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Data Structures and Randomization

� We have seen that (in expectation) some randomized algorithms beat
all deterministic approaches in terms of running time.

� Moreover, randomized approaches are often simpler/more elegant.

� Also data structures may use randomization for these reasons.

� A data structure that uses randomization (e.g. for a better expected runtime/space
consumption or a simpler implementation) is a randomized data structure.

� Hashing when choosing a random hash function

� Randomized skip lists (in this lecture!)

� A data structure that answers correctly according to some probability distribution
is a probabilistic data structure.

� Bloom filters (in this lecture!)

� Count–min sketch (estimates the frequency of different events in a data stream)

� Treaps (in this lecture!) and randomized binary search trees
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Deterministic Skip Lists

What time is needed to search a key in a deterministic skip list with n entries?

3 4 7 8 9 12 2514 26 29 42 47 50 57 59 60 72 86 89 e.g. search 4242

Θ(log n)
(We check only
constantly many
entries per level
and there are
O(log n) levels.)

What time is needed to insert/delete a key in a deterministic skip list?
Θ(n) (We need to swap multiple keys and re-build some parts)

We know that there are data structures like balanced binary search trees that allow for
insertion/deletion in Θ(log n) time. However, they are more complicated than skip lists.

Idea: Keep a skip list, but assign each entry a random height (number of lists it
occurs in) s.t. lower heights are more likely to occur.
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Theorem 1. Searching in a rand. skip list can be done in expected O(log n) time.

Proof of Theorem 1.

How long is the search path to reach the key we search for?

level 0
level 1
level 2

level blog2 nc

..
.

We do backwards analysis (→ see lecture on rand. algorithms) on the search path.

42

In the reverse search path, we always go to the next greater level if possible, otherwise
we follow the (reverse) pointer to the left.

If we are at level i, the probability that we can go a level up is 1/2 by construction.
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E[Xi] = 1 + 1
2 E[Xi−1] +

1
2 E[Xi] ⇔ E[Xi] = 2 + E[Xi−1] (for i < 0 : E[Xi] = 0)

Let Xi be a random variable denoting the number of steps we take on level i or lower.

in the previous step we went a level up

in the previous step we used a (reverse) pointer to the left

current step we take on level i (start with the last step we take on level i; we don’t skip levels)
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Theorem 1. Searching in a rand. skip list can be done in expected O(log n) time.

Proof of Theorem 1.

level 0
level 1
level 2

level blog2 nc

..
.

E[Xi] = 1 + 1
2 E[Xi−1] +

1
2 E[Xi] ⇔ E[Xi] = 2 + E[Xi−1] (for i < 0 : E[Xi] = 0)

Let Xi be a random variable denoting the number of steps we take on level i or lower.

⇒ E[Xi] = 2 + 2 + E[Xi−2] = 6 + E[Xi−3] = . . . = 2i + E[X0] = 2i + 2

⇒ E[Xblog2 nc] = 2blog2 nc+ 2 ∈ O(log n) �
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Treaps

Binary-search-tree property:
Let x be a key in the tree.
For every key y in the left (right) subtree of x it holds that y ≤ x (y ≥ x).

Heap property:
Let a be a key in the tree.
For every child b of a it holds that b ≥ a.

Combine both properties ⇒ Treap

� A treap is a randomized tree data structure to store a set of keys.

� Every node of the tree contains one of the keys and a randomly chosen priority.

� The keys in the tree fulfill the binary-search-tree property.

� The priorities in the tree fulfill the heap property.

priority
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We build a treap for the key set S = {34, 8, 99, 1, 4, 2, 42, 66} by inserting each key.

we start with the empty tree
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Building Treaps

We build a treap for the key set S = {34, 8, 99, 1, 4, 2, 42, 66} by inserting each key.

34
861

create a new node to insert key 34 key

randomly chosen priority
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Building Treaps

We build a treap for the key set S = {34, 8, 99, 1, 4, 2, 42, 66} by inserting each key.

34
861

8
62

create a new node to insert key 8

key

randomly chosen priority

(in the usual way for a binary search tree)
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Building Treaps

We build a treap for the key set S = {34, 8, 99, 1, 4, 2, 42, 66} by inserting each key.
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Building Treaps

We build a treap for the key set S = {34, 8, 99, 1, 4, 2, 42, 66} by inserting each key.

34
861

8
62

99
183

create a new node to insert key 99

key

randomly chosen priority

heap property violated!

(in the usual way for a binary search tree)



8 - 8

Building Treaps

We build a treap for the key set S = {34, 8, 99, 1, 4, 2, 42, 66} by inserting each key.
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Building Treaps

We build a treap for the key set S = {34, 8, 99, 1, 4, 2, 42, 66} by inserting each key.

34
861

8
62

99
183

1
420

create a new node to insert key 1 (in the usual way for a binary search tree)
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Building Treaps

We build a treap for the key set S = {34, 8, 99, 1, 4, 2, 42, 66} by inserting each key.

34
861

8
62

99
183

1
420

4
776

create a new node to insert key 4 (in the usual way for a binary search tree)
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Building Treaps

We build a treap for the key set S = {34, 8, 99, 1, 4, 2, 42, 66} by inserting each key.

34
861

8
62

99
183

1
420

4
776

2
205

create a new node to insert key 2

heap property violated!

(in the usual way for a binary search tree)
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Building Treaps

We build a treap for the key set S = {34, 8, 99, 1, 4, 2, 42, 66} by inserting each key.
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We build a treap for the key set S = {34, 8, 99, 1, 4, 2, 42, 66} by inserting each key.
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Building Treaps

1
420

4
776

2
205

We build a treap for the key set S = {34, 8, 99, 1, 4, 2, 42, 66} by inserting each key.

34
861

8
62

99
183

42
184

create a new node to insert key 42

heap property violated!

(in the usual way for a binary search tree)
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Building Treaps

1
420

4
776

2
205

We build a treap for the key set S = {34, 8, 99, 1, 4, 2, 42, 66} by inserting each key.

8
62

99
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34
861

42
184

do a left rotation
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Building Treaps

66
666

1
420

4
776

2
205

We build a treap for the key set S = {34, 8, 99, 1, 4, 2, 42, 66} by inserting each key.

8
62

99
183

34
861

42
184

create a new node to insert key 66 (in the usual way for a binary search tree)
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We build a treap for the key set S = {34, 8, 99, 1, 4, 2, 42, 66} by inserting each key.
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42
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⇒ Keys observe bin.-search-tree property.
⇒ Random priorities observe heap property.
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priorities are distinct.
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We build a treap for the key set S = {34, 8, 99, 1, 4, 2, 42, 66} by inserting each key.
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183
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42
184

⇒ Keys observe bin.-search-tree property.
⇒ Random priorities observe heap property.

� Note that the resulting
tree is not necessarily
balanced (in w.c. it has
linear depth, but we’ll
see later that in expec-
tation it is better).

� We assume that all
priorities are distinct.
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Building Treaps

66
666

1
420

4
776

2
205

We build a treap for the key set S = {34, 8, 99, 1, 4, 2, 42, 66} by inserting each key.

8
62

99
183

34
861

42
184

⇒ Keys observe bin.-search-tree property.
⇒ Random priorities observe heap property.

� Note that the resulting
tree is not necessarily
balanced (in w.c. it has
linear depth, but we’ll
see later that in expec-
tation it is better).

� We assume that all
priorities are distinct.

� Deletion of an element
works similar to
insertion. → Exercise
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Properties of Treaps

Theorem 2. Given the pairs of keys and priorities, the structure of a treap is unique.

Proof.

� The node with lowest priority is in the root.

� Due to the binary-search-tree property, all other nodes are uniquely assigned to the
left or the right subtree of the root.
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Properties of Treaps

Theorem 2. Given the pairs of keys and priorities, the structure of a treap is unique.

Proof.

� The node with lowest priority is in the root.

� Due to the binary-search-tree property, all other nodes are uniquely assigned to the
left or the right subtree of the root.

� Recursively apply this argument to the left and to the right subtree.

�
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Let x1, x2, . . . , xn be the keys in a treap in increasing order.
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Properties of Treaps

Let x1, x2, . . . , xn be the keys in a treap in increasing order.

Let Yij be a random variable that is 1 if xj is an ancestor of xi, and 0 otherwise.

Proof.
� We assume that i < j; the other case is symmetric.

Lemma 3. E[Yij] =
1

|i−j|+1
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Properties of Treaps

Let x1, x2, . . . , xn be the keys in a treap in increasing order.

Let Yij be a random variable that is 1 if xj is an ancestor of xi, and 0 otherwise.

Proof.
� We assume that i < j; the other case is symmetric.

� Let r be the lowest common ancestor of xi, xi+1, . . . , xj and let Tr be the subtree
rooted at r. Clearly, r has the lowest priority within Tr.

Lemma 3. E[Yij] =
1

|i−j|+1
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Properties of Treaps

Let x1, x2, . . . , xn be the keys in a treap in increasing order.

Let Yij be a random variable that is 1 if xj is an ancestor of xi, and 0 otherwise.

Proof.
� We assume that i < j; the other case is symmetric.

� Let r be the lowest common ancestor of xi, xi+1, . . . , xj and let Tr be the subtree
rooted at r. Clearly, r has the lowest priority within Tr.

� r ∈ {xi, xi+1, . . . , xj} as otherwise r would not be the lowest common ancestor.

Lemma 3. E[Yij] =
1

|i−j|+1
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Properties of Treaps

Let x1, x2, . . . , xn be the keys in a treap in increasing order.

Let Yij be a random variable that is 1 if xj is an ancestor of xi, and 0 otherwise.

Proof.
� We assume that i < j; the other case is symmetric.

� Let r be the lowest common ancestor of xi, xi+1, . . . , xj and let Tr be the subtree
rooted at r. Clearly, r has the lowest priority within Tr.

� r ∈ {xi, xi+1, . . . , xj} as otherwise r would not be the lowest common ancestor.

� If r = xj, then Yij = 1; otherwise xj cannot be an ancestor of xi since xi and xj
are in different subtrees of r (or r = xi).

Lemma 3. E[Yij] =
1

|i−j|+1
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Properties of Treaps

Let x1, x2, . . . , xn be the keys in a treap in increasing order.

Let Yij be a random variable that is 1 if xj is an ancestor of xi, and 0 otherwise.

Proof.
� We assume that i < j; the other case is symmetric.

� Let r be the lowest common ancestor of xi, xi+1, . . . , xj and let Tr be the subtree
rooted at r. Clearly, r has the lowest priority within Tr.

� r ∈ {xi, xi+1, . . . , xj} as otherwise r would not be the lowest common ancestor.

� If r = xj, then Yij = 1; otherwise xj cannot be an ancestor of xi since xi and xj
are in different subtrees of r (or r = xi).

� Hence, Yij = 1 if and only if xj has the lowest priority among {xi, xi+1, . . . , xj}.
Since all priorities are chosen uniformly at random, this has prob. 1/(j− i + 1). �

Lemma 3. E[Yij] =
1

|i−j|+1
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Let x1, x2, . . . , xn be the keys in a treap in increasing order.

Let Yij be a random variable that is 1 if xj is an ancestor of xi, and 0 otherwise.

Lemma 3. E[Yij] =
1

|i−j|+1

Let Zi be a random variable that denotes the number of vtcs. on path from root to xi.
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Let Yij be a random variable that is 1 if xj is an ancestor of xi, and 0 otherwise.

Lemma 3. E[Yij] =
1

|i−j|+1

Let Zi be a random variable that denotes the number of vtcs. on path from root to xi.

Lemma 4. E[Zi] = Hi + Hn−i+1 − 1 ∈ O(log n), where Hk = ∑k
j=1 1/k.

k-th harmonic number
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Properties of Treaps

Let x1, x2, . . . , xn be the keys in a treap in increasing order.

Let Yij be a random variable that is 1 if xj is an ancestor of xi, and 0 otherwise.

Lemma 3. E[Yij] =
1

|i−j|+1

Let Zi be a random variable that denotes the number of vtcs. on path from root to xi.

Lemma 4. E[Zi] = Hi + Hn−i+1 − 1 ∈ O(log n), where Hk = ∑k
j=1 1/k.

k-th harmonic numberProof.
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Properties of Treaps

Let x1, x2, . . . , xn be the keys in a treap in increasing order.

Let Yij be a random variable that is 1 if xj is an ancestor of xi, and 0 otherwise.

Lemma 3. E[Yij] =
1

|i−j|+1

Let Zi be a random variable that denotes the number of vtcs. on path from root to xi.

Lemma 4. E[Zi] = Hi + Hn−i+1 − 1 ∈ O(log n), where Hk = ∑k
j=1 1/k.

k-th harmonic numberProof.

� On the path from the root to xi, there are precisely the ancestors of xi and xi itself.
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Properties of Treaps

Let x1, x2, . . . , xn be the keys in a treap in increasing order.

Let Yij be a random variable that is 1 if xj is an ancestor of xi, and 0 otherwise.

Lemma 3. E[Yij] =
1

|i−j|+1

Let Zi be a random variable that denotes the number of vtcs. on path from root to xi.

Lemma 4. E[Zi] = Hi + Hn−i+1 − 1 ∈ O(log n), where Hk = ∑k
j=1 1/k.

k-th harmonic numberProof.

� On the path from the root to xi, there are precisely the ancestors of xi and xi itself.

� Hence, Zi = ∑n
j=1 Yij, where Yii = 1.
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Properties of Treaps

Let x1, x2, . . . , xn be the keys in a treap in increasing order.

Let Yij be a random variable that is 1 if xj is an ancestor of xi, and 0 otherwise.

Lemma 3. E[Yij] =
1

|i−j|+1

Let Zi be a random variable that denotes the number of vtcs. on path from root to xi.

Lemma 4. E[Zi] = Hi + Hn−i+1 − 1 ∈ O(log n), where Hk = ∑k
j=1 1/k.

k-th harmonic numberProof.

� On the path from the root to xi, there are precisely the ancestors of xi and xi itself.

� Hence, Zi = ∑n
j=1 Yij, where Yii = 1.

� E[Zi] = E

[
n

∑
j=1

Yij

]
=

n

∑
j=1

E[Yij] =
n

∑
j=1

1

|i− j|+ 1
=

i

∑
j=2

1

j
+

n−i+1

∑
j=2

1

j
+ 1

= Hi + Hn−i+1 − 1
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Properties of Treaps

Let x1, x2, . . . , xn be the keys in a treap in increasing order.

Let Yij be a random variable that is 1 if xj is an ancestor of xi, and 0 otherwise.

Lemma 3. E[Yij] =
1

|i−j|+1

Let Zi be a random variable that denotes the number of vtcs. on path from root to xi.

Lemma 4. E[Zi] = Hi + Hn−i+1 − 1 ∈ O(log n), where Hk = ∑k
j=1 1/k.

k-th harmonic numberProof.

� On the path from the root to xi, there are precisely the ancestors of xi and xi itself.

� Hence, Zi = ∑n
j=1 Yij, where Yii = 1.

� E[Zi] = E

[
n

∑
j=1

Yij

]
=

n

∑
j=1

E[Yij] =
n

∑
j=1

1
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=
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∑
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1
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+
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∑
j=2

1

j
+ 1

= Hi + Hn−i+1 − 1
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Properties of Treaps

Let x1, x2, . . . , xn be the keys in a treap in increasing order.

Let Yij be a random variable that is 1 if xj is an ancestor of xi, and 0 otherwise.

Lemma 3. E[Yij] =
1

|i−j|+1

Let Zi be a random variable that denotes the number of vtcs. on path from root to xi.

Lemma 4. E[Zi] = Hi + Hn−i+1 − 1 ∈ O(log n), where Hk = ∑k
j=1 1/k.

k-th harmonic numberProof.

� On the path from the root to xi, there are precisely the ancestors of xi and xi itself.

� Hence, Zi = ∑n
j=1 Yij, where Yii = 1.

� E[Zi] = E

[
n

∑
j=1

Yij

]
=

n

∑
j=1

E[Yij] =
n

∑
j=1

1

|i− j|+ 1
=

i

∑
j=2

1

j
+

n−i+1

∑
j=2

1

j
+ 1

= Hi + Hn−i+1 − 1
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Properties of Treaps

Let x1, x2, . . . , xn be the keys in a treap in increasing order.

Let Yij be a random variable that is 1 if xj is an ancestor of xi, and 0 otherwise.

Lemma 3. E[Yij] =
1

|i−j|+1

Let Zi be a random variable that denotes the number of vtcs. on path from root to xi.

Lemma 4. E[Zi] = Hi + Hn−i+1 − 1 ∈ O(log n), where Hk = ∑k
j=1 1/k.

k-th harmonic numberProof.

� On the path from the root to xi, there are precisely the ancestors of xi and xi itself.

� Hence, Zi = ∑n
j=1 Yij, where Yii = 1.

� E[Zi] = E

[
n

∑
j=1

Yij

]
=

n

∑
j=1

E[Yij] =
n

∑
j=1

1

|i− j|+ 1
=

i

∑
j=2

1

j
+

n−i+1

∑
j=2

1

j
+ 1

= Hi + Hn−i+1 − 1
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Properties of Treaps

Let x1, x2, . . . , xn be the keys in a treap in increasing order.

Let Yij be a random variable that is 1 if xj is an ancestor of xi, and 0 otherwise.

Lemma 3. E[Yij] =
1

|i−j|+1

Let Zi be a random variable that denotes the number of vtcs. on path from root to xi.

Lemma 4. E[Zi] = Hi + Hn−i+1 − 1 ∈ O(log n), where Hk = ∑k
j=1 1/k.

k-th harmonic numberProof.

� On the path from the root to xi, there are precisely the ancestors of xi and xi itself.

� Hence, Zi = ∑n
j=1 Yij, where Yii = 1.

� E[Zi] = E

[
n

∑
j=1

Yij

]
=

n

∑
j=1

E[Yij] =
n

∑
j=1

1

|i− j|+ 1
=

i

∑
j=2

1

j
+

n−i+1

∑
j=2

1

j
+ 1

= Hi + Hn−i+1 − 1



10 - 20

Properties of Treaps

Let x1, x2, . . . , xn be the keys in a treap in increasing order.

Let Yij be a random variable that is 1 if xj is an ancestor of xi, and 0 otherwise.

Lemma 3. E[Yij] =
1

|i−j|+1

Let Zi be a random variable that denotes the number of vtcs. on path from root to xi.

Lemma 4. E[Zi] = Hi + Hn−i+1 − 1 ∈ O(log n), where Hk = ∑k
j=1 1/k.

k-th harmonic numberProof.

� On the path from the root to xi, there are precisely the ancestors of xi and xi itself.

� Hence, Zi = ∑n
j=1 Yij, where Yii = 1.

� E[Zi] = E

[
n

∑
j=1

Yij

]
=

n

∑
j=1

E[Yij] =
n

∑
j=1

1

|i− j|+ 1
=

i

∑
j=2

1

j
+

n−i+1

∑
j=2

1

j
+ 1

= Hi + Hn−i+1 − 1 �
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Properties of Treaps

Let x1, x2, . . . , xn be the keys in a treap in increasing order.

Let Yij be a random variable that is 1 if xj is an ancestor of xi, and 0 otherwise.

Let Zi be a random variable that denotes the number of vtcs. on path from root to xi.

Lemma 4. E[Zi] = Hi + Hn−i+1 − 1 ∈ O(log n), where Hk = ∑k
j=1 1/k.

k-th harmonic number

Theorem 5. Searching, inserting, and deleting a key in a treap can be done in
expected O(log n) time.
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Say you are given a (large) set of n (long) keys, which are represented as numbers.
What would you do to answer queries of whether a key is contained in your set quickly?

� array or linked list:
(−) Θ(n) time for containment check

(Θ(log n) for a sorted array)
( ◦ ) simple data structure with low space

consumption
(−) adding/removing keys takes Θ(n) time

Store the keys in . . .
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Checking Containment in a Set

Say you are given a (large) set of n (long) keys, which are represented as numbers.
What would you do to answer queries of whether a key is contained in your set quickly?

� array or linked list:
(−) Θ(n) time for containment check

(Θ(log n) for a sorted array)
( ◦ ) simple data structure with low space

consumption
(−) adding/removing keys takes Θ(n) time

� balanced binary search tree or skip list:
( ◦ ) Θ(log n) time for containment check
( ◦ ) not too complicated data structure and

moderate space consumption
(+) adding/removing keys takes Θ(log n) time

� Bloom filter:
(+) Θ(1) time for containment check
(−) may produce false positives
(+) very low space consumption that does not

depend on the lengths of the keys
(−) allows adding keys (in Θ(1) time), but not

removing keys

Store the keys in . . .

� hash table:
(+) usually Θ(1) time for containment check
(−) more complicated and maybe a higher

space consumption
(+) adding/removing keys takes usually

Θ(1) time
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Bloom Filters

A Bloom filter is a bit array of m bits & a set of k different hash functions h1, . . . , hk.
Each hash function hi generates a uniform random distribution in the range {1, . . . , m}.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

h1 h2 h3
k = 3

m = 18

Initially the array contains only 0s. Such a Bloom filter represents the empty set.

For a set S of keys, we insert each s ∈ S to the Bloom filter by setting all bits at the
positions h1(s), h2(s), . . . , hk(s) to 1.

S = {2345, 8234, 12492, 34030}
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Bloom Filters

A Bloom filter is a bit array of m bits & a set of k different hash functions h1, . . . , hk.
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After having inserted all n keys, the probability that a specific bit is kept as 0 is(
1− 1

m

)kn
≈ e−kn/m.

Now, check containment for a number a /∈ S.

The probabilities that all bits at positions h1(a), . . . , hk(a) are set to 1 are not
independent. However, one can still show that the error probability ε for a false positive

is relatively close to ε ≈
(

1−
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≈
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)k

.
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So what number k of hash functions should we use?
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Parameters of Bloom Filters

So what number k of hash functions should we use?

The error probability ε is minimized if k ≈ m
n ln 2.

If we only use the optimal k, the error probibilty ε ≈
(

1
2

)m ln 2/n
.

Thus, the optimal number of bits per key in our set is m
n ≈ −

log2 ε
ln 2 ≈ −1.44 log2 ε.

ε ≈
(

1− e−kn/m
)k

So, the number of bits in our array depends on the desired error probabilty,

error probabiltiy ε

bits per key m
n

0.1

12

0.01

23

0.001

34

0.000001

67

1 in a million (106)

# hash functions k 4 7 10 20
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Parameters of Bloom Filters

So what number k of hash functions should we use?

The error probability ε is minimized if k ≈ m
n ln 2.

If we only use the optimal k, the error probibilty ε ≈
(

1
2

)m ln 2/n
.

Thus, the optimal number of bits per key in our set is m
n ≈ −

log2 ε
ln 2 ≈ −1.44 log2 ε.

ε ≈
(

1− e−kn/m
)k

So, the number of bits in our array depends on the desired error probabilty,

error probabiltiy ε

bits per key m
n

0.1

12

0.01

23

0.001

34

0.000001

67

0.000000001

100

1 in a billion (109)

# hash functions k 4 7 10 20 30
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Parameters of Bloom Filters

So what number k of hash functions should we use?

The error probability ε is minimized if k ≈ m
n ln 2.

If we only use the optimal k, the error probibilty ε ≈
(

1
2

)m ln 2/n
.

Thus, the optimal number of bits per key in our set is m
n ≈ −

log2 ε
ln 2 ≈ −1.44 log2 ε.

ε ≈
(

1− e−kn/m
)k

So, the number of bits in our array depends on the desired error probabilty,

error probabiltiy ε

bits per key m
n

0.1

12

0.01

23

0.001

34

0.000001

67

0.000000001

100

0.000000000001

133

1 in a trillion (1012)

# hash functions k 4 7 10 20 30 40
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Parameters of Bloom Filters

So what number k of hash functions should we use?

The error probability ε is minimized if k ≈ m
n ln 2.

If we only use the optimal k, the error probibilty ε ≈
(

1
2

)m ln 2/n
.

Thus, the optimal number of bits per key in our set is m
n ≈ −

log2 ε
ln 2 ≈ −1.44 log2 ε.

ε ≈
(

1− e−kn/m
)k

So, the number of bits in our array depends on the desired error probabilty,

error probabiltiy ε

bits per key m
n

0.1

12

0.01

23

0.001

34

0.000001

67

0.000000001

100

0.000000000001

133

. . . but not on the lengths of the keys.
(We could check for whole documents whether they are there or not.)

# hash functions k 4 7 10 20 30 40
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� (Randomized) skip list provide a simpler alternative to balanced binary search trees
with (in expectation) the same asymptotic time complexities for the basic operations.
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Discussion of Skip Lists and Treaps

� (Randomized) skip list provide a simpler alternative to balanced binary search trees
with (in expectation) the same asymptotic time complexities for the basic operations.

� However, the constant factors may differ and if running time and space consumption
are the most important factors, binary search trees might still be the better choice.

� Similarly, treaps are a simpler alternative to deterministic binary search trees.

� A randomized binary search tree does not store priorities, instead, when a key is
inserted, it replaces with probability 1/(n+ 1) the current root; if it does not replace
the root, this process is repeated in the corresponding subtree.

� Beside treaps, there is a random. data structure called randomized binary search tree.

� Hence, a randomized binary search tree stores less information (the size of the
subtree instead of a priority) and there is no risk of a collision between priorities.
However, there are more requests to the random number generator.
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Discussion of Bloom Filters

� Bloom filters provide a very space-efficient and time-efficient tool to handle requests
on large data sets. They should be applied where the disadvantages can be tolerated.

� Bloom filters are used for
� Internet search engines
� caching objects in Internet applications (is an image or a digest in the cache?)
� databases (Google Bigtable, Apache HBase, Apache Cassandra, PostgreSQL)
� web browsers (Google Chrome used one to identify malicious URLs)
� crypto currencies (finding logs in Ethereum)
� hiding real data, while indicating if an object is in a set (e.g., database of criminals)

� There are some refinements of classical Bloom filters to overcome some disadvan-
tages, e.g., counting Bloom filters:
� Instead of m bits, m counters are stored.
� To insert a key, the counters determined by the hash functions are incremented.
� To remove a key, the counters determined by the hash functions are decremented.



17

Literature

Skip lists:

� [Pug ’90] William W. Pugh, “Skip Lists: A Probabilistic Alternative to Balanced Trees” in Communications of
the ACM, 33(6):668–676, 1990 (preliminary version: WADS 1989)

� [Sto ’17] Sabine Storandt’s lecture script “Randomized Algorithms” (2016–2017)

Bloom filters:
� [Blo ’70] Burton H. Bloom, “Space/Time Trade-offs in Hash Coding with Allowable Errors” in Communications

of the ACM, 13(7):422–426, 1970

� [MU ’05] Michael Mitzenmacher and Eli Upfal, “Probability and Computing: Randomized Algorithms and
Probabilistic Analysis”, Cambridge University Press, 2005

� [BGK+ ’08] Prosenjit Bose, Hua Guo, Evangelos Kranakis, Anil Maheshwari, Pat Morin, Jason Morrison,
Michiel H. M. Smid, and Yihui Tang, “On the false-positive rate of Bloom filters” in Information Processing
Letters, 108(4):210–213, 2008

Treaps:

� [SA ’96] Raimund Seidel, Cecilia R. Aragon, “Randomized Search Trees” in Algorithmica, 16(4/5):464–497,
1996 (preliminary version: FOCS 1989)


	Discussion of Skip Lists and Treaps
	Literature

