
Alexander Wolff Winter 2023/24

Lecture 1:
Introduction and Vertex Cover

Part I:
Organizational

Approximation Algorithms

Organizational

Lectures: on site (English/German, depending on audience)

Organizational

Lectures: on site (English/German, depending on audience)

Fri, 10:15–11:45 (ÜR I)

Organizational

Lectures:

Tutorials: roughly one exercise sheet per lecture

on site (English/German, depending on audience)

Fri, 10:15–11:45 (ÜR I)

Organizational

Lectures:

Tutorials: roughly one exercise sheet per lecture

on site (English/German, depending on audience)

Fri, 10:15–11:45 (ÜR I)

discussing old solutions and solving new tasks

Organizational

Lectures:

Tutorials: roughly one exercise sheet per lecture

on site (English/German, depending on audience)

Tue, 10:15–11:45 (SE I), starting Oct. 24.

Fri, 10:15–11:45 (ÜR I)

discussing old solutions and solving new tasks

Organizational

Lectures:

Tutorials: roughly one exercise sheet per lecture

on site (English/German, depending on audience)

Tue, 10:15–11:45 (SE I), starting Oct. 24.

Fri, 10:15–11:45 (ÜR I)

discussing old solutions and solving new tasks

Bonus (+0.3 on final grade) for ≥ 50% points

Organizational

Lectures:

Tutorials: roughly one exercise sheet per lecture

on site (English/German, depending on audience)

Tue, 10:15–11:45 (SE I), starting Oct. 24.

Fri, 10:15–11:45 (ÜR I)

discussing old solutions and solving new tasks

Bonus (+0.3 on final grade) for ≥ 50% points

Questions/Tasks during the lecture

Organizational

Lectures:

Tutorials: roughly one exercise sheet per lecture

on site (English/German, depending on audience)

Tue, 10:15–11:45 (SE I), starting Oct. 24.

Fri, 10:15–11:45 (ÜR I)

discussing old solutions and solving new tasks

Bonus (+0.3 on final grade) for ≥ 50% points

Questions/Tasks during the lecture

Most slides are due to Joachim Spoerhase,
polishing & colors are due to Philipp Kindermann – thanks!

Textbooks

Vijay V. Vazirani:
Approximation Algorithms
Springer-Verlag, 2003.

Textbooks

Vijay V. Vazirani:
Approximation Algorithms
Springer-Verlag, 2003.

D. P. Williamson & D.B. Shmoys:
The Design of Approximation Algorithms
Cambridge-Verlag, 2011.

http://www.designofapproxalgs.com/

Approximation Algorithms

”
All exact science is dominated by the
idea of approximation.“

– Bertrand Russell
(1872 – 1970)

Approximation Algorithms

■ Many optimization problems are NP-hard!
(For example, the traveling salesperson problem.)

Approximation Algorithms

■ Many optimization problems are NP-hard!
(For example, the traveling salesperson problem.)

■ ⇝ an optimal solution cannot be efficiently computed
unless P=NP.

Approximation Algorithms

■ Many optimization problems are NP-hard!
(For example, the traveling salesperson problem.)

■ ⇝ an optimal solution cannot be efficiently computed
unless P=NP.

■ However, good approximate solutions can often be found
efficiently!

Approximation Algorithms

■ Many optimization problems are NP-hard!
(For example, the traveling salesperson problem.)

■ ⇝ an optimal solution cannot be efficiently computed
unless P=NP.

■ However, good approximate solutions can often be found
efficiently!

■ Techniques for the design and analysis of approximation
algorithms arise from studying specific optimization
problems.

Overview

■ Introduction (Vertex Cover)
■ Set Cover via Greedy
■ Shortest Superstring

via reduction to SC
■ Steiner Tree via MST
■ Multiway Cut via Greedy
■ k-Center via Parametrized Pruning
■ Min-Degree Spanning Tree

and local search
■ Knapsack via DP and Scaling
■ Euclidean TSP via Quadtrees

Combinatorial algorithms

Overview

■ Introduction (Vertex Cover)
■ Set Cover via Greedy
■ Shortest Superstring

via reduction to SC
■ Steiner Tree via MST
■ Multiway Cut via Greedy
■ k-Center via Parametrized Pruning
■ Min-Degree Spanning Tree

and local search
■ Knapsack via DP and Scaling
■ Euclidean TSP via Quadtrees

Combinatorial algorithms LP-based algorithms

■ introduction to LP-Duality
■ Set Cover via LP Rounding
■ Set Cover via Primal–Dual

Schema
■ Maximum Satisfiability
■ Scheduling und Extreme Point

Solutions
■ Steiner Forest via Primal–Dual

Lecture 1:
Introduction and Vertex Cover

Part II:
(Cardinality) Vertex Cover

Approximation Algorithms

VertexCover (card.)

Input: Graph G = (V ,E)

Output:

VertexCover (card.)

Input: Graph G = (V ,E)

Output: a minimum vertex cover, that is,
a minimum-cardinality vertex set V ′ ⊆ V such that
every edge is covered (i.e., for every uv ∈ E , it holds
that u ∈ V ′ or v ∈ V ′).

VertexCover (card.)

Input: Graph G = (V ,E)

Output: a minimum vertex cover, that is,
a minimum-cardinality vertex set V ′ ⊆ V such that
every edge is covered (i.e., for every uv ∈ E , it holds
that u ∈ V ′ or v ∈ V ′).

VertexCover (card.)

Input: Graph G = (V ,E)

Output: a minimum vertex cover, that is,
a minimum-cardinality vertex set V ′ ⊆ V such that
every edge is covered (i.e., for every uv ∈ E , it holds
that u ∈ V ′ or v ∈ V ′).

VertexCover (card.)

Input: Graph G = (V ,E)

Output: a minimum vertex cover, that is,
a minimum-cardinality vertex set V ′ ⊆ V such that
every edge is covered (i.e., for every uv ∈ E , it holds
that u ∈ V ′ or v ∈ V ′).

VertexCover (card.)

Input: Graph G = (V ,E)

Output: a minimum vertex cover, that is,
a minimum-cardinality vertex set V ′ ⊆ V such that
every edge is covered (i.e., for every uv ∈ E , it holds
that u ∈ V ′ or v ∈ V ′).

VertexCover (card.)

Input: Graph G = (V ,E)

Output: a minimum vertex cover, that is,
a minimum-cardinality vertex set V ′ ⊆ V such that
every edge is covered (i.e., for every uv ∈ E , it holds
that u ∈ V ′ or v ∈ V ′).

VertexCover (card.)

Input: Graph G = (V ,E)

Output: a minimum vertex cover, that is,
a minimum-cardinality vertex set V ′ ⊆ V such that
every edge is covered (i.e., for every uv ∈ E , it holds
that u ∈ V ′ or v ∈ V ′).

VertexCover (card.)

Input: Graph G = (V ,E)

Output: a minimum vertex cover, that is,
a minimum-cardinality vertex set V ′ ⊆ V such that
every edge is covered (i.e., for every uv ∈ E , it holds
that u ∈ V ′ or v ∈ V ′).

VertexCover (card.)

Input: Graph G = (V ,E)

Output: a minimum vertex cover, that is,
a minimum-cardinality vertex set V ′ ⊆ V such that
every edge is covered (i.e., for every uv ∈ E , it holds
that u ∈ V ′ or v ∈ V ′).

any vertex cover

VertexCover (card.)

Input: Graph G = (V ,E)

Output: a minimum vertex cover, that is,
a minimum-cardinality vertex set V ′ ⊆ V such that
every edge is covered (i.e., for every uv ∈ E , it holds
that u ∈ V ′ or v ∈ V ′).

any vertex cover

VertexCover (card.)

Input: Graph G = (V ,E)

Output: a minimum vertex cover, that is,
a minimum-cardinality vertex set V ′ ⊆ V such that
every edge is covered (i.e., for every uv ∈ E , it holds
that u ∈ V ′ or v ∈ V ′).

any vertex cover

VertexCover (card.)

Input: Graph G = (V ,E)

Output: a minimum vertex cover, that is,
a minimum-cardinality vertex set V ′ ⊆ V such that
every edge is covered (i.e., for every uv ∈ E , it holds
that u ∈ V ′ or v ∈ V ′).

any vertex cover

VertexCover (card.)

Input: Graph G = (V ,E)

Output: a minimum vertex cover, that is,
a minimum-cardinality vertex set V ′ ⊆ V such that
every edge is covered (i.e., for every uv ∈ E , it holds
that u ∈ V ′ or v ∈ V ′).

Optimum (OPT = 4)

VertexCover (card.)

Input: Graph G = (V ,E)

Output: a minimum vertex cover, that is,
a minimum-cardinality vertex set V ′ ⊆ V such that
every edge is covered (i.e., for every uv ∈ E , it holds
that u ∈ V ′ or v ∈ V ′).

Optimum (OPT = 4) – but in general NP-hard to find :-(

VertexCover (card.)

Input: Graph G = (V ,E)

Output: a minimum vertex cover, that is,
a minimum-cardinality vertex set V ′ ⊆ V such that
every edge is covered (i.e., for every uv ∈ E , it holds
that u ∈ V ′ or v ∈ V ′).

“good” (5/4-) approximate solution

Lecture 1:
Introduction and Vertex Cover

Part III:
NP-Optimization Problem

Approximation Algorithms

NP-Optimization Problem

An NP-optimization problem Π is given by:

NP-Optimization Problem

An NP-optimization problem Π is given by:

■ A set DΠ of instances.
We denote the size of an instance I ∈ DΠ by |I |.

NP-Optimization Problem

An NP-optimization problem Π is given by:

■ A set DΠ of instances.
We denote the size of an instance I ∈ DΠ by |I |.

■ For each instance I ∈ DΠ ,
a set SΠ(I) ̸= ∅ of feasible solutions for I such that:

NP-Optimization Problem

An NP-optimization problem Π is given by:

■ A set DΠ of instances.
We denote the size of an instance I ∈ DΠ by |I |.

■ For each instance I ∈ DΠ ,
a set SΠ(I) ̸= ∅ of feasible solutions for I such that:

■ for each solution s ∈ SΠ(I),
its size |s| is polynomially bounded in |I |, and

NP-Optimization Problem

An NP-optimization problem Π is given by:

■ A set DΠ of instances.
We denote the size of an instance I ∈ DΠ by |I |.

■ there is a polynomial-time algorithm that decides,
for each pair (s, I), whether s ∈ SΠ(I).

■ For each instance I ∈ DΠ ,
a set SΠ(I) ̸= ∅ of feasible solutions for I such that:

■ for each solution s ∈ SΠ(I),
its size |s| is polynomially bounded in |I |, and

NP-Optimization Problem

An NP-optimization problem Π is given by:

■ A set DΠ of instances.
We denote the size of an instance I ∈ DΠ by |I |.

■ there is a polynomial-time algorithm that decides,
for each pair (s, I), whether s ∈ SΠ(I).

■ A polynomial time computable objective function objΠ
which assigns a positive objective value objΠ(I , s) ≥ 0 to
any given pair (s, I) with s ∈ SΠ(I).

■ For each instance I ∈ DΠ ,
a set SΠ(I) ̸= ∅ of feasible solutions for I such that:

■ for each solution s ∈ SΠ(I),
its size |s| is polynomially bounded in |I |, and

NP-Optimization Problem

An NP-optimization problem Π is given by:

■ A set DΠ of instances.
We denote the size of an instance I ∈ DΠ by |I |.

■ there is a polynomial-time algorithm that decides,
for each pair (s, I), whether s ∈ SΠ(I).

■ A polynomial time computable objective function objΠ
which assigns a positive objective value objΠ(I , s) ≥ 0 to
any given pair (s, I) with s ∈ SΠ(I).

■ Π is either a minimization or maximization problem.

■ For each instance I ∈ DΠ ,
a set SΠ(I) ̸= ∅ of feasible solutions for I such that:

■ for each solution s ∈ SΠ(I),
its size |s| is polynomially bounded in |I |, and

VertexCover: NP-Optimization Problem

Π is a m...imization problem.

Task: Fill in the gaps for Π = Vertex Cover.

DΠ =

For I ∈ DΠ :

SΠ(I) =

|I | =

■ Why is |s| ∈ poly(|I |) for every s ∈ SΠ(I)?

■ For a given pair (s, I), how can we efficiently decide
whether s ∈ SΠ(I)?

objΠ(I , s) =

VertexCover: NP-Optimization Problem

Π is a m...imization problem.

Task: Fill in the gaps for Π = Vertex Cover.

DΠ =

For I ∈ DΠ :

SΠ(I) =

|I | =

■ Why is |s| ∈ poly(|I |) for every s ∈ SΠ(I)?

■ For a given pair (s, I), how can we efficiently decide
whether s ∈ SΠ(I)?

objΠ(I , s) =

Set of all graphs

VertexCover: NP-Optimization Problem

Π is a m...imization problem.

Task: Fill in the gaps for Π = Vertex Cover.

DΠ =

For I ∈ DΠ :

SΠ(I) =

|I | =

■ Why is |s| ∈ poly(|I |) for every s ∈ SΠ(I)?

■ For a given pair (s, I), how can we efficiently decide
whether s ∈ SΠ(I)?

objΠ(I , s) =

Set of all graphs

G=(V ,E)

VertexCover: NP-Optimization Problem

Π is a m...imization problem.

Task: Fill in the gaps for Π = Vertex Cover.

DΠ =

For I ∈ DΠ :

SΠ(I) =

|I | =

■ Why is |s| ∈ poly(|I |) for every s ∈ SΠ(I)?

■ For a given pair (s, I), how can we efficiently decide
whether s ∈ SΠ(I)?

objΠ(I , s) =

Set of all graphs

Number of vertices |V |

G=(V ,E)

VertexCover: NP-Optimization Problem

Π is a m...imization problem.

Task: Fill in the gaps for Π = Vertex Cover.

DΠ =

For I ∈ DΠ :

SΠ(I) =

|I | =

■ Why is |s| ∈ poly(|I |) for every s ∈ SΠ(I)?

■ For a given pair (s, I), how can we efficiently decide
whether s ∈ SΠ(I)?

objΠ(I , s) =

Set of all graphs

Number of vertices |V |

Set of all vertex covers of GG=(V ,E)

VertexCover: NP-Optimization Problem

Π is a m...imization problem.

Task: Fill in the gaps for Π = Vertex Cover.

DΠ =

For I ∈ DΠ :

SΠ(I) =

|I | =

■ Why is |s| ∈ poly(|I |) for every s ∈ SΠ(I)?

■ For a given pair (s, I), how can we efficiently decide
whether s ∈ SΠ(I)?

objΠ(I , s) =

Set of all graphs

Number of vertices |V |

Set of all vertex covers of GG=(V ,E)

s ⊆ V ⇒ |s| ≤ |V | = |I |

VertexCover: NP-Optimization Problem

Π is a m...imization problem.

Task: Fill in the gaps for Π = Vertex Cover.

DΠ =

For I ∈ DΠ :

SΠ(I) =

|I | =

■ Why is |s| ∈ poly(|I |) for every s ∈ SΠ(I)?

■ For a given pair (s, I), how can we efficiently decide
whether s ∈ SΠ(I)?

objΠ(I , s) =

Set of all graphs

Number of vertices |V |

Set of all vertex covers of GG=(V ,E)

s ⊆ V ⇒ |s| ≤ |V | = |I |

Test whether all edges are covered.

VertexCover: NP-Optimization Problem

Π is a m...imization problem.

Task: Fill in the gaps for Π = Vertex Cover.

DΠ =

For I ∈ DΠ :

SΠ(I) =

|I | =

■ Why is |s| ∈ poly(|I |) for every s ∈ SΠ(I)?

■ For a given pair (s, I), how can we efficiently decide
whether s ∈ SΠ(I)?

objΠ(I , s) =

Set of all graphs

Number of vertices |V |

Set of all vertex covers of GG=(V ,E)

s ⊆ V ⇒ |s| ≤ |V | = |I |

Test whether all edges are covered.

|s|

VertexCover: NP-Optimization Problem

Π is a m...imization problem.

Task: Fill in the gaps for Π = Vertex Cover.

DΠ =

For I ∈ DΠ :

SΠ(I) =

|I | =

■ Why is |s| ∈ poly(|I |) for every s ∈ SΠ(I)?

■ For a given pair (s, I), how can we efficiently decide
whether s ∈ SΠ(I)?

objΠ(I , s) =

Set of all graphs

Number of vertices |V |

Set of all vertex covers of GG=(V ,E)

s ⊆ V ⇒ |s| ≤ |V | = |I |

Test whether all edges are covered.

|s|

in

Optimum and Optimal Objective Value

Let Π be a minimization problem and I ∈ DΠ an instance of Π.

A feasible solution s∗ ∈ SΠ(I) is optimal if

objΠ(I , s
∗) is minimal among the objective values

attained by the feasible solutions of I .

Optimum and Optimal Objective Value

Let Π be a minimization problem and I ∈ DΠ an instance of Π.

A feasible solution s∗ ∈ SΠ(I) is optimal if

objΠ(I , s
∗) is minimal among the objective values

attained by the feasible solutions of I .

Optimum and Optimal Objective Value

Let Π be a minimization problem and I ∈ DΠ an instance of Π.

A feasible solution s∗ ∈ SΠ(I) is optimal if

objΠ(I , s
∗) is minimal among the objective values

attained by the feasible solutions of I .

maximization problem

maximal

Optimum and Optimal Objective Value

Let Π be a minimization problem and I ∈ DΠ an instance of Π.

A feasible solution s∗ ∈ SΠ(I) is optimal if

objΠ(I , s
∗) is minimal among the objective values

attained by the feasible solutions of I .

The optimal value objΠ(I , s
∗) of the objective function is

denoted by OPTΠ(I) or simply by OPT in context.

maximization problem

maximal

Approximation Algorithms

Let Π be a minimization problem and α ∈ Q+.

A factor-α approximation algorithm for Π is an efficient
algorithm that provides, for any instance I ∈ DΠ ,
a feasible solution s ∈ SΠ(I) such that

objΠ(I , s)

OPTΠ(I)
≤ α.

Approximation Algorithms

Let Π be a minimization problem and α ∈ Q+.

A factor-α approximation algorithm for Π is an efficient
algorithm that provides, for any instance I ∈ DΠ ,
a feasible solution s ∈ SΠ(I) such that

objΠ(I , s)

OPTΠ(I)
≤ α.

Approximation Algorithms

Let Π be a minimization problem and α ∈ Q+.

A factor-α approximation algorithm for Π is an efficient
algorithm that provides, for any instance I ∈ DΠ ,
a feasible solution s ∈ SΠ(I) such that

objΠ(I , s)

OPTΠ(I)
≤ α.

Approximation Algorithms

Let Π be a minimization problem and α ∈ Q+.

A factor-α approximation algorithm for Π is an efficient
algorithm that provides, for any instance I ∈ DΠ ,
a feasible solution s ∈ SΠ(I) such that

objΠ(I , s)

OPTΠ(I)
≤ α.

Approximation Algorithms

Let Π be a minimization problem and α ∈ Q+.

A factor-α approximation algorithm for Π is an efficient
algorithm that provides, for any instance I ∈ DΠ ,
a feasible solution s ∈ SΠ(I) such that

objΠ(I , s)

OPTΠ(I)
≤ α.

α(|I |)

α : N→ Q

Approximation Algorithms

Let Π be a minimization problem and α ∈ Q+.

A factor-α approximation algorithm for Π is an efficient
algorithm that provides, for any instance I ∈ DΠ ,
a feasible solution s ∈ SΠ(I) such that

objΠ(I , s)

OPTΠ(I)
≤ α.

α(|I |)

α : N→ Qmaximization problem

≥

Lecture 1:
Introduction and Vertex Cover

Part IV:
Approximation Algorithm for VertexCover

Approximation Algorithms

Approximation Alg. for VertexCover

Ideas?

Approximation Alg. for VertexCover

Ideas?

■ Edge-Greedy

Approximation Alg. for VertexCover

Ideas?

■ Edge-Greedy

■ Vertex-Greedy

Approximation Alg. for VertexCover

Ideas?

■ Edge-Greedy

■ Vertex-Greedy

Approximation Alg. for VertexCover

Ideas?

■ Edge-Greedy

■ Vertex-Greedy

Approximation Alg. for VertexCover

Ideas?

■ Edge-Greedy

■ Vertex-Greedy

Approximation Alg. for VertexCover

Ideas?

■ Edge-Greedy

■ Vertex-Greedy

Approximation Alg. for VertexCover

Ideas?

■ Edge-Greedy

■ Vertex-Greedy

Approximation Alg. for VertexCover

Ideas?

■ Edge-Greedy

■ Vertex-Greedy

Approximation Alg. for VertexCover

Ideas?

■ Edge-Greedy

■ Vertex-Greedy

Approximation Alg. for VertexCover

Ideas?

■ Edge-Greedy

■ Vertex-Greedy

Quality?

Approximation Alg. for VertexCover

Ideas?

■ Edge-Greedy

■ Vertex-Greedy

Quality?

Problem: How can we estimate objΠ(I , s)/OPT,
when it is hard to compute OPT?

Approximation Alg. for VertexCover

Ideas?

■ Edge-Greedy

■ Vertex-Greedy

Quality?

Problem:

Idea:

How can we estimate objΠ(I , s)/OPT,
when it is hard to compute OPT?

Find a “good” lower bound L ≤ OPT for OPT and
compare it to our approximate solution.

Approximation Alg. for VertexCover

Ideas?

■ Edge-Greedy

■ Vertex-Greedy

Quality?

Problem:

Idea:

objΠ(I , s)

OPT
≤ objΠ(I , s)

L

How can we estimate objΠ(I , s)/OPT,
when it is hard to compute OPT?

Find a “good” lower bound L ≤ OPT for OPT and
compare it to our approximate solution.

Lower Bound by Matchings

Lower Bound by Matchings

Given a graph G , a set M of edges of G is a matching
if no two edges of M are adjacent (i.e., share an end vertex).

Lower Bound by Matchings

Given a graph G , a set M of edges of G is a matching
if no two edges of M are adjacent (i.e., share an end vertex).

Lower Bound by Matchings

M is maximal if there is no matching M ′ with M ′ ⊋ M.

Given a graph G , a set M of edges of G is a matching
if no two edges of M are adjacent (i.e., share an end vertex).

Lower Bound by Matchings

OPT ≥

M is maximal if there is no matching M ′ with M ′ ⊋ M.

Given a graph G , a set M of edges of G is a matching
if no two edges of M are adjacent (i.e., share an end vertex).

Lower Bound by Matchings

Vertex cover of M

OPT ≥

M is maximal if there is no matching M ′ with M ′ ⊋ M.

Given a graph G , a set M of edges of G is a matching
if no two edges of M are adjacent (i.e., share an end vertex).

Lower Bound by Matchings

Vertex cover of M

OPT ≥

M is maximal if there is no matching M ′ with M ′ ⊋ M.

|M|

Given a graph G , a set M of edges of G is a matching
if no two edges of M are adjacent (i.e., share an end vertex).

Lower Bound by Matchings

Vertex cover of M

Given a graph G , a set M of edges of G is a matching
if no two edges of M are adjacent (i.e., share an end vertex).

M is maximal if there is no matching M ′ with M ′ ⊋ M.

OPT = |M| ?
OPT ≥ |M|

Lower Bound by Matchings

Vertex cover of M

Given a graph G , a set M of edges of G is a matching
if no two edges of M are adjacent (i.e., share an end vertex).

M is maximal if there is no matching M ′ with M ′ ⊋ M.

OPT = |M| ?
OPT ≥ |M|

Lower Bound by Matchings

Vertex cover of M

Given a graph G , a set M of edges of G is a matching
if no two edges of M are adjacent (i.e., share an end vertex).

M is maximal if there is no matching M ′ with M ′ ⊋ M.

OPT = |M| ?
OPT ≥ |M|

Lower Bound by Matchings

Vertex cover of M

Given a graph G , a set M of edges of G is a matching
if no two edges of M are adjacent (i.e., share an end vertex).

M is maximal if there is no matching M ′ with M ′ ⊋ M.

OPT = |M| ?
OPT ≥ |M|

Lower Bound by Matchings

Vertex cover of M

Given a graph G , a set M of edges of G is a matching
if no two edges of M are adjacent (i.e., share an end vertex).

M is maximal if there is no matching M ′ with M ′ ⊋ M.

OPT = |M| ?
OPT ≥ |M|

Lower Bound by Matchings

Vertex cover of E
Vertex cover of M

Given a graph G , a set M of edges of G is a matching
if no two edges of M are adjacent (i.e., share an end vertex).

M is maximal if there is no matching M ′ with M ′ ⊋ M.

OPT = |M| ?
OPT ≥ |M|

Lower Bound by Matchings

Vertex cover of E
Vertex cover of M

Given a graph G , a set M of edges of G is a matching
if no two edges of M are adjacent (i.e., share an end vertex).

M is maximal if there is no matching M ′ with M ′ ⊋ M.

OPT = |M| ?
OPT ≥ |M|

Lower Bound by Matchings

Vertex cover of E
Vertex cover of M

Given a graph G , a set M of edges of G is a matching
if no two edges of M are adjacent (i.e., share an end vertex).

M is maximal if there is no matching M ′ with M ′ ⊋ M.

OPT = |M| ?
OPT ≥ |M|

Lower Bound by Matchings

Vertex cover of E
Vertex cover of M

Given a graph G , a set M of edges of G is a matching
if no two edges of M are adjacent (i.e., share an end vertex).

M is maximal if there is no matching M ′ with M ′ ⊋ M.

OPT = |M| ?
OPT ≥ |M|

Lower Bound by Matchings

Vertex cover of E
Vertex cover of M

Given a graph G , a set M of edges of G is a matching
if no two edges of M are adjacent (i.e., share an end vertex).

M is maximal if there is no matching M ′ with M ′ ⊋ M.

ALG = 2 · |M| ≤

OPT = |M| ?
OPT ≥ |M|

Lower Bound by Matchings

Vertex cover of E
Vertex cover of M

Given a graph G , a set M of edges of G is a matching
if no two edges of M are adjacent (i.e., share an end vertex).

M is maximal if there is no matching M ′ with M ′ ⊋ M.

ALG = 2 · |M| ≤ 2 · OPT

OPT = |M| ?
OPT ≥ |M|

Approximation Alg. for VertexCover

Algorithm VertexCover(G)

M ← ∅
foreach e ∈ E (G) do

if e is not adjacent to any edge in M then
M ← M ∪ {e}

return { u, v | uv ∈ M }

Approximation Alg. for VertexCover

Algorithm VertexCover(G)

M ← ∅
foreach e ∈ E (G) do

if e is not adjacent to any edge in M then
M ← M ∪ {e}

return { u, v | uv ∈ M }

Approximation Alg. for VertexCover

Algorithm VertexCover(G)

M ← ∅
foreach e ∈ E (G) do

if e is not adjacent to any edge in M then
M ← M ∪ {e}

return { u, v | uv ∈ M }

Approximation Alg. for VertexCover

Algorithm VertexCover(G)

M ← ∅
foreach e ∈ E (G) do

if e is not adjacent to any edge in M then
M ← M ∪ {e}

return { u, v | uv ∈ M }

Approximation Alg. for VertexCover

Algorithm VertexCover(G)

M ← ∅
foreach e ∈ E (G) do

if e is not adjacent to any edge in M then
M ← M ∪ {e}

return { u, v | uv ∈ M }

Approximation Alg. for VertexCover

Algorithm VertexCover(G)

M ← ∅
foreach e ∈ E (G) do

if e is not adjacent to any edge in M then
M ← M ∪ {e}

return { u, v | uv ∈ M }

The above algorithm is a factor-2 approximation
algorithm for VertexCover.

Theorem.

Approximation Alg. for VertexCover

Algorithm VertexCover(G)

M ← ∅
foreach e ∈ E (G) do

if e is not adjacent to any edge in M then
M ← M ∪ {e}

return { u, v | uv ∈ M }

The above algorithm is a factor-2 approximation
algorithm for VertexCover.

Theorem.

Proof. ALG = 2 · |M| ≤

Approximation Alg. for VertexCover

Algorithm VertexCover(G)

M ← ∅
foreach e ∈ E (G) do

if e is not adjacent to any edge in M then
M ← M ∪ {e}

return { u, v | uv ∈ M }

The above algorithm is a factor-2 approximation
algorithm for VertexCover.

Theorem.

Proof. ALG = 2 · |M| ≤ 2 · OPT □

Approximability of Vertex Cover

The best known approximation factor for VertexCover is

Approximability of Vertex Cover

The best known approximation factor for VertexCover is
2−Θ(1/

√
log n).

Approximability of Vertex Cover

The best known approximation factor for VertexCover is
2−Θ(1/

√
log n).

If P ̸= NP, VertexCover cannot be approximated within a
factor of 1.3606.

Approximability of Vertex Cover

The best known approximation factor for VertexCover is
2−Θ(1/

√
log n).

If P ̸= NP, VertexCover cannot be approximated within a
factor of 1.3606.

VertexCover cannot be approximated within a factor of
2−Θ(1) – if the Unique Games Conjecture holds.

Lecture 1:
Introduction and Vertex Cover

Part V:
An LP-based Algorithm for VertexCover

Approximation Algorithms

Task

Write an integer linear program (ILP) for VertexCover:

Task

Write an integer linear program (ILP) for VertexCover:

Using integer (and/or real) variables, express the problem using

■ linear constraints and

■ a linear objective function.

Task

Write an integer linear program (ILP) for VertexCover:

Using integer (and/or real) variables, express the problem using

■ linear constraints and

■ a linear objective function.

You can iterate over the vertices / edges of the given graph G .

Task

Write an integer linear program (ILP) for VertexCover:

Using integer (and/or real) variables, express the problem using

■ linear constraints and

■ a linear objective function.

You can iterate over the vertices / edges of the given graph G .

Variables:

Objective:

Constraints:

Task

Write an integer linear program (ILP) for VertexCover:

Using integer (and/or real) variables, express the problem using

■ linear constraints and

■ a linear objective function.

You can iterate over the vertices / edges of the given graph G .

Variables: for each vertex v of G , we introduce

Objective:

Constraints:

Task

Write an integer linear program (ILP) for VertexCover:

Using integer (and/or real) variables, express the problem using

■ linear constraints and

■ a linear objective function.

You can iterate over the vertices / edges of the given graph G .

Variables: xv ∈ {0, 1}.for each vertex v of G , we introduce

Objective:

Constraints:

Task

Write an integer linear program (ILP) for VertexCover:

Using integer (and/or real) variables, express the problem using

■ linear constraints and

■ a linear objective function.

You can iterate over the vertices / edges of the given graph G .

Variables: xv ∈ {0, 1}.for each vertex v of G , we introduce

Objective:

Constraints:

v not in the solution
v in the solution

Task

Write an integer linear program (ILP) for VertexCover:

Using integer (and/or real) variables, express the problem using

■ linear constraints and

■ a linear objective function.

You can iterate over the vertices / edges of the given graph G .

Variables: xv ∈ {0, 1}.for each vertex v of G , we introduce

Objective: minimize

Constraints:

v not in the solution
v in the solution

Task

Write an integer linear program (ILP) for VertexCover:

Using integer (and/or real) variables, express the problem using

■ linear constraints and

■ a linear objective function.

You can iterate over the vertices / edges of the given graph G .

Variables: xv ∈ {0, 1}.for each vertex v of G , we introduce

Objective: minimize
∑

v∈V (G) xv

Constraints:

v not in the solution
v in the solution

Task

Write an integer linear program (ILP) for VertexCover:

Using integer (and/or real) variables, express the problem using

■ linear constraints and

■ a linear objective function.

You can iterate over the vertices / edges of the given graph G .

Variables: xv ∈ {0, 1}.for each vertex v of G , we introduce

Objective: minimize
∑

v∈V (G) xv

Constraints: for each edge uv of G , we require that

v not in the solution
v in the solution

Task

Write an integer linear program (ILP) for VertexCover:

Using integer (and/or real) variables, express the problem using

■ linear constraints and

■ a linear objective function.

You can iterate over the vertices / edges of the given graph G .

Variables: xv ∈ {0, 1}.for each vertex v of G , we introduce

Objective: minimize
∑

v∈V (G) xv

Constraints: for each edge uv of G , we require that

xu + xv ≥ 1.

v not in the solution
v in the solution

Standard ILP Format

xv ∈ {0, 1}

minimize
∑

v∈V (G) xv

xu + xv ≥ 1subject to for each uv ∈ E (G)

for each v ∈ V (G)

Standard ILP Format

xv ∈ {0, 1}

minimize
∑

v∈V (G) xv

xu + xv ≥ 1subject to for each uv ∈ E (G)

for each v ∈ V (G)

Problem:

Standard ILP Format

xv ∈ {0, 1}

minimize
∑

v∈V (G) xv

xu + xv ≥ 1subject to for each uv ∈ E (G)

for each v ∈ V (G)

Problem: It’s NP-hard to solve ILPs in general.

Standard ILP Format

xv ∈ {0, 1}

minimize
∑

v∈V (G) xv

xu + xv ≥ 1subject to for each uv ∈ E (G)

for each v ∈ V (G)

Problem: It’s NP-hard to solve ILPs in general.

But: LPs can be solved efficiently (in O(L · n3.5) time),

Standard ILP Format

xv ∈ {0, 1}

minimize
∑

v∈V (G) xv

xu + xv ≥ 1subject to for each uv ∈ E (G)

for each v ∈ V (G)

Problem: It’s NP-hard to solve ILPs in general.

But: LPs can be solved efficiently (in O(L · n3.5) time),
where n = # variables and L = total bit complexity of coefficients.

Standard ILP Format

xv ∈ {0, 1}

minimize
∑

v∈V (G) xv

xu + xv ≥ 1subject to for each uv ∈ E (G)

for each v ∈ V (G)

Problem: It’s NP-hard to solve ILPs in general.

But: LPs can be solved efficiently (in O(L · n3.5) time),
where n = # variables and L = total bit complexity of coefficients.

xv ≥ 0

LP relaxation

Standard ILP Format

xv ∈ {0, 1}

minimize
∑

v∈V (G) xv

xu + xv ≥ 1subject to for each uv ∈ E (G)

for each v ∈ V (G)

Problem: It’s NP-hard to solve ILPs in general.

But: LPs can be solved efficiently (in O(L · n3.5) time),
where n = # variables and L = total bit complexity of coefficients.

xv ≥ 0

Problem′: Now we can get fractional solutions, i.e., in (0, 1).

LP relaxation

Standard ILP Format

xv ∈ {0, 1}

minimize
∑

v∈V (G) xv

xu + xv ≥ 1subject to for each uv ∈ E (G)

for each v ∈ V (G)

Problem: It’s NP-hard to solve ILPs in general.

But: LPs can be solved efficiently (in O(L · n3.5) time),
where n = # variables and L = total bit complexity of coefficients.

xv ≥ 0

Problem′: Now we can get fractional solutions, i.e., in (0, 1).

Task: Find a graph G with OPTLP ̸= OPTILP!

LP relaxation

Standard ILP Format

xv ∈ {0, 1}

minimize
∑

v∈V (G) xv

xu + xv ≥ 1subject to for each uv ∈ E (G)

for each v ∈ V (G)

Problem: It’s NP-hard to solve ILPs in general.

But: LPs can be solved efficiently (in O(L · n3.5) time),
where n = # variables and L = total bit complexity of coefficients.

xv ≥ 0

Problem′: Now we can get fractional solutions, i.e., in (0, 1).

Task: Find a graph G with OPTLP ̸= OPTILP!

Solution?

LP relaxation

Standard ILP Format

xv ∈ {0, 1}

minimize
∑

v∈V (G) xv

xu + xv ≥ 1subject to for each uv ∈ E (G)

for each v ∈ V (G)

Problem: It’s NP-hard to solve ILPs in general.

But: LPs can be solved efficiently (in O(L · n3.5) time),
where n = # variables and L = total bit complexity of coefficients.

xv ≥ 0

Problem′: Now we can get fractional solutions, i.e., in (0, 1).

Task: Find a graph G with OPTLP ̸= OPTILP!

Solution? Round the LP solution to get an integral solution!

LP relaxation

Rounding the LP Solution

minimize
∑

v∈V (G) xv

xu + xv ≥ 1subject to for each uv ∈ E (G)

for each v ∈ V (G)xv ≥ 0

For each v ∈ V (G):

Rounding the LP Solution

minimize
∑

v∈V (G) xv

xu + xv ≥ 1subject to for each uv ∈ E (G)

for each v ∈ V (G)xv ≥ 0

For each v ∈ V (G): Set x ′v =

{
1 if xv ≥ 0.5,

0 otherwise.

Rounding the LP Solution

minimize
∑

v∈V (G) xv

xu + xv ≥ 1subject to for each uv ∈ E (G)

for each v ∈ V (G)xv ≥ 0

For each v ∈ V (G): Set x ′v =

{
1 if xv ≥ 0.5,

0 otherwise.

Need to check:

Rounding the LP Solution

minimize
∑

v∈V (G) xv

xu + xv ≥ 1subject to for each uv ∈ E (G)

for each v ∈ V (G)xv ≥ 0

For each v ∈ V (G): Set x ′v =

{
1 if xv ≥ 0.5,

0 otherwise.

Need to check: Is (x ′v)v∈V (G) a feasible solution?

Rounding the LP Solution

minimize
∑

v∈V (G) xv

xu + xv ≥ 1subject to for each uv ∈ E (G)

for each v ∈ V (G)xv ≥ 0

For each v ∈ V (G): Set x ′v =

{
1 if xv ≥ 0.5,

0 otherwise.

Need to check:

In other words:

Is (x ′v)v∈V (G) a feasible solution?

Rounding the LP Solution

minimize
∑

v∈V (G) xv

xu + xv ≥ 1subject to for each uv ∈ E (G)

for each v ∈ V (G)xv ≥ 0

For each v ∈ V (G): Set x ′v =

{
1 if xv ≥ 0.5,

0 otherwise.

Need to check:

In other words:

Is (x ′v)v∈V (G) a feasible solution?

Is {v ∈ V (G) : x ′v = 1} a vertex cover of G?

Rounding the LP Solution

minimize
∑

v∈V (G) xv

xu + xv ≥ 1subject to for each uv ∈ E (G)

for each v ∈ V (G)xv ≥ 0

For each v ∈ V (G): Set x ′v =

{
1 if xv ≥ 0.5,

0 otherwise.

Need to check:

In other words:

Is (x ′v)v∈V (G) a feasible solution?

Is {v ∈ V (G) : x ′v = 1} a vertex cover of G?

Need to make sure that every edge uv of G is covered.

Rounding the LP Solution

minimize
∑

v∈V (G) xv

xu + xv ≥ 1subject to for each uv ∈ E (G)

for each v ∈ V (G)xv ≥ 0

For each v ∈ V (G): Set x ′v =

{
1 if xv ≥ 0.5,

0 otherwise.

Need to check:

In other words:

Is (x ′v)v∈V (G) a feasible solution?

Is {v ∈ V (G) : x ′v = 1} a vertex cover of G?

Need to make sure that every edge uv of G is covered.

Is x ′u = 0 = x ′v possible?

Rounding the LP Solution

minimize
∑

v∈V (G) xv

xu + xv ≥ 1subject to for each uv ∈ E (G)

for each v ∈ V (G)xv ≥ 0

For each v ∈ V (G): Set x ′v =

{
1 if xv ≥ 0.5,

0 otherwise.

Need to check:

In other words:

Is (x ′v)v∈V (G) a feasible solution?

Is {v ∈ V (G) : x ′v = 1} a vertex cover of G?

Need to make sure that every edge uv of G is covered.

Is x ′u = 0 = x ′v possible? But then xu < 0.5 and xv < 0.5.

Rounding the LP Solution

minimize
∑

v∈V (G) xv

xu + xv ≥ 1subject to for each uv ∈ E (G)

for each v ∈ V (G)xv ≥ 0

For each v ∈ V (G): Set x ′v =

{
1 if xv ≥ 0.5,

0 otherwise.

Need to check:

In other words:

Is (x ′v)v∈V (G) a feasible solution?

Is {v ∈ V (G) : x ′v = 1} a vertex cover of G?

Need to make sure that every edge uv of G is covered.

Is x ′u = 0 = x ′v possible? But then xu < 0.5 and xv < 0.5.

This contradicts xu + xv ≥ 1.

Rounding the LP Solution

minimize
∑

v∈V (G) xv

xu + xv ≥ 1subject to for each uv ∈ E (G)

for each v ∈ V (G)xv ≥ 0

For each v ∈ V (G): Set x ′v =

{
1 if xv ≥ 0.5,

0 otherwise.

Need to check:

In other words:

Is (x ′v)v∈V (G) a feasible solution?

Is {v ∈ V (G) : x ′v = 1} a vertex cover of G?

Need to make sure that every edge uv of G is covered.

Is x ′u = 0 = x ′v possible? But then xu < 0.5 and xv < 0.5.

x ′u = 1 x ′v = 1⇒ orThis contradicts xu + xv ≥ 1.

Rounding the LP Solution

minimize
∑

v∈V (G) xv

xu + xv ≥ 1subject to for each uv ∈ E (G)

for each v ∈ V (G)xv ≥ 0

For each v ∈ V (G): Set x ′v =

{
1 if xv ≥ 0.5,

0 otherwise.

Need to check:

In other words:

Is (x ′v)v∈V (G) a feasible solution?

Is {v ∈ V (G) : x ′v = 1} a vertex cover of G?

Need to make sure that every edge uv of G is covered.

Is x ′u = 0 = x ′v possible? But then xu < 0.5 and xv < 0.5.

x ′u = 1 x ′v = 1⇒ or (x ′v)
feasible!

This contradicts xu + xv ≥ 1. ⇒

Cost of the Solution

ALG =

minimize
∑

v∈V (G) xv

xu + xv ≥ 1subject to for each uv ∈ E (G)

for each v ∈ V (G)xv ≥ 0

For each v ∈ V (G): Set x ′v =

{
1 if xv ≥ 0.5,

0 otherwise.

Cost of the Solution

∑
v∈V (G) x

′
v ≤ALG =

minimize
∑

v∈V (G) xv

xu + xv ≥ 1subject to for each uv ∈ E (G)

for each v ∈ V (G)xv ≥ 0

For each v ∈ V (G): Set x ′v =

{
1 if xv ≥ 0.5,

0 otherwise.

Cost of the Solution

∑
v∈V (G) x

′
v ≤

∑
v∈V (G) xvALG =

minimize
∑

v∈V (G) xv

xu + xv ≥ 1subject to for each uv ∈ E (G)

for each v ∈ V (G)xv ≥ 0

For each v ∈ V (G): Set x ′v =

{
1 if xv ≥ 0.5,

0 otherwise.

Cost of the Solution

∑
v∈V (G) x

′
v ≤

∑
v∈V (G) xvALG =

minimize
∑

v∈V (G) xv

xu + xv ≥ 1subject to for each uv ∈ E (G)

for each v ∈ V (G)xv ≥ 0

For each v ∈ V (G): Set x ′v =

{
1 if xv ≥ 0.5,

0 otherwise.

Cost of the Solution

∑
v∈V (G) x

′
v ≤

∑
v∈V (G) xvALG =

minimize
∑

v∈V (G) xv

xu + xv ≥ 1subject to for each uv ∈ E (G)

for each v ∈ V (G)xv ≥ 0

For each v ∈ V (G): Set x ′v =

{
1 if xv ≥ 0.5,

0 otherwise.

2 ·

Cost of the Solution

∑
v∈V (G) x

′
v ≤

∑
v∈V (G) xvALG =

minimize
∑

v∈V (G) xv

xu + xv ≥ 1subject to for each uv ∈ E (G)

for each v ∈ V (G)xv ≥ 0

For each v ∈ V (G): Set x ′v =

{
1 if xv ≥ 0.5,

0 otherwise.

2 · = 2 · OPTLP

Cost of the Solution

∑
v∈V (G) x

′
v ≤

∑
v∈V (G) xvALG =

minimize
∑

v∈V (G) xv

xu + xv ≥ 1subject to for each uv ∈ E (G)

for each v ∈ V (G)xv ≥ 0

For each v ∈ V (G): Set x ′v =

{
1 if xv ≥ 0.5,

0 otherwise.

2 · = 2 · OPTLP ≤ 2 · OPTILP

Cost of the Solution

The LP rounding algorithm is a factor-2 approxi-
mation algorithm for WeightedVertexCover.

Theorem.

∑
v∈V (G) x

′
v ≤

∑
v∈V (G) xvALG =

minimize
∑

v∈V (G) xv

xu + xv ≥ 1subject to for each uv ∈ E (G)

for each v ∈ V (G)xv ≥ 0

For each v ∈ V (G): Set x ′v =

{
1 if xv ≥ 0.5,

0 otherwise.

2 · = 2 · OPTLP ≤ 2 · OPTILP

Cost of the Solution

The LP rounding algorithm is a factor-2 approxi-
mation algorithm for WeightedVertexCover.

Theorem.

∑
v∈V (G) x

′
v ≤

∑
v∈V (G) xvALG =

minimize
∑

v∈V (G) xv

xu + xv ≥ 1subject to for each uv ∈ E (G)

for each v ∈ V (G)xv ≥ 0

For each v ∈ V (G): Set x ′v =

{
1 if xv ≥ 0.5,

0 otherwise.

2 · = 2 · OPTLP ≤ 2 · OPTILP

Cost of the Solution

The LP rounding algorithm is a factor-2 approxi-
mation algorithm for WeightedVertexCover.

Theorem.

∑
v∈V (G) x

′
v ≤

∑
v∈V (G) xvALG =

minimize
∑

v∈V (G) xv

xu + xv ≥ 1subject to for each uv ∈ E (G)

for each v ∈ V (G)xv ≥ 0

For each v ∈ V (G): Set x ′v =

{
1 if xv ≥ 0.5,

0 otherwise.

2 · = 2 · OPTLP ≤ 2 · OPTILP

·w(v)

Cost of the Solution

The LP rounding algorithm is a factor-2 approxi-
mation algorithm for WeightedVertexCover.

Theorem.

∑
v∈V (G) x

′
v ≤

∑
v∈V (G) xvALG =

minimize
∑

v∈V (G) xv

xu + xv ≥ 1subject to for each uv ∈ E (G)

for each v ∈ V (G)xv ≥ 0

For each v ∈ V (G): Set x ′v =

{
1 if xv ≥ 0.5,

0 otherwise.

2 · = 2 · OPTLP ≤ 2 · OPTILP

·w(v)

·w(v)·w(v)

	Organizational
	Textbooks
	Approximation Algorithms
	Overview

	Vertex Cover (card.)
	NP-Optimization Problem
	VertexCover: NP-Optimization Problem

	Optimum and Optimal Objective Value
	Optimum and Optimal Objective Value
	Approximation Algorithms

	Approximation Algorithm for VertexCover
	Lower Bound by Matchings
	Approximation Algorithm for VertexCover

	Approximability of \textsc{Vertex Cover}
	Approximation Algorithm for VertexCover
	Task
	Standard ILP Format
	Rounding the LP Solution
	Cost of the Solution

