Lecture 4:

Linear Programming and LP-Duality

Part I:

Introduction to Linear Programming

Maximizing Profits

You're the boss of a small company that produces two products P_1 and P_2 . For the production of x_1 units of P_1 and x_2 units of x_2 , your profit in \in is:

$$G(x_1, x_2) = 30x_1 + 50x_2$$

Three machines M_A , M_B and M_C produce the required components A, B and C for the products. The components are used in different quantities for the products, and each machine requires some time for the production.

$$M_A$$
: $4x_1 + 11x_2 \le 880$
 M_B : $x_1 + x_2 \le 150$
 M_C : $x_2 < 60$

Which choice of (x_1, x_2) maximizes the profit?

Solution

Linear constraints:

Lecture 4:

Linear Programming and LP-Duality

Part II:
Upper Bounds for LPs

Motivation: Upper and Lower Bounds

Consider an NP-hard minimization problem.

Decision Problem:

Is a given U an upper bound on OPT?

A feasible sol. S provides efficiently verifiable "yes"-certificate.

```
Lower bounds / "no"-certificates? \rightsquigarrow probably not! (conjecture: NP \neq coNP)
```

For an approximation algorithm, we need a lower bound $L \ge \mathsf{OPT}/\alpha$ (i.e., an approximate "no"-certificate)!

Examples:

- Vertex Cover: lower bound by matchings
- TSP: lower bound by MST or by cycle cover

Linear Programming

Optimize (i.e., minimize or maximize) a linear (objective) function subject to linear inequalities (constraints).

minimize
$$c^{\mathsf{T}} x$$
standard formsubject to $Ax \geq b$ $x \geq 0$

Example.
$$c = \begin{pmatrix} 7 \\ 1 \\ 5 \end{pmatrix}$$
 $A = \begin{pmatrix} 1 & -1 & 3 \\ 5 & 2 & -1 \end{pmatrix}$ $b = \begin{pmatrix} 10 \\ 6 \end{pmatrix}$

minimize
$$7x_1 + x_2 + 5x_3$$

subject to $x_1 - x_2 + 3x_3 \ge 10$
 $5x_1 + 2x_2 - x_3 \ge 6$
 $x_1, x_2, x_3 \ge 0$

Linear Programming – Upper Bounds

Optimize (i.e., minimize or maximize) a linear (objective) function subject to linear inequalities (constraints).

minimize
$$7x_114+ x_21+ 5x_315 = 30$$

subject to $x_1 2- x_21+ 3x_3 9 \ge 10 10$
 $5x_110+ 2x_22- x_3 3 \ge 6 9$
 $x_1, x_2, x_3 \ge 0$

Valid solution?

$$x = (2, 1, 3)$$

 $\Rightarrow obj(x) = 30$ is upper bound for OPT

Lecture 4:

Linear Programming and LP-Duality

Part III:
Lower Bounds for LPs

Linear Programming – Lower Bounds

Optimize (i.e., minimize or maximize) a linear (objective) function subject to linear inequalities (constraints).

minimize
$$7x_1 + x_2 + 5x_3$$

subject to $2 \cdot x_1 - 2 \cdot x_2 + 2 \cdot 3 \cdot x_3 \ge 2 \cdot 10$
 $5x_1 + 2x_2 - x_3 \ge 6$
 $x_1, x_2, x_3 \ge 0$

$$7x_{1} + x_{2} + 5x_{3} \geq x_{1} - x_{2} + 3x_{3} \Rightarrow OPT \geq 10$$

$$7x_{1} + x_{2} + 5x_{3} \geq (x_{1} - x_{2} + 3x_{3}) + (5x_{1} + 2x_{2} - x_{3})$$

$$\geq 10 + 6 \Rightarrow OPT \geq 16$$

$$7x_{1} + x_{2} + 5x_{3} \geq 2 \cdot (x_{1} - x_{2} + 3x_{3}) + (5x_{1} + 2x_{2} - x_{3})$$

$$\geq 2 \cdot 10 + 6 \Rightarrow OPT \geq 26$$

Linear Programming – Lower Bounds

```
minimize 7x_1 + x_2 + 5x_3

subject to y_1(x_1 - x_2 + 3x_3) \ge 10 y_1

y_2(5x_1 + 2x_2 - x_3) \ge 6 y_2

x_1, x_2, x_3 \ge 0
```

$$7x_1 + x_2 + 5x_3 \ge y_1 \cdot (x_1 - x_2 + 3x_3) + y_2 \cdot (5x_1 + 2x_2 - x_3)$$

$$\ge y_1 \cdot 10 + y_2 \cdot 6 \Rightarrow \mathsf{OPT} \ge 10y_1 + 6y_2$$

 $10y_1 + 6y_2$ is lower bound for OPT

Linear Programming – Lower Bounds

minimize
$$7x_1 + x_2 + 5x_3$$

subject to $y_1(x_1 - x_2 + 3x_3) \ge 10 y_1$
 $y_2(5x_1 + 2x_2 - x_3) \ge 6 y_2$
 $x_1, x_2, x_3 \ge 0$

$$7x_1 + x_2 + 5x_3 \ge y_1 \cdot (x_1 - x_2 + 3x_3) + y_2 \cdot (5x_1 + 2x_2 - x_3)$$

$$\ge y_1 \cdot 10 + y_2 \cdot 6 \Rightarrow \mathsf{OPT} \ge 10y_1 + 6y_2$$

maximize

Bounds for
$$y_1, y_2$$
: $y_1 + 5y_2 \le 7$ $-y_1 + 2y_2 \le 1$ $3y_1 - y_2 \le 5$ $y_1, y_2 \ge 0$

Primal-Dual

primal program

minimize	$C^{T}X$
subject to	$Ax \geq b$
	$x \geq 0$

dual program

maximize
$$b^{\mathsf{T}}y$$

subject to $A^{\mathsf{T}}y \leq c$
 $y \geq 0$

dual of the dual program

$$\begin{array}{lll} & & & c^{\mathsf{T}}x \\ & & \text{subject to} & & Ax & \geq & b \\ & & & x & \geq & 0 \end{array}$$

Lecture 4:

Linear Programming and LP-Duality

Part IV:

LP-Duality and Complementary Slackness

LP-Duality

minimize
$$c^{\mathsf{T}}x$$
 Primal subject to $Ax \geq b$ $x \geq 0$

maximize
$$b^{\mathsf{T}}y$$
 Dual subject to $A^{\mathsf{T}}y \leq c$ $y \geq 0$

Theorem. The primal program has a finite optimum \Leftrightarrow the dual program has a finite optimum. Moreover, if $x^* = (x_1^*, \dots, x_n^*)$ and $y^* = (y_1^*, \dots, y_m^*)$ are optimal solutions for the primal and dual program, respectively, then

$$\sum_{j=1}^{n} c_{j} x_{j}^{*} = \sum_{i=1}^{m} b_{i} y_{i}^{*}.$$

Weak LP-Duality

minimize $c^{\mathsf{T}}X$ subject to $AX \geq b$

maximize $b^{\mathsf{T}}y$ subject to $A^{\mathsf{T}}y \leq c$ $y \geq 0$

Theorem. If $x = (x_1, ..., x_n)$ and $y = (y_1, ..., y_m)$ are valid solutions for the primal and dual program, resp., then $\underline{n} = \underline{m}$

$$\sum_{j=1}^n c_j x_j \geq \sum_{i=1}^m b_i y_i.$$

Proof.

Complementary Slackness

minimize $c^{\mathsf{T}}x$ subject to $Ax \geq b$

maximize $b^{\mathsf{T}}y$ subject to $A^{\mathsf{T}}y \leq c$ $y \geq 0$

Theorem. Let $x = (x_1, ..., x_n)$ and $y = (y_1, ..., y_m)$ be valid solutions for the primal and dual program, respectively. Then x and y are optimal if and only if the following conditions are met:

Primal CS:

For each
$$j=1,\ldots,n$$
: $x_j=0$ or $\sum_{i=1}^m a_{ij}y_i=c_j$

Dual CS

For each
$$i = 1, ..., m$$
: $y_i = 0$ or $\sum_{i=1}^n a_{ij}x_j = b_i$

Proof. Follows from LP-duality:

$$\sum_{j=1}^{n} c_j x_j \geq \sum_{j=1}^{n} \left(\sum_{i=1}^{m} a_{ij} y_i \right) x_j = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} a_{ij} x_j \right) y_i \geq \sum_{i=1}^{m} b_i y_i.$$

LPs and Convex Polytopes

The feasible solutions of an LP with n variables form a **convex polytope** in \mathbb{R}^n (intersection of halfspaces).

Corners of the polytope are called **extreme point solutions** ⇔ *n* linearly independent inequalities (constraints) are satisfied with equality.

If an optimal solution exists, some extreme point is also optimal.

Integer Linear Programs (ILPs)

```
minimize c^{\mathsf{T}}x
subject to Ax \geq b
x \geq 0
```

$$\begin{array}{cccc} \mathbf{minimize} & c^\mathsf{T} x \\ \mathbf{subject\ to} & Ax & \geq & b \\ & x & \in & \mathbb{N} \end{array}$$

Many NP-optimization problems can be formulated as ILPs; thus ILPs are NP-hard to solve.

LP-relaxation provides a lower bound: $OPT_{LP} \leq OPT_{ILP}$

Lecture 4:

Linear Programming and LP-Duality

Part V:

Min-Max Relationships

Max-Flow Problem

Given: A directed graph G = (V, E) with edge capacities $c: E \to \mathbb{Q}_+$ and two special vertices: the source s and sink t.

Find: A maximum s-t flow (i.e., non-negative edge weights f) such that

- $f(u, v) \le c(u, v)$ for each edge $(u, v) \in E$,

The **flow value** is the inflow to t minus the outflow from t.

Min-Cut Problem

Given: A directed graph G = (V, E) with edge capacities $c: E \to \mathbb{Q}_+$ and two special vertices: the source s and sink t.

Find: An s-t cut, i.e., a vertex set X with $s \in X$ and $t \in \overline{X}$ such that the total weight $c(X, \overline{X})$ of the edges from X to \overline{X} is minimum.

Max-Flow-Min-Cut Theorem

Theorem. The value of a maximum s-t flow and the weight of a minimum s-t cut are the same.

Proof. Special case of LP-Duality . . .

Max-Flow-Min-Cut Theorem

Theorem. The value of a maximum s-t flow and the weight of a minimum s-t cut are the same.

Proof. Special case of LP-Duality . . .

maximize
$$c^{\intercal}x = \sum_{(u,v)\in E} (0 \cdot f_{uv}) + 1 \cdot f_{ts} \Rightarrow c^{\intercal} = (0,\ldots,0,1)$$

Which constraints contain f_{uv} for $(u, v) \neq (t, s)$?

 d_{uv}, p_u, p_v

$$\Rightarrow d_{uv} - p_u + p_v \geq 0$$

Which constraints contain f_{ts} ?

 p_s , p_t

$$\Rightarrow p_s - p_t \geq 1$$

Max-Flow-Min-Cut Theorem

Theorem. The value of a maximum s-t flow and the weight of a minimum s-t cut are the same.

Proof. Special case of LP-Duality . . .

$$\begin{array}{lll} \textbf{maximize} & f_{ts} \\ \textbf{subject to} & f_{uv} \leq c_{uv} & \forall (u,v) \in E \setminus \{(t,s)\} & d_{uv} \\ & \sum_{u: \; (u,v) \in E} f_{uv} - \sum_{z: \; (v,z) \in E} f_{vz} \leq 0 & \forall v \in V & p_v \\ & f_{uv} \geq 0 & \forall (u,v) \in E & \\ \end{array}$$

minimize
$$\sum_{\substack{(u,v)\in E\setminus \{(t,s)\}\\ (u,v)\in E\setminus \{(t,s)\}\\ }} c_{uv}\cdot d_{uv}$$
subject to
$$d_{uv}-p_u+p_v\geq 0$$

$$p_s-p_t\geq 1$$

$$d_{uv}\geq 0$$

$$p_u\geq 0$$
$$\forall (u,v)\in E\setminus \{(t,s)\}$$

$$\forall (u,v)\in E$$

$$\forall u\in V$$

Lecture 4:

Linear Programming and LP-Duality

Part VI:
Dual LP of Max Flow

Dual LP - Interpretation as ILP

$$\begin{array}{ll} \textbf{minimize} & \sum\limits_{\substack{(u,v)\in E\setminus \{(t,s)\}\\ \textbf{subject to}}} c_{uv}\cdot d_{uv} \\ & d_{uv}-p_u+p_v\geq 0 \\ & p_s-p_t\geq 1 \\ & d_{uv}\geq 0 \quad \in \{0,1\} \\ & p_u\geq 0 \quad \in \{0,1\} \\ \end{array} \qquad \forall (u,v)\in E \\ \forall (u,v)\in E \\ \forall u\in V \end{array}$$

equivalent to Min-Cut!

Dual LP - Fractional Cuts

minimize

$$\sum_{uv} c_{uv} \cdot d_{uv}$$

■ LP-relaxation of the ILP

$$(u,v) \in E \setminus \{(t,s)\}$$

 $d_{uv} - p_u + p_v \ge 0$

$$d_{uv} - p_u + p_v \ge 0$$
 $\forall (u, v) \in E \setminus \{(t, s)\}$

$$p_s - p_t \ge 1$$
 $d_{uv} \ge 0$
 $p_u \ge 0$

Moreover, all extreme-point solutions all integral! (HW)

$$\forall (u, v) \in E$$

 $\forall u \in V$

Note that every *s*–*t* path $s = v_0, \ldots, v_k = t$ has

length ≥ 1 w.r.t. d:

$$\sum_{i=0}^{k-1} d_{i,i+1} \ge \sum_{i=0}^{k-1} (p_i - p_{i+1})$$

$$= p_s - p_t = 1$$

Dual LP - Complementary Slackness

maximize
$$f_{ts}$$
 subject to $f_{uv} \leq c_{uv}$ $\forall (u, v) \in E \setminus \{(t, s)\}$
$$\sum_{u: (u, v) \in E} f_{uv} - \sum_{z: (v, z) \in E} f_{vz} \leq 0 \qquad \forall v \in V$$

$$f_{uv} \geq 0 \qquad \forall (u, v) \in E$$

```
minimize \sum_{\substack{(u,v)\in E\setminus \{(t,s)\}\\ d_{uv}-p_u+p_v\geq 0\\ p_s-p_t\geq 1\\ d_{uv}\geq 0\\ p_u\geq 0}} c_{uv}\cdot d_{uv} \qquad \begin{array}{l} \textbf{Primal CS:}\\ \forall j\colon x_j=0 \text{ or } \sum_{i=1}^m a_{ij}y_i=c_j\\ \textbf{Dual CS:}\\ \forall i\colon y_i=0 \text{ or } \sum_{j=1}^n a_{ij}x_j=b_i\\ \forall i\colon y_i=0 \text{ or } \sum_{j=1}^n a_{ij}x_j=b_i\\ \end{array}
```

For a max flow and min cut:

- For each forward edge (u, v) of the cut: $f_{uv} = c_{uv}$. $(d_{uv} = 1, \text{ so by dual CS: } f_{uv} = c_{uv}.)$
- For each backward edge (u, v) of the cut: $f_{uv} = 0$. (Otherwise, by primal CS: $d_{uv} - 0 + 1 = 0$.)

