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Lecture 7:
Scheduling Jobs on Parallel Machines

Part I:
ILP & Parametric Pruning

Approximation Algorithms
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⇒ OPT = m and OPTfrac = 1.
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Introduce new parameter T ∈ N as a lower bound on OPT.

Define ST := { (i , j) : Mi ∈M, Jj ∈ J , pi j ≤ T }.

Define the “pruned” relaxation LP(T ):∑
i : (i ,j)∈ST

xi j = 1, Jj ∈ J

∑
j : (i ,j)∈ST

xi jpi j ≤ T , Mi ∈M

xi j ≥ 0, (i , j) ∈ ST

But why does this LP give a good integrality gap?

Note:

LP(T ) has no
objective function;
we just need to check
whether a feasible
solution exists.
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Let F ⊆ J be the set of fractionally assigned jobs.
Let H := G [M∪ F ].

Observe:

A matching in H is called F -perfect if it matches every vertex
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value T ∗ of T ∈ Z+ s.t. LP(T ) has a feasible solution.

Find an extreme-point solution x for LP(T ∗).

Assign all integrally set jobs to machines as in x .

Construct the graph H and find an F -perfect matching P in it
(see Lemma 4 later, F is set of fractionally assigned jobs)
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Theorem. This is a factor-2 approximation algorithm
(assuming that we have an F -perfect matching).
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⇒ The leaves in H are machines.

After iteratively matching all leaves,
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a connected graph with at most as many edges as vertices.

a collection of disjoint pseudo-trees.

Lemma 3.
The bipartite graph G = (M∪J ,E ) is a pseudo-forest.

H is a pseudo-forest, too.
remove leaves

⇒ C has at most as many edges (pos. var.) as vertices (jobs+machines).

(Suppose not. Then the solution that corresponds to C is the convex
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No better approximation algorithm is known.

For a constant number of machines, for every ε > 0 there is a
factor-(1 + ε) approximation algorithm. [Horowitz & Sahni ’76]

For uniform machines, for every ε > 0 there is a factor-(1 + ε)
approximation algorithm. [Hochbaum & Shmoys ’87]

(Machines may have different speeds, but process jobs uniformly.)

Theorem. There is an LP-based 2-approximation algorithm
for the problem of scheduling jobs on unrelated
parallel machines.
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