Approximation Algorithms

Lecture 1:
Introduction and Vertex Cover

Part I:
Organizational

Organizational

Lectures: on site (English/German, depending on audience)

Organizational

Lectures: on site (English/German, depending on audience)
Fri, 10:15-11:45 (ÜR I)

Organizational

Lectures: on site (English/German, depending on audience)
Fri, 10:15-11:45 (ÜR I)

Tutorials: roughly one exercise sheet per lecture

Organizational

Lectures: on site (English/German, depending on audience)
Fri, 10:15-11:45 (ÜR I)

Tutorials: roughly one exercise sheet per lecture discussing old solutions and solving new tasks

Organizational

Lectures: on site (English/German, depending on audience)
Fri, 10:15-11:45 (ÜR I)

Tutorials: roughly one exercise sheet per lecture discussing old solutions and solving new tasks
Tue, 10:15-11:45 (SE I), starting Oct. 24.

Organizational

Lectures: on site (English/German, depending on audience)
Fri, 10:15-11:45 (ÜR I)

Tutorials: roughly one exercise sheet per lecture discussing old solutions and solving new tasks
Tue, 10:15-11:45 (SE I), starting Oct. 24.
Bonus (+0.3 on final grade) for $\geq 50 \%$ points

Organizational

Lectures: on site (English/German, depending on audience) Fri, 10:15-11:45 (ÜR I)

Tutorials: roughly one exercise sheet per lecture discussing old solutions and solving new tasks Tue, 10:15-11:45 (SE I), starting Oct. 24.
Bonus (+0.3 on final grade) for $\geq 50 \%$ points

Questions/Tasks during the lecture

Organizational

Lectures: on site (English/German, depending on audience) Fri, 10:15-11:45 (ÜR I)

Tutorials: roughly one exercise sheet per lecture discussing old solutions and solving new tasks Tue, 10:15-11:45 (SE I), starting Oct. 24.
Bonus (+0.3 on final grade) for $\geq 50 \%$ points

Questions/Tasks during the lecture
Most slides are due to Joachim Spoerhase, polishing \& colors are due to Philipp Kindermann - thanks!

Textbooks

Vijay V. Vazirani:
Approximation Algorithms Springer-Verlag, 2003.

Textbooks

Vijay V. Vazirani:
Approximation Algorithms Springer-Verlag, 2003.

The DESIGN of APPROXIMATION ALGORITHMS

D. P. Williamson \& D. B. Shmoys:

The Design of Approximation Algorithms Cambridge-Verlag, 2011.
http://www.designofapproxalgs.com/

Approximation Algorithms

„All exact science is dominated by the idea of approximation."

$$
(1872-1970)
$$

Approximation Algorithms

- Many optimization problems are NP-hard! (For example, the traveling salesperson problem.)

Approximation Algorithms

■ Many optimization problems are NP-hard! (For example, the traveling salesperson problem.)

■ \rightsquigarrow an optimal solution cannot be efficiently computed unless $\mathrm{P}=\mathrm{NP}$.

Approximation Algorithms

■ Many optimization problems are NP-hard! (For example, the traveling salesperson problem.)
$■ \rightsquigarrow$ an optimal solution cannot be efficiently computed unless $\mathrm{P}=\mathrm{NP}$.

- However, good approximate solutions can often be found efficiently!

Approximation Algorithms

■ Many optimization problems are NP-hard! (For example, the traveling salesperson problem.)

■ \rightsquigarrow an optimal solution cannot be efficiently computed unless $\mathrm{P}=\mathrm{NP}$.

- However, good approximate solutions can often be found efficiently!
- Techniques for the design and analysis of approximation algorithms arise from studying specific optimization problems.

Overview

Combinatorial algorithms

- Introduction (Vertex Cover)
- Set Cover via Greedy
- Shortest Superstring via reduction to SC
■ Steiner Tree via MST
- Multiway Cut via Greedy
- k-Center via Parametrized Pruning

■ Min-Degree Spanning Tree and local search

- Knapsack via DP and Scaling
- Euclidean TSP via Quadtrees

Overview

Combinatorial algorithms

- Introduction (Vertex Cover)
- Set Cover via Greedy
- Shortest Superstring via reduction to SC
■ Steiner Tree via MST
- Multiway Cut via Greedy
- k-Center via Parametrized Pruning

■ Min-Degree Spanning Tree and local search

- Knapsack via DP and Scaling

■ Euclidean TSP via Quadtrees

LP-based algorithms

- introduction to LP-Duality
- Set Cover via LP Rounding
- Set Cover via Primal-Dual Schema
- Maximum Satisfiability
- Scheduling und Extreme Point Solutions
■ Steiner Forest via Primal-Dual

Approximation Algorithms

Lecture 1:
Introduction and Vertex Cover

Part II:
(Cardinality) Vertex Cover

VertexCover (card.)

Input: \quad Graph $G=(V, E)$

Output:

VertexCover (card.)

Input: \quad Graph $G=(V, E)$

Output: a minimum vertex cover, that is, a minimum-cardinality vertex set $V^{\prime} \subseteq V$ such that every edge is covered (i.e., for every $u v \in E$, it holds that $u \in V^{\prime}$ or $v \in V^{\prime}$).

VertexCover (card.)

Input: \quad Graph $G=(V, E)$
Output: a minimum vertex cover, that is, a minimum-cardinality vertex set $V^{\prime} \subseteq V$ such that every edge is covered (i.e., for every $u v \in E$, it holds that $u \in V^{\prime}$ or $v \in V^{\prime}$).

VertexCover (card.)

Input: \quad Graph $G=(V, E)$
Output: a minimum vertex cover, that is, a minimum-cardinality vertex set $V^{\prime} \subseteq V$ such that every edge is covered (i.e., for every $u v \in E$, it holds that $u \in V^{\prime}$ or $v \in V^{\prime}$).

VertexCover (card.)

Input: \quad Graph $G=(V, E)$
Output: a minimum vertex cover, that is, a minimum-cardinality vertex set $V^{\prime} \subseteq V$ such that every edge is covered (i.e., for every $u v \in E$, it holds that $u \in V^{\prime}$ or $v \in V^{\prime}$).

VertexCover (card.)

Input: \quad Graph $G=(V, E)$
Output: a minimum vertex cover, that is, a minimum-cardinality vertex set $V^{\prime} \subseteq V$ such that every edge is covered (i.e., for every $u v \in E$, it holds that $u \in V^{\prime}$ or $v \in V^{\prime}$).

VertexCover (card.)

Input: \quad Graph $G=(V, E)$
Output: a minimum vertex cover, that is, a minimum-cardinality vertex set $V^{\prime} \subseteq V$ such that every edge is covered (i.e., for every $u v \in E$, it holds that $u \in V^{\prime}$ or $v \in V^{\prime}$).

VertexCover (card.)

Input: \quad Graph $G=(V, E)$
Output: a minimum vertex cover, that is, a minimum-cardinality vertex set $V^{\prime} \subseteq V$ such that every edge is covered (i.e., for every $u v \in E$, it holds that $u \in V^{\prime}$ or $v \in V^{\prime}$).

VertexCover (card.)

Input: \quad Graph $G=(V, E)$
Output: a minimum vertex cover, that is, a minimum-cardinality vertex set $V^{\prime} \subseteq V$ such that every edge is covered (i.e., for every $u v \in E$, it holds that $u \in V^{\prime}$ or $v \in V^{\prime}$).

VertexCover (card.)

Input: \quad Graph $G=(V, E)$
Output: a minimum vertex cover, that is, a minimum-cardinality vertex set $V^{\prime} \subseteq V$ such that every edge is covered (i.e., for every $u v \in E$, it holds that $u \in V^{\prime}$ or $v \in V^{\prime}$).

VertexCover (card.)

Input: \quad Graph $G=(V, E)$
Output: a minimum vertex cover, that is, a minimum-cardinality vertex set $V^{\prime} \subseteq V$ such that every edge is covered (i.e., for every $u v \in E$, it holds that $u \in V^{\prime}$ or $v \in V^{\prime}$).

VertexCover (card.)

Input: \quad Graph $G=(V, E)$
Output: a minimum vertex cover, that is, a minimum-cardinality vertex set $V^{\prime} \subseteq V$ such that every edge is covered (i.e., for every $u v \in E$, it holds that $u \in V^{\prime}$ or $v \in V^{\prime}$).

VertexCover (card.)

Input: \quad Graph $G=(V, E)$
Output: a minimum vertex cover, that is, a minimum-cardinality vertex set $V^{\prime} \subseteq V$ such that every edge is covered (i.e., for every $u v \in E$, it holds that $u \in V^{\prime}$ or $v \in V^{\prime}$).

VertexCover (card.)

Input: \quad Graph $G=(V, E)$

Output: a minimum vertex cover, that is, a minimum-cardinality vertex set $V^{\prime} \subseteq V$ such that every edge is covered (i.e., for every $u v \in E$, it holds that $u \in V^{\prime}$ or $v \in V^{\prime}$).

Optimum $(\mathrm{OPT}=4)$

VertexCover (card.)

Input: \quad Graph $G=(V, E)$

Output: a minimum vertex cover, that is, a minimum-cardinality vertex set $V^{\prime} \subseteq V$ such that every edge is covered (i.e., for every $u v \in E$, it holds that $u \in V^{\prime}$ or $v \in V^{\prime}$).

Optimum (OPT $=4$) - but in general NP-hard to find :-(

VertexCover (card.)

Input: \quad Graph $G=(V, E)$

Output: a minimum vertex cover, that is, a minimum-cardinality vertex set $V^{\prime} \subseteq V$ such that every edge is covered (i.e., for every $u v \in E$, it holds that $u \in V^{\prime}$ or $v \in V^{\prime}$).

"good" (5/4-) approximate solution

Approximation Algorithms

Lecture 1:
Introduction and Vertex Cover

Part III:
NP-Optimization Problem

NP-Optimization Problem

An NP-optimization problem Π is given by:

NP-Optimization Problem

An NP-optimization problem Π is given by:
■ A set D_{Π} of instances.
We denote the size of an instance $I \in D_{\Pi}$ by $|/|$.

NP-Optimization Problem

An NP-optimization problem Π is given by:
■ A set D_{Π} of instances.
We denote the size of an instance $I \in D_{\Pi}$ by $|/|$.

- For each instance $I \in D_{\Pi}$,
a set $S_{\Pi}(I) \neq \emptyset$ of feasible solutions for $/$ such that:

NP-Optimization Problem

An NP-optimization problem Π is given by:
■ A set D_{Π} of instances.
We denote the size of an instance $I \in D_{\Pi}$ by $|/|$.

- For each instance $I \in D_{\Pi}$,
a set $S_{\Pi}(I) \neq \emptyset$ of feasible solutions for I such that:
- for each solution $s \in S_{\Pi}(I)$, its size $|s|$ is polynomially bounded in $|/|$, and

NP-Optimization Problem

An NP-optimization problem Π is given by:
■ A set D_{Π} of instances.
We denote the size of an instance $I \in D_{\Pi}$ by $|/|$.

- For each instance $I \in D_{\Pi}$,
a set $S_{\Pi}(I) \neq \emptyset$ of feasible solutions for I such that:
- for each solution $s \in S_{\Pi}(I)$, its size $|s|$ is polynomially bounded in $|I|$, and
- there is a polynomial-time algorithm that decides, for each pair (s, I), whether $s \in S_{\Pi}(I)$.

NP-Optimization Problem

An NP-optimization problem Π is given by:
■ A set D_{Π} of instances.
We denote the size of an instance $I \in D_{\Pi}$ by $|/|$.
■ For each instance $I \in D_{\Pi}$,
a set $S_{\Pi}(I) \neq \emptyset$ of feasible solutions for I such that:

- for each solution $s \in S_{\Pi}(I)$, its size $|s|$ is polynomially bounded in $|/|$, and
- there is a polynomial-time algorithm that decides, for each pair (s, I), whether $s \in S_{\Pi}(I)$.
■ A polynomial time computable objective function objп which assigns a positive objective value $\operatorname{obj}_{\Pi}(I, s) \geq 0$ to any given pair (s, I) with $s \in S_{\Pi}(I)$.

NP-Optimization Problem

An NP-optimization problem Π is given by:
■ A set D_{Π} of instances.
We denote the size of an instance $I \in D_{\Pi}$ by $|/|$.
■ For each instance $I \in D_{\Pi}$,
a set $S_{\Pi}(I) \neq \emptyset$ of feasible solutions for I such that:

- for each solution $s \in S_{\Pi}(I)$, its size $|s|$ is polynomially bounded in $|I|$, and
- there is a polynomial-time algorithm that decides, for each pair (s, I), whether $s \in S_{\Pi}(I)$.
■ A polynomial time computable objective function objп which assigns a positive objective value $\mathrm{obj}_{\Pi}(I, s) \geq 0$ to any given pair (s, I) with $s \in S_{\Pi}(I)$.
$\square \Pi$ is either a minimization or maximization problem.

VertexCover: NP-Optimization Problem

Task: Fill in the gaps for $\Pi=$ Vertex Cover.
$D_{\text {П }}=$
For $I \in D_{\Pi}: \quad|I|=$

$$
S_{\Pi}(I)=
$$

$■$ Why is $|s| \in \operatorname{poly}(|/|)$ for every $s \in S_{\Pi}(/)$?

■ For a given pair (s, l), how can we efficiently decide whether $s \in S_{\Pi}(I)$?
obj $_{\Pi}(I, s)=$
Π is a m...imization problem.

VertexCover: NP-Optimization Problem

Task: Fill in the gaps for $\Pi=$ Vertex Cover.
$D_{\Pi}=$ Set of all graphs
For $I \in D_{\Pi}: \quad|I|=$

$$
S_{\Pi}(I)=
$$

$■$ Why is $|s| \in \operatorname{poly}(|/|)$ for every $s \in S_{\Pi}(/)$?

■ For a given pair (s, l), how can we efficiently decide whether $s \in S_{\Pi}(I)$?
obj $_{\Pi}(I, s)=$
Π is a m...imization problem.

VertexCover: NP-Optimization Problem

Task: Fill in the gaps for $\Pi=$ Vertex Cover.
$D_{\Pi}=$ Set of all graphs
$\begin{aligned} \text { For } I \in D_{\Pi}: & |I| & = \\ \text { G=(V,E) } & S_{\Pi}(I) & =\end{aligned}$
$■$ Why is $|s| \in \operatorname{poly}(|/|)$ for every $s \in S_{\Pi}(I)$?

■ For a given pair (s, l), how can we efficiently decide whether $s \in S_{\Pi}(I)$?
obj $_{\Pi}(I, s)=$
Π is a m...imization problem.

VertexCover: NP-Optimization Problem

Task: Fill in the gaps for $\Pi=$ Vertex Cover.
$D_{\Pi}=$ Set of all graphs
For $I \in D_{\Pi}: \quad|I|=$ Number of vertices $|V|$
$G=(V, E) \quad S_{\Pi}(I)=$
$■$ Why is $|s| \in \operatorname{poly}(|/|)$ for every $s \in S_{\Pi}(I)$?

■ For a given pair (s, l), how can we efficiently decide whether $s \in S_{\Pi}(I)$?
obj $_{\Pi}(I, s)=$
Π is a m...imization problem.

VertexCover: NP-Optimization Problem

Task: Fill in the gaps for $\Pi=$ Vertex Cover.
$D_{\Pi}=$ Set of all graphs
For $I \in D_{\Pi}: \quad|I|=$ Number of vertices $|V|$
$G=(V, E) \quad S_{\Pi}(I)=$ Set of all vertex covers of G
$■$ Why is $|s| \in \operatorname{poly}(|/|)$ for every $s \in S_{\Pi}(I)$?

■ For a given pair (s, l), how can we efficiently decide whether $s \in S_{\Pi}(I)$?
obj $_{\Pi}(I, s)=$
Π is a m...imization problem.

VertexCover: NP-Optimization Problem

Task: Fill in the gaps for $\Pi=$ Vertex Cover.
$D_{\Pi}=$ Set of all graphs
For $I \in D_{\Pi}: \quad|I|=$ Number of vertices $|V|$
$G=(V, E) \quad S_{\Pi}(I)=$ Set of all vertex covers of G
\square Why is $|s| \in \operatorname{poly}(|/|)$ for every $s \in S_{\Pi}(I)$?

$$
s \subseteq V \Rightarrow|s| \leq|V|=|I|
$$

■ For a given pair (s, l), how can we efficiently decide whether $s \in S_{\Pi}(I)$?
obj $_{\Pi}(I, s)=$
Π is a m...imization problem.

VertexCover: NP-Optimization Problem

Task: Fill in the gaps for $\Pi=$ Vertex Cover.
$D_{\Pi}=$ Set of all graphs
For $I \in D_{\Pi}: \quad|I|=$ Number of vertices $|V|$
$G=(V, E) \quad S_{\Pi}(I)=$ Set of all vertex covers of G
\square Why is $|s| \in \operatorname{poly}(|/|)$ for every $s \in S_{\Pi}(I)$?

$$
s \subseteq V \Rightarrow|s| \leq|V|=|I|
$$

■ For a given pair (s, l), how can we efficiently decide whether $s \in S_{\Pi}(I)$? Test whether all edges are covered.
obj $_{\Pi}(I, s)=$
Π is a m...imization problem.

VertexCover: NP-Optimization Problem

Task: Fill in the gaps for $\Pi=$ Vertex Cover.
$D_{\Pi}=$ Set of all graphs
For $I \in D_{\Pi}: \quad|I|=$ Number of vertices $|V|$
$G=(V, E) \quad S_{\Pi}(I)=$ Set of all vertex covers of G
\square Why is $|s| \in \operatorname{poly}(|/|)$ for every $s \in S_{\Pi}(I)$?

$$
s \subseteq V \Rightarrow|s| \leq|V|=|I|
$$

■ For a given pair (s, l), how can we efficiently decide whether $s \in S_{\Pi}(I)$? Test whether all edges are covered.
obj $_{\Pi}(I, s)=|s|$
Π is a m...imization problem.

VertexCover: NP-Optimization Problem

Task: Fill in the gaps for $\Pi=$ Vertex Cover.
$D_{\Pi}=$ Set of all graphs
For $I \in D_{\Pi}: \quad|I|=$ Number of vertices $|V|$
$G=(V, E) \quad S_{\Pi}(I)=$ Set of all vertex covers of G
\square Why is $|s| \in \operatorname{poly}(|/|)$ for every $s \in S_{\Pi}(I)$?

$$
s \subseteq V \Rightarrow|s| \leq|V|=|I|
$$

■ For a given pair (s, l), how can we efficiently decide whether $s \in S_{\Pi}(I)$? Test whether all edges are covered.
obj $_{\Pi}(I, s)=|s|$
Π is a minimization problem.

Optimum and Optimal Objective Value

Let Π be a minimization problem and $I \in D_{\Pi}$ an instance of Π.

Optimum and Optimal Objective Value

Let Π be a minimization problem and $I \in D_{\Pi}$ an instance of Π.
A feasible solution $s^{*} \in S_{\Pi}(I)$ is optimal if
obj $_{\Pi}\left(I, s^{*}\right)$ is minimal among the objective values
attained by the feasible solutions of $/$.

Optimum and Optimal Objective Value

maximization problem

Let Π be a minimization problem and $I \in D_{\Pi}$ an instance of Π.
A feasible solution $s^{*} \in S_{\Pi}(I)$ is optimal if ${ }^{\circ} j_{\Pi}\left(I, s^{*}\right)$ is maximal among the objective values attained by the feasible solutions of $/$.

Optimum and Optimal Objective Value

maximization problem

Let Π be a minimization problem and $I \in D_{\Pi}$ an instance of Π.
A feasible solution $s^{*} \in S_{\Pi}(I)$ is optimal if $\operatorname{obj}_{\Pi}\left(I, s^{*}\right)$ is maximal among the objective values attained by the feasible solutions of $/$.

The optimal value $\operatorname{obj}_{\Pi}\left(I, s^{*}\right)$ of the objective function is denoted by $\mathrm{OPT}_{\Pi}(I)$ or simply by OPT in context.

Approximation Algorithms

Let Π be a minimization problem and $\alpha \in \mathbb{Q}^{+}$.

Approximation Algorithms

Let Π be a minimization problem and $\alpha \in \mathbb{Q}^{+}$.
A factor- α approximation algorithm for Π is an efficient algorithm that provides, for any instance $I \in D_{\Pi}$, a feasible solution $s \in S_{\Pi}(I)$ such that

Approximation Algorithms

Let Π be a minimization problem and $\alpha \in \mathbb{Q}^{+}$.
A factor- α approximation algorithm for Π is an efficient algorithm that provides, for any instance $I \in D_{\Pi}$, a feasible solution $s \in S_{\Pi}(I)$ such that

$$
\frac{\operatorname{obj}_{\Pi}(I, s)}{\text { OPT }_{\Pi}(I)}
$$

Approximation Algorithms

Let Π be a minimization problem and $\alpha \in \mathbb{Q}^{+}$.
A factor- α approximation algorithm for Π is an efficient algorithm that provides, for any instance $I \in D_{\Pi}$, a feasible solution $s \in S_{\Pi}(I)$ such that

$$
\frac{\mathrm{obj}_{\Pi}(I, s)}{\mathrm{OPT}_{\Pi}(I)} \leq \alpha .
$$

Approximation Algorithms

Let Π be a minimization problem and $\underline{\perp \in \mathbb{Q}^{+} \text {. }}$
A factor- α approximation algorithm for Π is an efficient algorithm that provides, for any instance $I \in D_{\Pi}$, a feasible solution $s \in S_{\Pi}(I)$ such that

$$
\frac{\operatorname{obj}_{\Pi}(I, s)}{\mathrm{OPT}_{\Pi}(I)} \leq \not x .^{\alpha(|/|)}
$$

Approximation Algorithms

maximization problem

Let Π be a minimization problem and $\alpha \in{ }^{+}$.
A factor- α approximation algorithm for Π is an efficient algorithm that provides, for any instance $I \in D_{\Pi}$, a feasible solution $s \in S_{\Pi}(I)$ such that

$$
\frac{\operatorname{obj}_{\Pi}(I, s)}{\mathrm{OPT}_{\Pi}(I)} \gtreqless \not x .^{\alpha(|/|)}
$$

Approximation Algorithms

Lecture 1:
Introduction and Vertex Cover

Part IV:
Approximation Algorithm for VertexCover

Approximation Alg. for VertexCover
Ideas?

Approximation Alg. for VertexCover

Ideas?
■ Edge-Greedy

Approximation Alg. for VertexCover

Ideas?

- Edge-Greedy
- Vertex-Greedy

Approximation Alg. for VertexCover

Ideas?
■ Edge-Greedy
■ Vertex-Greedy

Approximation Alg. for VertexCover

Ideas?
■ Edge-Greedy
■ Vertex-Greedy

Approximation Alg. for VertexCover

Ideas?
■ Edge-Greedy
■ Vertex-Greedy

Approximation Alg. for VertexCover

Ideas?
■ Edge-Greedy
■ Vertex-Greedy

Approximation Alg. for VertexCover

Ideas?
■ Edge-Greedy
■ Vertex-Greedy

Approximation Alg. for VertexCover

Ideas?

- Edge-Greedy

■ Vertex-Greedy

Approximation Alg. for VertexCover

Ideas?

- Edge-Greedy

■ Vertex-Greedy

Approximation Alg. for VertexCover

Ideas?

- Edge-Greedy

■ Vertex-Greedy

Quality?

Approximation Alg. for VertexCover

Ideas?

- Edge-Greedy

■ Vertex-Greedy

Quality?
Problem: How can we estimate $\operatorname{obj}_{\Pi}(I, s) /$ OPT, when it is hard to compute OPT?

Approximation Alg. for VertexCover

Ideas?

- Edge-Greedy

■ Vertex-Greedy

Quality?
Problem: How can we estimate $\operatorname{obj}_{\Pi}(I, s) / \mathrm{OPT}$, when it is hard to compute OPT?

Idea: Find a "good" lower bound $L \leq$ OPT for OPT and compare it to our approximate solution.

Approximation Alg. for VertexCover

Ideas?

- Edge-Greedy

■ Vertex-Greedy

Quality?
Problem: How can we estimate $\operatorname{obj}_{\Pi}(I, s) /$ OPT, when it is hard to compute OPT?

Idea: Find a "good" lower bound $L \leq$ OPT for OPT and compare it to our approximate solution.

$$
\frac{\mathrm{obj}_{\Pi}(I, s)}{\mathrm{OPT}} \leq \frac{\mathrm{obj}_{\Pi}(I, s)}{L}
$$

Lower Bound by Matchings

Lower Bound by Matchings

Given a graph G, a set M of edges of G is a matching if no two edges of M are adjacent (i.e., share an end vertex).

Lower Bound by Matchings

Given a graph G, a set M of edges of G is a matching if no two edges of M are adjacent (i.e., share an end vertex).

Lower Bound by Matchings

Given a graph G, a set M of edges of G is a matching if no two edges of M are adjacent (i.e., share an end vertex).
M is maximal if there is no matching M^{\prime} with $M^{\prime} \supsetneq M$.

Lower Bound by Matchings

Given a graph G, a set M of edges of G is a matching if no two edges of M are adjacent (i.e., share an end vertex).
M is maximal if there is no matching M^{\prime} with $M^{\prime} \supsetneq M$.

OPT \geq

Lower Bound by Matchings

Given a graph G, a set M of edges of G is a matching if no two edges of M are adjacent (i.e., share an end vertex).
M is maximal if there is no matching M^{\prime} with $M^{\prime} \supsetneq M$.

OPT \geq

Vertex cover of M

Lower Bound by Matchings

Given a graph G, a set M of edges of G is a matching if no two edges of M are adjacent (i.e., share an end vertex).
M is maximal if there is no matching M^{\prime} with $M^{\prime} \supsetneq M$.
$O P T \geq|M|$

Vertex cover of M

Lower Bound by Matchings

Given a graph G, a set M of edges of G is a matching if no two edges of M are adjacent (i.e., share an end vertex).
M is maximal if there is no matching M^{\prime} with $M^{\prime} \supsetneq M$.
$\mathrm{OPT} \geq|M|$
$\mathrm{OPT}=|M| ?$

Vertex cover of M

Lower Bound by Matchings

Given a graph G, a set M of edges of G is a matching if no two edges of M are adjacent (i.e., share an end vertex).
M is maximal if there is no matching M^{\prime} with $M^{\prime} \supsetneq M$.
$\mathrm{OPT} \geq|M|$
$\mathrm{OPT}=|M| ?$

Vertex cover of M

Lower Bound by Matchings

Given a graph G, a set M of edges of G is a matching if no two edges of M are adjacent (i.e., share an end vertex).
M is maximal if there is no matching M^{\prime} with $M^{\prime} \supsetneq M$.

OPT $\geq|M|$
$\mathrm{OPT}=|M|$?
Vertex cover of M

Lower Bound by Matchings

Given a graph G, a set M of edges of G is a matching if no two edges of M are adjacent (i.e., share an end vertex).
M is maximal if there is no matching M^{\prime} with $M^{\prime} \supsetneq M$.
$\mathrm{OPT} \geq|M|$
$\mathrm{OPT}=|M| ?$

Vertex cover of M

Lower Bound by Matchings

Given a graph G, a set M of edges of G is a matching if no two edges of M are adjacent (i.e., share an end vertex).
M is maximal if there is no matching M^{\prime} with $M^{\prime} \supsetneq M$.

$$
\begin{aligned}
& \mathrm{OPT} \geq|M| \\
& \mathrm{OPT} \geq \mid
\end{aligned}
$$

Vertex cover of M

Lower Bound by Matchings

Given a graph G, a set M of edges of G is a matching if no two edges of M are adjacent (i.e., share an end vertex).
M is maximal if there is no matching M^{\prime} with $M^{\prime} \supsetneq M$.

Lower Bound by Matchings

Given a graph G, a set M of edges of G is a matching if no two edges of M are adjacent (i.e., share an end vertex).
M is maximal if there is no matching M^{\prime} with $M^{\prime} \supsetneq M$.

Lower Bound by Matchings

Given a graph G, a set M of edges of G is a matching if no two edges of M are adjacent (i.e., share an end vertex).
M is maximal if there is no matching M^{\prime} with $M^{\prime} \supsetneq M$.

Lower Bound by Matchings

Given a graph G, a set M of edges of G is a matching if no two edges of M are adjacent (i.e., share an end vertex).
M is maximal if there is no matching M^{\prime} with $M^{\prime} \supsetneq M$.

Lower Bound by Matchings

Given a graph G, a set M of edges of G is a matching if no two edges of M are adjacent (i.e., share an end vertex).
M is maximal if there is no matching M^{\prime} with $M^{\prime} \supsetneq M$.

Lower Bound by Matchings

Given a graph G, a set M of edges of G is a matching if no two edges of M are adjacent (i.e., share an end vertex).
M is maximal if there is no matching M^{\prime} with $M^{\prime} \supsetneq M$.

Approximation Alg. for VertexCover
Algorithm VertexCover(G) $M \leftarrow \emptyset$

Approximation Alg. for VertexCover
Algorithm VertexCover(G)
$M \leftarrow \emptyset$
foreach $e \in E(G)$ do

Approximation Alg. for VertexCover

Algorithm VertexCover(G)
$M \leftarrow \emptyset$
foreach $e \in E(G)$ do if e is not adjacent to any edge in M then

Approximation Alg. for VertexCover

Algorithm VertexCover(G)
$M \leftarrow \emptyset$
foreach $e \in E(G)$ do if e is not adjacent to any edge in M then $M \leftarrow M \cup\{e\}$

Approximation Alg. for VertexCover

Algorithm VertexCover(G)
$M \leftarrow \emptyset$
foreach $e \in E(G)$ do if e is not adjacent to any edge in M then $M \leftarrow M \cup\{e\}$
return $\{u, v \mid u v \in M\}$

Approximation Alg. for VertexCover
Algorithm VertexCover(G)
$M \leftarrow \emptyset$
foreach $e \in E(G)$ do if e is not adjacent to any edge in M then $M \leftarrow M \cup\{e\}$
return $\{u, v \mid u v \in M\}$
Theorem. The above algorithm is a factor-2 approximation algorithm for VertexCover.

Approximation Alg. for VertexCover
Algorithm VertexCover(G)
$M \leftarrow \emptyset$
foreach $e \in E(G)$ do if e is not adjacent to any edge in M then $M \leftarrow M \cup\{e\}$
return $\{u, v \mid u v \in M\}$
Theorem. The above algorithm is a factor-2 approximation algorithm for VertexCover.

Proof. $\quad \mathrm{ALG}=2 \cdot|M| \leq$

Approximation Alg. for VertexCover
Algorithm VertexCover(G)
$M \leftarrow \emptyset$
foreach $e \in E(G)$ do if e is not adjacent to any edge in M then $M \leftarrow M \cup\{e\}$
return $\{u, v \mid u v \in M\}$
Theorem. The above algorithm is a factor-2 approximation algorithm for VertexCover.

Proof. $\quad \mathrm{ALG}=2 \cdot|M| \leq 2 \cdot$ OPT

Approximability of Vertex Cover

The best known approximation factor for VERTEXCOVER is

Approximability of Vertex Cover

The best known approximation factor for VERTEXCOVER is

$$
2-\Theta(1 / \sqrt{\log n}) .
$$

Approximability of Vertex Cover

The best known approximation factor for VERTEXCOVER is

$$
2-\Theta(1 / \sqrt{\log n})
$$

If $P \neq N P$, VertexCover cannot be approximated within a factor of 1.3606 .

Approximability of Vertex Cover

The best known approximation factor for VertexCover is

$$
2-\Theta(1 / \sqrt{\log n})
$$

If $P \neq N P$, VertexCover cannot be approximated within a factor of 1.3606 .

VertexCover cannot be approximated within a factor of $2-\Theta(1)$ - if the Unique Games Conjecture holds.

Approximation Algorithms

Lecture 1:
Introduction and Vertex Cover

Part V:
An LP-based Algorithm for VertexCover

Task

Write an integer linear program (ILP) for VertexCover:

Task

Write an integer linear program (ILP) for VertexCover:
Using integer (and/or real) variables, express the problem using

- linear constraints and

■ a linear objective function.

Task

Write an integer linear program (ILP) for VertexCover:
Using integer (and/or real) variables, express the problem using

- linear constraints and
- a linear objective function.

You can iterate over the vertices / edges of the given graph G.

Task

Write an integer linear program (ILP) for VertexCover:
Using integer (and/or real) variables, express the problem using
■ linear constraints and
■ a linear objective function.
You can iterate over the vertices / edges of the given graph G.
Variables:
Objective:
Constraints:

Task

Write an integer linear program (ILP) for VertexCover:
Using integer (and/or real) variables, express the problem using
■ linear constraints and
■ a linear objective function.
You can iterate over the vertices / edges of the given graph G.
Variables: for each vertex v of G, we introduce
Objective:
Constraints:

Task

Write an integer linear program (ILP) for VertexCover:
Using integer (and/or real) variables, express the problem using
■ linear constraints and

- a linear objective function.

You can iterate over the vertices / edges of the given graph G.
Variables: for each vertex v of G, we introduce $x_{v} \in\{0,1\}$.
Objective:
Constraints:

Task

Write an integer linear program (ILP) for VertexCover:
Using integer (and/or real) variables, express the problem using
■ linear constraints and

- a linear objective function.

You can iterate over the vertices / edges of the given graph G.
Variables: for each vertex v of G, we introduce $x_{v} \in\{0,1\}$.
Objective:
v not in the solution
v in the solution
Constraints:

Task

Write an integer linear program (ILP) for VertexCover:
Using integer (and/or real) variables, express the problem using
■ linear constraints and

- a linear objective function.

You can iterate over the vertices / edges of the given graph G.
Variables: for each vertex v of G, we introduce $x_{v} \in\{0,1\}$.
Objective: minimize
v not in the solution
v in the solution
Constraints:

Task

Write an integer linear program (ILP) for VertexCover:
Using integer (and/or real) variables, express the problem using
■ linear constraints and

- a linear objective function.

You can iterate over the vertices / edges of the given graph G.
Variables: for each vertex v of G, we introduce $x_{v} \in\{0,1\}$.
Objective: minimize $\sum_{v \in V(G)} x_{v}$
v not in the solution
v in the solution
Constraints:

Task

Write an integer linear program (ILP) for VertexCover:
Using integer (and/or real) variables, express the problem using
■ linear constraints and

- a linear objective function.

You can iterate over the vertices / edges of the given graph G.
Variables: for each vertex v of G, we introduce $x_{v} \in\{0,1\}$.
Objective: minimize $\sum_{v \in V(G)} X_{V}$
v not in the solution
v in the solution
Constraints: for each edge $u v$ of G, we require that

Task

Write an integer linear program (ILP) for VertexCover:
Using integer (and/or real) variables, express the problem using
■ linear constraints and

- a linear objective function.

You can iterate over the vertices / edges of the given graph G.
Variables: for each vertex v of G, we introduce $x_{v} \in\{0,1\}$.
Objective: minimize $\sum_{v \in V(G)} X_{V}$
v not in the solution
v in the solution
Constraints: for each edge $u v$ of G, we require that

$$
x_{u}+x_{V} \geq 1
$$

Standard ILP Format

$\operatorname{minimize} \quad \sum_{v \in V(G)} x_{v}$ subject to $x_{u}+x_{v} \geq 1$
for each $u v \in E(G)$
$x_{v} \in\{0,1\} \quad$ for each $v \in V(G)$

Standard ILP Format

$$
\begin{array}{cl}
\operatorname{minimize} & \sum_{v \in V(G)} x_{v} \\
\text { subject to } & x_{u}+x_{v} \geq 1
\end{array} \quad \text { for each } u v \in E(G)
$$

Problem:

Standard ILP Format

$$
\begin{array}{rlr}
\operatorname{minimize} & \sum_{v \in V(G)} x_{v} & \\
\text { subject to } x_{u}+x_{v} \geq 1 & \text { for each } u v \in E(G) \\
x_{v} \in\{0,1\} & \text { for each } v \in V(G)
\end{array}
$$

Problem: It's NP-hard to solve ILPs in general.

Standard ILP Format

$$
\begin{array}{rlr}
\operatorname{minimize} & \sum_{v \in V(G)} x_{v} & \\
\text { subject to } x_{u}+x_{v} \geq 1 & \text { for each } u v \in E(G) \\
x_{v} & \in\{0,1\} & \text { for each } v \in V(G)
\end{array}
$$

Problem: It's NP-hard to solve ILPs in general.
But:
LPs can be solved efficiently (in $O\left(L \cdot n^{3.5}\right)$ time),

Standard ILP Format

$$
\begin{array}{rlr}
\operatorname{minimize} & \sum_{v \in V(G)} x_{v} & \\
\text { subject to } & x_{u}+x_{v} \geq 1 & \text { for each } u v \in E(G) \\
x_{v} \in\{0,1\} & \text { for each } v \in V(G)
\end{array}
$$

Problem: It's NP-hard to solve ILPs in general.
But:
LPs can be solved efficiently (in $O\left(L \cdot n^{3.5}\right)$ time),
where $n=\#$ variables and $L=$ total bit complexity of coefficients.

Standard ILP Format

LP relaxation

$$
\begin{array}{rll}
\operatorname{minimize} & \sum_{v \in V(G)} x_{v} & \\
\text { subject to } & x_{u}+x_{v} \geq 1 & \text { for each } u v \in E(G) \\
x_{v} \geq 0 \quad x_{v} \in\{0,1\} & \text { for each } v \in V(G)
\end{array}
$$

Problem: It's NP-hard to solve ILPs in general.
But:
LPs can be solved efficiently (in $O\left(L \cdot n^{3.5}\right)$ time),
where $n=\#$ variables and $L=$ total bit complexity of coefficients.

Standard ILP Format

LP relaxation

$$
\begin{array}{rll}
\operatorname{minimize} & \sum_{v \in V(G)} x_{v} & \\
\text { subject to } & x_{u}+x_{v} \geq 1 & \text { for each } u v \in E(G) \\
x_{v} \geq 0 \quad x_{v} \in\{0,1\} & \text { for each } v \in V(G)
\end{array}
$$

Problem: It's NP-hard to solve ILPs in general.
But:
LPs can be solved efficiently (in $O\left(L \cdot n^{3.5}\right)$ time),
where $n=\#$ variables and $L=$ total bit complexity of coefficients.
Problem': Now we can get fractional solutions, i.e., in $(0,1)$.

Standard ILP Format

LP relaxation

$$
\begin{array}{rll}
\operatorname{minimize} & \sum_{v \in V(G)} x_{v} & \\
\text { subject to } & x_{u}+x_{v} \geq 1 & \text { for each } u v \in E(G) \\
x_{v} \geq 0 \quad x_{v} \in\{0,1\} & \text { for each } v \in V(G)
\end{array}
$$

Problem: It's NP-hard to solve ILPs in general.
But: LPs can be solved efficiently (in $O\left(L \cdot n^{3.5}\right)$ time ,
where $n=\#$ variables and $L=$ total bit complexity of coefficients.
Problem': Now we can get fractional solutions, i.e., in $(0,1)$.
Task: \quad Find a graph G with $O P T_{\text {LP }} \neq$ OPT $_{\text {ILP }}$!

Standard ILP Format

LP relaxation

$$
\begin{aligned}
& \operatorname{minimize} \sum_{v \in V(G)} x_{v} \\
& \text { subject to } x_{u}+x_{v} \geq 1 \\
& x_{v} \geq 0 \quad x_{v} \in\{0,1\} \text { for each } u v \in E(G) \\
& \text { for each } v \in V(G)
\end{aligned}
$$

Problem: It's NP-hard to solve ILPs in general.
But: LPs can be solved efficiently (in $O\left(L \cdot n^{3.5}\right)$ time ,
where $n=\#$ variables and $L=$ total bit complexity of coefficients.
Problem': Now we can get fractional solutions, i.e., in $(0,1)$.
Task: \quad Find a graph G with $O P T_{\text {LP }} \neq$ OPT $_{\text {ILP }}$!
Solution?

Standard ILP Format

LP relaxation

$$
\begin{aligned}
& \operatorname{minimize} \sum_{v \in V(G)} x_{v} \\
& \text { subject to } x_{u}+x_{v} \geq 1 \\
& x_{v} \geq 0 \quad x_{v} \in\{0,1\} \text { for each } u v \in E(G) \\
& \text { for each } v \in V(G)
\end{aligned}
$$

Problem: It's NP-hard to solve ILPs in general.
But:
LPs can be solved efficiently (in $O\left(L \cdot n^{3.5}\right)$ time),
where $n=\#$ variables and $L=$ total bit complexity of coefficients.
Problem': Now we can get fractional solutions, i.e., in $(0,1)$.
Task: \quad Find a graph G with $O P T_{\text {LP }} \neq$ OPT $_{\text {ILP }}$!
Solution? Round the LP solution to get an integral solution!

Rounding the LP Solution

$$
\begin{aligned}
\operatorname{minimize} & \sum_{v \in V(G)} x_{v} \\
\text { subject to } & \\
x_{u}+x_{v} \geq 1 & \text { for each } u v \in E(G \\
x_{v} \geq 0 & \text { for each } v \in V(G)
\end{aligned}
$$

For each $v \in V(G)$:

Rounding the LP Solution

$$
\begin{aligned}
\operatorname{minimize} \quad \sum_{v \in V(G)} x_{v} & \\
\text { subject to } x_{u}+x_{v} \geq 1 & \text { for each } u v \in E(G) \\
x_{v} \geq 0 & \text { for each } v \in V(G)
\end{aligned}
$$

For each $v \in V(G):$ Set $x_{v}^{\prime}= \begin{cases}1 & \text { if } x_{v} \geq 0.5, \\ 0 & \text { otherwise. }\end{cases}$

Rounding the LP Solution

$$
\begin{aligned}
\operatorname{minimize} \quad \sum_{v \in V(G)} x_{v} & \\
\text { subject to } x_{u}+x_{v} \geq 1 & \text { for each } u v \in E(G) \\
x_{v} \geq 0 & \text { for each } v \in V(G)
\end{aligned}
$$

For each $v \in V(G)$: Set $x_{v}^{\prime}= \begin{cases}1 & \text { if } x_{v} \geq 0.5, \\ 0 & \text { otherwise. }\end{cases}$
Need to check:

Rounding the LP Solution

$$
\begin{aligned}
\operatorname{minimize} & \sum_{v \in V(G)} x_{v} \\
\text { subject to } x_{u}+x_{v} \geq 1 & \text { for each } u v \in E(G) \\
x_{v} \geq 0 & \text { for each } v \in V(G)
\end{aligned}
$$

For each $v \in V(G)$: Set $x_{v}^{\prime}= \begin{cases}1 & \text { if } x_{v} \geq 0.5 \text {, } \\ 0 & \end{cases}$ 0 otherwise.
Need to check: Is $\left(x_{v}^{\prime}\right)_{v \in V(G)}$ a feasible solution?

Rounding the LP Solution

$$
\begin{aligned}
\operatorname{minimize} & \sum_{v \in V(G)} x_{v} \\
\text { subject to } x_{u}+x_{v} \geq 1 & \text { for each } u v \in E(G) \\
x_{v} \geq 0 & \text { for each } v \in V(G)
\end{aligned}
$$

For each $v \in V(G):$ Set $x_{v}^{\prime}= \begin{cases}1 & \text { if } x_{v} \geq 0.5 \text {, } \\ 0 & \end{cases}$ 0 otherwise.
Need to check: Is $\left(x_{v}^{\prime}\right)_{v \in V(G)}$ a feasible solution? In other words:

Rounding the LP Solution

$$
\begin{aligned}
& \operatorname{minimize} \sum_{v \in V(G)} x_{v} \\
& \text { subject to } x_{u}+x_{v} \geq 1 \\
& x_{v} \geq 0 \text { for each } u v \in E(G) \\
& \text { for each } v \in V(G)
\end{aligned}
$$

For each $v \in V(G)$: Set $x_{v}^{\prime}= \begin{cases}1 & \text { if } x_{v} \geq 0.5 \text {, } \\ 0 & \end{cases}$ 0 otherwise.
Need to check: Is $\left(x_{v}^{\prime}\right)_{v \in V(G)}$ a feasible solution?
In other words: Is $\left\{v \in V(G): x_{v}^{\prime}=1\right\}$ a vertex cover of G ?

Rounding the LP Solution

$$
\begin{aligned}
\operatorname{minimize} \quad \sum_{v \in V(G)} x_{v} & \\
\text { subject to } x_{u}+x_{v} \geq 1 & \text { for each } u v \in E(G) \\
x_{v} \geq 0 & \text { for each } v \in V(G)
\end{aligned}
$$

For each $v \in V(G)$: Set $x_{v}^{\prime}= \begin{cases}1 & \text { if } x_{v} \geq 0.5 \text {, } \\ 0 & \end{cases}$ 0 otherwise.
Need to check: Is $\left(x_{v}^{\prime}\right)_{v \in V(G)}$ a feasible solution?
In other words: Is $\left\{v \in V(G): x_{v}^{\prime}=1\right\}$ a vertex cover of G ?
Need to make sure that every edge $u v$ of G is covered.

Rounding the LP Solution

$$
\begin{aligned}
\operatorname{minimize} \quad \sum_{v \in V(G)} x_{v} & \\
\text { subject to } x_{u}+x_{v} \geq 1 & \text { for each } u v \in E(G) \\
x_{v} \geq 0 & \text { for each } v \in V(G)
\end{aligned}
$$

For each $v \in V(G):$ Set $x_{v}^{\prime}= \begin{cases}1 & \text { if } x_{v} \geq 0.5, \\ 0 & \end{cases}$ 0 otherwise.
Need to check: Is $\left(x_{v}^{\prime}\right)_{v \in V(G)}$ a feasible solution?
In other words: Is $\left\{v \in V(G): x_{v}^{\prime}=1\right\}$ a vertex cover of G ?
Need to make sure that every edge $u v$ of G is covered. Is $x_{u}^{\prime}=0=x_{v}^{\prime}$ possible?

Rounding the LP Solution

$$
\begin{aligned}
\operatorname{minimize} \quad \sum_{v \in V(G)} x_{v} & \\
\text { subject to } x_{u}+x_{v} \geq 1 & \text { for each } u v \in E(G) \\
x_{v} \geq 0 & \text { for each } v \in V(G)
\end{aligned}
$$

For each $v \in V(G)$: Set $x_{v}^{\prime}= \begin{cases}1 & \text { if } x_{v} \geq 0.5 \text {, } \\ 0 & \end{cases}$ 0 otherwise.
Need to check: Is $\left(x_{v}^{\prime}\right)_{v \in V(G)}$ a feasible solution?
In other words: Is $\left\{v \in V(G): x_{v}^{\prime}=1\right\}$ a vertex cover of G ?
Need to make sure that every edge $u v$ of G is covered. Is $x_{u}^{\prime}=0=x_{v}^{\prime}$ possible? But then $x_{u}<0.5$ and $x_{v}<0.5$.

Rounding the LP Solution

$$
\begin{aligned}
\operatorname{minimize} \quad \sum_{v \in V(G)} x_{v} & \\
\text { subject to } x_{u}+x_{v} \geq 1 & \text { for each } u v \in E(G) \\
x_{v} \geq 0 & \text { for each } v \in V(G)
\end{aligned}
$$

For each $v \in V(G)$: Set $x_{v}^{\prime}= \begin{cases}1 & \text { if } x_{v} \geq 0.5 \text {, } \\ 0 & \end{cases}$ 0 otherwise.
Need to check: Is $\left(x_{v}^{\prime}\right)_{v \in V(G)}$ a feasible solution?
In other words: Is $\left\{v \in V(G): x_{v}^{\prime}=1\right\}$ a vertex cover of G ?
Need to make sure that every edge $u v$ of G is covered. Is $x_{u}^{\prime}=0=x_{v}^{\prime}$ possible? But then $x_{u}<0.5$ and $x_{v}<0.5$.
This contradicts $x_{u}+x_{v} \geq 1$.

Rounding the LP Solution

$$
\begin{aligned}
\operatorname{minimize} & \sum_{v \in V(G)} x_{v} \\
\text { subject to } x_{u}+x_{v} \geq 1 & \text { for each } u v \in E(G) \\
x_{v} \geq 0 & \text { for each } v \in V(G)
\end{aligned}
$$

For each $v \in V(G)$: Set $x_{v}^{\prime}= \begin{cases}1 & \text { if } x_{v} \geq 0.5 \text {, } \\ 0 & \text {, }, ~\end{cases}$ 0 otherwise.
Need to check: Is $\left(x_{v}^{\prime}\right)_{v \in V(G)}$ a feasible solution?
In other words: Is $\left\{v \in V(G): x_{v}^{\prime}=1\right\}$ a vertex cover of G ?
Need to make sure that every edge $u v$ of G is covered. Is $x_{u}^{\prime}=0=x_{v}^{\prime}$ possible? But then $x_{u}<0.5$ and $x_{v}<0.5$.
This contradicts $x_{u}+x_{v} \geq 1 . \Rightarrow x_{u}^{\prime}=1$ or $x_{v}^{\prime}=1$

Rounding the LP Solution

$$
\begin{aligned}
\operatorname{minimize} \quad \sum_{v \in V(G)} x_{v} & \\
\text { subject to } x_{u}+x_{v} \geq 1 & \text { for each } u v \in E(G) \\
x_{v} \geq 0 & \text { for each } v \in V(G)
\end{aligned}
$$

For each $v \in V(G)$: Set $x_{v}^{\prime}= \begin{cases}1 & \text { if } x_{v} \geq 0.5 \text {, } \\ 0 & \text {, }, ~\end{cases}$
0 otherwise.
Need to check: Is $\left(x_{v}^{\prime}\right)_{v \in V(G)}$ a feasible solution?
In other words: Is $\left\{v \in V(G): x_{v}^{\prime}=1\right\}$ a vertex cover of G ?
Need to make sure that every edge $u v$ of G is covered.
Is $x_{u}^{\prime}=0=x_{v}^{\prime}$ possible? But then $x_{u}<0.5$ and $x_{v}<0.5$.
This contradicts $x_{u}+x_{v} \geq 1 . \Rightarrow x_{u}^{\prime}=1$ or $x_{v}^{\prime}=1 \Rightarrow\left(x_{v}^{\prime}\right)$ feasible!

Cost of the Solution

minimize $\sum_{v \in V(G)} x_{v}$ subject to $x_{u}+x_{v} \geq 1 \quad$ for each $u v \in E(G)$

$$
x_{v} \geq 0 \quad \text { for each } v \in V(G)
$$

For each $v \in V(G)$: Set $x_{v}^{\prime}= \begin{cases}1 & \text { if } x_{v} \geq 0.5, \\ 0 & \text { otherwise. }\end{cases}$
ALG =

Cost of the Solution

minimize $\sum_{v \in V(G)} x_{v}$ subject to $x_{u}+x_{v} \geq 1 \quad$ for each $u v \in E(G)$

$$
x_{v} \geq 0 \quad \text { for each } v \in V(G)
$$

For each $v \in V(G)$: Set $x_{v}^{\prime}= \begin{cases}1 & \text { if } x_{v} \geq 0.5, \\ 0 & \end{cases}$
0 otherwise.
ALG $=\sum_{v \in V(G)} x_{v}^{\prime} \leq$

Cost of the Solution

minimize $\sum_{v \in V(G)} x_{v}$ subject to $x_{u}+x_{v} \geq 1 \quad$ for each $u v \in E(G)$

$$
x_{v} \geq 0 \quad \text { for each } v \in V(G)
$$

For each $v \in V(G)$: Set $x_{v}^{\prime}= \begin{cases}1 & \text { if } x_{v} \geq 0.5, \\ 0 & \end{cases}$
0 otherwise.
ALG $=\sum_{v \in V(G)} x_{v}^{\prime} \leq \quad \sum_{v \in V(G)} x_{v}$

Cost of the Solution

minimize $\sum_{v \in V(G)} x_{v}$ subject to $x_{u}+x_{v} \geq 1 \quad$ for each $u v \in E(G)$

$$
x_{v} \geq 0 \quad \text { for each } v \in V(G)
$$

For each $v \in V(G)$: Set $x_{v}^{\prime}= \begin{cases}1 & \text { if } x_{v} \geq 0.5, \\ 0 & \text { otherwise. }\end{cases}$
ALG $=\sum_{v \in V(G)} x_{v}^{\prime} \leq \quad \sum_{v \in V(G)} x_{v}$

Cost of the Solution

minimize $\sum_{v \in V(G)} x_{v}$ subject to $x_{u}+x_{v} \geq 1 \quad$ for each $u v \in E(G)$

$$
x_{v} \geq 0 \quad \text { for each } v \in V(G)
$$

For each $v \in V(G)$: Set $x_{v}^{\prime}= \begin{cases}1 & \text { if } x_{v} \geq 0.5, \\ 0 & \text { otherwise. }\end{cases}$
ALG $=\sum_{v \in V(G)} x_{v}^{\prime} \leq 2 \cdot \sum_{v \in V(G)} x_{v}$

Cost of the Solution

minimize $\sum_{v \in V(G)} x_{v}$ subject to $x_{u}+x_{v} \geq 1 \quad$ for each $u v \in E(G)$

$$
x_{v} \geq 0 \quad \text { for each } v \in V(G)
$$

For each $v \in V(G)$: Set $x_{v}^{\prime}= \begin{cases}1 & \text { if } x_{v} \geq 0.5, \\ 0 & \text { otherwise. }\end{cases}$
ALG $=\sum_{v \in V(G)} x_{v}^{\prime} \leq 2 \cdot \sum_{v \in V(G)} x_{v}=2 \cdot$ OPT $_{\text {LP }}$

Cost of the Solution

minimize $\sum_{v \in V(G)} x_{v}$ subject to $x_{u}+x_{v} \geq 1 \quad$ for each $u v \in E(G)$

$$
x_{v} \geq 0 \quad \text { for each } v \in V(G)
$$

For each $v \in V(G)$: Set $x_{v}^{\prime}= \begin{cases}1 & \text { if } x_{v} \geq 0.5, \\ 0 & \text { otherwise. }\end{cases}$
ALG $=\sum_{v \in V(G)} x_{v}^{\prime} \leq 2 \cdot \sum_{v \in V(G)} x_{v}=2 \cdot$ OPT $_{\text {LP }} \leq 2 \cdot$ OPT $_{\text {ILP }}$

Cost of the Solution

$$
\text { minimize } \sum_{v \in V(G)} x_{v}
$$

$$
\text { subject to } x_{u}+x_{v} \geq 1 \quad \text { for each } u v \in E(G)
$$

$$
x_{v} \geq 0 \quad \text { for each } v \in V(G)
$$

For each $v \in V(G)$: Set $x_{v}^{\prime}= \begin{cases}1 & \text { if } x_{v} \geq 0.5, \\ 0 & \text { otherwise. }\end{cases}$
ALG $=\sum_{v \in V(G)} x_{v}^{\prime} \leq 2 \cdot \sum_{v \in V(G)} x_{v}=2 \cdot$ OPT $_{\text {LP }} \leq 2 \cdot$ OPT $_{\text {ILP }}$
Theorem. The LP rounding algorithm is a factor-2 approximation algorithm for

VertexCover.

Cost of the Solution

$$
\text { minimize } \sum_{v \in V(G)} x_{v}
$$

$$
\text { subject to } x_{u}+x_{v} \geq 1 \quad \text { for each } u v \in E(G)
$$

$$
x_{v} \geq 0 \quad \text { for each } v \in V(G)
$$

For each $v \in V(G)$: Set $x_{v}^{\prime}= \begin{cases}1 & \text { if } x_{v} \geq 0.5, \\ 0 & \text { otherwise. }\end{cases}$
ALG $=\sum_{v \in V(G)} x_{v}^{\prime} \leq 2 \cdot \sum_{v \in V(G)} x_{v}=2 \cdot$ OPT $_{\text {LP }} \leq 2 \cdot$ OPT $_{\text {ILP }}$
Theorem. The LP rounding algorithm is a factor-2 approximation algorithm for WeightedVertexCover.

Cost of the Solution

$$
\begin{array}{rlr}
\text { minimize } \quad \sum_{v \in V(G)} x_{v} \cdot w(v) & \\
\text { subject to } x_{u}+x_{v} \geq 1 & \text { for each } u v \in E(G) \\
x_{v} \geq 0 & \text { for each } v \in V(G)
\end{array}
$$

For each $v \in V(G)$: Set $x_{v}^{\prime}= \begin{cases}1 & \text { if } x_{v} \geq 0.5, \\ 0 & \text { otherwise. }\end{cases}$
ALG $=\sum_{v \in V(G)} x_{v}^{\prime} \leq 2 \cdot \sum_{v \in V(G)} x_{v}=2 \cdot$ OPT $_{\text {LP }} \leq 2 \cdot$ OPT $_{\text {ILP }}$
Theorem. The LP rounding algorithm is a factor-2 approximation algorithm for WeightedVertexCover.

Cost of the Solution

$$
\begin{array}{rlr}
\text { minimize } \quad \sum_{v \in V(G)} x_{v} \cdot w(v) & \\
\text { subject to } x_{u}+x_{v} \geq 1 & \text { for each } u v \in E(G) \\
x_{v} \geq 0 & \text { for each } v \in V(G)
\end{array}
$$

For each $v \in V(G)$: Set $x_{v}^{\prime}= \begin{cases}1 & \text { if } x_{v} \geq 0.5, \\ 0 & \text { otherwise }\end{cases}$
0 otherwise.
ALG $=\sum_{v \in V(G)} \dot{x_{v}^{\prime}} \leq 2 \cdot \sum_{v \in V(G)} \dot{x}_{v} \dot{x}_{v}^{w(v)}=2 \cdot$ OPT $_{\text {LP }} \leq 2 \cdot$ OPT $_{\text {ILP }}$
Theorem. The LP rounding algorithm is a factor-2 approximation algorithm for WeightedVertexCover.

