Approximation Algorithms

 Lecture 5:LP-based Approximation Algorithms for SetCover

Part I:
SetCover as an ILP

SetCover as an ILP

Ground set U

SetCover as an ILP

Ground set U
Family $\mathcal{S} \subseteq 2^{U}$ with $\bigcup \mathcal{S}=U$

SetCover as an ILP

Ground set U
Family $\mathcal{S} \subseteq 2^{U}$ with $\bigcup \mathcal{S}=U$
Costs $c: \mathcal{S} \rightarrow \mathbb{Q}^{+}$

SetCover as an ILP

Ground set U
Family $\mathcal{S} \subseteq 2^{U}$ with $\bigcup \mathcal{S}=U$
Costs $c: \mathcal{S} \rightarrow \mathbb{Q}^{+}$

Find cover $\mathcal{S}^{\prime} \subseteq \mathcal{S}$ of U with minimum cost.

SetCover as an ILP

minimize

subject to

Ground set U
Family $\mathcal{S} \subseteq 2^{U}$ with $\bigcup \mathcal{S}=U$
Costs $c: \mathcal{S} \rightarrow \mathbb{Q}^{+}$

Find cover $\mathcal{S}^{\prime} \subseteq \mathcal{S}$
of U with minimum cost.

SetCover as an ILP

minimize

subject to

$S \in \mathcal{S}$

Ground set U
Family $\mathcal{S} \subseteq 2^{U}$ with $\bigcup \mathcal{S}=U$
Costs $c: \mathcal{S} \rightarrow \mathbb{Q}^{+}$

Find cover $\mathcal{S}^{\prime} \subseteq \mathcal{S}$
of U with
minimum cost.

SetCover as an ILP

minimize

subject to

$$
x_{S} \in\{0,1\} \quad S \in \mathcal{S}
$$

Ground set U
Family $\mathcal{S} \subseteq 2^{U}$ with $\bigcup \mathcal{S}=U$
Costs $\mathrm{c}: \mathcal{S} \rightarrow \mathbb{Q}^{+}$

Find cover $\mathcal{S}^{\prime} \subseteq \mathcal{S}$
of U with
minimum cost.

SetCover as an ILP

minimize $\quad \sum_{S \in \mathcal{S}} c_{S} x_{S}$
 subject to

$$
x_{S} \in\{0,1\} \quad S \in \mathcal{S}
$$

Ground set U
Family $\mathcal{S} \subseteq 2^{U}$ with $\bigcup \mathcal{S}=U$
Costs $c: \mathcal{S} \rightarrow \mathbb{Q}^{+}$

Find cover $\mathcal{S}^{\prime} \subseteq \mathcal{S}$
of U with minimum cost.

SetCover as an ILP

$$
\begin{array}{lll}
\hline \text { minimize } & \sum_{S \in \mathcal{S}} c_{S} x_{S} & \\
\text { subject to } & & u \in U \\
& x_{S} \in\{0,1\} & S \in \mathcal{S} \\
\hline
\end{array}
$$

Ground set U
Family $\mathcal{S} \subseteq 2^{U}$ with $\bigcup \mathcal{S}=U$
Costs $c: \mathcal{S} \rightarrow \mathbb{Q}^{+}$

Find cover $\mathcal{S}^{\prime} \subseteq \mathcal{S}$
of U with minimum cost.

SetCover as an ILP

$$
\begin{array}{lll}
\hline \text { minimize } & \sum_{S \in \mathcal{S}} c_{S} x_{S} \\
\text { subject to } & \sum_{S \ni u} x_{S} \geq 1 \quad u \in U \\
& x_{S} \in\{0,1\} \quad S \in \mathcal{S} \\
\hline
\end{array}
$$

Ground set U
Family $\mathcal{S} \subseteq 2^{U}$ with $\bigcup \mathcal{S}=U$
Costs $c: \mathcal{S} \rightarrow \mathbb{Q}^{+}$

Find cover $\mathcal{S}^{\prime} \subseteq \mathcal{S}$
of U with minimum cost.

Approximation Algorithms

 Lecture 5:LP-based Approximation Algorithms for SetCover

Part II:
LP-Rounding

Technique I) LP-Rounding

Consider a minimization problem Π in ILP form.

Technique I) LP-Rounding

Consider a minimization problem Π in ILP form.
Compute a solution for the LP-relaxation.

Technique I) LP-Rounding

Consider a minimization problem Π in ILP form.
Compute a solution for the LP-relaxation.
Round to obtain an integer solution for Π.

Technique I) LP-Rounding

Consider a minimization problem Π in ILP form.
Compute a solution for the LP-relaxation.
Round to obtain an integer solution for Π.
Difficulty: Ensure the feasiblity of the solution.

Technique I) LP-Rounding

Consider a minimization problem Π in ILP form.
Compute a solution for the LP-relaxation.
Round to obtain an integer solution for Π.
Difficulty: Ensure the feasiblity of the solution.
Approximation factor: $\mathrm{ALG} / \mathrm{OPT}_{\Pi} \leq \mathrm{ALG}^{\left(O P T_{\text {relax }}\right.}{ }$

SetCover - LP-Relaxation

SetCover - LP-Relaxation

$$
\begin{array}{lll}
\text { minimize } & \sum_{S \in \mathcal{S}} c_{S} x_{S} & \\
\text { subject to } & \sum_{S \ni u} x_{S} \geq 1 \quad u \in U \\
& x_{S} \geq 0 \quad S \in \mathcal{S} \\
\hline
\end{array}
$$

Optimal?

SetCover - LP-Relaxation

$$
\begin{array}{lll}
\text { minimize } & \sum_{S \in \mathcal{S}} c_{S} x_{S} & \\
\text { subject to } & \sum_{S \ni u} x_{S} \geq 1 \quad u \in U \\
& x_{S} \geq 0 \quad & S \in \mathcal{S} \\
\hline
\end{array}
$$

Optimal?

SetCover - LP-Relaxation

$$
\begin{array}{lll}
\hline \text { minimize } & \sum_{S \in \mathcal{S}} c_{S} x_{S} \\
\text { subject to } & \sum_{S \ni u} x_{S} \geq 1 \quad u \in U \\
& x_{S} \geq 0 & S \in \mathcal{S} \\
\hline
\end{array}
$$

Optimal?

SetCover - LP-Relaxation

$$
\begin{array}{lll}
\text { minimize } & \sum_{S \in \mathcal{S}} c_{S} x_{S} & \\
\text { subject to } & \sum_{S \ni u} x_{S} \geq 1 \quad u \in U \\
& x_{S} \geq 0 \quad S \in \mathcal{S} \\
\hline
\end{array}
$$

Optimal?

SetCover - LP-Relaxation

$$
\begin{array}{lll}
\text { minimize } & \sum_{S \in \mathcal{S}} c_{S} x_{S} & \\
\text { subject to } & \sum_{S \ni u} x_{S} \geq 1 \quad u \in U \\
& x_{S} \geq 0 \quad & S \in \mathcal{S} \\
\hline
\end{array}
$$

Optimal?

SetCover - LP-Relaxation

$$
\begin{array}{lll}
\hline \text { minimize } & \sum_{S \in \mathcal{S}} c_{S} x_{S} & \\
\text { subject to } & \sum_{S \ni u} x_{S} \geq 1 \quad u \in U \\
& x_{S} \geq 0 \quad & S \in \mathcal{S} \\
\hline
\end{array}
$$

Optimal?

integer: 2

SetCover - LP-Relaxation

Optimal?

integer: 2

LP-Rounding: Approach I

$$
\begin{array}{cl}
\operatorname{minimize} & \sum_{S \in \mathcal{S}} c_{S} x_{S} \\
\text { subject to } & \sum_{S \ni u} x_{S} \geq 1 \quad u \in U \\
& x_{S} \geq 0 \quad S \in \mathcal{S}
\end{array}
$$

LP-Rounding-One(U, S, c)

LP-Rounding: Approach I

$$
\begin{array}{lll}
\operatorname{minimize} & \sum_{S \in \mathcal{S}} c_{S} x_{S} & \\
\text { subject to } & \sum_{S \ni u} x_{S} \geq 1 \quad u \in U \\
& x_{S} \geq 0 \quad S \in \mathcal{S}
\end{array}
$$

LP-Rounding-One $(U, \mathcal{S}, ~ c)$
Compute optimal solution x for LP-relaxation. Round each x_{S} with $x_{S}>0$ to 1 .

LP-Rounding: Approach I

$$
\begin{array}{cl}
\operatorname{minimize} & \sum_{S \in \mathcal{S}} c_{S} x_{S} \\
\text { subject to } & \sum_{S \ni u} x_{S} \geq 1 \quad u \in U \\
& x_{S} \geq 0 \quad S \in \mathcal{S}
\end{array}
$$

LP-Rounding-One($U, \mathcal{S}, ~ c)$
Compute optimal solution x for LP-relaxation. Round each x_{S} with $x_{S}>0$ to 1 .

- Generates a valid solution.

LP-Rounding: Approach I

$$
\begin{array}{cll}
\operatorname{minimize} & \sum_{S \in \mathcal{S}} c_{S} x_{S} & \\
\text { subject to } & \sum_{S_{\ni u}} x_{S} \geq 1 \quad u \in U \\
& x_{S} \geq 0 \quad S \in \mathcal{S}
\end{array}
$$

LP-Rounding-One (U, \mathcal{S}, c)
Compute optimal solution x for LP-relaxation. Round each x_{S} with $x_{S}>0$ to 1 .

- Generates a valid solution.
- Scaling factor arbitrarily large.

LP-Rounding: Approach I

$$
\begin{array}{lll}
\hline \text { minimize } & \sum_{S \in \mathcal{S}} c_{S} x_{S} & \\
\text { subject to } & \sum_{S_{\ni u}} x_{S} \geq 1 \quad u \in U \\
& x_{S} \geq 0 \quad & S \in \mathcal{S}
\end{array}
$$

LP-Rounding-One (U, \mathcal{S}, c)
Compute optimal solution x for LP-relaxation. Round each x_{S} with $x_{S}>0$ to 1 .

- Generates a valid solution.
- Scaling factor arbitrarily large.

LP-Rounding: Approach I

$$
\begin{array}{lll}
\hline \text { minimize } & \sum_{S \in \mathcal{S}} c_{S} x_{S} & \\
\text { subject to } & \sum_{S_{\ni u}} x_{S} \geq 1 \quad u \in U \\
& x_{S} \geq 0 \quad S \in \mathcal{S}
\end{array}
$$

LP-Rounding-One (U, \mathcal{S}, c)
Compute optimal solution x for LP-relaxation. Round each x_{S} with $x_{S}>0$ to 1 .

- Generates a valid solution.
- Scaling factor arbitrarily large.

LP-Rounding: Approach I

$$
\begin{array}{lll}
\hline \text { minimize } & \sum_{S \in \mathcal{S}} c_{S} x_{S} & \\
\text { subject to } & \sum_{S_{\ni u}} x_{S} \geq 1 \quad u \in U \\
& x_{S} \geq 0 \quad S \in \mathcal{S}
\end{array}
$$

LP-Rounding-One (U, \mathcal{S}, c)
Compute optimal solution x for LP-relaxation. Round each x_{S} with $x_{S}>0$ to 1 .

- Generates a valid solution.
- Scaling factor arbitrarily large.

LP-Rounding: Approach I

$$
\begin{array}{cl}
\text { minimize } & \sum_{S \in \mathcal{S}} c_{S} x_{S} \\
\text { subject to } & \sum_{S_{\ni u}} x_{S} \geq 1 \quad u \in U \\
& x_{S} \geq 0 \quad S \in \mathcal{S}
\end{array}
$$

LP-Rounding-One (U, \mathcal{S}, c)
Compute optimal solution x for LP-relaxation.
Round each x_{S} with $x_{S}>0$ to 1 .

- Generates a valid solution.
- Scaling factor arbitrarily large.

LP-Rounding: Approach I

$$
\begin{array}{lll}
\hline \text { minimize } & \sum_{S \in \mathcal{S}} c_{S} x_{S} & \\
\text { subject to } & \sum_{S_{\ni u}} x_{S} \geq 1 \quad u \in U \\
& x_{S} \geq 0 \quad S \in \mathcal{S}
\end{array}
$$

LP-Rounding-One (U, \mathcal{S}, c)
Compute optimal solution x for LP-relaxation.
Round each x_{S} with $x_{S}>0$ to 1 .

- Generates a valid solution.
- Scaling factor arbitrarily large.

LP-Rounding: Approach I

$$
\begin{array}{lll}
\hline \text { minimize } & \sum_{S \in \mathcal{S}} c_{S} x_{S} & \\
\text { subject to } & \sum_{S \ni u} x_{S} \geq 1 \quad u \in U \\
& x_{S} \geq 0 \quad S \in \mathcal{S} \\
\hline
\end{array}
$$

LP-Rounding-One $(U, \mathcal{S}, ~ c)$
Compute optimal solution x for LP-relaxation. Round each x_{S} with $x_{S}>0$ to 1 .

- Generates a valid solution.
- Scaling factor arbitrarily large.

LP-Rounding: Approach I

$$
\begin{array}{lll}
\text { minimize } & \sum_{S \in \mathcal{S}} c_{S} x_{S} & \\
\text { subject to } & \sum_{S \ni u} x_{S} \geq 1 \quad u \in U \\
& x_{S} \geq 0 \quad S \in \mathcal{S} \\
\hline
\end{array}
$$

LP-Rounding-One $(U, \mathcal{S}, ~ c)$
Compute optimal solution x for LP-relaxation.
Round each x_{S} with $x_{S}>0$ to 1 .

- Generates a valid solution.
- Scaling factor arbitrarily large.

LP-Rounding: Approach I

$$
\begin{array}{lll}
\hline \text { minimize } & \sum_{S \in \mathcal{S}} c_{S} x_{S} & \\
\text { subject to } & \sum_{S \ni u} x_{S} \geq 1 \quad u \in U \\
& x_{S} \geq 0 & S \in \mathcal{S} \\
\hline
\end{array}
$$

LP-Rounding-One $(U, \mathcal{S}, ~ c)$
Compute optimal solution x for LP-relaxation.
Round each x_{S} with $x_{S}>0$ to 1 .

- Generates a valid solution.
- Scaling factor arbitrarily large.

LP-Rounding: Approach I

$$
\begin{array}{lll}
\text { minimize } & \sum_{S \in \mathcal{S}} c_{S} x_{S} & \\
\text { subject to } & \sum_{S \ni u} x_{S} \geq 1 \quad u \in U \\
& x_{S} \geq 0 & S \in \mathcal{S} \\
\hline
\end{array}
$$

LP-Rounding-One $(U, \mathcal{S}, ~ c)$
Compute optimal solution x for LP-relaxation.
Round each x_{S} with $x_{S}>0$ to 1 .

- Generates a valid solution.
- Scaling factor arbitrarily large.

Use frequency f

LP-Rounding: Approach II

$$
\begin{array}{lll}
\operatorname{minimize} & \sum_{S \in \mathcal{S}} c_{S} x_{S} & \\
\text { subject to } & \sum_{S_{\ni u}} x_{S} \geq 1 \quad u \in U \\
& x_{S} \geq 0 \quad & S \in \mathcal{S} \\
\hline
\end{array}
$$

LP-Rounding-Two (U, \mathcal{S}, c)
Compute optimal solution x for LP-relaxation. Round each x_{S} with $x_{S} \geq$ to 1 ; remaining to 0 .

Let f be the frequency of (i.e., the number of sets containing) the most frequent element.

LP-Rounding: Approach II

$$
\begin{array}{lll}
\operatorname{minimize} & \sum_{S \in \mathcal{S}} c_{S} x_{S} & \\
\text { subject to } & \sum_{S_{\ni u}} x_{S} \geq 1 \quad u \in U \\
& x_{S} \geq 0 \quad & S \in \mathcal{S} \\
\hline
\end{array}
$$

LP-Rounding-Two (U, \mathcal{S}, c)
Compute optimal solution x for LP-relaxation. Round each x_{S} with $x_{S} \geq 1 / f$ to 1 ; remaining to 0 .

Let f be the frequency of (i.e., the number of sets containing) the most frequent element.

LP-Rounding: Approach II

$$
\begin{array}{cl}
\operatorname{minimize} & \sum_{S \in \mathcal{S}} c_{S} x_{S} \\
\text { subject to } & \sum_{S \ni u} x_{S} \geq 1 \quad u \in U \\
& x_{S} \geq 0 \quad S \in \mathcal{S}
\end{array}
$$

LP-Rounding-Two(U, \mathcal{S}, c)
Compute optimal solution x for LP-relaxation. Round each x_{S} with $x_{S} \geq 1 / f$ to 1 ; remaining to 0 .
Let f be the frequency of (i.e., the number of sets containing) the most frequent element.
Theorem. LP-Rounding-Two is a factor-f approximation algorithm for SetCover.

Approximation Algorithms

 Lecture 5:LP-based Approximation Algorithms for SetCover

Part III:
The Primal-Dual Schema

Technique II) Primal-Dual Approach

$$
O P T_{\text {dual }}=O P T_{\text {primal }} \quad O P T_{\Pi}
$$

feasible dual solutions
feasible primal solutions

Consider a minimization problem Π in ILP form.

Technique II) Primal-Dual Approach

$$
O P T_{\text {dual }}=O P T_{\text {primal }} \quad O P T_{\Pi}
$$

Consider a minimization problem Π in ILP form.
■ Start with (trivial) feasible dual solution and infeasible primal solution (e.g., all variables $=0$).

Technique II) Primal-Dual Approach

$$
O P T_{\text {dual }}=O P T_{\text {primal }} \quad O P T_{\Pi}
$$

Consider a minimization problem Π in ILP form.
■ Start with (trivial) feasible dual solution and infeasible primal solution (e.g., all variables $=0$).

Technique II) Primal-Dual Approach

$$
O P T_{\text {dual }}=O P T_{\text {primal }} \quad O P T_{\Pi}
$$

Consider a minimization problem Π in ILP form.

- Start with (trivial) feasible dual solution and infeasible primal solution (e.g., all variables $=0$).
- Compute dual solution s_{d} and integral primal solution s_{Π} for Π iteratively:
Increase s_{d} according to CS and make s_{Π} "more feasible".

Technique II) Primal-Dual Approach

$$
O P T_{\text {dual }}=O P T_{\text {primal }} \quad O P T_{\Pi}
$$

Consider a minimization problem Π in ILP form.
■ Start with (trivial) feasible dual solution and infeasible primal solution (e.g., all variables $=0$).

- Compute dual solution s_{d} and integral primal solution s_{Π} for Π iteratively: Increase s_{d} according to CS and make s_{Π} "more feasible".

Technique II) Primal-Dual Approach

$$
O P T_{\text {dual }}=O P T_{\text {primal }} \quad O P T_{\Pi}
$$

Consider a minimization problem Π in ILP form.
■ Start with (trivial) feasible dual solution and infeasible primal solution (e.g., all variables $=0$).

- Compute dual solution s_{d} and integral primal solution s_{Π} for Π iteratively:
Increase s_{d} according to CS and make s_{Π} "more feasible".
Approximation factor $\leq \operatorname{obj}\left(s_{\Pi}\right) / \operatorname{obj}\left(s_{\mathrm{d}}\right)$

Technique II) Primal-Dual Approach

$$
O P T_{\text {dual }}=O P T_{\text {primal }} \quad O P T_{\Pi}
$$

Consider a minimization problem Π in ILP form.
■ Start with (trivial) feasible dual solution and infeasible primal solution (e.g., all variables $=0$).

- Compute dual solution s_{d} and integral primal solution s_{Π} for Π iteratively:
Increase s_{d} according to CS and make s_{Π} "more feasible".
Approximation factor $\leq \operatorname{obj}\left(s_{\Pi}\right) / \operatorname{obj}\left(s_{\mathrm{d}}\right)$
Advantage: Don't need LP-"machinery"; possibly faster, more flexible.

SetCover - Dual LP

$$
\begin{array}{lll}
\text { minimize } & \sum_{S \in \mathcal{S}} c_{S} x_{S} & \\
\text { subject to } & \sum_{S \ni u} x_{S} \geq 1 \quad u \in U \\
& x_{S} \geq 0 \quad S \in \mathcal{S}
\end{array}
$$

SetCover - Dual LP

$$
\begin{array}{lll}
\text { minimize } & \sum_{S \in \mathcal{S}} c_{S} x_{S} & \\
\text { subject to } & \sum_{S \ni u} x_{S} \geq 1 \quad u \in U \\
& x_{S} \geq 0 & S \in \mathcal{S} \\
\hline
\end{array}
$$

maximize
subject to

SetCover - Dual LP

$$
\begin{array}{lll}
\text { minimize } & \sum_{S \in \mathcal{S}} c_{S} x_{S} & \\
\text { subject to } & \sum_{S \ni u} x_{S} \geq 1 \quad u \in U \\
& x_{S} \geq 0 & S \in \mathcal{S} \\
\hline
\end{array}
$$

maximize
subject to

$$
y_{u} \geq 0 \quad u \in U
$$

SetCover - Dual LP

$$
\begin{array}{lll}
\hline \text { minimize } & \sum_{S \in \mathcal{S}} c_{S} x_{S} & \\
\text { subject to } & \sum_{S \ni u} x_{S} \geq 1 \quad u \in U \\
& x_{S} \geq 0 & S \in \mathcal{S} \\
\hline
\end{array}
$$

maximize $\quad \sum_{u \in U} y_{u}$
subject to

$$
y_{u} \geq 0 \quad u \in U
$$

SetCover - Dual LP

$$
\begin{array}{lll}
\hline \text { minimize } & \sum_{S \in \mathcal{S}} c_{S} x_{S} & \\
\text { subject to } & \sum_{S \ni u} x_{S} \geq 1 \quad u \in U \\
& x_{S} \geq 0 & S \in \mathcal{S} \\
\hline
\end{array}
$$

maximize

$$
\sum_{u \in U} y_{u}
$$

$$
\text { subject to } \quad \sum_{u \in S} y_{u} \leq c_{S} \quad S \in \mathcal{S}
$$

$$
y_{u} \geq 0 \quad u \in U
$$

Complementary Slackness

$\operatorname{minimize}$	$c^{\boldsymbol{\top}} x$		
subject to	$A x$	$\geq b$	
	x	≥ 0	

maximize	$b^{\top} y$	
subject to	$A^{\top} y$	$\leq c$
	y	≥ 0

Theorem. Let $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{m}\right)$ be valid solutions for the primal and dual program (resp.). Then x and y are optimal if and only if the following conditions are met:
Primal CS:
For each $j=1, \ldots, n: \quad x_{j}=0$ or $\sum_{i=1}^{m} a_{i j} y_{i}=c_{j}$
Dual CS:
For each $i=1, \ldots, m: \quad y_{i}=0$ or $\sum_{j=1}^{n} a_{i j} x_{j}=b_{i}$

Relaxing Complementary Slackness

| minimize $C^{\top} x$
 subject to $A x$ \geq b
 x \geq 0 |
| :--- | ---: | :--- | :--- |

maximize	$b^{\top} y$	
subject to	$A^{\top} y$	$\leq c$
	$y \geq 0$	

Primal CS:

For each $j=1, \ldots, n: \quad x_{j}=0$ or $\sum_{i=1}^{m} a_{i j} y_{i}=c_{j}$

Dual CS:

For each $i=1, \ldots, m: \quad y_{i}=0$ or $\sum_{j=1}^{n} a_{i j} x_{j}=b_{i}$
$\Leftrightarrow \sum_{j=1}^{n} c_{j} x_{j}=\sum_{i=1}^{m} b_{i} y_{i}$

Relaxing Complementary Slackness

$\operatorname{minimize}$	$c^{\boldsymbol{\top}} x$		
subject to	$A x$	$\geq b$	
	x	≥ 0	

maximize	$b^{\top} y$		
subject to	$A^{\top} y$	$\leq c$	
	y	≥ 0	

Primal CS: Relaxed Primal CS

For each $j=1, \ldots, n: \quad x_{j}=0$ or $\sum_{i=1}^{m} a_{i j} y_{i}=c_{j}$

$$
c_{j} / \alpha \leq \sum_{i=1}^{m} a_{i j} y_{i} \leq c_{j}
$$

Dual CS:

For each $i=1, \ldots, m: \quad y_{i}=0$ or $\sum_{j=1}^{n} a_{i j} x_{j}=b_{i}$
$\Leftrightarrow \sum_{j=1}^{n} c_{j} x_{j}=\sum_{i=1}^{m} b_{i} y_{i}$

Relaxing Complementary Slackness

$\operatorname{minimize}$	$c^{\boldsymbol{\top}} x$		
subject to	$A x$	$\geq b$	
	x	≥ 0	

$\operatorname{maximize}$	$b^{\top} y$	
subject to	$A^{\top} y$	$\leq c$
	y	≥ 0

Primal CS: Relaxed Primal CS

For each $j=1, \ldots, n: \quad x_{j}=0$ or $\sum_{i=1}^{m} a_{i j} y_{i}=c_{j}$

$$
c_{j} / \alpha \leq \sum_{i=1}^{m} a_{i j} y_{i} \leq c_{j}
$$

Dual-CS: Relaxed Dual CS
For each $i=1, \ldots, m: \quad y_{i}=0$ or $\sum_{j=1}^{n} a_{i j} x_{j}=b_{i}$

$$
b_{i} \leq \sum_{j=1}^{n} a_{i j} x_{j} \leq \beta \cdot b_{i}
$$

$\Leftrightarrow \sum_{j=1}^{n} c_{j} x_{j}=\sum_{i=1}^{m} b_{i} y_{i}$

Relaxing Complementary Slackness

$\operatorname{minimize}$	$c^{\boldsymbol{\top}} x$		
subject to	$A x$	$\geq b$	
	x	≥ 0	

maximize	$b^{\top} y$	
subject to	$A^{\top} y$	$\leq c$
	y	≥ 0

Primal CS: Relaxed Primal CS

For each $j=1, \ldots, n: \quad x_{j}=0$ or $\sum_{i=1}^{m} a_{i j} y_{i}=c_{j}$

$$
c_{j} / \alpha \leq \sum_{i=1}^{m} a_{i j} y_{i} \leq c_{j}
$$

Dual-CS: \quad Relaxed Dual CS
For each $i=1, \ldots, m: \quad y_{i}=0$ or $\sum_{j=1}^{n} a_{i j} x_{j}=b_{i}$

$$
b_{i} \leq \sum_{j=1}^{n} a_{i j} x_{j} \leq \beta \cdot b_{i}
$$

$\Leftrightarrow \sum_{j=1}^{n} c_{j} x_{j}=\sum_{i=1}^{m} b_{i} y_{i} \Rightarrow \sum_{j=1}^{n} c_{j} x_{j} \leq \alpha \beta \sum_{i=1}^{m} b_{i} y_{i} \leq \alpha \beta \cdot \mathrm{OPT}_{\mathrm{LP}}$

Primal-Dual Schema

Start with a feasible dual and infeasible primal solution (often trivial).

Primal-Dual Schema

Start with a feasible dual and infeasible primal solution (often trivial).
"Improve" the feasibility of the primal solution...

Primal-Dual Schema

Start with a feasible dual and infeasible primal solution (often trivial).
"Improve" the feasibility of the primal solution...
... and simultaneously the objective value of the dual solution.

Primal-Dual Schema

Start with a feasible dual and infeasible primal solution (often trivial).
"Improve" the feasibility of the primal solution...
... and simultaneously the objective value of the dual solution.
Do so until the relaxed CS conditions are met.

Primal-Dual Schema

Start with a feasible dual and infeasible primal solution (often trivial).
"Improve" the feasibility of the primal solution...
... and simultaneously the objective value of the dual solution.
Do so until the relaxed CS conditions are met.
Maintain that the primal solution is integer-valued.

Primal-Dual Schema

Start with a feasible dual and infeasible primal solution (often trivial).
"Improve" the feasibility of the primal solution...
... and simultaneously the objective value of the dual solution.
Do so until the relaxed CS conditions are met.
Maintain that the primal solution is integer-valued.
The feasibility of the primal solution and the relaxed CS conditions provide an approximation ratio.

Relaxed CS for SetCover

minimize	$\sum_{S \in \mathcal{S}} c_{S} x_{S}$						
subject to	$\sum_{S \ni u} x_{S} \geq 1$	$u \in U$					
	$x_{S} \geq 0$	$S \in \mathcal{S}$			maximize	$\sum_{u \in U} y_{u}$	
:---	:---	:---	:---				
subject to	$\sum_{u \in S} y_{u} \leq c_{S} \quad S \in \mathcal{S}$						
	$y_{u} \geq 0$	$u \in U$					

Relaxed CS for SetCover

minimize	$\sum_{S \in \mathcal{S}} c_{S} x_{S}$	
subject to	$\sum_{S_{\ni u}} x_{S} \geq 1$	$u \in U$
	$x_{S} \geq 0$	$S \in \mathcal{S}$

maximize	$\sum_{u \in U} y_{u}$	
subject to	$\sum_{u \in S} y_{u} \leq c_{S}$	$S \in \mathcal{S}$
	$y_{u} \geq 0$	$u \in U$

(Unrelaxed) primal CS:

Relaxed CS for SetCover

minimize	$\sum_{S \in \mathcal{S}} c_{S} x_{S}$						
subject to	$\sum_{S \ni u} x_{S} \geq 1$	$u \in U$					
	$x_{S} \geq 0$	$S \in \mathcal{S}$	$	$	maximize	$\sum_{u \in U} y_{u}$	
:---	:---	:---					
subject to	$\sum_{u \in S} y_{u} \leq c_{S}$	$S \in \mathcal{S}$					
	$y_{u} \geq 0$	$u \in U$					

(Unrelaxed) primal CS: $x_{S} \neq 0 \Rightarrow$

Relaxed CS for SetCover

minimize	$\sum_{S \in \mathcal{S}} c_{S} x_{S}$						
subject to	$\sum_{S \ni u} x_{S} \geq 1$	$u \in U$					
	$x_{S} \geq 0$	$S \in \mathcal{S}$	$	$	maximize	$\sum_{u \in U} y_{u}$	
:---	:---	:---					
subject to	$\sum_{u \in S} y_{u} \leq c_{S}$	$S \in \mathcal{S}$					
	$y_{u} \geq 0$	$u \in U$					

(Unrelaxed) primal CS: $x_{S} \neq 0 \Rightarrow \sum_{u \in S} y_{u}=c_{S}$

Relaxed CS for SetCover

critical set 4 .
(Unrelaxed) primal CS: $x_{S} \neq 0 \Rightarrow \sum_{u \in S} y_{u}=c_{S}$

Relaxed CS for SetCover

$\begin{array}{ll} \text { minimize } & \sum_{S \in \mathcal{S}} c_{S} x_{S} \\ \text { subject to } & \sum_{S \ni u} x_{S} \geq 1 \quad u \in U \\ & x_{S} \geq 0 \quad S \in \mathcal{S} \end{array}$			$\begin{array}{lll} \hline \text { maximize } & \sum_{u \in U} y_{u} & \\ \text { subject to } & \sum_{u \in S} y_{u} \leq c_{S} \quad S \in \mathcal{S} \\ & y_{u} \geq 0 \quad u \in U \end{array}$	

critical set 4 .
(Unrelaxed) primal CS: $x_{S} \neq 0 \Rightarrow \sum_{u \in S} y_{u}=c_{S}$

- only chooses critical sets

Relaxed CS for SetCover

minimize	$\sum_{S \in \mathcal{S}} c_{S} x_{S}$					
subject to	$\sum_{S \ni u} x_{S} \geq 1$	$u \in U$				
	$x_{S} \geq 0$	$S \in \mathcal{S}$		maximize	$\sum_{u \in U} y_{u}$	
:---	:---	:---				
subject to	$\sum_{u \in S} y_{u} \leq c_{S}$	$S \in \mathcal{S}$				
	$y_{u} \geq 0$	$u \in U$				

critical set 4 .
(Unrelaxed) primal CS: $x_{S} \neq 0 \Rightarrow \sum_{u \in S} y_{u}=c_{S}$
\rightarrow only chooses critical sets

Relaxed dual CS:

Relaxed CS for SetCover

minimize	$\sum_{S \in \mathcal{S}} c_{S} x_{S}$					
subject to	$\sum_{S \ni u} x_{S} \geq 1$	$u \in U$				
	$x_{S} \geq 0$	$S \in \mathcal{S}$	\quad	maximize	$\sum_{u \in U} y_{u}$	
:---	:---	:---				
subject to	$\sum_{u \in S} y_{u} \leq c_{S}$	$S \in \mathcal{S}$				
	$y_{u} \geq 0$	$u \in U$				

critical set $4 \cdots$
(Unrelaxed) primal CS: $x_{S} \neq 0 \Rightarrow \sum_{u \in S} y_{u}=c_{S}^{\prime}$
\rightarrow only chooses critical sets

Relaxed dual CS: $y_{u} \neq 0 \Rightarrow$

Relaxed CS for SetCover

minimize	$\sum_{S \in \mathcal{S}} c_{S} x_{S}$					
subject to	$\sum_{S \ni u} x_{S} \geq 1$	$u \in U$				
	$x_{S} \geq 0$	$S \in \mathcal{S}$			maximize	$\sum_{u \in U} y_{u}$
:---	:---	:---				
subject to	$\sum_{u \in S} y_{u} \leq c_{S}$	$S \in \mathcal{S}$				
	$y_{u} \geq 0$	$u \in U$				

critical set $4 \cdots$.
(Unrelaxed) primal CS: $x_{S} \neq 0 \Rightarrow \sum_{u \in S} y_{u}=c_{S}^{\prime}$
\rightarrow only chooses critical sets

Relaxed dual CS: $y_{u} \neq 0 \Rightarrow 1 \leq \sum_{S \ni u} x_{S} \leq f$

Relaxed CS for SetCover

minimize	$\sum_{S \in \mathcal{S}} c_{S} x_{S}$					
subject to	$\sum_{S \ni u} x_{S} \geq 1$	$u \in U$				
	$x_{S} \geq 0$	$S \in \mathcal{S}$			maximize	$\sum_{u \in U} y_{u}$
:---	:---	:---				
subject to	$\sum_{u \in S} y_{u} \leq c_{S}$	$S \in \mathcal{S}$				
	$y_{u} \geq 0$	$u \in U$				

critical set $4 \cdots$
(Unrelaxed) primal CS: $x_{S} \neq 0 \Rightarrow \sum_{u \in S} y_{u}=c_{S}^{\prime}$

- only chooses critical sets

Relaxed dual CS: $y_{u} \neq 0 \Rightarrow 1 \leq \sum_{S \ni u} x_{S} \leq f \cdot 1$

Relaxed CS for SetCover

minimize	$\sum_{S \in \mathcal{S}} C_{S} x_{S}$	
subject to	$\sum_{S \ni u} x_{S} \geq 1$	$u \in U$
	$x_{S} \geq 0$	$S \in \mathcal{S}$

maximize	$\sum_{u \in U} y_{u}$	
subject to	$\sum_{u \in S} y_{u} \leq c_{S}$	$S \in \mathcal{S}$
	$y_{u} \geq 0$	$u \in U$

critical set $\boldsymbol{4}$.
(Unrelaxed) primal CS: $x_{S} \neq 0 \Rightarrow \sum_{u \in S} y_{u}=c_{S}$

- only chooses critical sets
trivial for binary x
Relaxed dual CS: $y_{u} \neq 0 \Rightarrow 1 \leq \sum_{S \ni u} x_{S} \leq f \cdot 1$

Primal-Dual Schema for SetCover

PrimalDualSetCover($U, \mathcal{S}, \mathrm{C}$)
$x \leftarrow 0, y \leftarrow 0$
repeat
until all elements are covered. return x

Primal-Dual Schema for SetCover

PrimalDualSetCover($U, \mathcal{S}, c)$
$x \leftarrow 0, y \leftarrow 0$
repeat
Select an uncovered element u.
until all elements are covered. return x

Primal-Dual Schema for SetCover

PrimalDualSetCover($U, \mathcal{S}, c)$
$x \leftarrow 0, y \leftarrow 0$
repeat
Select an uncovered element u.
Increase y_{u} until a set S is critical $\left(\sum_{u^{\prime} \in S} y_{u^{\prime}}=c_{S}\right)$.
until all elements are covered.
return

Primal-Dual Schema for SetCover

PrimalDualSetCover($U, \mathcal{S}, \mathrm{c}$)
$x \leftarrow 0, y \leftarrow 0$
repeat
Select an uncovered element u. Increase y_{u} until a set S is critical $\left(\sum_{u^{\prime} \in S} y_{u^{\prime}}=c_{S}\right)$. Select all critical sets and update x.
until all elements are covered. return

Primal-Dual Schema for SetCover

PrimalDualSetCover($U, \mathcal{S}, \mathrm{C}$)
$x \leftarrow 0, y \leftarrow 0$
repeat
Select an uncovered element u. Increase y_{u} until a set S is critical $\left(\sum_{u^{\prime} \in S} y_{u^{\prime}}=c_{S}\right)$. Select all critical sets and update x. Mark all elements in these sets as covered.
until all elements are covered. return

Primal-Dual Schema for SetCover

PrimalDualSetCover($U, \mathcal{S}, \mathrm{c}$)
$x \leftarrow 0, y \leftarrow 0$
repeat
Select an uncovered element u. Increase y_{u} until a set S is critical $\left(\sum_{u^{\prime} \in S} y_{u^{\prime}}=c_{S}\right)$. Select all critical sets and update x. Mark all elements in these sets as covered.
until all elements are covered.
return

Primal-Dual Schema for SetCover

PrimalDualSetCover($U, \mathcal{S}, \mathrm{c}$)
$x \leftarrow 0, y \leftarrow 0$
repeat
Select an uncovered element u. Increase y_{u} until a set S is critical $\left(\sum_{u^{\prime} \in S} y_{u^{\prime}}=c_{S}\right)$. Select all critical sets and update x. Mark all elements in these sets as covered.
until all elements are covered.
return

Primal-Dual Schema for SetCover

PrimalDualSetCover($U, \mathcal{S}, \mathrm{c}$)
$x \leftarrow 0, y \leftarrow 0$
repeat
Select an uncovered element u. Increase y_{u} until a set S is critical $\left(\sum_{u^{\prime} \in S} y_{u^{\prime}}=c_{S}\right)$. Select all critical sets and update x. Mark all elements in these sets as covered.
until all elements are covered.
return

Primal-Dual Schema for SetCover

PrimalDualSetCover($U, \mathcal{S}, \mathrm{c}$)
$x \leftarrow 0, y \leftarrow 0$
repeat
Select an uncovered element u. Increase y_{u} until a set S is critical $\left(\sum_{u^{\prime} \in S} y_{u^{\prime}}=c_{S}\right)$. Select all critical sets and update x. Mark all elements in these sets as covered.
until all elements are covered.
return

Primal-Dual Schema for SetCover

PrimalDualSetCover($U, \mathcal{S}, \mathrm{c}$)
$x \leftarrow 0, y \leftarrow 0$
repeat
Select an uncovered element u. Increase y_{u} until a set S is critical $\left(\sum_{u^{\prime} \in S} y_{u^{\prime}}=c_{S}\right)$. Select all critical sets and update x. Mark all elements in these sets as covered.
until all elements are covered.
return

Primal-Dual Schema for SetCover

PrimalDualSetCover($U, \mathcal{S}, c)$
$x \leftarrow 0, y \leftarrow 0$
repeat
Select an uncovered element u. Increase y_{u} until a set S is critical $\left(\sum_{u^{\prime} \in S} y_{u^{\prime}}=c_{S}\right)$. Select all critical sets and update x. Mark all elements in these sets as covered.
until all elements are covered.
return

Primal-Dual Schema for SetCover

PrimalDualSetCover($U, \mathcal{S}, c)$
$x \leftarrow 0, y \leftarrow 0$
repeat
Select an uncovered element u. Increase y_{u} until a set S is critical $\left(\sum_{u^{\prime} \in S} y_{u^{\prime}}=c_{S}\right)$. Select all critical sets and update x. Mark all elements in these sets as covered.
until all elements are covered.
return

Primal-Dual Schema for SetCover

PrimalDualSetCover($U, \mathcal{S}, c)$
$x \leftarrow 0, y \leftarrow 0$
repeat
Select an uncovered element u. Increase y_{u} until a set S is critical $\left(\sum_{u^{\prime} \in S} y_{u^{\prime}}=c_{S}\right)$. Select all critical sets and update x. Mark all elements in these sets as covered.
until all elements are covered.
return

Primal-Dual Schema for SetCover

PrimalDualSetCover($U, \mathcal{S}, c)$
$x \leftarrow 0, y \leftarrow 0$
repeat
Select an uncovered element u. Increase y_{u} until a set S is critical $\left(\sum_{u^{\prime} \in S} y_{u^{\prime}}=c_{S}\right)$. Select all critical sets and update x. Mark all elements in these sets as covered.
until all elements are covered.
return

Primal-Dual Schema for SetCover

PrimalDualSetCover($U, \mathcal{S}, c)$
$x \leftarrow 0, y \leftarrow 0$
repeat
Select an uncovered element u. Increase y_{u} until a set S is critical $\left(\sum_{u^{\prime} \in S} y_{u^{\prime}}=c_{S}\right)$. Select all critical sets and update x. Mark all elements in these sets as covered.
until all elements are covered.
return

Primal-Dual Schema for SetCover

PrimalDualSetCover($U, \mathcal{S}, c)$
$x \leftarrow 0, y \leftarrow 0$
repeat
Select an uncovered element u. Increase y_{u} until a set S is critical $\left(\sum_{u^{\prime} \in S} y_{u^{\prime}}=c_{S}\right)$. Select all critical sets and update x. Mark all elements in these sets as covered.
until all elements are covered.
return

Primal-Dual Schema for SetCover

PrimalDualSetCover($U, \mathcal{S}, c)$
$x \leftarrow 0, y \leftarrow 0$
repeat
Select an uncovered element u. Increase y_{u} until a set S is critical $\left(\sum_{u^{\prime} \in S} y_{u^{\prime}}=c_{S}\right)$. Select all critical sets and update x. Mark all elements in these sets as covered.
until all elements are covered.
return

Primal-Dual Schema for SetCover

PrimalDualSetCover($U, \mathcal{S}, \mathrm{c}$)
$x \leftarrow 0, y \leftarrow 0$
repeat
Select an uncovered element u. Increase y_{u} until a set S is critical $\left(\sum_{u^{\prime} \in S} y_{u^{\prime}}=c_{S}\right)$. Select all critical sets and update x. Mark all elements in these sets as covered.
until all elements are covered.
return

Primal-Dual Schema for SetCover

PrimalDualSetCover($U, \mathcal{S}, c)$
$x \leftarrow 0, y \leftarrow 0$
repeat
Select an uncovered element u. Increase y_{u} until a set S is critical $\left(\sum_{u^{\prime} \in S} y_{u^{\prime}}=c_{S}\right)$. Select all critical sets and update x. Mark all elements in these sets as covered.
until all elements are covered.
return

Theorem. PrimalDualSetCover is a factor-f approximation algorithm for SetCover. This bound is tight.

Tight Example

Tight Example

Tight Example

Tight Example

Tight Example

Tight Example

Tight Example

Tight Example

Tight Example

Integrality Gap

$$
O P T_{\text {dual }}=O P T_{\text {primal }} \quad O P T_{\Pi}
$$

feasible dual solutions

Consider a minimization problem Π in ILP form.

Integrality Gap

$$
O P T_{\text {dual }}=O P T_{\text {primal }} \quad O P T_{\Pi}
$$

feasible dual solutions

Consider a minimization problem Π in ILP form.

Dual methods (without outside help) are limited by the integrality gap of the LP-relaxation

Integrality Gap

$$
O P T_{\text {dual }}=O P T_{\text {primal }} \quad O P T_{\Pi}
$$

feasible dual solutions

Consider a minimization problem Π in ILP form.

Dual methods (without outside help) are limited by the integrality gap of the LP-relaxation

$$
\gamma=\sup _{I} \frac{\mathrm{OPT}_{\Pi}(I)}{\mathrm{OPT}_{\text {primal }}(I)}
$$

Integrality Gap

$$
O P T_{\text {dual }}=O P T_{\text {primal }} \quad O P T_{\Pi}
$$

feasible dual solutions

Consider a minimization problem Π in ILP form.

Dual methods (without outside help) are limited by the integrality gap of the LP-relaxation

$$
\alpha \geq \gamma=\sup _{I} \frac{\mathrm{OP}_{\Pi}(I)}{\mathrm{OPT}_{\text {primal }}(I)}
$$

Approximation Algorithms

 Lecture 5:LP-based Approximation Algorithms for SetCover

Part IV:
Dual Fitting

Technique III) Dual Fitting

$$
O P T_{\text {dual }}=O P T_{\text {primal }} \quad O P T_{\Pi}
$$

Consider a minimization problem Π in ILP form.

Technique III) Dual Fitting

$$
O P T_{\text {dual }}=O P T_{\text {primal }} \quad O P T_{\Pi}
$$

Consider a minimization problem Π in ILP form.
Combinatorial algorithm (e.g., greedy) computes feasible primal solution s_{Π} and infeasible dual solution s_{d} that completely "pays" for s_{Π},

Technique III) Dual Fitting

$$
O P T_{\text {dual }}=O P T_{\text {primal }} \quad O P T_{\Pi}
$$

Consider a minimization problem Π in ILP form.
Combinatorial algorithm (e.g., greedy) computes feasible primal solution s_{Π} and infeasible dual solution s_{d} that completely "pays" for s_{Π}, i.e., $\operatorname{obj}\left(s_{\Pi}\right) \leq \operatorname{obj}\left(s_{\mathrm{d}}\right)$.

Technique III) Dual Fitting

$$
O P T_{\text {dual }}=O P T_{\text {primal }} \quad O P T_{\Pi}
$$

Consider a minimization problem Π in ILP form.
Combinatorial algorithm (e.g., greedy) computes feasible primal solution s_{Π} and infeasible dual solution s_{d} that completely "pays" for s_{Π}, i.e., $\operatorname{obj}\left(s_{\Pi}\right) \leq \operatorname{obj}\left(s_{\mathrm{d}}\right)$.

Scale the dual variables \rightsquigarrow feasible dual solution \bar{S}_{d}.

Technique III) Dual Fitting

$$
O P T_{\text {dual }}=O P T_{\text {primal }} \quad O P T_{\Pi}
$$

Consider a minimization problem Π in ILP form.
Combinatorial algorithm (e.g., greedy) computes feasible primal solution s_{Π} and infeasible dual solution s_{d} that completely "pays" for s_{Π}, i.e., $\operatorname{obj}\left(s_{\Pi}\right) \leq \operatorname{obj}\left(s_{d}\right)$.

Scale the dual variables \rightsquigarrow feasible dual solution $\overline{\mathrm{S}}_{\mathrm{d}}$.

$$
\Rightarrow
$$

$$
\operatorname{obj}\left(\bar{s}_{\mathrm{d}}\right) \leq \mathrm{OPT}_{\text {dual }} \leq \mathrm{OPT}_{\Pi}
$$

Technique III) Dual Fitting

$$
O P T_{\text {dual }}=O P T_{\text {primal }} \quad O P T_{\Pi}
$$

Consider a minimization problem Π in ILP form.
Combinatorial algorithm (e.g., greedy) computes feasible primal solution s_{Π} and infeasible dual solution s_{d} that completely "pays" for s_{Π}, i.e., $\operatorname{obj}\left(s_{\Pi}\right) \leq \operatorname{obj}\left(s_{d}\right)$.

Scale the dual variables \rightsquigarrow feasible dual solution $\overline{\mathrm{S}}_{\mathrm{d}}$.

$$
\Rightarrow \quad \operatorname{obj}\left(s_{\mathrm{d}}\right) / \alpha=\operatorname{obj}\left(\bar{s}_{\mathrm{d}}\right) \leq \mathrm{OP}_{\text {dual }} \leq \mathrm{OP}_{\text {п }}
$$

Technique III) Dual Fitting

$$
O P T_{\text {dual }}=O P T_{\text {primal }} \quad O P T_{\Pi}
$$

Consider a minimization problem Π in ILP form.
Combinatorial algorithm (e.g., greedy) computes feasible primal solution s_{Π} and infeasible dual solution s_{d} that completely "pays" for s_{Π}, i.e., $\operatorname{obj}\left(s_{\Pi}\right) \leq \operatorname{obj}\left(s_{d}\right)$.

Scale the dual variables \rightsquigarrow feasible dual solution $\overline{\mathrm{S}}_{\mathrm{d}}$.

$$
\Rightarrow \operatorname{obj}\left(s_{\Pi}\right) / \alpha \leq \operatorname{obj}\left(s_{\mathrm{d}}\right) / \alpha=\operatorname{obj}\left(\bar{s}_{\mathrm{d}}\right) \leq \mathrm{OPT}_{\text {dual }} \leq \mathrm{OP}_{\Pi}
$$

Technique III) Dual Fitting

$$
O P T_{\text {dual }}=O P T_{\text {primal }} \quad O P T_{\Pi}
$$

Consider a minimization problem Π in ILP form.
Combinatorial algorithm (e.g., greedy) computes feasible primal solution s_{Π} and infeasible dual solution s_{d} that completely "pays" for s_{Π}, i.e., $\operatorname{obj}\left(s_{\Pi}\right) \leq \operatorname{obj}\left(s_{\mathrm{d}}\right)$.

Scale the dual variables \rightsquigarrow feasible dual solution $\overline{\mathrm{S}}_{\mathrm{d}}$.

$$
\Rightarrow \operatorname{obj}\left(s_{\Pi}\right) / \alpha \leq \operatorname{obj}\left(s_{\mathrm{d}}\right) / \alpha=\operatorname{obj}\left(\bar{s}_{\mathrm{d}}\right) \leq \mathrm{OPT}_{\text {dual }} \leq \mathrm{OPT}_{п}
$$

\Rightarrow Scaling factor α is approximation factor :-)

Dual Fitting for SetCover

Combinatorial (greedy) algorithm (see Lecture \#2):
GreedySetCover(U,S,c)

$$
\begin{aligned}
& C \leftarrow \emptyset \\
& \mathcal{S}^{\prime} \leftarrow \emptyset
\end{aligned}
$$

while $C \neq U$ do
$S \leftarrow$ Set from \mathcal{S} that minimizes $\frac{c(S)}{|S \backslash C|}$ foreach $u \in S \backslash C$ do price $(u) \leftarrow \frac{c(S)}{|S \backslash C|}$
$C \leftarrow C \cup S$
$\mathcal{S}^{\prime} \leftarrow \mathcal{S}^{\prime} \cup\{S\}$
return \mathcal{S}^{\prime}

Dual Fitting for SetCover

Combinatorial (greedy) algorithm (see Lecture \#2):
GreedySetCover(U,S, C)

$$
\begin{aligned}
& C \leftarrow \emptyset \\
& \mathcal{S}^{\prime} \leftarrow \emptyset
\end{aligned}
$$

while $C \neq U$ do
$S \leftarrow$ Set from \mathcal{S} that minimizes $\frac{c(S)}{|S \backslash C|}$ foreach $u \in S \backslash C$ do price $(u) \leftarrow \frac{c(S)}{|S \backslash C|}$
$C \leftarrow C \cup S$
$\mathcal{S}^{\prime} \leftarrow \mathcal{S}^{\prime} \cup\{S\}$
return \mathcal{S}^{\prime}
// Cover of U
Reminder: $\quad \sum_{u \in U} \operatorname{price}(u)$

Dual Fitting for SetCover

Combinatorial (greedy) algorithm (see Lecture \#2):
GreedySetCover(U,S, C)

$$
\begin{aligned}
& C \leftarrow \emptyset \\
& \mathcal{S}^{\prime} \leftarrow \emptyset
\end{aligned}
$$

while $C \neq U$ do
$S \leftarrow$ Set from \mathcal{S} that minimizes $\frac{c(S)}{|S \backslash C|}$ foreach $u \in S \backslash C$ do price $(u) \leftarrow \frac{c(S)}{|S \backslash C|}$
$C \leftarrow C \cup S$
$\mathcal{S}^{\prime} \leftarrow \mathcal{S}^{\prime} \cup\{S\}$
return \mathcal{S}^{\prime}
// Cover of U
Reminder: $\quad \sum_{u \in U} \operatorname{price}(u)$ completely pays for \mathcal{S}^{\prime}.

New: LP-based Analysis
Observation. For each $u \in U$, $\operatorname{price}(u)$ is a dual variable

New: LP-based Analysis
Observation. For each $u \in U$, $\operatorname{price}(u)$ is a dual variable

New: LP-based Analysis

Observation. For each $u \in U$, price (u) is a dual variable

New: LP-based Analysis

Observation. For each $u \in U$, price(u) is a dual variable But this dual solution is in general not feasible.

maximize	$\sum_{u \in U} y_{u}$	
subject to	$\sum_{u \in S} y_{u} \leq c_{S} \quad S \in \mathcal{S}$	
	$y_{u} \geq 0 \quad u \in U$	

New: LP-based Analysis

Observation. For each $u \in U$, price(u) is a dual variable But this dual solution is in general not feasible.

Homework exercise: Construct instance where some S are "overpacked" by factor $\approx H_{|S|}$

maximize	$\sum_{u \in U} y_{u}$	
subject to	$\sum_{u \in S} y_{u} \leq c_{S}$	$S \in \mathcal{S}$
	$y_{u} \geq 0$	$u \in U$

New: LP-based Analysis

Observation. For each $u \in U$, price (u) is a dual variable But this dual solution is in general not feasible. Homework exercise: Construct instance where some S are "overpacked" by factor $\approx H_{|S|}$
Dual-fitting trick:
Scale dual variables such that no set is overpacked.

maximize	$\sum_{u \in U} y_{u}$	
subject to	$\sum_{u \in S} y_{u} \leq c_{S}$	$S \in \mathcal{S}$
	$y_{u} \geq 0$	$u \in U$

New: LP-based Analysis

Observation. For each $u \in U$, price (u) is a dual variable But this dual solution is in general not feasible.

Dual-fitting trick:
Scale dual variables such that no set is overpacked.
Take $\bar{y}_{u}=$

maximize	$\sum_{u \in U} y_{u}$	
subject to	$\sum_{u \in S} y_{u} \leq c_{S}$	$S \in \mathcal{S}$
	$y_{u} \geq 0$	$u \in U$

New: LP-based Analysis

Observation. For each $u \in U$, price (u) is a dual variable But this dual solution is in general not feasible.

Dual-fitting trick:
Scale dual variables such that no set is overpacked.
Take $\bar{y}_{u}=$ price $(u) /$

maximize	$\sum_{u \in U} y_{u}$	
subject to	$\sum_{u \in S} y_{u} \leq c_{S}$	$S \in \mathcal{S}$
	$y_{u} \geq 0$	$u \in U$

New: LP-based Analysis

Observation. For each $u \in U$, price (u) is a dual variable But this dual solution is in general not feasible.

Dual-fitting trick:
Scale dual variables such that no set is overpacked.
Take $\bar{y}_{u}=\operatorname{price}(u) / \mathcal{H}_{k}$.

maximize	$\sum_{u \in U} y_{u}$	
subject to	$\sum_{u \in S} y_{u} \leq c_{S}$	$S \in \mathcal{S}$
	$y_{u} \geq 0$	$u \in U$

New: LP-based Analysis

Observation. For each $u \in U$, price (u) is a dual variable But this dual solution is in general not feasible.

Dual-fitting trick:
Scale dual variables such that no set is overpacked.
Take $\bar{y}_{u}=\operatorname{price}(u) / \mathcal{H}_{k} . \quad(k=$ cardinality of largest set in \mathcal{S}.)

maximize	$\sum_{u \in U} y_{u}$	
subject to	$\sum_{u \in S} y_{u} \leq c_{S} \quad S \in \mathcal{S}$	
	$y_{u} \geq 0$	$u \in U$

New: LP-based Analysis

Observation. For each $u \in U$, price (u) is a dual variable But this dual solution is in general not feasible.

Dual-fitting trick:
Scale dual variables such that no set is overpacked.
Take $\bar{y}_{u}=\operatorname{price}(u) / \mathcal{H}_{k}$. ($k=$ cardinality of largest set in \mathcal{S}.)
The greedy algorithm uses these dual variables as lower bound for OPT.

maximize	$\sum_{u \in U} y_{u}$	
subject to	$\sum_{u \in S} y_{u} \leq c_{S}$	$S \in \mathcal{S}$
	$y_{u} \geq 0$	$u \in U$

New: LP-based Analysis

Observation. For each $u \in U$, price (u) is a dual variable But this dual solution is in general not feasible.

Dual-fitting trick:
Scale dual variables such that no set is overpacked.
Take $\bar{y}_{u}=\operatorname{price}(u) / \mathcal{H}_{k}$. ($k=$ cardinality of largest set in \mathcal{S}.)
The greedy algorithm uses these dual variables as lower bound for OPT.

Lemma.

The vector $\bar{y}=\left(\bar{y}_{u}\right)_{u \in U}$ is a feasible solution for the dual LP.

maximize	$\sum_{u \in U} y_{u}$	
subject to	$\sum_{u \in S} y_{u} \leq c_{S}$	$S \in \mathcal{S}$
	$y_{u} \geq 0$	$u \in U$

Proof.

Lemma.
 The vector $\bar{y}=\left(\bar{y}_{u}\right)_{u \in U}$ is a feasible solution for the dual LP.

maximize	$\sum_{u \in U} y_{u}$	
subject to	$\sum_{u \in S} y_{u} \leq c_{S}$	$S \in \mathcal{S}$
	$y_{u} \geq 0$	$u \in U$

Proof. To prove: No set is overpacked by \bar{y}.

Lemma.
 The vector $\bar{y}=\left(\bar{y}_{u}\right)_{u \in U}$ is a feasible solution for the dual LP.

Proof. To prove: No set is overpacked by \bar{y}. Let $S \in \mathcal{S}$ and $\ell=|S| \leq k$.

Lemma.
 The vector $\bar{y}=\left(\bar{y}_{u}\right)_{u \in U}$ is a feasible solution for the dual LP.

maximize	$\sum_{u \in U} y_{u}$	
subject to	$\sum_{u \in S} y_{u} \leq c_{S}$	$S \in \mathcal{S}$
	$y_{u} \geq 0$	$u \in U$

Proof. To prove: No set is overpacked by \bar{y}.
Let $S \in \mathcal{S}$ and $\ell=|S| \leq k$.
Let u_{1}, \ldots, u_{ℓ} be the elements of $S-$

Lemma.
 The vector $\bar{y}=\left(\bar{y}_{u}\right)_{u \in U}$ is a feasible solution for the dual LP.

maximize	$\sum_{u \in U} y_{u}$	
subject to	$\sum_{u \in S} y_{u} \leq c_{S}$	$S \in \mathcal{S}$
	$y_{u} \geq 0$	$u \in U$

Proof. To prove: No set is overpacked by \bar{y}. Let $S \in \mathcal{S}$ and $\ell=|S| \leq k$.
Let u_{1}, \ldots, u_{ℓ} be the elements of $S-$ in the order in which they are covered by greedy.

Lemma.
 The vector $\bar{y}=\left(\bar{y}_{u}\right)_{u \in U}$ is a feasible solution for the dual LP.

maximize	$\sum_{u \in U} y_{u}$	
subject to	$\sum_{u \in S} y_{u} \leq c_{S}$	$S \in \mathcal{S}$
	$y_{u} \geq 0$	$u \in U$

Proof. To prove: No set is overpacked by \bar{y}. Let $S \in \mathcal{S}$ and $\ell=|S| \leq k$.
Let u_{1}, \ldots, u_{ℓ} be the elements of S in the order in which they are covered by greedy.
Consider the iteration in which u_{i} is covered.

Lemma.
 The vector $\bar{y}=\left(\bar{y}_{u}\right)_{u \in U}$ is a feasible solution for the dual LP.

maximize	$\sum_{u \in U} y_{u}$	
subject to	$\sum_{u \in S} y_{u} \leq c_{S}$	$S \in \mathcal{S}$
	$y_{u} \geq 0$	$u \in U$

Proof. To prove: No set is overpacked by \bar{y}. Let $S \in \mathcal{S}$ and $\ell=|S| \leq k$.
Let u_{1}, \ldots, u_{ℓ} be the elements of S in the order in which they are covered by greedy.
Consider the iteration in which u_{i} is covered.
Before that, $\geq \ell-i+1$ elem. of S are uncovered.

Lemma.

The vector $\bar{y}=\left(\bar{y}_{u}\right)_{u \in U}$ is a feasible solution for the dual LP.

maximize	$\sum_{u \in U} y_{u}$	
subject to	$\sum_{u \in S} y_{u} \leq c_{S}$	$S \in \mathcal{S}$
	$y_{u} \geq 0$	$u \in U$

Proof. To prove: No set is overpacked by \bar{y}. Let $S \in \mathcal{S}$ and $\ell=|S| \leq k$.
Let u_{1}, \ldots, u_{ℓ} be the elements of $S-$ in the order in which they are covered by greedy.
Consider the iteration in which u_{i} is covered.
Before that, $\geq \ell-i+1$ elem. of S are uncovered. So price $\left(u_{i}\right) \leq$

Lemma.

The vector $\bar{y}=\left(\bar{y}_{u}\right)_{u \in U}$ is a feasible solution for the dual LP.

maximize	$\sum_{u \in U} y_{u}$	
subject to	$\sum_{u \in S} y_{u} \leq c_{S}$	$S \in \mathcal{S}$
	$y_{u} \geq 0$	$u \in U$

Proof. To prove: No set is overpacked by \bar{y}. Let $S \in \mathcal{S}$ and $\ell=|S| \leq k$.
Let u_{1}, \ldots, u_{ℓ} be the elements of $S-$ in the order in which they are covered by greedy.
Consider the iteration in which u_{i} is covered.
Before that, $\geq \ell-i+1$ elem. of S are uncovered. So price $\left(u_{i}\right) \leq c(S) /(\ell-i+1)$.

Lemma.

The vector $\bar{y}=\left(\bar{y}_{u}\right)_{u \in U}$ is a feasible solution for the dual LP.

maximize	$\sum_{u \in U} y_{u}$	
subject to	$\sum_{u \in S} y_{u} \leq c_{S}$	$S \in \mathcal{S}$
	$y_{u} \geq 0$	$u \in U$

Proof. To prove: No set is overpacked by \bar{y}. Let $S \in \mathcal{S}$ and $\ell=|S| \leq k$.
Let u_{1}, \ldots, u_{ℓ} be the elements of $S-$ in the order in which they are covered by greedy.
Consider the iteration in which u_{i} is covered.
Before that, $\geq \ell-i+1$ elem. of S are uncovered. So price $\left(u_{i}\right) \leq c(S) /(\ell-i+1)$.
$\Rightarrow \bar{y}_{u_{i}} \leq$

Lemma.

The vector $\bar{y}=\left(\bar{y}_{u}\right)_{u \in U}$ is a feasible solution for the dual LP.

maximize	$\sum_{u \in U} y_{u}$	
subject to	$\sum_{u \in S} y_{u} \leq c_{S} \quad S \in \mathcal{S}$	
	$y_{u} \geq 0 \quad u \in U$	

Proof. To prove: No set is overpacked by \bar{y}.

$$
\text { Let } S \in \mathcal{S} \text { and } \ell=|S| \leq k .
$$

Let u_{1}, \ldots, u_{ℓ} be the elements of S in the order in which they are covered by greedy.
Consider the iteration in which u_{i} is covered.
Before that, $\geq \ell-i+1$ elem. of S are uncovered.
So price $\left(u_{i}\right) \leq c(S) /(\ell-i+1)$.
$\Rightarrow \bar{y}_{u_{i}} \leq \frac{c(S)}{\mathcal{H}_{k}} \cdot \frac{1}{\ell-i+1}$

Lemma.

The vector $\bar{y}=\left(\bar{y}_{u}\right)_{u \in U}$ is a feasible solution for the dual LP.

maximize	$\sum_{u \in U} y_{u}$	
subject to	$\sum_{u \in S} y_{u} \leq c_{S}$	$S \in \mathcal{S}$
	$y_{u} \geq 0$	$u \in U$

Proof. To prove: No set is overpacked by \bar{y}.

$$
\text { Let } S \in \mathcal{S} \text { and } \ell=|S| \leq k .
$$

Let u_{1}, \ldots, u_{ℓ} be the elements of S in the order in which they are covered by greedy.
Consider the iteration in which u_{i} is covered.
Before that, $\geq \ell-i+1$ elem. of S are uncovered. So price $\left(u_{i}\right) \leq c(S) /(\ell-i+1)$.

$$
\Rightarrow \bar{y}_{u_{i}} \leq \frac{c(S)}{\mathcal{H}_{k}} \cdot \frac{1}{\ell-i+1} \Rightarrow \sum_{i=1}^{\ell} \bar{y}_{u_{i}} \leq
$$

Lemma.

The vector $\bar{y}=\left(\bar{y}_{u}\right)_{u \in U}$ is a feasible solution for the dual LP.

Proof. To prove: No set is overpacked by \bar{y}.

$$
\text { Let } S \in \mathcal{S} \text { and } \ell=|S| \leq k .
$$

Let u_{1}, \ldots, u_{ℓ} be the elements of $S-$ in the order in which they are covered by greedy.
Consider the iteration in which u_{i} is covered.
Before that, $\geq \ell-i+1$ elem. of S are uncovered. So price $\left(u_{i}\right) \leq c(S) /(\ell-i+1)$.
$\Rightarrow \bar{y}_{u_{i}} \leq \frac{c(S)}{\mathcal{H}_{k}} \cdot \frac{1}{\ell-i+1} \Rightarrow \sum_{i=1}^{\ell} \bar{y}_{u_{i}} \leq \frac{c(S)}{\mathcal{H}_{k}} \cdot($

Lemma.

The vector $\bar{y}=\left(\bar{y}_{u}\right)_{u \in U}$ is a feasible solution for the dual LP.

Proof. To prove: No set is overpacked by \bar{y}.

$$
\text { Let } S \in \mathcal{S} \text { and } \ell=|S| \leq k .
$$

Let u_{1}, \ldots, u_{ℓ} be the elements of $S-$ in the order in which they are covered by greedy.
Consider the iteration in which u_{i} is covered.
Before that, $\geq \ell-i+1$ elem. of S are uncovered. So price $\left(u_{i}\right) \leq c(S) /(\ell-i+1)$.

$$
\Rightarrow \bar{y}_{u_{i}} \leq \frac{c(S)}{\mathcal{H}_{k}} \cdot \frac{1}{\ell-i+1} \Rightarrow \sum_{i=1}^{\ell} \bar{y}_{u_{i}} \leq \frac{c(S)}{\mathcal{H}_{k}} \cdot\left(\frac{1}{\ell}+\cdots+\frac{1}{1}\right)
$$

Lemma.

The vector $\bar{y}=\left(\bar{y}_{u}\right)_{u \in U}$ is a feasible solution for the dual LP.

Proof. To prove: No set is overpacked by \bar{y}.

$$
\text { Let } S \in \mathcal{S} \text { and } \ell=|S| \leq k .
$$

Let u_{1}, \ldots, u_{ℓ} be the elements of $S-$ in the order in which they are covered by greedy.
Consider the iteration in which u_{i} is covered.
Before that, $\geq \ell-i+1$ elem. of S are uncovered. So price $\left(u_{i}\right) \leq c(S) /(\ell-i+1)$.

$$
\Rightarrow \bar{y}_{u_{i}} \leq \frac{c(S)}{\mathcal{H}_{k}} \cdot \frac{1}{\ell-i+1} \Rightarrow \sum_{i=1}^{\ell} \bar{y}_{u_{i}} \leq \frac{c(S)}{\mathcal{H}_{k}} \cdot \overbrace{\left(\frac{1}{\ell}+\cdots+\frac{1}{1}\right)}
$$

Lemma.

The vector $\bar{y}=\left(\bar{y}_{u}\right)_{u \in U}$ is a feasible solution for the dual LP.

Proof. To prove: No set is overpacked by \bar{y}.

$$
\text { Let } S \in \mathcal{S} \text { and } \ell=|S| \leq k .
$$

Let u_{1}, \ldots, u_{ℓ} be the elements of $S-$ in the order in which they are covered by greedy.
Consider the iteration in which u_{i} is covered.
Before that, $\geq \ell-i+1$ elem. of S are uncovered.
So price $\left(u_{i}\right) \leq c(S) /(\ell-i+1)$.
$=\mathcal{H}_{\ell}$
$\Rightarrow \bar{y}_{u_{i}} \leq \frac{c(S)}{\mathcal{H}_{k}} \cdot \frac{1}{\ell-i+1} \Rightarrow \sum_{i=1}^{\ell} \bar{y}_{u_{i}} \leq \frac{c(S)}{\mathcal{H}_{k}} \cdot \overbrace{\left(\frac{1}{\ell}+\cdots+\frac{1}{1}\right)}$

Lemma.

The vector $\bar{y}=\left(\bar{y}_{u}\right)_{u \in U}$ is a feasible solution for the dual LP.

Proof. To prove: No set is overpacked by \bar{y}.

$$
\text { Let } S \in \mathcal{S} \text { and } \ell=|S| \leq k .
$$

Let u_{1}, \ldots, u_{ℓ} be the elements of $S-$ in the order in which they are covered by greedy.
Consider the iteration in which u_{i} is covered.
Before that, $\geq \ell-i+1$ elem. of S are uncovered. So price $\left(u_{i}\right) \leq c(S) /(\ell-i+1)$. $\quad=\mathcal{H}_{\ell} \leq \mathcal{H}_{k}$

$$
\Rightarrow \bar{y}_{u_{i}} \leq \frac{c(S)}{\mathcal{H}_{k}} \cdot \frac{1}{\ell-i+1} \Rightarrow \sum_{i=1}^{\ell} \bar{y}_{u_{i}} \leq \frac{c(S)}{\mathcal{H}_{k}} \cdot \overbrace{\left(\frac{1}{\ell}+\cdots+\frac{1}{1}\right)}
$$

Lemma.

The vector $\bar{y}=\left(\bar{y}_{u}\right)_{u \in U}$ is a feasible solution for the dual LP.

Proof. To prove: No set is overpacked by \bar{y}.

$$
\text { Let } S \in \mathcal{S} \text { and } \ell=|S| \leq k .
$$

Let u_{1}, \ldots, u_{ℓ} be the elements of $S-$ in the order in which they are covered by greedy.
Consider the iteration in which u_{i} is covered.
Before that, $\geq \ell-i+1$ elem. of S are uncovered. So price $\left(u_{i}\right) \leq c(S) /(\ell-i+1)$. $\quad=\mathcal{H}_{\ell} \leq \mathcal{H}_{k}$ $\Rightarrow \bar{y}_{u_{i}} \leq \frac{c(S)}{\mathcal{H}_{k}} \cdot \frac{1}{\ell-i+1} \Rightarrow \sum_{i=1}^{\ell} \bar{y}_{u_{i}} \leq \frac{c(S)}{\mathcal{H}_{k}} \cdot \overbrace{\left(\frac{1}{\ell}+\cdots+\frac{1}{1}\right)}$
$\leq c(S)$

Lemma.

The vector $\bar{y}=\left(\bar{y}_{u}\right)_{u \in U}$ is a feasible solution for the dual LP.

Result for Dual Fitting

Theorem. GreedySetCover is a factor- \mathcal{H}_{k} approximation algorithm for SetCover, where $k=\max _{S \in \mathcal{S}}|S|$.

Result for Dual Fitting

Theorem. GreedySetCover is a factor- \mathcal{H}_{k} approximation algorithm for SetCover, where $k=\max _{s \in \mathcal{S}}|S|$.

Proof. \quad ALG $=c\left(\mathcal{S}^{\prime}\right) \leq$

Result for Dual Fitting

Theorem. GreedySetCover is a factor- \mathcal{H}_{k} approximation algorithm for SetCover, where $k=\max _{S \in \mathcal{S}}|S|$.
Proof. \quad ALG $=c\left(\mathcal{S}^{\prime}\right) \leq \sum_{u \in U} \operatorname{price}(u)=$

Result for Dual Fitting

Theorem. GreedySetCover is a factor- \mathcal{H}_{k} approximation algorithm for SETCover, where $k=\max _{S \in \mathcal{S}}|S|$.
Proof. ALG $=c\left(\mathcal{S}^{\prime}\right) \leq \sum_{u \in U} \operatorname{price}(u)=\mathcal{H}_{k} \cdot \sum_{u \in U} \bar{y}_{u} \leq$

Result for Dual Fitting

Theorem. GreedySetCover is a factor- \mathcal{H}_{k} approximation algorithm for SetCover, where $k=\max _{S \in \mathcal{S}}|S|$.
Proof. ALG $=c\left(\mathcal{S}^{\prime}\right) \leq \sum_{u \in U} \operatorname{price}(u)=\mathcal{H}_{k} \cdot \sum_{u \in U} \bar{y}_{u} \leq$

$$
\leq \mathcal{H}_{k} \cdot \mathrm{OPT}_{\text {relax }}
$$

Result for Dual Fitting

Theorem. GreedySetCover is a factor- \mathcal{H}_{k} approximation algorithm for SetCover, where $k=\max _{S \in \mathcal{S}}|S|$.
Proof. ALG $=c\left(\mathcal{S}^{\prime}\right) \leq \sum_{u \in U} \operatorname{price}(u)=\mathcal{H}_{k} \cdot \sum_{u \in U} \bar{y}_{u} \leq$

$$
\begin{aligned}
& \leq \mathcal{H}_{k} \cdot \mathrm{OPT}_{\text {relax }} \\
& \leq \mathcal{H}_{k} \cdot \mathrm{OPT}
\end{aligned}
$$

Result for Dual Fitting

Theorem. GreedySetCover is a factor- \mathcal{H}_{k} approximation algorithm for Set Cover, where $k=\max _{S \in \mathcal{S}}|S|$.
Proof. ALG $=c\left(S^{\prime}\right) \leq \sum_{u \in U} \operatorname{price}(u)=\mathcal{H}_{k} \cdot \sum_{u \in U} \bar{y}_{u} \leq$

$$
\begin{aligned}
& \leq \mathcal{H}_{k} \cdot \mathrm{OPT}_{\text {relax }} \\
& \leq \mathcal{H}_{k} \cdot \mathrm{OPT}
\end{aligned}
$$

\square
Strengthened bound with respect to $\mathrm{OPT}_{\text {relax }} \leq \mathrm{OPT}$.

Result for Dual Fitting

Theorem. GreedySetCover is a factor- \mathcal{H}_{k} approximation algorithm for Set Cover, where $k=\max _{s \in \mathcal{S}}|S|$.
Proof. \quad ALG $=c\left(\mathcal{S}^{\prime}\right) \leq \sum_{u \in U} \operatorname{price}(u)=\mathcal{H}_{k} \cdot \sum_{u \in U} \bar{y}_{u} \leq$

$$
\begin{aligned}
& \leq \mathcal{H}_{k} \cdot \mathrm{OPT}_{\text {relax }} \\
& \leq \mathcal{H}_{k} \cdot \mathrm{OPT}
\end{aligned}
$$

Strengthened bound with respect to $O P T_{\text {relax }} \leq O P T$.
Dual solution allows a per-instance estimation $c\left(\mathcal{S}^{\prime}\right) / \mathrm{OPT}_{\text {relax }}$ of the quality of the greedy solution

Result for Dual Fitting

Theorem. GreedySetCover is a factor- \mathcal{H}_{k} approximation algorithm for Set Cover, where $k=\max _{S \in \mathcal{S}}|S|$.

Proof. ALG $=c\left(\mathcal{S}^{\prime}\right) \leq \sum_{u \in U} \operatorname{price}(u)=\mathcal{H}_{k} \cdot \sum_{u \in U} \bar{y}_{u} \leq$

$$
\begin{aligned}
& \leq \mathcal{H}_{k} \cdot \mathrm{OPT}_{\text {relax }} \\
& \leq \mathcal{H}_{k} \cdot \mathrm{OPT}
\end{aligned}
$$

Strengthened bound with respect to $O P T_{\text {relax }} \leq O P T$.
Dual solution allows a per-instance estimation $c\left(\mathcal{S}^{\prime}\right) / \mathrm{OPT}_{\text {relax }}$ of the quality of the greedy solution
\ldots which may be stronger than the worst-case bound \mathcal{H}_{k}.

