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Maximizing Profits

You're the boss of a small company that produces two
products P; and P,. For the production of x; units of P; and
x> units of P, your profit in € is:

G(Xl, X2) — 3OX1 -+ 5OX2

Three machines My, Mg and M produce the required
components A, B and C for the products. The components
are used in different quantities for the products, and each
machine requires some time for the production.

MA : 4X1 T ].1X2 § 380
Mg: x1 + x < 150
MC i X2 S 60

Which choice of (x1, xo) maximizes the profit?
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Solution Linear constraints:

X Ma: 4x; + 1lx, < 880
it MBZ X1 T X2 S 150
150 MC X2 S 60
X1 ;Ej 0
500 Linear target function:
- G(x1, x2) = 30x; + 50x2
"0, = (30,50) ()

~ -~ _G(110,40) = 5.300
~ Set.of valid ™. |\
““.._solutions_ -

50 100 150 200  x
“profit line”: orthogonal to (30)
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Motivation: Upper and Lower Bounds

Consider an NP-hard minimization problem.

Decision Problem:
Is a given U an upper bound on OPT?

A feasible sol. S provides efficiently verifiable “yes”-certificate.

/ "“no” -certificates?
~~ probably not! (conjecture: NP # coNP)

For an approximation algorithm, we need a lower bound
> OPT/« (i.e., an approximate “no”-certificate)!

Examples:
B Vertex Cover: lower bound by matchings
B TSP: lower bound by MST or by cycle cover
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Linear Programming

Optimize (i.e., minimize or maximize) a linear (objective)
function subject to linear inequalities (constraints).

minimize cTx standard form
subject to  Ax

minimize
subject to

VIV IV



7/25

Linear Programming — Upper Bounds

Optimize (i.e., minimize or maximize) a linear (objective)
function subject to linear inequalities (constraints).

minimize
subject to

Valid solution?
x=(2,1,3)
= obj(x) = 30 is upper bound for OPT
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Linear Programming — Lower Bounds

Optimize (i.e., minimize or maximize) a linear (objective)
function subject to linear inequalities (constraints).

minimize |7v><1
subject to 2 x;

X1+ +5x3 >x3—x+3x3 = OPT > 10

Ix1+x+5x3 > (x3 —x +3x3) + (5x1 + 2x — x3)
> 10 + 6 — OPT > 16

7x1 +x04+5x3 >2-(x1 — x4+ 3x3) + (5x1 +2x0 — x3)
> 210+ 6 = OPT > 26
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Linear Programming — Lower Bounds

minimize X1 5x3
subject toy:( x; 3x3) > 10 y»

vo( Bxq 2% — x3) > 6
X1, X0,x3 > 0

7%&'+‘%Q'+‘5%% Ei)q -(Xi-—-XQ-+-3)3)-+-yQ '(5%q-+-2)Q —-)@)
>y 10 + Yo - 6 = OPT > :[())/1 + (5)/2
10y, + 6y» is lower bound for OPT
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Linear Programming — Lower Bounds

minimize r
subject toy:( x; —

_y¢2( ES)(l

VIV IV

X1 + xo + 5x3 > V1 '(Xi-—-XQ-+-3)3)-+-yQ '(5%q-+-2)Q —-)@)
>y 10 + Yo - 6 = OPT > :[())/1 + (3)/2

maximize
yi + 9y <A
Bounds for yq, y»: —vi + 2 < 1
3yi — yo < 5
yi,y =2 0
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Primal-Dual

primal program

minimize

subject to

dual program

maximize
subject to

dual of the dual program

minimize

subject to
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LP-Duality

minimize  c¢Tx Primal
subject to  Ax
X

maximize bTy
subject to ATy
y

‘Theorem. The primal program has a finite optimum

< the dual program has a finite optimum.
Moreover, if x* = (x;", ..., x) and

yv* = 1(ys, ..., y.) are optimal solutions for the
primal and dual program, respectively, then

n m
Cj)(j — bl.yi .
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Weak LP-Duality

minimize maximize bTy

subject to subject to

d \

Theorem. If x = (xq1,...,x,) and y = (y1, ..., ¥m) are valid
solutions for the primal and dual program, resp.,

then n m
> e =Y by
j=1 i=1

n n m
Z by > <Sj a,-jy,->
1 ] =1
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Complementary Slackness

minimize maximize bTy
subject to subject to

Theorem. Let x = (x1,...,x,)and y = (y1, ..., vm) be valid solutions
for the primal and dual program, respectively. Then x and y
are optimal if and only if the following conditions are met:

Primal CS:
Foreachj=1,....,m: x,=0 or > ", ajyi=c

Dual CS:

Foreachi=1,...,.m: y;=0 or ijla,-jxj:b,-

Proof. Follows from LP-duality:

n m m n m
Z Cjj = Z (Z aijyi> Xj = Z Z aijxi| | vi = > |bii-
j=1 \|i=1 |
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LPs and Convex Polytopes

The feasible solutions of an LP A

with n variables form a convex

polytope in R” (intersection of

halfspaces).

Corners of the polytope are called //( .
extreme point solutions < R

n linearly independent inequalities
(constraints) are satisfied with
equality.

If an optimal solution exists,
some extreme point is also optimal.
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Integer Linear Programs (ILPs)

minimize cTx
subject to Ax

minimize
subject to

Many NP-optimization problems can be formulated as ILPs;
thus ILPs are NP-hard to solve.

LP-relaxation provides a lower bound: OP T, p < OPT.p
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Max-Flow Problem

Given: A directed graph G = (V/, E) with edge capacities
and two special vertices: the source s and sink t.

Find: A maximum s—t flow (i.e., non-negative edge weights f) such that
mf(uv)< for each edge (u,v) € E,
B D) wnee (V) =2, (,oee (v, z) for each vertex v € V'\ {s, t}.

The flow value is the inflow to £ minus the outflow from t.




Min-Cut Problem

Given: A directed graph G = (V/, E) with edge capacities
and two special vertices: the source s and sink t.

Find: An s—t cut, i.e., a vertex set X with s € X_and t € X such that
the total weight of the edges from X to X is minimum.

20/25
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Max-Flow-Min-Cut Theorem

Theorem. The value of a maximum s—t flow and the weight of
a minimum s—t cut are the same.

Proof. Special case of LP-Duality ...

maximize f;.
subject to f,, < ¢, V(u,v) € E\{(t, s)}

Yo = Y .50 Vv eV

u: (u,v)eE z: (v,z)€EE
fuv Z 0 \V/(U, V) - E
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Max-Flow-Min-Cut Theorem

Theorem. The value of a maximum s—t flow and the weight of
a minimum s—t cut are the same.

Proof. Special case of LP-Duality ...

maximize f;.
subject to f,, < ¢, V(u,v) € E\{(t, s)}

Yo = Y .50 Vv eV

u: (u,v)eE z: (v,z)€EE
fuv Z 0 \V/(U, V) - E

maximize cTx =3} g (0-7y) +1-fis =cT=(0,..., 0,1)
Which constraints contain f,, for (u, v) # (t,s)? duv, Pu, Py
jduv_pu_l_pvzo

Which constraints contain f;.7 Ps: Pt

:>ps_pt2]-



Max-Flow-Min-Cut Theorem
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|

Theorem. The value of a maximum s—t flow and the weight o
a minimum s—t cut are the same.

f]

Proof. Special case of LP-Duality ...

maximize
subject to

minimize

subject to

fes
fuv < Cuv V(u,v) € E\{(t )}

Yo = Y .50 Vv eV

u: (u,v)eE z: (v,z)€EE
fuv Z 0 \V/(U, V) - E

Z Cuv * duv

(uv)EE{(£,5)}
doy — pu+py >0 Y(uv)eEN\{(ts)

ps_PtZ]-
dy, >0 V(u,v) e E
pu,=>0 YueV
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Dual LP — Interpretation as ILP

minimize Z Cuy - dy,y
(uv)EEN{(t,s)}
subject to d,, —p,+p, >0 V(u,v) € E\{(t,s)}

ps_PtZ]-
do >0~ € {0,1} V(u,v) € E
pu >80 10,1 YueV

equivalent to Min-Cut!

2 x1

ps =1 pr =0

1 x1
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Dual LP — Fractional Cuts

Z cdyy = LP-relaxation of the ILP

minimize

(uv)eEN{(t,s)}

subject to d,, —p,+p, >0 V(u,v) € E\{(t, s)}
Ps — Pt > 1
d. >0 Moreover, E.]” W(u,v) € E
p, >0 extreme-point Vu eV

solutions all
integral! (HW)

Note that every s—t path
S=\Vvy,...,Vx =t has
length > 1 w.r.t. d:

k—1 k—1
> diiv1 2D (pi — pis1) 1
i=0 i=0

= ps — pr =1

X 0.75
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Dual LP — Complementary Slackness

maximize fis
subject to 1, < ¢, V(u,v) € EN\ {(t,s)}
Z fuv — Z fvz S 0 Yv eV
u: (uv)eE z: (v,z)€E
fuy, >0 V(u,v) € E
minimize Z Cuy - dyy Primal CS:
(uv)eEN{(t.5)} Vi: x. =0 or m a.v. — ¢
subjectto d,, — p,+p, >0 J S Z’:l iy J
d,y >0 ) C— n o — (5
0 Vi: y; =0 or ijl ajjx; = b;

1

For a max flow and min cut:
B For each forward edge (u, v) of

the cut: f,, = c,,.
(dyy = 1, so by dual CS: f,;, = cy.)

B For each backward edge (u, v)

of the cut: f,, = 0.
(Otherwise, by primal CS: d;,, — 0+ 1 =0.)
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