1/17

Approximation Algorithms

SETCOV:

| ecture
SR and SHORT:

2
SSTSUPERSTRING

Part |:

SETCOVER

Alexander Wolff

Winter 2023 /24

2/17

SETCOVER (card.)

Let U be some ground set (universe),

2/17

SETCOVER (card.)

Let U be some ground set (universe),

S

Let U be some ground set (universe),
and let & be a family of subsets of U with [JS§ = U.

ETCOV]

R (card.)

2/17

2/17

SETCOVER (card.)

Let U be some ground set (universe),
and let & be a family of subsets of U with [JS§ = U.

2/17

SETCOVER (card.)

Let U be some ground set (universe),
and let & be a family of subsets of U with [JS§ = U.

2/17

SETCOVER (card.)

Let U be some ground set (universe),
and let & be a family of subsets of U with [JS§ = U.

2/17

SETCOVER (card.)

Let U be some ground set (universe),
and let & be a family of subsets of U with [JS§ = U.

S

Let U be some ground set (universe),
and let & be a family of subsets of U with [JS§ = U.

ETCOV]

R (card.)

2/17

S

Let U be some ground set (universe),
and let & be a family of subsets of U with [JS§ = U.

ETCOV]

R (card.)

2/17

2/17

SETCOVER (card.)

Let U be some ground set (universe),
and let & be a family of subsets of U with [JS§ = U.

Find a cover &' C S of U (i.e., with | JS" = U) of minimum
cardinality.

S

Let U be some ground set (universe),
and let & be a family of subsets of U with [JS§ = U.

Find a cover &' C S of U (i.e., with | JS" = U) of minimum

ETCOVER (card.)

cardinality.

2/17

S

Let U be some ground set (universe),
and let & be a family of subsets of U with [JS§ = U.

Find a cover &' C S of U (i.e., with | JS" = U) of minimum

cardinality.

ETCOVER (general)

2/17

S

Let U be some ground set (universe),
and let & be a family of subsets of U with [JS§ = U.

Each S € § has .
Find a cover &' C S of U (i.e., with | JS" = U) of minimum

cardinality.

ETCOVER (general)

2/17

2/17

SETCOVER (general)

Let U be some ground set (universe),
and let & be a family of subsets of U with [JS§ = U.

Each S € § has cost ¢(S5) > 0.
Find a cover &' C S of U (i.e., with | JS" = U) of minimum
—cardimatity total cost c(&57) :—) o o c(5).

2/17

SETCOVER (general)

Let U be some ground set (universe),
and let & be a family of subsets of U with [JS§ = U.

Each S € § has cost ¢(S5) > 0.
Find a cover &' C S of U (i.e., with | JS" = U) of minimum
—cardimatity total cost c(&57) :—) o o c(5).

@8)

N
(@)

N O

2/17

SETCOVER (general)

Let U be some ground set (universe),
and let & be a family of subsets of U with [JS§ = U.

Each S € § has cost ¢(S5) > 0.
Find a cover &' C S of U (i.e., with | JS" = U) of minimum
—cardimatity total cost c(&57) :—) o o c(5).

Approximation Algorithms

ETCOV]

| ecture
SR and SHORT:

2
ASTSUP:

Part |l

CRSTRING

Greedy for SETCOVER

3/17

4/17

lterative “Buying” of Elements

What is the real cost of picking a set?

N
(@)
NI O

4/17

lterative "Buying’ of Elements

What is the real cost of picking a set?

1

L0009,

-~

N[O

4/17

lterative “Buying” of Elements

What is the real cost of picking a set?

4/17

lterative "Buying’ of Elements

What is the real cost of picking a set?
Set with k elements and cost ¢ has per-element cost c¢/k.

4/17

lterative "Buying’ of Elements

What is the real cost of picking a set?
Set with k elements and cost ¢ has per-element cost c¢/k.

4
B wls
N
D

4/17

lterative "Buying’ of Elements

What is the real cost of picking a set?
Set with k elements and cost ¢ has per-element cost c¢/k.

4
B wls
N
D

4/17

lterative "Buying’ of Elements

What is the real cost of picking a set?
Set with k elements and cost ¢ has per-element cost c¢/k.

4
B wls
N
D

4/17

lterative "Buying’ of Elements

What is the real cost of picking a set?
Set with k elements and cost ¢ has per-element cost c¢/k.

4
B wls
N
D

4/17

lterative “Buying” of Elements

What is the real cost of picking a set?
Set with k elements and cost ¢ has per-element cost c¢/k.

o
W =
j
o
D owis
o
D
D N
o
N | O1
o

4/17

lterative “Buying” of Elements

What is the real cost of picking a set?
Set with k elements and cost ¢ has per-element cost c¢/k.

o
W =
j

o
D owis

o

D

D N

o

|01
N | O1

o

4/17

lterative "Buying’ of Elements

What is the real cost of picking a set?
Set with k elements and cost ¢ has per-element cost c¢/k.

What happens if we “buy” a set?

i1
3
5
o]' o o % o Q 2 o 6 o
3 | 4 6 >

4/17

lterative "Buying’ of Elements

What is the real cost of picking a set?

Set with k elements and cost ¢ has per-element cost c¢/k.
What happens if we “buy” a set?

Fix price of elements bought and recompute per-element cost.

i1
3
5
o]' o o % o Q 2 o 6 o
3 | 4 6 >

4/17

lterative "Buying’ of Elements

What is the real cost of picking a set?

Set with k elements and cost ¢ has per-element cost c¢/k.
What happens if we “buy” a set?

Fix price of elements bought and recompute per-element cost.

o
W =
J
| PY
wW|H
o
WlH
<
(@) \§)
o
|01
o

N[O

4/17

lterative "Buying’ of Elements

What is the real cost of picking a set?

Set with k elements and cost ¢ has per-element cost c¢/k.
What happens if we “buy” a set?

Fix price of elements bought and recompute per-element cost.

o
W =
J
| PY
wW|H
o
WlH
<
(@) \§)
o
|01
o

N[O

4/17

lterative "Buying’ of Elements

What is the real cost of picking a set?

Set with k elements and cost ¢ has per-element cost c¢/k.
What happens if we “buy” a set?

Fix price of elements bought and recompute per-element cost.

o
W =
J
| PY
wW|H
o
WlH
<
(@) \§)
o
|01
o

N[O

4/17

lterative "Buying’ of Elements

What is the real cost of picking a set?

Set with k elements and cost ¢ has per-element cost c¢/k.
What happens if we “buy” a set?

Fix price of elements bought and recompute per-element cost.

°
W =
J

®
Wl
N
°
Wlh
S N
°
(@)1[8]]
N O1
°

4/17

lterative "Buying’ of Elements

What is the real cost of picking a set?

Set with k elements and cost ¢ has per-element cost c¢/k.
What happens if we “buy” a set?

Fix price of elements bought and recompute per-element cost.

°
W =
J

®
Wl
N
°
Wlh
S N
°
(@)1[8]]
N O1
°

4/17

lterative "Buying’ of Elements

What is the real cost of picking a set?

Set with k elements and cost ¢ has per-element cost c¢/k.
What happens if we “buy” a set?

Fix price of elements bought and recompute per-element cost.

®
QD pIWw
4
®
WlHs
i
®
wWlH
S W
®
INTS,!
N O
o

4/17

lterative "Buying’ of Elements

What is the real cost of picking a set?

Set with k elements and cost ¢ has per-element cost c¢/k.
What happens if we “buy” a set?

Fix price of elements bought and recompute per-element cost.

1 1
4 5
%o %0 o3 ot \o/ 3 o 4 o
3 4 6 -
4 4 4 4
o o , °3 5\0

4/17

lterative "Buying’ of Elements

What is the real cost of picking a set?

Set with k elements and cost ¢ has per-element cost c¢/k.
What happens if we “buy” a set?

Fix price of elements bought and recompute per-element cost.

@)
NIO1
N |O1

o
Wl
o
W[
o
OV

4/17

lterative "Buying’ of Elements

What is the real cost of picking a set?

Set with k elements and cost ¢ has per-element cost c¢/k.
What happens if we “buy” a set?

Fix price of elements bought and recompute per-element cost.

o
Wl
o
W[
o
OV

4/17

lterative "Buying’ of Elements

What is the real cost of picking a set?

Set with k elements and cost ¢ has per-element cost c¢/k.
What happens if we “buy” a set?

Fix price of elements bought and recompute per-element cost.
L D ey Price(u)

o
Wl
o
W[
o
OV

4/17

lterative "Buying’ of Elements

What is the real cost of picking a set?
Set with k elements and cost ¢ has per-element cost c¢/k.
What happens if we “buy” a set?
Fix price of elements bought and recompute per-element cost.

L D ey Price(u)
Greedy: Always choose the set with minimum per-element cost.

o
Wl
o
W[
o
OV

5/17

Greedy for SETCOVER

‘GreedySetCover(U, S, ¢)

C+ 0
S ()

return &’ // Cover of U

5/17

Greedy for SETCOVER

‘GreedySetCover(U, S, ¢)
- C«

S+ 10

while C # U do

return &’ // Cover of U

5/17

Greedy for SETCOVER

‘GreedySetCover(U, S, ¢)

C+ 10
S«
while C # U do

S « set in S that minimizes -<\2)

[S\C]

return &’ // Cover of U

5/17

Greedy for SETCOVER

‘GreedySetCover(U, S, ¢)
 C«0

S ()

while C # U do
S < set in § that minimizes

foreach u € S\ C do

:

c(S)
[S\C]

return &’ // Cover of U

5/17

Greedy for SETCOVER

‘GreedySetCover(U, S, ¢)
 C«0

S ()

while C # U do
S < set in § that minimizes

foreach u € S\ C do
"] C(S)
L price(u) < GXe

c(S)
S\ C]

return &’ // Cover of U

5/17

Greedy for SETCOVER

‘GreedySetCover(U, S, ¢)
- C+0
S <+ 0
while C # U do
S < set in & that minimizes
foreach u € S\ C do
" y, C(S)
L price(u) < GXe
C+—CUS

c(S)
S\ C]

return &’ // Cover of U

5/17

Greedy for SETCOVER

‘GreedySetCover(U, S, ¢)
- C+« 0
S 1
while C # U do
S < set in & that minimizes %
foreach u € S\ C do
" Z C(S)
t price(u) < GXe
C+—CUS
ST S U{S) |
return &’ // Cover of U

Approximation Algorithms

ETCOV]

| ecture
SR and SHORT:

2
ASTSUP:

Part 1ll:

CRSTRING

Analysis

6/17

7/17

Analysis

7/17

Analysis

‘Theorem. GreedySetCover is a factor- approximation
algorithm for SETCOVER, where k is the
cardinality of the largest set in & and

=1+3+1+...+1-05+Ink

‘Lemma. Let S€ S, and let Ui, ..., U, be the elements of S
in the order in which they are covered (“bought”)
by GreedySetCover. Then

price(u;) <

7/17

Analysis

‘Theorem. GreedySetCover is a factor- approximation
algorithm for SETCOVER, where k is the
cardinality of the largest set in & and

=1+3+1+...+1-05+Ink

‘Lemma. Let S€ S, and let Ui, ..., U, be the elements of S
in the order in which they are covered (“bought”)
by GreedySetCover. Then

price(u;) < /

7/17

Analysis

‘Theorem. GreedySetCover is a factor- approximation
algorithm for SETCOVER, where k is the
cardinality of the largest set in & and

=1+3+1+...+1-05+Ink

‘Lemma. Let S€ S, and let uy, ..., uy, be the elements of S
in the order in which they are covered (“bought”)
by GreedySetCover. Then

price(u;) < (5)/(¢ = j +1),

7/17

Analysis

‘Theorem. GreedySetCover is a factor- approximation
algorithm for SETCOVER, where k is the
cardinality of the largest set in & and

=1+3+1+...+1-05+Ink

‘Lemma. Let S€ S, and let uy, ..., uy, be the elements of S
in the order in which they are covered (“bought”)
by GreedySetCover. Then

price(u;) < (5)/(¢ = j +1),

Proof.

7/17

Analysis

‘Theorem. GreedySetCover is a factor- approximation
algorithm for SETCOVER, where k is the
cardinality of the largest set in & and

=1+3+1+...+1-05+Ink

‘Lemma. Let S€ S, and let Ui, ..., U, be the elements of S
in the order in which they are covered (“bought”)
by GreedySetCover. Then

price(u;) < (5)/(¢ = j +1),

A J

Proof. Consider the iteration when the algorithm buys u;:

7/17

Analysis

‘Theorem. GreedySetCover is a factor- approximation
algorithm for SETCOVER, where k is the
cardinality of the largest set in & and

=1+3+1+...+1-05+Ink

‘Lemma. Let S€ S, and let Ui, ..., U, be the elements of S
in the order in which they are covered (“bought”)
by GreedySetCover. Then

price(u;) < (5)/(¢ = j +1),

A J

Proof. Consider the iteration when the algorithm buys u;:
e At most j — 1 elements of S already bought.

7/17

Analysis

‘Theorem. GreedySetCover is a factor- approximation
algorithm for SETCOVER, where k is the
cardinality of the largest set in & and

=1+3+1+...+1-05+Ink

‘Lemma. Let S€ S, and let Ui, ..., U, be the elements of S
in the order in which they are covered (“bought”)
by GreedySetCover. Then

price(u;) < (5)/(¢ = j +1),

A J

Proof. Consider the iteration when the algorithm buys u;:

e At most j — 1 elements of S already bought.
o At least £ —j 4+ 1 elements of S not yet bought.

7/17

Analysis

‘Theorem. GreedySetCover is a factor- approximation
algorithm for SETCOVER, where k is the
cardinality of the largest set in & and

=1+3+1+...+1-05+Ink

‘Lemma. Let S€ S, and let Ui, ..., U, be the elements of S
in the order in which they are covered (“bought”)
by GreedySetCover. Then

price(u;) < (5)/(¢ = j +1),

A J

Proof. Consider the iteration when the algorithm buys u;:

e At most j — 1 elements of S already bought.
o At least £ —j 4+ 1 elements of S not yet bought.
e Per-element cost for S: . +1)

7/17

Analysis

‘Theorem. GreedySetCover is a factor- approximation
algorithm for SETCOVER, where k is the
cardinality of the largest set in & and

=1+3+1+...+1-05+Ink

‘Lemma. Let S€ S, and let Ui, ..., U, be the elements of S
in the order in which they are covered (“bought”)
by GreedySetCover. Then

price(u;) < (5)/(¢ = j +1),

A J

Proof. Consider the iteration when the algorithm buys u;:

e At most j — 1 elements of S already bought.
o At least £ —j 4+ 1 elements of S not yet bought.
e Per-element cost for S: at most /(£—j+1)

7/17

Analysis

‘Theorem. GreedySetCover is a factor- approximation
algorithm for SETCOVER, where k is the
cardinality of the largest set in & and

=1+3+1+...+1-05+Ink

‘Lemma. Let S€ S, and let Ui, ..., U, be the elements of S
in the order in which they are covered (“bought”)
by GreedySetCover. Then

price(u;) < (5)/(¢ = j +1),

A J

Proof. Consider the iteration when the algorithm buys u;:
e At most j — 1 elements of S already bought.
At least ¢ — j + 1 elements of S not yet bought.

o
e Per-element cost for S: at most /(£—j+1)
e Price by alg. no larger due to greedy choice.

7/17

Analysis

‘Theorem. GreedySetCover is a factor- approximation

algorithm for SETCOVER, where k is the

cardinality of the largest set in & and
=1+3+1+...+1-05+Ink

‘Lemma. Let S€ S, and let uy, ..., uy, be the elements of S
in the order in which they are covered (“bought”)
by GreedySetCover. Then

price(u;) < (5)/(¢ = j +1),

Lemma. price(S) := Zle price(u;) <

7/17

Analysis

‘Theorem. GreedySetCover is a factor- approximation

algorithm for SETCOVER, where k is the

cardinality of the largest set in & and
=1+3+1+...+1-05+Ink

‘Lemma. Let S€ S, and let uy, ..., uy, be the elements of S
in the order in which they are covered (“bought”)
by GreedySetCover. Then

price(u;) < (5)/(¢ = j +1),

Lemma. price(S) := Zle price(u;) <

7/17

Analysis

‘Theorem. GreedySetCover is a factor- approximation

algorithm for SETCOVER, where k is the

cardinality of the largest set in & and
=1+3+1+...+1-05+Ink

‘Lemma. Let S€ S, and let uy, ..., uy, be the elements of S
in the order in which they are covered (“bought”)
by GreedySetCover. Then

price(u;) < (5)/(¢ = j +1),

Lemma. price(S) := Zle price(u;) <

7/17

Analysis

‘Theorem. GreedySetCover is a factor- approximation

algorithm for SETCOVER, where k is the

cardinality of the largest set in & and
=1+3+1+...+1-05+Ink

‘Lemma. Let S€ S, and let uy, ..., uy, be the elements of S
in the order in which they are covered (“bought”)
by GreedySetCover. Then

price(u;) < (5)/(¢ = j +1),

Lemma. price(S) := Zle price(u;) <
Proof. Let {S1,...,5,,} be opt. sol.

7/17

Analysis

‘Theorem. GreedySetCover is a factor- approximation

algorithm for SETCOVER, where k is the

cardinality of the largest set in & and
=1+3+1+...+1-05+Ink

‘Lemma. Let S€ S, and let uy, ..., uy, be the elements of S
in the order in which they are covered (“bought”)
by GreedySetCover. Then

price(u;) < (5)/(¢ = j +1),

Lemma. price(S) := Zle price(u;) <
Proof. Let {S1,...,5,} beopt. sol. OPT =

7/17

Analysis

‘Theorem. GreedySetCover is a factor- approximation

algorithm for SETCOVER, where k is the

cardinality of the largest set in & and
=1+3+1+...+1-05+Ink

‘Lemma. Let S€ S, and let uy, ..., uy, be the elements of S
in the order in which they are covered (“bought”)
by GreedySetCover. Then

price(u;) < (5)/(¢ = j +1),

Lemma. price(S) := Zle price(u;) <

Proof. Let {S1,...,5,} beopt. sol. OPT =
price(U) =

7/17

Analysis

‘Theorem. GreedySetCover is a factor- approximation

algorithm for SETCOVER, where k is the

cardinality of the largest set in & and
=1+3+1+...+1-05+Ink

‘Lemma. Let S€ S, and let uy, ..., uy, be the elements of S
in the order in which they are covered (“bought”)
by GreedySetCover. Then

price(u;) < (5)/(¢ = j +1),

Lemma. price(S) := Zle price(u;) <

Proof. Let {S1,...,5,} beopt. sol. OPT =
price(U) = >y price(u) <

7/17

Analysis

‘Theorem. GreedySetCover is a factor- approximation

algorithm for SETCOVER, where k is the

cardinality of the largest set in & and
=1+3+1+...+1-05+Ink

‘Lemma. Let S€ S, and let uy, ..., uy, be the elements of S
in the order in which they are covered (“bought”)
by GreedySetCover. Then

price(u;) < (5)/(¢ = j +1),

Lemma. price(S) := Zle price(u;) <

Proof. Let {S1,...,5,} beopt. sol. OPT =

price(U) =Y, price(u) < >°7, price(S;)
<

7/17

Analysis

‘Theorem. GreedySetCover is a factor- approximation

algorithm for SETCOVER, where k is the

cardinality of the largest set in & and
=1+3+1+...+1-05+Ink

‘Lemma. Let S€ S, and let uy, ..., uy, be the elements of S
in the order in which they are covered (“bought”)
by GreedySetCover. Then

price(u;) < (5)/(¢ = j +1),

Lemma. price(S) := Zle price(u;) <

Proof. Let {S1,...,5,} beopt. sol. OPT =

price(U) =Y, price(u) < >°7, price(S;)
< . p—

7/17

Analysis

‘Theorem. GreedySetCover is a factor- approximation

algorithm for SETCOVER, where k is the

cardinality of the largest set in & and
=1+3+1+...+1-05+Ink

‘Lemma. Let S€ S, and let uy, ..., uy, be the elements of S
in the order in which they are covered (“bought”)
by GreedySetCover. Then

price(u;) < (5)/(¢ = j +1),

Lemma. price(S) := Zle price(u;) <

Proof. Let {S1,...,5,} beopt. sol. OPT =

price(U) =Y, price(u) < >°7, price(S;)
< - Hy = OPT -

8/17

Analysis tight?

Analysis tight?

8/17

Analysis tight?

8/17

Analysis tight?

8/17

Analysis tight?

8/17

Analysis tight?

1 1
n n—1

8/17

Analysis tight?

1 1
n—1 n—2

1
n

8/17

Analysis tight?

1 1
n—1 n—2

1
n

8/17

Analysis tight?

1 1
n—1 n—2

1

1
n

8/17

Analysis tight?

1 1 1
n n—1 n—2

1

price(U) = H, OPT=1+¢

8/17

Analysis tight?

Pl ne ;1
price(U) = H, OPT =1+¢

Can we do better?

Analysis tight?

8/17

‘Theorem. GreedySetCover is a factor- approximation

algorithm for SETCOVER, where k is the

cardinality of the largest set in & and
=14+24+3+...+1<

1 - : 1 1
n n—1 n—2 2
Y))))
[: o o o o o :} 1+ ¢
__J U J U U
price(U) = H, OPT =1+¢

Can we do better?

No — for any € > 0, it is NP-hard to approximate SETCOVER
with factor

8/17

Analysis tight?

‘Theorem. GreedySetCover is a factor- approximation)
algorithm for SETCOVER, where k is the
cardinality of the largest set in & and

=1+3+3+...+1 <

AND NOW

FOR SOMETHING
Can we do | * COMPLETELY

No — for any . > DIFFERENT.

with factor (|

L
"':'-l
YD
“.“.
Vadaly =, S
Wi NS 0

8/17

Analysis tight?

‘Theorem. GreedySetCover is a factor- approximation)
algorithm for SETCOVER, where k is the
cardinality of the largest set in & and

=1+3+3+...+1 <

AND NOW

FOR SOMETHING
Can we do | * COMPLETELY

No — for any| K DIFFERENT

with factor (|

L
"':'-l
YD
“.“.
Vadaly =, S
Wi NS 0

Approximation Algorithms

ETCOV]

| ecture
SR and SHORT:

2
ASTSUP:

CRSTRING

Part |V:
SHORTESTSUPERSTRING

9/17

10/17

SHORTESTSUPERSTRING (SSS)

Given a set {si,..., s, C X T of strings over a finite alphabet X .

10/17

SHORTESTSUPERSTRING (SSS)

Given a set {si,..., s, C X T of strings over a finite alphabet X .

Find a shortest string s (superstring) such that,
for each i € {1,..., n}, the string s; is a substring of s.

10/17

SHORTESTSUPERSTRING (SSS)

Given a set {si,..., s, C X T of strings over a finite alphabet X .

Find a shortest string s (superstring) such that,
for each i € {1,..., n}, the string s; is a substring of s.

Example. U := {cbaa, abc, bcb}

10/17

SHORTESTSUPERSTRING (SSS)

Given a set {si,..., s, C X T of strings over a finite alphabet X .

Find a shortest string s (superstring) such that,
for each i € {1,..., n}, the string s; is a substring of s.

Example. U := {cbaa, abc, bcb} — cbaabch ?

10/17

SHORTESTSUPERSTRING (SSS)

Given a set {s1, ..., s, C X T of strings over a finite alphabet X .
Find a shortest string s (superstring) such that,

for each i € {1,..., n}, the string s; is a substring of s.
Example. U := {cbaa, abc, bcb} — cbaabch?

abc

10/17

SHORTESTSUPERSTRING (SSS)

Given a set {s1, ..., s, C X T of strings over a finite alphabet X .
Find a shortest string s (superstring) such that,
for each i € {1,..., n}, the string s; is a substring of s.
Example. U := {cbaa, abc, bcb} — cbaabch?

abc

bcb

10/17

SHORTESTSUPERSTRING (SSS)

Given a set {s1, ..., s, C X T of strings over a finite alphabet X .
Find a shortest string s (superstring) such that,
for each i € {1,..., n}, the string s; is a substring of s.
Example. U := {cbaa, abc, bcb} — cbaabch?
abc
bcb

cbaa

10/17

SHORTESTSUPERSTRING (SSS)

Given a set {s1, ..., s, C X T of strings over a finite alphabet X .
Find a shortest string s (superstring) such that,
for each i € {1,..., n}, the string s; is a substring of s.
Example. U := {cbaa, abc, bcb} — cbaabch?
abcbaa
abc
bcb

cbaa

10/17

SHORTESTSUPERSTRING (SSS)

Given a set {s1, ..., s, C X T of strings over a finite alphabet X .
Find a shortest string s (superstring) such that,

for each i € {1,..., n}, the string s; is a substring of s.
Example. U := {cbaa, abc, bcb} — cbaabch?

N

abcbaa “covers’ all strings in U

abc
bcb
cbaa

10/17

SHORTESTSUPERSTRING (SSS)

Given a set {s1, ..., s, C X T of strings over a finite alphabet X .
Find a shortest string s (superstring) such that,

for each i € {1,..., n}, the string s; is a substring of s.
Example. U := {cbaa, abc, bcb} — cbaabch?
W.l.o.g.: No string s; abcbaa “covers’ all strings in U

is a subs’_crmg of any 2be

other string s;. beb

cbaa

11/17

SSS as a SETCOVER Problem

SETCOVER Instance: ground set U, set family &, costs c.

11/17

SSS as a SETCOVER Problem

SETCOVER Instance: ground set U, set family &, costs c.
Ground set U := {5y, ..., Sn}.

11/17

SSS as a SETCOVER Problem

SETCOVER Instance: ground set U, set family S,
Ground set U ;= {sq, ..., Sn}.

Let be o be the unique string with prefix s; and suffix s;
where s; and s; overlap on k characters (for suitable i/, j, k)

11/17

SSS as a SETCOVER Problem

SETCOVER Instance: ground set U, set family S,
Ground set U ;= {sq, ..., Sn}.

Let be o be the unique string with prefix s; and suffix s;
where s; and s; overlap on k characters (for suitable i/, j, k)

Sj

11/17

SSS as a SETCOVER Problem

SETCOVER Instance: ground set U, set family S,
Ground set U ;= {sq, ..., Sn}.

Let be o be the unique string with prefix s; and suffix s;
where s; and s; overlap on k characters (for suitable i/, j, k)

Sj

11/17

SSS as a SETCOVER Problem

SETCOVER Instance: ground set U, set family S,
Ground set U ;= {sq, ..., Sn}.

Let be o be the unique string with prefix s; and suffix s;
where s; and s; overlap on k characters (for suitable i/, j, k)
length k

P
Sj : !

SSS as a SETCOVER Problem

SETCOVER Instance: ground set U, set family S,
Ground set U ;= {sq, ..., Sn}.

Let be o be the unique string with prefix s; and suffix s;
where s; and s; overlap on k characters (for suitable i/, j, k)

length k
S ! !

11/17

SSS as a SETCOVER Problem

SETCOVER Instance: ground set U, set family &, costs c.
Ground set U := {5y, ..., Sn}.

Let be o be the unique string with prefix s; and suffix s;
where s; and s; overlap on k characters (for suitable i/, j, k)

si: cabab s;: ababc . length k

11/17

SSS as a SETCOVER Problem

SETCOVER Instance: ground set U, set family &, costs c.
Ground set U := {5y, ..., Sn}.

Let be o be the unique string with prefix s; and suffix s;
where s; and s; overlap on k characters (for suitable i/, j, k)

si: cabab s;: ababc length k
5' ! I.
cabab ! :
1 Sj
ababc I

11/17

SSS as a SETCOVER Problem

SETCOVER Instance: ground set U, set family &, costs c.
Ground set U := {5y, ..., Sn}.

Let be o be the unique string with prefix s; and suffix s;
where s; and s; overlap on k characters (for suitable i/, j, k)

si: cabab s;: ababc length k

! : S; ! I.
cabab:! o
ababc |

11/17

SSS as a SETCOVER Problem

SETCOVER Instance: ground set U, set family &, costs c.
Ground set U := {s1,...,s,}.

Let be o be the unique string with prefix s; and suffix s;
where s; and s; overlap on k characters (for suitable i/, j, k)

S cablaol sj: ababc . length k
cabab! / | .
ababc |] I
ojj2: cabababc N g |

11/17

SSS as a SETCOVER Problem

SETCOVER Instance: ground set U, set family &, costs c.
Ground set U := {5y, ..., Sn}.

Let be o be the unique string with prefix s; and suffix s;
where s; and s; overlap on k characters (for suitable i/, j, k)

si: cabab s;: ababc length k
cab;ao; cabab 5 .
ababc ababc I J I
ojj2: cabababc \ — .

11/17

SSS as a SETCOVER Problem

SETCOVER Instance: ground set U, set family &, costs c.
Ground set U := {s1,...,s,}.

Let be o be the unique string with prefix s; and suffix s;
where s; and s; overlap on k characters (for suitable i/, j, k)

S;: cablaol Sj: ababcl | . Ilength k
cabab: cabab: S .
ababc ababic |] I
ijj2. cabababc Jjja: CababcC N -~ Y

11/17

SSS as a SETCoOV:

*R Problem

SETCOVER Instance: ground set U, set family S,

Ground set U := {51, ..

., Snt.

Let be o be the unique string with prefix s; and suffix s;
where s; and s; overlap on k characters (for suitable i/, j, k)
length k

si: cabab s;: ababc

cabab!
ababc
ojj2: cabababc

S(oijk) =

Cd
a
Ojj4. Cda

Dd
Dd

oF

e

DC

11/17

SSS as a SETCoOV:

11/17

*R Problem

SETCOVER Instance: ground set U, set family &, costs c.

Ground set U := {s1,.

.., Snt.

Let be o be the unique string with prefix s; and suffix s;
where s; and s; overlap on k characters (for suitable i/, j, k)

s;: caba
caba
P

ojj2: cabababc ojj4: caba

S(oijk)

b 5j: ababc
D! caba
habc aba

c (S(aijk))

S

e

DC

length k

> R
Sj : !

A\ 4
N

Oijk

{s € U | s substring of o;;x} — contains the
elements of the ground set covered by ojji.

SSS as a SETCoOV:

11/17

*R Problem

SETCOVER Instance: ground set U, set family &, costs c.

Ground set U := {s1,.

.., Snt.

Let be o be the unique string with prefix s; and suffix s;
where s; and s; overlap on k characters (for suitable i/, j, k)

s;: caba
caba
P

ojj2: cabababc ojj4: caba

S(oijk)

b 5j: ababc
D! caba
habc aba

c (S(aijk))

S

e

DC

length k

> R
Sj : !

A\ 4
N

Oijk

= {s € U | s substring of ;i } — contains the

elements of the ground set covered by ojji.

o] (number of characters in ojj)

SSS as a SETCoOV:

11/17

*R Problem

SETCOVER Instance: ground set U, set family &, costs c.

Ground set U := {s1,.

.., Snt.

Let be o be the unique string with prefix s; and suffix s;
where s; and s; overlap on k characters (for suitable i/, j, k)

S;: cablaol Sj: ababcl | . Ilength k
cabab! cabab; S— .
ababc ababic |) |
ijj2. cabababc Jjja: CababcC N -~ Y
Tjijk
S(O-ijk) — {5 c U | S substring of O-ijk} — contains the

elements of the ground set covered by ojji.

c(S(oijk)) = |oij|

(number of characters in ojj)

S :{S(U;jk)|1§i,j§n,k>0}

Approximation Algorithms

SETCOV:

| ecture
SR and SHORT:

2
ASTSUP:

Part V:

CRSTRING

Solving SHORTESTSUPERSTRING via SETCOVER

12/17

13/17

Relating SSS and SETCOVER

Relating SSS and SETCOVER

13/17

Lemma. Let OP 555 be the length of a shortest superstring
of U, and let OP Ts¢ be the minimum cost of the
corresponding SETCOVER instance. Then

OPTsss < OPTgc.

N

Proof.
Consider an optimal set cover {S(m1),..., S(mx)} of U.

Relating SSS and SETCOVER

13/17

(

Lemma. Let OP 555 be the length of a shortest superstring
of U, and let OP Ts¢ be the minimum cost of the
corresponding SETCOVER instance. Then

.

N

Proof.
Consider an optimal set cover {S(m1),..., S(mx)} of U.

Then s :=m o...o0m Is a superstring of U of length

Relating SSS and SETCOVER

13/17

N

‘Lemma. Let OP Tsss be the length of a shortest superstring
of U, and let OP Ts¢ be the minimum cost of the

corresponding SETCOVER instance. Then

.

Proof.
Consider an optimal set cover {S(m1),..., S(mx)} of U.

Then s :=m o...o0m Is a superstring of U of length

Zf'(zl || = Zf:l = OPTsc.

Relating SSS and SETCOVER

13/17

‘Lemma. Let OP Tsss be the length of a shortest superstring
of U, and let OP Ts¢ be the minimum cost of the
corresponding SETCOVER instance. Then

.

N

Proof.
Consider an optimal set cover {S(m1),..., S(mx)} of U.

Then s :=m o...o0m Is a superstring of U of length
Zf'(zl il = Zf:l = OPTsc.
ThUS, OPTSSS S ‘S‘ — OPTsc.

14/17

Relating SSS and SETCOVER

14/17

T
e

Relating SSS and SETCOV:

(Lemma. OPTgc <2-0PTgss. J

Proof. Consider an optimal superstring s.

14/17

T
e

Relating SSS and SETCOV:

(Lemma. OPTgc <2-0PTgss. J

Proof. Consider an optimal superstring s.

14/17

Relating SSS and SETCOVER
(Lemma. OPTgc <2-0PTgss. J
Proof. Consider an optimal superstring s.

Construct a set cover of cost < 2|s| =2 OPTgss.

14/17

Relating SSS and SETCOVER
(Lemma. OPTgc <2-0PTgss. J
Proof. Consider an optimal superstring s.

Construct a set cover of cost < 2|s| =2 OPTgss.

S

Sh :
: ¥—— Leftmost occurence of a string s, € U.

14/17

Relating SSS and SETCOVER
(Lemma. OPTgc <2-0PTgss. J
Proof. Consider an optimal superstring s.

Construct a set cover of cost < 2|s| =2 OPTgss.

¥— Leftmost occurence of another string in U.

14/17

Relating SSS and SETCOVER
[Lemma. OPTgc <2-0PTgss. J
Proof. Consider an optimal superstring s.

Construct a set cover of cost < 2|s| =2 OPTgss.

Leftmost occurence of another string in U.
Note that no string contains any other string.

14/17

Relating SSS and SETCOVER
(Lemma. OPTgc <2-0PTgss. J
Proof. Consider an optimal superstring s.

Construct a set cover of cost < 2|s| =2 OPTgss.

Leftmost occurence of another string in U.
Note that no string contains any other string.
= Right endpoints are ordered like left endpoints.

14/17

Relating SSS and SETCOVER
(Lemma. OPTgc <2-0PTgss. J
Proof. Consider an optimal superstring s.

Construct a set cover of cost < 2|s| =2 OPTgss.

¥——last such string that overlaps s,

14/17

Relating SSS and SETCOVER
(Lemma. OPTgc <2-0PTgss. J
Proof. Consider an optimal superstring s.

Construct a set cover of cost < 2|s| =2 OPTgss.

¥—last such string that overlaps s,

14/17

Relating SSS and SETCOVER
(Lemma. OPTgc <2-0PTgss. J
Proof. Consider an optimal superstring s.

Construct a set cover of cost < 2|s| =2 OPTgss.

¥—last such string that overlaps s,

O by,e1,k

Relating SSS and SETCOV:

T
e

14/17

(Lemma. OPTgc <2-0PTgss.

Proof. Consider an optimal superstring s.
Construct a set cover of cost < 2|s| =2 OPTgss.

Relating SSS and SETCOV:

T
e

14/17

(Lemma. OPTgc <2-0PTgss.

Proof. Consider an optimal superstring s.
Construct a set cover of cost < 2|s| =2 OPTgss.

5 = :
N S — s

Relating SSS and SETCOV:

T
e

14/17

(Lemma. OPTgc <2-0PTgss.

Proof. Consider an optimal superstring s.
Construct a set cover of cost < 2|s| =2 OPTgss.

5 = :
N S — s

Relating SSS and SETCOV:

T
e

14/17

(Lemma. OPTgc <2-0PTgss.

Proof. Consider an optimal superstring s.
Construct a set cover of cost < 2|s| =2 OPTgss.

5 = :
N S — s

T
e

Relating SSS and SETCOV:

14/17

(Lemma. OPTgc <2-0PTgss.

Proof. Consider an optimal superstring s.
Construct a set cover of cost < 2|s| =2 OPTgss.

S = : :
Spy! B
Se;! e 5
Sb; S e
Se, —

Relating SSS and SETCOV:

T
e

14/17

(Lemma. OPTgc <2-0PTgss.

Proof. Consider an optimal superstring s.
Construct a set cover of cost < 2|s| =2 OPTgss.

O by,e,ko

14/17

Relating SSS and SETCOV:

(Lemma. OPTgc <2-0PTgss. J

Proof. Consider an optimal superstring s.
Construct a set cover of cost < 2|s| =2 OPTgss.

T
e

5 | = :
Spy T ! s
Se,’ il
>bz A ——

14/17

Relating SSS and SETCOV:

(Lemma. OPTgc <2-0PTgss. J

Proof. Consider an optimal superstring s.
Construct a set cover of cost < 2|s| =2 OPTgss.

T
e

14/17

Relating SSS and SETCOV:

(Lemma. OPTgc <2-0PTgss. J

Proof. Consider an optimal superstring s.
Construct a set cover of cost < 2|s| =2 OPTgss.

T
e

14/17

Relating SSS and SETCOV:

(Lemma. OPTgc <2-0PTgss. J

Proof. Consider an optimal superstring s.
Construct a set cover of cost < 2|s| =2 OPTgss.

T
e

s | = :
Sby! !
>bz B ——

14/17

Relating SSS and SETCOV:

(Lemma. OPTgc <2-0PTgss. J

Proof. Consider an optimal superstring s.
Construct a set cover of cost < 2|s| =2 OPTgss.

T
e

s | = :
Sby! !
>bz B ——

14/17

Relating SSS and SETCOV:

(Lemma. OPTgc <2-0PTgss. J

Proof. Consider an optimal superstring s.
Construct a set cover of cost < 2|s| =2 OPTgss.

T
e

5 1 = o
i —]
Se,’ N i
>bz B ——

No overlaps between 7 and 7!

14/17

Relating SSS and SETCOV:

(Lemma. OPTgc <2-0PTgss. J

Proof. Consider an optimal superstring s.
Construct a set cover of cost < 2|s| =2 OPTgss.

T
e

[I

No overlaps between 7; and 73!

O-b3,@f’3,/<3

14/17

Relating SSS and SETCOV:

(Lemma. OPTgc <2-0PTgss. J

Proof. Consider an optimal superstring s.
Construct a set cover of cost < 2|s| =2 OPTgss.

T
e

[I

No overlaps between 7; and 73!

Sex / B : o S
i — s | o i
D! P! o . A !

O-b3,@f’3,/<3

15/17

Relating SSS and SETCOV:

(Lemma. OPTgc <2:-0PTgss. J

T
e

Proof.

Each string s; € U is a substring of some ;.

15/17

Relating SSS and SETCOVER
(Lemma. OPTgc <2:-0PTgss. J
Proof.

Each string s; € U is a substring of some ;.

{S(m1), ..., S(mk)} is a solution for the SETCOVER instance
with cost) . |7;/.

15/17

Relating SSS and SETCOVER
(Lemma. OPTSC < 2 - OPTsss. J
Proof.

Each string s; € U is a substring of some ;.

{S(m1), ..., S(mk)} is a solution for the SETCOVER instance
with cost) . |7;/.

For j € {1,..., k — 2}, substrings 7, ;1> do not overlap.

15/17

Relating SSS and SETCOVER
(Lemma. OPTSC < 2 - OPTsss.)
Proof.

Each string s; € U is a substring of some ;.

{S(m1), ..., S(mk)} is a solution for the SETCOVER instance
with cost

For j € {1,..., k — 2}, substrings 7, ;1> do not overlap.

Each character of the optimal superstring s lies in at most two
(subsequent) substrings, say, 7; and 7.

15/17

Relating SSS and SETCOVER
(Lemma. OPTSC < 2 - OPTsss.)
Proof.

Each string s; € U is a substring of some ;.

{S(m1), ..., S(mk)} is a solution for the SETCOVER instance
with cost

For j € {1,..., k — 2}, substrings 7, ;1> do not overlap.

Each character of the optimal superstring s lies in at most two
(subsequent) substrings, say, 7; and 7.

15/17

Relating SSS and SETCOVER
(Lemma. OPTSC < 2 - OPTsss.)
Proof.

Each string s; € U is a substring of some ;.

{S(m1), ..., S(mk)} is a solution for the SETCOVER instance
with cost

For j € {1,..., k — 2}, substrings 7, ;1> do not overlap.

Each character of the optimal superstring s lies in at most two
(subsequent) substrings, say, 7; and 7.

OPTSC < <

15/17

Relating SSS and SETCOVER
(Lemma. OPTSC < 2 - OPTsss.)
Proof.

Each string s; € U is a substring of some ;.

{S(m1), ..., S(mk)} is a solution for the SETCOVER instance
with cost

For j € {1,..., k — 2}, substrings 7, ;1> do not overlap.

Each character of the optimal superstring s lies in at most two
(subsequent) substrings, say, 7; and 7.

OPTSC S S 2‘5’ —

15/17

Relating SSS and SETCOVER
(Lemma. OPTSC < 2 - OPTsss. J
Proof.

Each string s; € U is a substring of some ;.

{S(m1), ..., S(mk)} is a solution for the SETCOVER instance
with cost

For j € {1,..., k — 2}, substrings 7, ;1> do not overlap.

Each character of the optimal superstring s lies in at most two
(subsequent) substrings, say, 7; and 7.

OPTSC S S 2‘5’ = 2. OPTSSS

16/17

Algorithm for SSS

1. Construct SETCOVER instance (U, S, ¢).

16/17

Algorithm for SSS

1. Construct SETCOVER instance (U, S, ¢).

2. Compute a set cover {S(71), ..., S(mi)}
with the algorithm GreedySetCover.

16/17

Algorithm for SSS

1. Construct SETCOVER instance (U, S, c).

2. Compute a set cover {S(m1),...,S(mx)}
with the algorithm GreedySetCover.

3. Return 7 o... 07, as the superstring.

16/17

Algorithm for SSS

1. Construct SETCOVER instance (U, S, ¢).

2. Compute a set cover {S(m1),...,S(mx)}
with the algorithm GreedySetCover.

3. Return 7 o... 07, as the superstring.

Theorem. This algorithm is a factor- approximation
algorithm for SHORTESTSUPERSTRING.

16/17

Algorithm for SSS

1. Construct SETCOVER instance (U, S, ¢).

2. Compute a set cover {S(m1),...,S(mx)}
with the algorithm GreedySetCover.

3. Return 7y o... o7, as the superstring.

Theorem. This algorithm is a factor- approximation]
algorithm for SHORTESTSUPERSTRING.

(Lemma. OPTSC < 2 - OPTsss.

16/17

Algorithm for SSS

1. Construct SETCOVER instance (U, S, ¢).

2. Compute a set cover {S(m1),...,S(mx)}
with the algorithm GreedySetCover.

3. Return 7 o... 07, as the superstring.

Theorem. This algorithm is a factor- approximation)
algorithm for SHORTESTSUPERSTRING.

[Lemma. OPTSC < 2 - OPTsss.

‘Theorem. GreedySetCover is a factor- approximation
algorithm for SETCOVER, where k is the
cardinality of the largest set in & and

=1+2+34+...+1 <

17/17

Can we do better?

17/17

Can we do better?

e The best known approximation factor for
SHORTESTSUPERSTRING s

17/17

Can we do better?

e The best known approximation factor for
SHORTESTSUPERSTRING s

e SHORTESTSUPERSTRING cannot be approximated within
factor (unless P=NP).

	SetCover
	Greedy for SetCover
	Iterative "Buying" of Elements
	Greedy

	Analysis
	Analysis tight?

	ShortestSuperString
	SSS as a SetCover Problem

	Solving ShortestSuperString via SetCover
	Relating SSS and SetCover
	Algorithm for SSS

	Can we do better?

