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2. Compute a set cover {S(π1), . . . , S(πk)}

with the algorithm GreedySetCover.

3. Return π1 ◦ . . . ◦ πk as the superstring.

This algorithm is a factor-2Hn approximation
algorithm for ShortestSuperString.

Theorem.

OPTSC ≤ 2 · OPTSSS.Lemma.

GreedySetCover is a factor-Hk approximation
algorithm for SetCover, where k is the
cardinality of the largest set in S and
Hk := 1 + 1

2 + 1
3 + . . .+ 1

k ≤ 1 + ln k.

Theorem.



17/17

Can we do better?



17/17

Can we do better?

• The best known approximation factor for
ShortestSuperString is (

√
67 + 14)/9 ≈ 2.466.

[Englert, Matsakis, Veselý: STOC 2022, ISAAC 2023]
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Can we do better?

• The best known approximation factor for
ShortestSuperString is (

√
67 + 14)/9 ≈ 2.466.

[Englert, Matsakis, Veselý: STOC 2022, ISAAC 2023]

• ShortestSuperString cannot be approximated within
factor 333

332 ≈ 1.003 (unless P = NP).
[Karpinski & Schmied: CATS 2013]
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