point solution
of LP(T) has at most
|J |+ |M| positive variables.

∑
i : (i ,j)∈ST

xi j = 1, Jj ∈ J

∑
j : (i ,j)∈ST

xi jpi j ≤ T , Mi ∈M

xi j ≥ 0, (i , j) ∈ ST

7/16

Lemma 1

Lemma 1.
Every extreme-point solution of LP(T) has at most |J |+ |M|
positive variables.

∑
i : (i ,j)∈ST

xi j = 1, Jj ∈ J

∑
j : (i ,j)∈ST

xi jpi j ≤ T , Mi ∈M

xi j ≥ 0, (i , j) ∈ ST

7/16

Lemma 1

Proof. L(T): |ST | variables

Lemma 1.
Every extreme-point solution of LP(T) has at most |J |+ |M|
positive variables.

∑
i : (i ,j)∈ST

xi j = 1, Jj ∈ J

∑
j : (i ,j)∈ST

xi jpi j ≤ T , Mi ∈M

xi j ≥ 0, (i , j) ∈ ST

7/16

Lemma 1

Proof. L(T): |ST | variables
extreme-point solution: |ST | inequalities tight

Lemma 1.
Every extreme-point solution of LP(T) has at most |J |+ |M|
positive variables.

∑
i : (i ,j)∈ST

xi j = 1, Jj ∈ J

∑
j : (i ,j)∈ST

xi jpi j ≤ T , Mi ∈M

xi j ≥ 0, (i , j) ∈ ST

7/16

Lemma 1

Proof. L(T): |ST | variables
extreme-point solution: |ST | inequalities tight

at most |J | inequalities

Lemma 1.
Every extreme-point solution of LP(T) has at most |J |+ |M|
positive variables.

∑
i : (i ,j)∈ST

xi j = 1, Jj ∈ J

∑
j : (i ,j)∈ST

xi jpi j ≤ T , Mi ∈M

xi j ≥ 0, (i , j) ∈ ST

7/16

Lemma 1

Proof. L(T): |ST | variables
extreme-point solution: |ST | inequalities tight

at most |J | inequalities

at most |M| inequalities

Lemma 1.
Every extreme-point solution of LP(T) has at most |J |+ |M|
positive variables.

∑
i : (i ,j)∈ST

xi j = 1, Jj ∈ J

∑
j : (i ,j)∈ST

xi jpi j ≤ T , Mi ∈M

xi j ≥ 0, (i , j) ∈ ST

7/16

Lemma 1

Proof. L(T): |ST | variables
extreme-point solution: |ST | inequalities tight

at most |J | inequalities

at most |M| inequalities

⇒ At least |ST | − |J | − |M| variables are 0.

Lemma 1.
Every extreme-point solution of LP(T) has at most |J |+ |M|
positive variables.

∑
i : (i ,j)∈ST

xi j = 1, Jj ∈ J

∑
j : (i ,j)∈ST

xi jpi j ≤ T , Mi ∈M

xi j ≥ 0, (i , j) ∈ ST

7/16

Lemma 1

Proof. L(T): |ST | variables
extreme-point solution: |ST | inequalities tight

at most |J | inequalities

at most |M| inequalities

⇒ At least |ST | − |J | − |M| variables are 0.

⇒ At most |J |+ |M| variables are positive.

Lemma 1.
Every extreme-point solution of LP(T) has at most |J |+ |M|
positive variables.

∑
i : (i ,j)∈ST

xi j = 1, Jj ∈ J

∑
j : (i ,j)∈ST

xi jpi j ≤ T , Mi ∈M

xi j ≥ 0, (i , j) ∈ ST

8/16

Lemma 2

Lemma 2.
Every extreme-point solution of LP(T) sets at least |J |−|M|
jobs integrally.

∑
i : (i ,j)∈ST

xi j = 1, Jj ∈ J

∑
j : (i ,j)∈ST

xi jpi j ≤ T , Mi ∈M

xi j ≥ 0, (i , j) ∈ ST

8/16

Lemma 2

Lemma 2.
Every extreme-point solution of LP(T) sets at least |J |−|M|
jobs integrally.

Proof. Let x be an extreme-point solution of LP(T).

∑
i : (i ,j)∈ST

xi j = 1, Jj ∈ J

∑
j : (i ,j)∈ST

xi jpi j ≤ T , Mi ∈M

xi j ≥ 0, (i , j) ∈ ST

8/16

Lemma 2

Lemma 2.
Every extreme-point solution of LP(T) sets at least |J |−|M|
jobs integrally.

Proof.
Assume x has α integral jobs und β fractional jobs.
Let x be an extreme-point solution of LP(T).

∑
i : (i ,j)∈ST

xi j = 1, Jj ∈ J

∑
j : (i ,j)∈ST

xi jpi j ≤ T , Mi ∈M

xi j ≥ 0, (i , j) ∈ ST

8/16

Lemma 2

Lemma 2.
Every extreme-point solution of LP(T) sets at least |J |−|M|
jobs integrally.

Proof.
Assume x has α integral jobs und β fractional jobs.
Let x be an extreme-point solution of LP(T).

⇒ α + β = |J |

∑
i : (i ,j)∈ST

xi j = 1, Jj ∈ J

∑
j : (i ,j)∈ST

xi jpi j ≤ T , Mi ∈M

xi j ≥ 0, (i , j) ∈ ST

8/16

Lemma 2

Lemma 2.
Every extreme-point solution of LP(T) sets at least |J |−|M|
jobs integrally.

Proof.
Assume x has α integral jobs und β fractional jobs.
Let x be an extreme-point solution of LP(T).

Each fractional job runs on at least two machines.
⇒ α + β = |J |

∑
i : (i ,j)∈ST

xi j = 1, Jj ∈ J

∑
j : (i ,j)∈ST

xi jpi j ≤ T , Mi ∈M

xi j ≥ 0, (i , j) ∈ ST

8/16

Lemma 2

Lemma 2.
Every extreme-point solution of LP(T) sets at least |J |−|M|
jobs integrally.

Proof.
Assume x has α integral jobs und β fractional jobs.
Let x be an extreme-point solution of LP(T).

Each fractional job runs on at least two machines.
⇒ α + β = |J |

⇒ For each such job, at least two variables are pos.

∑
i : (i ,j)∈ST

xi j = 1, Jj ∈ J

∑
j : (i ,j)∈ST

xi jpi j ≤ T , Mi ∈M

xi j ≥ 0, (i , j) ∈ ST

8/16

Lemma 2

Lemma 2.
Every extreme-point solution of LP(T) sets at least |J |−|M|
jobs integrally.

Proof.
Assume x has α integral jobs und β fractional jobs.
Let x be an extreme-point solution of LP(T).

Each fractional job runs on at least two machines.
⇒ α + β = |J |

⇒ For each such job, at least two variables are pos.
⇒ α + 2β ≤ |J |+ |M| (Lemma 1)

∑
i : (i ,j)∈ST

xi j = 1, Jj ∈ J

∑
j : (i ,j)∈ST

xi jpi j ≤ T , Mi ∈M

xi j ≥ 0, (i , j) ∈ ST

8/16

Lemma 2

Lemma 2.
Every extreme-point solution of LP(T) sets at least |J |−|M|
jobs integrally.

Proof.
Assume x has α integral jobs und β fractional jobs.
Let x be an extreme-point solution of LP(T).

Each fractional job runs on at least two machines.
⇒ α + β = |J |

⇒ For each such job, at least two variables are pos.
⇒ α + 2β ≤ |J |+ |M|
⇒ β ≤ |M|

(Lemma 1)

∑
i : (i ,j)∈ST

xi j = 1, Jj ∈ J

∑
j : (i ,j)∈ST

xi jpi j ≤ T , Mi ∈M

xi j ≥ 0, (i , j) ∈ ST

8/16

Lemma 2

Lemma 2.
Every extreme-point solution of LP(T) sets at least |J |−|M|
jobs integrally.

Proof.
Assume x has α integral jobs und β fractional jobs.
Let x be an extreme-point solution of LP(T).

Each fractional job runs on at least two machines.
⇒ α + β = |J |

⇒ For each such job, at least two variables are pos.
⇒ α + 2β ≤ |J |+ |M|
⇒ β ≤ |M| and α ≥ |J | − |M|

(Lemma 1)

∑
i : (i ,j)∈ST

xi j = 1, Jj ∈ J

∑
j : (i ,j)∈ST

xi jpi j ≤ T , Mi ∈M

xi j ≥ 0, (i , j) ∈ ST

9/16

Lecture 7:
Scheduling Jobs on Parallel Machines

Part III:
An Algorithm

Approximation Algorithms

10/16

Extreme Point Solutions of LP(T)

Definition: Bipartite graph G = (M∪J ,E) with
(i , j) ∈ E ⇔ xi j 6= 0 (in extreme-point sol.).

10/16

Extreme Point Solutions of LP(T)

Definition:

Jobs can be assigned integrally or fractionally.

Bipartite graph G = (M∪J ,E) with
(i , j) ∈ E ⇔ xi j 6= 0 (in extreme-point sol.).

10/16

Extreme Point Solutions of LP(T)

Definition:

Jobs can be assigned integrally or fractionally.
(∃Mi ∈M : 0 < xi j < 1)

Bipartite graph G = (M∪J ,E) with
(i , j) ∈ E ⇔ xi j 6= 0 (in extreme-point sol.).

10/16

Extreme Point Solutions of LP(T)

Definition:

Let F ⊆ J be the set of fractionally assigned jobs.
Let H := G [M∪ F].

Jobs can be assigned integrally or fractionally.
(∃Mi ∈M : 0 < xi j < 1)

Bipartite graph G = (M∪J ,E) with
(i , j) ∈ E ⇔ xi j 6= 0 (in extreme-point sol.).

10/16

Extreme Point Solutions of LP(T)

Definition:

Let F ⊆ J be the set of fractionally assigned jobs.
Let H := G [M∪ F].

Jobs can be assigned integrally or fractionally.
(∃Mi ∈M : 0 < xi j < 1)

Bipartite graph G = (M∪J ,E) with
(i , j) ∈ E ⇔ xi j 6= 0 (in extreme-point sol.).

10/16

Extreme Point Solutions of LP(T)

Definition:

Let F ⊆ J be the set of fractionally assigned jobs.
Let H := G [M∪ F].

Observe:

Jobs can be assigned integrally or fractionally.
(∃Mi ∈M : 0 < xi j < 1)

Bipartite graph G = (M∪J ,E) with
(i , j) ∈ E ⇔ xi j 6= 0 (in extreme-point sol.).

(i , j) is an edge in H ⇔ 0 < xi j < 1

10/16

Extreme Point Solutions of LP(T)

Definition:

Let F ⊆ J be the set of fractionally assigned jobs.
Let H := G [M∪ F].

Observe:

A matching in H is called F -perfect if it matches every vertex
in F .

Jobs can be assigned integrally or fractionally.
(∃Mi ∈M : 0 < xi j < 1)

Bipartite graph G = (M∪J ,E) with
(i , j) ∈ E ⇔ xi j 6= 0 (in extreme-point sol.).

(i , j) is an edge in H ⇔ 0 < xi j < 1

10/16

Extreme Point Solutions of LP(T)

Definition:

Let F ⊆ J be the set of fractionally assigned jobs.
Let H := G [M∪ F].

Observe:

A matching in H is called F -perfect if it matches every vertex
in F .

Main step:

Jobs can be assigned integrally or fractionally.
(∃Mi ∈M : 0 < xi j < 1)

Bipartite graph G = (M∪J ,E) with
(i , j) ∈ E ⇔ xi j 6= 0 (in extreme-point sol.).

(i , j) is an edge in H ⇔ 0 < xi j < 1

Show that H always has an F -perfect matching.

10/16

Extreme Point Solutions of LP(T)

Definition:

Let F ⊆ J be the set of fractionally assigned jobs.
Let H := G [M∪ F].

Observe:

A matching in H is called F -perfect if it matches every vertex
in F .

Main step:

And why is this useful . . . ?

Jobs can be assigned integrally or fractionally.
(∃Mi ∈M : 0 < xi j < 1)

Bipartite graph G = (M∪J ,E) with
(i , j) ∈ E ⇔ xi j 6= 0 (in extreme-point sol.).

(i , j) is an edge in H ⇔ 0 < xi j < 1

Show that H always has an F -perfect matching.

11/16

Algorithm

Assign job Jj to machine Mi that minimizes pi j .
Let τ be the makespan of this schedule.

11/16

Algorithm

Assign job Jj to machine Mi that minimizes pi j .
Let τ be the makespan of this schedule.

11/16

Algorithm

Assign job Jj to machine Mi that minimizes pi j .
Let τ be the makespan of this schedule.

Do a binary search in the interval [τ
|M| , τ] to find the smallest

value T ∗ of T ∈ Z+ s.t. LP(T) has a feasible solution.

11/16

Algorithm

Assign job Jj to machine Mi that minimizes pi j .
Let τ be the makespan of this schedule.

Do a binary search in the interval [τ
|M| , τ] to find the smallest

value T ∗ of T ∈ Z+ s.t. LP(T) has a feasible solution.

Find an extreme-point solution x for LP(T ∗).

11/16

Algorithm

Assign job Jj to machine Mi that minimizes pi j .
Let τ be the makespan of this schedule.

Do a binary search in the interval [τ
|M| , τ] to find the smallest

value T ∗ of T ∈ Z+ s.t. LP(T) has a feasible solution.

Find an extreme-point solution x for LP(T ∗).

Assign all integrally set jobs to machines as in x .

11/16

Algorithm

Assign job Jj to machine Mi that minimizes pi j .
Let τ be the makespan of this schedule.

Do a binary search in the interval [τ
|M| , τ] to find the smallest

value T ∗ of T ∈ Z+ s.t. LP(T) has a feasible solution.

Find an extreme-point solution x for LP(T ∗).

Assign all integrally set jobs to machines as in x .

Construct the graph H and find an F -perfect matching P in it
(see Lemma 4 later, F is set of fractionally assigned jobs)

11/16

Algorithm

Assign job Jj to machine Mi that minimizes pi j .
Let τ be the makespan of this schedule.

Do a binary search in the interval [τ
|M| , τ] to find the smallest

value T ∗ of T ∈ Z+ s.t. LP(T) has a feasible solution.

Find an extreme-point solution x for LP(T ∗).

Assign all integrally set jobs to machines as in x .

Construct the graph H and find an F -perfect matching P in it
(see Lemma 4 later, F is set of fractionally assigned jobs)

Assign the fractional jobs to machines using P.

11/16

Algorithm

Assign job Jj to machine Mi that minimizes pi j .
Let τ be the makespan of this schedule.

Do a binary search in the interval [τ
|M| , τ] to find the smallest

value T ∗ of T ∈ Z+ s.t. LP(T) has a feasible solution.

Find an extreme-point solution x for LP(T ∗).

Assign all integrally set jobs to machines as in x .

Construct the graph H and find an F -perfect matching P in it
(see Lemma 4 later, F is set of fractionally assigned jobs)

Assign the fractional jobs to machines using P.

Theorem. This is a factor-2 approximation algorithm
(assuming that we have an F -perfect matching).

12/16

Approximation Factor

Proof. T ∗ ≤ OPT.

Theorem. This is a factor-2 approximation algorithm
(assuming that we have an F -perfect matching).

∑
i : (i ,j)∈ST

xi j = 1, Jj ∈ J

∑
j : (i ,j)∈ST

xi jpi j ≤ T , Mi ∈M

xi j ≥ 0, (i , j) ∈ ST

12/16

Approximation Factor

Proof.
Let x be an extreme-point solution for LP(T ∗)
T ∗ ≤ OPT.

Theorem. This is a factor-2 approximation algorithm
(assuming that we have an F -perfect matching).

∑
i : (i ,j)∈ST

xi j = 1, Jj ∈ J

∑
j : (i ,j)∈ST

xi jpi j ≤ T , Mi ∈M

xi j ≥ 0, (i , j) ∈ ST

12/16

Approximation Factor

Proof.
Let x be an extreme-point solution for LP(T ∗)
Fractional solution: Makespan ≤ T ∗.

T ∗ ≤ OPT.

Theorem. This is a factor-2 approximation algorithm
(assuming that we have an F -perfect matching).

∑
i : (i ,j)∈ST

xi j = 1, Jj ∈ J

∑
j : (i ,j)∈ST

xi jpi j ≤ T , Mi ∈M

xi j ≥ 0, (i , j) ∈ ST

12/16

Approximation Factor

Proof.
Let x be an extreme-point solution for LP(T ∗)
Fractional solution: Makespan ≤ T ∗.
⇒ Restriction to integral jobs has makespan ≤ T ∗.

T ∗ ≤ OPT.

Theorem. This is a factor-2 approximation algorithm
(assuming that we have an F -perfect matching).

∑
i : (i ,j)∈ST

xi j = 1, Jj ∈ J

∑
j : (i ,j)∈ST

xi jpi j ≤ T , Mi ∈M

xi j ≥ 0, (i , j) ∈ ST

12/16

Approximation Factor

Proof.
Let x be an extreme-point solution for LP(T ∗)
Fractional solution: Makespan ≤ T ∗.
⇒ Restriction to integral jobs has makespan ≤ T ∗.
For each edge (i , j) ∈ ST∗ , it holds that pi j ≤ T ∗.

T ∗ ≤ OPT.

Theorem. This is a factor-2 approximation algorithm
(assuming that we have an F -perfect matching).

∑
i : (i ,j)∈ST

xi j = 1, Jj ∈ J

∑
j : (i ,j)∈ST

xi jpi j ≤ T , Mi ∈M

xi j ≥ 0, (i , j) ∈ ST

12/16

Approximation Factor

Proof.
Let x be an extreme-point solution for LP(T ∗)
Fractional solution: Makespan ≤ T ∗.
⇒ Restriction to integral jobs has makespan ≤ T ∗.
For each edge (i , j) ∈ ST∗ , it holds that pi j ≤ T ∗.
Matching: at most one extra job per maschine.

T ∗ ≤ OPT.

Theorem. This is a factor-2 approximation algorithm
(assuming that we have an F -perfect matching).

∑
i : (i ,j)∈ST

xi j = 1, Jj ∈ J

∑
j : (i ,j)∈ST

xi jpi j ≤ T , Mi ∈M

xi j ≥ 0, (i , j) ∈ ST

12/16

Approximation Factor

Proof.
Let x be an extreme-point solution for LP(T ∗)
Fractional solution: Makespan ≤ T ∗.
⇒ Restriction to integral jobs has makespan ≤ T ∗.
For each edge (i , j) ∈ ST∗ , it holds that pi j ≤ T ∗.
Matching: at most one extra job per maschine.
⇒ total makespan ≤ 2T ∗ ≤ 2 OPT

T ∗ ≤ OPT.

Theorem. This is a factor-2 approximation algorithm
(assuming that we have an F -perfect matching).

∑
i : (i ,j)∈ST

xi j = 1, Jj ∈ J

∑
j : (i ,j)∈ST

xi jpi j ≤ T , Mi ∈M

xi j ≥ 0, (i , j) ∈ ST

13/16

Lecture 7:
Scheduling Jobs on Parallel Machines

Part IV:
Pseudo-Trees and -Forests

Approximation Algorithms

14/16

Pseudo-Trees and -Forests

Pseudo-tree: a connected graph with at most as many edges as vertices.

14/16

Pseudo-Trees and -Forests

Pseudo-tree:
(A pseudo-tree is either a tree or a tree plus a single edge.)
a connected graph with at most as many edges as vertices.

14/16

Pseudo-Trees and -Forests

Pseudo-tree:
(A pseudo-tree is either a tree or a tree plus a single edge.)

Pseudo-forest:

a connected graph with at most as many edges as vertices.

14/16

Pseudo-Trees and -Forests

Pseudo-tree:
(A pseudo-tree is either a tree or a tree plus a single edge.)

Pseudo-forest:

a connected graph with at most as many edges as vertices.

a collection of disjoint pseudo-trees.

14/16

Pseudo-Trees and -Forests

Pseudo-tree:
(A pseudo-tree is either a tree or a tree plus a single edge.)

Pseudo-forest:

a connected graph with at most as many edges as vertices.

a collection of disjoint pseudo-trees.

Lemma 3.
The bipartite graph G = (M∪J ,E) is a pseudo-forest.

14/16

Pseudo-Trees and -Forests

Pseudo-tree:
(A pseudo-tree is either a tree or a tree plus a single edge.)

Pseudo-forest:

Extreme-point solutions have ≤ |M|+ |J | positive variables (Lemma 1).

a connected graph with at most as many edges as vertices.

a collection of disjoint pseudo-trees.

Lemma 3.
The bipartite graph G = (M∪J ,E) is a pseudo-forest.

14/16

Pseudo-Trees and -Forests

Pseudo-tree:
(A pseudo-tree is either a tree or a tree plus a single edge.)

Pseudo-forest:

Extreme-point solutions have ≤ |M|+ |J | positive variables (Lemma 1).

Each conn. component C of G corresponds to an extreme-point solution.

a connected graph with at most as many edges as vertices.

a collection of disjoint pseudo-trees.

Lemma 3.
The bipartite graph G = (M∪J ,E) is a pseudo-forest.

(Suppose not. Then the solution that corresponds to C is the convex
combination of other solutions. But this contradicts the definition of G .)

14/16

Pseudo-Trees and -Forests

Pseudo-tree:
(A pseudo-tree is either a tree or a tree plus a single edge.)

Pseudo-forest:

Extreme-point solutions have ≤ |M|+ |J | positive variables (Lemma 1).

Each conn. component C of G corresponds to an extreme-point solution.

a connected graph with at most as many edges as vertices.

a collection of disjoint pseudo-trees.

Lemma 3.
The bipartite graph G = (M∪J ,E) is a pseudo-forest.

⇒ C has at most as many edges (pos. var.) as vertices (jobs+machines).

(Suppose not. Then the solution that corresponds to C is the convex
combination of other solutions. But this contradicts the definition of G .)

14/16

Pseudo-Trees and -Forests

Pseudo-tree:
(A pseudo-tree is either a tree or a tree plus a single edge.)

Pseudo-forest:

Extreme-point solutions have ≤ |M|+ |J | positive variables (Lemma 1).

Each conn. component C of G corresponds to an extreme-point solution.

Lemma 4. The graph H has an F -perfect matching.

a connected graph with at most as many edges as vertices.

a collection of disjoint pseudo-trees.

Lemma 3.
The bipartite graph G = (M∪J ,E) is a pseudo-forest.

⇒ C has at most as many edges (pos. var.) as vertices (jobs+machines).

(Suppose not. Then the solution that corresponds to C is the convex
combination of other solutions. But this contradicts the definition of G .)

14/16

Pseudo-Trees and -Forests

Pseudo-tree:
(A pseudo-tree is either a tree or a tree plus a single edge.)

Pseudo-forest:

Extreme-point solutions have ≤ |M|+ |J | positive variables (Lemma 1).

Each conn. component C of G corresponds to an extreme-point solution.

In G , every vertex in J \ F is a leaf. ⇒

Lemma 4. The graph H has an F -perfect matching.

a connected graph with at most as many edges as vertices.

a collection of disjoint pseudo-trees.

Lemma 3.
The bipartite graph G = (M∪J ,E) is a pseudo-forest.

⇒ C has at most as many edges (pos. var.) as vertices (jobs+machines).

(Suppose not. Then the solution that corresponds to C is the convex
combination of other solutions. But this contradicts the definition of G .)

14/16

Pseudo-Trees and -Forests

Pseudo-tree:
(A pseudo-tree is either a tree or a tree plus a single edge.)

Pseudo-forest:

Extreme-point solutions have ≤ |M|+ |J | positive variables (Lemma 1).

Each conn. component C of G corresponds to an extreme-point solution.

In G , every vertex in J \ F is a leaf. ⇒

Lemma 4. The graph H has an F -perfect matching.

a connected graph with at most as many edges as vertices.

a collection of disjoint pseudo-trees.

Lemma 3.
The bipartite graph G = (M∪J ,E) is a pseudo-forest.

remove leaves

⇒ C has at most as many edges (pos. var.) as vertices (jobs+machines).

(Suppose not. Then the solution that corresponds to C is the convex
combination of other solutions. But this contradicts the definition of G .)

14/16

Pseudo-Trees and -Forests

Pseudo-tree:
(A pseudo-tree is either a tree or a tree plus a single edge.)

Pseudo-forest:

Extreme-point solutions have ≤ |M|+ |J | positive variables (Lemma 1).

Each conn. component C of G corresponds to an extreme-point solution.

In G , every vertex in J \ F is a leaf. ⇒

Lemma 4. The graph H has an F -perfect matching.

a connected graph with at most as many edges as vertices.

a collection of disjoint pseudo-trees.

Lemma 3.
The bipartite graph G = (M∪J ,E) is a pseudo-forest.

H is a pseudo-forest, too.
remove leaves

⇒ C has at most as many edges (pos. var.) as vertices (jobs+machines).

(Suppose not. Then the solution that corresponds to C is the convex
combination of other solutions. But this contradicts the definition of G .)

14/16

Pseudo-Trees and -Forests

Pseudo-tree:
(A pseudo-tree is either a tree or a tree plus a single edge.)

Pseudo-forest:

Extreme-point solutions have ≤ |M|+ |J | positive variables (Lemma 1).

Each conn. component C of G corresponds to an extreme-point solution.

In G , every vertex in J \ F is a leaf. ⇒

Lemma 4. The graph H has an F -perfect matching.

Vertices in F have minimum degree 2.

a connected graph with at most as many edges as vertices.

a collection of disjoint pseudo-trees.

Lemma 3.
The bipartite graph G = (M∪J ,E) is a pseudo-forest.

H is a pseudo-forest, too.
remove leaves

⇒ C has at most as many edges (pos. var.) as vertices (jobs+machines).

(Suppose not. Then the solution that corresponds to C is the convex
combination of other solutions. But this contradicts the definition of G .)

14/16

Pseudo-Trees and -Forests

Pseudo-tree:
(A pseudo-tree is either a tree or a tree plus a single edge.)

Pseudo-forest:

Extreme-point solutions have ≤ |M|+ |J | positive variables (Lemma 1).

Each conn. component C of G corresponds to an extreme-point solution.

In G , every vertex in J \ F is a leaf. ⇒
⇒ The leaves in H are machines.

Lemma 4. The graph H has an F -perfect matching.

Vertices in F have minimum degree 2.

a connected graph with at most as many edges as vertices.

a collection of disjoint pseudo-trees.

Lemma 3.
The bipartite graph G = (M∪J ,E) is a pseudo-forest.

H is a pseudo-forest, too.
remove leaves

⇒ C has at most as many edges (pos. var.) as vertices (jobs+machines).

(Suppose not. Then the solution that corresponds to C is the convex
combination of other solutions. But this contradicts the definition of G .)

14/16

Pseudo-Trees and -Forests

Pseudo-tree:
(A pseudo-tree is either a tree or a tree plus a single edge.)

Pseudo-forest:

Extreme-point solutions have ≤ |M|+ |J | positive variables (Lemma 1).

Each conn. component C of G corresponds to an extreme-point solution.

In G , every vertex in J \ F is a leaf. ⇒
⇒ The leaves in H are machines.

After iteratively matching all leaves,

Lemma 4. The graph H has an F -perfect matching.

Vertices in F have minimum degree 2.

a connected graph with at most as many edges as vertices.

a collection of disjoint pseudo-trees.

Lemma 3.
The bipartite graph G = (M∪J ,E) is a pseudo-forest.

H is a pseudo-forest, too.
remove leaves

⇒ C has at most as many edges (pos. var.) as vertices (jobs+machines).

(Suppose not. Then the solution that corresponds to C is the convex
combination of other solutions. But this contradicts the definition of G .)

14/16

Pseudo-Trees and -Forests

Pseudo-tree:
(A pseudo-tree is either a tree or a tree plus a single edge.)

Pseudo-forest:

Extreme-point solutions have ≤ |M|+ |J | positive variables (Lemma 1).

only even cycles remain.

Each conn. component C of G corresponds to an extreme-point solution.

In G , every vertex in J \ F is a leaf. ⇒
⇒ The leaves in H are machines.

After iteratively matching all leaves,

Lemma 4. The graph H has an F -perfect matching.

Vertices in F have minimum degree 2.

a connected graph with at most as many edges as vertices.

a collection of disjoint pseudo-trees.

Lemma 3.
The bipartite graph G = (M∪J ,E) is a pseudo-forest.

H is a pseudo-forest, too.
remove leaves

⇒ C has at most as many edges (pos. var.) as vertices (jobs+machines).

(Suppose not. Then the solution that corresponds to C is the convex
combination of other solutions. But this contradicts the definition of G .)

14/16

Pseudo-Trees and -Forests

Pseudo-tree:
(A pseudo-tree is either a tree or a tree plus a single edge.)

Pseudo-forest:

Extreme-point solutions have ≤ |M|+ |J | positive variables (Lemma 1).

only even cycles remain.

Each conn. component C of G corresponds to an extreme-point solution.

In G , every vertex in J \ F is a leaf. ⇒
⇒ The leaves in H are machines.

After iteratively matching all leaves,

Lemma 4. The graph H has an F -perfect matching.

Vertices in F have minimum degree 2.

a connected graph with at most as many edges as vertices.

a collection of disjoint pseudo-trees.

Lemma 3.
The bipartite graph G = (M∪J ,E) is a pseudo-forest.

H is a pseudo-forest, too.
remove leaves

⇒ C has at most as many edges (pos. var.) as vertices (jobs+machines).

(Suppose not. Then the solution that corresponds to C is the convex
combination of other solutions. But this contradicts the definition of G .)

(H is bipartite :-)

15/16

Scheduling on Parallel Machines

Theorem. There is an LP-based 2-approximation algorithm
for the problem of scheduling jobs on unrelated
parallel machines.

15/16

Scheduling on Parallel Machines

Tight?

Theorem. There is an LP-based 2-approximation algorithm
for the problem of scheduling jobs on unrelated
parallel machines.

15/16

Scheduling on Parallel Machines

Tight?
Instance Im:

Yes!

Theorem. There is an LP-based 2-approximation algorithm
for the problem of scheduling jobs on unrelated
parallel machines.

15/16

Scheduling on Parallel Machines

Tight?
Instance Im:
m machines and m2 −m + 1 jobs

Yes!

Theorem. There is an LP-based 2-approximation algorithm
for the problem of scheduling jobs on unrelated
parallel machines.

15/16

Scheduling on Parallel Machines

Tight?
Instance Im:
m machines and m2 −m + 1 jobs
Job J1 has processing time m on every machine,

Yes!

Theorem. There is an LP-based 2-approximation algorithm
for the problem of scheduling jobs on unrelated
parallel machines.

15/16

Scheduling on Parallel Machines

Tight?
Instance Im:
m machines and m2 −m + 1 jobs
Job J1 has processing time m on every machine,
all other jobs have processing time 1 on every machine.

Yes!

Theorem. There is an LP-based 2-approximation algorithm
for the problem of scheduling jobs on unrelated
parallel machines.

15/16

Scheduling on Parallel Machines

Tight?
Instance Im:
m machines and m2 −m + 1 jobs
Job J1 has processing time m on every machine,
all other jobs have processing time 1 on every machine.

Optimum:

Yes!

Theorem. There is an LP-based 2-approximation algorithm
for the problem of scheduling jobs on unrelated
parallel machines.

15/16

Scheduling on Parallel Machines

Tight?
Instance Im:
m machines and m2 −m + 1 jobs
Job J1 has processing time m on every machine,
all other jobs have processing time 1 on every machine.

Optimum:

Yes!

Theorem. There is an LP-based 2-approximation algorithm
for the problem of scheduling jobs on unrelated
parallel machines.

one machine gets J1, and all others spread evenly.

15/16

Scheduling on Parallel Machines

Tight?
Instance Im:
m machines and m2 −m + 1 jobs
Job J1 has processing time m on every machine,
all other jobs have processing time 1 on every machine.

Optimum:

Yes!

Theorem. There is an LP-based 2-approximation algorithm
for the problem of scheduling jobs on unrelated
parallel machines.

one machine gets J1, and all others spread evenly.
⇒ Makespan = m.

15/16

Scheduling on Parallel Machines

Tight?
Instance Im:
m machines and m2 −m + 1 jobs
Job J1 has processing time m on every machine,
all other jobs have processing time 1 on every machine.

Optimum:

Algorithm:

Yes!

Theorem. There is an LP-based 2-approximation algorithm
for the problem of scheduling jobs on unrelated
parallel machines.

one machine gets J1, and all others spread evenly.
⇒ Makespan = m.

15/16

Scheduling on Parallel Machines

Tight?
Instance Im:
m machines and m2 −m + 1 jobs
Job J1 has processing time m on every machine,
all other jobs have processing time 1 on every machine.

Optimum:

Algorithm:
LP(T) has no feasible solution for any T < m.

Yes!

Theorem. There is an LP-based 2-approximation algorithm
for the problem of scheduling jobs on unrelated
parallel machines.

one machine gets J1, and all others spread evenly.
⇒ Makespan = m.

15/16

Scheduling on Parallel Machines

Tight?
Instance Im:
m machines and m2 −m + 1 jobs
Job J1 has processing time m on every machine,
all other jobs have processing time 1 on every machine.

Optimum:

Algorithm:
LP(T) has no feasible solution for any T < m.
Extreme-point solution:

Yes!

Theorem. There is an LP-based 2-approximation algorithm
for the problem of scheduling jobs on unrelated
parallel machines.

Assign 1/m of J1 and m − 1 other jobs to each machine.

one machine gets J1, and all others spread evenly.
⇒ Makespan = m.

15/16

Scheduling on Parallel Machines

Tight?
Instance Im:
m machines and m2 −m + 1 jobs
Job J1 has processing time m on every machine,
all other jobs have processing time 1 on every machine.

Optimum:

Algorithm:
LP(T) has no feasible solution for any T < m.
Extreme-point solution:

Yes!

⇒ Makespan 2m − 1.

Theorem. There is an LP-based 2-approximation algorithm
for the problem of scheduling jobs on unrelated
parallel machines.

Assign 1/m of J1 and m − 1 other jobs to each machine.

one machine gets J1, and all others spread evenly.
⇒ Makespan = m.

16/16

Scheduling on Parallel Machines

Can we do better?

Theorem. There is an LP-based 2-approximation algorithm
for the problem of scheduling jobs on unrelated
parallel machines.

16/16

Scheduling on Parallel Machines

Can we do better?

No better approximation algorithm is known.

Theorem. There is an LP-based 2-approximation algorithm
for the problem of scheduling jobs on unrelated
parallel machines.

16/16

Scheduling on Parallel Machines

Can we do better?

The problem cannot be approximated within factor < 3/2
(unless P=NP). [Lenstra, Shmoys & Tardos ’90]

No better approximation algorithm is known.

Theorem. There is an LP-based 2-approximation algorithm
for the problem of scheduling jobs on unrelated
parallel machines.

16/16

Scheduling on Parallel Machines

Can we do better?

The problem cannot be approximated within factor < 3/2
(unless P=NP). [Lenstra, Shmoys & Tardos ’90]

No better approximation algorithm is known.

For a constant number of machines, for every ε > 0 there is a
factor-(1 + ε) approximation algorithm. [Horowitz & Sahni ’76]

Theorem. There is an LP-based 2-approximation algorithm
for the problem of scheduling jobs on unrelated
parallel machines.

16/16

Scheduling on Parallel Machines

Can we do better?

The problem cannot be approximated within factor < 3/2
(unless P=NP). [Lenstra, Shmoys & Tardos ’90]

No better approximation algorithm is known.

For a constant number of machines, for every ε > 0 there is a
factor-(1 + ε) approximation algorithm. [Horowitz & Sahni ’76]

For uniform machines, for every ε > 0 there is a factor-(1 + ε)
approximation algorithm. [Hochbaum & Shmoys ’87]

Theorem. There is an LP-based 2-approximation algorithm
for the problem of scheduling jobs on unrelated
parallel machines.

16/16

Scheduling on Parallel Machines

Can we do better?

The problem cannot be approximated within factor < 3/2
(unless P=NP). [Lenstra, Shmoys & Tardos ’90]

No better approximation algorithm is known.

For a constant number of machines, for every ε > 0 there is a
factor-(1 + ε) approximation algorithm. [Horowitz & Sahni ’76]

For uniform machines, for every ε > 0 there is a factor-(1 + ε)
approximation algorithm. [Hochbaum & Shmoys ’87]

(Machines may have different speeds, but process jobs uniformly.)

Theorem. There is an LP-based 2-approximation algorithm
for the problem of scheduling jobs on unrelated
parallel machines.

	ILP & Parametric Pruning
	Scheduling on Parallel Machines
	Formulation as ILP

	Parametric Pruning
	Parametric Pruning

	Properties of Extreme Point Solutions
	Lemma 1
	Lemma 2

	An Algorithm
	Extreme Point Solutions of LP(T)
	Algorithm
	Approximation Factor

	Pseudo-Trees and -Forests
	Tightness
	Better?

