
### Algorithmen...

... sind (wohldefinierte, endliche) Folgen von Anweisungen, die aus einer Eingabe eine Ausgabe produzieren.



#### Beispiele:

- Kochrezepte
- Algorithmen zur Verknüpfung  $(+, -, \cdot, :)$  zweier Zahlen in Dezimaldarstellung
- Euklidscher Algorithmus
- Dijkstras Algorithmus

### Algorithmen...

Frage: Ist ein ausführbares Java-Programm ein Algorithmus?

"Ein Algorithmus ist eine (wohldefinierte, endliche) Folge von Anweisungen, die aus einer Eingabe eine Ausgabe produziert."

#### **Antwort:**

- Dem Buchstaben der Definition nach: JA.
- Dem Geiste nach: NEIN. Ich würde sagen: Ein Algorithmus ist ein abstraktes Konzept; ein Programm ist eine Instanz dieses Konzeptes.

Algorithmus

Programmierer

ausführbares Programm

in natürlicher Sprache oder in Pseudocode fixiert

- maschinenlesbar
- meist länger als Beschreibung des Algorithmus

### ... und Datenstrukturen

#### **Datenstruktur:**

Konzept, mit dem man Daten speichert und anordnet, so dass man sie schnell finden und ändern kann.

### **Abstrakter Datentyp:**

beschreibt die "Schnittstelle" einer Datenstruktur – welche Operationen werden unterstützt?

#### Implementierung:

wie wird die gewünschte Funktionalität realisiert:

- wie sind die Daten gespeichert (Feld, Liste, ...)?
- welche Algorithmen implementieren die Operationen?

### Algorithmen & Datenstrukturen

Lernziele: In dieser Veranstaltung werden Sie lernen...

- die Effizienz von Algorithmen zu messen und miteinander zu vergleichen,
- grundlegende Algorithmen und Datenstrukturen in Java zu implementieren,
- selbst Algorithmen und Datenstrukturen zu entwerfen sowie
- deren Korrektheit und Effizienz zu beweisen.

#### Inhalt:

- Grundlagen und Analysetechniken
- Sortierverfahren
- Entwurfstechniken für Algorithmen
- Datenstrukturen
- Algorithmen für Graphen
- Systematisches Probieren

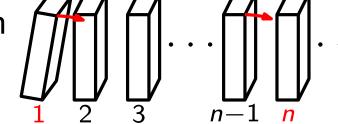
## Ihre Voraussetzungen

- Schulmathematik, insbesondere:
  - Grundrechenarten & Logarithmus z.B.  $\frac{\log_b x}{\log_b y} =$  ?

z.B. 
$$\frac{\log_b x}{\log_b y} =$$
 ?

- Drei Summen: 1)  $\sum_{i=1}^{n} i$

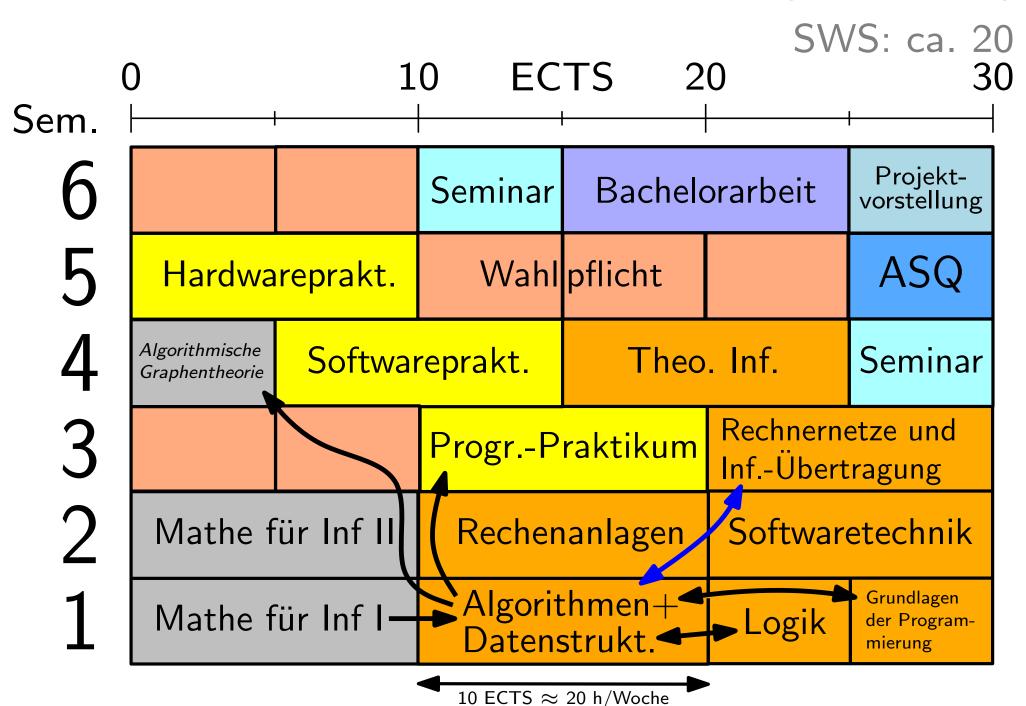
arithmetische Reihe


2)  $\sum_{i=0}^{n} q^{i}$  geometrische Reihe

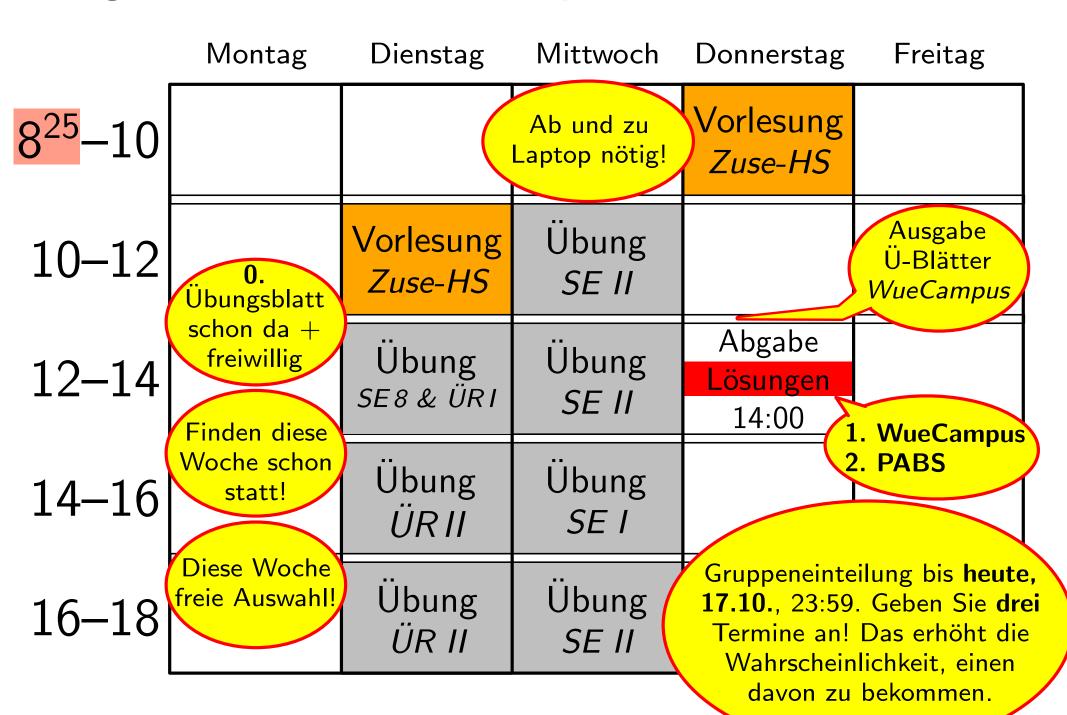
3)  $\sum_{i=1}^{n} \frac{1}{i}$  harmonische Reihe

- Linearität des Erwartungswerts E[X + Y] = E[X] + E[Y]

$$E[X + Y] = E[X] + E[Y]$$


- Beweise mit vollständiger Induktion




- Widerspruchsbeweise
- Bereitschaft sich in Java hineinzudenken und -zuüben
- Keine Angst vorm Fragenstellen!!!



# Studienverlaufsplan BA Informatik (Start WS)



# Organisation I: Wochenplan



## Organisation II: Semesterplan

Di, 17.10. Start Vorlesung & Übungen

Do, 16.11. 1. Zwischentest

Do, 14.12. 2. Zwischentest

23.12.-07.01. Weihnachtsferien

Do, 18.01. 3. Zwischentest

Do, 08.02. Letzte ADS-Vorlesung

XX, ??.02. 1. Klausur (Z6-, Turing-, Zuse-HS)

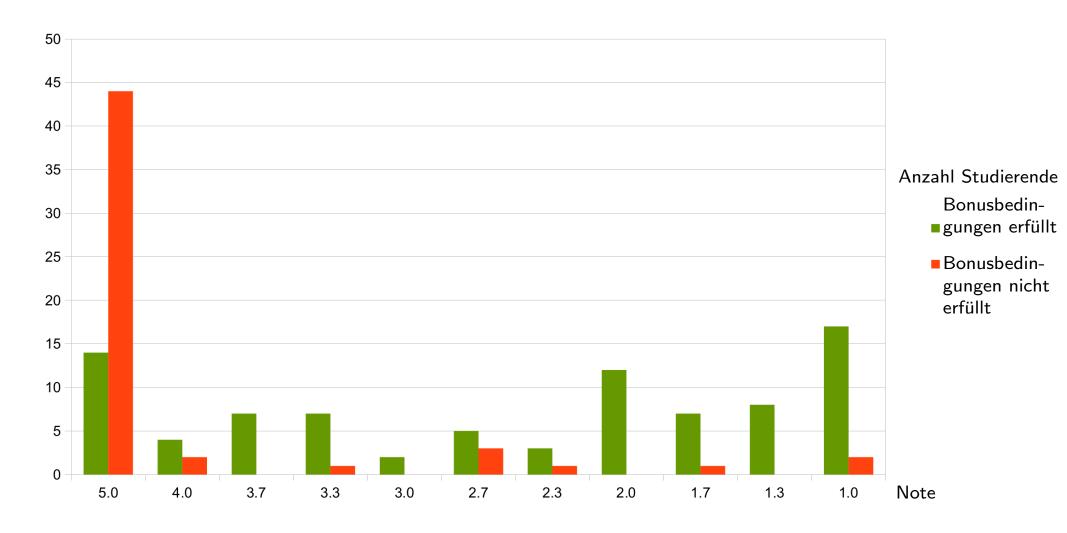
XX, ??.04. 2. Klausur (Turing-HS, Zuse-HS, HS 2 NW-HSG ?)

# Organisatorisches III: Anforderungen ADS

Studienordnung > 2014

#### 1 Modul

#### • Übung:


- 50% aller Punkte in den Übungen
   (Arbeit in 2er/3er-Gruppen)
- 40% der Punkte in denZwischentests (Einzelarbeit)
- 0% Plagiate

Das ist die Voraussetzung für den Bonus (0,3 Notenpunkte – bei Bestehen der Klausur)

#### Vorlesung:

- Vorlesung + Klausur (benotet)
- Sie dürfen (im Prinzip bel. oft) wiederholen, solange Sie nicht bestehen.

### Motivation Bonus



Klausurergebnisse ADS-Klausur vom 8.2.2016

Anteil "bestanden" unter denen, die die Bonusbedingungen erfüllt haben: 83.7%

Anteil "bestanden" unter denen, die die Bonusbedingungen nicht erfüllt haben:  $18,5\,\%$ 

#### Wer nicht kommt, verliert

VON JAN-MARTIN WIARDA

Der Jubel war groß, als Universitäten die Anwesenheitspflicht abschafften. Nun zeigt eine Studie: Die Noten werden schlechter.

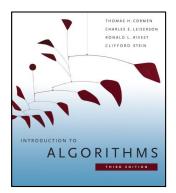


© David-W- - Photocase.de

### Wie wirkt sich die Lernbereitschaft auf die Abschaffung der Anwesenheitsplicht aus?

Svenja Schulze schwärmte von einem »Meilenstein«. Das neue Hochschulgesetz der rot-grünen Landesregierung bringe an den Hochschulen endlich wieder Freiheit und Verantwortung ins Gleichgewicht, sagte die nordrhein-westfälische Wissenschaftsministerin im Herbst 2014. Den Rektoren war weniger zum Feiern zumute: Sie fühlten sich in ihrer Freiheit beschränkt. Ganz im Gegensatz zu den Studenten: Ihnen brachte das Gesetz eine Unabhängigkeit, die sich Kommilitonen anderswo nur wünschen können. Bis auf wenige Ausnahmen keine Anwesenheitskontrolle mehr in den Vorlesungen und Seminaren, jeder kann so oft fehlen, wie er will. Die Begründung der Ministerin: »Die Studierenden sind Erwachsene. Die können selbst entscheiden, was gut für sie ist.«

Tatsächlich? Rolf Schulmeister, Hochschulforscher an der Universität Hamburg, war von Anfang an skeptisch, als er vom Ende der Anwesenheitspflicht hörte. NRW ist nicht das einzige Bundesland, das die Studenten in die Freiheit entlassen hat. Wohl aber dasjenige, so Schulmeister, das eine »denkwürdig merkwürdige« Kombination zweier Vorschriften im neuen Hochschulgesetz verankert habe. Vorschrift eins: »Die Hochschulen sind dem Studienerfolg verpflichtet.« Vorschrift zwei: besagtes Verbot von


»Anwesenheitsobliegenheiten«. »Wie soll denn das beides zusammengehen?«, fragte sich Schulmeister. »Wie kann man jemandem den Studienerfolg garantieren, der nicht das Studienangebot wahrnimmt?« Der Ehrgeiz des Forschers war geweckt. Jetzt hat Schulmeister eine Metastudie vorgelegt, die 298 Studien zur studentischen Anwesenheit auswertet, aus 25 Ländern und sieben Jahrzehnten. Das Ergebnis: Es gibt einen klaren Zusammenhang zwischen der Anwesenheit der Studenten in den Lehrveranstaltungen und ihrem Studienerfolg. Konkret: Je nach Studie reichen schon drei verpasste Termine, um signifikant schlechter in Prüfungen abzuschneiden. Laut mehreren Autoren liegt die Schwelle, ab der die Leistung merklich sinkt, bei vier Abwesenheiten. Werte, die weitgehend unabhängig vom Entstehungsort oder Zeitpunkt der Studie sind.

So weit, so trivial? Die NRW-Ministerin Schulze sagt: »Erst wenn eine Studie zeigen würde, dass man Prüfungen besser bewältigt, wenn man nicht anwesend ist, würde ich ernsthaft anfangen, mir Sorgen um die Hochschulen zu machen.« Ben Seel, Vorstandsmitglied beim Studierendenverband fzs, sagt: »Ist doch klar: Wenn ich mich für den Stoff interessiere und mir ein Seminar gefällt, gehe ich hin. Und dann engagiere ich mich und bekomme gute Noten.« Stimmt - sagt auch Hochschulforscher Schulmeister. Aber eben nicht nur: Natürlich sei die persönliche Motivation entscheidend sowohl für die Anwesenheit im Seminar als auch für das Selbststudium zu Hause und damit für den persönlichen Studienerfolg. Das zeigten fast alle einschlägigen Studien. Doch sei es ein gravierender Irrtum, daraus zu folgern, eine Erhöhung der Anwesenheitsquote mithilfe besonderer Belohnungen oder Strafen bringe nichts, weil die Motivation zur Anwesenheit ja dann nicht aus den Studenten selbst heraus komme. Schulmeister spricht von einer »besseren Lehrorganisation«. Man könnte es auch Kontrolle und Zwang nennen. »Das trägt zusätzlich zum Lernerfolg bei.« Schulmeister hat noch mehr herausgefunden: Ältere Studenten kommen regelmäßiger in die Veranstaltungen, und je schwieriger die Kurse werden, desto wichtiger ist die Anwesenheit für die Note. Desto häufiger fehlen allerdings auch die leistungsschwächeren Studenten.

DIE ZEIT Nr. 48/2015, 26.11.2015

https://www.zeit.de/2015/48/anwesenheitspflicht-universitaet-schlechtere-leistung

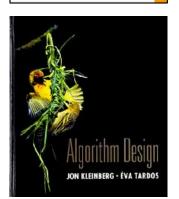
# Literatur zu Algorithmen & Datenstrukturen

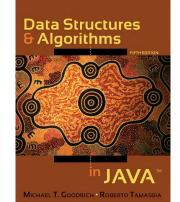


Cormen, Leiserson, Rivest, Stein: *Introduction to Algorithms* 

MIT Press, 3. Aufl., 2009. Ca. 100 \$. oder

Algorithmen – eine Einführung


De Gruyter Oldenbourg, 4. Aufl., 2017. Ca. 90 €.

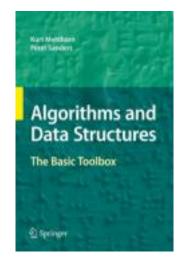





Kleinberg & Tardos: *Algorithm Design* Pearson, 2006. Ca. 90 €.








Mehlhorn & Sanders: Algorithms and Data Structures: The Basic Toolbox Springer, 2008. Ca. 38 €.

Goodrich & Tamassia:

Data Structures & Algorithms in Java.

Wiley, 5. Aufl., 2010. Ca. 115€.



### Literatur über Java

• D. Ratz, J. Scheffler, D. Seese, J. Wiesenberger: Grundkurs Programmieren in Java (8. Aufl.)

Hanser Verlag
http://www.grundkurs-java.de/

C. Ullenboom:
 Java ist auch eine Insel
 Galileo Computing
 openbook.galileocomputing.de/javainsel/





- Für alle, die Java noch nicht kennen und nicht beim Vorkurs waren:
  - → WueCampus-Kurs "Programmiervorkurs" (WS 2023/24):

https://wuecampus.uni-wuerzburg.de/moodle/enrol/index.php?id=61401 Einschreibeschlüssel: PVK\_Wue\_WiSe\_2024

Arbeiten Sie insbesondere alle Ubungsaufgaben durch!

# FIRST $\frac{\log_b x}{\log_b y} = ?$ THINGS FIRST

• Erfüllen Sie die Voraussetzungen?

$$\frac{\log_b x}{\log_b y} = ?$$

Lesen Sie Anhang A im Buch von Cormen et al.! Lösen Sie die Übungsaufgaben dazu!

Schreiben Sie sich ein!

- Vorlesungsfolien, Übungsblätter, allgemeine Informationen: "WueCampus" https://wuecampus2.uni-wuerzburg.de
- Übungseinteilung bis heute, 17.10., 23:59 Uhr mit 3 Prioritäten: "WueStudy" https://wuestudy.zv.uni-wuerzburg.de/
- Diskussionsforum: Inhaltliche Fragen zur Vorlesung → WueCampus
- Installieren Sie vor Ihrer Ubung
  - das Java Development Kit (neuste Version): https://www.oracle.com/java/technologies/downloads/
  - die Java-Entwicklungsumgebung IntelliJ IDEA (neuste Version): https://www.jetbrains.com/idea/download ( $\rightarrow$  community)