Approximation Algorithms

Lecture 3:
SteinerTree and MultiwayCut

Part I:
SteinerTree

SteinerTree

Given: A graph G

SteinerTree

Given: A graph G with edge weights $c: E(G) \rightarrow \mathbb{Q}^{+}$

SteinerTree

Given: A graph G with edge weights $c: E(G) \rightarrow \mathbb{Q}^{+}$ and a partition of $V(G)$ into a set T of terminals

SteinerTree

Given: A graph G with edge weights $c: E(G) \rightarrow \mathbb{Q}^{+}$ and a partition of $V(G)$ into a set T of terminals and a set S of Steiner vertices.

SteinerTree

Given: A graph G with edge weights $c: E(G) \rightarrow \mathbb{Q}^{+}$ and a partition of $V(G)$ into a set T of terminals and a set S of Steiner vertices.

Find: A subtree B of G that
■ contains all terminals (i.e., $T \subseteq V(B)$) and

SteinerTree

Given: A graph G with edge weights $c: E(G) \rightarrow \mathbb{Q}^{+}$ and a partition of $V(G)$ into a set T of terminals and a set S of Steiner vertices.

Find: A subtree B of G that
■ contains all terminals (i.e., $T \subseteq V(B)$) and
valid solution with cost 4

- terminal
- Steiner vertex

SteinerTree

Given: A graph G with edge weights $c: E(G) \rightarrow \mathbb{Q}^{+}$ and a partition of $V(G)$ into a set T of terminals and a set S of Steiner vertices.

Find: A subtree B of G that
■ contains all terminals (i.e., $T \subseteq V(B)$) and
■ has minimum cost $c(B):=\sum_{e \in E(B)} C(e)$ among all subtrees with this property.
valid solution with cost 4

- terminal
- Steiner vertex

SteinerTree

Given: A graph G with edge weights $c: E(G) \rightarrow \mathbb{Q}^{+}$ and a partition of $V(G)$ into a set T of terminals and a set S of Steiner vertices.

Find: A subtree B of G that
■ contains all terminals (i.e., $T \subseteq V(B)$) and
■ has minimum cost $c(B):=\sum_{e \in E(B)} C(e)$ among all subtrees with this property.
valid solution with cost 4 optimum solution with cost 3

- terminal
- Steiner vertex

MetricSteinerTree
Restriction of SteinerTree where the graph G is complete and the cost function is metric

MetricSteinerTree

Restriction of SteinerTree where the graph G is complete and the cost function is metric, i.e., for every triple u, v, w of vertices, we have $c(u, w) \leq c(u, v)+c(v, w)$.

MetricSteinerTree

Restriction of SteinerTree where the graph G is complete and the cost function is metric, i.e., for every triple u, v, w of vertices, we have $c(u, w) \leq c(u, v)+c(v, w)$.

MetricSteinerTree

Restriction of SteinerTree where the graph G is complete and the cost function is metric, i.e., for every triple u, v, w of vertices, we have $c(u, w) \leq c(u, v)+c(v, w)$.

- not complete

MetricSteinerTree

Restriction of SteinerTree where the graph G is complete and the cost function is metric, i.e., for every triple u, v, w of vertices, we have $c(u, w) \leq c(u, v)+c(v, w)$.

- not complete
- not metric

MetricSteinerTree

Restriction of SteinerTree where the graph G is complete and the cost function is metric, i.e., for every triple u, v, w of vertices, we have $c(u, w) \leq c(u, v)+c(v, w)$.

- not complete
- not metric

MetricSteinerTree

Restriction of SteinerTree where the graph G is complete and the cost function is metric, i.e., for every triple u, v, w of vertices, we have $c(u, w) \leq c(u, v)+c(v, w)$.

- not complete
- not metric

- complete
- metric

Approximation Algorithms

Lecture 3:
SteinerTree and MultiwayCut

Part II:
Approximation Preserving Reduction

Approximation-Preserving Reduction

Let Π_{1}, Π_{2} be minimization problems.

Approximation-Preserving Reduction

Let Π_{1}, Π_{2} be minimization problems.

Approximation-Preserving Reduction

Let Π_{1}, Π_{2} be minimization problems. An approximationpreserving reduction from Π_{1} to Π_{2} ist a tuple (f, g) of poly-time computable functions with the following properties.
■ For each instance I_{1} of Π_{1},

Approximation-Preserving Reduction

Let Π_{1}, Π_{2} be minimization problems. An approximationpreserving reduction from Π_{1} to Π_{2} ist a tuple (f, g) of poly-time computable functions with the following properties.

- For each instance I_{1} of Π_{1},
$I_{2}=f\left(I_{1}\right)$ is an instance of Π_{2} with $\mathrm{OPT}_{\Pi_{2}}\left(I_{2}\right) \leq \mathrm{OPT}_{\Pi_{1}}\left(I_{1}\right)$.

Approximation-Preserving Reduction

Let Π_{1}, Π_{2} be minimization problems. An approximationpreserving reduction from Π_{1} to Π_{2} ist a tuple (f, g) of poly-time computable functions with the following properties.

- For each instance I_{1} of Π_{1},
$I_{2}=f\left(I_{1}\right)$ is an instance of Π_{2} with $\mathrm{OPT}_{\Pi_{2}}\left(I_{2}\right) \leq \mathrm{OPT}_{\Pi_{1}}\left(I_{1}\right)$.

Approximation-Preserving Reduction

Let Π_{1}, Π_{2} be minimization problems. An approximationpreserving reduction from Π_{1} to Π_{2} ist a tuple (f, g) of poly-time computable functions with the following properties.
■ For each instance I_{1} of Π_{1},
$I_{2}=f\left(l_{1}\right)$ is an instance of Π_{2} with $\mathrm{OPT}_{\Pi_{2}}\left(I_{2}\right) \leq \mathrm{OPT}_{\Pi_{1}}\left(I_{1}\right)$.
problems
instances

Approximation-Preserving Reduction

Let Π_{1}, Π_{2} be minimization problems. An approximationpreserving reduction from Π_{1} to Π_{2} ist a tuple (f, g) of poly-time computable functions with the following properties.

- For each instance I_{1} of Π_{1},
$I_{2}=f\left(l_{1}\right)$ is an instance of Π_{2} with $\mathrm{OPT}_{\Pi_{2}}\left(I_{2}\right) \leq \mathrm{OPT}_{\Pi_{1}}\left(l_{1}\right)$.
■ For each feasible solution t of l_{2},
$s=g\left(l_{1}, t\right)$ is a feasible sol. of I_{1} with $\operatorname{obj}_{\Pi_{1}}\left(l_{1}, s\right) \leq \operatorname{obj}_{\Pi_{2}}\left(l_{2}, t\right)$.
problems instances

Approximation-Preserving Reduction

Let Π_{1}, Π_{2} be minimization problems. An approximationpreserving reduction from Π_{1} to Π_{2} ist a tuple (f, g) of poly-time computable functions with the following properties.
■ For each instance I_{1} of Π_{1},
$I_{2}=f\left(l_{1}\right)$ is an instance of Π_{2} with $\mathrm{OPT}_{\Pi_{2}}\left(I_{2}\right) \leq \mathrm{OPT}_{\Pi_{1}}\left(I_{1}\right)$.
■ For each feasible solution t of l_{2},
$s=g\left(l_{1}, t\right)$ is a feasible sol. of I_{1} with $\operatorname{obj}_{\Pi_{1}}\left(l_{1}, s\right) \leq \operatorname{obj}_{\Pi_{2}}\left(l_{2}, t\right)$.
problems instances

solutions
Π_{2}

Approximation-Preserving Reduction

Let Π_{1}, Π_{2} be minimization problems. An approximationpreserving reduction from Π_{1} to Π_{2} ist a tuple (f, g) of poly-time computable functions with the following properties.
■ For each instance I_{1} of Π_{1},
$I_{2}=f\left(l_{1}\right)$ is an instance of Π_{2} with $\mathrm{OPT}_{\Pi_{2}}\left(I_{2}\right) \leq \mathrm{OPT}_{\Pi_{1}}\left(I_{1}\right)$.
■ For each feasible solution t of l_{2},
$s=g\left(l_{1}, t\right)$ is a feasible sol. of I_{1} with $\operatorname{obj}_{\Pi_{1}}\left(l_{1}, s\right) \leq \operatorname{obj}_{\Pi_{2}}\left(l_{2}, t\right)$.
problems instances

Π_{2}

Approximation-Preserving Reduction

Let Π_{1}, Π_{2} be minimization problems. An approximationpreserving reduction from Π_{1} to Π_{2} ist a tuple (f, g) of poly-time computable functions with the following properties.
■ For each instance I_{1} of Π_{1},
$I_{2}=f\left(l_{1}\right)$ is an instance of Π_{2} with $\mathrm{OPT}_{\Pi_{2}}\left(I_{2}\right) \leq \mathrm{OPT}_{\Pi_{1}}\left(I_{1}\right)$.
■ For each feasible solution t of l_{2},
$s=g\left(l_{1}, t\right)$ is a feasible sol. of I_{1} with $\operatorname{obj}_{\Pi_{1}}\left(l_{1}, s\right) \leq \operatorname{obj}_{\Pi_{2}}\left(l_{2}, t\right)$.
problems instances
solutions
Π_{2}

Approximation-Preserving Reduction

Theorem. Let,Π_{2} be minimization problems with an approximation-preserving reduction (f, ,) from to Π_{2}. Then

Approximation-Preserving Reduction

Theorem. Let,Π_{2} be minimization problems with an approximation-preserving reduction (f,) from to Π_{2}. Then there is a factor- ? approximation algorithm of for each factor- α approximation algorithm of Π_{2}.

Approximation-Preserving Reduction

Theorem. Let,Π_{2} be minimization problems with an approximation-preserving reduction (f,) from to Π_{2}. Then there is a factor- ? approximation algorithm of for each factor- α approximation algorithm of Π_{2}.

Approximation-Preserving Reduction

Theorem. Let,Π_{2} be minimization problems with an approximation-preserving reduction (f, s) from to Π_{2}. Then there is a factor- α approximation algorithm of for each factor- α approximation algorithm of Π_{2}.

Approximation-Preserving Reduction

Theorem. Let,Π_{2} be minimization problems with an approximation-preserving reduction (f, s) from to Π_{2}. Then there is a factor- α approximation algorithm of for each factor- α approximation algorithm of Π_{2}.

Proof.

Let A be a factor- α approx. alg. for Π_{2}.

Approximation-Preserving Reduction

Theorem. Let,Π_{2} be minimization problems with an approximation-preserving reduction (f, s) from to Π_{2}. Then there is a factor- α approximation algorithm of for each factor- α approximation algorithm of Π_{2}.

Proof.

Let A be a factor- α approx. alg. for Π_{2}.
Let I_{1} be an instance of Π_{1}.

Approximation-Preserving Reduction

Theorem. Let,Π_{2} be minimization problems with an approximation-preserving reduction (f, s) from to Π_{2}. Then there is a factor- α approximation algorithm of for each factor- α approximation algorithm of Π_{2}.

Proof.

Let A be a factor- α approx. alg. for Π_{2}. Let I_{1} be an instance of Π_{1}.
Set $I_{2}:=\quad t:=\quad$ and $s:=$

Approximation-Preserving Reduction

Theorem. Let,Π_{2} be minimization problems with an approximation-preserving reduction (f, s) from to Π_{2}. Then there is a factor- α approximation algorithm of for each factor- α approximation algorithm of Π_{2}.

Proof.

Let A be a factor- α approx. alg. for Π_{2}. Let I_{1} be an instance of Π_{1}.
Set $I_{2}:=f\left(I_{1}\right), t:=\quad$ and $s:=$

Approximation-Preserving Reduction

Theorem. Let,Π_{2} be minimization problems with an approximation-preserving reduction (f, s) from to Π_{2}. Then there is a factor- α approximation algorithm of for each factor- α approximation algorithm of Π_{2}.

Proof.

Let A be a factor- α approx. alg. for Π_{2}. Let I_{1} be an instance of Π_{1}. Set $I_{2}:=f\left(I_{1}\right), t:=A\left(I_{2}\right)$ and $s:=$

Approximation-Preserving Reduction

Theorem. Let,Π_{2} be minimization problems with an approximation-preserving reduction (f, s) from to Π_{2}. Then there is a factor- α approximation algorithm of for each factor- α approximation algorithm of Π_{2}.

Proof.

Let A be a factor- α approx. alg. for Π_{2}. Let $/_{1}$ be an instance of Π_{1}.
 Set $I_{2}:=f\left(l_{1}\right), t:=A\left(l_{2}\right)$ and $s:=g\left(l_{1}, t\right)$.

Approximation-Preserving Reduction

Theorem. Let,Π_{2} be minimization problems with an approximation-preserving reduction (f, s) from to Π_{2}. Then there is a factor- α approximation algorithm of for each factor- α approximation algorithm of Π_{2}.

Proof.

Let A be a factor- α approx. alg. for Π_{2}.
Let I_{1} be an instance of Π_{1}.

Set $I_{2}:=f\left(l_{1}\right), t:=A\left(l_{2}\right)$ and $s:=g\left(l_{1}, t\right)$.
Then:
$\operatorname{obj}_{\Pi_{1}}\left(I_{1}, s\right) \leq$

Approximation-Preserving Reduction

Theorem. Let,Π_{2} be minimization problems with an approximation-preserving reduction (f, s) from to Π_{2}. Then there is a factor- α approximation algorithm of for each factor- α approximation algorithm of Π_{2}.

Proof.

Let A be a factor- α approx. alg. for Π_{2}.
Let I_{1} be an instance of Π_{1}.

Set $I_{2}:=f\left(l_{1}\right), t:=A\left(l_{2}\right)$ and $s:=g\left(l_{1}, t\right)$.
Then:
obj $_{\Pi_{1}}\left(I_{1}, s\right) \leq \operatorname{obj}_{\Pi_{2}}\left(I_{2}, t\right) \leq$

Approximation-Preserving Reduction

Theorem. Let,Π_{2} be minimization problems with an approximation-preserving reduction (f, s) from to Π_{2}. Then there is a factor- α approximation algorithm of for each factor- α approximation algorithm of Π_{2}.

Proof.

Let A be a factor- α approx. alg. for Π_{2}.
Let I_{1} be an instance of Π_{1}.

Set $I_{2}:=f\left(l_{1}\right), t:=A\left(l_{2}\right)$ and $s:=g\left(l_{1}, t\right)$.
Then:
$\operatorname{obj}_{\Pi_{1}}\left(I_{1}, s\right) \leq \operatorname{obj}_{\Pi_{2}}\left(I_{2}, t\right) \leq \alpha \cdot$ OPT $_{\Pi_{2}}\left(I_{2}\right) \leq$

Approximation-Preserving Reduction

Theorem. Let,Π_{2} be minimization problems with an approximation-preserving reduction (f, s) from to Π_{2}. Then there is a factor- α approximation algorithm of for each factor- α approximation algorithm of Π_{2}.

Proof.

Let A be a factor- α approx. alg. for Π_{2}.
Let I_{1} be an instance of Π_{1}.

Set $I_{2}:=f\left(l_{1}\right), t:=A\left(l_{2}\right)$ and $s:=g\left(l_{1}, t\right)$.
Then:
$\operatorname{obj}_{\Pi_{1}}\left(I_{1}, s\right) \leq \operatorname{obj}_{\Pi_{2}}\left(I_{2}, t\right) \leq \alpha \cdot \operatorname{OPT}_{\Pi_{2}}\left(I_{2}\right) \leq \alpha \cdot \mathrm{OPT}_{\Pi_{1}}\left(I_{1}\right)$.

Approximation Algorithms

Lecture 3:
SteinerTree and MultiwayCut

Part III:
Reduction to MetricSteinerTree

MetricSteinerTree
Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

MetricSteinerTree
Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (1) Mapping $f \quad h_{1} \xrightarrow{f} I_{2}$

MetricSteinerTree
Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (1) Mapping $f \quad h_{1} \xrightarrow{f} I_{2}$
Instance $/_{1}$ of SteinerTree:
Graph $G_{1}=\left(V, E_{1}\right)$, edge weights c_{1}, partition $V=T \cup$

MetricSteinerTree

Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (1) Mapping $f \quad 1_{1} \xrightarrow{f} 1_{2}$
Instance $/_{1}$ of SteinerTree:
Graph $G_{1}=\left(V, E_{1}\right)$, edge weights c_{1}, partition $V=T \cup$

MetricSteinerTree

Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (1) Mapping $f \quad h_{1} \xrightarrow{f} l_{2}$
Instance $/ 1$ of SteinerTree:
Graph $G_{1}=\left(V, E_{1}\right)$, edge weights c_{1}, partition $V=T \cup$
Metric instance $I_{2}:=f\left(I_{1}\right)$:
Complete graph $G_{2}=\left(V, E_{2}\right)$, partition T, S as in I_{1}

MetricSteinerTree

Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (1) Mapping $f \quad h_{1} \xrightarrow{f} I_{2}$

Instance $/ 1$ of SteinerTree:
Graph $G_{1}=\left(V, E_{1}\right)$, edge weights c_{1}, partition $V=T \cup$
Metric instance $I_{2}:=f\left(I_{1}\right)$:
Complete graph $G_{2}=\left(V, E_{2}\right)$, partition T, S as in I_{1}

MetricSteinerTree

Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (1) Mapping $f \quad h_{1} \xrightarrow{f} I_{2}$

Instance $/_{1}$ of SteinerTree:
Graph $G_{1}=\left(V, E_{1}\right)$, edge weights C_{1}, partition $V=T \cup$
Metric instance $I_{2}:=f\left(I_{1}\right)$:
Complete graph $G_{2}=\left(V, E_{2}\right)$, partition T, S as in I_{1}
$c_{2}(u, v):=$ Length of a shortest $u-v$ path in G_{1}.

MetricSteinerTree

Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (1) Mapping $f \quad h_{1} \xrightarrow{f} I_{2}$

Instance $/_{1}$ of SteinerTree:
Graph $G_{1}=\left(V, E_{1}\right)$, edge weights C_{1}, partition $V=T \cup$
Metric instance $I_{2}:=f\left(I_{1}\right)$:
Complete graph $G_{2}=\left(V, E_{2}\right)$, partition T, S as in I_{1}
$c_{2}(u, v):=$ Length of a shortest $u-v$ path in G_{1}.

MetricSteinerTree

Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (1) Mapping $f \quad h_{1} \xrightarrow{f} I_{2}$

Instance $/_{1}$ of SteinerTree:
Graph $G_{1}=\left(V, E_{1}\right)$, edge weights C_{1}, partition $V=T \cup$
Metric instance $I_{2}:=f\left(I_{1}\right)$:
Complete graph $G_{2}=\left(V, E_{2}\right)$, partition T, S as in I_{1}
$c_{2}(u, v):=$ Length of a shortest $u-v$ path in G_{1}.

MetricSteinerTree

Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (1) Mapping $f \quad h_{1} \xrightarrow{f} I_{2}$

Instance $/_{1}$ of SteinerTree:
Graph $G_{1}=\left(V, E_{1}\right)$, edge weights c_{1}, partition $V=T \cup$
Metric instance $I_{2}:=f\left(I_{1}\right)$:
Complete graph $G_{2}=\left(V, E_{2}\right)$, partition T, S as in I_{1}
$c_{2}(u, v):=$ Length of a shortest $u-v$ path in G_{1}.

MetricSteinerTree

Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (1) Mapping $f \quad h_{1} \xrightarrow{f} I_{2}$

Instance $/_{1}$ of SteinerTree:
Graph $G_{1}=\left(V, E_{1}\right)$, edge weights c_{1}, partition $V=T \cup$
Metric instance $I_{2}:=f\left(I_{1}\right)$:
Complete graph $G_{2}=\left(V, E_{2}\right)$, partition T, S as in I_{1}
$c_{2}(u, v):=$ Length of a shortest $u-v$ path in G_{1}.

MetricSteinerTree

Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (1) Mapping $f \quad h_{1} \xrightarrow{f} I_{2}$

Instance $/_{1}$ of SteinerTree:
Graph $G_{1}=\left(V, E_{1}\right)$, edge weights c_{1}, partition $V=T \cup$
Metric instance $I_{2}:=f\left(I_{1}\right)$:
Complete graph $G_{2}=\left(V, E_{2}\right)$, partition T, S as in I_{1}
$c_{2}(u, v):=$ Length of a shortest $u-v$ path in G_{1}.

MetricSteinerTree

Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (1) Mapping $f \quad h_{1} \xrightarrow{f} I_{2}$

Instance $/_{1}$ of SteinerTree:
Graph $G_{1}=\left(V, E_{1}\right)$, edge weights c_{1}, partition $V=T \cup$
Metric instance $I_{2}:=f\left(I_{1}\right)$:
Complete graph $G_{2}=\left(V, E_{2}\right)$, partition T, S as in I_{1}
$c_{2}(u, v):=$ Length of a shortest $u-v$ path in G_{1}.

MetricSteinerTree

Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (1) Mapping $f \quad h_{1} \xrightarrow{f} I_{2}$

Instance $/_{1}$ of SteinerTree:
Graph $G_{1}=\left(V, E_{1}\right)$, edge weights c_{1}, partition $V=T \cup$
Metric instance $I_{2}:=f\left(I_{1}\right)$:
Complete graph $G_{2}=\left(V, E_{2}\right)$, partition T, S as in I_{1}
$c_{2}(u, v):=$ Length of a shortest $u-v$ path in G_{1}.

MetricSteinerTree

Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (1) Mapping $f \quad h_{1} \xrightarrow{f} I_{2}$

Instance $/_{1}$ of SteinerTree:
Graph $G_{1}=\left(V, E_{1}\right)$, edge weights c_{1}, partition $V=T \cup$
Metric instance $I_{2}:=f\left(I_{1}\right)$:
Complete graph $G_{2}=\left(V, E_{2}\right)$, partition T, S as in I_{1}
$c_{2}(u, v):=$ Length of a shortest $u-v$ path in G_{1}.

MetricSteinerTree

Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (1) Mapping $f \quad h_{1} \xrightarrow{f} I_{2}$

Instance $/_{1}$ of SteinerTree:
Graph $G_{1}=\left(V, E_{1}\right)$, edge weights c_{1}, partition $V=T \cup$
Metric instance $I_{2}:=f\left(I_{1}\right)$:
Complete graph $G_{2}=\left(V, E_{2}\right)$, partition T, S as in I_{1}
$c_{2}(u, v):=$ Length of a shortest $u-v$ path in G_{1}.

MetricSteinerTree

Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (1) Mapping $f \quad h_{1} \xrightarrow{f} I_{2}$

Instance $/_{1}$ of SteinerTree:
Graph $G_{1}=\left(V, E_{1}\right)$, edge weights c_{1}, partition $V=T \cup$
Metric instance $I_{2}:=f\left(I_{1}\right)$:
Complete graph $G_{2}=\left(V, E_{2}\right)$, partition T, S as in I_{1}
$c_{2}(u, v):=$ Length of a shortest $u-v$ path in G_{1}.

MetricSteinerTree

Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (1) Mapping $f \quad h_{1} \xrightarrow{f} I_{2}$

Instance $/_{1}$ of SteinerTree:
Graph $G_{1}=\left(V, E_{1}\right)$, edge weights c_{1}, partition $V=T \cup$
Metric instance $I_{2}:=f\left(I_{1}\right)$:
Complete graph $G_{2}=\left(V, E_{2}\right)$, partition T, S as in I_{1}
$c_{2}(u, v):=$ Length of a shortest $u-v$ path in G_{1}.

MetricSteinerTree

Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (1) Mapping $f \quad h_{1} \xrightarrow{f} I_{2}$

Instance $/_{1}$ of SteinerTree:
Graph $G_{1}=\left(V, E_{1}\right)$, edge weights C_{1}, partition $V=T \cup$
Metric instance $I_{2}:=f\left(I_{1}\right)$:
Complete graph $G_{2}=\left(V, E_{2}\right)$, partition T, S as in I_{1}
$c_{2}(u, v):=$ Length of a shortest $u-v$ path in G_{1}.

MetricSteinerTree

Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof. (1) Mapping $f \quad h_{1} \xrightarrow{f} I_{2}$

Instance $/_{1}$ of SteinerTree:
Graph $G_{1}=\left(V, E_{1}\right)$, edge weights c_{1}, partition $V=T \cup$
Metric instance $I_{2}:=f\left(I_{1}\right)$:
Complete graph $G_{2}=\left(V, E_{2}\right)$, partition T, S as in I_{1}
$c_{2}(u, v):=$ Length of a shortest $u-v$ path in G_{1}.
$c_{2}(u, v) \leq c_{1}(u, v)$ for every edge $(u, v) \in E_{1}$.

MetricSteinerTree

Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof.
 (2) $\operatorname{OPT}\left(I_{2}\right) \leq \mathrm{OPT}\left(I_{1}\right)$

MetricSteinerTree
Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof.
 (2) $\operatorname{OPT}\left(I_{2}\right) \leq \mathrm{OPT}\left(I_{1}\right)$

Let B^{*} be an optimal Steiner tree for I_{1}.

MetricSteinerTree
Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof.
 (2) $\operatorname{OPT}\left(I_{2}\right) \leq \mathrm{OPT}\left(I_{1}\right)$

Let B^{*} be an optimal Steiner tree for I_{1}.

MetricSteinerTree

Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof.
 (2) $\operatorname{OPT}\left(I_{2}\right) \leq \mathrm{OPT}\left(I_{1}\right)$

Let B^{*} be an optimal Steiner tree for I_{1}.
Note that B^{*} is also a feasible solution for I_{2} :
$E_{1} \subseteq E_{2}$ and the vertex sets V, T, S are the same.

MetricSteinerTree

Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof.
 (2) $\operatorname{OPT}\left(I_{2}\right) \leq \mathrm{OPT}\left(I_{1}\right)$

Let B^{*} be an optimal Steiner tree for I_{1}.
Note that B^{*} is also a feasible solution for I_{2} :
$E_{1} \subseteq E_{2}$ and the vertex sets V, T, S are the same.

MetricSteinerTree

Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof.
 (2) $\operatorname{OPT}\left(I_{2}\right) \leq \mathrm{OPT}\left(I_{1}\right)$

Let B^{*} be an optimal Steiner tree for I_{1}.
Note that B^{*} is also a feasible solution for I_{2} :
$E_{1} \subseteq E_{2}$ and the vertex sets V, T, S are the same.
OPT(I_{2})

MetricSteinerTree

Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof.
 (2) $\operatorname{OPT}\left(I_{2}\right) \leq \mathrm{OPT}\left(I_{1}\right)$

Let B^{*} be an optimal Steiner tree for I_{1}.
Note that B^{*} is also a feasible solution for I_{2} :
$E_{1} \subseteq E_{2}$ and the vertex sets V, T, S are the same.
$\mathrm{OPT}\left(I_{2}\right) \leq c_{2}\left(B^{*}\right)$

MetricSteinerTree

Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof.
 (2) $\operatorname{OPT}\left(I_{2}\right) \leq \mathrm{OPT}\left(I_{1}\right)$

Let B^{*} be an optimal Steiner tree for I_{1}.
Note that B^{*} is also a feasible solution for I_{2} :
$E_{1} \subseteq E_{2}$ and the vertex sets V, T, S are the same.
$\operatorname{OPT}\left(I_{2}\right) \leq c_{2}\left(B^{*}\right) \leq c_{1}\left(B^{*}\right)$

MetricSteinerTree

Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof.
 (2) $\operatorname{OPT}\left(I_{2}\right) \leq \mathrm{OPT}\left(I_{1}\right)$

Let B^{*} be an optimal Steiner tree for I_{1}.
Note that B^{*} is also a feasible solution for I_{2} :
$E_{1} \subseteq E_{2}$ and the vertex sets V, T, S are the same.
$\operatorname{OPT}\left(I_{2}\right) \leq c_{2}\left(B^{*}\right) \leq c_{1}\left(B^{*}\right)=\operatorname{OPT}\left(I_{1}\right)$

MetricSteinerTree
Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof.
(3) Mapping g
$s \triangleleft g$ g

MetricSteinerTree
Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof.
 (3) Mapping g
 $s \leftharpoonup g \quad t$

Let B_{2} be a Steiner tree of G_{2}.

MetricSteinerTree
Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof.
 (3) Mapping g
 $s \leftharpoonup g \quad t$

Let B_{2} be a Steiner tree of G_{2}.

MetricSteinerTree

Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof.
 (3) Mapping g
 $s \backsim g$

Let B_{2} be a Steiner tree of G_{2}.
Construct $G_{1}^{\prime} \subseteq G_{1}$ from B_{2} by replacing each edge (u, v) of B_{2} by a shortest $u-v$ path in G_{1}.

MetricSteinerTree

Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof.
 (3) Mapping g
 $s \longleftarrow \quad g \quad t$

Let B_{2} be a Steiner tree of G_{2}.
Construct $G_{1}^{\prime} \subseteq G_{1}$ from B_{2} by replacing each edge (u, v) of B_{2} by a shortest $u-v$ path in G_{1}.

MetricSteinerTree

Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof.
 (3) Mapping g
 $s \backsim g$

Let B_{2} be a Steiner tree of G_{2}.
Construct $G_{1}^{\prime} \subseteq G_{1}$ from B_{2} by replacing each edge (u, v) of B_{2} by a shortest $u-v$ path in G_{1}.

MetricSteinerTree

Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof.
 (3) Mapping g
 $s \backsim g$

Let B_{2} be a Steiner tree of G_{2}.
Construct $G_{1}^{\prime} \subseteq G_{1}$ from B_{2} by replacing each edge (u, v) of B_{2} by a shortest $u-v$ path in G_{1}.

MetricSteinerTree

Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof.
 (3) Mapping g
 $s \longleftarrow \stackrel{g}{b} t$

Let B_{2} be a Steiner tree of G_{2}.
Construct $G_{1}^{\prime} \subseteq G_{1}$ from B_{2} by replacing each edge (u, v) of B_{2} by a shortest $u-v$ path in G_{1}.

MetricSteinerTree

Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof.
 (3) Mapping g
 $s 4{ }^{8} \quad t$

Let B_{2} be a Steiner tree of G_{2}.
Construct $G_{1}^{\prime} \subseteq G_{1}$ from B_{2} by replacing each edge (u, v) of B_{2} by a shortest $u-v$ path in G_{1}. Keep ≤ 1 copy per edge.

MetricSteinerTree

Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof.
 (3) Mapping g
 $s 4{ }^{8} \quad t$

Let B_{2} be a Steiner tree of G_{2}.
Construct $G_{1}^{\prime} \subseteq G_{1}$ from B_{2} by replacing each edge (u, v) of B_{2} by a shortest $u-v$ path in G_{1}. Keep ≤ 1 copy per edge. $c_{1}\left(G_{1}^{\prime}\right) \leq c_{2}\left(B_{2}\right)$

MetricSteinerTree

Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof.
 (3) Mapping g
 $s \leftarrow{ }^{g} \quad t$

Let B_{2} be a Steiner tree of G_{2}.
Construct $G_{1}^{\prime} \subseteq G_{1}$ from B_{2} by replacing each edge (u, v) of B_{2} by a shortest $u-v$ path in G_{1}. Keep ≤ 1 copy per edge. $c_{1}\left(G_{1}^{\prime}\right) \leq c_{2}\left(B_{2}\right) ; G_{1}^{\prime}$ connects all terminals

MetricSteinerTree

Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof.
 (3)
 $s 4{ }^{g} \quad t$

Let B_{2} be a Steiner tree of G_{2}.
Construct $G_{1}^{\prime} \subseteq G_{1}$ from B_{2} by replacing each edge (u, v) of B_{2} by a shortest $u-v$ path in G_{1}. Keep ≤ 1 copy per edge. $c_{1}\left(G_{1}^{\prime}\right) \leq c_{2}\left(B_{2}\right) ; G_{1}^{\prime}$ connects all terminals; maybe not a tree.

MetricSteinerTree

Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof.
 (3)

Let B_{2} be a Steiner tree of G_{2}.
Construct $G_{1}^{\prime} \subseteq G_{1}$ from B_{2} by replacing each edge (u, v) of B_{2} by a shortest $u-v$ path in G_{1}. Keep ≤ 1 copy per edge. $c_{1}\left(G_{1}^{\prime}\right) \leq c_{2}\left(B_{2}\right) ; G_{1}^{\prime}$ connects all terminals; maybe not a tree.
Consider spanning tree B_{1} of G_{1}^{\prime}

MetricSteinerTree

Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof.
 (3)

Let B_{2} be a Steiner tree of G_{2}.
Construct $G_{1}^{\prime} \subseteq G_{1}$ from B_{2} by replacing each edge (u, v) of B_{2} by a shortest $u-v$ path in G_{1}. Keep ≤ 1 copy per edge. $c_{1}\left(G_{1}^{\prime}\right) \leq c_{2}\left(B_{2}\right) ; G_{1}^{\prime}$ connects all terminals; maybe not a tree.
Consider spanning tree B_{1} of G_{1}^{\prime}

MetricSteinerTree

Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof.
 (3)

Let B_{2} be a Steiner tree of G_{2}.
Construct $G_{1}^{\prime} \subseteq G_{1}$ from B_{2} by replacing each edge (u, v) of B_{2} by a shortest $u-v$ path in G_{1}. Keep ≤ 1 copy per edge. $c_{1}\left(G_{1}^{\prime}\right) \leq c_{2}\left(B_{2}\right) ; G_{1}^{\prime}$ connects all terminals; maybe not a tree.
Consider spanning tree B_{1} of $G_{1}^{\prime} \rightsquigarrow$ Steiner tree B_{1} of G_{1}

MetricSteinerTree

Theorem. There is an approximation-preserving reduction from SteinerTree to MetricSteinerTree.

Proof.
 (3)

Let B_{2} be a Steiner tree of G_{2}.
Construct $G_{1}^{\prime} \subseteq G_{1}$ from B_{2} by replacing each edge (u, v) of B_{2} by a shortest $u-v$ path in G_{1}. Keep ≤ 1 copy per edge. $c_{1}\left(G_{1}^{\prime}\right) \leq c_{2}\left(B_{2}\right) ; G_{1}^{\prime}$ connects all terminals; maybe not a tree.
Consider spanning tree B_{1} of $G_{1}^{\prime} \rightsquigarrow$ Steiner tree B_{1} of G_{1} Note that $c_{1}\left(B_{1}\right) \leq c_{1}\left(G_{1}^{\prime}\right) \leq c_{2}\left(B_{2}\right)$.

Approximation Algorithms

Lecture 3:
SteinerTree and MultiwayCut

Part IV:
2-Approximation for SteinerTree

2-Approximation for SteinerTree

2-Approximation for SteinerTree

Theorem. For an instance of MetricSteinerTree, let be a minimum spanning tree (MST) of the subgraph $G[T]$ induced by the terminal set T. Then $c(B) \leq 2 \cdot$ OPT.

2-Approximation for SteinerTree

Theorem. For an instance of MetricSteinerTree, let be a minimum spanning tree (MST) of the subgraph $G[T]$ induced by the terminal set T. Then $c(B) \leq 2 \cdot$ OPT.

G

2-Approximation for SteinerTree

Theorem. For an instance of MetricSteinerTree, let be a minimum spanning tree (MST) of the subgraph $G[T]$ induced by the terminal set T. Then $c(B) \leq 2 \cdot$ OPT.

G

G[T]

2-Approximation for SteinerTree

Theorem. For an instance of MetricSteinerTree, let be a minimum spanning tree (MST) of the subgraph $G[T]$ induced by the terminal set T. Then $c(B) \leq 2 \cdot$ OPT.

G

G[T]

2-Approximation for SteinerTree

Theorem. For an instance of MetricSteinerTree, let be a minimum spanning tree (MST) of the subgraph $G[T]$ induced by the terminal set T. Then $c(B) \leq 2 \cdot$ OPT.

G

G[T]

Proof of Approximation Factor

Consider an optimal Steiner tree B^{*}.

Proof of Approximation Factor

Consider an optimal Steiner tree B^{*}.

Proof of Approximation Factor

Consider an optimal Steiner tree B^{*}.
Duplicate all edges of B^{*}.
\Rightarrow Eulerian (multi-)graph B^{\prime} with cost $c\left(B^{\prime}\right)=2 \cdot$ OPT.

Proof of Approximation Factor

Consider an optimal Steiner tree B^{*}.
Duplicate all edges of B^{*}.
\Rightarrow Eulerian (multi-)graph B^{\prime} with cost $c\left(B^{\prime}\right)=2 \cdot$ OPT.

Proof of Approximation Factor

Consider an optimal Steiner tree B^{*}.
Duplicate all edges of B^{*}.
\Rightarrow Eulerian (multi-)graph B^{\prime} with cost $c\left(B^{\prime}\right)=2 \cdot$ OPT.
Find a Eulerian tour T^{\prime} in B^{\prime}

Proof of Approximation Factor

Consider an optimal Steiner tree B^{*}.
Duplicate all edges of B^{*}.
\Rightarrow Eulerian (multi-)graph B^{\prime} with cost $c\left(B^{\prime}\right)=2 \cdot$ OPT.
Find a Eulerian tour T^{\prime} in $B^{\prime} \Rightarrow c\left(T^{\prime}\right)=c\left(B^{\prime}\right)=2 \cdot \mathrm{OP} T$

Proof of Approximation Factor

Consider an optimal Steiner tree B^{*}.
Duplicate all edges of B^{*}.
\Rightarrow Eulerian (multi-)graph B^{\prime} with cost $c\left(B^{\prime}\right)=2 \cdot$ OPT.
Find a Eulerian tour T^{\prime} in $B^{\prime} \Rightarrow c\left(T^{\prime}\right)=c\left(B^{\prime}\right)=2 \cdot \mathrm{OP} T$

Proof of Approximation Factor

Consider an optimal Steiner tree B^{*}.
Duplicate all edges of B^{*}.
\Rightarrow Eulerian (multi-)graph B^{\prime} with cost $c\left(B^{\prime}\right)=2 \cdot$ OPT.
Find a Eulerian tour T^{\prime} in $B^{\prime} \Rightarrow c\left(T^{\prime}\right)=c\left(B^{\prime}\right)=2 \cdot$ OPT
Find a Hamiltonian path H in $G[T]$ by "short-cutting" Steiner vertices and previously visited terminals.

Proof of Approximation Factor

Consider an optimal Steiner tree B^{*}.
Duplicate all edges of B^{*}.
\Rightarrow Eulerian (multi-)graph B^{\prime} with cost $c\left(B^{\prime}\right)=2 \cdot$ OPT.
Find a Eulerian tour T^{\prime} in $B^{\prime} \Rightarrow c\left(T^{\prime}\right)=c\left(B^{\prime}\right)=2 \cdot$ OPT
Find a Hamiltonian path H in $G[T]$ by "short-cutting" Steiner vertices and previously visited terminals.

Proof of Approximation Factor

Consider an optimal Steiner tree B^{*}.
Duplicate all edges of B^{*}.
\Rightarrow Eulerian (multi-)graph B^{\prime} with cost $c\left(B^{\prime}\right)=2 \cdot$ OPT.
Find a Eulerian tour T^{\prime} in $B^{\prime} \Rightarrow c\left(T^{\prime}\right)=c\left(B^{\prime}\right)=2 \cdot$ OPT
Find a Hamiltonian path H in $G[T]$ by "short-cutting" Steiner vertices and previously visited terminals.

Proof of Approximation Factor

Consider an optimal Steiner tree B^{*}.
Duplicate all edges of B^{*}.
\Rightarrow Eulerian (multi-)graph B^{\prime} with cost $c\left(B^{\prime}\right)=2 \cdot$ OPT.
Find a Eulerian tour T^{\prime} in $B^{\prime} \Rightarrow c\left(T^{\prime}\right)=c\left(B^{\prime}\right)=2 \cdot$ OPT
Find a Hamiltonian path H in $G[T]$ by "short-cutting" Steiner vertices and previously visited terminals.

Proof of Approximation Factor

Consider an optimal Steiner tree B^{*}.
Duplicate all edges of B^{*}.
\Rightarrow Eulerian (multi-)graph B^{\prime} with cost $c\left(B^{\prime}\right)=2 \cdot$ OPT.
Find a Eulerian tour T^{\prime} in $B^{\prime} \Rightarrow c\left(T^{\prime}\right)=c\left(B^{\prime}\right)=2 \cdot$ OPT
Find a Hamiltonian path H in $G[T]$ by "short-cutting" Steiner vertices and previously visited terminals.

Proof of Approximation Factor

Consider an optimal Steiner tree B^{*}.
Duplicate all edges of B^{*}.
\Rightarrow Eulerian (multi-)graph B^{\prime} with cost $c\left(B^{\prime}\right)=2 \cdot$ OPT.
Find a Eulerian tour T^{\prime} in $B^{\prime} \Rightarrow c\left(T^{\prime}\right)=c\left(B^{\prime}\right)=2 \cdot$ OPT
Find a Hamiltonian path H in $G[T]$ by "short-cutting" Steiner vertices and previously visited terminals.

Proof of Approximation Factor

Consider an optimal Steiner tree B^{*}.
Duplicate all edges of B^{*}.
\Rightarrow Eulerian (multi-)graph B^{\prime} with cost $c\left(B^{\prime}\right)=2 \cdot$ OPT.
Find a Eulerian tour T^{\prime} in $B^{\prime} \Rightarrow c\left(T^{\prime}\right)=c\left(B^{\prime}\right)=2 \cdot$ OPT
Find a Hamiltonian path H in $G[T]$ by "short-cutting" Steiner vertices and previously visited terminals.

Proof of Approximation Factor

Consider an optimal Steiner tree B^{*}.
Duplicate all edges of B^{*}.
\Rightarrow Eulerian (multi-)graph B^{\prime} with cost $c\left(B^{\prime}\right)=2 \cdot$ OPT.
Find a Eulerian tour T^{\prime} in $B^{\prime} \Rightarrow c\left(T^{\prime}\right)=c\left(B^{\prime}\right)=2 \cdot$ OPT
Find a Hamiltonian path H in $G[T]$ by "short-cutting" Steiner vertices and previously visited terminals.

Proof of Approximation Factor

Consider an optimal Steiner tree B^{*}.
Duplicate all edges of B^{*}.
\Rightarrow Eulerian (multi-)graph B^{\prime} with cost $c\left(B^{\prime}\right)=2 \cdot$ OPT.
Find a Eulerian tour T^{\prime} in $B^{\prime} \Rightarrow c\left(T^{\prime}\right)=c\left(B^{\prime}\right)=2 \cdot$ OPT
Find a Hamiltonian path H in $G[T]$ by "short-cutting" Steiner vertices and previously visited terminals.

Proof of Approximation Factor

Consider an optimal Steiner tree B^{*}.
Duplicate all edges of B^{*}.
\Rightarrow Eulerian (multi-)graph B^{\prime} with cost $c\left(B^{\prime}\right)=2 \cdot$ OPT.
Find a Eulerian tour T^{\prime} in $B^{\prime} \Rightarrow c\left(T^{\prime}\right)=c\left(B^{\prime}\right)=2 \cdot$ OPT
Find a Hamiltonian path H in $G[T]$ by "short-cutting" Steiner vertices and previously visited terminals.
$\Rightarrow c(H) \leq c\left(T^{\prime}\right)=2 \cdot$ OPT since G is metric.

Proof of Approximation Factor

Consider an optimal Steiner tree B^{*}.
Duplicate all edges of B^{*}.
\Rightarrow Eulerian (multi-)graph B^{\prime} with cost $c\left(B^{\prime}\right)=2 \cdot$ OPT.
Find a Eulerian tour T^{\prime} in $B^{\prime} \Rightarrow c\left(T^{\prime}\right)=c\left(B^{\prime}\right)=2 \cdot$ OPT
Find a Hamiltonian path H in $G[T]$ by "short-cutting" Steiner vertices and previously visited terminals.
$\Rightarrow c(H) \leq c\left(T^{\prime}\right)=2 \cdot$ OPT since G is metric.
MST B of $G[T]$ costs $c(B) \leq c(H) \leq 2 \cdot$ OPT

Proof of Approximation Factor

Consider an optimal Steiner tree B^{*}.
Duplicate all edges of B^{*}.
\Rightarrow Eulerian (multi-)graph B^{\prime} with cost $c\left(B^{\prime}\right)=2 \cdot$ OPT.
Find a Eulerian tour T^{\prime} in $B^{\prime} \Rightarrow c\left(T^{\prime}\right)=c\left(B^{\prime}\right)=2 \cdot$ OPT
Find a Hamiltonian path H in $G[T]$ by "short-cutting" Steiner vertices and previously visited terminals.
$\Rightarrow c(H) \leq c\left(T^{\prime}\right)=2 \cdot$ OPT since G is metric.
MST B of $G[T]$ costs $c(B) \leq c(H) \leq 2 \cdot$ OPT
since H is a spanning tree of $G[T]$.

Analysis Tight?

Analysis Tight?

- terminal

Analysis Tight?

- terminal

——cost 2

Analysis Tight?

Analysis Tight?

- \quad terminal
- \quad Steiner vertex
——cost 2

Analysis Tight?

- terminal
- Steiner vertex
——_ cost 1
——cost 2

Analysis Tight?
MST of $G[T]$ with $\operatorname{cost} 2(n-1)$

- terminal
- Steiner vertex
——cost 1
——cost 2

Analysis Tight?

MST of $G[T]$ with cost $2(n-1)$
Optimal solution with cost n

- terminal
- Steiner vertex
—— cost 1
——cost 2

Analysis Tight?

MST of $G[T]$ with cost $2(n-1)$
Optimal solution with cost n

$$
\frac{2(n-1)}{n} \rightarrow 2
$$

- terminal
- Steiner vertex
—— cost 1
——cost 2

Analysis Tight?

MST of $G[T]$ with cost $2(n-1)$
Optimal solution with cost n

Can we do better?

$$
\frac{2(n-1)}{n} \rightarrow 2
$$

- terminal
- Steiner vertex
——cost 1
—— cost 2

Analysis Tight?

MST of $G[T]$ with cost $2(n-1)$
Optimal solution with cost n

Can we do better?
The best known approximation factor for
SteinerTree is $\ln (4)+\varepsilon \approx 1.39$

$$
\frac{2(n-1)}{n} \rightarrow 2
$$

- terminal
- Steiner vertex
—— cost 1
——cost 2
[Byrka, Grandoni, Rothvoß \& Sanità, J. ACM'13]

Analysis Tight?

MST of $G[T]$ with $\operatorname{cost} 2(n-1)$
Optimal solution with cost n

Can we do better?

The best known approximation factor for SteinerTree is $\ln (4)+\varepsilon \approx 1.39$

$$
\frac{2(n-1)}{n} \rightarrow 2
$$

- terminal
- Steiner vertex
—— cost 1
——cost 2

SteinerTree cannot be approximated within factor $\frac{96}{95} \approx 1.0105$ (unless $\mathrm{P}=\mathrm{NP}$)

Approximation Algorithms

Lecture 3:
SteinerTree and MultiwayCut

Part V:
MultiwayCut

MultiwayCut
Given: A connected graph G

MultiwayCut
Given: A connected graph G

MultiwayCut

Given: A connected graph G with edge costs $c: E(G) \rightarrow \mathbb{Q}^{+}$

MultiwayCut

Given: A connected graph G with edge costs $c: E(G) \rightarrow \mathbb{Q}^{+}$

MultiwayCut

Given: A connected graph G with edge costs $c: E(G) \rightarrow \mathbb{Q}^{+}$ and a set $T=\left\{t_{1}, \ldots, t_{k}\right\} \subseteq V(G)$ of terminals.

MultiwayCut

Given: A connected graph G with edge costs $c: E(G) \rightarrow \mathbb{Q}^{+}$ and a set $T=\left\{t_{1}, \ldots, t_{k}\right\} \subseteq V(G)$ of terminals.

MultiwayCut

Given: A connected graph G with edge costs $c: E(G) \rightarrow \mathbb{Q}^{+}$ and a set $T=\left\{t_{1}, \ldots, t_{k}\right\} \subseteq V(G)$ of terminals.

A multiway cut of T is a subset E^{\prime} of edges such that no two terminals in the graph $\left(V(G), E(G)-E^{\prime}\right)$ are connected.

MultiwayCut

Given: A connected graph G with edge costs $c: E(G) \rightarrow \mathbb{Q}^{+}$ and a set $T=\left\{t_{1}, \ldots, t_{k}\right\} \subseteq V(G)$ of terminals.

A multiway cut of T is a subset E^{\prime} of edges such that no two terminals in the graph $\left(V(G), E(G)-E^{\prime}\right)$ are connected.

MultiwayCut

Given: A connected graph G with edge costs $c: E(G) \rightarrow \mathbb{Q}^{+}$ and a set $T=\left\{t_{1}, \ldots, t_{k}\right\} \subseteq V(G)$ of terminals.

A multiway cut of T is a subset E^{\prime} of edges such that no two terminals in the graph $\left(V(G), E(G)-E^{\prime}\right)$ are connected.

Find: A minimum-cost multiway cut of T.

MultiwayCut

Given: A connected graph G with edge costs $c: E(G) \rightarrow \mathbb{Q}^{+}$ and a set $T=\left\{t_{1}, \ldots, t_{k}\right\} \subseteq V(G)$ of terminals.

A multiway cut of T is a subset E^{\prime} of edges such that no two terminals in the graph $\left(V(G), E(G)-E^{\prime}\right)$ are connected.

Find: A minimum-cost multiway cut of T.

MultiwayCut

Given: A connected graph G with edge costs $c: E(G) \rightarrow \mathbb{Q}^{+}$ and a set $T=\left\{t_{1}, \ldots, t_{k}\right\} \subseteq V(G)$ of terminals.

A multiway cut of T is a subset E^{\prime} of edges such that no two terminals in the graph $\left(V(G), E(G)-E^{\prime}\right)$ are connected.
Find: A minimum-cost multiway cut of T.

MultiwayCut

Given: A connected graph G with edge costs $c: E(G) \rightarrow \mathbb{Q}^{+}$ and a set $T=\left\{t_{1}, \ldots, t_{k}\right\} \subseteq V(G)$ of terminals.

A multiway cut of T is a subset E^{\prime} of edges such that no two terminals in the graph $\left(V(G), E(G)-E^{\prime}\right)$ are connected.
Find: A minimum-cost multiway cut of T.

Special cases:

MultiwayCut

Given: A connected graph G with edge costs $c: E(G) \rightarrow \mathbb{Q}^{+}$ and a set $T=\left\{t_{1}, \ldots, t_{k}\right\} \subseteq V(G)$ of terminals.

A multiway cut of T is a subset E^{\prime} of edges such that no two terminals in the graph $\left(V(G), E(G)-E^{\prime}\right)$ are connected.
Find: A minimum-cost multiway cut of T.

Special cases:
$k=2$: Min $s-t$ cut

MultiwayCut

Given: A connected graph G with edge costs $c: E(G) \rightarrow \mathbb{Q}^{+}$ and a set $T=\left\{t_{1}, \ldots, t_{k}\right\} \subseteq V(G)$ of terminals.

A multiway cut of T is a subset E^{\prime} of edges such that no two terminals in the graph $\left(V(G), E(G)-E^{\prime}\right)$ are connected.
Find: A minimum-cost multiway cut of T.

Special cases:

$$
\begin{aligned}
& k=2: \text { Min } s-t \text { cut } \\
& k \geq 3: \text { NP-hard }
\end{aligned}
$$

Isolating Cuts

An isolating cut for a terminal t_{i} is a set of edges that disconnects t_{i} from all other terminals.

Isolating Cuts

An isolating cut for a terminal t_{i} is a set of edges that disconnects t_{i} from all other terminals.

Isolating Cuts

An isolating cut for a terminal t_{i} is a set of edges that disconnects t_{i} from all other terminals.

A minimum-cost isolating cut for t_{i} can be computed efficiently:

Isolating Cuts

An isolating cut for a terminal t_{i} is a set of edges that disconnects t_{i} from all other terminals.

A minimum-cost isolating cut for t_{i} can be computed efficiently:

S

Add dummy terminal s

Isolating Cuts

An isolating cut for a terminal t_{i} is a set of edges that disconnects t_{i} from all other terminals.

A minimum-cost isolating cut for t_{i} can be computed efficiently:

Add dummy terminal s

Isolating Cuts

An isolating cut for a terminal t_{i} is a set of edges that disconnects t_{i} from all other terminals.

A minimum-cost isolating cut for t_{i} can be computed efficiently:

Add dummy terminal s

Isolating Cuts

An isolating cut for a terminal t_{i} is a set of edges that disconnects t_{i} from all other terminals.

A minimum-cost isolating cut for t_{i} can be computed efficiently:

Add dummy terminal s

Isolating Cuts

An isolating cut for a terminal t_{i} is a set of edges that disconnects t_{i} from all other terminals.

A minimum-cost isolating cut for t_{i} can be computed efficiently:

Add dummy terminal s and find a minimum-cost $s-t_{i}$ cut.

Approximation Algorithms

Lecture 3:
SteinerTree and MultiwayCut

Part VI:
Algorithm for MultiwayCut

Algorithm MultiwayCut
For $i=1, \ldots, k$:

Algorithm MultiwayCut

For $i=1, \ldots, k$:
Compute a minimum-cost isolating cut C_{i} for t_{i}.

Algorithm MultiwayCut
For $i=1, \ldots, k$:
\square Compute a minimum-cost isolating cut C_{i} for t_{i}.
■ Return the union \mathcal{C} of the $k-1$ cheapest such isolating cuts.

Algorithm MultiwayCut
For $i=1, \ldots, k$:
Compute a minimum-cost isolating cut C_{i} for t_{i}.
■ Return the union \mathcal{C} of the $k-1$ cheapest such isolating cuts.

In other words:

Ignore the most expensive one of the isolating cuts C_{1}, \ldots, C_{k}.

Algorithm MultiwayCut

For $i=1, \ldots, k$:

Compute a minimum-cost isolating cut C_{i} for t_{i}.
■ Return the union \mathcal{C} of the $k-1$ cheapest such isolating cuts.

In other words:

Ignore the most expensive one of the isolating cuts C_{1}, \ldots, C_{k}.
$\Rightarrow c(C) \quad ? \quad \sum_{i=1}^{k} c\left(C_{i}\right)$

Algorithm MultiwayCut

For $i=1, \ldots, k$:

Compute a minimum-cost isolating cut C_{i} for t_{i}.
■ Return the union \mathcal{C} of the $k-1$ cheapest such isolating cuts.

In other words:

Ignore the most expensive one of the isolating cuts C_{1}, \ldots, C_{k}.
$\Rightarrow c(C) \leq$

$$
\sum_{i=1}^{k} c\left(C_{i}\right)
$$

Algorithm MultiwayCut

For $i=1, \ldots, k$:

Compute a minimum-cost isolating cut C_{i} for t_{i}.
■ Return the union \mathcal{C} of the $k-1$ cheapest such isolating cuts.

In other words:

Ignore the most expensive one of the isolating cuts C_{1}, \ldots, C_{k}.
$\Rightarrow c(C) \leq\left(1-\frac{1}{k}\right) \sum_{i=1}^{k} c\left(C_{i}\right)$ because:

Algorithm MultiwayCut

For $i=1, \ldots, k$:

Compute a minimum-cost isolating cut C_{i} for t_{i}.
■ Return the union \mathcal{C} of the $k-1$ cheapest such isolating cuts.

In other words:

Ignore the most expensive one of the isolating cuts C_{1}, \ldots, C_{k}.
$\Rightarrow c(C) \leq\left(1-\frac{1}{k}\right) \sum_{i=1}^{k} c\left(C_{i}\right)$ because:
for the most expensive cut of C_{1}, \ldots, C_{k}, say C_{1}, we have

$$
c\left(C_{1}\right) \geq
$$

Algorithm MultiwayCut

For $i=1, \ldots, k$:

Compute a minimum-cost isolating cut C_{i} for t_{i}.
■ Return the union \mathcal{C} of the $k-1$ cheapest such isolating cuts.

In other words:

Ignore the most expensive one of the isolating cuts C_{1}, \ldots, C_{k}.
$\Rightarrow c(C) \leq\left(1-\frac{1}{k}\right) \sum_{i=1}^{k} c\left(C_{i}\right)$ because:
for the most expensive cut of C_{1}, \ldots, C_{k}, say C_{1}, we have

$$
c\left(C_{1}\right) \geq \frac{1}{k} \sum_{i=1}^{k} c\left(C_{i}\right)
$$

Algorithm MultiwayCut

For $i=1, \ldots, k$:

Compute a minimum-cost isolating cut C_{i} for t_{i}.
■ Return the union \mathcal{C} of the $k-1$ cheapest such isolating cuts.

In other words:

Ignore the most expensive one of the isolating cuts C_{1}
$\Rightarrow c(C) \leq\left(1-\frac{1}{k}\right) \sum_{i=1}^{k} c\left(C_{i}\right)$ because:
for the most expensive cut of C_{1}, \ldots, C_{k}, say C_{1}, we have

$$
c\left(C_{1}\right) \geq \frac{1}{k} \sum_{i=1}^{k} c\left(C_{i}\right) \text { by the pidgeon-hole principle. }
$$

Approximation Factor

Theorem. This algorithm is a factor-(approximation algorithm for MultiwayCut.

Approximation Factor

Theorem. This algorithm is a factor- $(2-2 / k)$ approximation algorithm for MultiwayCut.

Approximation Factor

Theorem. This algorithm is a factor- $(2-2 / k)$ approximation algorithm for MultiwayCut.

Proof. Consider an opt. multiway cut \mathcal{A} :

Approximation Factor

Theorem. This algorithm is a factor- $(2-2 / k)$ approximation algorithm for MultiwayCut.

Proof. Consider an opt. multiway cut \mathcal{A} :

Approximation Factor

Theorem. This algorithm is a factor- $(2-2 / k)$ approximation algorithm for MultiwayCut.

Proof. Consider an opt. multiway cut \mathcal{A} :

Approximation Factor

Theorem. This algorithm is a factor- $(2-2 / k)$ approximation algorithm for MultiwayCut.

Proof. Consider an opt. multiway cut \mathcal{A} :

Approximation Factor

Theorem. This algorithm is a factor- $(2-2 / k)$ approximation algorithm for MultiwayCut.

Proof. Consider an opt. multiway cut \mathcal{A} :

Approximation Factor

Theorem. This algorithm is a factor- $(2-2 / k)$ approximation algorithm for MultiwayCut.

Proof. Consider an opt. multiway cut \mathcal{A} :

Observation. $\mathcal{A}=$

Approximation Factor

Theorem. This algorithm is a factor- $(2-2 / k)$ approximation algorithm for MultiwayCut.

Proof. Consider an opt. multiway cut \mathcal{A} :

Observation. $\mathcal{A}=\bigcup_{i=1} A_{i}$

Approximation Factor

Theorem. This algorithm is a factor- $(2-2 / k)$ approximation algorithm for MultiwayCut.

Proof. Consider an opt. multiway cut \mathcal{A} :

Observation. $\mathcal{A}=\bigcup_{i=1} A_{i}$ and $\sum_{i=1}^{k} c\left(A_{i}\right) \leq$

Approximation Factor

Theorem. This algorithm is a factor- $(2-2 / k)$ approximation algorithm for MultiwayCut.

Proof. Consider an opt. multiway cut \mathcal{A} :

Observation. $\mathcal{A}=\bigcup_{i=1} A_{i}$ and $\sum_{i=1}^{k} c\left(A_{i}\right) \leq 2 \cdot c(\mathcal{A})=$

Approximation Factor

Theorem. This algorithm is a factor- $(2-2 / k)$ approximation algorithm for MultiwayCut.

Proof. Consider an opt. multiway cut \mathcal{A} :

Observation. $\mathcal{A}=\bigcup_{i=1} A_{i}$ and $\sum_{i=1}^{k} c\left(A_{i}\right) \leq 2 \cdot c(\mathcal{A})=2 \cdot \mathrm{OPT}$.

Approximation Factor

Theorem. This algorithm is a factor- $(2-2 / k)$ approximation algorithm for MultiwayCut.

Proof. Consider an opt. multiway cut \mathcal{A} : Consider the alg.'s solution \mathcal{C} :

Observation. $\mathcal{A}=\bigcup_{i=1} A_{i}$ and $\sum_{i=1}^{k} c\left(A_{i}\right) \leq 2 \cdot c(\mathcal{A})=2 \cdot \mathrm{OPT}$.

Approximation Factor

Theorem. This algorithm is a factor- $(2-2 / k)$ approximation algorithm for MultiwayCut.

Proof. Consider an opt. multiway cut \mathcal{A} : Consider the alg.'s solution \mathcal{C} :

Observation. $\mathcal{A}=\bigcup_{i=1} A_{i}$ and $\sum_{i=1}^{k} c\left(A_{i}\right) \leq 2 \cdot c(\mathcal{A})=2 \cdot \mathrm{OPT}$.

Approximation Factor

Theorem. This algorithm is a factor- $(2-2 / k)$ approximation algorithm for MultiwayCut.

Proof. Consider an opt. multiway cut \mathcal{A} : Consider the alg.'s solution \mathcal{C} :

Observation. $\mathcal{A}=\bigcup_{i=1} A_{i}$ and $\sum_{i=1}^{k} c\left(A_{i}\right) \leq 2 \cdot c(\mathcal{A})=2 \cdot \mathrm{OPT}$.

Approximation Factor

Theorem. This algorithm is a factor- $(2-2 / k)$ approximation algorithm for MultiwayCut.

Proof. Consider an opt. multiway cut \mathcal{A} : Consider the alg.'s solution \mathcal{C} :

$$
\begin{aligned}
c(C) & \leq\left(1-\frac{1}{k}\right) \sum_{i=1}^{k} c\left(C_{i}\right) \\
& \leq\left(1-\frac{1}{k}\right) \sum_{i=1}^{k} c\left(A_{i}\right) \\
& \leq\left(1-\frac{1}{k}\right) \cdot 2 \cdot c(\mathcal{A})
\end{aligned}
$$

$$
A_{i}=\left\{u v \in \mathcal{A}: u \in \kappa_{i}, v \notin \kappa_{i}\right\}
$$

Observation. $\mathcal{A}=\bigcup_{i=1} A_{i}$ and $\sum_{i=1}^{k} c\left(A_{i}\right) \leq 2 \cdot c(\mathcal{A})=2 \cdot \mathrm{OPT}$.

Approximation Factor

Theorem. This algorithm is a factor- $(2-2 / k)$ approximation algorithm for MultiwayCut.

Proof. Consider an opt. multiway cut \mathcal{A} : Consider the alg.'s solution \mathcal{C} :

$$
c(C) \leq\left(1-\frac{1}{k}\right) \sum_{i=1}^{k} c\left(C_{i}\right)
$$

$$
\leq\left(1-\frac{1}{k}\right) \sum_{i=1}^{k} c\left(A_{i}\right)
$$

$$
\leq\left(1-\frac{1}{k}\right) \cdot 2 \cdot c(\mathcal{A})
$$

$$
\leq\left(2-\frac{2}{k}\right) \cdot \mathrm{OPT}
$$

$$
A_{i}=\left\{u v \in \mathcal{A}: u \in \kappa_{i}, v \notin \kappa_{i}\right\}
$$

Observation. $\mathcal{A}=\bigcup_{i=1} A_{i}$ and $\sum_{i=1}^{k} c\left(A_{i}\right) \leq 2 \cdot c(\mathcal{A})=2 \cdot \mathrm{OPT}$.

Analysis Tight?
K_{k}

Analysis Tight?

K_{k}

Analysis Tight?

K_{k}

Analysis Tight?

Analysis Tight?

Analysis Tight?

Analysis Tight?

Analysis Tight?

K_{k}

$$
\operatorname{ALG}=(k-1)(k-1)
$$

Analysis Tight?

K_{k}

$$
\begin{aligned}
& \mathrm{ALG}=(k-1)(k-1) \\
& \mathrm{OPT}=\sum_{i=1}^{k-1} i=
\end{aligned}
$$

Analysis Tight?

K_{k}

$$
\begin{aligned}
& \mathrm{ALG}=(k-1)(k-1) \\
& \mathrm{OPT}=\sum_{i=1}^{k-1} i=\frac{k \cdot(k-1)}{2}
\end{aligned}
$$

Analysis Tight?

$$
\begin{aligned}
& \mathrm{ALG}=(k-1)(k-1) \\
& \mathrm{OPT}=\sum_{i=1}^{k-1} i=\frac{k \cdot(k-1)}{2} \\
& \mathrm{ALG} / \mathrm{OP} T=
\end{aligned}
$$

Analysis Tight?

$$
\begin{aligned}
& \mathrm{ALG}=(k-1)(k-1) \\
& \mathrm{OPT}=\sum_{i=1}^{k-1} i=\frac{k \cdot(k-1)}{2} \\
& \mathrm{ALG} / \mathrm{OP} T=\frac{2(k-1)}{k}=
\end{aligned}
$$

Analysis Tight?

$$
\begin{aligned}
& \text { ALG }=(k-1)(k-1) \\
& \text { OPT }=\sum_{i=1}^{k-1} i=\frac{k \cdot(k-1)}{2} \\
& \text { ALG/OPT }=\frac{2(k-1)}{k}=2-\frac{2}{k}
\end{aligned}
$$

Analysis Tight?

$$
\begin{aligned}
& \text { ALG }=(k-1)(k-1) \\
& \text { OPT }=\sum_{i=1}^{k-1} i=\frac{k \cdot(k-1)}{2} \\
& \text { ALG/OPT }=\frac{2(k-1)}{k}=2-\frac{2}{k}
\end{aligned}
$$

Can we do better?

Analysis Tight?

$$
\begin{aligned}
& \text { ALG }=(k-1)(k-1) \\
& \text { OPT }=\sum_{i=1}^{k-1} i=\frac{k \cdot(k-1)}{2} \\
& \text { ALG/OPT }=\frac{2(k-1)}{k}=2-\frac{2}{k}
\end{aligned}
$$

Can we do better?
The best known approximation factor for MultiwayCut is $1.2965-\frac{1}{k}$. [Sharma \& Vondrák, STOC'14]

Analysis Tight?

$$
\begin{aligned}
& \text { ALG }=(k-1)(k-1) \\
& \text { OPT }=\sum_{i=1}^{k-1} i=\frac{k \cdot(k-1)}{2} \\
& \text { ALG/OPT }=\frac{2(k-1)}{k}=2-\frac{2}{k}
\end{aligned}
$$

Can we do better?
The best known approximation factor for MultiwayCut is $1.2965-\frac{1}{k}$. [Sharma \& Vondrák, STOC'14]

MultiwayCut cannot be approximated within factor 1.20016 - $O(1 / k)$ (unless $P=N P$).
[Bérczi, Chandrasekaran, Király \& Madan, MP'18]

