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Tutorials: roughly one exercise sheet per lecture

on site (English/German, depending on audience)

Tue, 10:15–11:45 (SE I), starting Oct. 24.

Fri, 10:15–11:45 (ÜR I)

discussing old solutions and solving new tasks

Bonus (+0.3 on final grade) for ≥ 50% points

Questions/Tasks during the lecture

Most slides are due to Joachim Spoerhase,
polishing & colors are due to Philipp Kindermann – thanks!
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Vijay V. Vazirani:
Approximation Algorithms
Springer-Verlag, 2003.

D. P. Williamson & D.B. Shmoys:
The Design of Approximation Algorithms
Cambridge-Verlag, 2011.

http://www.designofapproxalgs.com/



Approximation Algorithms

”
All exact science is dominated by the
idea of approximation.“

– Bertrand Russell
(1872 – 1970)
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Approximation Algorithms

■ Many optimization problems are NP-hard!
(For example, the traveling salesperson problem.)

■ ⇝ an optimal solution cannot be efficiently computed
unless P=NP.

■ However, good approximate solutions can often be found
efficiently!

■ Techniques for the design and analysis of approximation
algorithms arise from studying specific optimization
problems.
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■ Set Cover via Greedy
■ Shortest Superstring

via reduction to SC
■ Steiner Tree via MST
■ Multiway Cut via Greedy
■ k-Center via Parametrized Pruning
■ Min-Degree Spanning Tree
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■ Knapsack via DP and Scaling
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via reduction to SC
■ Steiner Tree via MST
■ Multiway Cut via Greedy
■ k-Center via Parametrized Pruning
■ Min-Degree Spanning Tree

and local search
■ Knapsack via DP and Scaling
■ Euclidean TSP via Quadtrees

Combinatorial algorithms LP-based algorithms

■ introduction to LP-Duality
■ Set Cover via LP Rounding
■ Set Cover via Primal–Dual

Schema
■ Maximum Satisfiability
■ Scheduling und Extreme Point

Solutions
■ Steiner Forest via Primal–Dual
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VertexCover (card.)

Input: Graph G = (V ,E )

Output: a minimum vertex cover, that is,
a minimum-cardinality vertex set V ′ ⊆ V such that
every edge is covered (i.e., for every uv ∈ E , it holds
that u ∈ V ′ or v ∈ V ′).

“good” (5/4-) approximate solution
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We denote the size of an instance I ∈ DΠ by |I |.
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for each pair (s, I ), whether s ∈ SΠ(I ).

■ A polynomial time computable objective function objΠ
which assigns a positive objective value objΠ(I , s) ≥ 0 to
any given pair (s, I ) with s ∈ SΠ(I ).

■ Π is either a minimization or maximization problem.

■ For each instance I ∈ DΠ ,
a set SΠ(I ) ̸= ∅ of feasible solutions for I such that:

■ for each solution s ∈ SΠ(I ),
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Optimum and Optimal Objective Value

Let Π be a minimization problem and I ∈ DΠ an instance of Π.

A feasible solution s∗ ∈ SΠ(I ) is optimal if

objΠ(I , s
∗) is minimal among the objective values

attained by the feasible solutions of I .

The optimal value objΠ(I , s
∗) of the objective function is

denoted by OPTΠ(I ) or simply by OPT in context.

maximization problem

maximal



Approximation Algorithms

Let Π be a minimization problem and α ∈ Q+.

A factor-α approximation algorithm for Π is an efficient
algorithm that provides, for any instance I ∈ DΠ ,
a feasible solution s ∈ SΠ(I ) such that

objΠ(I , s)

OPTΠ(I )
≤ α.



Approximation Algorithms

Let Π be a minimization problem and α ∈ Q+.

A factor-α approximation algorithm for Π is an efficient
algorithm that provides, for any instance I ∈ DΠ ,
a feasible solution s ∈ SΠ(I ) such that

objΠ(I , s)

OPTΠ(I )
≤ α.



Approximation Algorithms

Let Π be a minimization problem and α ∈ Q+.

A factor-α approximation algorithm for Π is an efficient
algorithm that provides, for any instance I ∈ DΠ ,
a feasible solution s ∈ SΠ(I ) such that

objΠ(I , s)

OPTΠ(I )
≤ α.



Approximation Algorithms

Let Π be a minimization problem and α ∈ Q+.

A factor-α approximation algorithm for Π is an efficient
algorithm that provides, for any instance I ∈ DΠ ,
a feasible solution s ∈ SΠ(I ) such that

objΠ(I , s)

OPTΠ(I )
≤ α.



Approximation Algorithms

Let Π be a minimization problem and α ∈ Q+.

A factor-α approximation algorithm for Π is an efficient
algorithm that provides, for any instance I ∈ DΠ ,
a feasible solution s ∈ SΠ(I ) such that

objΠ(I , s)

OPTΠ(I )
≤ α.

α(|I |)

α : N→ Q



Approximation Algorithms

Let Π be a minimization problem and α ∈ Q+.

A factor-α approximation algorithm for Π is an efficient
algorithm that provides, for any instance I ∈ DΠ ,
a feasible solution s ∈ SΠ(I ) such that

objΠ(I , s)

OPTΠ(I )
≤ α.

α(|I |)

α : N→ Qmaximization problem

≥



Lecture 1:
Introduction and Vertex Cover

Part IV:
Approximation Algorithm for VertexCover

Approximation Algorithms



Approximation Alg. for VertexCover

Ideas?



Approximation Alg. for VertexCover

Ideas?

■ Edge-Greedy



Approximation Alg. for VertexCover

Ideas?

■ Edge-Greedy

■ Vertex-Greedy



Approximation Alg. for VertexCover

Ideas?

■ Edge-Greedy

■ Vertex-Greedy



Approximation Alg. for VertexCover

Ideas?

■ Edge-Greedy

■ Vertex-Greedy



Approximation Alg. for VertexCover

Ideas?

■ Edge-Greedy

■ Vertex-Greedy



Approximation Alg. for VertexCover

Ideas?

■ Edge-Greedy

■ Vertex-Greedy



Approximation Alg. for VertexCover

Ideas?

■ Edge-Greedy

■ Vertex-Greedy



Approximation Alg. for VertexCover

Ideas?

■ Edge-Greedy

■ Vertex-Greedy



Approximation Alg. for VertexCover

Ideas?

■ Edge-Greedy

■ Vertex-Greedy



Approximation Alg. for VertexCover

Ideas?

■ Edge-Greedy

■ Vertex-Greedy

Quality?



Approximation Alg. for VertexCover

Ideas?

■ Edge-Greedy

■ Vertex-Greedy

Quality?

Problem: How can we estimate objΠ(I , s)/OPT,
when it is hard to compute OPT?



Approximation Alg. for VertexCover

Ideas?

■ Edge-Greedy

■ Vertex-Greedy

Quality?

Problem:

Idea:

How can we estimate objΠ(I , s)/OPT,
when it is hard to compute OPT?

Find a “good” lower bound L ≤ OPT for OPT and
compare it to our approximate solution.



Approximation Alg. for VertexCover

Ideas?

■ Edge-Greedy

■ Vertex-Greedy

Quality?

Problem:

Idea:

objΠ(I , s)

OPT
≤ objΠ(I , s)

L

How can we estimate objΠ(I , s)/OPT,
when it is hard to compute OPT?

Find a “good” lower bound L ≤ OPT for OPT and
compare it to our approximate solution.
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Approximability of Vertex Cover

The best known approximation factor for VertexCover is
2−Θ(1/

√
log n).

If P ̸= NP, VertexCover cannot be approximated within a
factor of 1.3606.

VertexCover cannot be approximated within a factor of
2−Θ(1) – if the Unique Games Conjecture holds.
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Write an integer linear program (ILP) for VertexCover:

Using integer (and/or real) variables, express the problem using

■ linear constraints and

■ a linear objective function.

You can iterate over the vertices / edges of the given graph G .

Variables: xv ∈ {0, 1}.for each vertex v of G , we introduce

Objective: minimize
∑

v∈V (G) xv

Constraints: for each edge uv of G , we require that

xu + xv ≥ 1.

v not in the solution
v in the solution
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xv ∈ {0, 1}

minimize
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Problem: It’s NP-hard to solve ILPs in general.
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