Approximation Algorithms Lecture 7: Scheduling Jobs on Parallel Machines

Part I: ILP & Parametric Pruning

Alexander Wolff

Winter 2023/24

Given: A set \mathcal{J} of **jobs**,

 $\mathcal{J} = \{J_1, J_2, \ldots, J_8\}$

Given: A set \mathcal{J} of **jobs**, a set \mathcal{M} of **machines**, and

$$\mathcal{J} = \{J_1, J_2, \ldots, J_8\}$$

 $\mathcal{M} = \{M_1, M_2, M_3\}$

Given: A set \mathcal{J} of **jobs**, a set \mathcal{M} of **machines**, and for each $M_i \in \mathcal{M}$ and $J_j \in \mathcal{J}$ the **processing time** $p_{ij} \in \mathbb{N}^+$ of J_j on M_i .

$$\mathcal{J} = \{J_1, J_2, \ldots, J_8\}$$

 $\mathcal{M} = \{M_1, M_2, M_3\}$

 $(p_{ij})_{M_i \in \mathcal{M}, J_j \in \mathcal{J}}$

Given: A set \mathcal{J} of **jobs**, a set \mathcal{M} of **machines**, and for each $M_i \in \mathcal{M}$ and $J_j \in \mathcal{J}$ the **processing time** $p_{ij} \in \mathbb{N}^+$ of J_j on M_i .

Task: A schedule $\sigma: \mathcal{J} \to \mathcal{M}$ of the jobs on the machines that minimizes the total time to completion (makespan), i.e., minimizes the maximum time a machine is in use.

 $\mathcal{J} = \{J_1, J_2, \ldots, J_8\}$

 $\mathcal{M} = \{M_1, M_2, M_3\}$

 $(p_{ij})_{M_i \in \mathcal{M}, J_j \in \mathcal{J}}$

Given: A set \mathcal{J} of **jobs**, a set \mathcal{M} of **machines**, and for each $M_i \in \mathcal{M}$ and $J_j \in \mathcal{J}$ the **processing time** $p_{ij} \in \mathbb{N}^+$ of J_j on M_i .

Task: A schedule $\sigma: \mathcal{J} \to \mathcal{M}$ of the jobs on the machines that minimizes the total time to completion (makespan), i.e., minimizes the maximum time a machine is in use.

 M_1

 M_2

 $\mathcal{J} = \{J_1, J_2, \ldots, J_8\}$

 $\mathcal{M} = \{ M_1, M_2, M_3 \}$

 $(p_{ij})_{M_i \in \mathcal{M}, J_j \in \mathcal{J}}$

 M_3

Given: A set \mathcal{J} of **jobs**, a set \mathcal{M} of **machines**, and for each $M_i \in \mathcal{M}$ and $J_j \in \mathcal{J}$ the **processing time** $p_{ij} \in \mathbb{N}^+$ of J_j on M_i .

Task: A schedule $\sigma: \mathcal{J} \to \mathcal{M}$ of the jobs on the machines that minimizes the total time to completion (makespan), i.e., minimizes the maximum time a machine is in use.

*M*₁ *p*₁₁ *p*₁₃ *p*₁₈

 $\mathcal{J} = \{J_1, J_2, \ldots, J_8\}$

 $\mathcal{M} = \{M_1, M_2, M_3\}$

 $(p_{ij})_{M_i \in \mathcal{M}, J_j \in \mathcal{J}}$

 M_2

 M_3

2/16

Given: A set \mathcal{J} of **jobs**, a set \mathcal{M} of **machines**, and for each $M_i \in \mathcal{M}$ and $J_j \in \mathcal{J}$ the **processing time** $p_{ij} \in \mathbb{N}^+$ of J_j on M_i .

Task: A schedule $\sigma: \mathcal{J} \to \mathcal{M}$ of the jobs on the machines that minimizes the total time to completion (makespan), i.e., minimizes the maximum time a machine is in use.

 $\mathcal{J} = \{J_1, J_2, \ldots, J_8\}$

 $\mathcal{M} = \{M_1, M_2, M_3\}$

 $(p_{ij})_{M_i \in \mathcal{M}, J_j \in \mathcal{J}}$

 M_3

Given: A set \mathcal{J} of **jobs**, a set \mathcal{M} of **machines**, and for each $M_i \in \mathcal{M}$ and $J_j \in \mathcal{J}$ the **processing time** $p_{ij} \in \mathbb{N}^+$ of J_j on M_i .

Task: A schedule $\sigma: \mathcal{J} \to \mathcal{M}$ of the jobs on the machines that minimizes the total time to completion (makespan), i.e., minimizes the maximum time a machine is in use.

Given: A set \mathcal{J} of **jobs**, a set \mathcal{M} of **machines**, and for each $M_i \in \mathcal{M}$ and $J_j \in \mathcal{J}$ the **processing time** $p_{ij} \in \mathbb{N}^+$ of J_j on M_i .

Task: A schedule $\sigma: \mathcal{J} \to \mathcal{M}$ of the jobs on the machines that minimizes the total time to completion (makespan), i.e., minimizes the maximum time a

machine is in use.

$$\mathcal{J} = \{J_1, J_2, \ldots, J_8\}$$

 $\mathcal{M} = \{ M_1, M_2, M_3 \}$

 $(p_{ij})_{M_i \in \mathcal{M}, J_j \in \mathcal{J}}$

minimize t

subject to

minimize *t* subject to

$x_{ij} \in \{0,1\}, \qquad M_i \in \mathcal{M}, J_j \in \mathcal{J}$

minimize	t	
subject to	$\sum x_{ij} = 1$,	$J_j \in \mathcal{J}$
	$\sum_{i,j} \sum_{j=\sigma}^{M} x_{ij} p_{ij} \leq t,$	$M_i \in \mathcal{M}$
	$J_{j}\in \mathcal{J}$ $oldsymbol{\chi_{ij}}\in\{0,1\},$	$M_i \in \mathcal{M}$, $J_j \in \mathcal{J}$

Task: Prove that the integrality gap is unbounded!

Task: Prove that the integrality gap is unbounded!Solution: *m* machines and one job with processing time *m*

Task: Prove that the integrality gap is unbounded! Solution: *m* machines and one job with processing time *m* $\Rightarrow OPT = m$ and $OPT_{frac} = 1$.

Strengthen the ILP \rightarrow implicit (non-linear) constraint: If $p_{ij} > t$, then set $x_{ij} = 0$.

Strengthen the ILP \rightarrow implicit (non-linear) constraint: If $p_{ij} > t$, then set $x_{ij} = 0$.

Introduce new parameter $T \in \mathbb{N}$ as a lower bound on OPT.

Strengthen the ILP \rightarrow implicit (non-linear) constraint: If $p_{ij} > t$, then set $x_{ij} = 0$.

Introduce new parameter $T \in \mathbb{N}$ as a lower bound on OPT.

Define $S_T := \{ (i, j) \colon M_i \in \mathcal{M}, J_j \in \mathcal{J}, p_{ij} \leq T \}.$

Strengthen the ILP \rightarrow implicit (non-linear) constraint: If $p_{ij} > t$, then set $x_{ij} = 0$.

Introduce new parameter $T \in \mathbb{N}$ as a lower bound on OPT.

Define
$$S_T := \{ (i, j) \colon M_i \in \mathcal{M}, J_j \in \mathcal{J}, p_{ij} \leq T \}.$$

Strengthen the ILP \rightarrow implicit (non-linear) constraint: If $p_{ij} > t$, then set $x_{ij} = 0$.

Introduce new parameter $T \in \mathbb{N}$ as a lower bound on OPT.

Define
$$S_T := \{ (i, j) \colon M_i \in \mathcal{M}, J_j \in \mathcal{J}, p_{ij} \leq T \}.$$

Strengthen the ILP \rightarrow implicit (non-linear) constraint: If $p_{ij} > t$, then set $x_{ij} = 0$.

Introduce new parameter $T \in \mathbb{N}$ as a lower bound on OPT.

Define
$$S_T := \{ (i, j) \colon M_i \in \mathcal{M}, J_j \in \mathcal{J}, p_{ij} \leq T \}.$$

Strengthen the ILP \rightarrow implicit (non-linear) constraint: If $p_{ij} > t$, then set $x_{ij} = 0$.

Introduce new parameter $T \in \mathbb{N}$ as a lower bound on OPT.

Define
$$S_T := \{ (i, j) \colon M_i \in \mathcal{M}, J_j \in \mathcal{J}, p_{ij} \leq T \}.$$

Strengthen the ILP \rightarrow implicit (non-linear) constraint: If $p_{ij} > t$, then set $x_{ij} = 0$.

Introduce new parameter $T \in \mathbb{N}$ as a lower bound on OPT.

Define
$$S_T := \{ (i, j) \colon M_i \in \mathcal{M}, J_j \in \mathcal{J}, p_{ij} \leq T \}.$$

Strengthen the ILP \rightarrow implicit (non-linear) constraint: If $p_{ij} > t$, then set $x_{ij} = 0$.

Introduce new parameter $T \in \mathbb{N}$ as a lower bound on OPT.

Define
$$S_T := \{ (i, j) \colon M_i \in \mathcal{M}, J_j \in \mathcal{J}, p_{ij} \leq T \}.$$

Strengthen the ILP \rightarrow implicit (non-linear) constraint: If $p_{ij} > t$, then set $x_{ij} = 0$.

Introduce new parameter $T \in \mathbb{N}$ as a lower bound on OPT.

Define
$$S_T := \{ (i, j) \colon M_i \in \mathcal{M}, J_j \in \mathcal{J}, p_{ij} \leq T \}.$$

Strengthen the ILP \rightarrow implicit (non-linear) constraint: If $p_{ij} > t$, then set $x_{ij} = 0$.

Introduce new parameter $T \in \mathbb{N}$ as a lower bound on OPT.

Define
$$S_T := \{ (i, j) \colon M_i \in \mathcal{M}, J_j \in \mathcal{J}, p_{ij} \leq T \}.$$

$$\sum_{i: (i,j) \in S_T} x_{ij} = 1, \quad J_j \in \mathcal{J}$$
$$\sum_{i: (i,j) \in S_T} x_{ij} p_{ij} \leq T, \quad M_i \in \mathcal{M}$$
$$j: (i,j) \in S_T$$
$$x_{ij} \geq 0, \quad (i,j) \in S_T$$

Strengthen the ILP \rightarrow implicit (non-linear) constraint: If $p_{ij} > t$, then set $x_{ij} = 0$.

Introduce new parameter $T \in \mathbb{N}$ as a lower bound on OPT.

Define
$$S_T := \{ (i, j) \colon M_i \in \mathcal{M}, J_j \in \mathcal{J}, p_{ij} \leq T \}.$$

Define the "pruned" relaxation LP(T):

$$\sum_{i: (i,j) \in S_T} x_{ij} = 1, \quad J_j \in \mathcal{J}$$
$$\sum_{i: (i,j) \in S_T} x_{ij} p_{ij} \leq T, \quad M_i \in \mathcal{M}$$
$$j: (i,j) \in S_T$$
$$x_{ij} \geq 0, \quad (i,j) \in S_T$$

Note:

LP(*T*) has no objective function; we just need to check whether a feasible solution exists.

Strengthen the ILP \rightarrow implicit (non-linear) constraint: If $p_{ij} > t$, then set $x_{ij} = 0$.

Introduce new parameter $T \in \mathbb{N}$ as a lower bound on OPT.

Define
$$S_T := \{ (i, j) \colon M_i \in \mathcal{M}, J_j \in \mathcal{J}, p_{ij} \leq T \}.$$

Define the "pruned" relaxation LP(T):

$$\sum_{i: (i,j) \in S_T} x_{ij} = 1, \quad J_j \in \mathcal{J}$$
$$\sum_{i: (i,j) \in S_T} x_{ij} p_{ij} \leq T, \quad M_i \in \mathcal{M}$$
$$j: (i,j) \in S_T$$
$$x_{ij} \geq 0, \quad (i,j) \in S_T$$

Note:

LP(*T*) has no objective function; we just need to check whether a feasible solution exists.

But why does this LP give a good integrality gap?

Approximation Algorithms l ecture 7: Scheduling Jobs on Parallel Machines Part II: **Properties of Extreme-Point Solutions**

Use binary search to find the smallest T so that LP(T) has a solution.

$$\begin{aligned} \mathsf{LP}(T): \\ \sum_{i: \ (i,j) \in S_T} x_{ij} &= 1, \quad J_j \in \mathcal{J} \\ \sum_{i: \ (i,j) \in S_T} x_{ij} p_{ij} &\leq T, \quad M_i \in \mathcal{M} \\ x_{ij} &\geq 0, \quad (i,j) \in S_T \end{aligned}$$

Use binary search to find the smallest T so that LP(T) has a solution. Let T^* be this value of T.

$$\begin{aligned} \mathsf{LP}(T): \\ \sum_{i: \ (i,j) \in S_T} x_{ij} &= 1, \quad J_j \in \mathcal{J} \\ \sum_{i: \ (i,j) \in S_T} x_{ij} p_{ij} &\leq T, \quad M_i \in \mathcal{M} \\ i &= X_{ij} \geq 0, \quad (i,j) \in S_T \end{aligned}$$

Use binary search to find the smallest T so that LP(T) has a solution. Let T^* be this value of T. What are the bounds for our search?

$$\begin{aligned} \mathsf{LP}(\mathcal{T}): \\ \sum_{i: \ (i,j) \in S_{\mathcal{T}}} x_{ij} &= 1, \quad J_{j} \in \mathcal{J} \\ \sum_{i: \ (i,j) \in S_{\mathcal{T}}} x_{ij} p_{ij} &\leq \mathcal{T}, \quad M_{i} \in \mathcal{M} \\ x_{ij} &\geq 0, \quad (i,j) \in S_{\mathcal{T}} \end{aligned}$$

Use binary search to find the smallest T so that LP(T) has a solution. Let T^* be this value of T. What are the bounds for our search? Observe: $T^* \leq OPT$

$$\begin{aligned} \mathsf{LP}(T): \\ \sum_{i: \ (i,j) \in S_T} x_{ij} &= 1, \quad J_j \in \mathcal{J} \\ \sum_{i: \ (i,j) \in S_T} x_{ij} p_{ij} &\leq T, \quad M_i \in \mathcal{M} \\ x_{ij} &\geq 0, \quad (i,j) \in S_T \end{aligned}$$
Properties of Extreme Point Solutions

Use binary search to find the smallest T so that LP(T) has a solution. Let T^* be this value of T.

What are the bounds for our search?

Observe: $T^* \leq \mathsf{OPT}$

Idea: Round an extreme-point solution of $LP(T^*)$ to a schedule whose makespan is at most $2T^*$.

$$\begin{aligned} & \sum_{i: \ (i,j) \in S_T} x_{ij} = 1, \quad J_j \in \mathcal{J} \\ & \sum_{i: \ (i,j) \in S_T} x_{ij} p_{ij} \leq T, \quad M_i \in \mathcal{M} \\ & j_{i: \ (i,j) \in S_T} x_{ij} \geq 0, \quad (i,j) \in S_T \end{aligned}$$

Properties of Extreme Point Solutions

Use binary search to find the smallest T so that LP(T) has a solution. Let T^* be this value of T. What are the bounds for our search? **Observe:** $T^* < \mathsf{OPT}$ Round an extreme-point solution of LP(T^*) Idea: to a schedule whose makespan is at most $2T^*$. Lemma 1. LP(**T**): Every extreme-point solution $\sum x_{ij} = 1, \quad J_j \in \mathcal{J}$ of LP(T) has at most $i: (i,j) \in S_T$ $|\mathcal{J}| + |\mathcal{M}|$ positive variables. $\sum x_{ij} p_{ij} \leq T, \quad M_i \in \mathcal{M}$ $j: (i,j) \in S_T$ $x_{ij} \geq 0$, $(i,j) \in S_T$

Properties of Extreme Point Solutions

Use binary search to find the smallest T so that LP(T) has a solution. Let T^* be this value of T. What are the bounds for our search? **Observe:** $T^* < OPT$ Round an extreme-point solution of LP(T^*) Idea: to a schedule whose makespan is at most $2T^*$. Lemma 1. LP(T): Every extreme-point solution $\sum x_{ij} = 1, \quad J_j \in \mathcal{J}$ of LP(T) has at most $i: (i,j) \in S_T$ $|\mathcal{J}| + |\mathcal{M}|$ positive variables. $\sum x_{ij} p_{ij} \leq T, \quad M_i \in \mathcal{M}$ Lemma 2. $j: (i,j) \in S_T$ Every extreme-point solution $x_{ii} \geq 0$, $(i,j) \in S_T$ of LP(T) sets at least ✓ jobs integrally.

$$\sum_{i: (i,j) \in S_T} x_{ij} = 1, \quad J_j \in \mathcal{J}$$
$$\sum_{i: (i,j) \in S_T} x_{ij} p_{ij} \leq T, \quad M_i \in \mathcal{M}$$
$$j: (i,j) \in S_T$$
$$x_{ij} \geq 0, \quad (i,j) \in S_T$$

Lemma 1.

Every extreme-point solution of LP(T) has at most $|\mathcal{J}| + |\mathcal{M}|$ positive variables.

$$\sum_{i: (i,j) \in S_T} x_{ij} = 1, \quad J_j \in \mathcal{J}$$
$$\sum_{i: (i,j) \in S_T} x_{ij} p_{ij} \leq T, \quad M_i \in \mathcal{M}$$
$$j: (i,j) \in S_T$$
$$x_{ij} \geq 0, \quad (i,j) \in S_T$$

Lemma 1.

Every extreme-point solution of LP(T) has at most $|\mathcal{J}| + |\mathcal{M}|$ positive variables.

Proof. L(T): $|S_T|$ variables

$$\sum_{i: (i,j) \in S_T} x_{ij} = 1, \quad J_j \in \mathcal{J}$$
$$\sum_{i: (i,j) \in S_T} x_{ij} p_{ij} \leq T, \quad M_i \in \mathcal{M}$$
$$j: (i,j) \in S_T$$
$$x_{ij} \geq 0, \quad (i,j) \in S_T$$

Lemma 1.

Every extreme-point solution of LP(T) has at most $|\mathcal{J}| + |\mathcal{M}|$ positive variables.

Proof. L(T): $|S_T|$ variables extreme-point solution: $|S_T|$ inequalities tight

Lemma 1

$$\sum_{i: \ (i,j) \in S_T} x_{ij} = 1, \quad J_j \in \mathcal{J}$$

$$\sum_{i: \ (i,j) \in S_T} x_{ij} p_{ij} \leq T, \quad M_i \in \mathcal{M}$$

$$x_{ij} \geq 0, \quad (i,j) \in S_T$$

Lemma 1.

Every extreme-point solution of LP(T) has at most $|\mathcal{J}| + |\mathcal{M}|$ positive variables.

Proof. L(T): $|S_T|$ variables extreme-point solution: $|S_T|$ inequalities tight at most $|\mathcal{J}|$ inequalities

Lemma 1

$$\sum_{i: (i,j) \in S_T} x_{ij} = 1, \quad J_j \in \mathcal{J}$$

$$\sum_{i: (i,j) \in S_T} x_{ij} p_{ij} \leq T, \quad M_i \in \mathcal{M}$$

$$j_{j: (i,j) \in S_T}$$

$$x_{ij} \geq 0, \quad (i,j) \in S_T$$
Lemma 1.
Every extreme-point solution of LP(T) has at most $|\mathcal{J}| + |\mathcal{J}|$
positive variables.
Proof.
 $L(T): |S_T|$ variables

extreme-point solution: $|S_T|$ inequalities tight

- at most $|\mathcal{J}|$ inequalities
- at most $|\mathcal{M}|$ inequalities

Lemma 1

$$\sum_{i: (i,j) \in S_T} x_{ij} = 1, \quad J_j \in \mathcal{J}$$

$$\sum_{i: (i,j) \in S_T} x_{ij} p_{ij} \leq T, \quad M_i \in \mathcal{M}$$

$$\sum_{j: (i,j) \in S_T} x_{ij} \geq 0, \quad (i,j) \in S_T$$
Lemma 1.
Every extreme-point solution of LP(T) has at most $|\mathcal{J}| + |\mathcal{M}|$
positive variables.
Proof.

$$L(T): |S_T| \text{ variables}$$
extreme-point solution: $|S_T|$ inequalities tight
at most $|\mathcal{J}|$ inequalities
at most $|\mathcal{M}|$ inequalities

$$\Rightarrow \text{ At least } |S_T| - |\mathcal{J}| - |\mathcal{M}| \text{ variables are } 0.$$

Lemma 1

$$\sum_{i: (i,j) \in S_T} x_{ij} = 1, \quad J_j \in \mathcal{J}$$

$$\sum_{i: (i,j) \in S_T} x_{ij} p_{ij} \leq T, \quad M_i \in \mathcal{M}$$

$$\sum_{j: (i,j) \in S_T} x_{ij} p_{ij} \leq T, \quad M_i \in \mathcal{M}$$

$$x_{ij} \geq 0, \quad (i,j) \in S_T$$
Lemma 1.
Every extreme-point solution of LP(T) has at most $|\mathcal{J}| + |\mathcal{M}|$
positive variables.
Proof. $L(T): |S_T|$ variables
extreme-point solution: $|S_T|$ inequalities tight
at most $|\mathcal{J}|$ inequalities
at most $|\mathcal{J}|$ inequalities
 \Rightarrow At least $|S_T| - |\mathcal{J}| - |\mathcal{M}|$ variables are 0.
 \Rightarrow At most $|\mathcal{J}| + |\mathcal{M}|$ variables are positive.

$$\sum_{i: (i,j) \in S_T} x_{ij} = 1, \quad J_j \in \mathcal{J}$$
$$\sum_{i: (i,j) \in S_T} x_{ij} p_{ij} \leq T, \quad M_i \in \mathcal{M}$$
$$j: (i,j) \in S_T$$
$$x_{ij} \geq 0, \quad (i,j) \in S_T$$

Lemma 2.

Every extreme-point solution of LP(T) sets at least $|\mathcal{J}| - |\mathcal{M}|$ jobs integrally.

$$\sum_{i: (i,j) \in S_T} x_{ij} = 1, \quad J_j \in \mathcal{J}$$
$$\sum_{i: (i,j) \in S_T} x_{ij} p_{ij} \leq T, \quad M_i \in \mathcal{M}$$
$$j: (i,j) \in S_T$$
$$x_{ij} \geq 0, \quad (i,j) \in S_T$$

Lemma 2.

Every extreme-point solution of LP(T) sets at least $|\mathcal{J}| - |\mathcal{M}|$ jobs integrally.

Proof. Let x be an extreme-point solution of LP(T).

$$\sum_{i: (i,j) \in S_T} x_{ij} = 1, \quad J_j \in \mathcal{J}$$
$$\sum_{i: (i,j) \in S_T} x_{ij} p_{ij} \leq T, \quad M_i \in \mathcal{M}$$
$$j: (i,j) \in S_T$$
$$x_{ij} \geq 0, \quad (i,j) \in S_T$$

Lemma 2.

Every extreme-point solution of LP(T) sets at least $|\mathcal{J}| - |\mathcal{M}|$ jobs integrally.

Proof. Let x be an extreme-point solution of LP(T). Assume x has α integral jobs und β fractional jobs.

$$\sum_{i: (i,j) \in S_T} x_{ij} = 1, \quad J_j \in \mathcal{J}$$
$$\sum_{i: (i,j) \in S_T} x_{ij} p_{ij} \leq T, \quad M_i \in \mathcal{M}$$
$$j: (i,j) \in S_T$$
$$x_{ij} \geq 0, \quad (i,j) \in S_T$$

Lemma 2.

Every extreme-point solution of LP(T) sets at least $|\mathcal{J}| - |\mathcal{M}|$ jobs integrally.

Proof. Let x be an extreme-point solution of LP(\mathcal{T}). Assume x has α integral jobs und β fractional jobs. $\Rightarrow \alpha + \beta = |\mathcal{J}|$

$$\sum_{i: (i,j) \in S_T} x_{ij} = 1, \quad J_j \in \mathcal{J}$$
$$\sum_{i: (i,j) \in S_T} x_{ij} p_{ij} \leq T, \quad M_i \in \mathcal{M}$$
$$j: (i,j) \in S_T$$
$$x_{ij} \geq 0, \quad (i,j) \in S_T$$

Lemma 2.

Every extreme-point solution of LP(T) sets at least $|\mathcal{J}| - |\mathcal{M}|$ jobs integrally.

Proof. Let x be an extreme-point solution of LP(T). Assume x has α integral jobs und β fractional jobs. $\Rightarrow \alpha + \beta = |\mathcal{J}|$ Each fractional job runs on at least two machines.

$$\sum_{i: (i,j) \in S_T} x_{ij} = 1, \quad J_j \in \mathcal{J}$$
$$\sum_{i: (i,j) \in S_T} x_{ij} p_{ij} \leq T, \quad M_i \in \mathcal{M}$$
$$j: (i,j) \in S_T$$
$$x_{ij} \geq 0, \quad (i,j) \in S_T$$

Lemma 2.

Every extreme-point solution of LP(T) sets at least $|\mathcal{J}| - |\mathcal{M}|$ jobs integrally.

Proof. Let x be an extreme-point solution of LP(\mathcal{T}). Assume x has α integral jobs und β fractional jobs. $\Rightarrow \alpha + \beta = |\mathcal{J}|$ Each fractional job runs on at least two machines. \Rightarrow For each such job, at least two variables are pos.

$$\sum_{i: (i,j) \in S_T} x_{ij} = 1, \quad J_j \in \mathcal{J}$$
$$\sum_{i: (i,j) \in S_T} x_{ij} p_{ij} \leq T, \quad M_i \in \mathcal{M}$$
$$j: (i,j) \in S_T$$
$$x_{ij} \geq 0, \quad (i,j) \in S_T$$

Lemma 2.

Every extreme-point solution of LP(T) sets at least $|\mathcal{J}| - |\mathcal{M}|$ jobs integrally.

Proof. Let x be an extreme-point solution of LP(\mathcal{T}). Assume x has α integral jobs und β fractional jobs. $\Rightarrow \alpha + \beta = |\mathcal{J}|$ Each fractional job runs on at least two machines. \Rightarrow For each such job, at least two variables are pos. $\Rightarrow \alpha + 2\beta \leq |\mathcal{J}| + |\mathcal{M}|$ (Lemma 1)

$$\sum_{i: (i,j) \in S_T} x_{ij} = 1, \quad J_j \in \mathcal{J}$$
$$\sum_{i: (i,j) \in S_T} x_{ij} p_{ij} \leq T, \quad M_i \in \mathcal{M}$$
$$j: (i,j) \in S_T$$
$$x_{ij} \geq 0, \quad (i,j) \in S_T$$

Lemma 2.

Every extreme-point solution of LP(T) sets at least $|\mathcal{J}| - |\mathcal{M}|$ jobs integrally.

Proof. Let x be an extreme-point solution of LP(\mathcal{T}). Assume x has α integral jobs und β fractional jobs. $\Rightarrow \alpha + \beta = |\mathcal{J}|$ Each fractional job runs on at least two machines. \Rightarrow For each such job, at least two variables are pos. $\Rightarrow \alpha + 2\beta \le |\mathcal{J}| + |\mathcal{M}|$ (Lemma 1) $\Rightarrow \beta \le |\mathcal{M}|$

$$\sum_{i: (i,j) \in S_T} x_{ij} = 1, \quad J_j \in \mathcal{J}$$
$$\sum_{i: (i,j) \in S_T} x_{ij} p_{ij} \leq T, \quad M_i \in \mathcal{M}$$
$$j: (i,j) \in S_T$$
$$x_{ij} \geq 0, \quad (i,j) \in S_T$$

Lemma 2.

Every extreme-point solution of LP(T) sets at least $|\mathcal{J}| - |\mathcal{M}|$ jobs integrally.

Proof. Let x be an extreme-point solution of LP(\mathcal{T}). Assume x has α integral jobs und β fractional jobs. $\Rightarrow \alpha + \beta = |\mathcal{J}|$ Each fractional job runs on at least two machines. \Rightarrow For each such job, at least two variables are pos. $\Rightarrow \alpha + 2\beta \leq |\mathcal{J}| + |\mathcal{M}|$ (Lemma 1) $\Rightarrow \beta \leq |\mathcal{M}|$ and $\alpha \geq |\mathcal{J}| - |\mathcal{M}|$ [

Approximation Algorithms Lecture 7: Scheduling Jobs on Parallel Machines

Part III: An Algorithm

Definition:

Bipartite graph $G = (\mathcal{M} \cup \mathcal{J}, E)$ with $(i, j) \in E \Leftrightarrow x_{ij} \neq 0$ (in extreme-point sol.).

Definition: Bipartite graph $G = (\mathcal{M} \cup \mathcal{J}, E)$ with $(i, j) \in E \Leftrightarrow x_{ij} \neq 0$ (in extreme-point sol.).

Jobs can be assigned *integrally* or *fractionally*.

Definition: Bipartite graph $G = (\mathcal{M} \cup \mathcal{J}, E)$ with $(i, j) \in E \Leftrightarrow x_{ij} \neq 0$ (in extreme-point sol.).

Jobs can be assigned *integrally* or *fractionally*.

 $(\exists M_i \in \mathcal{M} : 0 < \mathbf{x}_{ij} < 1)$

Definition: Bipartite graph $G = (\mathcal{M} \cup \mathcal{J}, E)$ with $(i, j) \in E \Leftrightarrow x_{ij} \neq 0$ (in extreme-point sol.).

Jobs can be assigned *integrally* or *fractionally*. $(\exists M_i \in \mathcal{M} : 0 < x_{ij} < 1)$

Let $F \subseteq \mathcal{J}$ be the set of fractionally assigned jobs.

Definition: Bipartite graph $G = (\mathcal{M} \cup \mathcal{J}, E)$ with $(i, j) \in E \Leftrightarrow x_{ij} \neq 0$ (in extreme-point sol.).

Jobs can be assigned *integrally* or *fractionally*. $(\exists M_i \in \mathcal{M} : 0 < x_{ij} < 1)$ Let $F \subset \mathcal{J}$ be the set of fractionally assigned jobs.

Let $H := G[\mathcal{M} \cup F]$.

Definition: Bipartite graph $G = (\mathcal{M} \cup \mathcal{J}, E)$ with $(i, j) \in E \Leftrightarrow x_{ij} \neq 0$ (in extreme-point sol.).

Jobs can be assigned *integrally* or *fractionally*. $(\exists M_i \in \mathcal{M} : 0 < x_{ij} < 1)$

Let $F \subseteq \mathcal{J}$ be the set of fractionally assigned jobs. Let $H := G[\mathcal{M} \cup F]$.

Observe: (i, j) is an edge in $H \Leftrightarrow 0 < x_{ij} < 1$

Definition: Bipartite graph $G = (\mathcal{M} \cup \mathcal{J}, E)$ with $(i, j) \in E \Leftrightarrow x_{ij} \neq 0$ (in extreme-point sol.).

Jobs can be assigned *integrally* or *fractionally*. $(\exists M_i \in \mathcal{M} : 0 < x_{ij} < 1)$

Let $F \subseteq \mathcal{J}$ be the set of fractionally assigned jobs. Let $H := G[\mathcal{M} \cup F]$.

Observe: (i, j) is an edge in $H \Leftrightarrow 0 < x_{ij} < 1$

A matching in H is called F-perfect if it matches every vertex in F.

Definition: Bipartite graph $G = (\mathcal{M} \cup \mathcal{J}, E)$ with $(i, j) \in E \Leftrightarrow x_{ij} \neq 0$ (in extreme-point sol.).

Jobs can be assigned *integrally* or *fractionally*. $(\exists M_i \in \mathcal{M} : 0 < x_{ij} < 1)$

Let $F \subseteq \mathcal{J}$ be the set of fractionally assigned jobs. Let $H := G[\mathcal{M} \cup F]$.

Observe: (i, j) is an edge in $H \Leftrightarrow 0 < x_{ij} < 1$

A matching in H is called F-perfect if it matches every vertex in F.

Main step: Show that *H* always has an *F*-perfect matching.

Definition: Bipartite graph $G = (\mathcal{M} \cup \mathcal{J}, E)$ with $(i, j) \in E \Leftrightarrow x_{ij} \neq 0$ (in extreme-point sol.).

Jobs can be assigned *integrally* or *fractionally*. $(\exists M_i \in \mathcal{M} : 0 < x_{ij} < 1)$

Let $F \subseteq \mathcal{J}$ be the set of fractionally assigned jobs. Let $H := G[\mathcal{M} \cup F]$.

Observe: (i, j) is an edge in $H \Leftrightarrow 0 < x_{ij} < 1$

A matching in H is called F-perfect if it matches every vertex in F.

Main step: Show that *H* always has an *F*-perfect matching.

And why is this useful ...?

Assign job J_j to machine M_i that minimizes p_{ij} .

Assign job J_j to machine M_i that minimizes p_{ij} . Let τ be the makespan of this schedule.

Assign job J_j to machine M_i that minimizes p_{ij} . Let τ be the makespan of this schedule.

Do a binary search in the interval $\left[\frac{\tau}{|\mathcal{M}|}, \tau\right]$ to find the smallest value T^* of $T \in \mathbb{Z}^+$ s.t. LP(T) has a feasible solution.

Assign job J_j to machine M_i that minimizes p_{ij} . Let τ be the makespan of this schedule.

Do a binary search in the interval $\left[\frac{\tau}{|\mathcal{M}|}, \tau\right]$ to find the smallest value T^* of $T \in \mathbb{Z}^+$ s.t. LP(T) has a feasible solution.

Find an extreme-point solution x for $LP(T^*)$.

Assign job J_j to machine M_i that minimizes p_{ij} . Let τ be the makespan of this schedule.

Do a binary search in the interval $\left[\frac{\tau}{|\mathcal{M}|}, \tau\right]$ to find the smallest value T^* of $T \in \mathbb{Z}^+$ s.t. LP(T) has a feasible solution.

Find an extreme-point solution x for LP(T^*).

Assign all integrally set jobs to machines as in x.

Assign job J_j to machine M_i that minimizes p_{ij} . Let τ be the makespan of this schedule.

Do a binary search in the interval $\left[\frac{\tau}{|\mathcal{M}|}, \tau\right]$ to find the smallest value T^* of $T \in \mathbb{Z}^+$ s.t. LP(T) has a feasible solution.

Find an extreme-point solution x for $LP(T^*)$.

Assign all integrally set jobs to machines as in x.

Construct the graph H and find an F-perfect matching P in it (see Lemma 4 later, F is set of fractionally assigned jobs)

Assign job J_j to machine M_i that minimizes p_{ij} . Let τ be the makespan of this schedule.

Do a binary search in the interval $\left[\frac{\tau}{|\mathcal{M}|}, \tau\right]$ to find the smallest value T^* of $T \in \mathbb{Z}^+$ s.t. LP(T) has a feasible solution.

Find an extreme-point solution x for $LP(T^*)$.

Assign all integrally set jobs to machines as in x.

Construct the graph H and find an F-perfect matching P in it (see Lemma 4 later, F is set of fractionally assigned jobs)

Assign the fractional jobs to machines using P.
Algorithm

Assign job J_j to machine M_i that minimizes p_{ij} . Let τ be the makespan of this schedule.

Do a binary search in the interval $\left[\frac{\tau}{|\mathcal{M}|}, \tau\right]$ to find the smallest value T^* of $T \in \mathbb{Z}^+$ s.t. LP(T) has a feasible solution.

Find an extreme-point solution x for $LP(T^*)$.

Assign all integrally set jobs to machines as in x.

Construct the graph H and find an F-perfect matching P in it (see Lemma 4 later, F is set of fractionally assigned jobs)

Assign the fractional jobs to machines using P.

Theorem. This is a factor-2 approximation algorithm (assuming that we have an F-perfect matching).

$$\sum_{i: (i,j) \in S_T} x_{ij} = 1, \quad J_j \in \mathcal{J}$$
$$\sum_{i: (i,j) \in S_T} x_{ij} p_{ij} \leq T, \quad M_i \in \mathcal{M}$$
$$j: (i,j) \in S_T$$
$$x_{ij} \geq 0, \quad (i,j) \in S_T$$

Theorem. This is a factor-2 approximation algorithm (assuming that we have an F-perfect matching).

Proof. $T^* \leq \mathsf{OPT}$.

$$\sum_{i: (i,j) \in S_T} x_{ij} = 1, \quad J_j \in \mathcal{J}$$
$$\sum_{i: (i,j) \in S_T} x_{ij} p_{ij} \leq T, \quad M_i \in \mathcal{M}$$
$$j: (i,j) \in S_T$$
$$x_{ij} \geq 0, \quad (i,j) \in S_T$$

Theorem. This is a factor-2 approximation algorithm (assuming that we have an *F*-perfect matching).

Proof. $T^* \leq OPT$. Let x be an extreme-point solution for $LP(T^*)$

12/16

13/16

Approximation Algorithms Lecture 7: Scheduling Jobs on Parallel Machines

Part IV: Pseudo-Trees and -Forests

Pseudo-tree: a connected graph with at most as many edges as vertices.

Pseudo-tree: a connected graph with at most as many edges as vertices. (A pseudo-tree is either a tree or a tree plus a single edge.)

Pseudo-tree: a connected graph with at most as many edges as vertices. (A pseudo-tree is either a tree or a tree plus a single edge.)
Pseudo-forest:

Pseudo-tree: a connected graph with at most as many edges as vertices. (A pseudo-tree is either a tree or a tree plus a single edge.)

Pseudo-forest: a collection of disjoint pseudo-trees.

Pseudo-Trees and -Forests

Pseudo-tree: a connected graph with at most as many edges as vertices. (A pseudo-tree is either a tree or a tree plus a single edge.)

Pseudo-forest: a collection of disjoint pseudo-trees.

Lemma 3.

The bipartite graph $G = (\mathcal{M} \cup \mathcal{J}, E)$ is a pseudo-forest.

Pseudo-Trees and -Forests

Pseudo-tree: a connected graph with at most as many edges as vertices. (A pseudo-tree is either a tree or a tree plus a single edge.)

Pseudo-forest: a collection of disjoint pseudo-trees.

Lemma 3.

The bipartite graph $G = (\mathcal{M} \cup \mathcal{J}, E)$ is a pseudo-forest.

Extreme-point solutions have $\leq |\mathcal{M}| + |\mathcal{J}|$ positive variables (Lemma 1).

Pseudo-Trees and -Forests ~

Pseudo-tree: a connected graph with at most as many edges as vertices. (A pseudo-tree is either a tree or a tree plus a single edge.)

Pseudo-forest: a collection of disjoint pseudo-trees.

Lemma 3.

The bipartite graph $G = (\mathcal{M} \cup \mathcal{J}, E)$ is a pseudo-forest.

Extreme-point solutions have $\leq |\mathcal{M}| + |\mathcal{J}|$ positive variables (Lemma 1). Each conn. component *C* of *G* corresponds to an extreme-point solution. (Suppose not. Then the solution that corresponds to *C* is the convex combination of other solutions. But this contradicts the definition of *G*.)

Pseudo-Trees and -Forests ↔

Pseudo-tree: a connected graph with at most as many edges as vertices. (A pseudo-tree is either a tree or a tree plus a single edge.)

Pseudo-forest: a collection of disjoint pseudo-trees.

Lemma 3.

The bipartite graph $G = (\mathcal{M} \cup \mathcal{J}, E)$ is a pseudo-forest.

Extreme-point solutions have $\leq |\mathcal{M}| + |\mathcal{J}|$ positive variables (Lemma 1). Each conn. component *C* of *G* corresponds to an extreme-point solution. (Suppose not. Then the solution that corresponds to *C* is the convex combination of other solutions. But this contradicts the definition of *G*.)

 \Rightarrow C has at most as many edges (pos. var.) as vertices (jobs+machines).

Pseudo-tree: a connected graph with at most as many edges as vertices. (A pseudo-tree is either a tree or a tree plus a single edge.)

Pseudo-forest: a collection of disjoint pseudo-trees.

Lemma 3.

The bipartite graph $G = (\mathcal{M} \cup \mathcal{J}, E)$ is a pseudo-forest.

Extreme-point solutions have $\leq |\mathcal{M}| + |\mathcal{J}|$ positive variables (Lemma 1). Each conn. component *C* of *G* corresponds to an extreme-point solution. (Suppose not. Then the solution that corresponds to *C* is the convex combination of other solutions. But this contradicts the definition of *G*.)

 \Rightarrow C has at most as many edges (pos. var.) as vertices (jobs+machines).

Lemma 4. The graph *H* has an *F*-perfect matching.

Pseudo-tree: a connected graph with at most as many edges as vertices. (A pseudo-tree is either a tree or a tree plus a single edge.)

Pseudo-forest: a collection of disjoint pseudo-trees.

Lemma 3.

The bipartite graph $G = (\mathcal{M} \cup \mathcal{J}, E)$ is a pseudo-forest.

Extreme-point solutions have $\leq |\mathcal{M}| + |\mathcal{J}|$ positive variables (Lemma 1). Each conn. component *C* of *G* corresponds to an extreme-point solution. (Suppose not. Then the solution that corresponds to *C* is the convex combination of other solutions. But this contradicts the definition of *G*.)

 \Rightarrow C has at most as many edges (pos. var.) as vertices (jobs+machines).

Lemma 4. The graph *H* has an *F*-perfect matching.

In *G*, every vertex in $\mathcal{J} \setminus F$ is a leaf. \Rightarrow

Pseudo-tree: a connected graph with at most as many edges as vertices. (A pseudo-tree is either a tree or a tree plus a single edge.)

Pseudo-forest: a collection of disjoint pseudo-trees.

Lemma 3.

The bipartite graph $G = (\mathcal{M} \cup \mathcal{J}, E)$ is a pseudo-forest.

Extreme-point solutions have $\leq |\mathcal{M}| + |\mathcal{J}|$ positive variables (Lemma 1). Each conn. component *C* of *G* corresponds to an extreme-point solution. (Suppose not. Then the solution that corresponds to *C* is the convex combination of other solutions. But this contradicts the definition of *G*.)

 \Rightarrow C has at most as many edges (pos. var.) as vertices (jobs+machines).

Lemma 4. The graph *H* has an *F*-perfect matching.

In *G*, every vertex in $\mathcal{J} \setminus F$ is a leaf. $\stackrel{\text{remove leaves}}{\Rightarrow}$

Pseudo-tree: a connected graph with at most as many edges as vertices. (A pseudo-tree is either a tree or a tree plus a single edge.)

Pseudo-forest: a collection of disjoint pseudo-trees.

Lemma 3.

The bipartite graph $G = (\mathcal{M} \cup \mathcal{J}, E)$ is a pseudo-forest.

Extreme-point solutions have $\leq |\mathcal{M}| + |\mathcal{J}|$ positive variables (Lemma 1). Each conn. component *C* of *G* corresponds to an extreme-point solution. (Suppose not. Then the solution that corresponds to *C* is the convex combination of other solutions. But this contradicts the definition of *G*.)

 \Rightarrow C has at most as many edges (pos. var.) as vertices (jobs+machines).

Lemma 4. The graph *H* has an *F*-perfect matching.

In G, every vertex in $\mathcal{J} \setminus F$ is a leaf. $\stackrel{\text{remove leaves}}{\Rightarrow} H$ is a pseudo-forest, too.

Pseudo-Trees and -Forests ~

Pseudo-tree: a connected graph with at most as many edges as vertices. (A pseudo-tree is either a tree or a tree plus a single edge.)

Pseudo-forest: a collection of disjoint pseudo-trees.

Lemma 3.

The bipartite graph $G = (\mathcal{M} \cup \mathcal{J}, E)$ is a pseudo-forest.

Extreme-point solutions have $\leq |\mathcal{M}| + |\mathcal{J}|$ positive variables (Lemma 1). Each conn. component *C* of *G* corresponds to an extreme-point solution. (Suppose not. Then the solution that corresponds to *C* is the convex combination of other solutions. But this contradicts the definition of *G*.)

 \Rightarrow C has at most as many edges (pos. var.) as vertices (jobs+machines).

Lemma 4. The graph *H* has an *F*-perfect matching.

In *G*, every vertex in $\mathcal{J} \setminus F$ is a leaf. $\stackrel{\text{remove leaves}}{\Rightarrow} H$ is a pseudo-forest, too. Vertices in *F* have minimum degree 2.

Pseudo-Trees and -Forests ↔

Pseudo-tree: a connected graph with at most as many edges as vertices. (A pseudo-tree is either a tree or a tree plus a single edge.)

Pseudo-forest: a collection of disjoint pseudo-trees.

Lemma 3.

The bipartite graph $G = (\mathcal{M} \cup \mathcal{J}, E)$ is a pseudo-forest.

Extreme-point solutions have $\leq |\mathcal{M}| + |\mathcal{J}|$ positive variables (Lemma 1). Each conn. component *C* of *G* corresponds to an extreme-point solution. (Suppose not. Then the solution that corresponds to *C* is the convex combination of other solutions. But this contradicts the definition of *G*.)

 \Rightarrow C has at most as many edges (pos. var.) as vertices (jobs+machines).

Lemma 4. The graph *H* has an *F*-perfect matching.

In *G*, every vertex in $\mathcal{J} \setminus F$ is a leaf. $\stackrel{\text{remove leaves}}{\Rightarrow} H$ is a pseudo-forest, too. Vertices in *F* have minimum degree 2. \Rightarrow The leaves in *H* are machines.

Pseudo-Trees and -Forests ↔

Pseudo-tree: a connected graph with at most as many edges as vertices. (A pseudo-tree is either a tree or a tree plus a single edge.)

Pseudo-forest: a collection of disjoint pseudo-trees.

Lemma 3.

The bipartite graph $G = (\mathcal{M} \cup \mathcal{J}, E)$ is a pseudo-forest.

Extreme-point solutions have $\leq |\mathcal{M}| + |\mathcal{J}|$ positive variables (Lemma 1). Each conn. component *C* of *G* corresponds to an extreme-point solution. (Suppose not. Then the solution that corresponds to *C* is the convex combination of other solutions. But this contradicts the definition of *G*.)

 \Rightarrow C has at most as many edges (pos. var.) as vertices (jobs+machines).

Lemma 4. The graph *H* has an *F*-perfect matching.

In G, every vertex in $\mathcal{J} \setminus F$ is a leaf. $\stackrel{\text{remove leaves}}{\Rightarrow} H$ is a pseudo-forest, too. Vertices in F have minimum degree 2. \Rightarrow The leaves in H are machines. After iteratively matching all leaves,

Pseudo-Trees and -Forests ~~~~

Pseudo-tree: a connected graph with at most as many edges as vertices. (A pseudo-tree is either a tree or a tree plus a single edge.)

Pseudo-forest: a collection of disjoint pseudo-trees.

Lemma 3.

The bipartite graph $G = (\mathcal{M} \cup \mathcal{J}, E)$ is a pseudo-forest.

Extreme-point solutions have $\leq |\mathcal{M}| + |\mathcal{J}|$ positive variables (Lemma 1). Each conn. component *C* of *G* corresponds to an extreme-point solution. (Suppose not. Then the solution that corresponds to *C* is the convex combination of other solutions. But this contradicts the definition of *G*.)

 \Rightarrow C has at most as many edges (pos. var.) as vertices (jobs+machines).

Lemma 4. The graph *H* has an *F*-perfect matching.

In G, every vertex in $\mathcal{J} \setminus F$ is a leaf. $\stackrel{\text{remove leaves}}{\Rightarrow} H$ is a pseudo-forest, too. Vertices in F have minimum degree 2. \Rightarrow The leaves in H are machines. After iteratively matching all leaves, only *even* cycles remain.

Pseudo-Trees and -Forests ↔

Pseudo-tree: a connected graph with at most as many edges as vertices. (A pseudo-tree is either a tree or a tree plus a single edge.)

Pseudo-forest: a collection of disjoint pseudo-trees.

Lemma 3.

The bipartite graph $G = (\mathcal{M} \cup \mathcal{J}, E)$ is a pseudo-forest.

Extreme-point solutions have $\leq |\mathcal{M}| + |\mathcal{J}|$ positive variables (Lemma 1). Each conn. component *C* of *G* corresponds to an extreme-point solution. (Suppose not. Then the solution that corresponds to *C* is the convex combination of other solutions. But this contradicts the definition of *G*.)

 \Rightarrow C has at most as many edges (pos. var.) as vertices (jobs+machines).

Lemma 4. The graph *H* has an *F*-perfect matching.

In G, every vertex in $\mathcal{J} \setminus F$ is a leaf. $\stackrel{\text{remove leaves}}{\Rightarrow} H$ is a pseudo-forest, too. Vertices in F have minimum degree 2. \Rightarrow The leaves in H are machines. After iteratively matching all leaves, only *even* cycles remain. (*H* is bipartite :-)

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Tight?

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Tight?Yes!Instance I_m :

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Tight?Yes!Instance I_m :m machines and $m^2 - m + 1$ jobs

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Tight?Yes!Instance I_m :m machines and $m^2 - m + 1$ jobsJob J_1 has processing time m on every machine,

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Tight?Yes!Instance I_m :m machines and $m^2 - m + 1$ jobsJob J_1 has processing time m on every machine,all other jobs have processing time 1 on every machine.

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Tight? Yes! Instance I_m : *m* machines and $m^2 - m + 1$ jobs Job J_1 has processing time *m* on every machine, all other jobs have processing time 1 on every machine. Optimum:

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Tight? Yes! Instance I_m : *m* machines and $m^2 - m + 1$ jobs Job J_1 has processing time *m* on every machine, all other jobs have processing time 1 on every machine. Optimum: one machine gets J_1 , and all others spread evenly.

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Tight? Yes! Instance I_m : m machines and $m^2 - m + 1$ jobs Job J_1 has processing time m on every machine, all other jobs have processing time 1 on every machine. Optimum: one machine gets J_1 , and all others spread evenly. \Rightarrow Makespan = m.

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Tight?Yes!Instance I_m :m machines and $m^2 - m + 1$ jobsJob J_1 has processing time m on every machine,all other jobs have processing time 1 on every machine.Optimum: one machine gets J_1 , and all others spread evenly.Algorithm: \Rightarrow Makespan = m.
Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Tight?Yes!Instance I_m :m machines and $m^2 - m + 1$ jobsJob J_1 has processing time m on every machine,all other jobs have processing time 1 on every machine.**Optimum:** one machine gets J_1 , and all others spread evenly.**Algorithm:**P(T) has no feasible solution for any T < m.

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Tight? Yes! **Instance** *I_m*: m machines and $m^2 - m + 1$ jobs Job J_1 has processing time *m* on every machine,

all other jobs have processing time 1 on every machine.

Optimum: one machine gets J_1 , and all others spread evenly. \Rightarrow Makespan = m.

Algorithm:

LP(T) has no feasible solution for any T < m.

Extreme-point solution:

Assign 1/m of J_1 and m-1 other jobs to each machine.

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Tight?Yes!Instance I_m :m machines and $m^2 - m + 1$ jobsJob J_1 has processing time m on every machine,

all other jobs have processing time 1 on every machine.

Optimum: one machine gets J_1 , and all others spread evenly.

Algorithm:

LP(T) has no feasible solution for any T < m.

Extreme-point solution:

Assign 1/m of J_1 and m-1 other jobs to each machine.

 \Rightarrow Makespan 2m - 1.

 \Rightarrow Makespan = m.

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Can we do better?

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Can we do better?

No better approximation algorithm is known.

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Can we do better?

No better approximation algorithm is known.

The problem cannot be approximated within factor < 3/2 (unless P=NP). [Lenstra, Shmoys & Tardos '90]

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Can we do better?

No better approximation algorithm is known.

The problem cannot be approximated within factor < 3/2 (unless P=NP). [Lenstra, Shmoys & Tardos '90]

For a constant number of machines, for every $\varepsilon > 0$ there is a factor- $(1 + \varepsilon)$ approximation algorithm. [Horowitz & Sahni '76]

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Can we do better?

No better approximation algorithm is known.

The problem cannot be approximated within factor < 3/2 (unless P=NP). [Lenstra, Shmoys & Tardos '90]

For a constant number of machines, for every $\varepsilon > 0$ there is a factor- $(1 + \varepsilon)$ approximation algorithm. [Horowitz & Sahni '76]

For uniform machines, for every $\varepsilon > 0$ there is a factor- $(1 + \varepsilon)$ approximation algorithm. [Hochbaum & Shmoys '87]

Theorem. There is an LP-based 2-approximation algorithm for the problem of scheduling jobs on unrelated parallel machines.

Can we do better?

No better approximation algorithm is known.

The problem cannot be approximated within factor < 3/2 (unless P=NP). [Lenstra, Shmoys & Tardos '90]

For a constant number of machines, for every $\varepsilon > 0$ there is a factor- $(1 + \varepsilon)$ approximation algorithm. [Horowitz & Sahni '76]

For uniform machines, for every $\varepsilon > 0$ there is a factor- $(1 + \varepsilon)$ approximation algorithm. [Hochbaum & Shmoys '87] (Machines may have different speeds, but process jobs uniformly.)