
1

Advanced Algorithms

Sweep-Line Algorithms
Computational Geometry

Johannes Zink · WS23/24

2 - 1

Introduction

Computational geometry is about algorithmic problems that involve geometric
objects such as points, line segments, lines, polygons, circles, planes, polyhedra, . . .

2 - 2

Introduction

Computational geometry is about algorithmic problems that involve geometric
objects such as points, line segments, lines, polygons, circles, planes, polyhedra, . . .

� Closest Pair

Some problems:

2 - 3

Introduction

Computational geometry is about algorithmic problems that involve geometric
objects such as points, line segments, lines, polygons, circles, planes, polyhedra, . . .

� Closest Pair

� Line segment intersection

Some problems:

2 - 4

Introduction

Computational geometry is about algorithmic problems that involve geometric
objects such as points, line segments, lines, polygons, circles, planes, polyhedra, . . .

� Closest Pair

� Line segment intersection

� Determining visibility

Some problems:

2 - 5

Introduction

Computational geometry is about algorithmic problems that involve geometric
objects such as points, line segments, lines, polygons, circles, planes, polyhedra, . . .

� Closest Pair

� Line segment intersection

� Determining visibility

� Guarding an art gallery

Some problems:

2 - 6

Introduction

Computational geometry is about algorithmic problems that involve geometric
objects such as points, line segments, lines, polygons, circles, planes, polyhedra, . . .

� Closest Pair

� Line segment intersection

� Determining visibility

� Guarding an art gallery

Some problems:

2 - 7

Introduction

Computational geometry is about algorithmic problems that involve geometric
objects such as points, line segments, lines, polygons, circles, planes, polyhedra, . . .

� Closest Pair

� Line segment intersection

� Determining visibility

� Guarding an art gallery

Some problems:

2 - 8

Introduction

Computational geometry is about algorithmic problems that involve geometric
objects such as points, line segments, lines, polygons, circles, planes, polyhedra, . . .

� Closest Pair

� Line segment intersection

� Determining visibility

� Guarding an art gallery

Some problems:

2 - 9

Introduction

Computational geometry is about algorithmic problems that involve geometric
objects such as points, line segments, lines, polygons, circles, planes, polyhedra, . . .

� Closest Pair

� Line segment intersection

� Determining visibility

� Guarding an art gallery

� Triangulating a polygon

Some problems:

2 - 10

Introduction

Computational geometry is about algorithmic problems that involve geometric
objects such as points, line segments, lines, polygons, circles, planes, polyhedra, . . .

� Closest Pair

� Line segment intersection

� Determining visibility

� Guarding an art gallery

� Triangulating a polygon

� Motion planning

Some problems:

2 - 11

Introduction

Computational geometry is about algorithmic problems that involve geometric
objects such as points, line segments, lines, polygons, circles, planes, polyhedra, . . .

� Closest Pair

� Line segment intersection

� Determining visibility

� Guarding an art gallery

� Triangulating a polygon

� Motion planning

� Finding the closest post office

Some problems:

2 - 12

Introduction

Computational geometry is about algorithmic problems that involve geometric
objects such as points, line segments, lines, polygons, circles, planes, polyhedra, . . .

� Closest Pair

� Line segment intersection

� Determining visibility

� Guarding an art gallery

� Triangulating a polygon

� Motion planning

� Finding the closest post office

Some problems:

� and many more.

We offer an entire course on computational geometry in the winter term!

3 - 1

Closest Pair

Given: (multi-)set of points P ⊆ R2.

Task: Find a pair of distinct elements pa, pb ∈ P such that
the Euclidean distance ||pa − pb|| is minimum.

3 - 2

Closest Pair

Given: (multi-)set of points P ⊆ R2.

Deterministic algorithms:

Brute-force

Task: Find a pair of distinct elements pa, pb ∈ P such that
the Euclidean distance ||pa − pb|| is minimum.

O(n2)

3 - 3

Closest Pair

Given: (multi-)set of points P ⊆ R2.

Deterministic algorithms:

Brute-force

Task: Find a pair of distinct elements pa, pb ∈ P such that
the Euclidean distance ||pa − pb|| is minimum.

O(n2)

Divide and conquer (recall from ADS) O(n log n) (optimal)

3 - 4

Closest Pair

Given: (multi-)set of points P ⊆ R2.

Deterministic algorithms:

Brute-force

Task: Find a pair of distinct elements pa, pb ∈ P such that
the Euclidean distance ||pa − pb|| is minimum.

O(n2)

Divide and conquer (recall from ADS) O(n log n)

Randomized algorithm:

(optimal)

Randomized incremental construction O(n) (expected runtime)

later in
this course!

4

A Randomized Incremental Algorithm for Closest Pair

Define Pi = {p1, p2, . . . , pi} and let δi be the distance of a closest pair in Pi.

Idea: δ2 = ||p1, p2||. Compute δ3, δ4, . . . , δn by adding the points iteratively.

Suppose we have already determined δi−1.

Consider a square grid with cells of size δi−1 × δi−1.

Add the point pi. If δi < δi−1, then pi must be part
of each closest pair pi, pj.

Moreover, pj must lie in the cell of pi or one of the
adjacent cells.

Each of these cells contains at most O(1) points of Pi−1 (⇐ packing argument).

The coordinates of the cell of pi can be determined in O(1) time assuming the floor
function can be computed in O(1) time.

The test δi < δi−1 can be performed in O(1) time assuming Pi−1 is stored in a suitable
dictionary for the nonempty cells (implementable via dynamic perfect hashing).

⇒

(simple)
exercise

Upcoming lecture
on randomized algorith

ms

5 - 1

Closest Pair

Given: (multi-)set of points P ⊆ R2.

Deterministic algorithms:

Brute-force

Task: Find a pair of distinct elements pa, pb ∈ P such that
the Euclidean distance ||pa − pb|| is minimum.

O(n2)

Divide and conquer (recall from ADS) O(n log n)

Randomized algorithm:

(optimal)

Randomized incremental construction O(n) (expected runtime)

later in
this course!

5 - 2

Closest Pair

Given: (multi-)set of points P ⊆ R2.

Deterministic algorithms:

Brute-force

Task: Find a pair of distinct elements pa, pb ∈ P such that
the Euclidean distance ||pa − pb|| is minimum.

O(n2)

Divide and conquer (recall from ADS) O(n log n)

Randomized algorithm:

(optimal)

Sweep line O(n log n) (optimal)

Randomized incremental construction O(n) (expected runtime)

now!

later in
this course!

6 - 1

A Sweep Line Approach for Closest Pair

Idea: Sweep the plane from left to right with a vertical line ` (the sweep line).

Assumption: The points in P have pairwise distinct x-coordinates.

6 - 2

A Sweep Line Approach for Closest Pair

Idea: Sweep the plane from left to right with a vertical line ` (the sweep line).

Assumption: The points in P have pairwise distinct x-coordinates.

`

6 - 3

A Sweep Line Approach for Closest Pair

Idea: Sweep the plane from left to right with a vertical line ` (the sweep line).

Assumption: The points in P have pairwise distinct x-coordinates.

`

6 - 4

A Sweep Line Approach for Closest Pair

Idea: Sweep the plane from left to right with a vertical line ` (the sweep line).

Assumption: The points in P have pairwise distinct x-coordinates.

`

6 - 5

A Sweep Line Approach for Closest Pair

Idea: Sweep the plane from left to right with a vertical line ` (the sweep line).

Assumption: The points in P have pairwise distinct x-coordinates.

`

6 - 6

A Sweep Line Approach for Closest Pair

Idea: Sweep the plane from left to right with a vertical line ` (the sweep line).

Assumption: The points in P have pairwise distinct x-coordinates.

`

6 - 7

A Sweep Line Approach for Closest Pair

Idea: Sweep the plane from left to right with a vertical line ` (the sweep line).

Assumption: The points in P have pairwise distinct x-coordinates.

`

6 - 8

A Sweep Line Approach for Closest Pair

Idea: Sweep the plane from left to right with a vertical line ` (the sweep line).

Invariant: a closest pair of the points to the left of ` and its distance δ is already known.

Assumption: The points in P have pairwise distinct x-coordinates.

`

6 - 9

A Sweep Line Approach for Closest Pair

Idea: Sweep the plane from left to right with a vertical line ` (the sweep line).

Invariant: a closest pair of the points to the left of ` and its distance δ is already known.

Assumption: The points in P have pairwise distinct x-coordinates.

δ

`

6 - 10

A Sweep Line Approach for Closest Pair

Idea: Sweep the plane from left to right with a vertical line ` (the sweep line).

Invariant: a closest pair of the points to the left of ` and its distance δ is already known.

Observations:

Assumption: The points in P have pairwise distinct x-coordinates.

� This partial solution can only change when ` sweeps a point p of P.

δ

`

6 - 11

A Sweep Line Approach for Closest Pair

Idea: Sweep the plane from left to right with a vertical line ` (the sweep line).

Invariant: a closest pair of the points to the left of ` and its distance δ is already known.

Observations:

Assumption: The points in P have pairwise distinct x-coordinates.

� This partial solution can only change when ` sweeps a point p of P.

δ

`

6 - 12

A Sweep Line Approach for Closest Pair

Idea: Sweep the plane from left to right with a vertical line ` (the sweep line).

Invariant: a closest pair of the points to the left of ` and its distance δ is already known.

Observations:

Assumption: The points in P have pairwise distinct x-coordinates.

� This partial solution can only change when ` sweeps a point p of P.

δ

`

6 - 13

A Sweep Line Approach for Closest Pair

Idea: Sweep the plane from left to right with a vertical line ` (the sweep line).

Invariant: a closest pair of the points to the left of ` and its distance δ is already known.

Observations:

Assumption: The points in P have pairwise distinct x-coordinates.

� This partial solution can only change when ` sweeps a point p of P.

δ
p

`

6 - 14

A Sweep Line Approach for Closest Pair

Idea: Sweep the plane from left to right with a vertical line ` (the sweep line).

Invariant: a closest pair of the points to the left of ` and its distance δ is already known.

Observations:

Assumption: The points in P have pairwise distinct x-coordinates.

� This partial solution can only change when ` sweeps a point p of P.

� Each new closest pair consists of p and a point q with distance < δ to `.

δ
p

q

`

6 - 15

A Sweep Line Approach for Closest Pair

Idea: Sweep the plane from left to right with a vertical line ` (the sweep line).

Invariant: a closest pair of the points to the left of ` and its distance δ is already known.

Observations:

Assumption: The points in P have pairwise distinct x-coordinates.

� This partial solution can only change when ` sweeps a point p of P.

� Each new closest pair consists of p and a point q with distance < δ to `.

δ
p

q

`

What do we know about the location of q?

6 - 16

A Sweep Line Approach for Closest Pair

Idea: Sweep the plane from left to right with a vertical line ` (the sweep line).

Invariant: a closest pair of the points to the left of ` and its distance δ is already known.

Observations:

Assumption: The points in P have pairwise distinct x-coordinates.

� This partial solution can only change when ` sweeps a point p of P.

� Each new closest pair consists of p and a point q with distance < δ to `.

δ

δ

p
q

`

6 - 17

A Sweep Line Approach for Closest Pair

Idea: Sweep the plane from left to right with a vertical line ` (the sweep line).

Invariant: a closest pair of the points to the left of ` and its distance δ is already known.

Observations:

Assumption: The points in P have pairwise distinct x-coordinates.

� This partial solution can only change when ` sweeps a point p of P.

� Each new closest pair consists of p and a point q with distance < δ to `.

δ

δ

p
q

`

How many points can be in this vertical slab?

6 - 18

A Sweep Line Approach for Closest Pair

Idea: Sweep the plane from left to right with a vertical line ` (the sweep line).

Invariant: a closest pair of the points to the left of ` and its distance δ is already known.

Observations:

Assumption: The points in P have pairwise distinct x-coordinates.

� This partial solution can only change when ` sweeps a point p of P.

� Each new closest pair consists of p and a point q with distance < δ to `.

δ

δ

p
q

`

How many points can be in this vertical slab? All of them!

δ

6 - 19

A Sweep Line Approach for Closest Pair

Idea: Sweep the plane from left to right with a vertical line ` (the sweep line).

Invariant: a closest pair of the points to the left of ` and its distance δ is already known.

Observations:

Assumption: The points in P have pairwise distinct x-coordinates.

� This partial solution can only change when ` sweeps a point p of P.

� Each new closest pair consists of p and a point q with distance < δ to `.

δ

δ

p
q

`

6 - 20

A Sweep Line Approach for Closest Pair

Idea: Sweep the plane from left to right with a vertical line ` (the sweep line).

Invariant: a closest pair of the points to the left of ` and its distance δ is already known.

Observations:

Assumption: The points in P have pairwise distinct x-coordinates.

� This partial solution can only change when ` sweeps a point p of P.

� Each new closest pair consists of p and a point q with distance < δ to `.

� q needs to be located in a δ× 2δ rectangle R to the left of p.

δ

δ

δ
p

qδ

`

6 - 21

A Sweep Line Approach for Closest Pair

Idea: Sweep the plane from left to right with a vertical line ` (the sweep line).

Invariant: a closest pair of the points to the left of ` and its distance δ is already known.

Observations:

Assumption: The points in P have pairwise distinct x-coordinates.

� This partial solution can only change when ` sweeps a point p of P.

� Each new closest pair consists of p and a point q with distance < δ to `.

� q needs to be located in a δ× 2δ rectangle R to the left of p.

� R contains O(1) points of P \ {p} since their pairwise distance is ≥ δ.
packing

argument()

δ

δ

δ
p

qδ

`

7 - 1

Computing the Points in R Efficiently

δ

`

p
δ

δ

R

S
Let S denote the vertical slab of width δ to the left of `.

7 - 2

Computing the Points in R Efficiently

δ

`

p
δ

δ

R

S
Let S denote the vertical slab of width δ to the left of `.

Assume that the points P ∩ S are stored in a linked
list L sorted according to their y-coordinates.

p

L

7 - 3

Computing the Points in R Efficiently

δ

`

p
δ

δ

R

S
Let S denote the vertical slab of width δ to the left of `.

Assume that the points P ∩ S are stored in a linked
list L sorted according to their y-coordinates.

p

⇒ Given a pointer to p, we can determine the points
in R by searching the interval [y(p)− δ, y(p) + δ].
This takes O(1) time since R contains O(1) points.

L

7 - 4

Computing the Points in R Efficiently

δ

`

p
δ

δ

R

S
Let S denote the vertical slab of width δ to the left of `.

Assume that the points P ∩ S are stored in a linked
list L sorted according to their y-coordinates.

p

⇒ Given a pointer to p, we can determine the points
in R by searching the interval [y(p)− δ, y(p) + δ].
This takes O(1) time since R contains O(1) points.

p

LT

To ensure that L can be updated efficiently, we
additionally store the points P ∩ S in a balanced binary
search tree T using the y-coordinates as keys.

7 - 5

Computing the Points in R Efficiently

δ

`

p
δ

δ

R

S
Let S denote the vertical slab of width δ to the left of `.

Assume that the points P ∩ S are stored in a linked
list L sorted according to their y-coordinates.

p

⇒ Given a pointer to p, we can determine the points
in R by searching the interval [y(p)− δ, y(p) + δ].
This takes O(1) time since R contains O(1) points.

p

LT

To ensure that L can be updated efficiently, we
additionally store the points P ∩ S in a balanced binary
search tree T using the y-coordinates as keys.

The corresponding elements in L and T are linked.

7 - 6

Computing the Points in R Efficiently

δ

`

p
δ

δ

R

S
Let S denote the vertical slab of width δ to the left of `.

Assume that the points P ∩ S are stored in a linked
list L sorted according to their y-coordinates.

p

⇒ Given a pointer to p, we can determine the points
in R by searching the interval [y(p)− δ, y(p) + δ].
This takes O(1) time since R contains O(1) points.

p

LT

To ensure that L can be updated efficiently, we
additionally store the points P ∩ S in a balanced binary
search tree T using the y-coordinates as keys.

The corresponding elements in L and T are linked.

⇒ when a point is inserted in T in O(log n) time, its
according position in L can be determined in O(1) time.

7 - 7

Computing the Points in R Efficiently

δ

`

p
δ

δ

R

S
Let S denote the vertical slab of width δ to the left of `.

Assume that the points P ∩ S are stored in a linked
list L sorted according to their y-coordinates.

p

⇒ Given a pointer to p, we can determine the points
in R by searching the interval [y(p)− δ, y(p) + δ].
This takes O(1) time since R contains O(1) points.

p

LT

To ensure that L can be updated efficiently, we
additionally store the points P ∩ S in a balanced binary
search tree T using the y-coordinates as keys.

The corresponding elements in L and T are linked.

⇒ when a point is inserted in T in O(log n) time, its
according position in L can be determined in O(1) time.

Invariant 2: when we reach a point p, T and L contain exactly the points in P ∩ S.

8 - 1

Algorithm

p1, p2, . . . , pn = points of P sorted according to their x-coordinates

initialize L and T with p1

δ = ∞ // distance of current closest pair

k = 1 // index of the left-most point in L and T

for i = 2, 3, . . . , n do
insert pi into L and T
for pj ∈ [y(pi)− δ, y(pi) + δ] \ {pi} do

if ||pj − pi|| < δ do

Pmin = {pj, pi}; δ = ||pj − pi||
while x(pk) < x(pi+1)− δ do

delete pk from L and T
k = k + 1

Pmin = nil // current closest pair

return Pmin

8 - 2

Algorithm

`

p1, p2, . . . , pn = points of P sorted according to their x-coordinates

initialize L and T with p1

δ = ∞ // distance of current closest pair

k = 1 // index of the left-most point in L and T

for i = 2, 3, . . . , n do
insert pi into L and T
for pj ∈ [y(pi)− δ, y(pi) + δ] \ {pi} do

if ||pj − pi|| < δ do

Pmin = {pj, pi}; δ = ||pj − pi||
while x(pk) < x(pi+1)− δ do

delete pk from L and T
k = k + 1

p1

p2

Pmin = nil // current closest pair

return Pmin

8 - 3

Algorithm

p1, p2, . . . , pn = points of P sorted according to their x-coordinates

initialize L and T with p1

δ = ∞ // distance of current closest pair

k = 1 // index of the left-most point in L and T

for i = 2, 3, . . . , n do
insert pi into L and T
for pj ∈ [y(pi)− δ, y(pi) + δ] \ {pi} do

if ||pj − pi|| < δ do

Pmin = {pj, pi}; δ = ||pj − pi||
while x(pk) < x(pi+1)− δ do

delete pk from L and T
k = k + 1

δ

δ

δ
pi

δ

`

pk

Pmin = nil // current closest pair

return Pmin

8 - 4

Algorithm

p1, p2, . . . , pn = points of P sorted according to their x-coordinates

initialize L and T with p1

δ = ∞ // distance of current closest pair

k = 1 // index of the left-most point in L and T

for i = 2, 3, . . . , n do
insert pi into L and T
for pj ∈ [y(pi)− δ, y(pi) + δ] \ {pi} do

if ||pj − pi|| < δ do

Pmin = {pj, pi}; δ = ||pj − pi||
while x(pk) < x(pi+1)− δ do

delete pk from L and T
k = k + 1

pi

`

δ

pk

Pmin = nil // current closest pair

return Pmin

8 - 5

Algorithm

p1, p2, . . . , pn = points of P sorted according to their x-coordinates

initialize L and T with p1

δ = ∞ // distance of current closest pair

k = 1 // index of the left-most point in L and T

for i = 2, 3, . . . , n do
insert pi into L and T
for pj ∈ [y(pi)− δ, y(pi) + δ] \ {pi} do

if ||pj − pi|| < δ do

Pmin = {pj, pi}; δ = ||pj − pi||
while x(pk) < x(pi+1)− δ do

delete pk from L and T
k = k + 1

pi

`

pi+1

δ

pk

Pmin = nil // current closest pair

return Pmin

8 - 6

Algorithm

p1, p2, . . . , pn = points of P sorted according to their x-coordinates

initialize L and T with p1

δ = ∞ // distance of current closest pair

k = 1 // index of the left-most point in L and T

for i = 2, 3, . . . , n do
insert pi into L and T
for pj ∈ [y(pi)− δ, y(pi) + δ] \ {pi} do

if ||pj − pi|| < δ do

Pmin = {pj, pi}; δ = ||pj − pi||
while x(pk) < x(pi+1)− δ do

delete pk from L and T
k = k + 1

pi

`

pi+1

δ

pk

Pmin = nil // current closest pair

return Pmin

8 - 7

Algorithm

p1, p2, . . . , pn = points of P sorted according to their x-coordinates

initialize L and T with p1

δ = ∞ // distance of current closest pair

k = 1 // index of the left-most point in L and T

for i = 2, 3, . . . , n do
insert pi into L and T
for pj ∈ [y(pi)− δ, y(pi) + δ] \ {pi} do

if ||pj − pi|| < δ do

Pmin = {pj, pi}; δ = ||pj − pi||
while x(pk) < x(pi+1)− δ do

delete pk from L and T
k = k + 1

pi

pi+1

δ

pk

`

Pmin = nil // current closest pair

return Pmin

8 - 8

Algorithm

p1, p2, . . . , pn = points of P sorted according to their x-coordinates

initialize L and T with p1

δ = ∞ // distance of current closest pair

k = 1 // index of the left-most point in L and T

for i = 2, 3, . . . , n do
insert pi into L and T
for pj ∈ [y(pi)− δ, y(pi) + δ] \ {pi} do

if ||pj − pi|| < δ do

Pmin = {pj, pi}; δ = ||pj − pi||
while x(pk) < x(pi+1)− δ do

delete pk from L and T
k = k + 1

pi

pi+1

δ

`

pk

Pmin = nil // current closest pair

return Pmin

8 - 9

Algorithm

p1, p2, . . . , pn = points of P sorted according to their x-coordinates

initialize L and T with p1

δ = ∞ // distance of current closest pair

k = 1 // index of the left-most point in L and T

for i = 2, 3, . . . , n do
insert pi into L and T
for pj ∈ [y(pi)− δ, y(pi) + δ] \ {pi} do

if ||pj − pi|| < δ do

Pmin = {pj, pi}; δ = ||pj − pi||
while x(pk) < x(pi+1)− δ do

delete pk from L and T
k = k + 1

pi

pi+1

δ

`

pk

Pmin = nil // current closest pair

return Pmin

8 - 10

Algorithm

p1, p2, . . . , pn = points of P sorted according to their x-coordinates

initialize L and T with p1

δ = ∞ // distance of current closest pair

k = 1 // index of the left-most point in L and T

for i = 2, 3, . . . , n do
insert pi into L and T
for pj ∈ [y(pi)− δ, y(pi) + δ] \ {pi} do

if ||pj − pi|| < δ do

Pmin = {pj, pi}; δ = ||pj − pi||
while x(pk) < x(pi+1)− δ do

delete pk from L and T
k = k + 1

pi

pi+1

δ

`pk

Pmin = nil // current closest pair

return Pmin

8 - 11

Algorithm

p1, p2, . . . , pn = points of P sorted according to their x-coordinates

initialize L and T with p1

δ = ∞ // distance of current closest pair

k = 1 // index of the left-most point in L and T

for i = 2, 3, . . . , n do
insert pi into L and T
for pj ∈ [y(pi)− δ, y(pi) + δ] \ {pi} do

if ||pj − pi|| < δ do

Pmin = {pj, pi}; δ = ||pj − pi||
while x(pk) < x(pi+1)− δ do

delete pk from L and T
k = k + 1

O(n log n)
Pmin = nil // current closest pair

return Pmin

8 - 12

Algorithm

p1, p2, . . . , pn = points of P sorted according to their x-coordinates

initialize L and T with p1

δ = ∞ // distance of current closest pair

k = 1 // index of the left-most point in L and T

for i = 2, 3, . . . , n do
insert pi into L and T
for pj ∈ [y(pi)− δ, y(pi) + δ] \ {pi} do

if ||pj − pi|| < δ do

Pmin = {pj, pi}; δ = ||pj − pi||
while x(pk) < x(pi+1)− δ do

delete pk from L and T
k = k + 1

O(n log n)

O(log n)

Pmin = nil // current closest pair

return Pmin

8 - 13

Algorithm

p1, p2, . . . , pn = points of P sorted according to their x-coordinates

initialize L and T with p1

δ = ∞ // distance of current closest pair

k = 1 // index of the left-most point in L and T

for i = 2, 3, . . . , n do
insert pi into L and T
for pj ∈ [y(pi)− δ, y(pi) + δ] \ {pi} do

if ||pj − pi|| < δ do

Pmin = {pj, pi}; δ = ||pj − pi||
while x(pk) < x(pi+1)− δ do

delete pk from L and T
k = k + 1

O(n log n)

O(1)
O(log n)

Pmin = nil // current closest pair

return Pmin

8 - 14

Algorithm

p1, p2, . . . , pn = points of P sorted according to their x-coordinates

initialize L and T with p1

δ = ∞ // distance of current closest pair

k = 1 // index of the left-most point in L and T

for i = 2, 3, . . . , n do
insert pi into L and T
for pj ∈ [y(pi)− δ, y(pi) + δ] \ {pi} do

if ||pj − pi|| < δ do

Pmin = {pj, pi}; δ = ||pj − pi||
while x(pk) < x(pi+1)− δ do

delete pk from L and T
k = k + 1

O(n log n)

O(1)
O(log n)

O(1)

Pmin = nil // current closest pair

return Pmin

8 - 15

Algorithm

p1, p2, . . . , pn = points of P sorted according to their x-coordinates

initialize L and T with p1

δ = ∞ // distance of current closest pair

k = 1 // index of the left-most point in L and T

for i = 2, 3, . . . , n do
insert pi into L and T
for pj ∈ [y(pi)− δ, y(pi) + δ] \ {pi} do

if ||pj − pi|| < δ do

Pmin = {pj, pi}; δ = ||pj − pi||
while x(pk) < x(pi+1)− δ do

delete pk from L and T
k = k + 1

O(n log n)

O(1)
O(log n)

O(log n)

O(1)

Pmin = nil // current closest pair

return Pmin

8 - 16

Algorithm

p1, p2, . . . , pn = points of P sorted according to their x-coordinates

initialize L and T with p1

δ = ∞ // distance of current closest pair

k = 1 // index of the left-most point in L and T

for i = 2, 3, . . . , n do
insert pi into L and T
for pj ∈ [y(pi)− δ, y(pi) + δ] \ {pi} do

if ||pj − pi|| < δ do

Pmin = {pj, pi}; δ = ||pj − pi||
while x(pk) < x(pi+1)− δ do

delete pk from L and T
k = k + 1

O(n log n)

O(1)
O(log n)

O(n) in total

O(log n)

O(1)

Pmin = nil // current closest pair

return Pmin

8 - 17

Algorithm

p1, p2, . . . , pn = points of P sorted according to their x-coordinates

initialize L and T with p1

δ = ∞ // distance of current closest pair

k = 1 // index of the left-most point in L and T

for i = 2, 3, . . . , n do
insert pi into L and T
for pj ∈ [y(pi)− δ, y(pi) + δ] \ {pi} do

if ||pj − pi|| < δ do

Pmin = {pj, pi}; δ = ||pj − pi||
while x(pk) < x(pi+1)− δ do

delete pk from L and T
k = k + 1

O(n log n)

O(1)
O(log n)

O(n) in total

O(log n)

O(1)

O(n log n) in total

Pmin = nil // current closest pair

return Pmin

8 - 18

Algorithm

p1, p2, . . . , pn = points of P sorted according to their x-coordinates

initialize L and T with p1

δ = ∞ // distance of current closest pair

k = 1 // index of the left-most point in L and T

for i = 2, 3, . . . , n do
insert pi into L and T
for pj ∈ [y(pi)− δ, y(pi) + δ] \ {pi} do

if ||pj − pi|| < δ do

Pmin = {pj, pi}; δ = ||pj − pi||
while x(pk) < x(pi+1)− δ do

delete pk from L and T
k = k + 1

O(n log n)

O(n)

O(1)
O(log n)

O(n) in total

O(log n)

O(1)

O(n log n) in total

Pmin = nil // current closest pair

return Pmin

8 - 19

Algorithm

p1, p2, . . . , pn = points of P sorted according to their x-coordinates

initialize L and T with p1

δ = ∞ // distance of current closest pair

k = 1 // index of the left-most point in L and T

for i = 2, 3, . . . , n do
insert pi into L and T
for pj ∈ [y(pi)− δ, y(pi) + δ] \ {pi} do

if ||pj − pi|| < δ do

Pmin = {pj, pi}; δ = ||pj − pi||
while x(pk) < x(pi+1)− δ do

delete pk from L and T
k = k + 1

O(n log n)

O(n)

O(1)
O(log n)

O(n) in total

O(log n)

O(1)

O(n log n) in total

O(n log n)

Pmin = nil // current closest pair

return Pmin

8 - 20

Algorithm

p1, p2, . . . , pn = points of P sorted according to their x-coordinates

initialize L and T with p1

δ = ∞ // distance of current closest pair

k = 1 // index of the left-most point in L and T

for i = 2, 3, . . . , n do
insert pi into L and T
for pj ∈ [y(pi)− δ, y(pi) + δ] \ {pi} do

if ||pj − pi|| < δ do

Pmin = {pj, pi}; δ = ||pj − pi||
while x(pk) < x(pi+1)− δ do

delete pk from L and T
k = k + 1

O(n log n)

O(n)

O(1)
O(log n)

O(n) in total

O(log n)

O(1)

O(n log n) in total

O(n log n)

⇒ Total runtime: O(n log n)
Pmin = nil // current closest pair

return Pmin

9 - 1

Remarks on the Implementation

� The list L is actually not necessary: given a point p in T , its
neighbors in the ordering can be determined in O(log n) time.

p

LT

p

9 - 2

Remarks on the Implementation

� The list L is actually not necessary: given a point p in T , its
neighbors in the ordering can be determined in O(log n) time. T

� The tree T does not need to be dynamic! A static tree on all points
suffices if each point currently in S and all its ancestors are marked.
→ simple and space efficient (1 bit of extra information / node).

p p

L

9 - 3

Remarks on the Implementation

� The list L is actually not necessary: given a point p in T , its
neighbors in the ordering can be determined in O(log n) time. T

� The tree T does not need to be dynamic! A static tree on all points
suffices if each point currently in S and all its ancestors are marked.
→ simple and space efficient (1 bit of extra information / node).

� We assumed that the points in P have pairwise distinct
x-coordinates. This situation can be established by rotating P
or tilting ` slightly.
Simply, visit the points in lexicographical order!

p p

L

10 - 1

Summary and Discussion

The sweep line approach is an important design paradigm (like divide and conquer,
prune and search, dynamic programming, greedy, . . .) in computational geometry.

10 - 2

Summary and Discussion

The sweep line approach is an important design paradigm (like divide and conquer,
prune and search, dynamic programming, greedy, . . .) in computational geometry.

Main idea: Sweep the plane with a line ` while maintaining two invariants:

� A partial solution for the input to the left of ` is known.

� The part of the input to the left of ` that is still relevant for updating the partial
solution is encoded in a suitable data structure (sweep line status).

10 - 3

Summary and Discussion

The sweep line approach is an important design paradigm (like divide and conquer,
prune and search, dynamic programming, greedy, . . .) in computational geometry.

Main idea: Sweep the plane with a line ` while maintaining two invariants:

� A partial solution for the input to the left of ` is known.

� The part of the input to the left of ` that is still relevant for updating the partial
solution is encoded in a suitable data structure (sweep line status).

The partial solution and the sweep line status only change at specific positions
(events) that may be part of the input or arise during the execution of the algorithm.

10 - 4

Summary and Discussion

The sweep line approach is an important design paradigm (like divide and conquer,
prune and search, dynamic programming, greedy, . . .) in computational geometry.

Main idea: Sweep the plane with a line ` while maintaining two invariants:

� A partial solution for the input to the left of ` is known.

� The part of the input to the left of ` that is still relevant for updating the partial
solution is encoded in a suitable data structure (sweep line status).

The partial solution and the sweep line status only change at specific positions
(events) that may be part of the input or arise during the execution of the algorithm.

The sweep line paradigm is powerful and leads to simple algorithms for many problems:
computing Voronoi diagrams, crossings in an arrangement of line segments,
intersection/union of two polygons, decompositions of polygons,
certain triangulations, visibility polygons, . . .

11 - 1

Outlook: Computing Visibility Polygons

The sweep ”line”does not always have to move from left to right!

Given: A polygon P with n corners and a point p in its interior.

Task: Compute the visibility polygon of p with respect to P.

P

p

11 - 2

Outlook: Computing Visibility Polygons

The sweep ”line”does not always have to move from left to right!

Given: A polygon P with n corners and a point p in its interior.

Task: Compute the visibility polygon of p with respect to P.

P

p

11 - 3

Outlook: Computing Visibility Polygons

The sweep ”line”does not always have to move from left to right!

Given: A polygon P with n corners and a point p in its interior.

Task: Compute the visibility polygon of p with respect to P.

P

p

11 - 4

Outlook: Computing Visibility Polygons

The sweep ”line”does not always have to move from left to right!

Given: A polygon P with n corners and a point p in its interior.

Task: Compute the visibility polygon of p with respect to P.

P

p

11 - 5

Outlook: Computing Visibility Polygons

The sweep ”line”does not always have to move from left to right!

Given: A polygon P with n corners and a point p in its interior.

Task: Compute the visibility polygon of p with respect to P.

P

p

Idea: Sweep a ray ` radially around p.

`

11 - 6

Outlook: Computing Visibility Polygons

The sweep ”line”does not always have to move from left to right!

Given: A polygon P with n corners and a point p in its interior.

Task: Compute the visibility polygon of p with respect to P.

P

p

Idea: Sweep a ray ` radially around p.

`

11 - 7

Outlook: Computing Visibility Polygons

The sweep ”line”does not always have to move from left to right!

Given: A polygon P with n corners and a point p in its interior.

Task: Compute the visibility polygon of p with respect to P.

P

p

Idea: Sweep a ray ` radially around p.

`

11 - 8

Outlook: Computing Visibility Polygons

The sweep ”line”does not always have to move from left to right!

Given: A polygon P with n corners and a point p in its interior.

Task: Compute the visibility polygon of p with respect to P.

P

p

Idea: Sweep a ray ` radially around p.

`

11 - 9

Outlook: Computing Visibility Polygons

The sweep ”line”does not always have to move from left to right!

Given: A polygon P with n corners and a point p in its interior.

Task: Compute the visibility polygon of p with respect to P.

P

p

Idea: Sweep a ray ` radially around p.

`

11 - 10

Outlook: Computing Visibility Polygons

The sweep ”line”does not always have to move from left to right!

Given: A polygon P with n corners and a point p in its interior.

Task: Compute the visibility polygon of p with respect to P.

P

p

Idea: Sweep a ray ` radially around p.

`

11 - 11

Outlook: Computing Visibility Polygons

The sweep ”line”does not always have to move from left to right!

Given: A polygon P with n corners and a point p in its interior.

Task: Compute the visibility polygon of p with respect to P.

P

p

Idea: Sweep a ray ` radially around p.

`

11 - 12

Outlook: Computing Visibility Polygons

The sweep ”line”does not always have to move from left to right!

Given: A polygon P with n corners and a point p in its interior.

Task: Compute the visibility polygon of p with respect to P.

P

p

Idea: Sweep a ray ` radially around p.

`

11 - 13

Outlook: Computing Visibility Polygons

The sweep ”line”does not always have to move from left to right!

Given: A polygon P with n corners and a point p in its interior.

Task: Compute the visibility polygon of p with respect to P.

P

p

Idea: Sweep a ray ` radially around p.

`

11 - 14

Outlook: Computing Visibility Polygons

The sweep ”line”does not always have to move from left to right!

Given: A polygon P with n corners and a point p in its interior.

Task: Compute the visibility polygon of p with respect to P.

P

p

Idea: Sweep a ray ` radially around p.

`

11 - 15

Outlook: Computing Visibility Polygons

The sweep ”line”does not always have to move from left to right!

Given: A polygon P with n corners and a point p in its interior.

Task: Compute the visibility polygon of p with respect to P.

P

p

Idea: Sweep a ray ` radially around p.

Sweep line status: Edges of P intersected by ` are stored in a balanced binary search
tree T in the order of intersection with `.

`

11 - 16

Outlook: Computing Visibility Polygons

The sweep ”line”does not always have to move from left to right!

Given: A polygon P with n corners and a point p in its interior.

Task: Compute the visibility polygon of p with respect to P.

P

p

Idea: Sweep a ray ` radially around p.

Sweep line status: Edges of P intersected by ` are stored in a balanced binary search
tree T in the order of intersection with `.

`

edges in T

11 - 17

Outlook: Computing Visibility Polygons

The sweep ”line”does not always have to move from left to right!

Given: A polygon P with n corners and a point p in its interior.

Task: Compute the visibility polygon of p with respect to P.

P

p

Idea: Sweep a ray ` radially around p.

Sweep line status: Edges of P intersected by ` are stored in a balanced binary search
tree T in the order of intersection with `.
Events: Corners of P.

`

edges in T

11 - 18

Outlook: Computing Visibility Polygons

The sweep ”line”does not always have to move from left to right!

Given: A polygon P with n corners and a point p in its interior.

Task: Compute the visibility polygon of p with respect to P.

P

p

Idea: Sweep a ray ` radially around p.

Sweep line status: Edges of P intersected by ` are stored in a balanced binary search
tree T in the order of intersection with `.
Events: Corners of P.

`

edges in T

11 - 19

Outlook: Computing Visibility Polygons

The sweep ”line”does not always have to move from left to right!

Given: A polygon P with n corners and a point p in its interior.

Task: Compute the visibility polygon of p with respect to P.

P

p

Idea: Sweep a ray ` radially around p.

Sweep line status: Edges of P intersected by ` are stored in a balanced binary search
tree T in the order of intersection with `.
Events: Corners of P.

`

edges in T
extend the partial
solution along the
closest edge in T

11 - 20

Outlook: Computing Visibility Polygons

The sweep ”line”does not always have to move from left to right!

Given: A polygon P with n corners and a point p in its interior.

Task: Compute the visibility polygon of p with respect to P.

P

p

Idea: Sweep a ray ` radially around p.

Sweep line status: Edges of P intersected by ` are stored in a balanced binary search
tree T in the order of intersection with `.
Events: Corners of P.

`

edges in T

11 - 21

Outlook: Computing Visibility Polygons

The sweep ”line”does not always have to move from left to right!

Given: A polygon P with n corners and a point p in its interior.

Task: Compute the visibility polygon of p with respect to P.

P

p

Idea: Sweep a ray ` radially around p.

Sweep line status: Edges of P intersected by ` are stored in a balanced binary search
tree T in the order of intersection with `.
Events: Corners of P.

`

edges in T

delete

11 - 22

Outlook: Computing Visibility Polygons

The sweep ”line”does not always have to move from left to right!

Given: A polygon P with n corners and a point p in its interior.

Task: Compute the visibility polygon of p with respect to P.

P

p

Idea: Sweep a ray ` radially around p.

Sweep line status: Edges of P intersected by ` are stored in a balanced binary search
tree T in the order of intersection with `.
Events: Corners of P.

`

edges in T

11 - 23

Outlook: Computing Visibility Polygons

The sweep ”line”does not always have to move from left to right!

Given: A polygon P with n corners and a point p in its interior.

Task: Compute the visibility polygon of p with respect to P.

P

p

Idea: Sweep a ray ` radially around p.

Sweep line status: Edges of P intersected by ` are stored in a balanced binary search
tree T in the order of intersection with `.
Events: Corners of P.

`

edges in T
extend the partial
solution along the
closest edge in T

11 - 24

Outlook: Computing Visibility Polygons

The sweep ”line”does not always have to move from left to right!

Given: A polygon P with n corners and a point p in its interior.

Task: Compute the visibility polygon of p with respect to P.

P

p

Idea: Sweep a ray ` radially around p.

Sweep line status: Edges of P intersected by ` are stored in a balanced binary search
tree T in the order of intersection with `.
Events: Corners of P.

`

edges in T

11 - 25

Outlook: Computing Visibility Polygons

The sweep ”line”does not always have to move from left to right!

Given: A polygon P with n corners and a point p in its interior.

Task: Compute the visibility polygon of p with respect to P.

P

p

Idea: Sweep a ray ` radially around p.

Sweep line status: Edges of P intersected by ` are stored in a balanced binary search
tree T in the order of intersection with `.
Events: Corners of P.

`

edges in T

insert

11 - 26

Outlook: Computing Visibility Polygons

The sweep ”line”does not always have to move from left to right!

Given: A polygon P with n corners and a point p in its interior.

Task: Compute the visibility polygon of p with respect to P.

P

p

Idea: Sweep a ray ` radially around p.

Sweep line status: Edges of P intersected by ` are stored in a balanced binary search
tree T in the order of intersection with `.
Events: Corners of P.

`

edges in T

11 - 27

Outlook: Computing Visibility Polygons

The sweep ”line”does not always have to move from left to right!

Given: A polygon P with n corners and a point p in its interior.

Task: Compute the visibility polygon of p with respect to P.

P

p

Idea: Sweep a ray ` radially around p.

Sweep line status: Edges of P intersected by ` are stored in a balanced binary search
tree T in the order of intersection with `.
Events: Corners of P.

`

11 - 28

Outlook: Computing Visibility Polygons

The sweep ”line”does not always have to move from left to right!

Given: A polygon P with n corners and a point p in its interior.

Task: Compute the visibility polygon of p with respect to P.

P

p

Idea: Sweep a ray ` radially around p.

Sweep line status: Edges of P intersected by ` are stored in a balanced binary search
tree T in the order of intersection with `.
Events: Corners of P.

`

11 - 29

Outlook: Computing Visibility Polygons

The sweep ”line”does not always have to move from left to right!

Given: A polygon P with n corners and a point p in its interior.

Task: Compute the visibility polygon of p with respect to P.

P

p

Idea: Sweep a ray ` radially around p.

Sweep line status: Edges of P intersected by ` are stored in a balanced binary search
tree T in the order of intersection with `.
Events: Corners of P.

`

11 - 30

Outlook: Computing Visibility Polygons

The sweep ”line”does not always have to move from left to right!

Given: A polygon P with n corners and a point p in its interior.

Task: Compute the visibility polygon of p with respect to P.

P

p

Idea: Sweep a ray ` radially around p.

Sweep line status: Edges of P intersected by ` are stored in a balanced binary search
tree T in the order of intersection with `.
Events: Corners of P.

`

11 - 31

Outlook: Computing Visibility Polygons

The sweep ”line”does not always have to move from left to right!

Given: A polygon P with n corners and a point p in its interior.

Task: Compute the visibility polygon of p with respect to P.

P

p

Idea: Sweep a ray ` radially around p.

Sweep line status: Edges of P intersected by ` are stored in a balanced binary search
tree T in the order of intersection with `.
Events: Corners of P.

`

11 - 32

Outlook: Computing Visibility Polygons

The sweep ”line”does not always have to move from left to right!

Given: A polygon P with n corners and a point p in its interior.

Task: Compute the visibility polygon of p with respect to P.

P

p

Idea: Sweep a ray ` radially around p.

Sweep line status: Edges of P intersected by ` are stored in a balanced binary search
tree T in the order of intersection with `.
Events: Corners of P.

`

11 - 33

Outlook: Computing Visibility Polygons

The sweep ”line”does not always have to move from left to right!

Given: A polygon P with n corners and a point p in its interior.

Task: Compute the visibility polygon of p with respect to P.

P

p

Idea: Sweep a ray ` radially around p.

Sweep line status: Edges of P intersected by ` are stored in a balanced binary search
tree T in the order of intersection with `.
Events: Corners of P.

`

11 - 34

Outlook: Computing Visibility Polygons

The sweep ”line”does not always have to move from left to right!

Given: A polygon P with n corners and a point p in its interior.

Task: Compute the visibility polygon of p with respect to P.

P

p

Idea: Sweep a ray ` radially around p.

Sweep line status: Edges of P intersected by ` are stored in a balanced binary search
tree T in the order of intersection with `.
Events: Corners of P.

`

Total runtime: O(n log n)

12

Literature

Rolf Klein. Algorithmische Geometrie: Grundlagen, Methoden, Anwendungen.
Springer Verlag 2005.

	Introduction
	\textsc{Closest Pair}
	A Sweep Line Approach for \textsc{Closest Pair}
	Computing the Points in \textcolor{dark blue}{R} Efficiently
	Algorithm
	Remarks on the Implementation
	Summary and Discussion
	Outlook: Computing Visibility Polygons
	Literature

