

Advanced Algorithms

String Matching

Suffix Trees & Suffix Arrays

The "Ctrl+F" Problem

STRING MATCHING

Input: Strings T (text) and P (pattern) over an alphabet Σ s.t. |P|, $|\Sigma| \leq |T|$.

Task: Find all occurrences of P in T.

Example:

$$\Sigma = \{\mathsf{a,b,c}\}$$

$$P = \mathsf{cbc}$$

P occurs in T at positions 1, 7, and 9.

Applications:

- Searching a text document / e-book.
- Searching a particular pattern in a DNA sequence.
- Internet search engines: determine whether a page is relavent to the user query.

Notation

We assume T and P to be encoded as arrays with n = |T| entries $T[1], T[2], \ldots, T[n]$ and m = |P| entries $P[1], P[2], \ldots, P[m]$, respectively.

T[i,j] with $1 \le i \le j \le n$ denotes the substring of T formed by $T[i], T[i+1], \ldots, T[j]$.

Each substring T[i, j] is called an **infix** of T. If i = 1, then T[i, j] is also called **prefix** of T. If j = n, then T[i, j] is also called **suffix** of T.

$$T = \begin{bmatrix} c & b & c & c & a & b & c & b & c & b & c & b \\ (1) & (2) & (3) & (4) & (5) & (6) & (7) & (8) & (9) & (10) & (11) & (12) & (13) & (14) \\ & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & &$$

Algorithmic Complexity

Occurrences of (prefixes of) P may overlap.

 \Rightarrow A simple left-to-right traversal of T is not sufficient to find all occurrences of P!

Observation. String Matching can be solved in $\mathcal{O}(nm)$ time.

Theorem. String Matching can be solved in $\mathcal{O}(n+m)$ time, and this time bound is optimal. [Knuth, Morris, Pratt'77]

Often, many queries P_1, P_2, P_3, \ldots are performed on the same text T.

Our goal: Design a data structure to store T such that each query P_i can be answered in time independent of n.

We will see two such data structures: suffix trees and suffix arrays.

Suffix Trees (I)

T = abcababca

Idea: Represent T as a search tree.

A Σ -tree is a rooted tree S=(V,E) whose edges are labeled with strings over Σ such that for each $v\in V$

- the labels of the edges that lead to the children of v start with pairwise distinct elements of Σ ;
- lacksquare if v is not the root, then v has $\neq 1$ children.

Notation:

- $\overline{v} =$ concatenation of the labels encountered on the path from the root to v;
- $\blacksquare d(v) = |\overline{v}|$ is the string depth of v;
- **S contains** a string α if there is a $v \in V$ and a (maybe empty) string β such that $\overline{v} = \alpha \beta$;
- lacksquare words(S) = set of all strings contained in S.

$$\overline{v} = babca$$

$$d(v) = |\overline{v}| = 5$$

S contains $\alpha = \mathbf{b}$ a \mathbf{b} since there is a $v \in V$ with $\overline{v} = \alpha \beta$ (where $\beta = \mathbf{c}$ a).

Suffix Trees (II)

A suffix tree S of T is a Σ -tree that contains exactly the infixes of T, that is, $words(S) = \{T[i,j] \mid 1 \le i \le j \le n\}$.

Lemma. For each leaf v of S, the infix \overline{v} is a suffix of T.

Proof. Denote $\overline{v} = T[i, j]$ and assume j < n.

 \overline{v} is a prefix of T[i, n]. Let u be a vertex such that T[i, n] is a prefix of \overline{u} .

 \Rightarrow The path from the root to v is a subpath of the path from the root to u.

 $\Rightarrow v$ is not a leaf; a contradiction.

Suffix Trees (II)

A suffix tree S of T is a Σ -tree that contains exactly the infixes of T, that is, $words(S) = \{T[i,j] \mid 1 \le i \le j \le n\}$.

Lemma. For each leaf v of S, the infix \overline{v} is a suffix of T.

Remark. The converse is not true since a suffix can be a prefix of another suffix.

Fix: Append a symbol $\$ \notin \Sigma$ to $T \Rightarrow$ the leaves correspond bijectively to the suffixes.

Suffix Trees (II)

A suffix tree S of T is a Σ -tree that contains exactly the infixes of T, that is, $words(S) = \{T[i,j] \mid 1 \le i \le j \le n\}$.

Lemma. For each leaf v of S, the infix \overline{v} is a suffix of T.

Remark. The converse is not true

Fix: Append a symbol $\$ \notin \Sigma$ to $T \Rightarrow$ the leaves correspond bijectively to the suffixes.

Let i denote the leaf of S where $\bar{i} = T[i, n]$.

Let S_i denote

- the i-th suffix T[i, n] of T;
- \blacksquare the path from the root of S to leaf i.

Suffix Trees (III)

Implementation details:

- Each edge is labeled with an infix T[i, j]. It suffices to store the indices i and j. $\Rightarrow S$ requires $\mathcal{O}(n)$ space since #leaves = #suffixes = n.
- At each vertex v with k children, the edges leading to these children are stored in an array of length k sorted by the first letter of their labels.

→ allows for binary search!

Searching in Suffix Trees

```
SEARCH(suffix tree S, string P)
u \leftarrow \text{root of } S
i \leftarrow 1
while u is not a leaf do
\text{Search edge } e = (u, v) \text{ whose label } B \text{ starts with } P[i].
if e does not exist then
```

Compare B with P[i, m]

if P[i, m] is prefix of B then

return the indices of all leaves in the subtree rooted at v

else if
$$P[i,j] = B$$
 for some $j < m$ then $i \leftarrow j + 1$ $u \leftarrow v$

else

return "no match"

return "no match"

T=abcababca

Beispiel: P = abc1 2 3

Searching in Suffix Trees

Correctness. Each occurrence of P is a prefix of exactly one suffix of T. We report all suffixes with P as a prefix. Runtime. $\mathcal{O}(m \log |\Sigma| + k)$, where k is the number of leaves in the subtree rooted at v.

Constructing Suffix Trees

Task. Given a string T with n = |T| over alphabet Σ , construct a suffix tree S for T. **Idea.** Construct Σ -trees N_1, N_2, \ldots, N_n s.t. N_i contains the suffixes S_1, S_2, \ldots, S_i . **Initialization.** N_1 consists of a single edge labeled S_1 .

Constructing N_{i+1} from N_i . Search the longest prefix P of S_{i+1} contained in N_i .

Case 1. P ends in the middle of an edge e. Subdivide e and attach a new edge.

Case 2. P ends at a vertex v. Attach a new edge, then re-sort the neighbors of v.

Running time.

$$\mathcal{O}\Big(\underbrace{((n-1)+(n-2)+\cdots+1)\log|\Sigma|}_{\text{searching }P} + n|\Sigma|\Big) \subseteq \mathcal{O}(n^2\log|\Sigma|)$$

$$\text{re-sorting neighbors of }v$$

$$\text{(via Bucket Sort)}$$

Constructing Suffix Trees

Task. Given a string T with n = |T| over alphabet Σ , construct a suffix tree S for T. **Idea.** Construct Σ -trees N_1, N_2, \ldots, N_n s.t. N_i contains the suffixes S_1, S_2, \ldots, S_i . **Initialization.** N_1 consists of a single edge labeled S_1 .

Constructing N_{i+1} from N_i . Search the longest prefix P of S_{i+1} contained in N_i .

Case 1. P ends in the middle of an edge e. Subdivide e and attach a new edge.

Case 2. P ends at a vertex v. Attach a new edge, then re-sort the neighbors of v.

Running time.

$$\mathcal{O}\Big(\big((n-1)+(n-2)+\cdots+1\big)\log|\Sigma|+n|\Sigma|\Big)\subseteq\mathcal{O}(n^2\log|\Sigma|)$$

It is possible to construct suffix trees in $\mathcal{O}(n)$ time, either

- directly, e.g., with an algorithm by Farach (1997); or
- indirectly, by first constructing a **suffix array**, e.g., with an algorithm by Kärkkäinen and Sanders (2003).

Suffix Arrays

A suffix array A of a text T with n = |T| stores a permutation of the indices $\{1, 2, ..., n\}$

s.t. $S_{A[i]}$ is the *i*-th suffix of T in lexicographical order.

$$S_{A[i-1]} < S_{A[i]}$$
 for each $1 < i \le n$

Convention. \$ is the smallest letter.

Properties.

- The entries of A correspond to a lexicographical sorting of the suffixes of T.
- The entries of *A* corresponds to the order in which the leaves of a suffix tree *S* of *T* are encoutered by a DFS that chooses the next edge according to the lexicographical order.

Searching in Suffix Arrays

Observation. The occurrences of a pattern P in T form an interval in A.

Idea. Find the left and the right boundary of the interval via two binary searches.

Report all entries in the interval!

```
FINDLEFTBOUNDARY (suffix array A, string P)
  \ell \leftarrow 1 // left index of candidates
  r \leftarrow A.length // right index of candidates
   while \ell < r do
       i \leftarrow \ell + |(r - \ell)/2|
       if P > S_{A[i]}[1, m] then
         \ell \leftarrow i+1 // continue with right half
       else
         r \leftarrow i // continue with left half
  if P is no prefix of A[\ell] then
       return "no match"
   return \ell
```

```
T= \mbox{abca} \mbox{bca} \mbox{$S$} A= 10946157283 $\mathrm{S} \mathrm{a} \mathrm{a} \mathrm{a} \mathrm{b} \mbox{b} \mbox{b} \mathrm{c} \mathrm{c} \mathrm{a} \mathrm{a} \mbox{b} \mbox{b} \mathrm{a} \mathrm{a} \mathrm{a} \mbox{b} \mathrm{b} \mathrm{c} \mathrm{a} \mathrm{a} \mbox{b} \mathrm{c} \mathrm{a} \mathrm{a} \mbox{b} \mathrm{c} \mathrm{a} \mathrm{a} \mbox{b} \mathrm{c} \mathrm{a} \mathrm{a} \mathrm{b} \mathrm{c} \mathrm{c} \mathrm{a} \mathrm{b} \mathrm{c} \mathrm{a} \mathrm{b} \mathrm{c} \mathrm{a} \mathrm{b} \mathrm{c} \mathrm{a} \mathrm{c} \mathrm{a} \mathrm{c} \mathrm{a} \mathrm{c} \mathrm{a} \mathrm{c} \mathrm{a} \mathrm{c} \mathrm{a} \mathrm{c} \mathrm{c} \mathrm{a} \mathrm{c} \mathrm{c} \mathrm{c} \mathrm{c} \mathrm{c} \mathrm{c} \m
```

Searching in Suffix Arrays

Observation. The occurrences of a pattern P in T form an interval in A.

Idea. Find the left and the right boundary of the interval via two binary searches.

Report all entries in the interval!

```
FINDRIGHTBOUNDARY (suffix array A, string P)
  \ell \leftarrow 1 // left index of candidates
  r \leftarrow A.length // right index of candidates
   while r > \ell do
       i \leftarrow \ell + \lceil (r - \ell)/2 \rceil
       if P < S_{A[i]}[1, m] then
         r \leftarrow i-1 // continue with left half
       else
         \ell \leftarrow i // continue with right half
  if P is no prefix of A[r] then
       return "no match"
```

return r

T = abcababca

Each lexicographic comparison can be done in $\mathcal{O}(m)$ time.

 \Rightarrow The k occurrences of P can be found in $\mathcal{O}(m \log n + k)$ time.

padding

Constructing Suffix Arrays – First Attempt

Task. Given a string T with n=|T| over alphabet Σ , construct a suffix array A for T. Idea.

- If $n \in \mathcal{O}(1)$, then use brute-force.
- Otherwise, dissect *T* into triplets.
- Interpret the triplets as letters over an alphabet $\Sigma' \subseteq \Sigma^3$.
- Interpret T as a string R over Σ' with $|R| = \lceil n/3 \rceil$.
- Recurse!

$$R = [y a b] [b a d] [a b b] [a $ $]$$

Problem. But how can a suffix array for R be used to create a suffix array for T?

Constructing Suffix Arrays – Overview

Shortened notation: $T = t_0 t_1 \dots t_{n-1}$ and $x \equiv z(y)$ is a shorthand for $x \mod y = z$.

using the idea from

the previous slide!

```
ConstructSuffixArray(string T)
```

```
if n \in \mathcal{O}(1) then construct A in \mathcal{O}(1) time.
```

else

sort $S_1 \cup S_2$ into an array A_{12} use A_{12} to sort S_0 into an array A_0 merge A_{12} with A_0

For simplicity, we assume $n \equiv 0(3)$.

```
\mathcal{S}_0 = 	ext{suffixes} with index i \equiv 0(3) \mathcal{S}_1 = 	ext{suffixes} with index i \equiv 1(3) \mathcal{S}_2 = 	ext{suffixes} with index i \equiv 2(3)
```

$$S(T) = \text{suffixes of } T =$$

S_0	yabbadabbado
S_1	abbadabbado
S_2	bbadabbado
S_3	badabbado
S_4	adabbado
S_5	dabbado
S_6	abbado
S_7	bbado
S_8	bado
S_9	ado
S_{10}	d o
S_{11}	0

Step 1: Sorting $S_1 \cup S_2$

Shortened notation: $T = t_0 t_1 \dots t_{n-1}$ and $x \equiv z(y)$ is a shorthand for $x \mod y = z$.

Partition S_1 and S_2 into triplets and concatenate them:

R = [abb][ada][bba][dos][bba][dab][bad][oss]

 $\mathcal{S}_0 = \text{suffixes with index } i \equiv 0(3)$ $\mathcal{S}_1 = \text{suffixes with index } i \equiv 1(3)$ $\mathcal{S}_2 = \text{suffixes with index } i \equiv 2(3)$

$$R_1 = [t_1t_2t_3][t_4t_5t_6]... = [abb][ada][bba][do\$]$$

$$R_2 = [t_2t_3t_4][t_5t_6t_7]... = [bba][dab][bad][o\$\$]$$

 $\mathcal{S}(T) = \text{suffixes of } T =$ yabbadabbado abbadabbado S_2 bbadabbado S_3 badabbado adabbado S_5 dabbado S_6 abbado S_7 bbado S_8 bado S_9 a d o S_{10} d o S_{11} 0

Step 1: Sorting $S_1 \cup S_2$

 $S_i < S_j \Leftrightarrow S_i \$ < S_j \$ \Leftrightarrow S_i \$ \dots < S_j \$ \dots$ since the positions of the first \$ symbols in the strings $S_k(R)$ are pairwise distinct.

Shortened notation: $T = t_0 t_1 \dots t_{n-1}$ and $x \equiv z(y)$ is a shorthand for $x \mod y = z$.

Partition S_1 and S_2 into triplets and concatenate them:

$$R = [abb][ada][bba][do$][bba][dab][bad][o$$]$$

Observation. S(R) corresponds bijectively to $S_1 \cup S_2$

$$S_i \leftrightarrow [t_i t_{i+1} t_{i+2}][t_{i+3} t_{i+4} t_{i+5}] \dots$$

and a sorting of $\mathcal{S}(R)$ corresponds to a sorting of $\mathcal{S}_1 \cup \mathcal{S}_2$.

 $\mathcal{S}_0 = \text{suffixes with index } i \equiv 0(3)$ $\mathcal{S}_1 = \text{suffixes with index } i \equiv 1(3)$

$$S_2 = \text{suffixes with index } i \equiv 2(3)$$

$$\mathcal{S}(T) = \text{suffixes of } T =$$

S_0	yabbadabbado
S_1	abbadabbado
S_2	bbadabbado
S_3	badabbado
S_4	adabbado
S_5	dabbado
S_6	abbado
S_7	bbado
S_8	bado
S_9	a d o
S_{10}	d o
S_{11}	0

Sorting S(R)

Sort the "letters" (= triplets) of R via RADIXSORT. This can be done in time

$$\mathcal{O}(3(\frac{2}{3}n+|\Sigma|))\subseteq\mathcal{O}(n)$$
#digits #objects alphabet size

Replace each triplet of R by its rank \rightarrow string R' with alphabet size $\leq \frac{2}{3}n \leq n$.

A sorting of $\mathcal{S}(R')$ corresponds to a sorting of $\mathcal{S}(R)$ and can be obtained recursively.

$$R = \frac{[abb][ada][bba][dos][bba][dab][bad][oss]}{[abb][ada][bad][oss]}$$

$$R' = 1 2 4 6 4 5 3 7$$

Rank	triple	$\mathcal{S}(R) = S_1(R) $	[abb][ada][bba][do\$][bba][dab][bad][o\$\$]
1	[abb]	$S_2(R)$	[ada][bba][do\$][bba][dab][bad][o\$\$]
2	[ada]	$S_3(R)$	[bba][do\$][bba][dab][bad][o\$\$]
3	[bad]	$S_4(R)$	[do\$][bba][dab][bad][o\$\$]
4	[bba]	$S_5(R)$	[bba][dab][bad][o\$\$]
5	[dab]	$S_6(R)$	[dab][bad][o\$\$]
6	[do\$]	$S_7(R)$	[bad][o\$\$]
7	[o\$\$]	$S_8(R)$	[o\$\$]

$$S(R') = S_1(R') \mid 12464537$$
 $S_2(R') \mid 2464537$
 $S_3(R') \mid 464537$
 $S_4(R') \mid 64537$
 $S_5(R') \mid 4537$
 $S_6(R') \mid 537$
 $S_7(R') \mid 37$
 $S_8(R') \mid 7$

Summary of Step 1

Full example.

```
S(T)=
      yabbadabbado
 S_0
      abbadabbado
      bbadabbado
                                     S(R)=
                                                                                           S(R') =
 S_3
      badabbado
                                      S_1(R)
                                              [abb][ada][bba][do$][bba][dab][bad][o$$]
                                                                                                     12464537
      adabbado
                                              [ada][bba][do$][bba][dab][bad][o$$]
                                      S_2(R)
                                                                                            S_2(R')
                                                                                                     2464537
      dabbado
                                              [bba][do$][bba][dab][bad][o$$]
                                      S_3(R)
                                                                                            S_3(R')
                                                                                                     464537
 S_6
      abbado
                                              [do$][bba][dab][bad][o$$]
                                      S_4(R)
                                                                                            S_4(R')
                                                                                                     64537
 S_7
      bbado
                                      S_5(R)
                                              [bba][dab][bad][o$$]
                                                                                            S_5(R')
                                                                                                     4537
 S_8
      bado
                                      S_6(R)
                                              [dab][bad][o$$]
                                                                                            S_6(R')
                                                                                                     5 3 7
 S_9
      a d o
                                                                                            S_7(R')
                                      S_7(R)
                                              [bad][o$$]
                                                                                                     3 7
      d o
                                      S_8(R)
                                              [o$$]
                                                                                            S_8(R')
```

Rank	triple
1	[abb]
2	[ada]
3	[bad]
4	[bba]
5	[dab]
6	[do\$]
7	[o\$\$]

	A_{12}		
1	S_1	abbadabbado	$S_1(R')$ 1 2 4 6 4 5 3 7
2	S_4	adabbado	$S_2(R')$ 2 4 6 4 5 3 7
3	S_8	bado	$S_7(R')$ 3 7
4	S_2	bbadabbado	$S_5(R')$ 4 5 3 7
5	S_7	bbado	$S_3(R')$ 464537
6	S_5	dabbado	$S_6(R')$ 5 3 7
7	S_{10}	d o	$S_4(R')$ 6 4 5 3 7
8	S_{11}	0	$S_8(R')$ 7

Running time of Step 1.

$$Z_1(n) = \mathcal{O}(n) + Z(\frac{2}{3}n)$$

where Z(n) is the time to execute ConstructSuffixArray on a string of length n.

Step 2: Sorting S_0

Shortened notation: $T = t_0 t_1 \dots t_{n-1}$ and $x \equiv z(y)$ is a shorthand for $x \mod y = z$.

Each $S_i \in \mathcal{S}_0$ can be written as (t_i, S_{i+1}) s.t. $S_{i+1} \in \mathcal{S}_1$.

Observation. Let $S_i, S_j \in \mathcal{S}_0$. Then $S_i < S_j$ if and only if

- \blacksquare $t_i < t_j$; or
- $t_i = t_j \text{ and } S_{i+1} < S_{j+1}.$

 $\Rightarrow \mathcal{S}_o$ can be sorted by sorting all tuples (t_i, S_{i+1}) with $i \equiv 0(3)$. This can be done via RADIXSORT in $\mathcal{O}(n)$ time since the ordering of the entries in \mathcal{S}_1 is already implicit in A_{12} .

 $\mathcal{S}_0 = ext{suffixes with index } i \equiv 0(3)$ $\mathcal{S}_1 = ext{suffixes with index } i \equiv 1(3)$ $\mathcal{S}_2 = ext{suffixes with index } i \equiv 2(3)$

$$\mathcal{S}(T) = \text{suffixes of } T =$$

S_0	yabbadabbado
S_1	abbadabbado
S_2	bbadabbado
S_3	badabbado
S_4	adabbado
S_5	dabbado
S_6	abbado
S_7	bbado
S_8	bado
S_9	a d o
S_{10}	d o
S_{11}	0

Step 3: Merging A_{12} and A_0

Shortened notation: $T = t_0 t_1 \dots t_{n-1}$ and $x \equiv z(y)$ is a shorthand for $x \mod y = z$.

 $\mathcal{S}_0 = \text{suffixes with index } i \equiv 0(3)$ $\mathcal{S}_1 = \text{suffixes with index } i \equiv 1(3)$

 $S_2 = \text{suffixes with index } i \equiv 2(3)$

Each $S_i \in \mathcal{S}_0$ can be written as (t_i, S_{i+1}) s.t. $S_{i+1} \in \mathcal{S}_1$ and as (t_i, t_{i+1}, S_{i+2}) s.t. $S_{i+2} \in \mathcal{S}_2$.

Observation. Let $S_i \in S_0$.

- Let $S_j \in \mathcal{S}_1$. Then $S_i < S_j$ if and only if
 - \bullet $t_i < t_j$; or
 - $lackbox{t}_i = t_j$ and $S_{i+1} < S_{j+1}$ where $S_{j+1} \in \mathcal{S}_2$.
- Let $S_i \in \mathcal{S}_2$. Then $S_i < S_j$ if and only if
 - \bullet $t_i < t_j$; or
 - $t_i = t_j \text{ and } t_{i+1} < t_{j+1}; \text{ or } t_i = t_j \text{ and } t_{i+1} < t_{j+1}; \text{ or } t_{j+1} = t_j \text{ and } t_{j+1} = t_j \text{ and } t_{j+1} = t_j \text{ and } t_{j+1} = t_j \text{ or } t_{j+1} = t_j$
 - $t_i t_{i+1} = t_j t_{j+1}$ and $S_{i+2} < S_{j+2}$ where $S_{j+2} \in S_1$.

Since the ordering of $S_1 \cup S_2$ is already implicit in A_{12} , we can perform these comparisons in $\mathcal{O}(1)$ time.

 \Rightarrow A_{12} and A_0 can be merged as in MERGESORT to obtain A.

Construction of Suffix Arrays – Summary

ConstructSuffixArray(string T)

if $n \in \mathcal{O}(1)$ then

construct A in $\mathcal{O}(1)$ time.

else

sort $S_1 \cup S_2$ into an array A_{12} use A_{12} to sort S_0 into an array A_0 merge A_{12} with A_0

Runtime of each step:

$$\mathcal{O}(n) + Z(\frac{2}{3}n)$$
 $\mathcal{O}(n)$
 $\mathcal{O}(n)$

Total running time:

$$Z(n) = \begin{cases} \mathcal{O}(1), & \text{if } n = \mathcal{O}(1) \\ \mathcal{O}(n) + Z(\frac{2}{3}n), & \text{otherwise} \end{cases}$$

$$\overset{\mathsf{Master}}{\Rightarrow} \mathsf{Theorem} \ Z(n) \in \mathcal{O}(n)$$

Summary and Discussion

Let T be a string over an alphabet Σ where n = |T|.

Lemma. A suffix array for T can be used to compute an LCP ("longest common prefix") array and a suffix tree of T in $\mathcal{O}(n)$ time. [without proof]

Theorem. A suffix tree for T can computed in $\mathcal{O}(n)$ time and space. It can be used to answer String Matching queries of length m in $\mathcal{O}(m \log |\Sigma| + k)$ time.

Theorem. A suffix array for T can computed in $\mathcal{O}(n)$ time and space. It can be used to answer String Matching queries of length m in $\mathcal{O}(m \log n + k)$ time.

Remark. The suffix array is a simpler and more compact alternative to the suffix tree.

The suffix tree (and the suffix array + LCP array) have several additional applications:

- Finding the longest repeated substring.
- Finding the longest common substring of two strings.
- ...

Literature and References

The content of this presentation is based on Dorothea Wagner's slides for a lecture on "String-Matching: Suffixbäume" as part of the course "Algorithmen II" held at KIT WS 13/14. Most figures and examples were taken from these slides.

Literature:

- Simple Linear Work Suffix Array Construction. Kärkkäinen and Sanders, ICALP'03
- Optimal suffix tree construction with large alphabets. Farach, FOCS'97
- Algorithms on Strings, Trees and Sequences: Computer Science and Computational Biology. Gusfield, 1999, Cambridge University Press