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What is the real cost of picking a set?
Set with k elements and cost ¢ has per-element cost c¢/k.
What happens if we “buy” a set?
Fix price of elements bought and recompute per-element cost.

L D ey Price(u)
Greedy: Always choose the set with minimum per-element cost.
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‘Theorem. GreedySetCover is a factor-  approximation

algorithm for SETCOVER, where k is the

cardinality of the largest set in & and
=14+24+3+...+1<

1 - : 1 1
n n—1 n—2 2
Y ) ) ) )
[: o o o o o :} 1+ ¢
__J U J U U
price(U) = H, OPT =1+¢

Can we do better?

No — for any € > 0, it is NP-hard to approximate SETCOVER
with factor
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is a subs’_crmg of any 2be
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*R Problem

SETCOVER Instance: ground set U, set family &, costs c.

Ground set U := {s1,.

.., Snt.

Let be o be the unique string with prefix s; and suffix s;
where s; and s; overlap on k characters (for suitable i/, j, k)

S;: cablaol Sj: ababcl | . Ilength k
cabab! cabab; S— .
ababc ababic | ) |
ijj2. cabababc Jjja: CababcC N -~ Y
Tjijk
S(O-ijk) — {5 c U | S substring of O-ijk} — contains the

elements of the ground set covered by ojji.

c(S(oijk)) = |oij|

(number of characters in ojj)

S :{S(U;jk)|1§i,j§n,k>0}
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.

N

Proof.
Consider an optimal set cover {S(m1),..., S(mx)} of U.

Then s :=m o...o0m Is a superstring of U of length
Zf'(zl il = Zf:l = OPTsc.
ThUS, OPTSSS S ‘S‘ — OPTsc.
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Algorithm for SSS

1. Construct SETCOVER instance (U, S, ¢).

2. Compute a set cover {S(m1),...,S(mx)}
with the algorithm GreedySetCover.

3. Return 7 o... 07, as the superstring.

Theorem. This algorithm is a factor- approximation )
algorithm for SHORTESTSUPERSTRING.

[Lemma. OPTSC < 2 - OPTsss.

‘Theorem. GreedySetCover is a factor-  approximation
algorithm for SETCOVER, where k is the
cardinality of the largest set in & and

=1+2+34+...+1 <
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Can we do better?

e The best known approximation factor for
SHORTESTSUPERSTRING s

e SHORTESTSUPERSTRING cannot be approximated within
factor (unless P=NP).
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