Lecture 1: Introduction and Vertex Cover

Part I: Organizational

Lectures: on site (English/German, depending on audience)

Lectures: on site (English/German, depending on audience)

Fri, 10:15–11:45 (ÜR I)

Lectures: on site (English/German, depending on audience)

Fri, 10:15-11:45 (ÜR I)

Tutorials: roughly one exercise sheet per lecture

Lectures: on site (English/German, depending on audience)

Fri, 10:15-11:45 (ÜR I)

Tutorials: roughly one exercise sheet per lecture

discussing old solutions and solving new tasks

Lectures: on site (English/German, depending on audience)

Fri, 10:15-11:45 (ÜR I)

Tutorials: roughly one exercise sheet per lecture

discussing old solutions and solving new tasks

Tue, 10:15–11:45 (SE I), starting Oct. 24.

Lectures: on site (English/German, depending on audience)

Fri, 10:15-11:45 (ÜR I)

Tutorials: roughly one exercise sheet per lecture

discussing old solutions and solving new tasks

Tue, 10:15-11:45 (SE I), starting Oct. 24.

Bonus (+0.3 on final grade) for $\geq 50\%$ points

Lectures: on site (English/German, depending on audience)

Fri, 10:15-11:45 (ÜR I)

Tutorials: roughly one exercise sheet per lecture

discussing old solutions and solving new tasks

Tue, 10:15-11:45 (SE I), starting Oct. 24.

Bonus (+0.3 on final grade) for $\geq 50\%$ points

Questions/Tasks during the lecture

Lectures: on site (English/German, depending on audience)

Fri, 10:15-11:45 (ÜR I)

Tutorials: roughly one exercise sheet per lecture

discussing old solutions and solving new tasks

Tue, 10:15-11:45 (SE I), starting Oct. 24.

Bonus (+0.3 on final grade) for $\geq 50\%$ points

Questions/Tasks during the lecture

Most slides are due to Joachim Spoerhase, polishing & colors are due to Philipp Kindermann – thanks!

Textbooks

Vijay V. Vazirani: Approximation Algorithms Springer-Verlag, 2003.

Textbooks

Vijay V. Vazirani: Approximation Algorithms Springer-Verlag, 2003.

D. P. Williamson & D. B. Shmoys: The Design of Approximation Algorithms Cambridge-Verlag, 2011.

http://www.designofapproxalgs.com/

"All exact science is dominated by the idea of approximation."

Bertrand Russell(1872 – 1970)

Many optimization problems are NP-hard!
 (For example, the traveling salesperson problem.)

- Many optimization problems are NP-hard!
 (For example, the traveling salesperson problem.)
- an optimal solution cannot be efficiently computed unless P=NP.

- Many optimization problems are NP-hard!
 (For example, the traveling salesperson problem.)
- an optimal solution cannot be efficiently computed unless P=NP.
- However, good approximate solutions can often be found efficiently!

- Many optimization problems are NP-hard!
 (For example, the traveling salesperson problem.)
- an optimal solution cannot be efficiently computed unless P=NP.
- However, good approximate solutions can often be found efficiently!
- Techniques for the design and analysis of approximation algorithms arise from studying specific optimization problems.

Overview

Combinatorial algorithms

- Introduction (Vertex Cover)
- Set Cover via Greedy
- Shortest Superstring via reduction to SC
- Steiner Tree via MST
- Multiway Cut via Greedy
- *k*-Center via Parametrized Pruning
- Min-Degree Spanning Tree and local search
- Knapsack via DP and Scaling
- Euclidean TSP via Quadtrees

Overview

Combinatorial algorithms

- Introduction (Vertex Cover)
- Set Cover via Greedy
- Shortest Superstring via reduction to SC
- Steiner Tree via MST
- Multiway Cut via Greedy
- *k*-Center via Parametrized Pruning
- Min-Degree Spanning Tree and local search
- Knapsack via DP and Scaling
- Euclidean TSP via Quadtrees

LP-based algorithms

- introduction to LP-Duality
- Set Cover via LP Rounding
- Set Cover via Primal–Dual Schema
- Maximum Satisfiability
- Scheduling und Extreme Point Solutions
- Steiner Forest via Primal–Dual

Lecture 1: Introduction and Vertex Cover

Part II: (Cardinality) Vertex Cover

Input: Graph G = (V, E)

Output:

Input: Graph G = (V, E)

Input: Graph G = (V, E)

Input: Graph G = (V, E)

Input: Graph G = (V, E)

Input: Graph G = (V, E)

Input: Graph G = (V, E)

Input: Graph G = (V, E)

Input: Graph G = (V, E)

Input: Graph G = (V, E)

Input: Graph G = (V, E)

Input: Graph G = (V, E)

Input: Graph G = (V, E)

Input: Graph G = (V, E)

Output: a minimum **vertex cover**, that is, a minimum-cardinality vertex set $V' \subseteq V$ such that every edge is **covered** (i.e., for every $uv \in E$, it holds that $u \in V'$ or $v \in V'$).

Optimum (OPT = 4)

Input: Graph G = (V, E)

Output: a minimum **vertex cover**, that is, a minimum-cardinality vertex set $V' \subseteq V$ such that every edge is **covered** (i.e., for every $uv \in E$, it holds that $u \in V'$ or $v \in V'$).

Optimum (OPT = 4) – but in general NP-hard to find :-(

Input: Graph G = (V, E)

Output: a minimum **vertex cover**, that is, a minimum-cardinality vertex set $V' \subseteq V$ such that every edge is **covered** (i.e., for every $uv \in E$, it holds that $u \in V'$ or $v \in V'$).

"good" (5/4-) approximate solution

Lecture 1: Introduction and Vertex Cover

Part III: NP-Optimization Problem

An NP-optimization problem Π is given by:

■ A set D_{Π} of **instances**. We denote the size of an instance $I \in D_{\Pi}$ by |I|.

- A set D_{Π} of **instances**. We denote the size of an instance $I \in D_{\Pi}$ by |I|.
- For each instance $I \in D_{\Pi}$, a set $S_{\Pi}(I) \neq \emptyset$ of **feasible solutions** for I such that:

- A set D_{Π} of **instances**. We denote the size of an instance $I \in D_{\Pi}$ by |I|.
- For each instance $I \in D_{\Pi}$, a set $S_{\Pi}(I) \neq \emptyset$ of **feasible solutions** for I such that:
 - for each solution $s \in S_{\Pi}(I)$, its size |s| is polynomially bounded in |I|, and

- A set D_{Π} of **instances**. We denote the size of an instance $I \in D_{\Pi}$ by |I|.
- For each instance $I \in D_{\Pi}$, a set $S_{\Pi}(I) \neq \emptyset$ of **feasible solutions** for I such that:
 - for each solution $s \in S_{\Pi}(I)$, its size |s| is polynomially bounded in |I|, and
 - there is a polynomial-time algorithm that decides, for each pair (s, I), whether $s \in S_{\Pi}(I)$.

- A set D_{Π} of **instances**. We denote the size of an instance $I \in D_{\Pi}$ by |I|.
- For each instance $I \in D_{\Pi}$, a set $S_{\Pi}(I) \neq \emptyset$ of **feasible solutions** for I such that:
 - for each solution $s \in S_{\Pi}(I)$, its size |s| is polynomially bounded in |I|, and
 - there is a polynomial-time algorithm that decides, for each pair (s, I), whether $s \in S_{\Pi}(I)$.
- A polynomial time computable objective function obj_{Π} which assigns a positive objective value $\operatorname{obj}_{\Pi}(I,s) \geq 0$ to any given pair (s,I) with $s \in S_{\Pi}(I)$.

- A set D_{Π} of **instances**. We denote the size of an instance $I \in D_{\Pi}$ by |I|.
- For each instance $I \in D_{\Pi}$, a set $S_{\Pi}(I) \neq \emptyset$ of **feasible solutions** for I such that:
 - for each solution $s \in S_{\Pi}(I)$, its size |s| is polynomially bounded in |I|, and
 - there is a polynomial-time algorithm that decides, for each pair (s, I), whether $s \in S_{\Pi}(I)$.
- A polynomial time computable objective function obj_{Π} which assigns a positive objective value $\operatorname{obj}_{\Pi}(I,s) \geq 0$ to any given pair (s,I) with $s \in S_{\Pi}(I)$.
- \blacksquare Π is either a minimization or maximization problem.

Task: Fill in the gaps for $\Pi = VERTEX$ COVER.

$$D_{\Pi}=$$
For $I\in D_{\Pi}$: $|I|=$
 $S_{\Pi}(I)=$

- Why is $|s| \in \text{poly}(|I|)$ for every $s \in S_{\Pi}(I)$?
- For a given pair (s, I), how can we efficiently decide whether $s \in S_{\Pi}(I)$?

$$\operatorname{obj}_{\Pi}(I,s) =$$

Task: Fill in the gaps for $\Pi = VERTEX COVER$.

$$D_{\Pi} =$$
 Set of all graphs

For
$$I \in D_{\Pi}$$
: $|I| = S_{\Pi}(I) =$

- Why is $|s| \in \text{poly}(|I|)$ for every $s \in S_{\Pi}(I)$?
- For a given pair (s, I), how can we efficiently decide whether $s \in S_{\Pi}(I)$?

$$\operatorname{obj}_{\Pi}(I,s) =$$

Task: Fill in the gaps for $\Pi = VERTEX COVER$.

 $D_{\Pi} =$ Set of all graphs

For
$$I \in D_{\Pi}$$
: $|I| = G = (V, E)$ $S_{\Pi}(I) = G = (V, E)$

- Why is $|s| \in \text{poly}(|I|)$ for every $s \in S_{\Pi}(I)$?
- For a given pair (s, I), how can we efficiently decide whether $s \in S_{\Pi}(I)$?

$$\operatorname{obj}_{\Pi}(I,s) =$$

Task: Fill in the gaps for $\Pi = VERTEX$ COVER.

 $D_{\Pi} =$ Set of all graphs

For
$$I \in D_{\Pi}$$
: $|I| = \text{Number of vertices } |V|$

$$G = (V, E) \qquad S_{\Pi}(I) =$$

- Why is $|s| \in \text{poly}(|I|)$ for every $s \in S_{\Pi}(I)$?
- For a given pair (s, I), how can we efficiently decide whether $s \in S_{\Pi}(I)$?

$$\operatorname{obj}_{\Pi}(I,s) =$$

Task: Fill in the gaps for $\Pi = VERTEX COVER$.

 $D_{\Pi} =$ Set of all graphs

For
$$I \in D_{\Pi}$$
: $|I| = \text{Number of vertices } |V|$
 $G = (V, E)$ $S_{\Pi}(I) = \text{Set of all vertex covers of } G$

- Why is $|s| \in \text{poly}(|I|)$ for every $s \in S_{\Pi}(I)$?
- For a given pair (s, I), how can we efficiently decide whether $s \in S_{\Pi}(I)$?

$$\operatorname{obj}_{\Pi}(I,s) =$$

Task: Fill in the gaps for $\Pi = VERTEX COVER$.

 $D_{\Pi} =$ Set of all graphs

For
$$I \in D_{\Pi}$$
: $|I| = \text{Number of vertices } |V|$
 $G = (V, E)$ $S_{\Pi}(I) = \text{Set of all vertex covers of } G$

- Why is $|s| \in \text{poly}(|I|)$ for every $s \in S_{\Pi}(I)$? $s \subseteq V \Rightarrow |s| \leq |V| = |I|$
- For a given pair (s, I), how can we efficiently decide whether $s \in S_{\Pi}(I)$?

$$\operatorname{obj}_{\Pi}(I,s) =$$

Task: Fill in the gaps for $\Pi = VERTEX$ COVER.

 $D_{\Pi} =$ Set of all graphs

For
$$I \in D_{\Pi}$$
: $|I| = \text{Number of vertices } |V|$
 $G = (V, E)$ $S_{\Pi}(I) = \text{Set of all vertex covers of } G$

- Why is $|s| \in \text{poly}(|I|)$ for every $s \in S_{\Pi}(I)$? $s \subset V \Rightarrow |s| < |V| = |I|$
- For a given pair (s, I), how can we efficiently decide whether $s \in S_{\Pi}(I)$? Test whether all edges are covered.

$$\operatorname{obj}_{\Pi}(I,s) =$$

Task: Fill in the gaps for $\Pi = VERTEX COVER$.

 $D_{\Pi} =$ Set of all graphs

For
$$I \in D_{\Pi}$$
: $|I| = \text{Number of vertices } |V|$
 $G = (V, E)$ $S_{\Pi}(I) = \text{Set of all vertex covers of } G$

- Why is $|s| \in \text{poly}(|I|)$ for every $s \in S_{\Pi}(I)$? $s \subseteq V \Rightarrow |s| \leq |V| = |I|$
- For a given pair (s, I), how can we efficiently decide whether $s \in S_{\Pi}(I)$? Test whether all edges are covered.

$$\operatorname{obj}_{\Pi}(I,s) = |s|$$

Task: Fill in the gaps for $\Pi = VERTEX COVER$.

 $D_{\Pi} =$ Set of all graphs

For
$$I \in D_{\Pi}$$
: $|I| = \text{Number of vertices } |V|$
 $G = (V, E)$ $S_{\Pi}(I) = \text{Set of all vertex covers of } G$

- Why is $|s| \in \text{poly}(|I|)$ for every $s \in S_{\Pi}(I)$? $s \subseteq V \Rightarrow |s| \leq |V| = |I|$
- For a given pair (s, I), how can we efficiently decide whether $s \in S_{\Pi}(I)$? Test whether all edges are covered.

$$\operatorname{obj}_{\Pi}(I,s) = |s|$$

Let Π be a minimization problem and $I \in D_{\Pi}$ an instance of Π .

- -

Let Π be a minimization problem and $I \in D_{\Pi}$ an instance of Π .

A feasible solution $s^* \in S_{\Pi}(I)$ is **optimal** if $\operatorname{obj}_{\Pi}(I, s^*)$ is minimal among the objective values attained by the feasible solutions of I.

maximization problem Let Π be a minimization problem and $I \in D_{\Pi}$ an instance of Π .

A feasible solution $s^* \in S_{\Pi}(I)$ is **optimal** if $\max_{maximal} \sup_{n \in I} (I, s^*)$ is minimal among the objective values attained by the feasible solutions of I.

maximization problem Let Π be a minimization problem and $I \in D_{\Pi}$ an instance of Π .

A feasible solution $s^* \in S_{\Pi}(I)$ is **optimal** if $\underset{\Pi}{\text{obj}}_{\Pi}(I, s^*)$ is minimal among the objective values attained by the feasible solutions of I.

The optimal value $obj_{\Pi}(I, s^*)$ of the objective function is denoted by $OPT_{\Pi}(I)$ or simply by OPT in context.

Let Π be a minimization problem and $\alpha \in \mathbb{Q}^+$.

Let Π be a minimization problem and $\alpha \in \mathbb{Q}^+$.

Let Π be a minimization problem and $\alpha \in \mathbb{Q}^+$.

$$\frac{\mathsf{obj}_{\Pi}(I,s)}{\mathsf{OPT}_{\Pi}(I)}$$

Let Π be a minimization problem and $\alpha \in \mathbb{Q}^+$.

$$\frac{\operatorname{obj}_{\Pi}(I,s)}{\operatorname{OPT}_{\Pi}(I)} \leq \alpha.$$

 $\alpha\colon \mathbb{N}\to \mathbb{Q}$ Let Π be a minimization problem and $\alpha\colon \mathbb{N}\to \mathbb{Q}$

$$\frac{\mathsf{obj}_{\Pi}(I,s)}{\mathsf{OPT}_{\Pi}(I)} \leq \varkappa. \quad \alpha(|I|)$$

maximization problem $\alpha: \mathbb{N} \to \mathbb{Q}$ Let Π be a minimization problem and $\alpha: \mathbb{N} \to \mathbb{Q}$.

$$\frac{\mathsf{obj}_{\Pi}(I,s)}{\mathsf{OPT}_{\Pi}(I)} \stackrel{\geq}{\leq} \varkappa. \quad \alpha(|I|)$$

Lecture 1: Introduction and Vertex Cover

Part IV:

Approximation Algorithm for VertexCover

Approximation Alg. for VERTEXCOVER

Ideas?

Edge-Greedy

Approximation Alg. for VERTEXCOVER

- Edge-Greedy
- Vertex-Greedy

Approximation Alg. for VERTEXCOVER

- Edge-Greedy
- Vertex-Greedy

- Edge-Greedy
- Vertex-Greedy

- Edge-Greedy
- Vertex-Greedy

- Edge-Greedy
- Vertex-Greedy

- Edge-Greedy
- Vertex-Greedy

- Edge-Greedy
- Vertex-Greedy

Ideas?

- Edge-Greedy
- Vertex-Greedy

Ideas?

- Edge-Greedy
- Vertex-Greedy

Quality?

Ideas?

- Edge-Greedy
- Vertex-Greedy

Quality?

Problem: How can we estimate $obj_{\Pi}(I, s)/OPT$, when it is hard to compute OPT?

Ideas?

- Edge-Greedy
- Vertex-Greedy

Quality?

Problem: How can we estimate $obj_{\Pi}(I, s)/OPT$,

when it is hard to compute OPT?

Idea: Find a "good" lower bound $L \leq OPT$ for OPT and

compare it to our approximate solution.

Ideas?

- Edge-Greedy
- Vertex-Greedy

Quality?

Problem: How can we estimate $obj_{\Pi}(I, s)/OPT$,

when it is hard to compute OPT?

Idea: Find a "good" lower bound $L \leq OPT$ for OPT and compare it to our approximate solution.

$$\frac{\operatorname{obj}_{\Pi}(I,s)}{\operatorname{OPT}} \leq \frac{\operatorname{obj}_{\Pi}(I,s)}{L}$$

Given a graph G, a set M of edges of G is a **matching** if no two edges of M are adjacent (i.e., share an end vertex).

Given a graph G, a set M of edges of G is a **matching** if no two edges of M are adjacent (i.e., share an end vertex).

Given a graph G, a set M of edges of G is a **matching** if no two edges of M are adjacent (i.e., share an end vertex).

M is **maximal** if there is no matching M' with $M' \supseteq M$.

Given a graph G, a set M of edges of G is a **matching** if no two edges of M are adjacent (i.e., share an end vertex).

M is **maximal** if there is no matching M' with $M' \supseteq M$.

OPT ≥

Given a graph G, a set M of edges of G is a **matching** if no two edges of M are adjacent (i.e., share an end vertex).

M is **maximal** if there is no matching M' with $M' \supseteq M$.

OPT ≥

Given a graph G, a set M of edges of G is a **matching** if no two edges of M are adjacent (i.e., share an end vertex).

M is **maximal** if there is no matching M' with $M' \supseteq M$.

 $OPT \ge |M|$

Given a graph G, a set M of edges of G is a **matching** if no two edges of M are adjacent (i.e., share an end vertex).

M is **maximal** if there is no matching M' with $M' \supseteq M$.

$$OPT \ge |M|$$

 $OPT = |M|$?

Given a graph G, a set M of edges of G is a **matching** if no two edges of M are adjacent (i.e., share an end vertex).

M is **maximal** if there is no matching M' with $M' \supseteq M$.

$$OPT \ge |M|$$

 $OPT = |M|$?

Given a graph G, a set M of edges of G is a **matching** if no two edges of M are adjacent (i.e., share an end vertex).

M is **maximal** if there is no matching M' with $M' \supseteq M$.

$$OPT \ge |M|$$

 $OPT = |M|$?

Given a graph G, a set M of edges of G is a **matching** if no two edges of M are adjacent (i.e., share an end vertex).

M is **maximal** if there is no matching M' with $M' \supseteq M$.

$$OPT \ge |M|$$

 $OPT = |M|$?

Given a graph G, a set M of edges of G is a **matching** if no two edges of M are adjacent (i.e., share an end vertex).

M is **maximal** if there is no matching M' with $M' \supseteq M$.

$$\frac{\mathsf{OPT} \geq |M|}{\mathsf{OPT} = |M|}?$$

Given a graph G, a set M of edges of G is a **matching** if no two edges of M are adjacent (i.e., share an end vertex).

M is **maximal** if there is no matching M' with $M' \supseteq M$.

$$\frac{\mathsf{OPT} \geq |M|}{\mathsf{OPT} = |M|}?$$

Given a graph G, a set M of edges of G is a **matching** if no two edges of M are adjacent (i.e., share an end vertex).

M is **maximal** if there is no matching M' with $M' \supseteq M$.

Given a graph G, a set M of edges of G is a **matching** if no two edges of M are adjacent (i.e., share an end vertex).

M is **maximal** if there is no matching M' with $M' \supseteq M$.

Given a graph G, a set M of edges of G is a **matching** if no two edges of M are adjacent (i.e., share an end vertex).

M is **maximal** if there is no matching M' with $M' \supseteq M$.

Given a graph G, a set M of edges of G is a **matching** if no two edges of M are adjacent (i.e., share an end vertex).

M is **maximal** if there is no matching M' with $M' \supseteq M$.

 $\frac{\mathsf{OPT} \geq |M|}{\mathsf{OPT} = |M|}?$

$$ALG = 2 \cdot |M| \le$$

Given a graph G, a set M of edges of G is a **matching** if no two edges of M are adjacent (i.e., share an end vertex).

M is **maximal** if there is no matching M' with $M' \supseteq M$.

Algorithm VertexCover(G)

$$M \leftarrow \emptyset$$

```
Algorithm VertexCover(G)
M \leftarrow \emptyset
foreach e \in E(G) do
```

Approximation Alg. for VERTEXCOVER

Approximation Alg. for VERTEXCOVER

```
Algorithm VertexCover(G)

M \leftarrow \emptyset

foreach e \in E(G) do

if e is not adjacent to any edge in M then

M \leftarrow M \cup \{e\}
```

```
Algorithm VertexCover(G)

M \leftarrow \emptyset

foreach e \in E(G) do

if e is not adjacent to any edge in M then

M \leftarrow M \cup \{e\}

return \{u, v \mid uv \in M\}
```

```
Algorithm VertexCover(G)

M \leftarrow \emptyset

foreach e \in E(G) do

if e is not adjacent to any edge in M then

M \leftarrow M \cup \{e\}

return \{u, v \mid uv \in M\}
```

Theorem. The above algorithm is a factor-2 approximation algorithm for VERTEXCOVER.

Approximation Alg. for VERTEXCOVER

```
Algorithm VertexCover(G)

M \leftarrow \emptyset

foreach e \in E(G) do

if e is not adjacent to any edge in M then

M \leftarrow M \cup \{e\}

return \{u, v \mid uv \in M\}
```

Theorem. The above algorithm is a factor-2 approximation algorithm for VERTEXCOVER.

Proof.
$$ALG = 2 \cdot |M| \le$$

```
Algorithm VertexCover(G)

M \leftarrow \emptyset

foreach e \in E(G) do

if e is not adjacent to any edge in M then

M \leftarrow M \cup \{e\}

return \{u, v \mid uv \in M\}
```

Theorem. The above algorithm is a factor-2 approximation algorithm for VERTEXCOVER.

Proof.
$$ALG = 2 \cdot |M| \le 2 \cdot OPT$$

The best known approximation factor for VERTEXCOVER is

The best known approximation factor for VERTEXCOVER is $2 - \Theta(1/\sqrt{\log n})$.

The best known approximation factor for VERTEXCOVER is $2 - \Theta(1/\sqrt{\log n})$.

If P \neq NP, VertexCover cannot be approximated within a factor of 1.3606.

The best known approximation factor for VERTEXCOVER is $2 - \Theta(1/\sqrt{\log n})$.

If P \neq NP, VertexCover cannot be approximated within a factor of 1.3606.

VERTEXCOVER cannot be approximated within a factor of $2 - \Theta(1)$ – if the *Unique Games Conjecture* holds.

Approximation Algorithms

Lecture 1:

Introduction and Vertex Cover

Part V:

An LP-based Algorithm for VERTEXCOVER

Write an integer linear program (ILP) for VERTEXCOVER:

Write an integer linear program (ILP) for VERTEXCOVER:

Using integer (and/or real) variables, express the problem using

- linear constraints and
- a linear objective function.

Write an integer linear program (ILP) for VERTEXCOVER:

Using integer (and/or real) variables, express the problem using

- linear constraints and
- a linear objective function.

You can iterate over the vertices / edges of the given graph G.

Write an integer linear program (ILP) for VERTEXCOVER:

Using integer (and/or real) variables, express the problem using

- linear constraints and
- a linear objective function.

You can iterate over the vertices / edges of the given graph G.

Variables:

Objective:

Write an integer linear program (ILP) for VERTEXCOVER:

Using integer (and/or real) variables, express the problem using

- linear constraints and
- a linear objective function.

You can iterate over the vertices / edges of the given graph G.

Variables: for each vertex v of G, we introduce

Objective:

Write an integer linear program (ILP) for VERTEXCOVER:

Using integer (and/or real) variables, express the problem using

- linear constraints and
- a linear objective function.

You can iterate over the vertices / edges of the given graph G.

Variables: for each vertex v of G, we introduce $x_v \in \{0, 1\}$.

Objective:

Write an integer linear program (ILP) for VERTEXCOVER:

Using integer (and/or real) variables, express the problem using

- linear constraints and
- a linear objective function.

You can iterate over the vertices / edges of the given graph G.

Variables: for each vertex v of G, we introduce $x_v \in \{0, 1\}$.

v not in the solution v in the solution

Objective:

Write an integer linear program (ILP) for VERTEXCOVER:

Using integer (and/or real) variables, express the problem using

- linear constraints and
- a linear objective function.

You can iterate over the vertices / edges of the given graph G.

Variables: for each vertex v of G, we introduce $x_v \in \{0, 1\}$.

Objective: minimize v not in the solution v in t

Write an integer linear program (ILP) for VERTEXCOVER:

Using integer (and/or real) variables, express the problem using

- linear constraints and
- a linear objective function.

You can iterate over the vertices / edges of the given graph G.

Variables: for each vertex v of G, we introduce $x_v \in \{0, 1\}$.

v in the solution

Objective: minimize $\sum_{v \in V(G)} x_v$

Write an integer linear program (ILP) for VERTEXCOVER:

Using integer (and/or real) variables, express the problem using

- linear constraints and
- a linear objective function.

You can iterate over the vertices / edges of the given graph G.

Variables: for each vertex v of G, we introduce $x_v \in \{0, 1\}$.

Objective: minimize $\sum_{v \in V(G)} x_v$ v in the solution

Constraints: for each edge uv of G, we require that

Write an integer linear program (ILP) for VERTEXCOVER:

Using integer (and/or real) variables, express the problem using

- linear constraints and
- a linear objective function.

You can iterate over the vertices / edges of the given graph G.

Variables: for each vertex v of G, we introduce $x_v \in \{0, 1\}$.

v in the solution

Objective: minimize $\sum_{v \in V(G)} x_v$

Constraints: for each edge uv of G, we require that

$$x_u + x_v \ge 1$$
.

```
minimize \sum_{v \in V(G)} x_v
subject to x_u + x_v \ge 1 for each uv \in E(G)
x_v \in \{0,1\} for each v \in V(G)
```

```
minimize \sum_{v \in V(G)} x_v
subject to x_u + x_v \ge 1 for each uv \in E(G)
x_v \in \{0,1\} for each v \in V(G)
```

Problem:

```
minimize \sum_{v \in V(G)} x_v
subject to x_u + x_v \ge 1 for each uv \in E(G)
x_v \in \{0,1\} for each v \in V(G)
```

Problem: It's NP-hard to solve ILPs in general.

```
minimize \sum_{v \in V(G)} x_v
subject to x_u + x_v \ge 1 for each uv \in E(G)
x_v \in \{0,1\} for each v \in V(G)
```

Problem: It's NP-hard to solve ILPs in general.

But: LPs can be solved efficiently (in $O(L \cdot n^{3.5})$ time),

```
minimize \sum_{v \in V(G)} x_v
subject to x_u + x_v \ge 1 for each uv \in E(G)
x_v \in \{0,1\} for each v \in V(G)
```

Problem: It's NP-hard to solve ILPs in general.

But: LPs can be solved efficiently (in $O(L \cdot n^{3.5})$ time),

where n = # variables and L = total bit complexity of coefficients.

LP relaxation

minimize
$$\sum_{v \in V(G)} x_v$$

subject to $x_u + x_v \ge 1$ for each $uv \in E(G)$
 $x_v \ge 0$ $x_v \in \{0, 1\}$ for each $v \in V(G)$

Problem: It's NP-hard to solve ILPs in general.

But: LPs can be solved efficiently (in $O(L \cdot n^{3.5})$ time),

where n = # variables and L = total bit complexity of coefficients.

LP relaxation

minimize
$$\sum_{v \in V(G)} x_v$$

subject to $x_u + x_v \ge 1$ for each $uv \in E(G)$
 $x_v \ge 0$ $x_v \in \{0, 1\}$ for each $v \in V(G)$

Problem: It's NP-hard to solve ILPs in general.

But: LPs can be solved efficiently (in $O(L \cdot n^{3.5})$ time),

where n = # variables and L = total bit complexity of coefficients.

Problem': Now we can get fractional solutions, i.e., in (0, 1).

LP relaxation

minimize
$$\sum_{v \in V(G)} x_v$$

subject to $x_u + x_v \ge 1$ for each $uv \in E(G)$
 $x_v \ge 0$ $x_v \in \{0,1\}$ for each $v \in V(G)$

Problem: It's NP-hard to solve ILPs in general.

But: LPs can be solved efficiently (in $O(L \cdot n^{3.5})$ time),

where n = # variables and L = total bit complexity of coefficients.

Problem': Now we can get fractional solutions, i.e., in (0, 1).

Task: Find a graph G with $OPT_{LP} \neq OPT_{ILP}!$

LP relaxation

minimize
$$\sum_{v \in V(G)} x_v$$

subject to $x_u + x_v \ge 1$ for each $uv \in E(G)$
 $x_v \ge 0$ $x_v \in \{0, 1\}$ for each $v \in V(G)$

Problem: It's NP-hard to solve ILPs in general.

But: LPs can be solved efficiently (in $O(L \cdot n^{3.5})$ time),

where n = # variables and L = total bit complexity of coefficients.

Problem': Now we can get fractional solutions, i.e., in (0, 1).

Task: Find a graph G with $OPT_{LP} \neq OPT_{ILP}!$

Solution?

LP relaxation

minimize
$$\sum_{v \in V(G)} x_v$$

subject to $x_u + x_v \ge 1$ for each $uv \in E(G)$
 $x_v \ge 0$ $x_v \in \{0, 1\}$ for each $v \in V(G)$

Problem: It's NP-hard to solve ILPs in general.

But: LPs can be solved efficiently (in $O(L \cdot n^{3.5})$ time),

where n = # variables and L = total bit complexity of coefficients.

Problem': Now we can get fractional solutions, i.e., in (0, 1).

Task: Find a graph G with $OPT_{LP} \neq OPT_{ILP}!$

Solution? Round the LP solution to get an integral solution!

```
minimize \sum_{v \in V(G)} x_v
subject to x_u + x_v \ge 1 for each uv \in E(G)
x_v \ge 0 for each v \in V(G)
```

For each $v \in V(G)$:

minimize
$$\sum_{v \in V(G)} x_v$$

subject to $x_u + x_v \ge 1$ for each $uv \in E(G)$
 $x_v \ge 0$ for each $v \in V(G)$

For each
$$v \in V(G)$$
: Set $x'_v = \begin{cases} 1 & \text{if } x_v \ge 0.5, \\ 0 & \text{otherwise.} \end{cases}$

minimize
$$\sum_{v \in V(G)} x_v$$

subject to $x_u + x_v \ge 1$ for each $uv \in E(G)$
 $x_v \ge 0$ for each $v \in V(G)$

For each
$$v \in V(G)$$
: Set $x'_v = \begin{cases} 1 & \text{if } x_v \ge 0.5, \\ 0 & \text{otherwise.} \end{cases}$

Need to check:

minimize
$$\sum_{v \in V(G)} x_v$$
 subject to $x_u + x_v \ge 1$ for each $uv \in E(G)$ $x_v \ge 0$ for each $v \in V(G)$

For each
$$v \in V(G)$$
: Set $x'_v = \begin{cases} 1 & \text{if } x_v \ge 0.5, \\ 0 & \text{otherwise.} \end{cases}$

Need to check: Is $(x'_v)_{v \in V(G)}$ a feasible solution?

minimize
$$\sum_{v \in V(G)} x_v$$
 subject to $x_u + x_v \ge 1$ for each $uv \in E(G)$ $x_v \ge 0$ for each $v \in V(G)$

For each
$$v \in V(G)$$
: Set $x'_v = \begin{cases} 1 & \text{if } x_v \ge 0.5, \\ 0 & \text{otherwise.} \end{cases}$

Need to check: Is $(x'_v)_{v \in V(G)}$ a feasible solution?

In other words:

minimize
$$\sum_{v \in V(G)} x_v$$

subject to $x_u + x_v \ge 1$ for each $uv \in E(G)$
 $x_v \ge 0$ for each $v \in V(G)$

For each
$$v \in V(G)$$
: Set $x'_v = \begin{cases} 1 & \text{if } x_v \ge 0.5, \\ 0 & \text{otherwise.} \end{cases}$

Need to check: Is $(x'_v)_{v \in V(G)}$ a feasible solution?

In other words: Is $\{v \in V(G): x'_v = 1\}$ a vertex cover of G?

minimize
$$\sum_{v \in V(G)} x_v$$

subject to $x_u + x_v \ge 1$ for each $uv \in E(G)$
 $x_v \ge 0$ for each $v \in V(G)$

For each
$$v \in V(G)$$
: Set $x'_v = \begin{cases} 1 & \text{if } x_v \ge 0.5, \\ 0 & \text{otherwise.} \end{cases}$

Need to check: Is $(x'_v)_{v \in V(G)}$ a feasible solution?

In other words: Is $\{v \in V(G): x'_v = 1\}$ a vertex cover of G?

Need to make sure that every edge uv of G is covered.

minimize
$$\sum_{v \in V(G)} x_v$$
 subject to $x_u + x_v \ge 1$ for each $uv \in E(G)$ $x_v \ge 0$ for each $v \in V(G)$

For each
$$v \in V(G)$$
: Set $x'_v = \begin{cases} 1 & \text{if } x_v \ge 0.5, \\ 0 & \text{otherwise.} \end{cases}$

Need to check: Is $(x'_v)_{v \in V(G)}$ a feasible solution?

In other words: Is $\{v \in V(G): x'_v = 1\}$ a vertex cover of G?

Need to make sure that every edge uv of G is covered.

Is
$$x'_u = 0 = x'_v$$
 possible?

minimize
$$\sum_{v \in V(G)} x_v$$
 subject to $x_u + x_v \ge 1$ for each $uv \in E(G)$ $x_v \ge 0$ for each $v \in V(G)$

For each
$$v \in V(G)$$
: Set $x'_v = \begin{cases} 1 & \text{if } x_v \ge 0.5, \\ 0 & \text{otherwise.} \end{cases}$

Need to check: Is $(x'_v)_{v \in V(G)}$ a feasible solution?

In other words: Is $\{v \in V(G): x'_v = 1\}$ a vertex cover of G?

Need to make sure that every edge uv of G is covered.

Is $x'_u = 0 = x'_v$ possible? But then $x_u < 0.5$ and $x_v < 0.5$.

minimize
$$\sum_{v \in V(G)} x_v$$
 subject to $x_u + x_v \ge 1$ for each $uv \in E(G)$ $x_v \ge 0$ for each $v \in V(G)$

For each
$$v \in V(G)$$
: Set $x'_v = \begin{cases} 1 & \text{if } x_v \ge 0.5, \\ 0 & \text{otherwise.} \end{cases}$

Need to check: Is $(x'_v)_{v \in V(G)}$ a feasible solution?

In other words: Is $\{v \in V(G): x'_v = 1\}$ a vertex cover of G?

Need to make sure that every edge uv of G is covered.

Is $x'_u = 0 = x'_v$ possible? But then $x_u < 0.5$ and $x_v < 0.5$.

This contradicts $x_u + x_v \ge 1$.

minimize
$$\sum_{v \in V(G)} x_v$$

subject to $x_u + x_v \ge 1$ for each $uv \in E(G)$
 $x_v \ge 0$ for each $v \in V(G)$

For each
$$v \in V(G)$$
: Set $x'_v = \begin{cases} 1 & \text{if } x_v \ge 0.5, \\ 0 & \text{otherwise.} \end{cases}$

Need to check: Is $(x'_v)_{v \in V(G)}$ a feasible solution?

In other words: Is $\{v \in V(G): x'_v = 1\}$ a vertex cover of G?

Need to make sure that every edge uv of G is covered.

Is $x'_u = 0 = x'_v$ possible? But then $x_u < 0.5$ and $x_v < 0.5$.

This contradicts $x_u + x_v \ge 1. \Rightarrow x_u' = 1$ or $x_v' = 1$

minimize
$$\sum_{v \in V(G)} x_v$$
 subject to $x_u + x_v \ge 1$ for each $uv \in E(G)$ $x_v \ge 0$ for each $v \in V(G)$

For each
$$v \in V(G)$$
: Set $x'_v = \begin{cases} 1 & \text{if } x_v \ge 0.5, \\ 0 & \text{otherwise.} \end{cases}$

Need to check: Is $(x'_v)_{v \in V(G)}$ a feasible solution?

In other words: Is $\{v \in V(G): x'_v = 1\}$ a vertex cover of G?

Need to make sure that every edge uv of G is covered.

Is $x'_u = 0 = x'_v$ possible? But then $x_u < 0.5$ and $x_v < 0.5$.

This contradicts $x_u + x_v \ge 1. \Rightarrow x_u' = 1$ or $x_v' = 1 \Rightarrow (x_v')$ feasible!

minimize
$$\sum_{v \in V(G)} x_v$$
 subject to $x_u + x_v \ge 1$ for each $uv \in E(G)$ $x_v \ge 0$ for each $v \in V(G)$

For each
$$v \in V(G)$$
: Set $x'_v = \begin{cases} 1 & \text{if } x_v \ge 0.5, \\ 0 & \text{otherwise.} \end{cases}$

ALG =

minimize
$$\sum_{v \in V(G)} x_v$$
 subject to $x_u + x_v \ge 1$ for each $uv \in E(G)$ $x_v \ge 0$ for each $v \in V(G)$

For each
$$v \in V(G)$$
: Set $x'_v = \begin{cases} 1 & \text{if } x_v \ge 0.5, \\ 0 & \text{otherwise.} \end{cases}$

$$\mathsf{ALG} = \sum_{v \in V(G)} x'_v \le$$

minimize
$$\sum_{v \in V(G)} x_v$$
 subject to $x_u + x_v \ge 1$ for each $uv \in E(G)$ $x_v \ge 0$ for each $v \in V(G)$

For each
$$v \in V(G)$$
: Set $x'_v = \begin{cases} 1 & \text{if } x_v \ge 0.5, \\ 0 & \text{otherwise.} \end{cases}$

$$ALG = \sum_{v \in V(G)} x'_v \le \sum_{v \in V(G)} x_v$$

minimize
$$\sum_{v \in V(G)} x_v$$
 subject to $x_u + x_v \ge 1$ for each $uv \in E(G)$ $x_v \ge 0$ for each $v \in V(G)$

For each
$$v \in V(G)$$
: Set $x'_v = \begin{cases} 1 & \text{if } x_v \ge 0.5, \\ 0 & \text{otherwise.} \end{cases}$

$$ALG = \sum_{v \in V(G)} x'_v \le \sum_{v \in V(G)} x_v$$

minimize
$$\sum_{v \in V(G)} x_v$$
 subject to $x_u + x_v \ge 1$ for each $uv \in E(G)$ $x_v \ge 0$ for each $v \in V(G)$

For each
$$v \in V(G)$$
: Set $x'_v = \begin{cases} 1 & \text{if } x_v \ge 0.5, \\ 0 & \text{otherwise.} \end{cases}$

$$ALG = \sum_{v \in V(G)} x'_v \le 2 \cdot \sum_{v \in V(G)} x_v$$

minimize
$$\sum_{v \in V(G)} x_v$$
 subject to $x_u + x_v \ge 1$ for each $uv \in E(G)$ $x_v \ge 0$ for each $v \in V(G)$

For each
$$v \in V(G)$$
: Set $x'_v = \begin{cases} 1 & \text{if } x_v \ge 0.5, \\ 0 & \text{otherwise.} \end{cases}$

$$\mathsf{ALG} = \sum_{v \in V(G)} x'_v \le 2 \cdot \sum_{v \in V(G)} x_v = 2 \cdot \mathsf{OPT}_\mathsf{LP}$$

minimize
$$\sum_{v \in V(G)} x_v$$

subject to $x_u + x_v \ge 1$ for each $uv \in E(G)$
 $x_v \ge 0$ for each $v \in V(G)$

For each
$$v \in V(G)$$
: Set $x'_v = \begin{cases} 1 & \text{if } x_v \ge 0.5, \\ 0 & \text{otherwise.} \end{cases}$

$$\mathsf{ALG} = \sum_{v \in V(G)} x_v' \le 2 \cdot \sum_{v \in V(G)} x_v = 2 \cdot \mathsf{OPT}_{\mathsf{LP}} \le 2 \cdot \mathsf{OPT}_{\mathsf{ILP}}$$

minimize
$$\sum_{v \in V(G)} x_v$$
 subject to $x_u + x_v \ge 1$ for each $uv \in E(G)$ $x_v \ge 0$ for each $v \in V(G)$

For each
$$v \in V(G)$$
: Set $x'_v = \begin{cases} 1 & \text{if } x_v \ge 0.5, \\ 0 & \text{otherwise.} \end{cases}$

$$\mathsf{ALG} = \sum_{v \in V(G)} x_v' \le 2 \cdot \sum_{v \in V(G)} x_v = 2 \cdot \mathsf{OPT}_{\mathsf{LP}} \le 2 \cdot \mathsf{OPT}_{\mathsf{ILP}}$$

Theorem. The LP rounding algorithm is a factor-2 approximation algorithm for VERTEXCOVER.

minimize
$$\sum_{v \in V(G)} x_v$$

subject to $x_u + x_v \ge 1$ for each $uv \in E(G)$
 $x_v \ge 0$ for each $v \in V(G)$

For each
$$v \in V(G)$$
: Set $x'_v = \begin{cases} 1 & \text{if } x_v \ge 0.5, \\ 0 & \text{otherwise.} \end{cases}$

$$ALG = \sum_{v \in V(G)} x'_v \le 2 \cdot \sum_{v \in V(G)} x_v = 2 \cdot OPT_{LP} \le 2 \cdot OPT_{ILP}$$

Theorem. The LP rounding algorithm is a factor-2 approximation algorithm for WeightedVertexCover.

minimize
$$\sum_{v \in V(G)} x_v \cdot w(v)$$

subject to $x_u + x_v \ge 1$ for each $uv \in E(G)$
 $x_v \ge 0$ for each $v \in V(G)$

For each
$$v \in V(G)$$
: Set $x'_v = \begin{cases} 1 & \text{if } x_v \ge 0.5, \\ 0 & \text{otherwise.} \end{cases}$

$$ALG = \sum_{v \in V(G)} x'_v \le 2 \cdot \sum_{v \in V(G)} x_v = 2 \cdot OPT_{LP} \le 2 \cdot OPT_{ILP}$$

Theorem. The LP rounding algorithm is a factor-2 approximation algorithm for WeightedVertexCover.

minimize
$$\sum_{v \in V(G)} x_v \cdot w(v)$$

subject to $x_u + x_v \ge 1$ for each $uv \in E(G)$
 $x_v \ge 0$ for each $v \in V(G)$

For each
$$v \in V(G)$$
: Set $x'_{v} = \begin{cases} 1 & \text{if } x_{v} \geq 0.5, \\ 0 & \text{otherwise.} \end{cases}$

$$ALG = \sum_{v \in V(G)} x'_{v} \leq 2 \cdot \sum_{v \in V(G)} x'_{v} = 2 \cdot \mathsf{OPT}_{\mathsf{LP}} \leq 2 \cdot \mathsf{OPT}_{\mathsf{ILP}}$$

Theorem. The LP rounding algorithm is a factor-2 approximation algorithm for WeightedVertexCover.