
1

Advanced Algorithms

Suffix Trees & Suffix Arrays
String Matching

Alexander Wolff · WS23/24

c b
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

c c c c c ca ab b b b

c b c c b c
c b c

$
a

b

c
a$

abca

b $

c a

$

abca c
a

$

abca

b

$

$

$

abca

b

$

abca

b
$

10

4

8

5

2

7

3

16

9

10 9 4 6 1 5 7 2 8 3
$

$
a a

$

b
a
b
c
a
$

a
b
c
a

$

a
b
c
a

b

b
a
b
c
a
$

b b
c
a
$

c
a

$

a
b
c
a

b

c
a
$

c
a

$

a
b
c
a

ba
b
c
a

2 - 4

The “Ctrl+F”Problem

String Matching

T =P = cbc

(1) (7) (9)

c b
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

c c c c c ca ab b b b

c b c c b c
c b c

Applications:

� Searching a text document / e-book.
� Searching a particular pattern in a DNA sequence.
� Internet search engines: determine whether a page is relavent to the user query.

Input: Strings T (text) and P (pattern) over an alphabet Σ s.t. |P|, |Σ| ≤ |T|.
Task: Find all occurrences of P in T.

Example:

Σ = {a,b,c}

P occurs in T at positions 1, 7, and 9.

3 - 4

Notation

We assume T and P to be encoded as arrays with n = |T| entries T[1], T[2], . . . , T[n]
and m = |P| entries P[1], P[2], . . . , P[m], respectively.

T = c b
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

c c c c c ca ab b b b
T[3]

T[i, j] with 1 ≤ i ≤ j ≤ n denotes the substring of T formed by T[i], T[i + 1], . . . , T[j].

T[6, 11]

Each substring T[i, j] is called an infix of T.
If i = 1, then T[i, j] is also called prefix of T.
If j = n, then T[i, j] is also called suffix of T.

T = c b
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

c c c c c ca ab b b b
suffixprefix

infixinfix infix

4 - 12

Algorithmic Complexity

T = c b
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

c c c c c ca ab b b b

Occurrences of (prefixes of) P may overlap.
⇒ A simple left-to-right traversal of T is not sufficient to find all occurrences of P!

P

Observation. String Matching can be solved in O(nm) time.

Theorem. String Matching can be solved in O(n + m) time, and this time bound
is optimal. [Knuth, Morris, Pratt’77]

Often, many queries P1, P2, P3, . . . are performed on the same text T.

Our goal: Design a data structure to store T such that each query Pi can be
answered in time independent of n.

We will see two such data structures: suffix trees and suffix arrays.

5 - 11

Suffix Trees (I)

α

β

T = a b c a b a b c a

a
b

c
a

a
b
c
a

b

a
b

ca

b

c a

a
b

ca

c
a

a
b
c
a

b

a
b

ca

b

A Σ-tree is a rooted tree S = (V, E) whose edges are
labeled with strings over Σ such that for each v ∈ V
� the labels of the edges that lead to the children

of v start with pairwise distinct elements of Σ;
� if v is not the root, then v has 6= 1 children.

Idea: Represent T as a search tree.

v = babca

d(v) = |v| = 5

S contains α = b a b since
there is a v ∈ V with v = αβ
(where β = c a).

Notation:
� v = concatenation of the labels encountered

on the path from the root to v;
� d(v) = |v| is the string depth of v;
� S contains a string α if there is a v ∈ V and

a (maybe empty) string β such that v = αβ;
� words(S) = set of all strings contained in S.

S:

v

6 - 8

Suffix Trees (II)

a
b

c
a

a
b
c
a

b

a
b

ca

b

c a

a
b

ca

c
a

a
b
c
a

b

a
b

ca

b

T=a b c a b a b c a

A suffix tree S of T is a Σ-tree that contains exactly the infixes of T,
that is, words(S) = {T[i, j] | 1 ≤ i ≤ j ≤ n}.

Lemma. For each leaf v of S, the infix v is a suffix of T.

Proof. Denote v = T[i, j] and assume j < n.

v is a prefix of T[i, n]. Let u be a vertex such that T[i, n] is a prefix of u.

⇒ The path from the root to v is a subpath of the path from the root to u.

⇒ v is not a leaf; a contradiction. �

6 - 12

Suffix Trees (II)

a
b

c
a

a
b
c
a

b

a
b

ca

b

c a

a
b

ca

c
a

a
b
c
a

b

a
b

ca

b

T=a b c a b a b c a

A suffix tree S of T is a Σ-tree that contains exactly the infixes of T,
that is, words(S) = {T[i, j] | 1 ≤ i ≤ j ≤ n}.

$
a

b

c
a

10

$

abc

4

a

b $
8

c a

$

abc

5

a c
a

$

abc

2

a

b

$
9

$
7

$

abc

3

a

b

T=a b c a b a b c a $
$

abc

1

a

b

$

6

Remark.

Lemma. For each leaf v of S, the infix v is a suffix of T.

Fix: Append a symbol $ /∈ Σ to T ⇒ the leaves correspond bijectively to the suffixes.

The converse is not true since a suffix can be a prefix of another suffix.

6 - 14

Suffix Trees (II)

A suffix tree S of T is a Σ-tree that contains exactly the infixes of T,
that is, words(S) = {T[i, j] | 1 ≤ i ≤ j ≤ n}.

$
a

b

c
a

10

$

abc

4

a

b $
8

c a

$

abc

5

a c
a

$

abc

2

a

b

$
9

$
7

$

abc

3

a

b

T=a b c a b a b c a $
$

abc

1

a

b

$

6

Remark.

Lemma. For each leaf v of S, the infix v is a suffix of T.

Fix: Append a symbol $ /∈ Σ to T ⇒ the leaves correspond bijectively to the suffixes.

Let i denote the leaf of S where i = T[i, n].

Let Si denote
� the i-th suffix T[i, n] of T;
� the path from the root of S to leaf i.S2

S7

S2 S7

The converse is not true

7 - 3

Suffix Trees (III)

a

b

c
a$

abca

b $

c a

$

abca c
a

$

abca

b

$

$

$

abca

b

$

abca

b

$

Implementation details:

� Each edge is labeled with an infix T[i, j]. It suffices to store the indices i and j.
⇒ S requires O(n) space since #leaves = #suffixes = n.

� At each vertex v with k children, the edges leading to these children are stored in
an array of length k sorted by the first letter of their labels.

→ allows for binary search!$10

4

8

5

2

7

3

16

9

8 - 14

Searching in Suffix Trees

$
a

b

c
a$

abca

b
$

c a

$

abca c
a

$

abca

b

$

$

$

abca

b

Beispiel: P = a b c

$

abca

b

$

T=a b c a b a b c a
Search(suffix tree S, string P)

u← root of S
i← 1
while u is not a leaf do

Search edge e = (u, v) whose label B starts with P[i].
if e does not exist then

return “no match“

Compare B with P[i, m]
if P[i, m] is prefix of B then

return the indices of all leaves in the subtree rooted at v

else if P[i, j] = B for some j < m then
i← j + 1
u← v

else
return “no match“

return “no match“

1 2 3

i

u

v

= = =

B

P
i m

= = =

B

P
i mj

= = 6=

B

P
i

. . .

. . .

match match

partial

match
no

10

4

8

5

2

7

3

16

9

8 - 26

Searching in Suffix Trees

$
a

b

c
a$

abca

b
$

c a

$

abca c
a

$

abca

b

$

$

$

abca

b

Beispiel: P = a b c

$

abca

b

$

T=a b c a b a b c a
S1 S6

O(log |Σ|)

Search(suffix tree S, string P)
u← root of S
i← 1
while u is not a leaf do

Search edge e = (u, v) whose label B starts with P[i].
if e does not exist then

return “no match“

Compare B with P[i, m]
if P[i, m] is prefix of B then

return the indices of all leaves in the subtree rooted at v

else if P[i, j] = B for some j < m then
i← j + 1
u← v

else
return “no match“

return “no match“

1 2 3

i

u

v

Correctness. Each occurrence of P is a prefix of exactly one suffix of T. We report all suffixes with P as a prefix.

O(k) in total

Runtime.

m comparisons in total

This is a parameterized, output-sensitive algorithm!

≤ m iterations 10

4

8

5

2

7

3

16

9

O(m log |Σ|+ k), where k is the number of leaves in the subtree rooted at v.

9 - 20

Constructing Suffix Trees

Task. Given a string T with n = |T| over alphabet Σ, construct a suffix tree S for T.

Idea. Construct Σ-trees N1, N2, . . . , Nn s.t. Ni contains the suffixes S1, S2, . . . , Si.

Initialization. N1 consists of a single edge labeled S1.

Constructing Ni+1 from Ni. Search the longest prefix P of Si+1 contained in Ni.

Case 1. P ends in the middle of an edge e. Subdivide e and attach a new edge.

Case 2. P ends at a vertex v. Attach a new edge, then re-sort the neighbors of v.

Running time.

O
((

(n− 1) + (n− 2) + · · ·+ 1
)

log |Σ|+ n|Σ|
)
⊆ O(n2 log |Σ|)

searching P re-sorting neighbors of v
(via Bucket Sort)

︸ ︷︷ ︸

9 - 21

Constructing Suffix Trees

Task. Given a string T with n = |T| over alphabet Σ, construct a suffix tree S for T.

Idea. Construct Σ-trees N1, N2, . . . , Nn s.t. Ni contains the suffixes S1, S2, . . . , Si.

Initialization. N1 consists of a single edge labeled S1.

Constructing Ni+1 from Ni. Search the longest prefix P of Si+1 contained in Ni.

Case 1. P ends in the middle of an edge e. Subdivide e and attach a new edge.

Case 2. P ends at a vertex v. Attach a new edge, then re-sort the neighbors of v.

Running time.

O
((

(n− 1) + (n− 2) + · · ·+ 1
)

log |Σ|+ n|Σ|
)
⊆ O(n2 log |Σ|)

It is possible to construct suffix trees in O(n) time, either
� directly, e.g., with an algorithm by Farach (1997); or
� indirectly, by first constructing a suffix array, e.g., with an algorithm by

Kärkkäinen and Sanders (2003).

10 - 11

Suffix Arrays T = a b c a b a b c a $
A = 10 9 4 6 1 5 7 2 8 3

$
$
a a

$

b
a
b
c
a
$

a
b
c
a

$

a
b
c
a

b

b
a
b
c
a
$

b b
c
a
$

c
a

$

a
b
c
a

b

c
a
$

c
a

$

a
b
c
a

ba
b
c
a

A suffix array A of a text T with n = |T| stores a
permutation of the indices {1, 2, . . . , n}
s.t. SA[i] is the i-th suffix of T in lexicographical order.

Properties.
� The entries of A correspond to a

lexicographical sorting of the suffixes of T.
� The entries of A corresponds to the order in

which the leaves of a suffix tree S of T are
encoutered by a DFS that chooses the next
edge according to the lexicographical order.

Convention. $ is the smallest letter.

SA[i−1] < SA[i] for each 1 < i ≤ n

$
a

b

c
a$

abca

b
$

c a

$

abca c
a

$

abca

b

$

$

$

abca

b

$

abca

b

$

10

4

8

5

2

7

3

16

9

11 - 3

Searching in Suffix Arrays

T = a b c a b a b c a $
A =FindLeftBoundary(suffix array A, string P)

`← 1 // left index of candidates

r ← A.length // right index of candidates

while ` < r do
i← `+ b(r− `)/2c
if P > SA[i][1, m] then

`← i + 1 // continue with right half

else
r ← i // continue with left half

if P is no prefix of A[`] then
return “no match“

return `

$
$
a a

b
c
a
$

a
b
c
a

$

a
b
c
a

b

b
a
b
c
a
$

b b
c
a
$

c
a

$

a
b
c
a

b

c
a
$

c
a

$

a
b
c
a

b

a

$

b
a
b
c
a

P = a b

Observation. The occurrences of a pattern P in T form an interval in A.

Idea. Find the left and the right boundary of the interval via two binary searches.
Report all entries in the interval!

10 9 4 6 1 5 7 2 8 3

11 - 15

Searching in Suffix Arrays

T = a b c a b a b c a $
A =FindRightBoundary(suffix array A, string P)

`← 1 // left index of candidates

r ← A.length // right index of candidates

while r > ` do
i← `+ d(r− `)/2e
if P < SA[i][1, m] then

r ← i− 1 // continue with left half

else
`← i // continue with right half

if P is no prefix of A[r] then
return “no match“

return r

$
$
a a

b
c
a
$

a
b
c
a

$

a
b
c
a

b

b
a
b
c
a
$

b b
c
a
$

c
a

$

a
b
c
a

b

c
a
$

c
a

$

a
b
c
a

b

a

$

b
a
b
c
a

P = a b

Observation. The occurrences of a pattern P in T form an interval in A.

Idea. Find the left and the right boundary of the interval via two binary searches.
Report all entries in the interval!

Each lexicographic comparison can be done in O(m) time.

⇒ The k occurrences of P can be found in O(m log n + k) time.

10 9 4 6 1 5 7 2 8 3

12 - 5

Constructing Suffix Arrays – First Attempt

Task. Given a string T with n = |T| over alphabet Σ, construct a suffix array A for T.

Idea.
� If n ∈ O(1), then use brute-force.
� Otherwise, dissect T into triplets.
� Interpret the triplets as letters over an alphabet Σ′ ⊆ Σ3.
� Interpret T as a string R over Σ′ with |R| = dn/3e.
� Recurse!

Problem. But how can a suffix array for R be used to create a suffix array for T?

[] [] [] []R = y a b b a d a b b a $ $

padding

13 - 6

Constructing Suffix Arrays – Overview

Shortened notation: T = t0t1 . . . tn−1 and x ≡ z(y) is a shorthand for x mod y = z.

0 1 2 3 4 5 6 7 8 9 10 11
T= y a b b a d a b b a d o

S(T) = suffixes of T =

S0 y a b b a d a b b a d o
S1 a b b a d a b b a d o
S2 b b a d a b b a d o
S3 b a d a b b a d o
S4 a d a b b a d o
S5 d a b b a d o
S6 a b b a d o
S7 b b a d o
S8 b a d o
S9 a d o
S10 d o
S11 o

S2 = suffixes with index i ≡ 2(3)

S1 = suffixes with index i ≡ 1(3)

S0 = suffixes with index i ≡ 0(3)

ConstructSuffixArray(string T)

if n ∈ O(1) then
construct A in O(1) time.

else
sort S1 ∪ S2 into an array A12

use A12 to sort S0 into an array A0

merge A12 with A0

For simplicity, we assume n ≡ 0(3).

using the idea from
the previous slide!

14 - 3

Step 1: Sorting S1 ∪ S2

Shortened notation: T = t0t1 . . . tn−1 and x ≡ z(y) is a shorthand for x mod y = z.

S(T) = suffixes of T =

S0 y a b b a d a b b a d o
S1 a b b a d a b b a d o
S2 b b a d a b b a d o
S3 b a d a b b a d o
S4 a d a b b a d o
S5 d a b b a d o
S6 a b b a d o
S7 b b a d o
S8 b a d o
S9 a d o
S10 d o
S11 o

S2 = suffixes with index i ≡ 2(3)

S1 = suffixes with index i ≡ 1(3)

S0 = suffixes with index i ≡ 0(3)

R= [abb][ada][bba][do$][bba][dab][bad][o$$]

Partition S1 and S2 into triplets and concatenate them:

R1 = [t1t2t3][t4t5t6] . . . = [abb][ada][bba][do$]

R2 = [t2t3t4][t5t6t7] . . . = [bba][dab][bad][o$$]

14 - 11

Step 1: Sorting S1 ∪ S2

Shortened notation: T = t0t1 . . . tn−1 and x ≡ z(y) is a shorthand for x mod y = z.

S(T) = suffixes of T =

S0 y a b b a d a b b a d o
S1 a b b a d a b b a d o
S2 b b a d a b b a d o
S3 b a d a b b a d o
S4 a d a b b a d o
S5 d a b b a d o
S6 a b b a d o
S7 b b a d o
S8 b a d o
S9 a d o
S10 d o
S11 o

S2 = suffixes with index i ≡ 2(3)

S1 = suffixes with index i ≡ 1(3)

S0 = suffixes with index i ≡ 0(3)

R= [abb][ada][bba][do$][bba][dab][bad][o$$]

Partition S1 and S2 into triplets and concatenate them:

S1(R) [abb][ada][bba][do$][bba][dab][bad][o$$]
S2(R) [ada][bba][do$][bba][dab][bad][o$$]
S3(R) [bba][do$][bba][dab][bad][o$$]
S4(R) [do$][bba][dab][bad][o$$]
S5(R) [bba][dab][bad][o$$]
S6(R) [dab][bad][o$$]
S7(R) [bad][o$$]
S8(R) [o$$]

S(R)=

Observation. S(R) corresponds bijectively to S1 ∪ S2

Si ↔ [titi+1ti+2][ti+3ti+4ti+5] . . .

and a sorting of S(R) corresponds to a sorting of S1 ∪ S2.

Si < Sj ⇔ Si$ < Sj$ ⇔ Si$. . . < Sj$. . .
since the positions of the first $ symbols in the
strings Sk(R) are pairwise distinct.

15 - 8

Sorting S(R)

R= [abb][ada][bba][do$][bba][dab][bad][o$$]

S1(R) [abb][ada][bba][do$][bba][dab][bad][o$$]
S2(R) [ada][bba][do$][bba][dab][bad][o$$]
S3(R) [bba][do$][bba][dab][bad][o$$]
S4(R) [do$][bba][dab][bad][o$$]
S5(R) [bba][dab][bad][o$$]
S6(R) [dab][bad][o$$]
S7(R) [bad][o$$]
S8(R) [o$$]

S(R)=Rank triple
1 [abb]
2 [ada]
3 [bad]
4 [bba]
5 [dab]
6 [do$]
7 [o$$]

S1(R′) 1 2 4 6 4 5 3 7
S2(R′) 2 4 6 4 5 3 7
S3(R′) 4 6 4 5 3 7
S4(R′) 6 4 5 3 7
S5(R′) 4 5 3 7
S6(R′) 5 3 7
S7(R′) 3 7
S8(R′) 7

S(R′) =

R′= 1 2 4 6 4 5 3 7

Sort the ”letters”(= triplets) of R via RadixSort. This can be done in time

O
(
3(2

3 n + |Σ|)
)
⊆ O(n)

#digits #objects alphabet size

Replace each triplet of R by its rank → string R′ with alphabet size ≤ 2
3 n ≤ n.

A sorting of S(R′) corresponds to a sorting of S(R) and can be obtained recursively.

ConstructSuffixArray(R′)

16 - 2

Summary of Step 1

S0 y a b b a d a b b a d o
S1 a b b a d a b b a d o
S2 b b a d a b b a d o
S3 b a d a b b a d o
S4 a d a b b a d o
S5 d a b b a d o
S6 a b b a d o
S7 b b a d o
S8 b a d o
S9 a d o
S10 d o
S11 o

S1(R) [abb][ada][bba][do$][bba][dab][bad][o$$]
S2(R) [ada][bba][do$][bba][dab][bad][o$$]
S3(R) [bba][do$][bba][dab][bad][o$$]
S4(R) [do$][bba][dab][bad][o$$]
S5(R) [bba][dab][bad][o$$]
S6(R) [dab][bad][o$$]
S7(R) [bad][o$$]
S8(R) [o$$]

S(R)=

S1(R′) 1 2 4 6 4 5 3 7
S2(R′) 2 4 6 4 5 3 7
S3(R′) 4 6 4 5 3 7
S4(R′) 6 4 5 3 7
S5(R′) 4 5 3 7
S6(R′) 5 3 7
S7(R′) 3 7
S8(R′) 7

S(R′) =

A12

Full example.
S(T)=

1 S1 a b b a d a b b a d o S1(R′)
2 S4 a d a b b a d o S2(R′)
3 S8 b a d o S7(R′)
4 S2 b b a d a b b a d o S5(R′)
5 S7 b b a d o S3(R′)
6 S5 d a b b a d o S6(R′)
7 S10 d o S4(R′)
8 S11 o S8(R′)

1 2 4 6 4 5 3 7
2 4 6 4 5 3 7
3 7
4 5 3 7
4 6 4 5 3 7
5 3 7
6 4 5 3 7
7

Running time of Step 1.

Z1(n) = O(n) + Z(2
3 n)

where Z(n) is the time to execute
ConstructSuffixArray on a
string of length n.

Rank triple
1 [abb]
2 [ada]
3 [bad]
4 [bba]
5 [dab]
6 [do$]
7 [o$$]

18 - 4

Step 2: Sorting S0

Shortened notation: T = t0t1 . . . tn−1 and x ≡ z(y) is a shorthand for x mod y = z.

0 1 2 3 4 5 6 7 8 9 10 11
T= y a b b a d a b b a d o

S(T) = suffixes of T =

S0 y a b b a d a b b a d o
S1 a b b a d a b b a d o
S2 b b a d a b b a d o
S3 b a d a b b a d o
S4 a d a b b a d o
S5 d a b b a d o
S6 a b b a d o
S7 b b a d o
S8 b a d o
S9 a d o
S10 d o
S11 o

S2 = suffixes with index i ≡ 2(3)

S1 = suffixes with index i ≡ 1(3)

S0 = suffixes with index i ≡ 0(3)

Observation. Let Si, Sj ∈ S0. Then Si < Sj if and only if
� ti < tj; or
� ti = tj and Si+1 < Sj+1.

Each Si ∈ S0 can be written as (ti, Si+1) s.t. Si+1 ∈ S1.

⇒ So can be sorted by sorting all tuples (ti, Si+1) with
i ≡ 0(3). This can be done via RadixSort in O(n)
time since the ordering of the entries in S1 is already
implicit in A12.

20 - 5

Step 3: Merging A12 and A0

Shortened notation: T = t0t1 . . . tn−1 and x ≡ z(y) is a shorthand for x mod y = z.

0 1 2 3 4 5 6 7 8 9 10 11
T= y a b b a d a b b a d o

S2 = suffixes with index i ≡ 2(3)

S1 = suffixes with index i ≡ 1(3)

S0 = suffixes with index i ≡ 0(3)

Observation. Let Si ∈ S0.
� Let Sj ∈ S1. Then Si < Sj if and only if

� ti < tj; or
� ti = tj and Si+1 < Sj+1 where Sj+1 ∈ S2.

� Let Sj ∈ S2. Then Si < Sj if and only if
� ti < tj; or
� ti = tj and ti+1 < tj+1; or
� titi+1 = tjtj+1 and Si+2 < Sj+2 where Sj+2 ∈ S1.

Each Si ∈ S0 can be written as (ti, Si+1) s.t. Si+1 ∈ S1

and as (ti, ti+1, Si+2) s.t. Si+2 ∈ S2.

Since the ordering of S1 ∪ S2 is
already implicit in A12, we can
perform these comparisons in O(1)
time.

⇒ A12 and A0 can be merged as
in MergeSort to obtain A.

21 - 7

Construction of Suffix Arrays – Summary

ConstructSuffixArray(string T)

if n ∈ O(1) then
construct A in O(1) time.

else
sort S1 ∪ S2 into an array A12

use A12 to sort S0 into an array A0

merge A12 with A0

Z(n) =

{
O(1), if n = O(1)
O(n) + Z

(
2
3 n
)
, otherwise

O(n) + Z
(

2
3 n
)

O(n)
O(n)

Total running time:

Master Theorem⇒ Z(n) ∈ O(n)

Runtime of each step:

22 - 5

Summary and Discussion

Lemma. A suffix array for T can be used to compute an LCP (“longest common
prefix”) array and a suffix tree of T in O(n) time. [without proof]

Let T be a string over an alphabet Σ where n = |T|.

Theorem. A suffix tree for T can computed in O(n) time and space. It can be used
to answer String Matching queries of length m in O(m log |Σ|+ k) time.

Theorem. A suffix array for T can computed in O(n) time and space. It can be used
to answer String Matching queries of length m in O(m log n + k) time.

Remark. The suffix array is a simpler and more compact alternative to the suffix tree.

The suffix tree (and the suffix array + LCP array) have several additional applications:
� Finding the longest repeated substring.
� Finding the longest common substring of two strings.
� ...

23

Literature and References

The content of this presentation is based on Dorothea Wagner’s slides for a lecture
on “String-Matching: Suffixbäume“ as part of the course “Algorithmen II“ held at
KIT WS 13/14. Most figures and examples were taken from these slides.

Literature:
� Simple Linear Work Suffix Array Construction. Kärkkäinen and Sanders, ICALP’03
� Optimal suffix tree construction with large alphabets. Farach, FOCS’97
� Algorithms on Strings, Trees and Sequences: Computer Science and

Computational Biology. Gusfield, 1999, Cambridge University Press

	The "Ctrl+F" problem
	Notation
	Algorithmic Complexity
	Suffix Trees (I)
	Suffix Trees (II)
	Suffix Trees (III)
	Searching in Suffix Trees
	Constructing Suffix Trees
	Suffix Arrays
	Searching in Suffix Arrays
	Constructing Suffix Arrays -- First Attempt
	Constructing Suffix Arrays -- Overview
	Step 1: Sorting $\mathcal S_1\cup \mathcal S_2$
	Sorting $\mathcal S(R)$
	Summary of Step 1
	Step 2: Sorting $\mathcal S_0$
	Step 3: Merging A_{12} and A_0
	Construction of Suffix Arrays -- Summary
	Summary and Discussion
	Literature and References

