Lecture 6: k-Center via Parametric Pruning

Part I:
Metric k-Center

Metric k-Center

Given: A graph $G=(V, E)$

Metric k-Center
Given: A graph $G=(V, E)$

Metric k-Center

Given: A complete graph $G=(V, E)$ with edge costs $c: E \rightarrow \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality

Metric k-Center

Given: A complete graph $G=(V, E)$ with edge costs $c: E \rightarrow \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality

$$
\text { vertex set } S \subseteq V
$$

Metric k-Center

Given: A complete graph $G=(V, E)$ with edge costs $c: E \rightarrow \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality

$$
\text { vertex set } S \subseteq V
$$

Metric k-Center

Given: A complete graph $G=(V, E)$ with edge costs $c: E \rightarrow Q \geq 0$ satisfying the triangle inequality
For each vertex set $S \subseteq V, c(v, S)$ is the cost of the cheapest edge from v to a vertex in S.

Metric k-Center

Given: A complete graph $G=(V, E)$ with edge costs $c: E \rightarrow \mathbb{Q} \geq 0$ satisfying the triangle inequality
For each vertex set $S \subseteq V, c(v, S)$ is the cost of the cheapest edge from v to a vertex in S.

Metric k-Center

Given: A complete graph $G=(V, E)$ with edge costs $c: E \rightarrow \mathbb{Q} \geq 0$ satisfying the triangle inequality
For each vertex set $S \subseteq V, c(v, S)$ is the cost of the cheapest edge from v to a vertex in S.

Metric k-Center

Given: A complete graph $G=(V, E)$ with edge costs $c: E \rightarrow Q \geq 0$ satisfying the triangle inequality
For each vertex set $S \subseteq V, c(v, S)$ is the cost of the cheapest edge from v to a vertex in S.

Metric k-Center

Given: A complete graph $G=(V, E)$ with edge costs $c: E \rightarrow Q \geq 0$ satisfying the triangle inequality
For each vertex set $S \subseteq V, c(v, S)$ is the cost of the cheapest edge from v to a vertex in S.

Metric k-Center

Given: A complete graph $G=(V, E)$ with edge costs $c: E \rightarrow Q \geq 0$ satisfying the triangle inequality
For each vertex set $S \subseteq V, c(v, S)$ is the cost of the cheapest edge from v to a vertex in S.

Metric k-Center

Given: A complete graph $G=(V, E)$ with edge costs $c: E \rightarrow Q \geq 0$ satisfying the triangle inequality
For each vertex set $S \subseteq V, c(v, S)$ is the cost of the cheapest edge from v to a vertex in S.

Metric k-Center

Given: A complete graph $G=(V, E)$ with edge costs $c: E \rightarrow Q \geq 0$ satisfying the triangle inequality
For each vertex set $S \subseteq V, c(v, S)$ is the cost of the cheapest edge from v to a vertex in S.

Metric k-Center

Given: A complete graph $G=(V, E)$ with edge costs $c: E \rightarrow Q \geq 0$ satisfying the triangle inequality
For each vertex set $S \subseteq V, c(v, S)$ is the cost of the cheapest edge from v to a vertex in S.

Metric k-Center

Given: A complete graph $G=(V, E)$ with edge costs $c: E \rightarrow Q \geq 0$ satisfying the triangle inequality
For each vertex set $S \subseteq V, c(v, S)$ is the cost of the cheapest edge from v to a vertex in S.

Metric k-Center

Given: A complete graph $G=(V, E)$ with edge costs $c: E \rightarrow Q \geq 0$ satisfying the triangle inequality
For each vertex set $S \subseteq V, c(v, S)$ is the cost of the cheapest edge from v to a vertex in S.
$\operatorname{cost}(S):=\max _{v \in V} c(v, S)$

Metric k-Center

Given: A complete graph $G=(V, E)$ with edge costs $c: E \rightarrow \mathbb{Q} \geq 0$ satisfying the triangle inequality
For each vertex set $S \subseteq V, c(v, S)$ is the cost of the cheapest edge from v to a vertex in S.
$\operatorname{cost}(S):=\max _{v \in V} c(v, S)$

Metric k-Center

Given: A complete graph $G=(V, E)$ with edge costs $c: E \rightarrow Q \geq 0$ satisfying the triangle inequality
For each vertex set $S \subseteq V, c(v, S)$ is the cost of the cheapest edge from v to a vertex in S.

Find: A vertex set S such that
$\operatorname{cost}(S):=\max _{v \in V} c(v, S)$ is minimized.

Metric k-Center

Given: A complete graph $G=(V, E)$ with edge costs $c: E \rightarrow \mathbb{Q} \geq 0$ satisfying the triangle inequality and a natural number $k \leq|V|$.
For each vertex set $S \subseteq V, c(v, S)$ is the cost of the cheapest edge from v to a vertex in S.
Find: A vertex set S such that $\operatorname{cost}(S):=\max _{v \in V} c(v, S)$ is minimized.

Metric k-Center

Given: A complete graph $G=(V, E)$ with edge costs $c: E \rightarrow \mathbb{Q} \geq 0$ satisfying the triangle inequality and a natural number $k \leq|V|$.
For each vertex set $S \subseteq V, c(v, S)$ is the cost of the cheapest edge from v to a vertex in S.
Find: A k-element vertex set S such that $\operatorname{cost}(S):=\max _{v \in V} c(v, S)$ is minimized.

Metric k-Center

Given: A complete graph $G=(V, E)$ with edge costs $c: E \rightarrow \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality and a natural number $k \leq|V|$.
For each vertex set $S \subseteq V, c(v, S)$ is the cost of the cheapest edge from v to a vertex in S.

Find: A k-element vertex set S such that $\operatorname{cost}(S):=\max _{v \in V} c(v, S)$ is minimized.

Metric k-Center

Given: A complete graph $G=(V, E)$ with edge costs $c: E \rightarrow \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality and a natural number $k \leq|V|$.
For each vertex set $S \subseteq V, c(v, S)$ is the cost of the cheapest edge from v to a vertex in S.

Find: A k-element vertex set S such that $\operatorname{cost}(S):=\max _{v \in V} c(v, S)$ is minimized.

Metric k-Center

Given: A complete graph $G=(V, E)$ with edge costs $c: E \rightarrow \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality and a natural number $k \leq|V|$.
For each vertex set $S \subseteq V, c(v, S)$ is the cost of the cheapest edge from v to a vertex in S.

Find: A k-element vertex set S such that $\operatorname{cost}(S):=\max _{v \in V} c(v, S)$ is minimized.
 Lecture 6: k-Center via Parametric Pruning

Part II:
Parametric Pruning

Parametric Pruning

G

Parametric Pruning

Let $E=\left\{e_{1}, \ldots, e_{m}\right\}$ with $c\left(e_{1}\right) \leq \cdots \leq c\left(e_{m}\right)$.

G

Parametric Pruning

Let $E=\left\{e_{1}, \ldots, e_{m}\right\}$ with $c\left(e_{1}\right) \leq \cdots \leq c\left(e_{m}\right)$. Suppose we know that OPT $=c\left(e_{j}\right)$.

G

Parametric Pruning

Let $E=\left\{e_{1}, \ldots, e_{m}\right\}$ with $c\left(e_{1}\right) \leq \cdots \leq c\left(e_{m}\right)$. Suppose we know that OPT $=c\left(e_{j}\right)$.

G

Parametric Pruning

Let $E=\left\{e_{1}, \ldots, e_{m}\right\}$ with $c\left(e_{1}\right) \leq \cdots \leq c\left(e_{m}\right)$.
Suppose we know that OPT $=c\left(e_{j}\right)$.

G

Parametric Pruning

Let $E=\left\{e_{1}, \ldots, e_{m}\right\}$ with $c\left(e_{1}\right) \leq \cdots \leq c\left(e_{m}\right)$.
Suppose we know that OPT $=c\left(e_{j}\right)$.

G

$G_{j}:=\left(V,\left\{e_{1}, \ldots, e_{j}\right\}\right)$
...try each G_{j}.
$\ldots \operatorname{try}$ each G_{j}.
Def.

$\ldots \operatorname{try}$ each G_{j}.
Def. A vertex set D of a graph H is dominating if each vertex is either in D or adjacent to a vertex in D.

$\ldots \operatorname{try}$ each G_{j}.
Def. A vertex set D of a graph H is dominating if each vertex is either in D or adjacent to a vertex in D. The cardinality of a smallest dominating set in H is denoted by $\operatorname{dom}(H)$.

$\ldots \operatorname{try}$ each G_{j}.
Def. A vertex set D of a graph H is dominating if each vertex is either in D or adjacent to a vertex in D. The cardinality of a smallest dominating set in H is denoted by $\operatorname{dom}(H)$.

. . .try each G_{j}.
Def. A vertex set D of a graph H is dominating if each vertex is either in D or adjacent to a vertex in D. The cardinality of a smallest dominating set in H is denoted by $\operatorname{dom}(H)$.

$\operatorname{dom}\left(G_{j}\right) \leq k$

$$
G_{j}:=\left(V,\left\{e_{1}, \ldots, e_{j}\right\}\right)
$$

... but computing dom (H) is NP-hard. Lecture 6: k-Center via Parametric Pruning

Part III:
Square of a Graph

Square of a Graph

Idea: Find a small dominating set in a "coarsened" G_{j}.

Square of a Graph

Idea: Find a small dominating set in a "coarsened" G_{j}.

Def. \quad The square H^{2} of a graph H has the same vertex set as H.

Square of a Graph

Idea:

Find a small dominating set in a "coarsened" G_{j}.

Def. \quad The square H^{2} of a graph H has the same vertex set as H.

G_{j}

Square of a Graph

Idea: Find a small dominating set in a "coarsened" G_{j}.

Def. The square H^{2} of a graph H has the same vertex set as H. Two vertices $u \neq v$ are adjacent in H^{2} iff they are within distance at most two in H.

G_{j}

Square of a Graph

Idea: Find a small dominating set in a "coarsened" G_{j}.

Def. The square H^{2} of a graph H has the same vertex set as H. Two vertices $u \neq v$ are adjacent in H^{2} iff they are within distance at most two in H.

G_{j}

Square of a Graph

Idea: Find a small dominating set in a "coarsened" G_{j}.

Def. The square H^{2} of a graph H has the same vertex set as H. Two vertices $u \neq v$ are adjacent in H^{2} iff they are within distance at most two in H.

G_{j}

Square of a Graph

Idea: Find a small dominating set in a "coarsened" G_{j}.

Def. The square H^{2} of a graph H has the same vertex set as H. Two vertices $u \neq v$ are adjacent in H^{2} iff they are within distance at most two in H.

G_{j}

Square of a Graph

Idea: Find a small dominating set in a "coarsened" G_{j}.

Def. The square H^{2} of a graph H has the same vertex set as H. Two vertices $u \neq v$ are adjacent in H^{2} iff they are within distance at most two in H.

G_{j}

Square of a Graph

Idea: Find a small dominating set in a "coarsened" G_{j}.

Def. The square H^{2} of a graph H has the same vertex set as H. Two vertices $u \neq v$ are adjacent in H^{2} iff they are within distance at most two in H.

G_{j}

Square of a Graph

Idea: Find a small dominating set in a "coarsened" G_{j}.

Def. The square H^{2} of a graph H has the same vertex set as H. Two vertices $u \neq v$ are adjacent in H^{2} iff they are within distance at most two in H.

G_{j}

Square of a Graph

Idea: Find a small dominating set in a "coarsened" G_{j}.

Def. The square H^{2} of a graph H has the same vertex set as H. Two vertices $u \neq v$ are adjacent in H^{2} iff they are within distance at most two in H.

G_{j}

Square of a Graph

Idea: Find a small dominating set in a "coarsened" G_{j}.

Def. The square H^{2} of a graph H has the same vertex set as H. Two vertices $u \neq v$ are adjacent in H^{2} iff they are within distance at most two in H.

G_{j}

Square of a Graph

Idea: Find a small dominating set in a "coarsened" G_{j}.

Def. The square H^{2} of a graph H has the same vertex set as H. Two vertices $u \neq v$ are adjacent in H^{2} iff they are within distance at most two in H.

G_{j}

Square of a Graph

Idea: Find a small dominating set in a "coarsened" G_{j}.

Def. The square H^{2} of a graph H has the same vertex set as H. Two vertices $u \neq v$ are adjacent in H^{2} iff they are within distance at most two in H.

G_{j}

Square of a Graph

Idea: Find a small dominating set in a "coarsened" G_{j}.

Def. The square H^{2} of a graph H has the same vertex set as H. Two vertices $u \neq v$ are adjacent in H^{2} iff they are within distance at most two in H.

G_{j}

Square of a Graph

Idea: Find a small dominating set in a "coarsened" G_{j}.

Def. The square H^{2} of a graph H has the same vertex set as H. Two vertices $u \neq v$ are adjacent in H^{2} iff they are within distance at most two in H.

G_{j}

Square of a Graph

Idea: Find a small dominating set in a "coarsened" G_{j}.

Def. The square H^{2} of a graph H has the same vertex set as H. Two vertices $u \neq v$ are adjacent in H^{2} iff they are within distance at most two in H.

Obs. A dominating set with at most k elements in G_{j}^{2} is a 2-approximation for metric k-Center.

Square of a Graph

Idea: Find a small dominating set in a "coarsened" G_{j}.

Def. The square H^{2} of a graph H has the same vertex set as H. Two vertices $u \neq v$ are adjacent in H^{2} iff they are within distance at most two in H.

Obs. A dominating set with at most k elements in G_{j}^{2} is a 2-approximation for metric k-Center.

Why?

Square of a Graph

Idea: Find a small dominating set in a "coarsened" G_{j}.

Def. The square H^{2} of a graph H has the same vertex set as H. Two vertices $u \neq v$ are adjacent in H^{2} iff they are within distance at most two in H.

Obs. A dominating set with at most k elements in G_{j}^{2} is a 2-approximation for metric k-Center.

Why? $\max _{e \in E\left(G_{j}\right)} c(e)=\mathrm{OPT}!$

Independent Sets

Def. A vertex set I in a graph is called independent (or stable) if no pair of vertices in I forms an edge.

Independent Sets

Def. A vertex set I in a graph is called independent (or stable) if no pair of vertices in I forms an edge. An independent set is called maximal if no superset of it is independent.

Independent Sets

Def. A vertex set I in a graph is called independent (or stable) if no pair of vertices in I forms an edge. An independent set is called maximal if no superset of it is independent.

Independent Sets

Def. A vertex set I in a graph is called independent (or stable) if no pair of vertices in I forms an edge. An independent set is called maximal if no superset of it is independent.

Independent Sets

Def. A vertex set I in a graph is called independent (or stable) if no pair of vertices in I forms an edge. An independent set is called maximal if no superset of it is independent.

Independent Sets

Def. A vertex set I in a graph is called independent (or stable) if no pair of vertices in I forms an edge. An independent set is called maximal if no superset of it is independent.

Independent Sets

Def. A vertex set I in a graph is called independent (or stable) if no pair of vertices in I forms an edge. An independent set is called maximal if no superset of it is independent.

Independent Sets

Def. A vertex set I in a graph is called independent (or stable) if no pair of vertices in I forms an edge. An independent set is called maximal if no superset of it is independent.

Independent Sets

Def. A vertex set I in a graph is called independent (or stable) if no pair of vertices in I forms an edge. An independent set is called maximal if no superset of it is independent.

Independent Sets

Def. A vertex set I in a graph is called independent (or stable) if no pair of vertices in I forms an edge. An independent set is called maximal if no superset of it is independent.

Independent Sets

Def. A vertex set I in a graph is called independent (or stable) if no pair of vertices in I forms an edge. An independent set is called maximal if no superset of it is independent.

Independent Sets

Def. A vertex set I in a graph is called independent (or stable) if no pair of vertices in I forms an edge. An independent set is called maximal if no superset of it is independent.

Independent Sets

Def. A vertex set I in a graph is called independent (or stable) if no pair of vertices in I forms an edge. An independent set is called maximal if no superset of it is independent.

Obs. Maximal independent sets are dominating sets :-)

Independent Sets in H^{2}

Lemma. For a graph H and an independent set I in H^{2}, $|I| \leq$

Independent Sets in H^{2}

Lemma. For a graph H and an independent set I in H^{2}, $|I| \leq \operatorname{dom}(H)$.

Independent Sets in H^{2}

Lemma. For a graph H and an independent set I in H^{2}, $|I| \leq \operatorname{dom}(H)$.
Proof. What does a dominating set of H look like in H^{2} ?

Star in H

Independent Sets in H^{2}

Lemma. For a graph H and an independent set I in H^{2}, $|I| \leq \operatorname{dom}(H)$.
Proof. What does a dominating set of H look like in H^{2} ?

Star in H

Independent Sets in H^{2}

Lemma. For a graph H and an independent set I in H^{2}, $|I| \leq \operatorname{dom}(H)$.
Proof. What does a dominating set of H look like in H^{2} ?

Star in H

Independent Sets in H^{2}

Lemma. For a graph H and an independent set I in H^{2}, $|I| \leq \operatorname{dom}(H)$.
Proof. What does a dominating set of H look like in H^{2} ?

Star in H
Clique in H^{2}

Independent Sets in H^{2}

Lemma. For a graph H and an independent set I in H^{2}, $|I| \leq \operatorname{dom}(H)$.
Proof. What does a dominating set of H look like in H^{2} ?

Star in H
Clique in H^{2}

Independent Sets in H^{2}

Lemma. For a graph H and an independent set I in H^{2}, $|I| \leq \operatorname{dom}(H)$.
Proof. What does a dominating set of H look like in H^{2} ?

Star in H
Clique in H^{2}

Lecture 6:
k-Center via Parametric Pruning

Part IV:
Factor-2 Approximation for Metric-k-Center

Factor-2 Approx. for Metric k-Center

$\operatorname{Metric}-k-\operatorname{Center}(G=(V, E ; c), k)$
Sort the edges of G by cost: $c\left(e_{1}\right) \leq \cdots \leq c\left(e_{m}\right)$

Factor-2 Approx. for Metric k-Center

$\operatorname{Metric}-k-\operatorname{Center}(G=(V, E ; c), k)$
Sort the edges of G by cost: $c\left(e_{1}\right) \leq \cdots \leq c\left(e_{m}\right)$ for $j=1$ to m do

Factor-2 Approx. for Metric k-Center

$\operatorname{Metric}-k-\operatorname{Center}(G=(V, E ; c), k)$
Sort the edges of G by cost: $c\left(e_{1}\right) \leq \cdots \leq c\left(e_{m}\right)$ for $j=1$ to m do

Construct G_{j}^{2}

Factor-2 Approx. for Metric k-Center

$\operatorname{Metric}-k-\operatorname{Center}(G=(V, E ; c), k)$
Sort the edges of G by cost: $c\left(e_{1}\right) \leq \cdots \leq c\left(e_{m}\right)$ for $j=1$ to m do

Construct G_{j}^{2}
Find a maximal independent set I_{j} in G_{j}^{2}

Factor-2 Approx. for Metric k-Center

$\operatorname{Metric}-k-\operatorname{Center}(G=(V, E ; c), k)$
Sort the edges of G by cost: $c\left(e_{1}\right) \leq \cdots \leq c\left(e_{m}\right)$ for $j=1$ to m do

Construct G_{j}^{2}
Find a maximal independent set I_{j} in G_{j}^{2} if $\left|I_{j}\right| \leq k$ then return I_{j}

Factor-2 Approx. for Metric k-Center

$\operatorname{Metric}-k-\operatorname{Center}(G=(V, E ; c), k)$
Sort the edges of G by cost: $c\left(e_{1}\right) \leq \cdots \leq c\left(e_{m}\right)$ for $j=1$ to m do

Construct G_{j}^{2}
Find a maximal independent set I_{j} in G_{j}^{2} if $\left|I_{j}\right| \leq k$ then return I_{j}

Lemma. For j provided by the algorithm, it holds that $c\left(e_{j}\right) \leq$ OPT.

Factor-2 Approx. for Metric k-Center

$\operatorname{Metric}-k-\operatorname{Center}(G=(V, E ; c), k)$
Sort the edges of G by cost: $c\left(e_{1}\right) \leq \cdots \leq c\left(e_{m}\right)$ for $j=1$ to m do

Construct G_{j}^{2}
Find a maximal independent set I_{j} in G_{j}^{2} if $\left|I_{j}\right| \leq k$ then return I_{j}

Lemma. For j provided by the algorithm, it holds that $c\left(e_{j}\right) \leq$ OPT.

Theorem. The above algorithm is a factor-2 approximation algorithm for the metric k-Center problem.

Can we do better ...?

Can we do better ... ?

What about a tight example?

Can we do better . . . ?

What about a tight example?

Can we do better ... ?

What about a tight example?

Can we do better ... ?

What about a tight example?

Theorem. Assuming $\mathrm{P} \neq \mathrm{NP}$, there is no factor $-(2-\varepsilon)$ approximation algorithm for the metric k-Center problem, for any $\varepsilon>0$.

Can we do better ... ?

What about a tight example?

Theorem. Assuming $\mathrm{P} \neq \mathrm{NP}$, there is no factor $-(2-\varepsilon)$ approximation algorithm for the metric k-Center problem, for any $\varepsilon>0$.
Proof. Reduce from dominating set to metric k-Center.

Can we do better ... ?

What about a tight example?

Theorem. Assuming $\mathrm{P} \neq \mathrm{NP}$, there is no factor- $(2-\varepsilon)$ approximation algorithm for the metric k-Center problem, for any $\varepsilon>0$.
Proof. Reduce from dominating set to metric k-Center. Given graph $G=(V, E)$ and integer k,

Can we do better ... ?

What about a tight example?

Theorem. Assuming $\mathrm{P} \neq \mathrm{NP}$, there is no factor- $(2-\varepsilon)$ approximation algorithm for the metric k-Center problem, for any $\varepsilon>0$.
Proof. Reduce from dominating set to metric k-Center. Given graph $G=(V, E)$ and integer k,

Can we do better ... ?

What about a tight example?

Theorem. Assuming $\mathrm{P} \neq \mathrm{NP}$, there is no factor- $(2-\varepsilon)$ approximation algorithm for the metric k-Center problem, for any $\varepsilon>0$.
Proof. Reduce from dominating set to metric k-Center. Given graph $G=(V, E)$ and integer k, construct complete graph $G^{\prime}=\left(V, E \cup E^{\prime}\right)$

Can we do better ... ?

What about a tight example?

Theorem. Assuming $\mathrm{P} \neq \mathrm{NP}$, there is no factor- $(2-\varepsilon)$ approximation algorithm for the metric k-Center problem, for any $\varepsilon>0$.
Proof. Reduce from dominating set to metric k-Center. Given graph $G=(V, E)$ and integer k, construct complete graph $G^{\prime}=\left(V, E \cup E^{\prime}\right)$

Can we do better ... ?

What about a tight example?

Theorem. Assuming $\mathrm{P} \neq \mathrm{NP}$, there is no factor- $(2-\varepsilon)$ approximation algorithm for the metric k-Center problem, for any $\varepsilon>0$.
Proof. Reduce from dominating set to metric k-CENTER.
Given graph $G=(V, E)$ and integer k, construct complete graph $G^{\prime}=\left(V, E \cup E^{\prime}\right)$
with $c(e)= \begin{cases}1, & \text { if } e \in E \\ 2, & \text { if } e \in E^{\prime}\end{cases}$

Can we do better ... ?

What about a tight example?

Theorem. Assuming $\mathrm{P} \neq \mathrm{NP}$, there is no factor- $(2-\varepsilon)$ approximation algorithm for the metric k-Center problem, for any $\varepsilon>0$.
Proof. Reduce from dominating set to metric k-Center. Given graph $G=(V, E)$ and integer k, construct complete graph $G^{\prime}=\left(V, E \cup E^{\prime}\right)$
with $c(e)= \begin{cases}1, & \text { if } e \in E \\ 2, & \text { if } e \in E^{\prime}\end{cases}$
Let S be a metric k-center of G^{\prime}.

Can we do better ... ?

What about a tight example?

Theorem. Assuming $\mathrm{P} \neq \mathrm{NP}$, there is no factor- $(2-\varepsilon)$ approximation algorithm for the metric k-Center problem, for any $\varepsilon>0$.
Proof. Reduce from dominating set to metric k-CENTER.
Given graph $G=(V, E)$ and integer k, construct complete graph $G^{\prime}=\left(V, E \cup E^{\prime}\right)$
with $c(e)= \begin{cases}1, & \text { if } e \in E \\ 2, & \text { if } e \in E^{\prime}\end{cases}$
Let S be a metric k-center of G^{\prime}. If $\operatorname{dom}(G) \leq k$, then $\operatorname{cost}(S)=1$.

Can we do better ... ?

What about a tight example?

Theorem. Assuming $\mathrm{P} \neq \mathrm{NP}$, there is no factor- $(2-\varepsilon)$ approximation algorithm for the metric k-Center problem, for any $\varepsilon>0$.
Proof. Reduce from dominating set to metric k-CENTER. Given graph $G=(V, E)$ and integer k, construct complete graph $G^{\prime}=\left(V, E \cup E^{\prime}\right)$
with $c(e)= \begin{cases}1, & \text { if } e \in E \\ 2, & \text { if } e \in E^{\prime}\end{cases}$
Let S be a metric k-center of G^{\prime}. If $\operatorname{dom}(G) \leq k$, then $\operatorname{cost}(S)=1$.

Can we do better ... ?

What about a tight example?

Theorem. Assuming $\mathrm{P} \neq \mathrm{NP}$, there is no factor- $(2-\varepsilon)$ approximation algorithm for the metric k-Center problem, for any $\varepsilon>0$.
Proof. Reduce from dominating set to metric k-CENTER. Given graph $G=(V, E)$ and integer k, construct complete graph $G^{\prime}=\left(V, E \cup E^{\prime}\right)$
with $c(e)= \begin{cases}1, & \text { if } e \in E \\ 2, & \text { if } e \in E^{\prime}\end{cases}$
Let S be a metric k-center of G^{\prime}. If $\operatorname{dom}(G) \leq k$, then $\operatorname{cost}(S)=1$. If $\operatorname{dom}(G)>k$, then $\operatorname{cost}(S)=2$.

Can we do better ... ?

What about a tight example?

Theorem. Assuming $\mathrm{P} \neq \mathrm{NP}$, there is no factor- $(2-\varepsilon)$ approximation algorithm for the metric k-Center problem, for any $\varepsilon>0$.
Proof. Reduce from dominating set to metric k-Center.
Given graph $G=(V, E)$ and integer k, construct complete graph $G^{\prime}=\left(V, E \cup E^{\prime}\right)$
with $c(e)= \begin{cases}1, & \text { if } e \in E \\ 2, & \text { if } e \in E^{\prime}\end{cases}$
Let S be a metric k-center of G^{\prime}. If $\operatorname{dom}(G) \leq k$, then $\operatorname{cost}(S)=1$. If $\operatorname{dom}(G)>k$, then $\operatorname{cost}(S)=2$.

Can we do better ... ?

What about a tight example?

Theorem. Assuming $\mathrm{P} \neq \mathrm{NP}$, there is no factor- $(2-\varepsilon)$ approximation algorithm for the metric k-Center problem, for any $\varepsilon>0$.
Proof. Reduce from dominating set to metric k-Center.
Given graph $G=(V, E)$ and integer k, construct complete graph $G^{\prime}=\left(V, E \cup E^{\prime}\right)$
with $c(e)= \begin{cases}1, & \text { if } e \in E \\ 2, & \text { if } e \in E^{\prime}\end{cases}$
Let S be a metric k-center of G^{\prime}. If $\operatorname{dom}(G) \leq k$, then $\operatorname{cost}(S)=1$. If $\operatorname{dom}(G)>k$, then $\operatorname{cost}(S)=2$.

Can we do better ... ?

What about a tight example?

Theorem. Assuming $\mathrm{P} \neq \mathrm{NP}$, there is no factor- $(2-\varepsilon)$ approximation algorithm for the metric k-Center problem, for any $\varepsilon>0$.

Proof.

Reduce from dominating set to metric k-Center.
Given graph $G=(V, E)$ and integer k, construct complete graph $G^{\prime}=\left(V, E \cup E^{\prime}\right)$
with $c(e)= \begin{cases}1, & \text { if } e \in E \\ 2, & \text { if } e \in E^{\prime}\end{cases}$
\triangle-inequality holds
Let S be a metric k-center of G^{\prime}.
If $\operatorname{dom}(G) \leq k$, then $\operatorname{cost}(S)=1$.
If $\operatorname{dom}(G)>k$, then $\operatorname{cost}(S)=2$.

Lecture 6:
k-Center via Parametric Pruning
Part V:
Metric-Weighted-Center

Metric-k-Center

Given: A complete graph $G=(V, E)$ with metric edge costs $c: E \rightarrow \mathbb{Q}_{\geq 0}$ and a natural number $k \leq|V|$.

Metric-K-Center Weighted

Given: A complete graph $G=(V, E)$ with metric edge costs $c: E \rightarrow Q_{\geq 0}$ and a natural number $k \leq|V|$.

For $S \subseteq V, c(v, S)$ is the cost of the cheapest edge from v to a vertex in S.

Find: A k-element vertex set S such that $\operatorname{cost}(S):=\max _{v \in V} c(v, S)$ is minimized.

Metric-K-Center Weighted

Given: A complete graph $G=(V, E)$ with metric edge costs $c: E \rightarrow \mathbb{Q}>0$ and a netural number $k \leq|\check{V}|$., vertex weights $w: V \rightarrow Q_{\geq 0}$ and a budget $W \in \mathbb{Q}_{+}$

For $S \subseteq V, c(v, S)$ is the cost of the cheapest edge from v to a vertex in S.

Find: A k-element vertex set S such that $\operatorname{cost}(S):=\max _{v \in V} c(v, S)$ is minimized.

Metric-K-Center Weighted

Given: A complete graph $G=(V, E)$ with metric edge costs $c: E \rightarrow \mathbb{Q}>0$ and a natumal number $k \leq|\overparen{V}|$., vertex weights $w: V \rightarrow Q_{\geq 0}$ and a budget $W \in \mathbb{Q}_{+}$

For $S \subseteq V, c(v, S)$ is the cost of the cheapest edge from v to a vertex in S.
vertex set S of weight at most W
Find: A k-element vertex set f such that $\operatorname{cost}(S):=\max _{v \in V} c(v, S)$ is minimized.

Algorithm for the Weighted Version

Algorithm Metric- -Center
Sort the edges of G by cost : $c\left(e_{1}\right) \leq \ldots \leq c\left(e_{m}\right)$ for $j=1, \ldots, m$ do

Construct G_{j}^{2}
Find a maximal independent set I_{j} in G_{j}^{2}
if $\left|I_{j}\right| \leq k$ then return I_{j}

Algorithm for the Weighted Version

Algorithm Metric-Weighted-Center
Sort the edges of G by cost : $c\left(e_{1}\right) \leq \ldots \leq c\left(e_{m}\right)$ for $j=1$ to m do

Construct G_{j}^{2}
Find a maximal independent set I_{j} in G_{j}^{2}
if $\left|I_{j}\right| \leq k$ then return I_{j}

Algorithm for the Weighted Version

Algorithm Metric-Weighted-Center
Sort the edges of G by cost : $c\left(e_{1}\right) \leq \ldots \leq c\left(e_{m}\right)$ for $j=1$ to m do

Construct G_{j}^{2}
Find a maximal independent set I_{j} in G_{j}^{2}
if $\left|I_{j}\right| \leq k$ then what about the weights?

Algorithm for the Weighted Version

Algorithm Metric-Weighted-Center
Sort the edges of G by cost : $c\left(e_{1}\right) \leq \ldots \leq c\left(e_{m}\right)$ for $j=1$ to m do

Construct G_{j}^{2}
Find a maximal independent set I_{j} in G_{j}^{2}
if $\left|I_{j}\right| \leq k$ then return I_{j} what about the weights?

Algorithm for the Weighted Version

Algorithm Metric-Weighted-Center
Sort the edges of G by cost : $c\left(e_{1}\right) \leq \ldots \leq c\left(e_{m}\right)$ for $j=1$ to m do

Construct G_{j}^{2}
Find a maximal independent set I_{j} in G_{j}^{2}
if $\left|I_{j}\right| \leq k$ then return I_{j} what about the weights?

$s_{j}(u):=$ lightest node in $N_{G_{j}}(u) \cup\{u\}$

Algorithm for the Weighted Version

Algorithm Metric-Weighted-Center
Sort the edges of G by cost : $c\left(e_{1}\right) \leq \ldots \leq c\left(e_{m}\right)$ for $j=1$ to m do

Construct G_{j}^{2}
Find a maximal independent set I_{j} in G_{j}^{2}
if $\left|I_{j}\right| \leq k$ then return I_{j} what about the weights?

$s_{j}(u):=$ lightest node in $N_{G_{j}}(u) \cup\{u\}$

Algorithm for the Weighted Version

Algorithm Metric-Weighted-Center
Sort the edges of G by cost : $c\left(e_{1}\right) \leq \cdots \leq c\left(e_{m}\right)$ for $j=1$ to m do

Construct G_{j}^{2}
Find a maximal independent set I_{j} in G_{j}^{2}
Compute $S_{j}:=\left\{s_{j}(u) \mid u \in I_{j}\right\}$ if $\left|I_{j}\right| \leq k$ then return I_{j}

$s_{j}(u):=$ lightest node in $N_{G_{j}}(u) \cup\{u\}$

Algorithm for the Weighted Version

Algorithm Metric-Weighted-Center
Sort the edges of G by cost : $c\left(e_{1}\right) \leq \cdots \leq c\left(e_{m}\right)$ for $j=1$ to m do

Construct G_{j}^{2}
Find a maximal independent set I_{j} in G_{j}^{2}
Compute $S_{j}:=\left\{s_{j}(u) \mid u \in I_{j}\right\}$ if $\left|I_{j}\right| \leq k$ then $\quad w\left(S_{j}\right) \leq W$ return I_{j}

$s_{j}(u):=$ lightest node in $N_{G_{j}}(u) \cup\{u\}$

Algorithm for the Weighted Version

Algorithm Metric-Weighted-Center
Sort the edges of G by cost : $c\left(e_{1}\right) \leq \cdots \leq c\left(e_{m}\right)$ for $j=1$ to m do

Construct G_{j}^{2}
Find a maximal independent set I_{j} in G_{j}^{2}
Compute $S_{j}:=\left\{s_{j}(u) \mid u \in I_{j}\right\}$ if $\left|I_{j}\right| \leq k$ then $w\left(S_{j}\right) \leq W$ return $X_{j} S_{j}$
$s_{j}(u):=$ lightest node in $N_{G_{j}}(u) \cup\{u\}$

Algorithm for the Weighted Version

Algorithm Metric-Weighted-Center
Sort the edges of G by cost : $c\left(e_{1}\right) \leq \cdots \leq c\left(e_{m}\right)$ for $j=1$ to m do

Construct G_{j}^{2}
Find a maximal independent set I_{j} in G_{j}^{2}
Compute $S_{j}:=\left\{s_{j}(u) \mid u \in I_{j}\right\}$ if $\left|I_{j}\right| \leq k$ then $w\left(S_{j}\right) \leq W$ return $X_{j} S_{j}$

$s_{j}(u):=$ lightest node in $N_{G_{j}}(u) \cup\{u\}$

Algorithm for the Weighted Version

Algorithm Metric-Weighted-Center
Sort the edges of G by cost : $c\left(e_{1}\right) \leq \cdots \leq c\left(e_{m}\right)$ for $j=1$ to m do

Construct G_{j}^{2}
Find a maximal independent set I_{j} in G_{j}^{2}
Compute $S_{j}:=\left\{s_{j}(u) \mid u \in I_{j}\right\}$ if $\left|I_{j}\right| \leq k$ then $w\left(S_{j}\right) \leq W$ return $X_{j} S_{j}$
$s_{j}(u):=$ lightest node in $N_{G_{j}}(u) \cup\{u\}$

Algorithm for the Weighted Version

Algorithm Metric-Weighted-Center
Sort the edges of G by cost : $c\left(e_{1}\right) \leq \cdots \leq c\left(e_{m}\right)$ for $j=1$ to m do

Construct G_{j}^{2}

Find a maximal independent set I_{j} in G_{j}^{2}
Compute $S_{j}:=\left\{s_{j}(u) \mid u \in I_{j}\right\}$ if $\left|I_{j}\right| \leq k$ then $w\left(S_{j}\right) \leq W$ return $K_{j} S_{j}$

$s_{j}(u):=$ lightest node in $N_{G_{j}}(u) \cup\{u\}$
Theorem. The above is a factor- 3 approximation algorithm for Metric-Weighted-Center.

Tight Example... ?

Here, we need to have a budget W, and edge costs satisfying the triangle inequality.

Tight Example... ?

Here, we need to have a budget W, and edge costs satisfying the triangle inequality.

Consider $W=3$.

Tight Example... ?

Here, we need to have a budget W, and edge costs satisfying the triangle inequality.

Consider $W=3$.

Tight Example... ?

Here, we need to have a budget W, and edge costs satisfying the triangle inequality.

Consider $W=3$.

Tight Example... ?

Here, we need to have a budget W, and edge costs satisfying the triangle inequality.

Consider $W=3$.

Tight Example... ?

Here, we need to have a budget W, and edge costs satisfying the triangle inequality.

Consider $W=3$.

Tight Example... ?

Here, we need to have a budget W, and edge costs satisfying the triangle inequality.

Consider $W=3$.

Tight Example... ?

Here, we need to have a budget W, and edge costs satisfying the triangle inequality.

Consider $W=3$.

$w(\cdot)=4$

Tight Example... ?

Here, we need to have a budget W, and edge costs satisfying the triangle inequality.

Consider $W=3$.

Tight Example... ?

Here, we need to have a budget W, and edge costs satisfying the triangle inequality.

Consider $W=3$.
Other edge costs?
$w(\cdot)=4$

Tight Example... ?

Here, we need to have a budget W, and edge costs satisfying the triangle inequality.

Consider $W=3$.

Other edge costs?
\rightarrow metric completion!
$w(\cdot)=4$

Tight Example... ?

Here, we need to have a budget W, and edge costs satisfying the triangle inequality.

Consider $W=3$.

Other edge costs?
\rightarrow metric completion!

OPT?
$w(\cdot)=4 \quad$ ALG?

Tight Example... ?

Here, we need to have a budget W, and edge costs satisfying the triangle inequality.

Consider $W=3$.

Other edge costs?
\rightarrow metric completion!

OPT? pick a and $c \Rightarrow \operatorname{cost} 1+\varepsilon$.
$w(\cdot)=4 \quad$ ALG?

Tight Example... ?

Here, we need to have a budget W, and edge costs satisfying the triangle inequality.

Consider $W=3$.

OPT? pick a and $c \Rightarrow \operatorname{cost} 1+\varepsilon$.
ALG? since $N_{G^{2}}(b)=G,\{b\}$ is a maximal independent set in G^{2}

Tight Example... ?

Here, we need to have a budget W, and edge costs satisfying the triangle inequality.

Tight Example... ?

Here, we need to have a budget W, and edge costs satisfying the triangle inequality.

How can we generalize this to larger W ?

Tight Example... ?

Here, we need to have a budget W, and edge costs satisfying the triangle inequality.

How can we generalize this to larger W ?

