Advanced Algorithms

The "Ctrl+F"Problem

String Matching

Input: Strings T (text) and P (pattern) over an alphabet Σ s.t. $|P|,|\Sigma| \leq|T|$. Task: Find all occurrences of P in T.

Example:

$$
\begin{array}{lc}
\Sigma=\{\mathrm{a}, \mathrm{~b}, \mathrm{c}\} & P=\mathrm{cbc} \\
\text { occurs in } T \text { at positions 1, } 7 \text {, and } 9 .
\end{array}
$$

Applications:

- Searching a text document / e-book.
- Searching a particular pattern in a DNA sequence.

■ Internet search engines: determine whether a page is relavent to the user query.

Notation

We assume T and P to be encoded as arrays with $n=|T|$ entries $T[1], T[2], \ldots, T[n]$ and $m=|P|$ entries $P[1], P[2], \ldots, P[m]$, respectively.
$T[i, j]$ with $1 \leq i \leq j \leq n$ denotes the substring of T formed by $T[i], T[i+1], \ldots, T[j]$. Each substring $T[i, j]$ is called an infix of T. If $i=1$, then $T[i, j]$ is also called prefix of T. If $j=n$, then $T[i, j]$ is also called suffix of T.

Algorithmic Complexity

Occurrences of (prefixes of) P may overlap.
\Rightarrow A simple left-to-right traversal of T is not sufficient to find all occurrences of P !

Observation. String Matching can be solved in $\mathcal{O}(n m)$ time.
Theorem. String Matching can be solved in $\mathcal{O}(n+m)$ time, and this time bound is optimal.
[Knuth, Morris, Pratt'77]
Often, many queries $P_{1}, P_{2}, P_{3}, \ldots$ are performed on the same text T.
Our goal: Design a data structure to store T such that each query P_{i} can be answered in time independent of n.
We will see two such data structures: suffix trees and suffix arrays.

Suffix Trees (I)

$T=\mathrm{abcababca}$

Idea: Represent T as a search tree.
A \sum-tree is a rooted tree $S=(V, E)$ whose edges are labeled with strings over Σ such that for each $v \in V$

- the labels of the edges that lead to the children of v start with pairwise distinct elements of Σ;
\square if v is not the root, then v has $\neq 1$ children.
Notation:
$\square \bar{v}=$ concatenation of the labels encountered on the path from the root to v;
$\square d(v)=|\bar{v}|$ is the string depth of v;
$\square S$ contains a string α if there is a $v \in V$ and a (maybe empty) string β such that $\bar{v}=\alpha \beta$;
■ words $(S)=$ set of all strings contained in S.

$$
\bar{v}=b a b c a
$$

$$
d(v)=|\bar{v}|=5
$$

S contains $\alpha=\mathrm{b}$ a b since there is a $v \in V$ with $\bar{v}=\alpha \beta$ (where $\beta=\mathrm{c}$ a).

Suffix Trees (II)

A suffix tree S of T is a Σ-tree that contains exactly the infixes of T, that is, $\operatorname{words}(S)=\{T[i, j] \mid 1 \leq i \leq j \leq n\}$.
Lemma. For each leaf v of S, the infix \bar{v} is a suffix of T.
Proof. Denote $\bar{v}=T[i, j]$ and assume $j<n$.
\bar{v} is a prefix of $T[i, n]$. Let u be a vertex such that $T[i, n]$ is a prefix of \bar{u}.
\Rightarrow The path from the root to v is a subpath of the path from the root to u.
$\Rightarrow v$ is not a leaf; a contradiction.

Suffix Trees (II)

A suffix tree S of T is a Σ-tree that contains exactly the infixes of T, that is, $\operatorname{words}(S)=\{T[i, j] \mid 1 \leq i \leq j \leq n\}$.
Lemma. For each leaf v of S, the infix \bar{v} is a suffix of T.
Remark. The converse is not true since a suffix can be a prefix of another suffix.
Fix: Append a symbol $\$ \notin \Sigma$ to $T \Rightarrow$ the leaves correspond bijectively to the suffixes.

Suffix Trees (II)

A suffix tree S of T is a Σ-tree that contains exactly the infixes of T, that is, $\operatorname{words}(S)=\{T[i, j] \mid 1 \leq i \leq j \leq n\}$.
Lemma. For each leaf v of S, the infix \bar{v} is a suffix of T.
Remark. The converse is not true
Fix: Append a symbol $\$ \notin \Sigma$ to $T \Rightarrow$ the leaves correspond bijectively to the suffixes.

Suffix Trees (III)

Implementation details:

\square Each edge is labeled with an infix $T[i, j]$. It suffices to store the indices i and j. $\Rightarrow S$ requires $\mathcal{O}(n)$ space since $\#$ leaves $=\#$ suffixes $=n$.

- At each vertex v with k children, the edges leading to these children are stored in an array of length k sorted by the first letter of their labels.

\rightarrow allows for binary search!

Searching in Suffix Trees

$$
T=\mathrm{a} b \mathrm{c} a \mathrm{~b} \mathrm{a} \mathrm{~b} \mathrm{c} \mathrm{a}
$$

SEARCh (suffix tree S, string P)
$u \leftarrow$ root of S
$i \leftarrow 1$
while u is not a leaf do
Search edge $e=(u, v)$ whose label B starts with $P[i]$.
if e does not exist then
L return "no match"
Compare B with $P[i, m]$ if $P[i, m]$ is prefix of B then
return the indices of all leaves in the subtree rooted at v else if $P[i, j]=B$ for some $j<m$ then
$i \leftarrow j+1$
$u \leftarrow v$
else
return "no match"
return "no match"

match	partial match	$\begin{aligned} & \text { no } \\ & \text { match } \end{aligned}$									
$B \square \square \square \square$	$B \square \square$	$B \square \square$									
\|						\|			\|	$11 \\|$ H	
$P \square \square$	$P \square \square \square$	$P \square$									
$i \quad m$	$i \quad j \quad m$	i									

Beispiel: $P=\begin{array}{lll}a & b & c \\ 1 & 2 & 3\end{array}$
$\stackrel{\uparrow}{i}$

Searching in Suffix Trees

SEARCH(suffix tree S, string P)
$u \leftarrow$ root of S
$i \leftarrow 1$
while u is not a leaf do
Search edge $e=(u, v)$ whose label B starts with $P[i] . \mathcal{O}(\log |\Sigma|)$ if e does not exist then
L return "no match"
Compare B with $P[i, m]$
m comparisons in total if $P[i, m]$ is prefix of B then
return the indices of all leaves in the subtree rooted at v
else if $P[i, j]=B$ for some $j<m$ then
$i \leftarrow j+1$
$u \leftarrow v$
return "no match"
else
return "no match"
This is a parameterized, output-sensitive algorithm!

Beispiel: $P=\begin{array}{lll}a & b & c \\ 1 & 2 & 3\end{array}$

Correctness. Each occurrence of P is a prefix of exactly one suffix of T. We report all suffixes with P as a prefix.
Runtime. $\quad \mathcal{O}(m \log |\Sigma|+k)$, where k is the number of leaves in the subtree rooted at v.

Constructing Suffix Trees

Task. Given a string T with $n=|T|$ over alphabet Σ, construct a suffix tree S for T. Idea. Construct Σ-trees $N_{1}, N_{2}, \ldots, N_{n}$ s.t. N_{i} contains the suffixes $S_{1}, S_{2}, \ldots, S_{i}$. Initialization. N_{1} consists of a single edge labeled S_{1}.
Constructing N_{i+1} from N_{i}. Search the longest prefix P of S_{i+1} contained in N_{i}.
Case 1. P ends in the middle of an edge e. Subdivide e and attach a new edge.
Case 2. P ends at a vertex v. Attach a new edge, then re-sort the neighbors of v.

Running time.

$$
\mathcal{O}(\underbrace{((n-1)+(n-2)+\cdots+1) \log |\Sigma|}_{\text {searching } P}+n|\Sigma|) \subseteq \mathcal{O}\left(n^{2} \log |\Sigma|\right)
$$

Constructing Suffix Trees

Task. Given a string T with $n=|T|$ over alphabet Σ, construct a suffix tree S for T. Idea. Construct Σ-trees $N_{1}, N_{2}, \ldots, N_{n}$ s.t. N_{i} contains the suffixes $S_{1}, S_{2}, \ldots, S_{i}$. Initialization. N_{1} consists of a single edge labeled S_{1}.
Constructing N_{i+1} from N_{i}. Search the longest prefix P of S_{i+1} contained in N_{i}.
Case 1. P ends in the middle of an edge e. Subdivide e and attach a new edge.
Case 2. P ends at a vertex v. Attach a new edge, then re-sort the neighbors of v.

Running time.

$$
\mathcal{O}(((n-1)+(n-2)+\cdots+1) \log |\Sigma|+n|\Sigma|) \subseteq \mathcal{O}\left(n^{2} \log |\Sigma|\right)
$$

It is possible to construct suffix trees in $\mathcal{O}(n)$ time, either

- directly, e.g., with an algorithm by Farach (1997); or
\square indirectly, by first constructing a suffix array, e.g., with an algorithm by Kärkkäinen and Sanders (2003).

Suffix Arrays

$$
T=a b c a b a b c a \mathbb{R}
$$

A suffix array A of a text T with $n=|T|$ stores a permutation of the indices $\{1,2, \ldots, n\}$
s.t. $S_{A[i]}$ is the i-th suffix of T in lexicographical order.

$$
S_{A[i-1]}<S_{A[i]} \text { for each } 1<i \leq n
$$

Convention. $\mathbb{\$}$ is the smallest letter.

Properties.

- The entries of A correspond to a lexicographical sorting of the suffixes of T.
- The entries of A corresponds to the order in which the leaves of a suffix tree S of T are encoutered by a DFS that chooses the next edge according to the lexicographical order.

Searching in Suffix Arrays

Observation. The occurrences of a pattern P in T form an interval in A.
Idea. Find the left and the right boundary of the interval via two binary searches. Report all entries in the interval!

FindLeftBoundary (suffix array A, string P)

```
    \ell\leftarrow1// left index of candidates
    r\leftarrowA.length // right index of candidates
while \ell<r do
    i\leftarrow\ell+\lfloor(r-\ell)/2\rfloor
    if P> S A[i]}[1,m] the
                \ell<i+1// continue with right half
        else
            r\leftarrowi// continue with left half
if P is no prefix of }A[\ell]\mathrm{ then
    return "no match"
```

return ℓ

Searching in Suffix Arrays

Observation. The occurrences of a pattern P in T form an interval in A.
Idea. Find the left and the right boundary of the interval via two binary searches. Report all entries in the interval!

$$
T=a b c a b a b c a \$
$$

FindRightBoundary (suffix array A, string P)
$\ell \leftarrow 1 / /$ left index of candidates
$r \leftarrow A$.length // right index of candidates
while $r>\ell$ do
$i \leftarrow \ell+\lceil(r-\ell) / 2\rceil$
if $P<S_{A[i]}[1, m]$ then
$r \leftarrow i-1 / /$ continue with left half
else
L $\ell \leftarrow i / /$ continue with right half

$$
\begin{aligned}
& P=a b
\end{aligned}
$$

if P is no prefix of $A[r]$ then return "no match"
return r
Each lexicographic comparison can be done in $\mathcal{O}(m)$ time.
\Rightarrow The k occurrences of P can be found in $\mathcal{O}(m \log n+k)$ time.

Constructing Suffix Arrays - First Attempt

Task. Given a string T with $n=|T|$ over alphabet Σ, construct a suffix array A for T. Idea.

- If $n \in \mathcal{O}(1)$, then use brute-force.
\square Otherwise, dissect T into triplets.
■ Interpret the triplets as letters over an alphabet $\Sigma^{\prime} \subseteq \Sigma^{3}$.
\square Interpret T as a string R over Σ^{\prime} with $|R|=\lceil n / 3\rceil$.
■ Recurse!

$$
R=\left[\begin{array}{lll}
\mathrm{y} & \mathrm{a} & \mathrm{~b}
\end{array}\right]\left[\begin{array}{lll}
\mathrm{b} & \mathrm{a} & \mathrm{~d}
\end{array}\right]\left[\begin{array}{lll}
\mathrm{a} & \mathrm{~b} & \mathrm{~b}
\end{array}\right]\left[\begin{array}{lll}
\mathrm{a} & \mathbb{\$} & \$
\end{array}\right]
$$

Problem. But how can a suffix array for R be used to create a suffix array for T ?

Constructing Suffix Arrays - Overview

Shortened notation: $T=t_{0} t_{1} \ldots t_{n-1}$ and $x \equiv z(y)$ is a shorthand for $x \bmod y=z$.

$$
T=\begin{array}{llllllllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\mathrm{y} & \mathrm{a} & \mathrm{~b} & \mathrm{~b} & \mathrm{a} & \mathrm{~d} & \mathrm{a} & \mathrm{~b} & \mathrm{~b} & \mathrm{a} & \mathrm{~d} & \mathrm{o}
\end{array}
$$

ConstructSuffixArray (string T)
if $n \in \mathcal{O}(1)$ then
construct A in $\mathcal{O}(1)$ time.
else
sort $\mathcal{S}_{1} \cup \mathcal{S}_{2}$ into an array A_{12} use A_{12} to sort \mathcal{S}_{0} into an array A_{0} merge A_{12} with A_{0}

For simplicity, we assume $n \equiv 0(3)$.
$\mathcal{S}_{0}=$ suffixes with index $i \equiv 0(3)$
$\mathcal{S}_{1}=$ suffixes with index $i \equiv 1$ (3)
$\mathcal{S}_{2}=$ suffixes with index $i \equiv 2(3)$
$\mathcal{S}(T)=$ suffixes of $T=$

| S_{0} | y a b b a d a b b a d o |
| :--- | :--- | :--- |
| S_{1} | a b b a d a b b a d o |
| S_{2} | b b a d a b b a do o |
| S_{3} | b a d a b b a d o |
| S_{4} | a d a b b b a do o |
| S_{5} | d a b b a d o |
| S_{6} | a b b a d o |
| S_{7} | b b a d o |
| S_{8} | b a d o |
| S_{9} | a d o |
| S_{10} | do o |
| S_{11} | o |

Step 1: Sorting $\mathcal{S}_{1} \cup \mathcal{S}_{2}$

Shortened notation: $T=t_{0} t_{1} \ldots t_{n-1}$ and $x \equiv z(y)$ is a shorthand for $x \bmod y=z$.

Partition \mathcal{S}_{1} and \mathcal{S}_{2} into triplets and concatenate them:

$$
\mathcal{S}_{0}=\text { suffixes with index } i \equiv 0(3)
$$

$$
R=[\mathrm{abb}][\mathrm{ada}][\mathrm{bba}][\mathrm{do} \$][\mathrm{bba}][\mathrm{dab}][\mathrm{bad}][\mathrm{O} \$ \$]
$$

$$
\mathcal{S}_{1}=\text { suffixes with index } i \equiv 1(3)
$$

$$
\mathcal{S}_{2}=\text { suffixes with index } i \equiv 2(3)
$$

$\mathcal{S}(T)=$ suffixes of $T=$

Step 1: Sorting $\mathcal{S}_{1} \cup \mathcal{S}_{2}$

$S_{i}<S_{j} \Leftrightarrow S_{i} \$<S_{j} \$ \Leftrightarrow S_{i} \$ \ldots<S_{j} \$$ since the positions of the first $\$$ symbols in the strings $S_{k}(R)$ are pairwise distinct.

Shortened notation: $T=t_{0} t_{1} \ldots t_{n-1}$ and $x \equiv z(y)$ is a shorthand for $x \bmod y=z$.

Partition \mathcal{S}_{1} and \mathcal{S}_{2} into triplets and concatenate them:
$R=$ [abb][ada][bba][do\$][bba][dab][bad][o\$\$]
$\mathcal{S}(R)=S_{1}(R) \mid[a b b][a d a][\mathrm{bba}][\mathrm{do} \mathrm{\$]}[\mathrm{bba}][\mathrm{dab}][\mathrm{bad}][\mathrm{o} \$ \$]$ $S_{2}(R) \quad$ [ada][bba][do\$][bba][dab][bad][o\$\$] $S_{3}(R) \quad[\mathrm{bba}][\mathrm{do} \$][\mathrm{bba}][\mathrm{dab}][\mathrm{bad}][\mathrm{o} \$ \$]$ $S_{4}(R) \quad[\mathrm{do} \$][\mathrm{bba}][\mathrm{dab}][\mathrm{bad}][\mathrm{o} \$ \$]$
$S_{5}(R) \quad$ [bba][dab][bad][o\$\$]
$S_{6}(R) \quad$ [dab][bad][0\$\$]
$S_{7}(R) \quad[b a d][0 \$ \$]$ $S_{8}(R)$ [0\$\$]

Observation. $\mathcal{S}(R)$ corresponds bijectively to $\mathcal{S}_{1} \cup \mathcal{S}_{2}$

$$
S_{i} \leftrightarrow\left[t_{i} t_{i+1} t_{i+2}\right]\left[t_{i+3} t_{i+4} t_{i+5}\right] \ldots
$$

and a sorting of $\mathcal{S}(R)$ corresponds to a sorting of $\mathcal{S}_{1} \cup \mathcal{S}_{2}$.
$\mathcal{S}_{0}=$ suffixes with index $i \equiv 0(3)$
$\mathcal{S}_{1}=$ suffixes with index $i \equiv 1$ (3)
$\mathcal{S}_{2}=$ suffixes with index $i \equiv 2(3)$
$\mathcal{S}(T)=$ suffixes of $T=$

S_{0}	y a b b a d a b b a d o
S_{1}	a b b a d a b b a d o
S_{2}	b b a d a b b a d o
S_{3}	b a d a b b a d o
S_{4}	a d a b b a d o
S_{5}	d a b b a d o
S_{6}	a b b a d o
S_{7}	b b a d o
S_{8}	b a d o
S_{9}	a d o
S_{10}	d o
S_{11}	o

Sorting $\mathcal{S}(R)$

Sort the "letters" (= triplets) of R via RADIXSORT. This can be done in time

Replace each triplet of R by its rank \rightarrow string R^{\prime} with alphabet size $\leq \frac{2}{3} n \leq n$.
A sorting of $\mathcal{S}\left(R^{\prime}\right)$ corresponds to a sorting of $\mathcal{S}(R)$ and can be obtained recursively.

$$
R=[\mathrm{abb}][\mathrm{ada}][\mathrm{bba}][\mathrm{do} \$][\mathrm{bba}][\mathrm{dab}][\mathrm{bad}][\mathrm{o} \$ \$]
$$

$$
R^{\prime}=12464537
$$

Rank	triple	$\mathcal{S}(R)=S_{1}(R)$	[abb][ada][bba][do\$][bba][dab][bad][o\$\$]	$\mathcal{S}\left(R^{\prime}\right)=S_{1}\left(R^{\prime}\right)$	12464537
1	[abb]	$S_{2}(R)$	[ada][bba][do\$][bba][dab][bad][o\$\$]	$S_{2}\left(R^{\prime}\right)$	2464537
2	[ada]	$S_{3}(R)$	[bba][do\$][bba][dab][bad][o\$\$]	$S_{3}\left(R^{\prime}\right)$	464537
3	[bad]	$S_{4}(R)$	[do\$][bba][dab][bad][o\$\$]	$S_{4}\left(R^{\prime}\right)$	64537
4	[bba]	$S_{5}(R)$	[bba][dab][bad][0\$\$]	$S_{5}\left(R^{\prime}\right)$	4537
5	[dab]	$S_{6}(R)$	[dab][bad][0\$\$]	$S_{6}\left(R^{\prime}\right)$	537
6	[do\$]	$S_{7}(R)$	[bad][0\$\$]	$S_{7}\left(R^{\prime}\right)$	37
7	[0\$\$]	$S_{8}(R)$	[0\$\$]	$S_{8}\left(R^{\prime}\right)$	7

Summary of Step 1

Full example.

A_{12}

1	S_{1}	$a b b a d a b b a d o$	$S_{1}\left(R^{\prime}\right)$	12464537
2	S_{4}	$a d a b b a d o$	$S_{2}\left(R^{\prime}\right)$	2464537
3	S_{8}	b a do	$S_{7}\left(R^{\prime}\right)$	37
4	S_{2}	$b \mathrm{~b} a \mathrm{dab} \mathrm{b} a \mathrm{do}$	$S_{5}\left(R^{\prime}\right)$	4537
5	S_{7}	b bado	$S_{3}\left(R^{\prime}\right)$	464537
6	S_{5}	dabbado	$S_{6}\left(R^{\prime}\right)$	537
7	S_{10}	do	$S_{4}\left(R^{\prime}\right)$	64537
8	S_{11}	-	$S_{8}\left(R^{\prime}\right)$	7

Running time of Step 1.

$$
Z_{1}(n)=\mathcal{O}(n)+Z\left(\frac{2}{3} n\right)
$$

where $Z(n)$ is the time to execute ConstructSuffixArray on a string of length n.

Step 2: Sorting \mathcal{S}_{0}

Shortened notation: $T=t_{0} t_{1} \ldots t_{n-1}$ and $x \equiv z(y)$ is a shorthand for $x \bmod y=z$.

$$
T=\begin{array}{llllllllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\mathrm{y} & \mathrm{a} & \mathrm{~b} & \mathrm{~b} & \mathrm{a} & \mathrm{~d} & \mathrm{a} & \mathrm{~b} & \mathrm{~b} & \mathrm{a} & \mathrm{~d} & \mathrm{o}
\end{array}
$$

Each $S_{i} \in \mathcal{S}_{0}$ can be written as $\left(t_{i}, S_{i+1}\right)$ s.t. $S_{i+1} \in \mathcal{S}_{1}$.
Observation. Let $S_{i}, S_{j} \in \mathcal{S}_{0}$. Then $S_{i}<S_{j}$ if and only if - $t_{i}<t_{j}$; or - $t_{i}=t_{j}$ and $S_{i+1}<S_{j+1}$.
$\Rightarrow \mathcal{S}_{0}$ can be sorted by sorting all tuples $\left(t_{i}, S_{i+1}\right)$ with $i \equiv 0(3)$. This can be done via RadixSort in $\mathcal{O}(n)$ time since the ordering of the entries in \mathcal{S}_{1} is already implicit in A_{12}.
$\mathcal{S}_{0}=$ suffixes with index $i \equiv 0(3)$
$\mathcal{S}_{1}=$ suffixes with index $i \equiv 1(3)$
$\mathcal{S}_{2}=$ suffixes with index $i \equiv 2(3)$
$\mathcal{S}(T)=$ suffixes of $T=$

S_{0}	y a b b a d a b b a do o
S_{1}	a b b a d a b b a d o
S_{2}	b b a d a b b a do o
S_{3}	b a d a b b a d o
S_{4}	a d a a b b a d o
S_{5}	d a b b a d o
S_{6}	a b b a d o
S_{7}	b b a d o
S_{8}	b a d o
S_{9}	a d o
S_{10}	doo
S_{11}	o

Step 3: Merging A_{12} and A_{0}

Shortened notation: $T=t_{0} t_{1} \ldots t_{n-1}$ and $x \equiv z(y)$ is a shorthand for $x \bmod y=z$.

$$
T=\begin{array}{llllllllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\mathrm{y} & \mathrm{a} & \mathrm{~b} & \mathrm{~b} & \mathrm{a} & \mathrm{~d} & \mathrm{a} & \mathrm{~b} & \mathrm{~b} & \mathrm{a} & \mathrm{~d} & \mathrm{o}
\end{array}
$$

Each $S_{i} \in \mathcal{S}_{0}$ can be written as $\left(t_{i}, S_{i+1}\right)$ s.t. $S_{i+1} \in \mathcal{S}_{1}$
$\mathcal{S}_{0}=$ suffixes with index $i \equiv 0(3)$
$\mathcal{S}_{1}=$ suffixes with index $i \equiv 1$ (3)
$\mathcal{S}_{2}=$ suffixes with index $i \equiv 2(3)$ and as $\left(t_{i}, t_{i+1}, S_{i+2}\right)$ s.t. $S_{i+2} \in \mathcal{S}_{2}$.

Observation. Let $S_{i} \in \mathcal{S}_{0}$.
\square Let $S_{j} \in \mathcal{S}_{1}$. Then $S_{i}<S_{j}$ if and only if

- $t_{i}<t_{j}$; or
- $t_{i}=t_{j}$ and $S_{i+1}<S_{j+1}$ where $S_{j+1} \in \mathcal{S}_{2}$.
- Let $S_{j} \in \mathcal{S}_{2}$. Then $S_{i}<S_{j}$ if and only if
- $t_{i}<t_{j}$; or
- $t_{i}=t_{j}$ and $t_{i+1}<t_{j+1}$; or
- $t_{i} t_{i+1}=t_{j} t_{j+1}$ and $S_{i+2}<S_{j+2}$ where $S_{j+2} \in \mathcal{S}_{1}$.

Construction of Suffix Arrays - Summary

Construct SuffixArray (string T)
if $n \in \mathcal{O}(1)$ then
construct A in $\mathcal{O}(1)$ time.
else
Runtime of each step:
sort $\mathcal{S}_{1} \cup \mathcal{S}_{2}$ into an array A_{12}
$\mathcal{O}(n)+Z\left(\frac{2}{3} n\right)$
use A_{12} to sort \mathcal{S}_{0} into an array A_{0} merge A_{12} with A_{0}
$\mathcal{O}(n)$

Total running time:

$$
Z(n)= \begin{cases}\mathcal{O}(1), & \text { if } n=\mathcal{O}(1) \\ \mathcal{O}(n)+Z\left(\frac{2}{3} n\right), & \text { otherwise }\end{cases}
$$

Master Theorem

$$
Z(n) \in \mathcal{O}(n)
$$

Summary and Discussion

Let T be a string over an alphabet Σ where $n=|T|$.
Lemma. A suffix array for T can be used to compute an LCP ("longest common prefix") array and a suffix tree of T in $\mathcal{O}(n)$ time.

Theorem. A suffix tree for T can computed in $\mathcal{O}(n)$ time and space. It can be used to answer String Matching queries of length m in $\mathcal{O}(m \log |\Sigma|+k)$ time.
Theorem. A suffix array for T can computed in $\mathcal{O}(n)$ time and space. It can be used to answer String Matching queries of length m in $\mathcal{O}(m \log n+k)$ time.
Remark. The suffix array is a simpler and more compact alternative to the suffix tree.
The suffix tree (and the suffix array + LCP array) have several additional applications:

- Finding the longest repeated substring.

■ Finding the longest common substring of two strings.

Literature and References

The content of this presentation is based on Dorothea Wagner's slides for a lecture on "String-Matching: Suffixbäume" as part of the course "Algorithmen II" held at KIT WS 13/14. Most figures and examples were taken from these slides.

Literature:
■ Simple Linear Work Suffix Array Construction. Kärkkäinen and Sanders, ICALP'03

- Optimal suffix tree construction with large alphabets. Farach, FOCS'97

■ Algorithms on Strings, Trees and Sequences: Computer Science and Computational Biology. Gusfield, 1999, Cambridge University Press

