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The “Ctrl+F" Problem

STRING MATCHING
Input: Strings T (text) and P (pattern) over an alphabet ¥ s.t. |P|, |[Z| < |T|.

Task: Find all occurrences of Pin T.



The “Ctrl+F" Problem

STRING MATCHING
Input: Strings T (text) and P (pattern) over an alphabet ¥ s.t. |P|, |[Z| < |T|.

Task: Find all occurrences of Pin T.

Example:

Y. = {a,b,c} P = cbc T=cbccabcbcbcach

1 @ B @ ) (6 () () (9) (10) (11) (12) (13) (14)



The “Ctrl+F" Problem

STRING MATCHING

Input: Strings T (text) and P (pattern) over an alphabet ¥ s.t. |P|, |[Z| < |T|.

Task: Find all occurrences of Pin T.

Example:
Y. = {a,b,c} P = cbc

P occurs in T at positions 1, 7, and 9.
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The “Ctrl+F" Problem

STRING MATCHING
Input: Strings T (text) and P (pattern) over an alphabet ¥ s.t. |P|, |[Z| < |T|.

Task: Find all occurrences of Pin T.

Example:
Y. = {a,b,c} P = cbc T=1[cbclcabfcbhecbcachb
M @ @@ 6 6@ 6 O a2 )
P occurs in T at positions 1, 7, and 9. c bc c bc
T T c bc
A
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Applications:

B Searching a text document / e-book.
B Searching a particular pattern in a DNA sequence.
B Internet search engines: determine whether a page is relavent to the user query.



Notation

We assume T and P to be encoded as arrays with n = |T| entries T|1|, T|2],...,
and m = |P| entries P|1], P|2],..., P|m]|, respectively.
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T|i,j| with 1 <i < j < n denotes the substring of T formed by T|i|, T|i +1],...,
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Each substring T|i, j] is called an infix of T.

T=|c b c
1 @ @)

Infix

C d
4) (5)

b c blc blc a ¢ b

(6) (7) (8) (9) (10)|(11) (12) (13) (14)

Infix Infix



Notation

We assume T and P to be encoded as arrays with n = |T| entries T[1], T|2], ..., T|n]

and m = |P| entries P|1], P|2],..., P|m]|, respectively.

T3] T[6, 11]

T= c blc|lc alb e b cbclacb
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T|i,j] with 1 <i < j < n denotes the substring of T formed by T|i], T|i + 1]

Each substring T|i, j] is called an infix of T.
If i =1, then T|i, ] is also called prefix of T.
If | = n, then T|[i, j] is also called suffix of T.

prefix suffix

T=1|c b c|lc alb ¢c blc blc a ¢ b
W @ @@ G| @ @] © @)|ay @2 @3) 1)

Infix Infix Infix



Algorithmic Complexity

Occurrences of (prefixes of ) P may overlap.
= A simple left-to-right traversal of T is not sufficient to find all occurrences of P!
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Algorithmic Complexity

Occurrences of (prefixes of ) P may overlap.

= A simple left-to-right traversal of T is not sufficient to find all occurrences of P!
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Observation. STRING MATCHING can be solved in O(nm) time.

Theorem. STRING MATCHING can be solved in O(n + m) time, and this time bound

Is optimal.

[Knuth, Morris, Pratt'77]

Often, many queries Py1, P>, P3, ... are performed on the same text T.

Our goal: Design a data structure to store T such that each query P; can be

answered in time independent of n.

We will see two such data structures: suffix trees and suffix arrays.
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B if v is not the root, then v has # 1 children.
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Suffix Trees (I) T=abcababca

Idea: Represent T as a search tree.

A >-tree is a rooted tree S = (V, E) whose edges are
labeled with strings over X such that for eachv € V
B the labels of the edges that lead to the children

of v start with pairwise distinct elements of X;
B if v is not the root, then v has # 1 children.

Notation:

B 0 = concatenation of the labels encountered
on the path from the root to v;

B d(v) = |7| is the string depth of v;

B S contains a string « if there is a v € V and
a (maybe empty) string B such that 7 = af3;

B words(S) = set of all strings contained in S.

S contains «® = b a b since
thereisav € V with 0 = af
(where B = c a).
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Suffix Trees (Il)

A suffix tree S of T is a 2-tree that contains exactly the infixes of T,
that is, words(S) = {T[i,j] |1 <i<j<n}.
Lemma. For each leaf v of S, the infix ¥ is a suffix of T.

Proof. Denote 7 = T|i, j| and assume j < n.

v is a prefix of T|i,n]. Let u be a vertex such that T|i, n] is a prefix of u.

= The path from the root to v is a subpath of the path from the root to u.

= v Is not a leaf; a contradiction.
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Suffix Trees (Il)

A suffix tree S of T is a 2-tree that contains exactly the infixes of T,
that is, words(S) = {T[i,j] |1 <i<j<n}.

Lemma. For each leaf v of S, the infix ¥ is a suffix of T.
Remark. The converse is not true

Fix: Append a symbol $ € X to T = the leaves correspond bijectively to the suffixes.

Let i denote the leaf of S where i = T[i, n].

Let S; denote
B the i-th suffix T|i, n| of T;
B the path from the root of S to leaf 1.

_14



Suffix Trees (Il

Implementation details:

B Each edge is labeled with an infix T|i, j|. It suffices to store the indices i and j.
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an array of length k sorted by the first letter of their labels.




Suffix Trees (Il

Implementation details:

B Each edge is labeled with an infix T|i, j|. It suffices to store the indices i and j.
= S requires O(n) space since #leaves = #suffixes = n.

B At each vertex v with k children, the edges leading to these children are stored in
an array of length k sorted by the first letter of their labels.

— allows for binary search!




Searching in Suffix Trees

T=abcababca

SEARCH(suffix tree S, string P)
u < root of S
1+ 1
while u is not a leaf do
Search edge e = (u,v) whose label B starts with P|i].
if e does not exist then
| return “no match”
Compare B with Pli, m|
if P[i, m] is prefix of B then
|_ return the indices of all leaves in the subtree rooted at v

else if P[i,j| = B for some j < m then
Li+j+1

U<—17°

else
|_ return “no match*

Beispiel: P=a b c
123

return “no match”
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Searching in Suffix Trees

SEARCH(suffix tree S, string P)
u < root of S
1+ 1
while u is not a leaf do

if ¢ does not exist then
| return “no match”

Compare B with Pli, m|

Li+j+1
U<—10°

else
|_ return “no match*

return “no match”

if P|i, m] is prefix of B then
|_ return the indices of all leaves in the subtree rooted at v

else if P[i,j| = B for some j < m then
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Searching in Suffix Trees
T=abcababca

SEARCH(suffix tree S, string P)
¢ U
u < root of S |
1+ 1
while u is not a leaf do
Search edge e = (u,v) whose label B starts with P|i].
if e does not exist then
| return “no match”
Compare B with Pli, m|
if P|i, m] is prefix of B then
|_ return the indices of all leaves in the subtree rooted at v

else if P[i,j| = B for some j < m then

Li+j+1
U7
else )
y y partial e Beispiel: P=a b c

B |_ return “no match match match match P 123
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Searching in Suffix Trees

SEARCH(suffix tree S, string P)
u < root of S
141
while u is not a leaf do
Search edge e = (u,v) whose label B starts with P|i].

if e does not exist then
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if P|i, m] is prefix of B then
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u < root of S
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Correctness. Each occurrence of P is a prefix of exactly one suffix of T. We report all suffixes with P as a prefix.
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Search edge ¢ = (u,v) whose label B starts with P[i]. O(log |X|)

if e does not exist then
| return “no match”

Compare B with Pli, m| m comparisons in total

if P[i, m] is prefix of B then
|_ return the indices of all leaves in the subtree rooted at v

else if P[i,j| = B for some j < m then
Li+j+1
U<

else
|_ return “no match*

return “no match”

Correctness. Each occurrence of P is a prefix of exactly one suffix of T. We report all suffixes with P as a prefix.

Runtime.



Searching in Suffix Trees
T—=abcababca

SEARCH(suffix tree S, string P) 51 56
u < root of S $
1+ 1
while u is not a leaf do
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Searching in Suffix Trees
T=—abcababca

SEARCH(suffix tree S, string P) 51 s 56
i <= root of 5 < m iterations

1+ 1
while u is not a leaf do / \

Search edge ¢ = (u,v) whose label B starts with P[i]. O(log |X|)

if ¢ does not exist then
| return “no match”

Compare B with Pli, m| m comparisons in total
if P[i, m] is prefix of B then
|_ return the indices of all leaves in the subtree rooted at v

else if P[i,j| = B for some j < m then O(k) in total
Li+j+1
U<+7v
else
|_ return “no match" S
— This is a parameterized, output-sensitive algorithm! T
return “no match” ;

Correctness. Each occurrence of P is a prefix of exactly one suffix of T. We report all suffixes with P as a prefix.

Runtime.  O(mlog |%| + k), where k is the number of leaves in the subtree rooted at v.



Constructing Suffix Trees

Task. Given a string T with n = |T| over alphabet X, construct a suffix tree S for T.
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Task. Given a string T with n = |T| over alphabet X, construct a suffix tree S for T.

Idea. Construct 2-trees N1, No, ..., N, s.t. N; contains the suffixes 51, So, ..., S;.
Initialization. Ny consists of a single edge labeled S;.
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Constructing Suffix Trees

Task. Given a string T with n = |T| over alphabet X, construct a suffix tree S for T.

Idea. Construct 2-trees N1, No, ..., N, s.t. N; contains the suffixes 51, So, ..., S;.

Initialization. Ny consists of a single edge labeled S;.

Constructing N;, 1 from N;. Search the longest prefix P of S;, 1 contained in N;.
Case 1. P ends in the middle of an edge e. Subdivide e and attach a new edge.
Case 2. P ends at a vertex v. Attach a new edge, then re-sort the neighbors of v.
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Constructing Suffix Trees

Task. Given a string T with n = |T| over alphabet X, construct a suffix tree S for T.

Idea. Construct 2-trees N1, No, ..., N, s.t. N; contains the suffixes 51, S»,...,5;.

Initialization. Ny consists of a single edge labeled S;.

Constructing N;, 1 from N;. Search the longest prefix P of S;, 1 contained in N;.
Case 1. P ends in the middle of an edge e. Subdivide e and attach a new edge.
Case 2. P ends at a vertex v. Attach a new edge, then re-sort the neighbors of v.
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Next step:
Insert So = bcababcal:

B Matching ends at the root.
B — Case 2.



Constructing Suffix Trees

Task. Given a string T with n = |T| over alphabet X, construct a suffix tree S for T.

Idea. Construct 2-trees N1, No, ..., N, s.t. N; contains the suffixes 51, S»,...,5;.

Initialization. Ny consists of a single edge labeled S;.

Constructing N;, 1 from N;. Search the longest prefix P of S;, 1 contained in N;.
Case 1. P ends in the middle of an edge e. Subdivide e and attach a new edge.
Case 2. P ends at a vertex v. Attach a new edge, then re-sort the neighbors of v.
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Constructing Suffix Trees

Task. Given a string T with n = |T| over alphabet X, construct a suffix tree S for T.

Idea. Construct 2-trees N1, No, ..., N, s.t. N; contains the suffixes 51, S»,...,5;.

Initialization. Ny consists of a single edge labeled S;.

Constructing N;, 1 from N;. Search the longest prefix P of S;, 1 contained in N;.
Case 1. P ends in the middle of an edge e. Subdivide e and attach a new edge.
Case 2. P ends at a vertex v. Attach a new edge, then re-sort the neighbors of v.
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Constructing Suffix Trees

Task. Given a string T with n = |T| over alphabet X, construct a suffix tree S for T.

Idea. Construct 2-trees N1, No, ..., N, s.t. N; contains the suffixes 51, S»,...,5;.

Initialization. Ny consists of a single edge labeled S;.

Constructing N;, 1 from N;. Search the longest prefix P of S;, 1 contained in N;.
Case 1. P ends in the middle of an edge e. Subdivide e and attach a new edge.
Case 2. P ends at a vertex v. Attach a new edge, then re-sort the neighbors of v.

T=abcababca}
Ss

Next step:
Insert Ss = babca:

B Matching ends along S, after 1 symbol.
B — Case l.



Constructing Suffix Trees

Task. Given a string T with n = |T| over alphabet X, construct a suffix tree S for T.

Idea. Construct 2-trees N1, No, ..., N, s.t. N; contains the suffixes 51, S»,...,5;.

Initialization. Ny consists of a single edge labeled S;.

Constructing N;, 1 from N;. Search the longest prefix P of S;, 1 contained in N;.
Case 1. P ends in the middle of an edge e. Subdivide e and attach a new edge.
Case 2. P ends at a vertex v. Attach a new edge, then re-sort the neighbors of v.
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Next step:
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B Matching ends along 51 after 4 symbols.
B — Case l.
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Constructing Suffix Trees

Task. Given a string T with n = |T| over alphabet X, construct a suffix tree S for T.

Idea. Construct 2-trees N1, No, ..., N, s.t. N; contains the suffixes 51, S»,...,5;.

Initialization. Ny consists of a single edge labeled S;.

Constructing N;, 1 from N;. Search the longest prefix P of S;, 1 contained in N;.
Case 1. P ends in the middle of an edge e. Subdivide e and attach a new edge.
Case 2. P ends at a vertex v. Attach a new edge, then re-sort the neighbors of v.

T=abcababca}
57

Next step:
Insert S = b ca $:

B Matching ends along S, after 3 symbols.
B — Case l.
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Constructing Suffix Trees

Task. Given a string T with n = |T| over alphabet X, construct a suffix tree S for T.

Idea. Construct 2-trees N1, No, ..., N, s.t. N; contains the suffixes 51, S»,...,5;.
Initialization. Ny consists of a single edge labeled S;.
Constructing N;, 1 from N;. Search the longest prefix P of S;, 1 contained in N;.

Case 1. P ends in the middle of an edge e. Subdivide e and attach a new edge.
Case 2. P ends at a vertex v. Attach a new edge, then re-sort the neighbors of v.

T=abcababca}

Proceed similarly with
581 Sg, and 510.
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Constructing Suffix Trees

Task. Given a string T with n = |T| over alphabet X, construct a suffix tree S for T.

Idea. Construct 2-trees N1, No, ..., N, s.t. N; contains the suffixes 51, So, ..., S;.
Initialization. Ny consists of a single edge labeled S;.
Constructing N;, 1 from N;. Search the longest prefix P of S;, 1 contained in N;.

Case 1. P ends in the middle of an edge e. Subdivide e and attach a new edge.
Case 2. P ends at a vertex v. Attach a new edge, then re-sort the neighbors of v.
$
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Constructing Suffix Trees

Task. Given a string T with n = |T| over alphabet X, construct a suffix tree S for T.

Idea. Construct 2-trees N1, No, ..., N, s.t. N; contains the suffixes 51, So, ..., S;.

Initialization. Ny consists of a single edge labeled S;.

Constructing N;, 1 from N;. Search the longest prefix P of S;, 1 contained in N;.
Case 1. P ends in the middle of an edge e. Subdivide e and attach a new edge.
Case 2. P ends at a vertex v. Attach a new edge, then re-sort the neighbors of v.

Running time.
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Task. Given a string T with n = |T| over alphabet X, construct a suffix tree S for T.

Idea. Construct 2-trees N1, No, ..., N, s.t. N; contains the suffixes 51, So, ..., S;.
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Task. Given a string T with n = |T| over alphabet X, construct a suffix tree S for T.

Idea. Construct 2-trees N1, No, ..., N, s.t. N; contains the suffixes 51, So, ..., S;.

Initialization. Ny consists of a single edge labeled S;.
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Case 1. P ends in the middle of an edge e. Subdivide e and attach a new edge.
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Running time.
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Constructing Suffix Trees

Task. Given a string T with n = |T| over alphabet X, construct a suffix tree S for T.

Idea. Construct 2-trees N1, No, ..., N, s.t. N; contains the suffixes 51, So, ..., S;.

Initialization. Ny consists of a single edge labeled S;.

Constructing N;, 1 from N;. Search the longest prefix P of S;, 1 contained in N;.
Case 1. P ends in the middle of an edge e. Subdivide e and attach a new edge.
Case 2. P ends at a vertex v. Attach a new edge, then re-sort the neighbors of v.

Running time.
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searching P re-sorting neighbors of v
(via BUCKET SORT)
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Task. Given a string T with n = |T| over alphabet X, construct a suffix tree S for T.

Idea. Construct 2-trees N1, No, ..., N, s.t. N; contains the suffixes 51, So, ..., S;.

Initialization. Ny consists of a single edge labeled S;.

Constructing N;, 1 from N;. Search the longest prefix P of S;, 1 contained in N;.
Case 1. P ends in the middle of an edge e. Subdivide e and attach a new edge.
Case 2. P ends at a vertex v. Attach a new edge, then re-sort the neighbors of v.

Running time.
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Constructing Suffix Trees

Task. Given a string T with n = |T| over alphabet X, construct a suffix tree S for T.

Idea. Construct 2-trees N1, No, ..., N, s.t. N; contains the suffixes 51, So, ..., S;.

Initialization. Ny consists of a single edge labeled S;.

Constructing N;, 1 from N;. Search the longest prefix P of S;, 1 contained in N;.
Case 1. P ends in the middle of an edge e. Subdivide e and attach a new edge.
Case 2. P ends at a vertex v. Attach a new edge, then re-sort the neighbors of v.

Running time.
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searching P re-sorting neighbors of v
(via BUCKET SORT)
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Constructing Suffix Trees

Task. Given a string T with n = |T| over alphabet X, construct a suffix tree S for T.

Idea. Construct 2-trees N1, No, ..., N, s.t. N; contains the suffixes 51, So, ..., S;.

Initialization. Ny consists of a single edge labeled S;.

Constructing N;, 1 from N;. Search the longest prefix P of S;, 1 contained in N;.
Case 1. P ends in the middle of an edge e. Subdivide e and attach a new edge.
Case 2. P ends at a vertex v. Attach a new edge, then re-sort the neighbors of v.

Running time.
O(((n —1)4+(n—=2)+---+1)log|X] +n\2\) C O(n?log |Z|)

It is possible to construct suffix trees in O(n) time, either

B directly, e.g., with an algorithm by Farach (1997); or

B indirectly, by first constructing a suffix array, e.g., with an algorithm by
Karkkainen and Sanders (2003).
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Suffix Arrays I'=abcababca3

A =[109]4]6]1]5]7]2]8]3

A suffix array A of a text T with n = |T| stores a $ 22aa b bbcc

. . . a C C a d

permutation of the indices {1,2,...,n} accbaash
. . . . . a 4

s.t. 54(; is the i-th suffix of T in lexicographical order. f S b a ;’ N

™S A -

Safi—1] < Sap) foreach 1 <1 <mn é 3 5
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Suffix Arrays I'=abcababca3
A =[109]4]6]1]5]7]2]8]3

A suffix array A of a text T with n = |T| stores a $ 22aa b bbcc
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A suffix array A of a text T with n = |T| stores a

permutation of the indices {1,2,...,n}
s.t. 5,47 is the i-th suffix of T in lexicographical order.

™

Saji—1] < Spp foreach 1 <1 <mn

Convention. $ is the smallest letter.

Properties.
B The entries of A correspond to a

lexicographical sorting of the suffixes of T.
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A suffix array A of a text T with n = |T| stores a $ 22aa g Ct:) (t:) c ¢
permutation of the indices {1,2,...,n} accbaashb
s.t. SA[z’] is the i-th suffix of T in lexicographical order. ? § E a b 5 b
™~ 2 2% 25
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Convention. $ is the smallest letter.

Properties.
B The entries of A correspond to a

lexicographical sorting of the suffixes of T.
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encoutered by a DFS that chooses the next
edge according to the lexicographical order.
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Convention. $ is the smallest letter.
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which the leaves of a suffix tree S of T are
encoutered by a DFS that chooses the next
edge according to the lexicographical order.

o)



T=abcababca}
109

a

$

Suffix Arrays
A —

A suffix array A of a text T with n = |T| stores a

permutation of the indices {1,2,...,n}
s.t. 54,1 is the i-th suffix of T in lexicographical order.
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Saji—1] < Spp foreach 1 <1 <mn

Convention. $ is the smallest letter.

Properties.
B The entries of A correspond to a

lexicographical sorting of the suffixes of T.
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which the leaves of a suffix tree S of T are
encoutered by a DFS that chooses the next
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A suffix array A of a text T with n = |T| stores a

permutation of the indices {1,2,...,n}
s.t. 54,1 is the i-th suffix of T in lexicographical order.

™

Saji—1] < Spp foreach 1 <1 <mn

Convention. $ is the smallest letter.

Properties.
B The entries of A correspond to a

lexicographical sorting of the suffixes of T.
B The entries of A corresponds to the order in
which the leaves of a suffix tree S of T are
encoutered by a DFS that chooses the next
edge according to the lexicographical order.
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Searching in Suffix Arrays

Observation. The occurrences of a pattern P in T form an interval in A.

T=abcababca}
A = L09l4]6]1]5]7[2]8]3
$ aaaabbbcc
$ bbbaccaa
accbaa$gohbp
baac$b a
c$ba a b
a a$ b g

$ b c
C a $

a $

$
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eft and the right boundary of the interval via two binary searches.

T=abcababca}

A = Lo 9l4]6[1][5[7]2]8]3
$ aaaabbbcc
$ bbbaccaa
accbaa$gohbp
baac$b a
c$ba a b
a a $ b g

$ b c
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Searching in Suffix Arrays

Observation. The occurrences of a pattern P in T form an interval in A.
Idea. Find the left and the right boundary of the interval via two binary searches.

Report all entries in the interval! T—abcababca$
FINDLEFTBOUNDARY (suffix array A, string P) A = 10(9]4]6]1[5]7]2]8]3
/<1 // left index of candidates $ aaaabbbecoc
r < A.length // right index of candidates $bbbaccaa
while ¢ < 7 do accbaajghp
i 04 [(r—0)/2) beactb a
if P> SA[Z][].,TH] then a a $ b C
| < i+1// continue with right half $ (l:a g g
else a $
r<1// continue with left half $
5= P=ab
if P is no prefix of A[/] then
return “no match”

return /
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Searching in Suffix Arrays

Observation. The occurrences of a pattern P in T form an interval in A.
Idea. Find the left and the right boundary of the interval via two binary searches.

Report all entries in the interval! T—abcababca$
FINDLEFTBOUNDARY (suffix array A, string P) A = 10[9]4]6]1[5]7]2]8]3
/<1 // left index of candidates $ aaaabbbecoc
r < A.length // right index of candidates $bbbaccaa
while ¢ < 7 do acchbaasghb
i 04 [(r—0)/2) beactb a
if P> SA[z][]-'m] then a a $ b C
(< i+1// continue with right half $ (lr:) ¢ g
else a $
r<1// continue with left half $
L P=ab
if P is no prefix of A[/] then
return “no match”

return /
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Searching in Suffix Arrays

Observation. The occurrences of a pattern P in T form an interval in A.
Idea. Find the left and the right boundary of the interval via two binary searches.

Report all entries in the interval! T—abcababca$
FINDLEFTBOUNDARY (suffix array A, string P) A = 10[9]4]6]1[5]7]2]8]3
/<1 // left index of candidates $ aaaabbbecoc
r < A.length // right index of candidates $bbbaccaa
while £ < 7 do accbaajghp
i 0+ [(r—0)/2) beactb a
if P> SA[Z][].,TH] then a a $ b C
| < i+1// continue with right half $ (l:a g g
else a $
r<1// continue with left half $
5= P=ab
if P is no prefix of A[/] then
return “no match”

return /
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Searching in Suffix Arrays

Observation. The occurrences of a pattern P in T form an interval in A.
Idea. Find the left and the right boundary of the interval via two binary searches.

Report all entries in the interval! T—abcababca$
FINDRIGHTBOUNDARY (suffix array A, string P) A = 10(9]4]6]1[5]7]2]8]3
¢ <+ 1// left index of candidates $ aaaabbbcc
r < A.length // right index of candidates $bbbaccaa
while r > ¢ do gggbgz$b
i< L+ [(r—20)/2] 2 s bg : E
if P< SA[Z][].,TH] then a a $ b C
r<1—1// continue with left half $ b g g
— C
else g $
¢ <+ i // continue with right half
| b © P=ab
if P is no prefix of A[r| then
| return “no match”

return r



Searching in Suffix Arrays

Observation. The occurrences of a pattern P in T form an interval in A.
Idea. Find the left and the right boundary of the interval via two binary searches.

Report all entries in the interval!

FINDRIGHTBOUNDARY (suffix array A, string P)

¢ <1 // left index of candidates

r <— A.length // right index of candidates
while » > 7 do

i+ [(r—12)/2]

if P< SA[i] [1, m] then

r<1—1// continue with left half

else
¢ < i// continue with right half

if P is no prefix of A[r| then
return “no match”

return r

T=abcababca}

A = [g94]6[1]5[7]2]8]3
$ aaaabbbcc
$ bbbaccaa
accbaa$gohbp
baac$b a
C$ba a b
a a$ b g
$ b ¢
C a $
a $
$
P=ab

N Each lexicographic comparison can be done in O( ) time.
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Searching in Suffix Arrays

Observation. The occurrences of a pattern P in T form an interval in A.
Idea. Find the left and the right boundary of the interval via two binary searches.

Report all entries in the interval!

FINDRIGHTBOUNDARY (suffix array A, string P)

¢ <1 // left index of candidates

r <— A.length // right index of candidates
while » > 7 do

i+ [(r—12)/2]

if P< SA[i] [1, m] then

r<1—1// continue with left half

else
¢ < i// continue with right half

if P is no prefix of A[r| then
return “no match”

return r

T=abcababca}

A = [g94]6[1]5[7]2]8]3
$ aaaabbbcc
$ bbbaccaa
accbaa$gohbp
baac$b a
C$ba a b
a a$ b g
$ b ¢
C a $
a $
$
P=ab

N Each lexicographic comparison can be done in O(m) time.
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Searching in Suffix Arrays

Observation. The occurrences of a pattern P in T form an interval in A.

Idea. Find the

eft and the right boundary of the interval via two binary searches.

Report all entries in the interval! T—abcababca$
FINDRIGHTBOUNDARY (suffix array A, string P) A = 10(9]4]6]1[5]7]2]8]3
¢ <+ 1// left index of candidates $ aaaabbbcc
r < A.length // right index of candidates $bbbaccaa
while r > ¢ do gggbgz$b
i< L+ [(r—20)/2] 2 s bg : E
if P< SA[Z][].,TH] then a a $ b C
r<1—1// continue with left half $ b g g
— C
else g $
¢ <+ i // continue with right half
| b © P=ab
if P is no prefix of A[r| then
| return “no match”

return r

Each lexicographic comparison can be done in O(m) time.

= The k occurrences of P can be found in O( ) time.
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Searching in Suffix Arrays

Observation. The occurrences of a pattern P in T form an interval in A.

Idea. Find the

eft and the right boundary of the interval via two binary searches.

Report all entries in the interval! T—abcababca$
FINDRIGHTBOUNDARY (suffix array A, string P) A = 10(9]4]6]1[5]7]2]8]3
¢ <+ 1// left index of candidates $ aaaabbbcc
r < A.length // right index of candidates $bbbaccaa
while r > ¢ do gggbgz$b
i< L+ [(r—20)/2] 2 s bg : E
if P< SA[Z][].,TH] then a a $ b C
r<1—1// continue with left half $ b g g
— C
else g $
¢ <+ i // continue with right half
| b © P=ab
if P is no prefix of A[r| then
| return “no match”

return r

Each lexicographic comparison can be done in O(m) time.
= The k occurrences of P can be found in O(mlogn + k) time.
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Constructing Suffix Arrays — First Attempt

Task. Given a string T with n = |T| over alphabet X, construct a suffix array A for T.
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Task. Given a string T with n = |T| over alphabet X, construct a suffix array A for T.

ldea.

If n € O(1), then use brute-force.

Otherwise, dissect T into triplets.

nterpret the triplets as letters over an alphabet ¥/ C ¥.3.
nterpret T as a string R over ¥/ with |R| = [n/3].
Recurse!
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Idea.
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Task. Given a string T with n = |T| over alphabet X, construct a suffix array A for T.

Idea.
If n € O(1), then use brute-force.
Otherwise, dissect T into triplets.

Recurse!

R=ly

d

b] [b

d

d| [a

nterpret the triplets as letters over an alphabet ¥/ C ¥.3.
nterpret T as a string R over ¥/ with |R| = [n/3].

b bl [a

padding
$ 9]



Constructing Suffix Arrays — First Attempt

12 -

Task. Given a string T with n = |T| over alphabet X, construct a suffix array A for T.

ldea.

If n € O(1), then use brute-force.

Otherwise, dissect T into triplets.

nterpret the triplets as letters over an alphabet ¥/ C ¥.3.

nterpret T as a string R over ¥/ with |R| = [n/3].

Recurse! padding

7

R= [y a b]J][b a dl[a b bl[a $ 9

Problem. But how can a suffix array for R be used to create a suffix array for 17



Constructing Suffix Arrays — Overview

Shortened notation: T = fgt1...t,;,_1

o 1 2 3 4 5 6 7 8 9 10 11
T vy a b b a d a b b a d o

S(T) = suffixes of T =

S0 yvabbadabbado
Sq abbadabbado
So bbadabbado
S3 badabbado

Sy adabbado

Ss dabbado

Se abbado

Sv bbado
Ss bado
Sq ado
510 do

511 O
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Constructing Suffix Arrays — Overview

Shortened notation: T = fgf1...t,_1 and x = z(y) is a shorthand for x mod y = z.

o 1 2 3 4 5 6 7 8 9 10 11 Sop = suffixes with index i = 0(3)
T=— vy a b b a d a b

o
j05)
o
o

S1 = suffixes with index i = 1(3)
S» = suffixes with index i = 2(3)

S(T) = suffixes of T =

So yabbadabbado
Sq abbadabbado
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Sq ado
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Constructing Suffix Arrays — Overview

Shortened notation: T = fgf1...t,_1 and x = z(y) is a shorthand for x mod y = z.

o 1 2 3 4 5 6 7 8 9 10 11 Sop = suffixes with index i = 0(3)
I'= y a b b a d a b b a d © S1 = suffixes with index i = 1(3)
S» = suffixes with index i = 2(3)

CONSTRUCTSUFFIXARRAY (string T) S(T) — suffixes of T
— SufTtrixes o =

if n € O(1) then go yabbadabbado
: - bbadabbad
L construct A in O(1) time. S; Zba 3 a E o Z O°
S3 badabbado
else _ Sy adabbado
sort S1 U Sy into an array Aqp S |dabbado
use Ao to sort Sp into an array Ag 5S¢ | abbado
. S+ bbado
merge A12 with A() Sg bado
Sq ado
Sio0 | do
511 o




Constructing Suffix Arrays — Overview

Shortened notation: T = fgf1...t,_1 and x = z(y) is a shorthand for x mod y = z.

o 1 2 3 4 5 6 7 8 9 10 11 Sop = suffixes with index i = 0(3)

I= y a b b a d a b b a d o S1 = suffixes with index i = 1(3)

S» = suffixes with index i = 2(3)
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| construct A in O(1) time. T e et et
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merge A1 with Ag e e
Sq ado
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Constructing Suffix Arrays — Overview

Shortened notation: T = fgf1...t,_1 and x = z(y) is a shorthand for x mod y = z.

o 1 2 3 4 5 6 7 8 9 10 11 Sop = suffixes with index i = 0(3)
I'= y a b b a d a b b a d © S1 = suffixes with index i = 1(3)
S» = suffixes with index i = 2(3)

CONSTRUCTSUFFIXARRAY (string T) S(T) — suffixes of T
— SufTtrixes o =

if n c 0(1) then using the idea from So yabbadabbado
: : the previous slide! S1 |abbadabbado
| construct A in O(1) time. P S, | bbadabbado
S badabbado
else J >
_ S4 adabbado
sort S1 U Ss into an array Aqs Ss | dabbado
use Ao to sort Sg into an array Ag g6 Ezb ° €O
. d o
L merge A12 with A() S; 52 @l e
Sq ado
: .. Sio0 | do
For simplicity, we assume n = 0(3). S5 | @
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Step 1: Sorting S1 U S5

Shortened notation: T = fgf1...t,_1 and x = z(y) is a shorthand for x mod y = z.

Sop = suffixes with index i = 0(3)
S1 = suffixes with index i = 1(3)
S» = suffixes with index i = 2(3)

S(T) = suffixes of T =

So yabbadabbado
Sq abbadabbado
So bbadabbado
S3 badabbado

Sa adabbado

Ss dabbado

Se abbado

S+ bbado
Ssg bado
Sq ado
Sio | do

511 (0]
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Shortened notation: T = fgf1...t,_1 and x = z(y) is a shorthand for x mod y = z.

Partition S71 and &> into triplets and concatenate them:

t1tot3]

:t2t3t4:

:t4t5t6:...

tstety] ...

abb]|ada)

bba

dab)|

Sop = suffixes with index i = 0(3)
S1 = suffixes with index i = 1(3)
S» = suffixes with index i = 2(3)

S(T) = suffixes of T =
So yabbadabbado

TS, |abbadabbado
/52 bbadabbado

S3 badabbado
Sa adabbado
Ss dabbado
Se abbado

S+ bbado
Ssg bado
Sq ado
Sio | do

511 o



Step 1: Sorting S1 U S5

Shortened notation: T = fgf1...t,_1 and x = z(y) is a shorthand for x mod y = z.

Partition S71 and &» into triplets and concatenate them: So = suffixes with index i = 0(3)

R= [abb][ada][bba][do$][bba][dab][bad][0$$] S1 = suffixes with index i = 1(3)
S» = suffixes with index i = 2(3)

S(T) = suffixes of T =

Ry = [ttats][tatsto] ... = [abb] ada] [bba][do$] — go e E g : : : E Z Z‘i <
1
_ o : . S bbadabbado
Sa adabbado
Ss dabbado
Se abbado

S+ bbado
Ssg bado
Sq ado
Sio | do

511 (0]



Step 1: Sorting S1 U S5

Shortened notation: T = fgf1...t,_1 and x = z(y) is a shorthand for x mod y = z.

Partition S71 and &» into triplets and concatenate them:
R= [abb][ada][bba][do$][bba][dab][bad][0$$]

Sop = suffixes with index i = 0(3)
S1 = suffixes with index i = 1(3)
S» = suffixes with index i = 2(3)

S(T) = suffixes of T =

So yabbadabbado
Sq abbadabbado
So bbadabbado
S3 badabbado

Sa adabbado

Ss dabbado

Se abbado

S+ bbado
Ssg bado
Sq ado
Sio | do

511 (0]



Step 1: Sorting S1 U S5

Shortened notation: T = fgf1...t,_1 and x = z(y) is a shorthand for x mod y = z.

Partition S71 and &» into triplets and concatenate them: So = suffixes with index i = 0(3)
R= [abb][ada][bba][do$][bba][dab][bad][0$$] S1 = suffixes with index i = 1(3)
S» = suffixes with index i = 2(3)
S(R)= S1(R) | [abb][ada][bba][do$][bba][dab][bad][c$$]
S>(R) | [ada][bba][do$][bba][dab][bad][0$$] S(T) = suffixes of T =
53 (R) :bba: :d0$: :bba: :dab: :bad: O$$ SO y a bbadabbado
S4(R) | [do$][bba][dab][bad][0$$
- e =1 ol - : 51 abbadabbado
Ss(R) | [bba][dab][bad][0$$
- Ir Ir 1 . 52 bbadabbado
S6(R) | [dab][bad][o$$
. 1r 1" : S3 badabbado
57(R) :bad: 039 S, adabbado
Sg(R) | [0%9]

Ss dabbado
Se abbado

S+ bbado
Ssg bado
Sq ado
Sio | do

511 (0]



Step 1: Sorting S1 U S5

Shortened notation: T = fgf1...t,_1 and x = z(y) is a shorthand for x mod y = z.

Partition S71 and &» into triplets and concatenate them:

[ada][bba]

lada]
][bba]
[do$]
bba]
dab]
[bad]
059

R= [abb][

S(R)= S1(R) | [abb][
S>(R) | [ada]
53(R) | [bba
54(R) | [do$
S5(R) | [bba]
S6(R) | [dab
57(R) | [bad
S8(R) | [0$9]

|[bbal
do$)]
bba]
dab]
[bad]
()]

[do$]

do$]
bba]
dab]
[bad]
059

bba]
bba]
dab]
[bad]

dab]

dab]
bad]

fo$$i

bad]

[bad]

059

059

[0$%]
[0$9]

Observation. S(R) corresponds bijectively to S1 U S»

Sop = suffixes with index i = 0(3)
S1 = suffixes with index i = 1(3)
S» = suffixes with index i = 2(3)

S(T) = suffixes of T =

So yabbadabbado
Sq abbadabbado
So bbadabbado
S3 badabbado

Sa adabbado

Ss dabbado

Se abbado

S+ bbado
Ssg bado
Sq ado
Sio | do

511 (0]



Step 1: Sorting S1 U S5

Shortened notation: T = fgf1...t,_1 and x = z(y) is a shorthand for x mod y = z.

Partition S71 and &» into triplets and concatenate them:

[ada][bba]

lada]
][bba]
[do$]
bba]
dab]
[bad]
059

R= [abb][

S(R)= S1(R) | [abb][
S>(R) | [ada]
53(R) | [bba
54(R) | [do$
S5(R) | [bba]
S6(R) | [dab
57(R) | [bad
S8(R) | [0$9]

|[bbal
do$)]
bba]
dab]
[bad]
()]

[do$]

do$]
bba]
dab]
[bad]
059

bba]
bba]
dab]
[bad]

dab]

dab]
bad]

fo$$i

bad]

[bad]

059

059

[0$%]
[0$9]

Observation. S(R) corresponds bijectively to S1 U S»

Sop = suffixes with index i = 0(3)
S1 = suffixes with index i = 1(3)
S» = suffixes with index i = 2(3)

S(T) = suffixes of T =

So yabbadabbado
Sq abbadabbado
So bbadabbado
S3 badabbado

Sa adabbado

Ss dabbado

Se abbado

S+ bbado
Ssg bado
Sq ado
Sio | do

511 (0]



Step 1: Sorting S1 U S5

Shortened notation: T = fgf1...t,_1 and x = z(y) is a shorthand for x mod y = z.

Partition S71 and &» into triplets and concatenate them:

[ada][bba]

lada]
][bba]
[do$]
bba]
dab]
[bad]
059

R= [abb][

S(R)= S1(R) | [abb][
S>(R) | [ada]
53(R) | [bba
54(R) | [do$
S5(R) | [bba]
S6(R) | [dab
57(R) | [bad
S8(R) | [0$9]

|[bbal
do$)]
bba]
dab]
[bad]
()]

[do$]

do$]
bba]
dab]
[bad]
059

bba]
bba]
dab]
[bad]

dab]

dab]
bad]

fo$$i

bad]

[bad]

059

059

[0$%]
[0$9]

Observation. S(R) corresponds bijectively to S1 U S»

Sop = suffixes with index i = 0(3)
S1 = suffixes with index i = 1(3)
S» = suffixes with index i = 2(3)

S(T) = suffixes of T =

So yabbadabbado
Sq abbadabbado
So bbadabbado
S3 badabbado

Sa adabbado

Ss dabbado

Se abbado

S+ bbado
Ssg bado
Sq ado
Sio | do

511 (0]



Step 1: Sorting S1 U S5

Shortened notation: T = fgf1...t,_1 and x = z(y) is a shorthand for x mod y = z.

Partition S71 and &» into triplets and concatenate them:

R= [abb][ada][bba][do$][bba][dab][bad][0$$]
S(R)= [abb][ada][bba][do$][bba][dab][bad][0$$]
[ada][bba][do$%][bba][dab][bad][0$$
bba][do$][bba][dab][bad][0$$]
[do$][bba][dab][bad][0$9]
bba][dab][bad][0$$
dab][bad][0$$
bad][0$9$)
059

c1 A W N -
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o ~N o

Observation. S(R) corresponds bijectively to S1 U S»

Si <> [titiv1tito][tiv3tivatips]. ..

Sop = suffixes with index i = 0(3)
S1 = suffixes with index i = 1(3)
S» = suffixes with index i = 2(3)

S(T) = suffixes of T =

yabbadabbado
abbadabbado
bbadabbado
badabbado
adabbado
dabbado
abbado
bbado

bado

ado

do

o



Step 1: Sorting S1 U S5

Shortened notation: T = fgf1...t,_1 and x = z(y) is a shorthand for x mod y = z.

Partition S71 and &» into triplets and concatenate them:
R= [abb][ada][bba][do$][bba][dab][bad][0$$]

S(R)= [abb][ada][bba][do$][bba][dab][bad][0$$]
[ada][bba][do$%][bba][dab][bad][0$$
bba][do$][bba][dab][bad][0$$]
[do$][bba][dab][bad][0$9]
bba][dab][bad][0$$
dab][bad][0$$
bad][0$9]
059

c1 A W N -

N/ N N NS N N NN

NI I InInD I I
o ~N o
B P2 R

Observation. S(R) corresponds bijectively to S1 U S»

Si <> [titiv1tito][tiv3tivatips]. ..

and a sorting of S(R) corresponds to a sorting of S; U S5.

Sop = suffixes with index i = 0(3)
S1 = suffixes with index i = 1(3)
S» = suffixes with index i = 2(3)

S(T) = suffixes of T =

yabbadabbado
abbadabbado
bbadabbado
badabbado
adabbado
dabbado
abbado
bbado

bado

ado

do

o



Step 1: Sorting S1 U S5

Si<S]' = Si$<5]‘$ = Si$...<5]'$...
since the positions of the first $ symbols in the
strings Si(R) are pairwise distinct.

Shortened notation: T = fgf1...t,_1 and x = z(y) is a shorthand for x mod y = z.

Partition S71 and &» into triplets and concatenate them:

lada]
][bba]
[do$]
bba]
dab]
[bad]
059

R= [abb][

S(R)= 51(R) | [abb]]
S>(R) | [ada]
53(R) | [bba
54(R) | [do$
S5(R) | [bba]
S6(R) | [dab
S57(R) | [bad]
S8(R) | [0$9]

[ada][bba]
|[bba]
do$)]
bba]
dab]
[bad]
()]

[do$]

do$]
bba]
dab]
[bad]
059

bba]
bba]
dab]
bad]

dab]

dab]
bad]

fo$$i

bad]

[bad]

059

059

[0$%]
[0$9]

Observation. S(R) corresponds bijectively to S1 U S»

Si <> [titiv1tito][tiv3tivatips]. ..

and a sorting of S(R) corresponds to a sorting of S; U S5.

Sop = suffixes with index i = 0(3)
S1 = suffixes with index i = 1(3)
S» = suffixes with index i = 2(3)

S(T) = suffixes of T =

So yabbadabbado
Sq abbadabbado
So bbadabbado
S3 badabbado

Sa adabbado

Ss dabbado

Se abbado

S+ bbado
Ssg bado
Sq ado
Sio | do

511 (0]



Sorting S(R)

Sort the "letters” (= triplets) of R via RADIXSORT. This can be done in time
O(3(3n+ %)) € On)

R= [abb][ada][bba][do$][bba][dab][bad][0$$]

Rank | triple S(R)= S;(R) | [abb][ada][bba][do$][bba][dab][bad][c$$]

1 abb) S>(R) | [ada][bba][do$][bba][dab][bad][0$9]

2 ada] S3(R) | [bba][do$][bba][dab][bad][0$9]

3 [bad| S4(R) | [do$][bba][dab][bad][0$$]

4 [bba] S5(R) | [bba][dab][bad][0$$

5 dab] S6(R) | [dab][bad][0$$]

6 [do$)] S7(R) | [bad][0$9]

7 0$9)] Ss(R) | [0%9]




Sorting S(R)

Sort the "letters” (= triplets) of R via RADIXSORT. This can be done in time
O(3(3n+ |Z])) € O(n)

#digits
R= [abb][ada][bba][do$][bba][dab][bad][0$$]

Rank | triple S(R)= S;(R) | [abb][ada][bba][do$][bba][dab][bad][c$$]

1 abb) S>(R) | [ada][bba][do$][bba][dab][bad][0$9]

2 ada] S3(R) | [bba][do$][bba][dab][bad][0$9]

3 [bad| S4(R) | [do$][bba][dab][bad][0$$]

4 [bba] S5(R) | [bba][dab][bad][0$$

5 dab] S6(R) | [dab][bad][0$$]

6 [do$)] S7(R) | [bad][0$9]

7 0$9)] Ss(R) | [0%9]




Sorting S(R)

Sort the "letters” (= triplets) of R via RADIXSORT. This can be done in time

O(3(3n+ |Z])) € O(n)

A
#digits  #objects

R= [abb][ada][bba][do$][bba][dab][bad][0$$]

Rank | triple S(R)= S;(R) | [abb][ada][bba][do$][bba][dab][bad][c$$]

1 abb) S>(R) | [ada][bba][do$][bba][dab][bad][0$9]

2 ada] S3(R) | [bba][do$][bba][dab][bad][0$9]

3 [bad| S4(R) | [do$][bba][dab][bad][0$$]

4 [bba] S5(R) | [bba][dab][bad][0$$

5 dab] S6(R) | [dab][bad][0$$]

6 [do$)] S7(R) | [bad][0$9]

7 0$9)] Ss(R) | [0%9]




Sorting S(R)

Sort the "letters” (= triplets) of R via RADIXSORT. This can be done in time
O(3(3n+ |Z])) € O(n)

A
#digits  #objects  alphabet size

R= [abb][ada][bba][do$][bba][dab][bad][0$$]

Rank | triple S(R)= S;(R) | [abb][ada][bba][do$][bba][dab][bad][c$$]

1 abb) S>(R) | [ada][bba][do$][bba][dab][bad][0$9]

2 ada] S3(R) | [bba][do$][bba][dab][bad][0$9]

3 [bad| S4(R) | [do$][bba][dab][bad][0$$]

4 [bba] S5(R) | [bba][dab][bad][0$$

5 dab] S6(R) | [dab][bad][0$$]

6 [do$)] S7(R) | [bad][0$9]

7 0$9)] Ss(R) | [0%9]




15 -

Sorting S(R)

Sort the "letters” (= triplets) of R via RADIXSORT. This can be done in time
O(3(3n+ |Z])) € O(n)

A
#digits  #objects  alphabet size

Replace each triplet of R by its rank — string R’ with alphabet size < %n < n.
R= [abb][ada][bba][do$][bba][dab][bad][0$$] R=12464537
Rank | triple S(R)= S;(R) | [abb][ada][bba][do$][bba][dab][bad][c$$]
1 abb) S>(R) | [ada][bba][do$][bba][dab][bad][0$9]
2 ada] S3(R) | [bba][do$][bba][dab][bad][0$9]
3 [bad| S4(R) | [do$][bba][dab][bad][0$$]
4 [bba] S5(R) | [bba][dab][bad][0$$
5 | [dab) S6(R) | [dab][bad][0$$
6 | [doS] S7(R) | [bad][o$$
7 | [0$$ Sg(R) | [0$9]




15 -

Sorting S(R)

Sort the "letters” (= triplets) of R via RADIXSORT. This can be done in time
O(3(3n+ |Z])) € O(n)

A
#digits  #objects  alphabet size

Replace each triplet of R by its rank — string R’ with alphabet size < %n < n.
R= [abb][ada][bba][do$][bba][dab][bad][0$$] R=12464537
Rank | triple  S(R)= S1(R) | [abb][ada][bba][do$][bba][dab][bad][c$$] S(R') = Si(R') | 12464537
1 [abb S>(R) | [ada][bba][do$][bba][dab][bad][0$$] 52(R’) | 2464537
2 ada] S3(R) | [bba][do$][bba][dab][bad][0$$ S3(R’) | 464537
3 bad S4(R) | [do$][bba][dab][bad][0$$] S4(R’) | 64537
4 bba S5(R) | [bba][dab][bad][0$$] S5(R’) | 4537
5 dab Se(R) | [dab][bad][o$$] Se(R’) | 537
6 do$] S7(R) | [bad][0$$ S7(R") | 37
7 0$$ Sg(R) | [0$9] Ss(R) | 7




Sorting S(R)
Sort the "letters” (= triplets) of R via RADIXSORT. This can be done in time
O(3(3n+ |Z])) € O(n)
A
#digits  #objects  alphabet size

Replace each triplet of R by its rank — string R’ with alphabet size < %n < n.
A sorting of S(R") corresponds to a sorting of S(R) and can be obtained recursively.

R= [abb][ada][bba][do$%][bba][dab][bad][0$$] R'=12464537

Rank | triple  S(R)= S1(R) | [abb][ada][bba][do$][bba][dab][bad][c$$] S(R') = Si(R') | 12464537

1 [abb S>(R) | [ada][bba][do$][bba][dab][bad][0$$] 52(R’) | 2464537

2 ada] S3(R) | [bba][do$][bba][dab][bad][0$$ S3(R’) | 464537

3 bad S4(R) | [do$][bba][dab][bad][0$$] S4(R’) | 64537

4 bbal S5(R) | [bba][dab][bad][0$$] S5(R') | 4537

5 dab Se(R) | [dab][bad][o$$] Se(R’) | 537

6 do$] S7(R) | [bad][0$$ S7(R") | 37

7 0$$ Sg(R) | [0$9] Ss(R) | 7




Sorting S(R)

Sort the "letters” (= triplets) of R via RADIXSORT. This can be done in time

2
O(3(3n+ %)) € O(n) CONSTRUCTSUFFIXARRAY (R')

A
#digits  #objects  alphabet size
Replace each triplet of R by its rank — string R’ with alphabet size < %n < n.
A sorting of S(R") corresponds to a sorting of S(R) and can be obtained recursively.

R= [abb][ada][bba][do$%][bba][dab][bad][0$$] R'=12464537

Rank | triple  S(R)= S1(R) | [abb][ada][bba][do$][bba][dab][bad][c$$] S(R') = Si(R') | 12464537

1 [abb S>(R) | [ada][bba][do$][bba][dab][bad][0$$] 52(R’) | 2464537

2 ada] S3(R) | [bba][do$][bba][dab][bad][0$$ S3(R’) | 464537

3 bad S4(R) | [do$][bba][dab][bad][0$$] S4(R’) | 64537

4 bbal S5(R) | [bba][dab][bad][0$$] S5(R') | 4537

5 dab Se(R) | [dab][bad][o$$] Se(R’) | 537

6 do$] S7(R) | [bad][0$$ S7(R") | 37

7 0$$ Sg(R) | [0$9] Ss(R) | 7




Rank | triple
1 [abb]
Summary of Step 1 I | [ebb
3 bad]
Full example. 4 bba]
S(T)= 5 :dab:
So | yabbadabbado 6 do$)]
S abbadabbado i |
S; bbadabbado S(R)= S(R') = 7 033)]
o e e S1(R) | [abb][ada][bba][do$][bba][dab][bad] [0$%] ——— S:(R') | 12464537
54 dabbad S2(R) | [ada][bba][do$][bba][dab][bad][0$$] <4— S5y(R') | 2464537
55 E b 3 ° S3(R) | [bba][do$][bba][dab][bad][0$$] <4— S53(R) | 464537
A I S4(R) | [do$][bba][dab][bad][0$$] <— S,(R) | 64537
s | bado S5(R) | [bba][dab][bad][0$S] <«— 5,(R) | 4537
Se | ado ¥ S6(R) | [dab][bad][0$S] <—— 5,(R) | 537
510 | do S7(R) | [bad][o8$] < 5;(R) | 37
5[l a—  Ss(R) | [039] <« SR | 7
A1
1| S abbadabbado | S1(R') 12464537
2 | S24 adabbado So(R') 2464537
3 | Ss bado S7(R") 37
4 | S bbadabbado S5(R") 4537
5| S bbado S3(R') 464537
6 | Ss dabbado S6(R') 537
4 510 do S4(R/) 64537
8 | Su o Sg(R") 7



Rank | triple
1 [abb]
Summary of Step 1 I | [ebb
3 bad]
Full example. 4 bba]
S(T)= 5 :dab:
So | yabbadabbado 6 do$)]
S abbadabbado I 1
S; bbadabbado S(R)= S(R') = 7 033)]
2 | Dadabbade S1(R) | [abb][ada][bba][do$][bba][dab][bad][0$$] ——— Si(R') | 12464537
S e o e e S2(R) | [ada][bba][do$][bba][dab][bad][0$5] ~ <@——— S,(R') | 2464537
o el S3(R) | [bba][do$][bba][dab][bad][0$$] <«—— SR | 464537
A I Sa(R) | [do$][bba][dab][bad][0$9] <—— 5,(R) | 64537
R e S5(R) | [bba][dab][bad][0$5] <«— Sy(R) | 4537
e | s da ¥ S6(R) | [dab][bad][o$$] <«+—— 54(R) | 537
510 | do 57(R) | [bad][o$5] <— 5(R) |37
s | o o Ss(R) | [038] < 5(R) | 7
A1
1| Sy abbadabbado | Si(R) 12464537 Running time of Step 1.
2 | S24 adabbado So(R') 2464537 5
3|S bado S7(R') 37 Z1(n) = O(n) + Z(35n)
4 | S bbadabbado S5(R") 4537 _ _
5|5 bbado S3(R') 464537 where Z(n) is the time to execute
/
6|5 dabbado S6(R') 537 CONSTRUCTSUFFIXARRAY on a
4 510 do S4(R/) 64537 )
8 | Su o Se(R') 7 string of length n.



Construction of Suffix Arrays — Overview

Shortened notation: T = fgf1...t,_1 and x = z(y) is a shorthand for x mod y = z.

o 1 2 3 4 5 6 7 8 9 10 11 Sop = suffixes with index i = 0(3)

I= y a b b a d a b b a d o S1 = suffixes with index i = 1(3)

S» = suffixes with index i = 2(3)

CONSTRUCTSUFFIXARRAY (string T) S(T) — suffixes of T
— SufTtrixes o =

if n € O(1) then So | yabbadabbado
. . S bbadabbad
| construct A in O(1) time. T e et et
S3 badabbado
else _ Sa adabbado
sort S1 U Sy into an array Aqp S |dabbado
use Ao to sort Sp into an array Ag S5¢ | abbado
: S+ bbado
merge A1 with Ag e e
Sq ado

: .. Sio0 | do
For simplicity, we assume n = 0(3). Su | o




Step 2: Sorting Sy

Shortened notation: T = fgf1...t,_1 and x = z(y) is a shorthand for x mod y = z.

T—=

0
y

1

3
b

4
a

5
d

6
a

7
b

o

Sop = suffixes with index i = 0(3)
S1 = suffixes with index i = 1(3)
S» = suffixes with index i = 2(3)

S(T) = suffixes of T =

So yabbadabbado
Sq abbadabbado
So bbadabbado
S3 badabbado

Sa adabbado

Ss dabbado

Se abbado

S+ bbado
Ssg bado
Sq ado
Sio | do

511 (0]



Step 2: Sorting Sy

Shortened notation: T = fgf1...t,_1 and x = z(y) is a shorthand for x mod y = z.

o 1 2 3 4 5 6 7 8 9 10 11 Sop = suffixes with index i = 0(3)
I= y a b b a d a b b a d o S1 = suffixes with index i = 1(3)

_ S» = suffixes with index i = 2(3)
Each S; € Sp can be written as (£;,S;11) s.t. Sj11 € S1.
S(T) = suffixes of T =

So yabbadabbado
Sq abbadabbado
So bbadabbado
S3 badabbado

Sa adabbado

Ss dabbado

Se abbado

S+ bbado
Ssg bado
Sq ado
Sio | do

511 (0]
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Step 2: Sorting Sy

Shortened notation: T = fgf1...t,_1 and x = z(y) is a shorthand for x mod y = z.

o 1 2 3 4 5 6 7 8 9 10 11 Sop = suffixes with index i = 0(3)
I'= y a b b a d a b b a d © S1 = suffixes with index i = 1(3)
_ S» = suffixes with index i = 2(3)
Each S; € Sp can be written as (£;,S;11) s.t. Sj11 € S1.
) _ _ S(T) = suffixes of T =
Observation. Let S;,5; € Sg. Then S; < S; if and only if So |yabbadabbado
Wi <tjor S |abbadabbado

1 , , So bbadabbado
Bt =fjand 5ip1 < 5j41. Ss | badabbado
Sa adabbado
Ss dabbado

Se abbado

S+ bbado
Ssg bado
Sq ado
Sio | do

511 (0]
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I'= y a b b a d a b b a d © S1 = suffixes with index i = 1(3)
_ S» = suffixes with index i = 2(3)
Each S; € Sp can be written as (£;,S;11) s.t. Sj11 € S1.
) _ _ S(T) = suffixes of T =
Observation. Let S;,5; € Sg. Then S; < S; if and only if So |yabbadabbado
Wi <tjor S |abbadabbado

1 , , So bbadabbado

Sa adabbado

= S, can be sorted by sorting all tuples (t;, S;;1) with S: | dabbado
i = 0(3). This can be done via RADIXSORT in O(n) S¢ | abbado
. . . . . . S7 bbado
time since the ordering of the entries in &7 is already e | b
u n [ n 8 a d O
implicit in Aqo. Sg | ado
Sio0 | do

511 (0]



Construction of Suffix Arrays — Overview

Shortened notation: T = fgf1...t,_1 and x = z(y) is a shorthand for x mod y = z.

o 1 2 3 4 5 6 7 8 9 10 11 Sop = suffixes with index i = 0(3)

I= y a b b a d a b b a d o S1 = suffixes with index i = 1(3)

S» = suffixes with index i = 2(3)

CONSTRUCTSUFFIXARRAY (string T) S(T) — suffixes of T
— SufTtrixes o =

if n € O(1) then So | yabbadabbado
. . S bbadabbad
| construct A in O(1) time. T e et et
S3 badabbado
else _ Sa adabbado
sort S1 U Sy into an array Aqp S |dabbado
use Ao to sort Sp into an array Ag S5¢ | abbado
. S+ bbado
merge A1 with Ag e e
Sq ado

: .. Sio0 | do
For simplicity, we assume n = 0(3). Su | o




Step 3: Merging A1> and Ay

Shortened notation: T = fgf1...t,_1 and x = z(y) is a shorthand for x mod y = z.

o 1 2 3 4 5 6 7 8 9 10 11 Sop = suffixes with index i = 0(3)
T=— vy a b b a d a b

o
j05)
o
o

S1 = suffixes with index i = 1(3)
S» = suffixes with index i = 2(3)

S(T) = suffixes of T =

So yabbadabbado
Sq abbadabbado
So bbadabbado
S3 badabbado

Sa adabbado

Ss dabbado

Se abbado

S+ bbado
Ssg bado
Sq ado
Sio | do

511 (0]
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Shortened notation: T = fgf1...t,_1 and x = z(y) is a shorthand for x mod y = z.

o 1 2 3 4 5 6 7 8 9 10 11 Sop = suffixes with index i = 0(3)
I= y a b b a d a b b a d o S1 = suffixes with index i = 1(3)

_ S» = suffixes with index i = 2(3)
Each S; € Sp can be written as (t;,S;11) s.t. Sj11 € 51

and as (t;,ti+1,Si12) s.t. Sjio € So. S(T) = suffixes of T =
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Se abbado
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Sq ado
Sio | do
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Step 3: Merging A1> and Ay

Shortened notation: T = fgf1...t,_1 and x = z(y) is a shorthand for x mod y = z.

o 1 2 3 4 5 6 7 8 9 10 11
T— y a b b a d a b b a d o

Each S; € Sp can be written as (t;,S;11) s.t. Sj11 € 51
and as (t;,t;11,Si12) s.t. Sjio € 5o

Observation. Let S; € Sy.
B let S] € S§1. Then §; < S] if and only if
mf< t]-; or
m = t]' and S;1 < S]'+1 where S]'+1 e Ss.
B Let 5; € So. Then §; < §; if and only if
mf< tj; or
Bt =tjand t;j 1 <fjq;0r

Bt = t]'t]'_H and S;1o < S]'+2 where S]'+2 c Sy.

Sop = suffixes with index i = 0(3)
S1 = suffixes with index i = 1(3)
S» = suffixes with index i = 2(3)

S(T) = suffixes of T =

So yabbadabbado
Sq abbadabbado
So bbadabbado
S3 badabbado

Sa adabbado

Ss dabbado

Se abbado

S+ bbado
Ssg bado
Sq ado
Sio | do

511 (0]
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Step 3: Merging A1> and Ay

Shortened notation: T = fgf1...t,_1 and x = z(y) is a shorthand for x mod y = z.

o 1 2 3 4 5 6 7 8 9 10 11 Sop = suffixes with index i = 0(3)
I'= y a b b a d a b b a d © S1 = suffixes with index i = 1(3)
_ S» = suffixes with index i = 2(3)
Each S; € Sp can be written as (t;,S;11) s.t. Sj11 € 51

and as (t;,t;11,Si12) s.t. Sjio € 5o

Observation. Let S; € Sy. Since the ordering of S1 U Sy is
W let5; € S1. Then §; < 5; it and only if already implicit in A1, we can
m ot <t or perform these comparisons in O(1)

m = t]' and S;1 < S]'+1 where S]'+1 € Sy. time.
B Let S] € S>. Then §; < S] if and only if

mf< tj; or

Bt =tjand t;j 1 <fjq;0r

Bt = t]'t]'+1 and S;1o < S]'+2 where S]'+2 c Sy.
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Step 3: Merging A1> and Ay

Shortened notation: T = fgf1...t,_1 and x = z(y) is a shorthand for x mod y = z.

o 1 2 3 4 5 6 7 8 9 10 11 Sop = suffixes with index i = 0(3)
I'= y a b b a d a b b a d © S1 = suffixes with index i = 1(3)
_ S» = suffixes with index i = 2(3)
Each S; € Sp can be written as (t;,S;11) s.t. Sj11 € 51

and as (t;,t;11,Si12) s.t. Sjio € 5o

Observation. Let S; € Sy. Since the ordering of S1 U Sy is
W let5; € S1. Then §; < 5; it and only if already implicit in A1, we can
m ot <t or perform these comparisons in O(1)

m = t]' and S;1 < S]'+1 where S]'+1 € Sy. time.
B Let S] € S>. Then §; < S] if and only if

mf< tj; or

Bt =tjand t;j 1 <fjq;0r

Bt = t]'t]'+1 and S;1o < S]'+2 where S]'+2 c Sy.

= A1 and Ag can be merged as
in MERGESORT to obtain A.



Construction of Suffix Arrays — Summary

CONSTRUCTSUFFIXARRAY (string T)

if n € O(1) then
| construct A in O(1) time.

else

sort S1 U Ss into an array Aqs

use Ajs to sort Sg into an array Ay
merge Aq1o with Ap

Runtime of each step:
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Construction of Suffix Arrays — Summary

CONSTRUCTSUFFIXARRAY (string T)

if n € O(1) then
| construct A in O(1) time.
Runtime of each step:

else
sort S1 U Ss into an array Aqs O(n) + Z(%n)
use A1 to sort Sp into an array Ag O(n)
- merge Aqp with Ag O(n)

Total running time:

O(1), if n. = O(1)

Z(n) = < O(n) + Z(gn), otherwise

\

3
Master;heorem Z(n) c O(Tl)
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Summary and Discussion

Let T be a string over an alphabet X where n = |T|.

Lemma. A suffix array for T can be used to compute an LCP (“longest common
prefix") array and a suffix tree of T in O(n) time.
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Summary and Discussion

Let T be a string over an alphabet X where n = |T|.

Lemma. A suffix array for T can be used to compute an LCP (“longest common

prefix” )

array and a suffix tree of T in O(n) time.

Theorem. A suffix tree for T can computed in O(n) time and space. It can be used
to answer STRING MATCHING queries of length m in O(mlog |%| 4 k) time.

Theorem. A suffix array for T can computed in O(n) time and space. It can be used
to answer STRING MATCHING queries of length m in O(mlogn + k) time.

Remark. The suffix array is a simpler and more compact alternative to the suffix tree.

The suf
B Find

ix tree (and the suffix array + LCP array) have several additional applications:
Ing the longest repeated substring.

B Finc
H ..

ing the longest common substring of two strings.
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