Julius-Maximilians-
UNIVERSITAT
WURZBURG

Advanced Algorithms

String Matching
Suffix Trees & Suffix Arrays

S

3 Alexander Wolff - WS23/24

ba
g c b clc ablecbocb-cachb
M @ @ @ 6 © (@ 6@ ©]w) @) 12 13) 149
c b c c b c
c b c

ALV O gowvw oW N
ALOTO (G
AVOT VT VO TOL ||
%mﬁdmo'm
ALV O o (I~
ALVLOT LT L O T (N
A0 (oo
ALVOT Lo LO W

The “Ctrl+F" Problem

STRING MATCHING
Input: Strings T (text) and P (pattern) over an alphabet ¥ s.t. |P|, |[Z| < |T|.

Task: Find all occurrences of Pin T.

Example:
Y. = {a,b,c} P = cbc T=1[cbclcabfcbhecbcachb
M @ @@ 6 6@ 6 O a2)
P occurs in T at positions 1, 7, and 9. c bc c bc
T T c bc
A
. . (1) (7) (9)
Applications:

B Searching a text document / e-book.
B Searching a particular pattern in a DNA sequence.
B Internet search engines: determine whether a page is relavent to the user query.

Notation

We assume T and P to be encoded as arrays with n = |T| entries T[1], T|2], ..., T|n]

and m = |P| entries P|1], P|2],..., P|m]|, respectively.

T3] T[6, 11]

T= c blc|lc alb e b cbclacb
W @ E]® 6|6 @ @ © @) (|2 13) (14

T|i,j] with 1 <i < j < n denotes the substring of T formed by T|i], T|i + 1]

Each substring T|i, j] is called an infix of T.
If i =1, then T|i,] is also called prefix of T.
If | = n, then T|[i, j] is also called suffix of T.

prefix suffix

T=1|c b c|lc alb ¢c blc blc a ¢ b
W @ @@ G| @ @] © @)|ay @2 @3) 1)

Infix Infix Infix

Algorithmic Complexity

Occurrences of (prefixes of) P may overlap.

= A simple left-to-right traversal of T is not sufficient to find all occurrences of P!

l

T= cboccalbcbc
M @ 3) @ 6) (6 @ 6 (©

b ¢ a
(10) (11) (12)

P

c b

(13) (14)

Observation. STRING MATCHING can be solved in O(nm) time.

Theorem. STRING MATCHING can be solved in O(n + m) time, and this time bound

Is optimal.

[Knuth, Morris, Pratt'77]

Often, many queries Py1, P>, P3, ... are performed on the same text T.

Our goal: Design a data structure to store T such that each query P; can be

answered in time independent of n.

We will see two such data structures: suffix trees and suffix arrays.

Suffix Trees (I) T=abcababca

Idea: Represent T as a search tree.

A >-tree is a rooted tree S = (V, E) whose edges are
labeled with strings over X such that for eachv € V
B the labels of the edges that lead to the children

of v start with pairwise distinct elements of X;
B if v is not the root, then v has # 1 children.

Notation:

B 0 = concatenation of the labels encountered
on the path from the root to v;

B d(v) = |7| is the string depth of v;

B S contains a string « if there is a v € V and
a (maybe empty) string B such that 7 = af3;

B words(S) = set of all strings contained in S.

S contains «® = b a b since
thereisav € V with 0 = af
(where B = c a).

Suffix Trees (Il)

A suffix tree S of T is a 2-tree that contains exactly the infixes of T,
that is, words(S) = {T[i,j] |1 <i<j<n}.
Lemma. For each leaf v of S, the infix ¥ is a suffix of T.

Proof. Denote 7 = T|i, j| and assume j < n.

v is a prefix of T|i,n]. Let u be a vertex such that T|i, n] is a prefix of u.

= The path from the root to v is a subpath of the path from the root to u.

= v Is not a leaf; a contradiction.

Suffix Trees (Il)

A suffix tree S of T is a 2-tree that contains exactly the infixes of T,
that is, words(S) = {T[i,j] |1 <i<j<n}.

Lemma. For each leaf v of S, the infix ¥ is a suffix of T.

Remark. The converse is not true since a suffix can be a prefix of another suffix.

Fix: Append a symbol $ € X to T = the leaves correspond bijectively to the suffixes.

- 12

Suffix Trees (Il)

A suffix tree S of T is a 2-tree that contains exactly the infixes of T,
that is, words(S) = {T[i,j] |1 <i<j<n}.

Lemma. For each leaf v of S, the infix ¥ is a suffix of T.
Remark. The converse is not true

Fix: Append a symbol $ € X to T = the leaves correspond bijectively to the suffixes.

Let i denote the leaf of S where i = T[i, n].

Let S; denote
B the i-th suffix T|i, n| of T;
B the path from the root of S to leaf 1.

_14

Suffix Trees (Il

Implementation details:

B Each edge is labeled with an infix T|i, j|. It suffices to store the indices i and j.
= S requires O(n) space since #leaves = #suffixes = n.

B At each vertex v with k children, the edges leading to these children are stored in
an array of length k sorted by the first letter of their labels.

— allows for binary search!

Searching in Suffix Trees

SEARCH(suffix tree S, string P)
u < root of S
141
while u is not a leaf do
Search edge e = (u,v) whose label B starts with P|i].

if e does not exist then

| return “no match”
Compare B with Pli, m|
if P|i, m] is prefix of B then

|_ return the indices of all leaves in the subtree rooted at v

else if P[i,j| = B for some j < m then

Liej+1
U<—10°

else
|_ return “no match*

return “no match”

T=abcababca

match
BLIITT[T[]
1l
PLIT]
1 m

partial
match

B [ITT]
11
PLLTT]]
1] m

no
match

BLIM---

11

PLIM: - -

Searching in Suffix Trees
T=—abcababca

SEARCH(suffix tree S, string P) 51 s 56
i <= root of 5 < m iterations

1+ 1
while u is not a leaf do / \

Search edge ¢ = (u,v) whose label B starts with P[i]. O(log |X|)

if ¢ does not exist then
| return “no match”

Compare B with Pli, m| m comparisons in total
if P[i, m] is prefix of B then
|_ return the indices of all leaves in the subtree rooted at v

else if P[i,j| = B for some j < m then O(k) in total
Li+j+1
U<+7v
else
|_ return “no match" S
— This is a parameterized, output-sensitive algorithm! T
return “no match” ;

Correctness. Each occurrence of P is a prefix of exactly one suffix of T. We report all suffixes with P as a prefix.

Runtime. O(mlog |%| + k), where k is the number of leaves in the subtree rooted at v.

Constructing Suffix Trees

Task. Given a string T with n = |T| over alphabet X, construct a suffix tree S for T.

Idea. Construct 2-trees N1, No, ..., N, s.t. N; contains the suffixes 51, So, ..., S;.

Initialization. Ny consists of a single edge labeled S;.

Constructing N;, 1 from N;. Search the longest prefix P of S;, 1 contained in N;.
Case 1. P ends in the middle of an edge e. Subdivide e and attach a new edge.
Case 2. P ends at a vertex v. Attach a new edge, then re-sort the neighbors of v.

Running time.

C’)(S(n ~1)+ (n=2)+ - +1) log 2] + n\z\) C O(n?log |Z|)

searching P re-sorting neighbors of v
(via BUCKET SORT)

- 20

Constructing Suffix Trees

Task. Given a string T with n = |T| over alphabet X, construct a suffix tree S for T.

Idea. Construct 2-trees N1, No, ..., N, s.t. N; contains the suffixes 51, So, ..., S;.

Initialization. Ny consists of a single edge labeled S;.

Constructing N;, 1 from N;. Search the longest prefix P of S;, 1 contained in N;.
Case 1. P ends in the middle of an edge e. Subdivide e and attach a new edge.
Case 2. P ends at a vertex v. Attach a new edge, then re-sort the neighbors of v.

Running time.
O(((n —1)4+(n—=2)+---+1)log|X] +n\2\) C O(n?log |Z|)

It is possible to construct suffix trees in O(n) time, either

B directly, e.g., with an algorithm by Farach (1997); or

B indirectly, by first constructing a suffix array, e.g., with an algorithm by
Karkkainen and Sanders (2003).

- 21

T=abcababca}

Suffix Arrays

10-11

A =

1019

N

A suffix array A of a text T with n = |T| stores a

permutation of the indices {1,2,...,n}
s.t. 54,1 is the i-th suffix of T in lexicographical order.

™

Saji—1] < Spp foreach 1 <1 <mn

Convention. $ is the smallest letter.

Properties.
B The entries of A correspond to a

lexicographical sorting of the suffixes of T.
B The entries of A corresponds to the order in
which the leaves of a suffix tree S of T are
encoutered by a DFS that chooses the next
edge according to the lexicographical order.

$

a

$

%NOO'!DO'!D_P

AL 0O T oL ®))

ALVOT VT VO TOL ||

ALV O Lo

AL 0O o

ALVLOT LT LVWOOT

AL 0O

ALVOT VLo LO W

Searching in Suffix Arrays

Observation. The occurrences of a pattern P in T form an interval in A.
Idea. Find the left and the right boundary of the interval via two binary searches.

Report all entries in the interval! T—abcababca$
FINDLEFTBOUNDARY (suffix array A, string P) A = 10(9]4]6]1[5]7]2]8]3
/<1 // left index of candidates $ aaaabbbecoc
r < A.length // right index of candidates $bbbaccaa
while ¢ < 7 do accbaajghp
i 04 [(r—0)/2) beactb a
if P> SA[Z][].,TH] then a a $ b C
| < i+1// continue with right half $ (l:a g g
else a $
r<1// continue with left half $
5= P=ab
if P is no prefix of A[/] then
return “no match”

return /

11-15

Searching in Suffix Arrays

Observation. The occurrences of a pattern P in T form an interval in A.

Idea. Find the

eft and the right boundary of the interval via two binary searches.

Report all entries in the interval! T—abcababca$
FINDRIGHTBOUNDARY (suffix array A, string P) A = 10(9]4]6]1[5]7]2]8]3
¢ <+ 1// left index of candidates $ aaaabbbcc
r < A.length // right index of candidates $bbbaccaa
while r > ¢ do gggbgz$b
i< L+ [(r—20)/2] 2 s bg : E
if P< SA[Z][].,TH] then a a $ b C
r<1—1// continue with left half $ b g g
— C
else g $
¢ <+ i // continue with right half
| b © P=ab
if P is no prefix of A[r| then
| return “no match”

return r

Each lexicographic comparison can be done in O(m) time.
= The k occurrences of P can be found in O(mlogn + k) time.

Constructing Suffix Arrays — First Attempt

12 -

Task. Given a string T with n = |T| over alphabet X, construct a suffix array A for T.

ldea.

If n € O(1), then use brute-force.

Otherwise, dissect T into triplets.

nterpret the triplets as letters over an alphabet ¥/ C ¥.3.

nterpret T as a string R over ¥/ with |R| = [n/3].

Recurse! padding

7

R= [y a b]J][b a dl[a b bl[a $ 9

Problem. But how can a suffix array for R be used to create a suffix array for 17

Constructing Suffix Arrays — Overview

Shortened notation: T = fgf1...t,_1 and x = z(y) is a shorthand for x mod y = z.

o 1 2 3 4 5 6 7 8 9 10 11 Sop = suffixes with index i = 0(3)
I'= y a b b a d a b b a d © S1 = suffixes with index i = 1(3)
S» = suffixes with index i = 2(3)

CONSTRUCTSUFFIXARRAY (string T) S(T) — suffixes of T
— SufTtrixes o =

if n c 0(1) then using the idea from So yabbadabbado
: : the previous slide! S1 |abbadabbado
| construct A in O(1) time. P S, | bbadabbado
S badabbado
else J >
_ S4 adabbado
sort S1 U Ss into an array Aqs Ss | dabbado
use Ao to sort Sg into an array Ag g6 Ezb ° €O
. d o
L merge A12 with A() S; 52 @l e
Sq ado
: .. Sio0 | do
For simplicity, we assume n = 0(3). S5 | @

Step 1: Sorting S1 U S5

Shortened notation: T = fgf1...t,_1 and x = z(y) is a shorthand for x mod y = z.

Partition S71 and &» into triplets and concatenate them: So = suffixes with index i = 0(3)

R= [abb][ada][bba][do$][bba][dab][bad][0$$] S1 = suffixes with index i = 1(3)
S» = suffixes with index i = 2(3)

S(T) = suffixes of T =

Ry = [ttats][tatsto] ... = [abb] ada] [bba][do$] — go e E g : : : E Z Z‘i <
1
_ o : . S bbadabbado
Sa adabbado
Ss dabbado
Se abbado

S+ bbado
Ssg bado
Sq ado
Sio | do

511 (0]

Step 1: Sorting S1 U S5

Si<S]' = Si$<5]‘$ = Si$...<5]'$...
since the positions of the first $ symbols in the
strings Si(R) are pairwise distinct.

Shortened notation: T = fgf1...t,_1 and x = z(y) is a shorthand for x mod y = z.

Partition S71 and &» into triplets and concatenate them:

lada]
][bba]
[do$]
bba]
dab]
[bad]
059

R= [abb][

S(R)= 51(R) | [abb]]
S>(R) | [ada]
53(R) | [bba
54(R) | [do$
S5(R) | [bba]
S6(R) | [dab
S57(R) | [bad]
S8(R) | [0$9]

[ada][bba]
|[bba]
do$)]
bba]
dab]
[bad]
()]

[do$]

do$]
bba]
dab]
[bad]
059

bba]
bba]
dab]
bad]

dab]

dab]
bad]

fo$$i

bad]

[bad]

059

059

[0$%]
[0$9]

Observation. S(R) corresponds bijectively to S1 U S»

Si <> [titiv1tito][tiv3tivatips]. ..

and a sorting of S(R) corresponds to a sorting of S; U S5.

Sop = suffixes with index i = 0(3)
S1 = suffixes with index i = 1(3)
S» = suffixes with index i = 2(3)

S(T) = suffixes of T =

So yabbadabbado
Sq abbadabbado
So bbadabbado
S3 badabbado

Sa adabbado

Ss dabbado

Se abbado

S+ bbado
Ssg bado
Sq ado
Sio | do

511 (0]

Sorting S(R)

Sort the "letters” (= triplets) of R via RADIXSORT. This can be done in time

2
O(3(3n+ %)) € O(n) CONSTRUCTSUFFIXARRAY (R')

A
#digits #objects alphabet size
Replace each triplet of R by its rank — string R’ with alphabet size < %n < n.
A sorting of S(R") corresponds to a sorting of S(R) and can be obtained recursively.

R= [abb][ada][bba][do$%][bba][dab][bad][0$$] R'=12464537

Rank | triple S(R)= S1(R) | [abb][ada][bba][do$][bba][dab][bad][c$$] S(R') = Si(R') | 12464537

1 [abb S>(R) | [ada][bba][do$][bba][dab][bad][0$$] 52(R’) | 2464537

2 ada] S3(R) | [bba][do$][bba][dab][bad][0$$ S3(R’) | 464537

3 bad S4(R) | [do$][bba][dab][bad][0$$] S4(R’) | 64537

4 bbal S5(R) | [bba][dab][bad][0$$] S5(R') | 4537

5 dab Se(R) | [dab][bad][o$$] Se(R’) | 537

6 do$] S7(R) | [bad][0$$ S7(R") | 37

7 0$$ Sg(R) | [0$9] Ss(R) | 7

Rank | triple
1 [abb]
Summary of Step 1 I | [ebb
3 bad]
Full example. 4 bba]
S(T)= 5 :dab:
So | yabbadabbado 6 do$)]
S abbadabbado I 1
S; bbadabbado S(R)= S(R') = 7 033)]
2 | Dadabbade S1(R) | [abb][ada][bba][do$][bba][dab][bad][0$$] ——— Si(R') | 12464537
S e o e e S2(R) | [ada][bba][do$][bba][dab][bad][0$5] ~ <@——— S,(R') | 2464537
o el S3(R) | [bba][do$][bba][dab][bad][0$$] <«—— SR | 464537
A I Sa(R) | [do$][bba][dab][bad][0$9] <—— 5,(R) | 64537
R e S5(R) | [bba][dab][bad][0$5] <«— Sy(R) | 4537
e | s da ¥ S6(R) | [dab][bad][o$$] <«+—— 54(R) | 537
510 | do 57(R) | [bad][o$5] <— 5(R) |37
s | o o Ss(R) | [038] < 5(R) | 7
A1
1| Sy abbadabbado | Si(R) 12464537 Running time of Step 1.
2 | S24 adabbado So(R') 2464537 5
3|S bado S7(R') 37 Z1(n) = O(n) + Z(35n)
4 | S bbadabbado S5(R") 4537 _ _
5|5 bbado S3(R') 464537 where Z(n) is the time to execute
/
6|5 dabbado S6(R') 537 CONSTRUCTSUFFIXARRAY on a
4 510 do S4(R/) 64537)
8 | Su o Se(R') 7 string of length n.

Step 2: Sorting Sy

Shortened notation: T = fgf1...t,_1 and x = z(y) is a shorthand for x mod y = z.

o 1 2 3 4 5 6 7 8 9 10 11 Sop = suffixes with index i = 0(3)
I'= y a b b a d a b b a d © S1 = suffixes with index i = 1(3)
_ S» = suffixes with index i = 2(3)
Each S; € Sp can be written as (£;,S;11) s.t. Sj11 € S1.
) _ _ S(T) = suffixes of T =
Observation. Let S;,5; € Sg. Then S; < S; if and only if So |yabbadabbado
Wi <tjor S |abbadabbado

1 , , So bbadabbado

Sa adabbado

= S, can be sorted by sorting all tuples (t;, S;;1) with S: | dabbado
i = 0(3). This can be done via RADIXSORT in O(n) S¢ | abbado
. S7 bbado
time since the ordering of the entries in &7 is already e | b
u n [n 8 a d O
implicit in Aqo. Sg | ado
Sio0 | do

511 (0]

20 -

Step 3: Merging A1> and Ay

Shortened notation: T = fgf1...t,_1 and x = z(y) is a shorthand for x mod y = z.

o 1 2 3 4 5 6 7 8 9 10 11 Sop = suffixes with index i = 0(3)
I'= y a b b a d a b b a d © S1 = suffixes with index i = 1(3)
_ S» = suffixes with index i = 2(3)
Each S; € Sp can be written as (t;,S;11) s.t. Sj11 € 51

and as (t;,t;11,Si12) s.t. Sjio € 5o

Observation. Let S; € Sy. Since the ordering of S1 U Sy is
W let5; € S1. Then §; < 5; it and only if already implicit in A1, we can
m ot <t or perform these comparisons in O(1)

m = t]' and S;1 < S]'+1 where S]'+1 € Sy. time.
B Let S] € S>. Then §; < S] if and only if

mf< tj; or

Bt =tjand t;j 1 <fjq;0r

Bt = t]'t]'+1 and S;1o < S]'+2 where S]'+2 c Sy.

= A1 and Ag can be merged as
in MERGESORT to obtain A.

Construction of Suffix Arrays — Summary

CONSTRUCTSUFFIXARRAY (string T)

if n € O(1) then
| construct A in O(1) time.
Runtime of each step:

else
sort S1 U Ss into an array Aqs O(n) + Z(%n)
use A1 to sort Sp into an array Ag O(n)
- merge Aqp with Ag O(n)

Total running time:

O(1), if n. = O(1)

Z(n) = < O(n) + Z(gn), otherwise

\

3
Master;heorem Z(n) c O(Tl)

22 -

Summary and Discussion

Let T be a string over an alphabet X where n = |T|.

Lemma. A suffix array for T can be used to compute an LCP (“longest common

prefix”)

array and a suffix tree of T in O(n) time.

Theorem. A suffix tree for T can computed in O(n) time and space. It can be used
to answer STRING MATCHING queries of length m in O(mlog |%| 4 k) time.

Theorem. A suffix array for T can computed in O(n) time and space. It can be used
to answer STRING MATCHING queries of length m in O(mlogn + k) time.

Remark. The suffix array is a simpler and more compact alternative to the suffix tree.

The suf
B Find

ix tree (and the suffix array + LCP array) have several additional applications:
Ing the longest repeated substring.

B Finc
H ..

ing the longest common substring of two strings.

23

Literature and References

The content of this presentation is based on Dorothea Wagner's slides for a lecture

on “String-Matching: Suffixbdume" as part of the course “Algorithmen |1” held at
KIT WS 13/14. Most figures and examples were taken from these slides.

|iterature:

B Simple Linear Work Suffix Array Construction. Karkkainen and Sanders, ICALP'03

B Optimal suffix tree construction with large alphabets. Farach, FOCS'97

B Algorithms on Strings, Trees and Sequences: Computer Science and
Computational Biology. Gusfield, 1999, Cambridge University Press

	The "Ctrl+F" problem
	Notation
	Algorithmic Complexity
	Suffix Trees (I)
	Suffix Trees (II)
	Suffix Trees (III)
	Searching in Suffix Trees
	Constructing Suffix Trees
	Suffix Arrays
	Searching in Suffix Arrays
	Constructing Suffix Arrays -- First Attempt
	Constructing Suffix Arrays -- Overview
	Step 1: Sorting $\mathcal S_1\cup \mathcal S_2$
	Sorting $\mathcal S(R)$
	Summary of Step 1
	Step 2: Sorting $\mathcal S_0$
	Step 3: Merging A_{12} and A_0
	Construction of Suffix Arrays -- Summary
	Summary and Discussion
	Literature and References

