Advanced Algorithms

Optimal Binary Search Trees Splay Trees

Johannes Zink • WS23/24

How Good is a Binary Search Tree?

Binary search tree (BST):

How Good is a Binary Search Tree?

Binary search tree (BST):

How Good is a Binary Search Tree?

Binary search tree (BST):

How Good is a Binary Search Tree?
Binary search tree (BST): w.c. query time $\Theta(n)$

How Good is a Binary Search Tree?

Binary search tree (BST):
w.c. query time $\Theta(n)$

Balanced binary search tree:
(e.g., Red-Black-Tree, AVL-Tree)

How Good is a Binary Search Tree?

Binary search tree (BST):
w.c. query time $\Theta(n)$

Balanced binary search tree:
(e.g., Red-Black-Tree, AVL-Tree)

How Good is a Binary Search Tree?

Binary search tree (BST):
Balanced binary search tree: (e.g., Red-Black-Tree, AVL-Tree)
w.c. query time $\Theta(n)$
w.c. query time $\Theta(\log n)$

How Good is a Binary Search Tree?

Binary search tree (BST):
Balanced binary search tree: (e.g., Red-Black-Tree, AVL-Tree)
w.c. query time $\Theta(n)$
w.c. query time $\Theta(\log n)$

How Good is a Binary Search Tree?

optimal

Binary search tree (BST):
Balanced binary search tree: (e.g., Red-Black-Tree, AVL-Tree)
w.c. query time $\Theta(n)$
w.c. query time $\Theta(\log n)$

What if we know the query before?

How Good is a Binary Search Tree?

Binary search tree (BST):
Balanced binary search tree: (e.g., Red-Black-Tree, AVL-Tree)
w.c. query time $\Theta(n)$
w.c. query time $\Theta(\log n)$

What if we know the query before?

How Good is a Binary Search Tree?

Binary search tree (BST):
Balanced binary search tree: (e.g., Red-Black-Tree, AVL-Tree)
w.c. query time $\Theta(n)$
w.c. query time $\Theta(\log n)$

What if we know the query before?

How Good is a Binary Search Tree?

Binary search tree (BST):
Balanced binary search tree: (e.g., Red-Black-Tree, AVL-Tree)
w.c. query time $\Theta(n)$ w.c. query time $\Theta(\log n)$

What if we know the query before? w.c. query time 1

How Good is a Binary Search Tree?

optimal

Binary search tree (BST):
Balanced binary search tree: (e.g., Red-Black-Tree, AVL-Tree)
w.c. query time $\Theta(n)$
w.c. query time $\Theta(\log n)$
w.c. query time 1

Sequence of queries?

How Good is a Binary Search Tree?

optimal

Binary search tree (BST):
Balanced binary search tree:
(e.g., Red-Black-Tree, AVL-Tree)
w.c. query time $\Theta(n)$
w.c. query time $\Theta(\log n)$
w.c. query time 1

Sequence of queries?
e.g. 2-13-5

How Good is a Binary Search Tree?

optimal

Binary search tree (BST):
Balanced binary search tree:
(e.g., Red-Black-Tree, AVL-Tree)
w.c. query time $\Theta(n)$
w.c. query time $\Theta(\log n)$
w.c. query time 1

Sequence of queries?
e.g. 2-13-5

How Good is a Binary Search Tree?

optimal

Binary search tree (BST):
Balanced binary search tree:
(e.g., Red-Black-Tree, AVL-Tree)
w.c. query time $\Theta(n)$ w.c. query time $\Theta(\log n)$

What if we know the query before?
w.c. query time 1

Sequence of queries?
e.g. 2-13-5

How Good is a Binary Search Tree?

optimal

Binary search tree (BST):
Balanced binary search tree:
(e.g., Red-Black-Tree, AVL-Tree)
w.c. query time $\Theta(n)$ w.c. query time $\Theta(\log n)$

What if we know the query before?
w.c. query time 1

Sequence of queries?
e.g. 2-13-5

How Good is a Binary Search Tree?

optimal

Binary search tree (BST):
Balanced binary search tree:
(e.g., Red-Black-Tree, AVL-Tree)
w.c. query time $\Theta(n)$ w.c. query time $\Theta(\log n)$

What if we know the query before?
w.c. query time 1

Sequence of queries?
e.g. 2-13-5 or 2-13-2-13-2...

How Good is a Binary Search Tree?

optimal

Binary search tree (BST):
Balanced binary search tree:
(e.g., Red-Black-Tree, AVL-Tree)
w.c. query time $\Theta(n)$
w.c. query time $\Theta(\log n)$

What if we know the query before? w.c. query time 1
Sequence of queries?
$O(\log n)$ per query
e.g. 2-13-5 or $2-13-2-13-2 \ldots$

How Good is a Binary Search Tree?

optimal
Binary search tree (BST):
Balanced binary search tree:
w.c. query time $\Theta(n)$
(e.g., Red-Black-Tree, AVL-Tree)
w.c. query time $\Theta(\log n)$

What if we know the query before? w.c. query time 1
Sequence of queries?
$O(\log n)$ per query
e.g. 2-13-5 or 2-13-2-13-2...

How Good is a Binary Search Tree?
Binary search tree (BST):
optimal w.c. query time $\Theta(n)$

Balanced binary sear 2 (e.g., Red-Black-Tre What if we know the Sequence of queries?
e.g. 2-13-5 or $2-13-2-13-2 \ldots$

How Good is a Binary Search Tree?
Binary search tree (BST):
w.c. query time $\Theta(n)$

Balanced binary sear 2 (e.g., Red-Black-Tre, What if we know the Sequence of queries?
e.g. 2-13-5 or $2-13-2-13-2 \ldots$

How Good is a Binary Search Tree?

Binary search tree (BST):
w.c. query time $\Theta(n)$

Balanced binary search tree: w.c. query time $\Theta(\log n)$

What if we know the query before? w.c. query time 1

Sequence of queries?
e.g. 2-13-5 or $2-13-2-13-2 \ldots$

The performance of a BST depends on the mode!!
$O(\log n)$ per query optimal?

Model 1: Malicious Queries
Given a BST, what is the worst sequence of queries?

Model 1: Malicious Queries
Given a BST, what is the worst sequence of queries?

Model 1: Malicious Queries

Given a BST, what is the worst sequence of queries?
Lemma. The worst-case malicious query cost in any BST with n nodes is at least $\Omega(\log n)$ per query.

Model 1: Malicious Queries

Given a BST, what is the worst sequence of queries?
Lemma. The worst-case malicious query cost in any BST with n nodes is at least $\Omega(\log n)$ per query.

Definition. A BST is balanced if the cost of any sequence of m queries is $O(m \log n+n \log n)$.

Model 1: Malicious Queries

Given a BST, what is the worst sequence of queries?
Lemma. The worst-case malicious query cost in any BST with n nodes is at least $\Omega(\log n)$ per query.

Definition. A BST is balanced if the cost of any sequence of m queries is $O(m \log n+n \log n)$.
\Rightarrow the (amortized) cost of each query is $O(\log n)$ (for at least n queries)

Model 2: Known Probability Distribution

Model 2: Known Probability Distribution

Model 2: Known Probability Distribution

| Access Probabilities: | 2 | 3 | 5 | 6 | 8 | 9 | 11 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | 2% | 20% | 30% | 8% | 20% | 15% | 5% |

Model 2: Known Probability Distribution $\begin{array}{lllllllll}\text { Access Probabilities: } & 2 & 3 & 5 & 6 & 8 & 9 & 11 \\ & 2 \% & 20 \% & 30 \% & 8 \% & 20 \% & 15 \% & 5 \%\end{array}$ Idea: Place nodes with higher probability higher in the tree.

Model 2: Known Probability Distribution $\begin{array}{lcccccccc}\text { Access Probabilities: } & 2 & 3 & 5 & 6 & 8 & 9 & 11 \\ & 2 \% & 20 \% & 30 \% & 8 \% & 20 \% & 15 \% & 5 \%\end{array}$ Idea: Place nodes with higher probability higher in the tree.

Model 2: Known Probability Distribution

Access Probabilities:	2	3	5	6	8	9	11
	2%	20%	30%	8%	20%	15%	5%

Idea: Place nodes with higher probability higher in the tree.

Model 2: Known Probability Distribution

Access Probabilities:	2	3	5	6	8	9	11
	2%	20%	30%	8%	20%	15%	5%

Idea: Place nodes with higher probability higher in the tree.

Model 2: Known Probability Distribution

| Access Probabilities: | 2 | 3 | 5 | 6 | 8 | 9 | 11 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | 2% | 20% | 30% | 8% | 20% | 15% | 5% |

Idea: Place nodes with higher probability higher in the tree.

Model 2: Known Probability Distribution

| Access Probabilities: | 2 | 3 | 5 | 6 | 8 | 9 | 11 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | 2% | 20% | 30% | 8% | 20% | 15% | 5% |

Idea: Place nodes with higher probability higher in the tree.

prob. $\leq 1 / 2$
OPT: prob. $p \Rightarrow$ level prob. $\leq 1 / 2^{\ell-1}$

Model 2: Known Probability Distribution

Access Probabilities:

2	3	5	6	8	9
2%	20%	30%	8%	20%	15%

$$
p \leq \frac{1}{2^{i-1}}
$$

Idea: Place nodes with higher probability higher in the tree

prob. $\leq 1 / 2$
OPT: prob. $p \Rightarrow$ level
prob. $\leq 1 / 2^{\ell-1}$

Model 2: Known Probability Distribution
Access Probabilities:

2	3	5	6	8	$\boxed{9}$
2%	20%	30%	8%	20%	15%

Idea: Place nodes with higher probability higher in the tree

prob. $\leq 1 / 2$
OPT: prob. $p \Rightarrow$ level
prob. $\leq 1 / 2^{\ell-1}$

Model 2: Known Probability Distribution
Access Probabilities:

2	3	5	6	8	$\boxed{9}$
2%	20%	30%	8%	20%	15%

Idea: Place nodes with higher probability higher in the tree

prob. $\leq 1 / 2$ OPT: prob. $p \Rightarrow$ level $\leq 1-\log _{2} p$ prob. $\leq 1 / 2^{\ell-1}$

Model 2: Known Probability Distribution

| Access Probabilities: | 2 | 3 | 5 | 6 | 8 | 9 | 11 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | 2% | 20% | 30% | 8% | 20% | 15% | 5% |

Idea: Place nodes with higher probability higher in the tree.

Model 2: Known Probability Distribution

Access Probabilities:

2	3	5	6	8	$\boxed{9}$	11
2%	20%	30%	8%	20%	15%	5%

Idea: Place nodes with higher probability higher in the tree.

$$
\begin{aligned}
& \text { Input interpretation } \\
& \begin{array}{|c|c|c}
\text { plot } & -x \log (x) & x=0 \text { to } 1
\end{array}
\end{aligned}
$$

Model 2: Known Probability Distribution

Access Probabilities:

2	3	5	6	8	$\boxed{9}$	11
2%	20%	30%	8%	20%	15%	5%

Idea: Place nodes with higher probability higher in the tree.

Model 2: Known Probability Distribution

Access Probabilities:

2	3	5	6	8	9	11
2%	20%	30%	8%	20%	15%	5%

Idea: Place nodes with higher probability higher in the tree.

$$
p_{i}=1 / n
$$

Model 2: Known Probability Distribution

Access Probabilities:

2	3	5	6	8	$\boxed{9}$	11
2%	20%	30%	8%	20%	15%	5%

Idea: Place nodes with higher probability higher in the tree.

Model 2: Known Probability Distribution

Access Probabilities:

2	3	5	6	8	$\boxed{9}$	11
2%	20%	30%	8%	20%	15%	5%

Idea: Place nodes with higher probability higher in the tree.

Model 2: Known Probability Distribution

Access Probabilities:

2	$\boxed{3}$	5	6	8	9	11
2%	20%	30%	8%	20%	15%	5%

Idea: Place nodes with higher probability higher in the tree.

Model 2: Known Probability Distribution

Access Probabilities:

2	3	5	6	8	$\boxed{9}$	11
2%	20%	30%	8%	20%	15%	5%

Idea: Place nodes with higher probability higher in the tree.

Model 2: Known Probability Distribution

Access Probabilities:

2	3	5	6	8	$\boxed{9}$	11
2%	20%	30%	8%	20%	15%	5%

Idea: Place nodes with higher probability higher in the tree.

Model 3: Spacial Locality

If a key is queried, then keys with nearby values are more likely to be queried.

Model 3: Spacial Locality

If a key is queried, then keys with nearby values are more likely to be queried.
Suppose we queried key x_{i} and want to query key x_{j} next.

Model 3: Spacial Locality

If a key is queried, then keys with nearby values are more likely to be queried.
Suppose we queried key x_{i} and want to query key x_{j} next.

Model 3: Spacial Locality

If a key is queried, then keys with nearby values are more likely to be queried.
Suppose we queried key x_{i} and want to query key x_{j} next.

Model 3: Spacial Locality

If a key is queried, then keys with nearby values are more likely to be queried.
Suppose we queried key x_{i} and want to query key x_{j} next.

Model 3: Spacial Locality

If a key is queried, then keys with nearby values are more likely to be queried.
Suppose we queried key x_{i} and want to query key x_{j} next.
Let $\delta_{i j}=\left|\operatorname{rank}\left(x_{j}\right)-\operatorname{rank}\left(x_{i}\right)\right|$.

Model 3: Spacial Locality

If a key is queried, then keys with nearby values are more likely to be queried.
Suppose we queried key x_{i} and want to query key x_{j} next.
Let $\delta_{i j}=\left|\operatorname{rank}\left(x_{j}\right)-\operatorname{rank}\left(x_{i}\right)\right|$.

Model 3: Spacial Locality

If a key is queried, then keys with nearby values are more likely to be queried.
Suppose we queried key x_{i} and want to query key x_{j} next.
Let $\delta_{i j}=\left|\operatorname{rank}\left(x_{j}\right)-\operatorname{rank}\left(x_{i}\right)\right|$.
Definition. A BST has the dynamic finger property if the (amortized) cost of queries are $O\left(\log \delta_{i j}\right)$.

Model 3: Spacial Locality

If a key is queried, then keys with nearby values are more likely to be queried.
Suppose we queried key x_{i} and want to query key x_{j} next.
Let $\delta_{i j}=\left|\operatorname{rank}\left(x_{j}\right)-\operatorname{rank}\left(x_{i}\right)\right|$.
Definition. A BST has the dynamic finger property if the (amortized) cost of queries are $O\left(\log \delta_{i j}\right)$.

Model 3: Spacial Locality

If a key is queried, then keys with nearby values are more likely to be queried.
Suppose we queried key x_{i} and want to query key x_{j} next.
Let $\delta_{i j}=\left|\operatorname{rank}\left(x_{j}\right)-\operatorname{rank}\left(x_{i}\right)\right|$.
Definition. A BST has the dynamic finger property if the (amortized) cost of queries are $O\left(\log \delta_{i j}\right)$.

Model 3: Spacial Locality

If a key is queried, then keys with nearby values are more likely to be queried.
Suppose we queried key x_{i} and want to query key x_{j} next.
Let $\delta_{i j}=\left|\operatorname{rank}\left(x_{j}\right)-\operatorname{rank}\left(x_{i}\right)\right|$.
Definition. A BST has the dynamic finger property if the (amortized) cost of queries are $O\left(\log \delta_{i j}\right)$.

Model 3: Spacial Locality

If a key is queried, then keys with nearby values are more likely to be queried.
Suppose we queried key x_{i} and want to query key x_{j} next.
Let $\delta_{i j}=\left|\operatorname{rank}\left(x_{j}\right)-\operatorname{rank}\left(x_{i}\right)\right|$.
Definition. A BST has the dynamic finger property if the (amortized) cost of queries are $O\left(\log \delta_{i j}\right)$.

Lemma. A level-linked Red-Black-Tree has the dynamic finger property.

Model 4: Temporal Locality

If a key is queried, then it is likely to be queried again soon.

Model 4: Temporal Locality

If a key is queried, then it is likely to be queried again soon.
A static tree will have a hard time...

Model 4: Temporal Locality

If a key is queried, then it is likely to be queried again soon.
A static tree will have a hard time... What if we can move elements?

Model 4: Temporal Locality

If a key is queried, then it is likely to be queried again soon.
A static tree will have a hard time... What if we can move elements?
Idea: Use a sequence of trees

Model 4: Temporal Locality

If a key is queried, then it is likely to be queried again soon.
A static tree will have a hard time... What if we can move elements?
Idea: Use a sequence of trees

Model 4: Temporal Locality

If a key is queried, then it is likely to be queried again soon.
A static tree will have a hard time... What if we can move elements?
Idea: Use a sequence of trees

Model 4: Temporal Locality

If a key is queried, then it is likely to be queried again soon.
A static tree will have a hard time... What if we can move elements?
Idea: Use a sequence of trees

Model 4: Temporal Locality

If a key is queried, then it is likely to be queried again soon.
A static tree will have a hard time... What if we can move elements?
Idea: Use a sequence of trees

Model 4: Temporal Locality

If a key is queried, then it is likely to be queried again soon.
A static tree will have a hard time... What if we can move elements?
Idea: Use a sequence of trees

Model 4: Temporal Locality

If a key is queried, then it is likely to be queried again soon.
A static tree will have a hard time... What if we can move elements?
Idea: Use a sequence of trees
Move queried key to first tree

Model 4: Temporal Locality

If a key is queried, then it is likely to be queried again soon.
A static tree will have a hard time...
What if we can move elements?
Idea: Use a sequence of trees
Move queried key to first tree, then kick out oldest key.

Model 4: Temporal Locality

If a key is queried, then it is likely to be queried again soon. A static tree will have a hard time... What if we can move elements?
Idea: Use a sequence of trees
Move queried key to first tree, then kick out oldest key.
Definition. A BST has the working set property if the (amortized) cost of a query for key x is $O(\log t)$, where t is the number of keys queried more recently than x.

Model 5: Static Optimality
Given a sequence S of queries.

Model 5: Static Optimality

Given a sequence S of queries.

Let T_{S}^{\star} be an optimal static tree with the shortest query time OPT_{S} for S.

Model 5: Static Optimality
Given a sequence S of queries. e.g. $S=2,5,2,5,2, \ldots, 5$

Let T_{S}^{\star} be an optimal static tree with the shortest query time OPT_{S} for S.

Model 5: Static Optimality
Given a sequence S of queries.

Let T_{S}^{\star} be an optimal static tree with the shortest query time OPT_{S} for S.
e.g. $S=2,5,2,5,2, \ldots, 5$
T_{S}^{\star} :

Model 5: Static Optimality

Given a sequence S of queries.

Let T_{S}^{\star} be an optimal static tree with the shortest query time OPT_{S} for S.
e.g. $S=2,5,2,5,2, \ldots, 5$

Model 5: Static Optimality

Given a sequence S of queries.

Let T_{S}^{\star} be an optimal static tree with the shortest query time OPT_{S} for S.
e.g. $S=2,5,2,5,2, \ldots, 5$

Definition. A BST is statically optimal if queries take (amortized) $O\left(\mathrm{OPT}_{S}\right)$ time for every S.

All These Models . . .

Balanced: Queries take (amortized) $O(\log n)$ time
Entropy:
Dynamic Finger: Queries take $O\left(\log \delta_{i}\right)$ time (δ_{i} : rank diff.)
Working Set: \quad Queries take $O(\log t)$ time (t : recency)
Static Optimality: Queries take (amortized) $O\left(\mathrm{OPT}_{S}\right.$) time.

All These Models . . .

Balanced: Queries take (amortized) $O(\log n)$ time
Entropy:
Dynamic Finger: Queries take $O\left(\log \delta_{i}\right)$ time (δ_{i} : rank diff.)
Working Set: Queries take $O(\log t)$ time (t : recency)
Static Optimality: Queries take (amortized) $O\left(\mathrm{OP}_{S}\right)$ time.
... is there one BST to rule them all?

All These Models . . .

Balanced: Queries take (amortized) $O(\log n)$ time

Entropy:

Dynamic Finger: Queries take $O\left(\log \delta_{i}\right)$ time (δ_{i} : rank diff.)
Working Set: Queries take $O(\log t)$ time (t : recency)
Static Optimality: Queries take (amortized) $O\left(\mathrm{OP}_{S}\right)$ time.
... is there one BST to rule them all?

Splay Trees

Sat Robert E. Tarjan

Splay Trees

Daniel D. Sleator J.ACM 1985
Idea: Whenever we query a key,
rotate it to the root.

Splay Trees

Daniel D. Sleator R.ACM 1985
Idea: Whenever we query a key, Tarjan
rotate it to the root.

Known from
the lecture
algorithms and
data structures (ADS):

Splay Trees

Daniel D. Sleator Robert E. Tarjan
J.ACM 1985

Known from the lecture algorithms and data structures (ADS):

Splay Trees

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985

Idea: Whenever we query a key, rotate it to the root.

Splay Trees

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985

Idea: Whenever we query a key, rotate it to the root.

Splay Trees

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985

Idea: Whenever we query a key, rotate it to the root.

New:
Splay (x) : Rotate x to the root

Splay Trees

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985

Idea: Whenever we query a key, rotate it to the root.

New:
Splay (x) : Rotate x to the root
Query (x) : Splay (x), then return root

Splay Trees

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985

Idea: Whenever we query a key, rotate it to the root.

Known from

 the lecture algorithms and data structures (ADS):New:

Splay Trees

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985

Idea: Whenever we query a key, rotate it to the root.

Splay (x) : Rotate x to the root Query (x) : Splay (x), then return root Query (8)

New:

Splay Trees

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985

Idea: Whenever we query a key, rotate it to the root.

Splay (x) : Rotate x to the root Query (x) : Splay (x), then return root Query (8)

New:

Splay Trees

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985

Idea: Whenever we query a key, rotate it to the root.

New:
Splay (x) : Rotate x to the root Query (x) : Splay (x), then return root Query (8)

Splay Trees

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985

Idea: Whenever we query a key, rotate it to the root.

Splay (x) : Rotate x to the root Query (x) : Splay (x), then return root Query (8)

Splay Trees

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985

Idea: Whenever we query a key, rotate it to the root.

Splay (x) : Rotate x to the root Query (x) : Splay (x), then return root Query (8)

Splay Trees

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985

Idea: Whenever we query a key, rotate it to the root.

Splay (x) : Rotate x to the root Query (x) : Splay (x), then return root Query (8)

Splay Trees

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985

Idea: Whenever we query a key, rotate it to the root.

Splay Trees

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985

Idea: Whenever we query a key, rotate it to the root.

New:
Splay (x) : Rotate x to the root Query (x) : Splay (x), then return root

Query(8) Query(6)

Splay Trees

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985

Idea: Whenever we query a key, rotate it to the root.

New:
Splay (x) : Rotate x to the root Query (x) : Splay (x), then return root Query(8) Query(6) Query(5)

Splay Trees

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985

Idea: Whenever we query a key, rotate it to the root.

New:
Splay (x) : Rotate x to the root Query (x) : $\operatorname{Splay}(x)$, then return root Query(8) Query(6) Query(5)

Splay Trees

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985

Idea: Whenever we query a key,

 rotate it to the root.

New:
Splay (x) : Rotate x to the root Query (x) : Splay (x), then return root

Query(8) Query(6) Query(5) Query (3)

Splay Trees

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985

Idea: Whenever we query a key,

 rotate it to the root.

New:
Splay (x) : Rotate x to the root Query (x) : $\operatorname{Splay}(x)$, then return root

Query(8) Query(6) Query(5) Query (3)

Splay Trees

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985

Idea: Whenever we query a key, rotate it to the root.

New:
Splay (x) : Rotate x to the root Query (x) : Splay (x), then return root

Query(8) Query(6) Query(5) Query (3)
Query (2)

Splay Trees

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985

Idea: Whenever we query a key, rotate it to the root.

y Right (x)

Known from the lecture algorithms and data structures (ADS): New:

Splay (x) : Rotate x to the root Query (x) : $\operatorname{Splay}(x)$, then return root

Query(8) Query(6) Query(5) Query (3)
Query (2)

Splay Trees

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985

Idea: Whenever we query a key, rotate it to the root.

New:

> Splay (x) : Rotate x to the root Query $(x):$ Splay (x), then return root
> Query (8) Query(6) Query (5) Query (3) Query (2)

Splay Trees

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985

Idea: Whenever we query a key, rotate it to the root.
Known from the lecture algorithms and data structures (ADS):
New:

Splay (x) : Rotate x to the root Query (x) : Splay (x), then return root

Query (8) Query (6) Query (5)
Query (3) We're back at the start... Query (2) and we did $\Theta\left(n^{2}\right)$ rotations

$$
\Delta \Delta \Delta \Delta \Delta
$$

Rotations II

Rotations II

Rotations II

$$
\begin{aligned}
& \Delta \Delta \Delta \sin \operatorname{man} \\
& \Delta \Delta \Delta \Delta \quad \Delta \Delta \Delta \Delta \\
& \Delta \Delta \Delta \Delta
\end{aligned}
$$

$$
\begin{gathered}
\Delta \Delta \Delta \Delta \Delta \Delta \Delta \\
\Delta \\
\Delta \Delta \Delta \Delta
\end{gathered}
$$

Rotations II

Splay

Algorithm: Splay (x)

Splay

Algorithm: $\operatorname{Splay}(x)$
if $x \neq$ root then

Splay

Algorithm: Splay (x)
if $x \neq$ root then
$y=$ parent of x

Splay

Algorithm: Splay (x)
if $x \neq$ root then
$y=$ parent of x
if $y=$ root then

Splay

Algorithm: $\operatorname{Splay}(x)$
if $x \neq$ root then
$y=$ parent of x
if $y=$ root then
if $x<y$ then

Splay

Algorithm: $\operatorname{Splay}(x)$
if $x \neq$ root then
$y=$ parent of x
if $y=$ root then
if $x<y$ then $\operatorname{Right}(x)$

Splay

Algorithm: $\operatorname{Splay}(x)$
if $x \neq$ root then
$y=$ parent of x
if $y=$ root then
if $y<x$ then $\operatorname{Left}(x)$
if $y<x$ then Left (x)

Splay

Algorithm: Splay (x)
if $x \neq$ root then
$y=$ parent of x
if $y=$ root then
if $x<y$ then $\operatorname{Right}(x)$ if $y<x$ then $\operatorname{Left}(x)$
else
$z=$ parent of y

Splay

Algorithm: $\operatorname{Splay}(x)$
if $x \neq$ root then
$y=$ parent of x
if $y=$ root then
if $x<y$ then $\operatorname{Right}(x)$
if $y<x$ then Left (x)
else
$z=$ parent of y
if $x<y<z$ then

Splay

Algorithm: Splay (x)
if $x \neq$ root then
$y=$ parent of x
if $y=$ root then
if $x<y$ then $\operatorname{Right}(x)$
if $y<x$ then $\operatorname{Left}(x)$
else
$z=$ parent of y
if $x<y<z$ then $\operatorname{Right-Right}(x)$

Right-Right (x)

Splay

Algorithm: Splay (x)
if $x \neq$ root then
$y=$ parent of x
if $y=$ root then
if $x<y$ then $\operatorname{Right}(x)$
if $y<x$ then $\operatorname{Left}(x)$
else
$z=$ parent of y
if $x<y<z$ then Right-Right (x)
if $z<y<x$ then Left-Left (x)

Splay

Algorithm: $\operatorname{Splay}(x)$
if $x \neq$ root then
$y=$ parent of x
if $y=$ root then
if $x<y$ then $\operatorname{Right}(x)$
if $y<x$ then $\operatorname{Left}(x)$

else
$z=$ parent of y
if $x<y<z$ then $\operatorname{Right-Right~}(x)$
if $z<y<x$ then Left-Left (x)
if $y<x<z$ then

Splay

Algorithm: Splay (x)
if $x \neq$ root then
$y=$ parent of x
if $y=$ root then
if $x<y$ then $\operatorname{Right}(x)$
if $y<x$ then $\operatorname{Left}(x)$
else
$z=$ parent of y
if $x<y<z$ then $\operatorname{Right-Right}(x)$
if $z<y<x$ then Left-Left (x)
if $y<x<z$ then $\operatorname{Left}-\operatorname{Right}(x)$

Splay

Algorithm: Splay (x)
if $x \neq$ root then
$y=$ parent of x
if $y=$ root then
if $x<y$ then $\operatorname{Right}(x)$
if $y<x$ then $\operatorname{Left}(x)$
else
$z=$ parent of y
if $x<y<z$ then $\operatorname{Right-Right~}(x)$
if $z<y<x$ then Left-Left (x)
if $y<x<z$ then Left-Right (x)
if $z<x<y$ then Right-Left (x)

Splay

Algorithm: Splay (x)
if $x \neq$ root then
$y=$ parent of x
if $y=$ root then
if $x<y$ then $\operatorname{Right}(x)$
if $y<x$ then $\operatorname{Left}(x)$
else
$z=$ parent of y
if $x<y<z$ then $\operatorname{Right-Right}(x)$
if $z<y<x$ then Left-Left (x)
if $y<x<z$ then $\operatorname{Left}-\operatorname{Right}(x)$
if $z<x<y$ then Right-Left (x)
Splay (x)

Splay

Algorithm: $\operatorname{Splay}(x)$
if $x \neq$ root then
$y=$ parent of x
if $y=$ root then
if $x<y$ then $\operatorname{Right}(x)$
if $y<x$ then Left (x)
else

$z=$ parent of y

if $x<y<z$ then $\operatorname{Right-Right}(x)$
if $z<y<x$ then Left-Left (x) if $y<x<z$ then $\operatorname{Left-Right~}(x)$
if $z<x<y$ then $\operatorname{Right-Left}(x)$ if $y<x<z$ then $\operatorname{Left}-\operatorname{Right}(x)$
if $z<x<y$ then $\operatorname{Right-Left}(x)$
Splay (x)

$$
y
$$

Splay (3):

Splay

Algorithm: $\operatorname{Splay}(x)$
if $x \neq$ root then
$y=$ parent of x
if $y=$ root then
if $x<y$ then $\operatorname{Right}(x)$
if $y<x$ then Left (x)
else

Splay (x)

$$
y
$$

$$
\begin{aligned}
& z=\text { parent of } y \\
& \text { if } x<y<z \text { then } \operatorname{Right-Right}(x) \\
& \text { if } z<y<x \text { then } \operatorname{Left}-\operatorname{Left}(x) \\
& \text { if } y<x<z \text { then } \operatorname{Left-Right~}(x) \\
& \text { if } z<x<y \text { then } \operatorname{Right-Left~}(x)
\end{aligned}
$$

Splay

Algorithm: $\operatorname{Splay}(x)$
if $x \neq$ root then
$y=$ parent of x
if $y=$ root then
if $x<y$ then $\operatorname{Right}(x)$
if $y<x$ then $\operatorname{Left}(x)$
else

$z=$ parent of y

if $x<y<z$ then $\operatorname{Right-Right}(x)$
if $z<y<x$ then Left-Left (x)
if $y<x<z$ then $\operatorname{Left}-\operatorname{Right}(x)$
if $z<x<y$ then Right-Left (x)
Splay (x)

Splay

Algorithm: $\operatorname{Splay}(x)$
if $x \neq$ root then
$y=$ parent of x
if $y=$ root then
if $x<y$ then $\operatorname{Right}(x)$
if $y<x$ then $\operatorname{Left}(x)$
else

$z=$ parent of y

if $x<y<z$ then Right-Right (x)
if $z<y<x$ then Left-Left (x)
if $y<x<z$ then $\operatorname{Left}-\operatorname{Right}(x)$
if $z<x<y$ then Right-Left (x)
Splay (x)

Splay

Algorithm: $\operatorname{Splay}(x)$
if $x \neq$ root then
$y=$ parent of x
if $y=$ root then
if $x<y$ then $\operatorname{Right}(x)$
if $y<x$ then $\operatorname{Left}(x)$
else

$z=$ parent of y

if $x<y<z$ then Right-Right (x)
if $z<y<x$ then Left-Left (x)
if $y<x<z$ then $\operatorname{Left}-\operatorname{Right}(x)$
if $z<x<y$ then Right-Left (x)
Splay (x)

Splay

Algorithm: $\operatorname{Splay}(x)$
if $x \neq$ root then
$y=$ parent of x
if $y=$ root then
if $x<y$ then $\operatorname{Right}(x)$
if $y<x$ then $\operatorname{Left}(x)$
else

$z=$ parent of y

if $x<y<z$ then $\operatorname{Right-Right}(x)$
if $z<y<x$ then Left-Left (x)
if $y<x<z$ then $\operatorname{Left}-\operatorname{Right}(x)$
if $z<x<y$ then Right-Left (x)
Splay (x)

Splay (3):

Splay

Algorithm: $\operatorname{Splay}(x)$
if $x \neq$ root then
$y=$ parent of x
if $y=$ root then
if $x<y$ then $\operatorname{Right}(x)$
if $y<x$ then $\operatorname{Left}(x)$
else

$$
z=\text { parent of } y
$$

if $x<y<z$ then $\operatorname{Right-Right}(x)$
if $z<y<x$ then Left-Left (x)
if $y<x<z$ then Left-Right (x)
if $z<x<y$ then Right-Left (x)
Splay (x)

Splay (3):

Call Splay (x) :

Splay

Algorithm: $\operatorname{Splay}(x)$
if $x \neq$ root then
$y=$ parent of x
if $y=$ root then
if $x<y$ then $\operatorname{Right}(x)$
if $y<x$ then $\operatorname{Left}(x)$
else

$$
z=\text { parent of } y
$$

if $x<y<z$ then $\operatorname{Right-Right}(x)$
if $z<y<x$ then Left-Left (x)
if $y<x<z$ then Left-Right (x)
if $z<x<y$ then Right-Left (x)
Splay (x)

Splay (3):

Call Splay (x) :
■ after Search (x)

Splay

Algorithm: $\operatorname{Splay}(x)$
if $x \neq$ root then
$y=$ parent of x
if $y=$ root then
if $x<y$ then $\operatorname{Right}(x)$
if $y<x$ then $\operatorname{Left}(x)$
else

$$
z=\text { parent of } y
$$

if $x<y<z$ then $\operatorname{Right-Right}(x)$
if $z<y<x$ then Left-Left (x)
if $y<x<z$ then Left-Right (x)
if $z<x<y$ then Right-Left (x)
Splay (x)

Splay (3):

Call Splay (x) :

- after Search (x)
- after Insert (x)

Splay

Algorithm: $\operatorname{Splay}(x)$
if $x \neq$ root then
$y=$ parent of x
if $y=$ root then
if $x<y$ then $\operatorname{Right}(x)$
if $y<x$ then $\operatorname{Left}(x)$
else

$$
z=\text { parent of } y
$$

if $x<y<z$ then $\operatorname{Right-Right}(x)$
if $z<y<x$ then Left-Left (x)
if $y<x<z$ then Left-Right (x)
if $z<x<y$ then Right-Left (x)
Splay (x)

Splay (3):

Call Splay (x) :

- after Search (x)
- after $\operatorname{Insert}(x)$
- before Delete (x)

Why is Splay Fast?

Why is Splay Fast?
$w(x)$: weight of x (here 1), $W=\sum w(x)$ (here n)

Why is Splay Fast?
$w(x)$: weight of x (here 1), $W=\sum w(x)$ (here n)

Why is Splay Fast?
$w(x)$: weight of x (here 1), $W=\sum w(x)$ (here n)
$s(x)$: sum of all $w(x)$ in subtree of x

Why is Splay Fast?
$w(x)$: weight of x (here 1), $W=\sum w(x)$ (here n)
$s(x)$: sum of all $w(x)$ in subtree of x

Why is Splay Fast?
$w(x)$: weight of x (here 1), $W=\sum w(x)$ (here n)
$s(x)$: sum of all $w(x)$ in subtree of x

Why is Splay Fast?
$w(x)$: weight of x (here 1), $W=\sum w(x)$ (here n)
$s(x)$: sum of all $w(x)$ in subtree of x

Why is Splay Fast?
$w(x)$: weight of x (here 1), $W=\sum w(x)$ (here n)
$s(x)$: sum of all $w(x)$ in subtree of x

Why is Splay Fast?
$w(x)$: weight of x (here 1), $W=\sum w(x)$ (here n)
$s(x)$: sum of all $w(x)$ in subtree of x

Why is Splay Fast?
$w(x)$: weight of x (here 1), $W=\sum w(x)$ (here n)
$s(x)$: sum of all $w(x)$ in subtree of x

Why is Splay Fast?
$w(x)$: weight of x (here 1), $W=\sum w(x)$ (here n)
$s(x)$: sum of all $w(x)$ in subtree of x

Why is Splay Fast?

$w(x)$: weight of x (here 1), $W=\sum w(x)$ (here n)
$s(x)$: sum of all $w(x)$ in subtree of x mark edges:

Why is Splay Fast?
$w(x)$: weight of x (here 1), $W=\sum w(x)$ (here n)
$s(x)$: sum of all $w(x)$ in subtree of x mark edges:
$\longrightarrow s($ child $) \leq s($ parent $) / 2$

Why is Splay Fast?
$w(x)$: weight of x (here 1), $W=\sum w(x)$ (here n)
$s(x)$: sum of all $w(x)$ in subtree of x mark edges:
$\longrightarrow s($ child $) \leq s($ parent $) / 2$
$\longrightarrow s($ child $)>s($ parent $) / 2$

Why is Splay Fast?
$w(x)$: weight of x (here 1), $W=\sum w(x)$ (here n)
$s(x)$: sum of all $w(x)$ in subtree of x mark edges:
$\longrightarrow s($ child $) \leq s($ parent $) / 2$
$\longrightarrow s($ child $)>s($ parent $) / 2$

Why is Splay Fast?
$w(x)$: weight of x (here 1), $W=\sum w(x)$ (here n)
$s(x)$: sum of all $w(x)$ in subtree of x mark edges:
$\longrightarrow s($ child $) \leq s($ parent $) / 2$
$\longrightarrow s($ child $)>s($ parent $) / 2$

Why is Splay Fast?
$w(x)$: weight of x (here 1), $W=\sum w(x)$ (here n)
$s(x)$: sum of all $w(x)$ in subtree of x mark edges:
$\longrightarrow s($ child $) \leq s($ parent $) / 2$
$\longrightarrow s($ child $)>s($ parent $) / 2$

Why is Splay Fast?
$w(x)$: weight of x (here 1), $W=\sum w(x)$ (here n)
$s(x)$: sum of all $w(x)$ in subtree of x mark edges:
$\longrightarrow s($ child $) \leq s($ parent $) / 2$
$\longrightarrow s($ child $)>s($ parent $) / 2$

Why is Splay Fast?
$w(x)$: weight of x (here 1), $W=\sum w(x)$ (here n)
$s(x)$: sum of all $w(x)$ in subtree of x mark edges:
$\longrightarrow s($ child $) \leq s($ parent $) / 2$
$\longrightarrow s($ child $)>s($ parent $) / 2$

Why is Splay Fast?
$w(x)$: weight of x (here 1), $W=\sum w(x)$ (here n)
$s(x)$: sum of all $w(x)$ in subtree of x mark edges:
$\longrightarrow s($ child $) \leq s($ parent $) / 2$
$\longrightarrow s($ child $)>s($ parent $) / 2$

Why is Splay Fast?
$w(x)$: weight of x (here 1), $W=\sum w(x)$ (here n)
$s(x)$: sum of all $w(x)$ in subtree of x mark edges:
$\longrightarrow s($ child $) \leq s($ parent $) / 2$
$\longrightarrow s($ child $)>s($ parent $) / 2$

Why is Splay Fast?
$w(x)$: weight of x (here 1), $W=\sum w(x)$ (here n)
$s(x)$: sum of all $w(x)$ in subtree of x mark edges:
$\longrightarrow s($ child $) \leq s($ parent $) / 2$
$\longrightarrow s($ child $)>s($ parent $) / 2$

Why is Splay Fast?
$w(x)$: weight of x (here 1), $W=\sum w(x)$ (here n)
$s(x)$: sum of all $w(x)$ in subtree of x mark edges:
$\longrightarrow s($ child $) \leq s($ parent $) / 2$
$\longrightarrow s($ child $)>s$ (parent) $/ 2$
Cost to query x :

Why is Splay Fast?
$w(x)$: weight of x (here 1), $W=\sum w(x)$ (here n)
$s(x)$: sum of all $w(x)$ in subtree of x mark edges:
$\longrightarrow s($ child $) \leq s($ parent $) / 2$
$\longrightarrow s($ child $)>s($ parent $) / 2$
Cost to query $x: O(\#$ blue $+\#$ red $)$

Why is Splay Fast?

$w(x)$: weight of x (here 1), $W=\sum w(x)$ (here n)
$s(x)$: sum of all $w(x)$ in subtree of x mark edges:
$\longrightarrow s($ child $) \leq s($ parent $) / 2$
$\longrightarrow s($ child $)>s($ parent $) / 2$
Cost to query $x: O(\#$ blue $+\#$ red $)$ Idea: blue edges halve the weight

Why is Splay Fast?

$w(x)$: weight of x (here 1), $W=\sum w(x)$ (here n)
$s(x)$: sum of all $w(x)$ in subtree of x mark edges:
$\longrightarrow s($ child $) \leq s($ parent $) / 2$
$\longrightarrow s($ child $)>s($ parent $) / 2$
Cost to query x : $O(\#$ blue $+\#$ red $)$ Idea: blue edges halve the weight \Rightarrow \#blue $\in O(\log W)$

Why is Splay Fast?

$w(x)$: weight of x (here 1), $W=\sum w(x)$ (here n)
$s(x)$: sum of all $w(x)$ in subtree of x mark edges:
$\longrightarrow s($ child $) \leq s($ parent $) / 2$
$\longrightarrow s($ child $)>s($ parent $) / 2$
Cost to query x : $O(\log W+\#$ red $)$ Idea: blue edges halve the weight \Rightarrow \#blue $\in O(\log W)$

Why is Splay Fast?

$w(x)$: weight of x (here 1), $W=\sum w(x)$ (here n)
$s(x)$: sum of all $w(x)$ in subtree of x mark edges:
$\longrightarrow s($ child $) \leq s($ parent $) / 2$
$\longrightarrow s($ child $)>s($ parent $) / 2$
Cost to query $x: O(\log W+\#$ red $)$ Idea: blue edges halve the weight \Rightarrow \#blue $\in O(\log W)$
How can we amortize red edges?

Why is Splay Fast?

$w(x)$: weight of x (here 1), $W=\sum w(x)$ (here n)
$s(x)$: sum of all $w(x)$ in subtree of x mark edges:
$\longrightarrow s($ child $) \leq s($ parent $) / 2$
$\longrightarrow s($ child $)>s($ parent $) / 2$
Cost to query $x: O(\log W+\#$ red $)$ Idea: blue edges halve the weight \Rightarrow \#blue $\in O(\log W)$

How can we amortize red edges? Use sum-of-logs potential $\Phi=\sum \log s(x)$

Why is Splay Fast?

$w(x)$: weight of x (here 1), $W=\sum w(x)$ (here n)
$s(x)$: sum of all $w(x)$ in subtree of x mark edges:
$\longrightarrow s($ child $) \leq s($ parent $) / 2$
$\longrightarrow s($ child $)>s($ parent $) / 2$
Cost to query x : $O(\log W+\#$ red $)$ Idea: blue edges halve the weight \Rightarrow \#blue $\in O(\log W)$

How can we amortize red edges?
Use sum-of-logs potential $\Phi=\sum \log s(x)$ Amortized cost: real cost $+\Phi_{+}-\Phi$

What is Potential?

Φ represents work that has been "paid for" but not yet performed.

What is Potential?

Φ represents work that has been "paid for" but not yet performed. amortized cost per step: real cost $+\Phi_{+}-\Phi$

What is Potential?

Φ represents work that has been "paid for" but not yet performed. amortized cost per step: real cost $+\Phi_{+}-\Phi$ $\underset{\text { (initial potential) }}{\text { total }}=\underset{(\text { end }}{(\text { potential at the end })}$

What is Potential?

Φ represents work that has been "paid for" but not yet performed. amortized cost per step: real cost $+\Phi_{+}-\Phi$ total cost $=\Phi_{0}-\Phi_{\text {end }}+\sum$ amortized cost (initial potential) φ (potential at the end)

Example (from ADS): Stack with multipop

What is Potential?

Φ represents work that has been "paid for" but not yet performed. amortized cost per step: real cost $+\Phi_{+}-\Phi$ total cost $=\Phi_{0}-\Phi_{\text {end }}+\sum$ amortized cost (initial potential) φ (potential at the end)

Example (from ADS): Stack with multipop
$\Phi:=$ size of the stack

What is Potential?

Φ represents work that has been "paid for" but not yet performed. amortized cost per step: real cost $+\Phi_{+}-\Phi$ total cost $=\Phi_{0}-\Phi_{\text {end }}+\sum$ amortized cost (initial potential) φ (potential at the end)

Example (from ADS): Stack with multipop
$\Phi:=$ size of the stack

$$
\Phi=0
$$

What is Potential?

Φ represents work that has been "paid for" but not yet performed. amortized cost per step: real cost $+\Phi_{+}-\Phi$ $\underset{\text { (initial potential) }}{\text { total }}=\Phi_{0}-\Phi_{\text {end }}+\sum$ amortized cost

Example (from ADS): Stack with multipop
$\Phi:=$ size of the stack

What is Potential?

Φ represents work that has been "paid for" but not yet performed. amortized cost per step: real cost $+\Phi_{+}-\Phi$ $\underset{\text { (initial potential) }}{\text { total }}=\Phi_{0}-\Phi_{\text {end }}+\sum$ amortized cost

Example (from ADS): Stack with multipop
$\Phi:=$ size of the stack

What is Potential?

Φ represents work that has been "paid for" but not yet performed. amortized cost per step: real cost $+\Phi_{+}-\Phi$ $\underset{\text { (initial potential) }}{\text { total cost }}=\Phi_{0}-\Phi_{\text {end }}+\sum$ amortized cost

Example (from ADS): Stack with multipop
$\Phi:=$ size of the stack

What is Potential?

Φ represents work that has been "paid for" but not yet performed. amortized cost per step: real cost $+\Phi_{+}-\Phi$ $\underset{\text { (initial potential) }}{\text { total cost }}=\Phi_{0}-\Phi_{\text {end }}+\sum$ amortized cost

Example (from ADS): Stack with multipop
$\Phi:=$ size of the stack

What is Potential?

Φ represents work that has been "paid for" but not yet performed. amortized cost per step: real cost $+\Phi_{+}-\Phi$ $\underset{\text { (initial potential) }}{\text { total }}=\Phi_{0}-\Phi_{\text {(potend }}+\sum$ amortial at the end $) ~ c o s t$

Example (from ADS): Stack with multipop
$\Phi:=$ size of the stack

What is Potential?

Φ represents work that has been "paid for" but not yet performed. amortized cost per step: real cost $+\Phi_{+}-\Phi$ $\underset{\text { (initial potential) }}{\text { total }}=\Phi_{0}-\Phi_{\text {end }}+\sum$ amortized cost

Example (from ADS): Stack with multipop
$\Phi:=$ size of the stack

What is Potential?

Φ represents work that has been "paid for" but not yet performed. amortized cost per step: real cost $+\Phi_{+}-\Phi$ $\underset{\text { (initial potential) }}{\text { total cost }}=\Phi_{0}-\Phi_{\text {end }}+\sum$ amortized cost

Example (from ADS): Stack with multipop
$\Phi:=$ size of the stack

pop(2)	
	3
	2
$\Phi=3$	1

What is Potential?

Φ represents work that has been "paid for" but not yet performed. amortized cost per step: real cost $+\Phi_{+}-\Phi$ $\underset{\text { (initial potential) }}{\text { total cost }}=\Phi_{0}-\Phi_{\text {end }}+\sum$ amortized cost

Example (from ADS): Stack with multipop
$\Phi:=$ size of the stack

\[

\]

What is Potential?

Φ represents work that has been "paid for" but not yet performed. amortized cost per step: real cost $+\Phi_{+}-\Phi$ $\underset{\text { (initial potential) }}{\text { total cost }}=\Phi_{0}-\Phi_{\text {end }}+\sum$ amortized cost

Example (from ADS): Stack with multipop
$\Phi:=$ size of the stack

$$
\Phi=1 \quad 1
$$

push:

$$
\operatorname{pop}(k):
$$

What is Potential?

Φ represents work that has been "paid for" but not yet performed. amortized cost per step: real cost $+\Phi_{+}-\Phi$ $\underset{\text { (initial potential) }}{\text { total cost }}=\Phi_{0}-\Phi_{\text {end }}+\sum$ amortized cost

Example (from ADS): Stack with multipop
$\Phi:=$ size of the stack

$$
\Phi=1 \quad 1
$$

push: $\quad 1+\Phi_{+}-\Phi$ $\operatorname{pop}(k)$:

What is Potential?

Φ represents work that has been "paid for" but not yet performed. amortized cost per step: real cost $+\Phi_{+}-\Phi$ $\underset{\text { (initial potential) }}{\text { total cost }}=\Phi_{0}-\Phi_{\text {end }}+\sum$ amortized cost

Example (from ADS): Stack with multipop
$\Phi:=$ size of the stack

$$
\Phi=1 \quad 1
$$

push: $1+\Phi_{+}-\Phi=2$ $\operatorname{pop}(k)$:

What is Potential?

Φ represents work that has been "paid for" but not yet performed. amortized cost per step: real cost $+\Phi_{+}-\Phi$ $\underset{\text { (initial potential) }}{\text { total cost }}=\Phi_{0}-\Phi_{\text {end }}+\sum$ amortized cost

Example (from ADS): Stack with multipop
$\Phi:=$ size of the stack
push: $\quad 1+\Phi_{+}-\Phi=2$
$\operatorname{pop}(k): k+\Phi_{+}-\Phi$

What is Potential?

Φ represents work that has been "paid for" but not yet performed. amortized cost per step: real cost $+\Phi_{+}-\Phi$ $\underset{\text { (initial potential) }}{\text { total cost }}=\Phi_{0}-\Phi_{\text {end }}+\sum$ amortized cost

Example (from ADS): Stack with multipop
$\Phi:=$ size of the stack

$$
\Phi=1 \quad 1
$$

push: $\quad 1+\Phi_{+}-\Phi=2$
$\operatorname{pop}(k): k+\Phi_{+}-\Phi=0$

What is Potential?

Φ represents work that has been "paid for" but not yet performed. amortized cost per step: real cost $+\Phi_{+}-\Phi$ $\underset{\text { (initial potential) }}{\text { total cost }}=\Phi_{0}-\Phi_{\text {end }}+\sum$ amortized cost

Example (from ADS): Stack with multipop
$\Phi:=$ size of the stack

$$
\Phi=1 \quad 1
$$

push: $\quad 1+\Phi_{+}-\Phi=2$
$\operatorname{pop}(k): k+\Phi_{+}-\Phi=0$
total cost $=\Phi_{0}-\Phi_{\text {end }}+$ amortized cost

What is Potential?

Φ represents work that has been "paid for" but not yet performed. amortized cost per step: real cost $+\Phi_{+}-\Phi$ $\underset{\text { (initial potential) }}{\text { total cost }}=\Phi_{0}-\Phi_{\text {end }}+\sum$ amortized cost

Example (from ADS): Stack with multipop $\Phi:=$ size of the stack

$$
\Phi=1 \quad 1
$$

push: $\quad 1+\Phi_{+}-\Phi=2$

$$
\operatorname{pop}(k): \quad k+\Phi_{+}-\Phi=0
$$

$$
\text { total cost }=\Phi_{0}-\Phi_{\text {end }}+\text { amortized cost }
$$

$$
\leq \Phi_{0}-\Phi_{\mathrm{end}}+2 n
$$

What is Potential?

Φ represents work that has been "paid for" but not yet performed. amortized cost per step: real cost $+\Phi_{+}-\Phi$ $\underset{\text { (initial potential) }}{\text { total cost }}=\Phi_{0}-\Phi_{\text {end }}+\sum$ amortized cost

Example (from ADS): Stack with multipop $\Phi:=$ size of the stack

$$
\Phi=1 \quad 1
$$

push: $\quad 1+\Phi_{+}-\Phi=2$

$$
\operatorname{pop}(k): \quad k+\Phi_{+}-\Phi=0
$$

$$
\text { total cost }=\Phi_{0}-\Phi_{\text {end }}+\text { amortized cost }
$$

$$
\leq \Phi_{0}-\Phi_{\mathrm{end}}+2 n
$$

$$
\leq 2 n
$$

What is Potential?

Φ represents work that has been "paid for" but not yet performed. amortized cost per step: real cost $+\Phi_{+}-\Phi$ $\underset{\text { (initial potential) }}{\text { total cost }}=\Phi_{0}-\Phi_{\text {end }}+\sum$ amortized cost

Example (from ADS): Stack with multipop $\Phi:=$ size of the stack

$$
\Phi=1 \quad 1
$$

push: $\quad 1+\Phi_{+}-\Phi=2$

$$
\operatorname{pop}(k): \quad k+\Phi_{+}-\Phi=0
$$

$$
\text { total cost }=\Phi_{0}-\Phi_{\text {end }}+\text { amortized cost }
$$

$$
\leq \Phi_{0}-\Phi_{\mathrm{end}}+2 n
$$

$$
\leq 2 n \in O(n)
$$

Why is Splay Fast?

$w(x)$: weight of x (here 1), $W=\sum w(x)$ (here n)
$s(x)$: sum of all $w(x)$ in subtree of x_{i} mark edges:
$\longrightarrow s($ child $) \leq s($ parent $) / 2$
$\longrightarrow s($ child $)>s($ parent $) / 2$
Cost to query $x_{i}: O(\log W+\#$ red $)$ Idea: blue edges halve the weight \Rightarrow \#blue $\in O(\log W)$
How can we amortize red edges?
Use sum-of-logs potential $\Phi=\sum \log s(x)$ Amortized cost: real cost $+\Phi_{+}-\dot{\Phi}$
(potential after splay)

Why is Splay Fast?

$w(x)$: weight of x (here 1), $W=\sum w(x)$ (here n) $s(x)$: sum of all $w(x)$ in subtree of x_{i} mark edges:
$\longrightarrow s($ child $) \leq s($ parent $) / 2$
$\longrightarrow s($ child $)>s($ parent $) / 2$
Cost to query $x_{i}: O(\log W+\#$ red $)$ Idea: blue edges halve the weight \Rightarrow \#blue $\in O(\log W)$
How can we amortize red edges?
Use sum-of-logs potential $\Phi=\sum \log s(x)$ Amortized cost: real cost $+\Phi_{+}-\stackrel{\rightharpoonup}{\Phi}$

Why is Splay Fast?

$w(x)$: weight of x (here 1), $W=\sum w(x)$ (here n) $s(x)$: sum of all $w(x)$ in subtree of x_{i} mark edges:
$\longrightarrow s($ child $) \leq s($ parent $) / 2$
$\longrightarrow s($ child $)>s($ parent $) / 2$
Cost to query $x_{i}: O(\log W+\#$ red $)$ Idea: blue edges halve the weight \Rightarrow \#blue $\in O(\log W)$
How can we amortize red edges?
Use sum-of-logs potential $\Phi=\sum \log s(x)$ Amortized cost: real cost $+\Phi_{+}-\Phi$

Why is Splay Fast?
$w(x)$: weight of x (here 1), $W=\sum w(x)$ (here n) $s(x)$: sum of all $w(x)$ in subtree of x_{i} mark edges:
$\longrightarrow s($ child $) \leq s($ parent $) / 2$
$\longrightarrow s($ child $)>s($ parent $) / 2$
Cost to query $x_{i}: O(\log W+\#$ red $)$ Idea: blue edges halve the weight \Rightarrow \#blue $\in O(\log W)$
How can we amortize red edges?
Use sum-of-logs potential $\Phi=\sum \log s(x)$ Amortized cost: real cost $+\Phi_{+}-\stackrel{\dot{\Phi}}{ }$

$$
\begin{aligned}
\Phi & =\sum_{i=1}^{n} \log i \\
& \in \Theta(n \log n)
\end{aligned}
$$

Why is Splay Fast?

$$
\begin{aligned}
\Phi & =\sum_{i=1}^{n} \log i \\
& \in \Theta(n \log n)
\end{aligned}
$$

$w(x)$: weight of x (here 1), $W=\sum w(x)$ (here n) $s(x)$: sum of all $w(x)$ in subtree of x_{i} mark edges:
$\longrightarrow s($ child $) \leq s($ parent $) / 2$
$\longrightarrow s($ child $)>s$ (parent) $/ 2$
Cost to query $x_{i}: O(\log W+\#$ red $)$ Idea: blue edges halve the weight \Rightarrow \#blue $\in O(\log W)$
How can we amortize red edges?
Use sum-of-logs potential $\Phi=\sum \log s(x)$ Amortized cost: real cost $+\Phi_{+}-\dot{\Phi}$

Why is Splay Fast?

$$
\begin{aligned}
\Phi & =\sum_{i=1}^{n} \log i \\
& \in \Theta(n \log n)
\end{aligned}
$$

$w(x)$: weight of x (here 1), $W=\sum w(x)$ (here n) $s(x)$: sum of all $w(x)$ in subtree of x_{i} mark edges:
$\longrightarrow s($ child $) \leq s($ parent $) / 2$
$\longrightarrow s($ child $)>s$ (parent) $/ 2$
Cost to query $x_{i}: O(\log W+\#$ red $)$ Idea: blue edges halve the weight \Rightarrow \#blue $\in O(\log W)$
How can we amortize red edges?
Use sum-of-logs potential $\Phi=\sum \log s(x)$ Amortized cost: real cost $+\Phi_{+}-\stackrel{\downarrow}{\Phi}$

Why is Splay Fast?

$$
\begin{aligned}
\Phi & =\sum_{i=1}^{n} \log i \\
& \in \Theta(n \log n)
\end{aligned}
$$

$w(x)$: weight of x (here 1), $W=\sum w(x)$ (here n) $s(x)$: sum of all $w(x)$ in subtree of x_{i} mark edges:
$\longrightarrow s($ child $) \leq s($ parent $) / 2$
$\longrightarrow s($ child $)>s$ (parent) $/ 2$
Cost to query $x_{i}: O(\log W+\#$ red $)$ Idea: blue edges halve the weight \Rightarrow \#blue $\in O(\log W)$
How can we amortize red edges?
Use sum-of-logs potential $\Phi=\sum \log s(x)$ Amortized cost: real cost $+\Phi_{+}-\Phi$

Potential after Rotation

Consider any rotation; $s(x)$ before rotation, $s_{+}(x)$ afterwards

Potential after Rotation

Consider any rotation; $s(x)$ before rotation, $s_{+}(x)$ afterwards
Lemma. After a single rotation, the potential increases by $\leq 3(\log s+(x)-\log s(x))$.

Potential after Rotation

Consider any rotation; $s(x)$ before rotation, $s_{+}(x)$ afterwards
Lemma. After a single rotation, the potential increases by $\leq 3\left(\log s_{+}(x)-\log s(x)\right)$.
Proof. Right (x)

Potential after Rotation

Consider any rotation; $s(x)$ before rotation, $s_{+}(x)$ afterwards
Lemma. After a single rotation, the potential increases by $\leq 3\left(\log s_{+}(x)-\log s(x)\right)$.
Proof. Right (x)

Potential after Rotation

Consider any rotation; $s(x)$ before rotation, $s_{+}(x)$ afterwards
Lemma. After a single rotation, the potential increases by $\leq 3\left(\log s_{+}(x)-\log s(x)\right)$.
Proof. Right (x)

Observe: Only $s(x)$ and $s(y)$ change.

Potential after Rotation

Consider any rotation; $s(x)$ before rotation, $s_{+}(x)$ afterwards
Lemma. After a single rotation, the potential increases by $\leq 3\left(\log s_{+}(x)-\log s(x)\right)$.
Proof. Right (x)

Observe: Only $s(x)$ and $s(y)$ change.
pot. change $=\log s_{+}(x)+\log s_{+}(y)$

$$
-\log s(x)-\log s(y)
$$

Potential after Rotation

Consider any rotation; $s(x)$ before rotation, $s_{+}(x)$ afterwards
Lemma. After a single rotation, the potential increases by $\leq 3\left(\log s_{+}(x)-\log s(x)\right)$.
Proof. Right (x)

Observe: Only $s(x)$ and $s(y)$ change.
pot. change $=\log s_{+}(x)+\log s_{+}(y)$

$$
-\log s(x)-\log s(y)
$$

$\left(s_{+}(y) \leq s(y)\right)$

Potential after Rotation

Consider any rotation; $s(x)$ before rotation, $s_{+}(x)$ afterwards
Lemma. After a single rotation, the potential increases by $\leq 3\left(\log s_{+}(x)-\log s(x)\right)$.
Proof. Right (x)

Observe: Only $s(x)$ and $s(y)$ change.
pot. change $=\log s_{+}(x)+\log s_{+}(y)$

$$
-\log s(x)-\log s(y)
$$

$\left(s_{+}(y) \leq s(y)\right) \quad \leq \log s_{+}(x)-\log s(x)$

Potential after Rotation

Consider any rotation; $s(x)$ before rotation, $s_{+}(x)$ afterwards
Lemma. After a single rotation, the potential increases by $\leq 3\left(\log s_{+}(x)-\log s(x)\right)$.
Proof. Right (x)

Observe: Only $s(x)$ and $s(y)$ change.
pot. change $=\log s_{+}(x)+\log s_{+}(y)$

$$
-\log s(x)-\log s(y)
$$

$\left(s_{+}(y) \leq s(y)\right) \quad \leq \log s_{+}(x)-\log s(x)$
$\left(s_{+}(x)>s(x)\right)$

Potential after Rotation

Consider any rotation; $s(x)$ before rotation, $s_{+}(x)$ afterwards
Lemma. After a single rotation, the potential increases by $\leq 3\left(\log s_{+}(x)-\log s(x)\right)$.
Proof. Right (x)

Observe: Only $s(x)$ and $s(y)$ change.
pot. change $=\log s_{+}(x)+\log s_{+}(y)$

$$
-\log s(x)-\log s(y)
$$

$\left(s_{+}(y) \leq s(y)\right) \quad \leq \log s_{+}(x)-\log s(x)$
$\left(s_{+}(x)>s(x)\right) \leq 3\left(\log s_{+}(x)-\log s(x)\right)$

Potential after Rotation

Consider any rotation; $s(x)$ before rotation, $s_{+}(x)$ afterwards
Lemma. After a single rotation, the potential increases by $\leq 3\left(\log s_{+}(x)-\log s(x)\right)$.
Proof. Right (x)

Observe: Only $s(x)$ and $s(y)$ change.
pot. change $=\log s_{+}(x)+\log s_{+}(y)$

$$
-\log s(x)-\log s(y)
$$

$\left(s_{+}(y) \leq s(y)\right) \quad \leq \log s_{+}(x)-\log s(x)$
$\left(s_{+}(x)>s(x)\right) \leq 3\left(\log s_{+}(x)-\log s(x)\right)$

Potential after Rotation

Consider any rotation; $s(x)$ before rotation, $s_{+}(x)$ afterwards
Lemma. After a single rotation, the potential increases by $\leq 3\left(\log s_{+}(x)-\log s(x)\right)$.
Proof. Right(x)

Observe: Only $s(x)$ and $s(y)$ change.
pot. change $=\log s_{+}(x)+\log s_{+}(y)$

$$
-\log s(x)-\log s(y)
$$

$\left(s_{+}(y) \leq s(y)\right) \quad \leq \log s_{+}(x)-\log s(x)$
$\left(s_{+}(x)>s(x)\right) \leq 3\left(\log s_{+}(x)-\log s(x)\right)$
Left (x) analogue

Potential after Rotation

Consider any rotation; $s(x)$ before rotation, $s_{+}(x)$ afterwards
Lemma. After a double rotation, the potential increases by $\leq 3\left(\log s_{+}(x)-\log s(x)\right)-2$.

Potential after Rotation

Consider any rotation; $s(x)$ before rotation, $s_{+}(x)$ afterwards
Lemma. After a double rotation, the potential increases by $\leq 3\left(\log s_{+}(x)-\log s(x)\right)-2$.
Proof.

Potential after Rotation

Consider any rotation; $s(x)$ before rotation, $s_{+}(x)$ afterwards
Lemma. After a double rotation, the potential increases by $\leq 3\left(\log s_{+}(x)-\log s(x)\right)-2$.
Proof.
Case 1. Right-Right (x)

Potential after Rotation

Consider any rotation; $s(x)$ before rotation, $s_{+}(x)$ afterwards
Lemma. After a double rotation, the potential increases by

$$
\leq 3(\log s+(x)-\log s(x))-2 .
$$

Proof.
Case 1. Right-Right(x)

Potential after Rotation

Consider any rotation; $s(x)$ before rotation, $s_{+}(x)$ afterwards
Lemma. After a double rotation, the potential increases by $\leq 3\left(\log s_{+}(x)-\log s(x)\right)-2$.
Proof.
Case 1. Right-Right (x)

$$
=\log s_{+}(x)+\log s_{+}(y)+\log s_{+}(z)
$$

$$
-\log s(x)-\log s(y)-\log s(z)
$$

Potential after Rotation

Consider any rotation; $s(x)$ before rotation, $s_{+}(x)$ afterwards
Lemma. After a double rotation, the potential increases by $\leq 3\left(\log s_{+}(x)-\log s(x)\right)-2$.
Proof.
Case 1. Right-Right (x)

$$
=\log s_{+}(x)+\log s_{+}(y)+\log s_{+}(z)
$$

$$
-\log s(x)-\log s(y)-\log s(z)
$$

$\left(s_{+}(x)=s(z)\right)$

Potential after Rotation

Consider any rotation; $s(x)$ before rotation, $s_{+}(x)$ afterwards
Lemma. After a double rotation, the potential increases by $\leq 3\left(\log s_{+}(x)-\log s(x)\right)-2$.
Proof.
Case 1. Right-Right (x)

$$
=\log s_{+}(x)+\log s_{+}(y)+\log s_{+}(z)
$$

$$
-\log s(x)-\log s(y)-\log s(z)
$$

$\left(s_{+}(x)=s(z)\right) \quad=\log s_{+}(y)+\log s_{+}(z)-\log s(x)-\log s(y)$

Potential after Rotation

Consider any rotation; $s(x)$ before rotation, $s_{+}(x)$ afterwards
Lemma. After a double rotation, the potential increases by $\leq 3(\log s+(x)-\log s(x))-2$.
Proof.
Case 1. Right-Right (x)

$$
=\log s_{+}(x)+\log s_{+}(y)+\log s_{+}(z)
$$

$$
-\log s(x)-\log s(y)-\log s(z)
$$

$\left(s_{+}(x)=s(z)\right) \quad=\log s_{+}(y)+\log s_{+}(z)-\log s(x)-\log s(y)$
$(s(x) \leq s(y))$

Potential after Rotation

Consider any rotation; $s(x)$ before rotation, $s_{+}(x)$ afterwards

$$
\begin{aligned}
\text { Lemma. } & \text { After a double rotation, the potential increases by } \\
& \leq 3\left(\log s_{+}(x)-\log s(x)\right)-2 .
\end{aligned}
$$

Proof.
Case 1. Right-Right (x)

pot. change $\quad=\log s_{+}(x)+\log s_{+}(y)+\log s_{+}(z)$ $-\log s(x)-\log s(y)-\log s(z)$
$\left(s_{+}(x)=s(z)\right) \quad=\log s_{+}(y)+\log s_{+}(z)-\log s(x)-\log s(y)$
$(s(x) \leq s(y)) \quad \leq \log s_{+}(y)+\log s_{+}(z)-2 \log s(x)$

Potential after Rotation

Consider any rotation; $s(x)$ before rotation, $s_{+}(x)$ afterwards

$$
\begin{aligned}
& \text { Lemma. After a double rotation, the potential increases by } \\
& \leq 3\left(\log s_{+}(x)-\log s(x)\right)-2 .
\end{aligned}
$$

Proof.

Case 1. Right-Right (x)

pot. change $\quad=\log s_{+}(x)+\log s_{+}(y)+\log s_{+}(z)$ $-\log s(x)-\log s(y)-\log s(z)$
$\left(s_{+}(x)=s(z)\right) \quad=\log s_{+}(y)+\log s_{+}(z)-\log s(x)-\log s(y)$
$(s(x) \leq s(y)) \quad \leq \log s_{+}(y)+\log s_{+}(z)-2 \log s(x)$
$\left(s_{+}(y) \leq s_{+}(x)\right)$

Potential after Rotation

Consider any rotation; $s(x)$ before rotation, $s_{+}(x)$ afterwards

$$
\begin{aligned}
\text { Lemma. } & \text { After a double rotation, the potential increases by } \\
& \leq 3\left(\log s_{+}(x)-\log s(x)\right)-2 .
\end{aligned}
$$

Proof.
Case 1. Right-Right (x)

pot. change $\quad=\log s_{+}(x)+\log s_{+}(y)+\log s_{+}(z)$ $-\log s(x)-\log s(y)-\log s(z)$
$\left(s_{+}(x)=s(z)\right) \quad=\log s_{+}(y)+\log s_{+}(z)-\log s(x)-\log s(y)$
$(s(x) \leq s(y)) \quad \leq \log s_{+}(y)+\log s_{+}(z)-2 \log s(x)$
$\left(s_{+}(y) \leq s_{+}(x)\right) \leq \log s_{+}(x)+\log s_{+}(z)-2 \log s(x)$

Potential after Rotation

Consider any rotation; $s(x)$ before rotation, $s_{+}(x)$ afterwards

$$
\begin{aligned}
& \text { Lemma. After a double rotation, the potential increases by } \\
& \leq 3\left(\log s_{+}(x)-\log s(x)\right)-2 .
\end{aligned}
$$

Proof.
Case 1. Right-Right (x)

$$
\begin{aligned}
\text { pot. change }= & \log s_{+}(x)+\log s_{+}(y)+\log s_{+}(z) \\
& -\log s(x)-\log s(y)-\log s(z) \\
\left(s_{+}(x)=s(z)\right)= & \log s_{+}(y)+\log s_{+}(z)-\log s(x)-\log s(y) \\
(s(x) \leq s(y)) \leq & \log s_{+}(y)+\log s_{+}(z)-2 \log s(x) \\
\left(s_{+}(y) \leq s_{+}(x)\right) \leq & \log s_{+}(x)+\log s_{+}(z)-2 \log s(x)
\end{aligned}
$$

Potential after Rotation

Consider any rotation; $s(x)$ before rotation, $s_{+}(x)$ afterwards

$$
\begin{aligned}
\text { Lemma. } & \text { After a double rotation, the potential increases by } \\
& \leq 3\left(\log s_{+}(x)-\log s(x)\right)-2 .
\end{aligned}
$$

Proof.
Case 1. Right-Right (x)

$$
\begin{aligned}
\text { pot. change }= & \log s_{+}(x)+\log s_{+}(y)+\log s_{+}(z) \\
& -\log s(x)-\log s(y)-\log s(z) \\
\left(s_{+}(x)=s(z)\right)= & \log s_{+}(y)+\log s_{+}(z)-\log s(x)-\log s(y) \\
(s(x) \leq s(y)) \leq & \log s_{+}(y)+\log s_{+}(z)-2 \log s(x) \\
\left(s_{+}(y) \leq s_{+}(x)\right) \leq & \log s_{+}(x)+\log s_{+}(z)-2 \log s(x)
\end{aligned}
$$

Potential after Rotation

Consider any rotation; $s(x)$ before rotation, $s_{+}(x)$ afterwards

$$
\begin{aligned}
\text { Lemma. } & \text { After a double rotation, the potential increases by } \\
& \leq 3\left(\log s_{+}(x)-\log s(x)\right)-2 .
\end{aligned}
$$

Proof.
Case 1. Right-Right (x)

$$
\begin{aligned}
\text { pot. change }= & \log s_{+}(x)+\log s_{+}(y)+\log s_{+}(z) \\
& -\log s(x)-\log s(y)-\log s(z) \\
\left(s_{+}(x)=s(z)\right)= & \log s_{+}(y)+\log s_{+}(z)-\log s(x)-\log s(y) \\
(s(x) \leq s(y)) \leq & \log s_{+}(y)+\log s_{+}(z)-2 \log s(x) \\
\left(s_{+}(y) \leq s_{+}(x)\right) \leq & \log s_{+}(x)+\log s_{+}(z)-2 \log s(x)
\end{aligned}
$$

Potential after Rotation

Consider any rotation; $s(x)$ before rotation, $s_{+}(x)$ afterwards

$$
\begin{aligned}
\text { Lemma. } & \text { After a double rotation, the potential increases by } \\
& \leq 3\left(\log s_{+}(x)-\log s(x)\right)-2 .
\end{aligned}
$$

Proof.
Case 1. Right-Right(x)

$$
\begin{aligned}
& \text { pot. change } \quad= \log s_{+}(x)+\log s_{+}(y)+\log s_{+}(z) \\
&-\log s(x)-\log s(y)-\log s(z) \\
&\left(s_{+}(x)=s(z)\right)=\log s_{+}(y)+\log s_{+}(z)-\log s(x)-\log s(y) \\
&(s(x) \leq s(y)) \quad \leq \log s_{+}(y)+\log s_{+}(z)-2 \log s(x) \\
&\left(s_{+}(y) \leq s_{+}(x)\right) \leq \leq \log s_{+}(x)+\log s_{+}(z)-2 \log s(x)
\end{aligned}
$$

$(\star): s(x)+s_{+}(z) \leq s_{+}(x)$

Potential after Rotation

Consider any rotation; $s(x)$ before rotation, $s_{+}(x)$ afterwards
Lemma. After a double rotation, the potential increases by $\leq 3(\log s+(x)-\log s(x))-2$.

$(\star): s(x)+s_{+}(z) \leq s_{+}(x) \mid$

Potential after Rotation

Consider any rotation; $s(x)$ before rotation, $s_{+}(x)$ afterwards
Lemma. After a double rotation, the potential increases by $\leq 3(\log s+(x)-\log s(x))-2$.

Proof.	Inequality of arithmetic and Case 1. geometric means (A M-GM):

$(\star):$| $s(x)+s_{+}(z) \leq s_{+}(x)$ | $\log s(x)+\log s_{+}(z)$ |
| :--- | :--- |

Potential after Rotation

Consider any rotation; $s(x)$ before rotation, $s_{+}(x)$ afterwards
Lemma. After a double rotation, the potential increases by $\leq 3(\log s+(x)-\log s(x))-2$.

Proof.	Inequality of arithmetic and Case 1. geometric means (A M-GM):

$(\star): s(x)+s_{+}(z) \leq s_{+}(x) \mid \quad \log s(x)+\log s_{+}(z)=\log \left(s(x) s_{+}(z)\right)$

Potential after Rotation

Consider any rotation; $s(x)$ before rotation, $s_{+}(x)$ afterwards
Lemma. After a double rotation, the potential increases by $\leq 3(\log s+(x)-\log s(x))-2$.

$(\star): s(x)+s_{+}(z) \leq s_{+}(x) \left\lvert\, \begin{gathered}\left.\quad \begin{array}{c}\log s(x)+\log s_{+}(z)=\log \left(s(x) s_{+}(z)\right) \\ \leq \log \left(\left(\left(s(x)+s_{+}(z)\right) / 2\right)^{2}\right)\end{array}\right) .\end{gathered}\right.$

Potential after Rotation

Consider any rotation; $s(x)$ before rotation, $s_{+}(x)$ afterwards
Lemma. After a double rotation, the potential increases by $\leq 3(\log s+(x)-\log s(x))-2$.

Proof. Case 1	Inequality of arithmetic and geometric means (AM-GM):	
pot. cha $\left(s_{+}(x)=\right.$	$\underset{\text { (arithmetic mean) }}{\frac{x_{1}+x_{2}+\cdots+x_{k}}{k}} \geq \text { (geometric mean) }_{\sqrt[k]{x_{1} \cdot x_{2} \cdot \ldots \cdot x_{k}}}^{\text {(eater }}$	y)
$(s(x) \leq s$	for $k=2$:	
$\left(_{+}^{+}(y) \leq\right.$	$\frac{x+y}{2} \geq \sqrt{x y} \Rightarrow x y \leq\left(\frac{x+y}{2}\right)^{2}$	

$(\star): s s_{(x)+s_{+}(z) \leq s_{+}(x)} \left\lvert\, \begin{gathered}\log s(x)+\log s_{+}(z)=\log \left(s(x) s_{+}(z)\right) \\ \leq \log \left(\left(\left(s(x)+s_{+}(z)\right) / 2\right)^{2}\right) \leq \log \left(\left(s_{+}(x) / 2\right)^{2}\right)\end{gathered}\right.$

Potential after Rotation

Consider any rotation; $s(x)$ before rotation, $s_{+}(x)$ afterwards
Lemma. After a double rotation, the potential increases by $\leq 3\left(\log s_{+}(x)-\log s(x)\right)-2$.

Proof.

Case 1. Right-Right (x)

$$
\begin{aligned}
& \text { pot. change } \quad= \log s_{+}(x)+\log s_{+}(y)+\log s_{+}(z) \\
&-\log s(x)-\log s(y)-\log s(z) \\
&\left(s_{+}(x)=s(z)\right)=\log s_{+}(y)+\log s_{+}(z)-\log s(x)-\log s(y) \\
&(s(x) \leq s(y)) \quad \leq \log s_{+}(y)+\log s_{+}(z)-2 \log s(x) \\
&\left(s_{+}(y) \leq s_{+}(x)\right) \leq \leq \log s_{+}(x)+\log s_{+}(z)-2 \log s(x)
\end{aligned}
$$

$(\star): s(x)+s_{+}(z) \leq s_{+}(x) \mid$

$$
\begin{gathered}
\log s(x)+\log s_{+}(z)=\log \left(s(x) s_{+}(z)\right) \\
\leq \log \left(\left(\left(s(x)+s_{+}(z)\right) / 2\right)^{2}\right) \leq \log \left(\left(s_{+}(x) / 2\right)^{2}\right)=2 \log s_{+}(x)-2
\end{gathered}
$$

Potential after Rotation

Consider any rotation; $s(x)$ before rotation, $s_{+}(x)$ afterwards
Lemma. After a double rotation, the potential increases by $\leq 3\left(\log s_{+}(x)-\log s(x)\right)-2$.

Proof.

Case 1. Right-Right (x)

$$
\begin{aligned}
& \text { pot. change } \quad= \log s_{+}(x)+\log s_{+}(y)+\log s_{+}(z) \\
&-\log s(x)-\log s(y)-\log s(z) \\
&\left(s_{+}(x)=s(z)\right)= \log s_{+}(y)+\log s_{+}(z)-\log s(x)-\log s(y) \\
&(s(x) \leq s(y)) \quad \leq \log s_{+}(y)+\log s_{+}(z)-2 \log s(x) \\
&\left(s_{+}(y) \leq s_{+}(x)\right) \leq \leq \log s_{+}(x)+\log s_{+}(z)-2 \log s(x)
\end{aligned}
$$

$(\star): s(x)+s_{+}(z) \leq s_{+}(x) \mid$

$$
\begin{gathered}
\log s(x)+\log s_{+}(z)=\log \left(s(x) s_{+}(z)\right) \\
\leq \log \left(\left(\left(s(x)+s_{+}(z)\right) / 2\right)^{2}\right) \leq \log \left(\left(s_{+}(x) / 2\right)^{2}\right)=2 \log s_{+}(x)-2
\end{gathered}
$$

Potential after Rotation

Consider any rotation; $s(x)$ before rotation, $s_{+}(x)$ afterwards
Lemma. After a double rotation, the potential increases by

$$
\leq 3\left(\log s_{+}(x)-\log s(x)\right)-2 .
$$

Proof.

Case 1. Right-Right (x)

$$
\begin{aligned}
\text { pot. change } \quad= & \log s_{+}(x)+\log s_{+}(y)+\log s_{+}(z) \\
& -\log s(x)-\log s(y)-\log s(z) \\
\left(s_{+}(x)=s(z)\right) & =\log s_{+}(y)+\log s_{+}(z)-\log s(x)-\log s(y) \\
(s(x) \leq s(y)) & \leq \log s_{+}(y)+\log s_{+}(z)-2 \log s(x) \\
\left(s_{+}(y) \leq s_{+}(x)\right) & \leq \log s_{+}(x)+\log s_{+}(z)-2 \log s(x) \\
\leq & 3 \log s_{+}(x)-3 \log s(x)-2
\end{aligned}
$$

$(\star): s(x)+s_{+}(z) \leq s_{+}(x) \mid$

$$
\begin{aligned}
& {\log s(x)+\log s_{+}(z)=}^{s} \log \left(s(x) s_{+}(z)\right) \\
\leq & \log \left(\left(\left(s(x)+s_{+}(z)\right) / 2\right)^{2}\right) \underset{(())}{\leq} \log \left(\left(s_{+}(x) / 2\right)^{2}\right)=2 \log s_{+}(x)-2
\end{aligned}
$$

Potential after Rotation

Consider any rotation; $s(x)$ before rotation, $s_{+}(x)$ afterwards
Lemma. After a double rotation, the potential increases by $\leq 3(\log s+(x)-\log s(x))-2$.

Proof.

Case 1. Right-Right (x)

$$
\begin{aligned}
\text { pot. change } \quad= & \log s_{+}(x)+\log s_{+}(y)+\log s_{+}(z) \\
& -\log s(x)-\log s(y)-\log s(z) \\
\left(s_{+}(x)=s(z)\right) & =\log s_{+}(y)+\log s_{+}(z)-\log s(x)-\log s(y) \\
(s(x) \leq s(y)) & \leq \log s_{+}(y)+\log s_{+}(z)-2 \log s(x) \\
\left(s_{+}(y) \leq s_{+}(x)\right) \leq & \log s_{+}(x)+\log s_{+}(z)-2 \log s(x) \\
\leq & 3 \log s_{+}(x)-3 \log s(x)-2
\end{aligned}
$$

$(\star): s(x)+s_{+}(z) \leq s_{+}(x) \mid$

$$
\begin{aligned}
& \quad \log s(x)+\log s_{+}(z)=\log \left(s(x) s_{+}(z)\right) \\
& \leq \log \left(\left(\left(s(x)+s_{+}(z)\right) / 2\right)^{2}\right) \leq \log \left(\left(s_{+}(x) / 2\right)^{2}\right)=2 \log s_{+}(x)-2
\end{aligned}
$$

Potential after Rotation

Consider any rotation; $s(x)$ before rotation, $s_{+}(x)$ afterwards
Lemma. After a double rotation, the potential increases by

$$
\leq 3(\log s+(x)-\log s(x))-2
$$

Proof. / Left-Left (x)

Case 1. Right-Right (x)

$$
\begin{aligned}
\text { pot. change }= & \log s_{+}(x)+\log s_{+}(y)+\log s_{+}(z) \\
& -\log s(x)-\log s(y)-\log s(z) \\
\left(s_{+}(x)=s(z)\right)= & \log s_{+}(y)+\log s_{+}(z)-\log s(x)-\log s(y) \\
(s(x) \leq s(y)) \leq & \log s_{+}(y)+\log s_{+}(z)-2 \log s(x) \\
\left(s_{+}(y) \leq s_{+}(x)\right) \leq & \log s_{+}(x)+\log s_{+}(z)-2 \log s(x) \\
\leq & 3 \log s_{+}(x)-3 \log s(x)-2
\end{aligned}
$$

$(\star): s(x)+s_{+}(z) \leq s_{+}(x)$

$$
\begin{align*}
& \log s(x)+\log s_{+}(z)=\log \left(s(x) s_{+}(z)\right) \\
\leq & \log \left(\left(\left(s(x)+s_{+}(z)\right) / 2\right)^{2}\right) \underset{x}{\leq} \log \left(\left(s_{+}(x) / 2\right)^{2}\right)=2 \log s \tag{x}
\end{align*}
$$

Potential after Rotation

Consider any rotation; $s(x)$ before rotation, $s_{+}(x)$ afterwards
Lemma. After a double rotation, the potential increases by

$$
\leq 3\left(\log s_{+}(x)-\log s(x)\right)-2 .
$$

Proof.
Case 2. Right-Left(x)

Potential after Rotation

Consider any rotation; $s(x)$ before rotation, $s_{+}(x)$ afterwards
Lemma. After a double rotation, the potential increases by

$$
\leq 3(\log s+(x)-\log s(x))-2 .
$$

Proof.
Case 2. Right-Left(x)

pot. change $\quad=\log s_{+}(x)+\log s_{+}(y)+\log s_{+}(z)$ $-\log s(x)-\log s(y)-\log s(z)$

Potential after Rotation

Consider any rotation; $s(x)$ before rotation, $s_{+}(x)$ afterwards
Lemma. After a double rotation, the potential increases by $\leq 3\left(\log s_{+}(x)-\log s(x)\right)-2$.
Proof.
Case 2. Right-Left(x)

pot. change $\quad=\log s_{+}(x)+\log s_{+}(y)+\log s_{+}(z)$ $-\log s(x)-\log s(y)-\log s(z)$
$\left(s_{+}(x)=s(z)\right) \quad=\log s_{+}(y)+\log s_{+}(z)-\log s(x)-\log s(y)$

Potential after Rotation

Consider any rotation; $s(x)$ before rotation, $s_{+}(x)$ afterwards
Lemma. After a double rotation, the potential increases by $\leq 3\left(\log s_{+}(x)-\log s(x)\right)-2$.
Proof.
Case 2. Right-Left (x)

pot. change $\quad=\log s_{+}(x)+\log s_{+}(y)+\log s_{+}(z)$ $-\log s(x)-\log s(y)-\log s(z)$
$\left(s_{+}(x)=s(z)\right) \quad=\log s_{+}(y)+\log s_{+}(z)-\log s(x)-\log s(y)$
$(s(x) \leq s(y))$

Potential after Rotation

Consider any rotation; $s(x)$ before rotation, $s_{+}(x)$ afterwards
Lemma. After a double rotation, the potential increases by $\leq 3\left(\log s_{+}(x)-\log s(x)\right)-2$.
Proof.
Case 2. Right-Left (x)

pot. change $\quad=\log s_{+}(x)+\log s_{+}(y)+\log s_{+}(z)$ $-\log s(x)-\log s(y)-\log s(z)$
$\left(s_{+}(x)=s(z)\right) \quad=\log s_{+}(y)+\log s_{+}(z)-\log s(x)-\log s(y)$
$(s(x) \leq s(y)) \quad \leq \log s_{+}(y)+\log s_{+}(z)-2 \log s(x)$

Potential after Rotation

Consider any rotation; $s(x)$ before rotation, $s_{+}(x)$ afterwards
Lemma. After a double rotation, the potential increases by $\leq 3\left(\log s_{+}(x)-\log s(x)\right)-2$.
Proof.
Case 2. Right-Left(x)

pot. change $\quad=\log s_{+}(x)+\log s_{+}(y)+\log s_{+}(z)$ $-\log s(x)-\log s(y)-\log s(z)$
$\left(s_{+}(x)=s(z)\right) \quad=\log s_{+}(y)+\log s_{+}(z)-\log s(x)-\log s(y)$
$(s(x) \leq s(y)) \quad \leq \log s_{+}(y)+\log s_{+}(z)-2 \log s(x)$

Potential after Rotation

Consider any rotation; $s(x)$ before rotation, $s_{+}(x)$ afterwards
Lemma. After a double rotation, the potential increases by $\leq 3(\log s+(x)-\log s(x))-2$.
Proof.
Case 2. Right-Left (x)

pot. change $\quad=\log s_{+}(x)+\log s_{+}(y)+\log s_{+}(z)$ $-\log s(x)-\log s(y)-\log s(z)$
$\left(s_{+}(x)=s(z)\right) \quad=\log s_{+}(y)+\log s_{+}(z)-\log s(x)-\log s(y)$
$(s(x) \leq s(y)) \quad \leq \log s_{+}(y)+\log s_{+}(z)-2 \log s(x)$

Potential after Rotation

Consider any rotation; $s(x)$ before rotation, $s_{+}(x)$ afterwards
Lemma. After a double rotation, the potential increases by $\leq 3(\log s+(x)-\log s(x))-2$.
Proof.
Case 2. Right-Left(x)

pot. change $\quad=\log s_{+}(x)+\log s_{+}(y)+\log s_{+}(z)$ $-\log s(x)-\log s(y)-\log s(z)$
$\left(s_{+}(x)=s(z)\right) \quad=\log s_{+}(y)+\log s_{+}(z)-\log s(x)-\log s(y)$
$(s(x) \leq s(y)) \quad \leq \log s_{+}(y)+\log s_{+}(z)-2 \log s(x)$
$(\star): s_{+}(y)+s_{+}(z) \leq s_{+}(x)$

Potential after Rotation

Consider any rotation; $s(x)$ before rotation, $s_{+}(x)$ afterwards
Lemma. After a double rotation, the potential increases by $\leq 3(\log s+(x)-\log s(x))-2$.
Proof.
Case 2. Right-Left(x)

$$
\begin{aligned}
& \text { pot. change } \quad= \log s_{+}(x)+\log s_{+}(y)+\log s_{+}(z) \\
&-\log s(x)-\log s(y)-\log s(z) \\
&\left(s_{+}(x)=s(z)\right)= \log s_{+}(y)+\log s_{+}(z)-\log s(x)-\log s(y) \\
&(s(x) \leq s(y)) \quad \leq \log s_{+}(y)+\log s_{+}(z)-2 \log s(x)
\end{aligned}
$$

$$
(\star): s_{+}(y)+s_{+}(z) \leq s_{+}(x) \mid \log s_{+}(y)+\log s_{+}(z) \underset{\substack{\text { (AM-GM) } \\(\star)}}{\leq 2 \log s_{+}(x)-2}
$$

Potential after Rotation

Consider any rotation; $s(x)$ before rotation, $s_{+}(x)$ afterwards
Lemma. After a double rotation, the potential increases by $\leq 3\left(\log s_{+}(x)-\log s(x)\right)-2$.
Proof.
Case 2. Right-Left(x)

$$
\begin{aligned}
& \text { pot. change } \quad= \log s_{+}(x)+\log s_{+}(y)+\log s_{+}(z) \\
&-\log s(x)-\log s(y)-\log s(z) \\
&\left(s_{+}(x)=s(z)\right)=\log s_{+}(y)+\log s_{+}(z)-\log s(x)-\log s(y) \\
&(s(x) \leq s(y)) \quad \leq \log s_{+}(y)+\log s_{+}(z)-2 \log s(x)
\end{aligned}
$$

$$
(\star): s_{+}(y)+s_{+}(z) \leq s_{+}(x) \mid \log s_{+}(y)+\log s_{+}(z) \underset{\substack{\text { (AM-GM) } \\(\star)}}{\leq 2 \log s_{+}(x)-2}
$$

Potential after Rotation

Consider any rotation; $s(x)$ before rotation, $s_{+}(x)$ afterwards
Lemma. After a double rotation, the potential increases by $\leq 3(\log s+(x)-\log s(x))-2$.
Proof.
Case 2. Right-Left(x)

$$
\begin{aligned}
\text { pot. change } \quad= & \log s_{+}(x)+\log s_{+}(y)+\log s_{+}(z) \\
& -\log s(x)-\log s(y)-\log s(z) \\
\left(s_{+}(x)=s(z)\right) & =\log s_{+}(y)+\log s_{+}(z)-\log s(x)-\log s(y) \\
(s(x) \leq s(y)) & \leq \log s_{+}(y)+\log s_{+}(z)-2 \log s(x) \\
\leq & 2 \log s_{+}(x)-2 \log s(x)-2
\end{aligned}
$$

$$
(\star): s_{+}(y)+s_{+}(z) \leq s_{+}(x) \mid \log s_{+}(y)+\log s_{+}(z) \underset{\substack{(A M-M M) \\(\star)}}{\leq 2 \log s_{+}(x)}-2
$$

Potential after Rotation

Consider any rotation; $s(x)$ before rotation, $s_{+}(x)$ afterwards
Lemma. After a double rotation, the potential increases by $\leq 3(\log s+(x)-\log s(x))-2$.
Proof.
Case 2. Right-Left (x)

pot. change $=\log s_{+}(x)+\log s_{+}(y)+\log s_{+}(z)$ $-\log s(x)-\log s(y)-\log s(z)$
$\left(s_{+}(x)=s(z)\right) \quad=\log s_{+}(y)+\log s_{+}(z)-\log s(x)-\log s(y)$
$(s(x) \leq s(y)) \quad \leq \log s_{+}(y)+\log s_{+}(z)-2 \log s(x)$
$\leq 2 \log s_{+}(x)-2 \log s(x)-2$
$\left(s_{+}(x)>s(x)\right)$
$(\star): s_{+}(y)+s_{+}(z) \leq s_{+}(x) \mid \log s_{+}(y)+\log s_{+}(z) \underset{\substack{(A M-G M) \\(\in)}}{\leq 2 \log s_{+}(x)-2}$

Potential after Rotation

Consider any rotation; $s(x)$ before rotation, $s_{+}(x)$ afterwards
Lemma. After a double rotation, the potential increases by $\leq 3(\log s+(x)-\log s(x))-2$.
Proof.
Case 2. Right-Left (x)

pot. change $\quad=\log s_{+}(x)+\log s_{+}(y)+\log s_{+}(z)$ $-\log s(x)-\log s(y)-\log s(z)$
$\left(s_{+}(x)=s(z)\right) \quad=\log s_{+}(y)+\log s_{+}(z)-\log s(x)-\log s(y)$
$(s(x) \leq s(y)) \quad \leq \log s_{+}(y)+\log s_{+}(z)-2 \log s(x)$
$\leq 2 \log s_{+}(x)-2 \log s(x)-2$
$\left(s_{+}(x)>s(x)\right) \leq 3 \log s_{+}(x)-3 \log s(x)-2$
$(\star): s_{+}(y)+s_{+}(z) \leq s_{+}(x) \mid \log s_{+}(y)+\log s_{+}(z) \underset{\substack{\text { (AM-GM) } \\()^{2}}}{\leq 2 \log s_{+}(x)}-2$

Potential after Rotation

Consider any rotation; $s(x)$ before rotation, $s_{+}(x)$ afterwards
Lemma. After a double rotation, the potential increases by $\leq 3(\log s+(x)-\log s(x))-2$.
Proof.
Case 2. Right-Left (x)

pot. change $=\log s_{+}(x)+\log s_{+}(y)+\log s_{+}(z)$ $-\log s(x)-\log s(y)-\log s(z)$
$\left(s_{+}(x)=s(z)\right) \quad=\log s_{+}(y)+\log s_{+}(z)-\log s(x)-\log s(y)$
$(s(x) \leq s(y)) \quad \leq \log s_{+}(y)+\log s_{+}(z)-2 \log s(x)$
$\leq 2 \log s_{+}(x)-2 \log s(x)-2$
$\left(s_{+}(x)>s(x)\right) \leq 3 \log s_{+}(x)-3 \log s(x)-2$
$(\star): s_{+}(y)+s_{+}(z) \leq s_{+}(x) \mid \log s_{+}(y)+\log s_{+}(z) \underset{(\text { AM-GM) }}{\leq 2 \log s_{+}(x)-2}$

Potential after Rotation

Consider any rotation; $s(x)$ before rotation, $s_{+}(x)$ afterwards
Lemma. After a double rotation, the potential increases by $\leq 3(\log s+(x)-\log s(x))-2$.
Proof. / Left-Right (x) Case 2. Right-Left(x)

pot. change $\quad=\log s_{+}(x)+\log s_{+}(y)+\log s_{+}(z)$ $-\log s(x)-\log s(y)-\log s(z)$
$\left(s_{+}(x)=s(z)\right) \quad=\log s_{+}(y)+\log s_{+}(z)-\log s(x)-\log s(y)$
$(s(x) \leq s(y)) \quad \leq \log s_{+}(y)+\log s_{+}(z)-2 \log s(x)$
$\leq 2 \log s_{+}(x)-2 \log s(x)-2$
$\left(s_{+}(x)>s(x)\right) \leq 3 \log s_{+}(x)-3 \log s(x)-2$
$(\star): s_{+}(y)+s_{+}(z) \leq s_{+}(x) \mid \log s_{+}(y)+\log s_{+}(z) \underset{\substack{\text { (AM-GM) } \\(\star)}}{\leq 2 \log s_{+}(x)-2}$

Access Lemma
Lemma. After a single rotation, the potential increases by $\leq 3\left(\log s_{+}(x)-\log s(x)\right)$.
After a double rotation, the potential increases by $\leq 3(\log s+(x)-\log s(x))-2$.

Access Lemma
Lemma. After a single rotation, the potential increases by $\leq 3(\log s+(x)-\log s(x))$.
After a double rotation, the potential increases by $\leq 3\left(\log s_{+}(x)-\log s(x)\right)-2$.

Lemma. The (amortized) cost of $\operatorname{Splay}(x)$ is $c($ Splay $(x)) \leq 1+3 \log (W / w(x))$.

Access Lemma
Lemma. After a single rotation, the potential increases by $\leq 3\left(\log s_{+}(x)-\log s(x)\right)$.
After a double rotation, the potential increases by $\leq 3(\log s+(x)-\log s(x))-2$.
Lemma. The (amortized) cost of $\operatorname{Splay}(x)$ is $c($ Splay $(x)) \leq 1+3 \log (W / w(x))$.
Proof.

Access Lemma
Lemma. After a single rotation, the potential increases by $\leq 3(\log s+(x)-\log s(x))$.
After a double rotation, the potential increases by $\leq 3\left(\log s_{+}(x)-\log s(x)\right)-2$.

Lemma. The (amortized) cost of $\operatorname{Splay}(x)$ is $c($ Splay $(x)) \leq 1+3 \log (W / w(x))$.
Proof. W.I.o.g. k double rotations and 1 single rotation.

Access Lemma
Lemma. After a single rotation, the potential increases by $\leq 3(\log s+(x)-\log s(x))$.
After a double rotation, the potential increases by $\leq 3\left(\log s_{+}(x)-\log s(x)\right)-2$.

Lemma. The (amortized) cost of $\operatorname{Splay}(x)$ is $c($ Splay $(x)) \leq 1+3 \log (W / w(x))$.
Proof. W.I.o.g. k double rotations and 1 single rotation.
Let $s_{i}(x)$ be $s(x)$ after i single/double rotations.

Access Lemma
Lemma. After a single rotation, the potential increases by $\leq 3\left(\log s_{+}(x)-\log s(x)\right)$.
After a double rotation, the potential increases by $\leq 3\left(\log s_{+}(x)-\log s(x)\right)-2$.

Lemma. The (amortized) cost of $\operatorname{Splay}(x)$ is $c($ Splay $(x)) \leq 1+3 \log (W / w(x))$.
Proof. W.I.o.g. k double rotations and 1 single rotation.
Let $s_{i}(x)$ be $s(x)$ after i single/double rotations.
Potential increases by at most

Access Lemma
Lemma. After a single rotation, the potential increases by $\leq 3\left(\log s_{+}(x)-\log s(x)\right)$.
After a double rotation, the potential increases by $\leq 3\left(\log s_{+}(x)-\log s(x)\right)-2$.

Lemma. The (amortized) cost of $\operatorname{Splay}(x)$ is $c($ Splay $(x)) \leq 1+3 \log (W / w(x))$.
Proof. W.I.o.g. k double rotations and 1 single rotation.
Let $s_{i}(x)$ be $s(x)$ after i single/double rotations.
Potential increases by at most
$\sum_{i=1}^{k}\left(3\left(\log s_{i}(x)-\log s_{i-1}(x)\right)-2\right)$

Access Lemma
Lemma. After a single rotation, the potential increases by $\leq 3\left(\log s_{+}(x)-\log s(x)\right)$.
After a double rotation, the potential increases by $\leq 3\left(\log s_{+}(x)-\log s(x)\right)-2$.

Lemma. The (amortized) cost of $\operatorname{Splay}(x)$ is $c(\operatorname{Splay}(x)) \leq 1+3 \log (W / w(x))$.
Proof. W.I.o.g. k double rotations and 1 single rotation.
Let $s_{i}(x)$ be $s(x)$ after i single/double rotations.
Potential increases by at most

$$
\begin{aligned}
& \sum_{i=1}^{k}\left(3\left(\log s_{i}(x)-\log s_{i-1}(x)\right)-2\right) \\
& +3\left(\log s_{k+1}(x)-\log s_{k}(x)\right)
\end{aligned}
$$

Access Lemma
Lemma. After a single rotation, the potential increases by $\leq 3\left(\log s_{+}(x)-\log s(x)\right)$.
After a double rotation, the potential increases by $\leq 3\left(\log s_{+}(x)-\log s(x)\right)-2$.
Lemma. The (amortized) cost of $\operatorname{Splay}(x)$ is $c($ Splay $(x)) \leq 1+3 \log (W / w(x))$.
Proof. W.I.o.g. k double rotations and 1 single rotation.
Let $s_{i}(x)$ be $s(x)$ after i single/double rotations.
Potential increases by at most
$\sum_{i=1}^{k}\left(3\left(\log s_{i}(x)-\log s_{i-1}(x)\right)-2\right)$
$+3\left(\log s_{k+1}(x)-\log s_{k}(x)\right)$
(id. entries rem.) $=3\left(\log s_{k+1}(x)-\log s(x)\right)-2 k$

Access Lemma

Lemma. After a single rotation, the potential increases by $\leq 3\left(\log s_{+}(x)-\log s(x)\right)$.
After a double rotation, the potential increases by $\leq 3\left(\log s_{+}(x)-\log s(x)\right)-2$.
Lemma. The (amortized) cost of $\operatorname{Splay}(x)$ is $c($ Splay $(x)) \leq 1+3 \log (W / w(x))$.
Proof. W.I.o.g. k double rotations and 1 single rotation.
Let $s_{i}(x)$ be $s(x)$ after i single/double rotations.
Potential increases by at most
$\sum_{i=1}^{k}\left(3\left(\log s_{i}(x)-\log s_{i-1}(x)\right)-2\right)$
root! $\quad+3\left(\log s_{k+1}(x)-\log s_{k}(x)\right)$
(id. entries rem.) $=3\left(\log s_{k+1}(x)-\log s(x)\right)-2 k$

Access Lemma

Lemma. After a single rotation, the potential increases by $\leq 3\left(\log s_{+}(x)-\log s(x)\right)$.
After a double rotation, the potential increases by $\leq 3\left(\log s_{+}(x)-\log s(x)\right)-2$.
Lemma. The (amortized) cost of $\operatorname{Splay}(x)$ is $c($ Splay $(x)) \leq 1+3 \log (W / w(x))$.
Proof. W.I.o.g. k double rotations and 1 single rotation.
Let $s_{i}(x)$ be $s(x)$ after i single/double rotations.
Potential increases by at most
$\sum_{i=1}^{k}\left(3\left(\log s_{i}(x)-\log s_{i-1}(x)\right)-2\right)$
root! $\quad+3\left(\log s_{k+1}(x)-\log s_{k}(x)\right)$
(id. entries rem.) $=3\left(\log s_{k+1}(x)-\log s(x)\right)-2 k$

$$
=3(\log W-\log s(x))-2 k
$$

Access Lemma

Lemma. After a single rotation, the potential increases by $\leq 3\left(\log s_{+}(x)-\log s(x)\right)$.
After a double rotation, the potential increases by $\leq 3\left(\log s_{+}(x)-\log s(x)\right)-2$.
Lemma. The (amortized) cost of $\operatorname{Splay}(x)$ is $c($ Splay $(x)) \leq 1+3 \log (W / w(x))$.
Proof. W.I.o.g. k double rotations and 1 single rotation.
Let $s_{i}(x)$ be $s(x)$ after i single/double rotations.
Potential increases by at most
$\sum_{i=1}^{k}\left(3\left(\log s_{i}(x)-\log s_{i-1}(x)\right)-2\right)$
root! $\quad+3\left(\log s_{k+1}(x)-\log s_{k}(x)\right)$
(id. entries rem.) $=3\left(\log _{s_{k+1}}(x)-\log s(x)\right)-2 k$

$$
=3(\log W-\log s(x))-2 k
$$

$(s(x) \geq w(x))$

Access Lemma

Lemma. After a single rotation, the potential increases by $\leq 3(\log s+(x)-\log s(x))$.
After a double rotation, the potential increases by $\leq 3\left(\log s_{+}(x)-\log s(x)\right)-2$.
Lemma. The (amortized) cost of $\operatorname{Splay}(x)$ is $c(\operatorname{Splay}(x)) \leq 1+3 \log (W / w(x))$.
Proof. W.I.o.g. k double rotations and 1 single rotation.
Let $s_{i}(x)$ be $s(x)$ after i single/double rotations.
Potential increases by at most
$\sum_{i=1}^{k}\left(3\left(\log s_{i}(x)-\log s_{i-1}(x)\right)-2\right)$
root! $\quad+3\left(\log s_{k+1}(x)-\log s_{k}(x)\right)$
(id. entries rem.) $=3\left(\log s_{k+1}(x)-\log s(x)\right)-2 k$

$$
=3(\log W-\log s(x))-2 k
$$

$(s(x) \geq w(x)) \leq 3(\log W-\log w(x))-2 k$

Access Lemma

Lemma. After a single rotation, the potential increases by $\leq 3\left(\log s_{+}(x)-\log s(x)\right)$.
After a double rotation, the potential increases by $\leq 3(\log s+(x)-\log s(x))-2$.
Lemma. The (amortized) cost of $\operatorname{Splay}(x)$ is $c($ Splay $(x)) \leq 1+3 \log (W / w(x))$.
Proof. W.I.o.g. k double rotations and 1 single rotation.
Let $s_{i}(x)$ be $s(x)$ after i single/double rotations.
Potential increases by at most

$$
\sum_{i=1}^{k}\left(3\left(\log s_{i}(x)-\log s_{i-1}(x)\right)-2\right)
$$

root! $\quad+3\left(\log s_{k+1}(x)-\log s_{k}(x)\right)$
(id. entries rem.) $=3\left(\log s_{k+1}(x)-\log s(x)\right)-2 k$

$$
=3(\log W-\log s(x))-2 k
$$

$(s(x) \geq w(x)) \leq 3(\log W-\log w(x))-2 k=3 \log (W / w(x))-2 k$

Access Lemma

Lemma. After a single rotation, the potential increases by $\leq 3\left(\log s_{+}(x)-\log s(x)\right)$.
After a double rotation, the potential increases by $\leq 3(\log s+(x)-\log s(x))-2$.
Lemma. The (amortized) cost of $\operatorname{Splay}(x)$ is $c($ Splay $(x)) \leq 1+3 \log (W / w(x))$.
Proof. W.I.o.g. k double rotations and 1 single rotation.
Let $s_{i}(x)$ be $s(x)$ after i single/double rotations.
Potential increases by at most

$$
\sum_{i=1}^{k}\left(3\left(\log s_{i}(x)-\log s_{i-1}(x)\right)-2\right)
$$

root! $\quad+3\left(\log s_{k+1}(x)-\log _{s_{k}}(x)\right)$
(id. entries rem.) $=3\left(\log s_{k+1}(x)-\log s(x)\right)-2 k$
$=3(\log W-\log s(x))-2 k$
$(s(x) \geq w(x)) \leq 3(\log W-\log w(x))-2 k=3 \log (W / w(x))-2 k$
$2 k+1$ rotations \Rightarrow (amort.) cost

Access Lemma

Lemma. After a single rotation, the potential increases by $\leq 3\left(\log s_{+}(x)-\log s(x)\right)$.
After a double rotation, the potential increases by $\leq 3(\log s+(x)-\log s(x))-2$.
Lemma. The (amortized) cost of $\operatorname{Splay}(x)$ is $c($ Splay $(x)) \leq 1+3 \log (W / w(x))$.
Proof. W.I.o.g. k double rotations and 1 single rotation.
Let $s_{i}(x)$ be $s(x)$ after i single/double rotations.
Potential increases by at most

$$
\sum_{i=1}^{k}\left(3\left(\log s_{i}(x)-\log s_{i-1}(x)\right)-2\right)
$$

root! $\quad+3\left(\log s_{k+1}(x)-\log s_{k}(x)\right)$
(id. entries rem.) $=3\left(\log s_{k+1}(x)-\log s(x)\right)-2 k$
$=3(\log W-\log s(x))-2 k$
$(s(x) \geq w(x)) \leq 3(\log W-\log w(x))-2 k=3 \log (W / w(x))-2 k$
$2 k+1$ rotations $\Rightarrow($ amort. $)$ cost $c(\operatorname{Splay}(x)) \leq 1+3 \log (W / w(x))$

Access Lemma

Lemma. After a single rotation, the potential increases by $\leq 3\left(\log s_{+}(x)-\log s(x)\right)$.
After a double rotation, the potential increases by $\leq 3(\log s+(x)-\log s(x))-2$.
Lemma. The (amortized) cost of $\operatorname{Splay}(x)$ is $c($ Splay $(x)) \leq 1+3 \log (W / w(x))$.
Proof. W.I.o.g. k double rotations and 1 single rotation.
Let $s_{i}(x)$ be $s(x)$ after i single/double rotations.
Potential increases by at most

$$
\sum_{i=1}^{k}\left(3\left(\log s_{i}(x)-\log s_{i-1}(x)\right)-2\right)
$$

root! $\quad+3\left(\log s_{k+1}(x)-\log s_{k}(x)\right)$
(id. entries rem.) $=3\left(\log s_{k+1}(x)-\log s(x)\right)-2 k$
$=3(\log W-\log s(x))-2 k$
$(s(x) \geq w(x)) \leq 3(\log W-\log w(x))-2 k=3 \log (W / w(x))-2 k$
$2 k+1$ rotations $\Rightarrow($ amort. $)$ cost $c(\operatorname{Splay}(x)) \leq 1+3 \log (W / w(x))$

All These Models . . .

Balanced: Queries take (amortized) $O(\log n)$ time

Entropy:

Dynamic Finger: Queries take $O\left(\log \delta_{i}\right)$ time (δ_{i} : rank diff.)
Working Set: Queries take $O(\log t)$ time (t : recency)
Static Optimality: Queries take (amortized) $O\left(\mathrm{OP}_{S}\right)$ time.
... is there one BST to rule them all?

All These Models . . .

Balanced: Queries take (amortized) $O(\log n)$ time

Entropy:

Dynamic Finger: Queries take $O\left(\log \delta_{i}\right)$ time (δ_{i} : rank diff.)
Working Set: Queries take $O(\log t)$ time (t : recency)
Static Optimality: Queries take (amortized) $O\left(\mathrm{OP}_{S}\right)$ time.
... is there one BST to rule them all?
All of these properties can be shown by chosing the weight function accordingly.
Note that the actual algorithm is always the same!

Querying a Sequence
Let S be a sequence of queries.

Querying a Sequence
Let S be a sequence of queries.
What is the real cost of querying S ?

Querying a Sequence

Let S be a sequence of queries.
What is the real cost of querying S ?
Let Φ_{i} be the potential after query i.

Querying a Sequence

Let S be a sequence of queries.
What is the real cost of querying S ?
Let Φ_{i} be the potential after query i.
\Rightarrow total cost $=\Phi_{0}-\Phi_{|S|}+\sum_{x \in S} c(\operatorname{Splay}(x))$

Querying a Sequence

Let S be a sequence of queries.
What is the real cost of querying S ?
Let Φ_{i} be the potential after query i.

```
(amort. cost to execute \(\operatorname{Splay}(x)\) )
```

\Rightarrow total cost $=\Phi_{0}-\Phi_{|S|}+\sum_{x \in S} c(\operatorname{Splay}(x))$
How can we bound $\Phi_{0}-\Phi_{|S|}$?

Querying a Sequence

Let S be a sequence of queries.
What is the real cost of querying S ?
Let Φ_{i} be the potential after query i.

```
(amort. cost to execute \(\operatorname{Splay}(x))\)
```

\Rightarrow total cost $=\Phi_{0}-\Phi_{|S|}+\sum_{x \in S} \mathcal{C}(\operatorname{Splay}(x))$
How can we bound $\Phi_{0}-\Phi_{|S|}$?
Reminder: $\Phi=\sum \log s(x)$

Querying a Sequence

Let S be a sequence of queries.
What is the real cost of querying S ?
Let Φ_{i} be the potential after query i. (amort. cost to execute Splay (x))
\Rightarrow total cost $=\Phi_{0}-\Phi_{|S|}+\sum_{x \in S} c(\operatorname{Splay}(x))$
How can we bound $\Phi_{0}-\Phi_{|S|}$?
Reminder: $\Phi=\sum \log s(x)$
$s(x) \geq w(x)$

Querying a Sequence

Let S be a sequence of queries.
What is the real cost of querying S ?
Let Φ_{i} be the potential after query i. (amort. cost to execute $\operatorname{Splay}(x)$)
\Rightarrow total cost $=\Phi_{0}-\Phi_{|S|}+\sum_{x \in S} \mathcal{C}(\operatorname{Splay}(x))$
How can we bound $\Phi_{0}-\Phi_{|S|}$?
Reminder: $\Phi=\sum \log s(x)$
$s(x) \geq w(x) \quad \Rightarrow \Phi_{|S|} \geq \sum_{x \in T} \log w(x)$

Querying a Sequence

Let S be a sequence of queries.
What is the real cost of querying S ?
Let Φ_{i} be the potential after query i. (amort. cost to execute $\operatorname{Splay}(x)$)
\Rightarrow total cost $=\Phi_{0}-\Phi_{|S|}+\sum_{x \in S} \mathcal{C}(\operatorname{Splay}(x))$
How can we bound $\Phi_{0}-\Phi_{|S|}$?
Reminder: $\Phi=\sum \log s(x)$
$s(x) \geq w(x) \quad \Rightarrow \Phi_{|S|} \geq \sum_{x \in T} \log w(x)$
$s($ root $)=\log W$

Querying a Sequence

Let S be a sequence of queries.
What is the real cost of querying S ?
Let Φ_{i} be the potential after query i. (amort. cost to execute Splay (x))
\Rightarrow total cost $=\Phi_{0}-\Phi_{|S|}+\sum_{x \in S} c(\operatorname{Splay}(x))$
How can we bound $\Phi_{0}-\Phi_{|S|}$?
Reminder: $\Phi=\sum \log s(x)$
$s(x) \geq w(x)$

$$
\Rightarrow \Phi_{|S|} \geq \sum_{x \in T} \log w(x)
$$

$$
s(\text { root })=\log W \quad \Rightarrow \Phi_{0} \leq \sum_{x \in T} \log W
$$

Querying a Sequence

Let S be a sequence of queries.
What is the real cost of querying S ?
Let Φ_{i} be the potential after query i. (amort. cost to execute Splay (x))
\Rightarrow total cost $=\Phi_{0}-\Phi_{|S|}+\sum_{x \in S} \mathcal{C}($ Splay $(x))$
How can we bound $\Phi_{0}-\Phi_{|S|}$?
Reminder: $\Phi=\sum \log s(x)$

$$
\begin{array}{ll}
s(x) \geq w(x) & \Rightarrow \Phi_{|S|} \geq \sum_{x \in T} \log w(x) \\
s(\text { root })=\log W & \Rightarrow \Phi_{0} \leq \sum_{x \in T} \log W \\
\Rightarrow \Phi_{0}-\Phi_{|S|} \leq \sum_{x \in T}(\log W-\log w(x))
\end{array}
$$

Querying a Sequence

Let S be a sequence of queries.
What is the real cost of querying S ?
Let Φ_{i} be the potential after query i. (amort. cost to execute Splay (x))
\Rightarrow total cost $=\Phi_{0}-\Phi_{|S|}+\sum_{x \in S} \mathcal{C}(\operatorname{Splay}(x))$
How can we bound $\Phi_{0}-\Phi_{|S|}$?
Reminder: $\Phi=\sum \log s(x)$

$$
\begin{array}{ll}
s(x) \geq w(x) & \Rightarrow \Phi_{|S|} \geq \sum_{x \in T} \log w(x) \\
s(\text { root })=\log W & \Rightarrow \Phi_{0} \leq \sum_{x \in T} \log W \\
\Rightarrow \Phi_{0}-\Phi_{|S|} \leq \sum_{x \in T}(\log W-\log w(x)) \leq \sum_{x \in T} O(c(\text { Splay }(x)))
\end{array}
$$

Querying a Sequence

Let S be a sequence of queries.
What is the real cost of querying S ?
Let Φ_{i} be the potential after query i. (amort. cost to execute Splay (x))
\Rightarrow total cost $=\Phi_{0}-\Phi_{|S|}+\sum_{x \in S} c(\operatorname{Splay}(x))$
How can we bound $\Phi_{0}-\Phi_{|S|}$?
Reminder: $\Phi=\sum \log s(x)$
$s(x) \geq w(x)$
$\Rightarrow \Phi_{|S|} \geq \sum_{x \in T} \log w(x)$
$s($ root $)=\log W \quad \Rightarrow \Phi_{0} \leq \sum_{x \in T} \log W$
$\Rightarrow \Phi_{0}-\Phi_{|S|} \leq \sum_{x \in T}(\log W-\log w(x)) \leq \sum_{x \in T} O(c(\operatorname{Splay}(x)))$
\Rightarrow as long as every key is queried at least once, it doesn't
change the asymptotic running time.

Balance

Lemma. The (amortized) cost of $\operatorname{Splay}(x)$ is $c($ Splay $(x)) \leq 1+3 \log (W / w(x))$.

Definition. A BST is balanced if the (amortized) cost of any query is $O(\log n)$ (for at least n queries in total).

Balance

Lemma. The (amortized) cost of $\operatorname{Splay}(x)$ is $c($ Splay $(x)) \leq 1+3 \log (W / w(x))$.

Definition. A BST is balanced if the (amortized) cost of any query is $O(\log n)$ (for at least n queries in total).

Theorem. Splay Trees are balanced.

Balance

Lemma. The (amortized) cost of $\operatorname{Splay}(x)$ is $c($ Splay $(x)) \leq 1+3 \log (W / w(x))$.

Definition. A BST is balanced if the (amortized) cost of any query is $O(\log n)$ (for at least n queries in total).

Theorem. Splay Trees are balanced.
Proof.

Balance
Lemma. The (amortized) cost of $\operatorname{Splay}(x)$ is $c($ Splay $(x)) \leq 1+3 \log (W / w(x))$.

Definition. A BST is balanced if the (amortized) cost of any query is $O(\log n)$ (for at least n queries in total).

Theorem. Splay Trees are balanced.
Proof. Choose $w(x)=1$ for each x

Balance
Lemma. The (amortized) cost of $\operatorname{Splay}(x)$ is $c($ Splay $(x)) \leq 1+3 \log (W / w(x))$.

Definition. A BST is balanced if the (amortized) cost of any query is $O(\log n)$ (for at least n queries in total).

Theorem. Splay Trees are balanced.
Proof. Choose $w(x)=1$ for each $x \quad \Rightarrow W=n$

Balance
Lemma. The (amortized) cost of $\operatorname{Splay}(x)$ is $c($ Splay $(x)) \leq 1+3 \log (W / w(x))$.

Definition. A BST is balanced if the (amortized) cost of any query is $O(\log n)$ (for at least n queries in total).

Theorem. Splay Trees are balanced.
Proof. Choose $w(x)=1$ for each $x \quad \Rightarrow W=n$ Splay (x) costs at least as much as finding x

Balance
Lemma. The (amortized) cost of $\operatorname{Splay}(x)$ is $c($ Splay $(x)) \leq 1+3 \log (W / w(x))$.

Definition. A BST is balanced if the (amortized) cost of any query is $O(\log n)$ (for at least n queries in total).

Theorem. Splay Trees are balanced.
Proof. Choose $w(x)=1$ for each $x \quad \Rightarrow W=n$ $\operatorname{Splay}(x)$ costs at least as much as finding x \Rightarrow total time $=\Phi_{0}-\Phi_{|S|}+\sum_{x \in S} c($ Splay $(x))$

Balance
Lemma. The (amortized) cost of $\operatorname{Splay}(x)$ is $c(\operatorname{Splay}(x)) \leq 1+3 \log (W / w(x))$.

Definition. A BST is balanced if the (amortized) cost of any query is $O(\log n)$ (for at least n queries in total).

Theorem. Splay Trees are balanced.
Proof. Choose $w(x)=1$ for each $x \quad \Rightarrow W=n$ $\operatorname{Splay}(x)$ costs at least as much as finding x
\Rightarrow total time $=\Phi_{0}-\Phi_{|S|}+\sum_{x \in S} c(\operatorname{Splay}(x))$

$$
\leq \sum_{x \in T}(\log W-\log w(x))+\sum_{x \in S} c(\operatorname{Splay}(x))
$$

Balance
Lemma. The (amortized) cost of $\operatorname{Splay}(x)$ is $c(\operatorname{Splay}(x)) \leq 1+3 \log (W / w(x))$.

Definition. A BST is balanced if the (amortized) cost of any query is $O(\log n)$ (for at least n queries in total).

Theorem. Splay Trees are balanced.
Proof. Choose $w(x)=1$ for each $x \quad \Rightarrow W=n$ $\operatorname{Splay}(x)$ costs at least as much as finding x
\Rightarrow total time $=\Phi_{0}-\Phi_{|S|}+\sum_{x \in S} c(\operatorname{Splay}(x))$

$$
\begin{aligned}
& \leq \sum_{x \in T}(\log W-\log w(x))+\sum_{x \in S} C(\text { Splay }(x)) \\
& \leq n \log n+\sum_{x \in S}(1+3 \log (W / w(x)))
\end{aligned}
$$

Balance
Lemma. The (amortized) cost of $\operatorname{Splay}(x)$ is $c($ Splay $(x)) \leq 1+3 \log (W / w(x))$.

Definition. A BST is balanced if the (amortized) cost of any query is $O(\log n)$ (for at least n queries in total).

Theorem. Splay Trees are balanced.
Proof. Choose $w(x)=1$ for each $x \quad \Rightarrow W=n$ $\operatorname{Splay}(x)$ costs at least as much as finding x
\Rightarrow total time $=\Phi_{0}-\Phi_{|S|}+\sum_{x \in S} c(\operatorname{Splay}(x))$

$$
\begin{aligned}
& \leq \sum_{x \in T}(\log W-\log w(x))+\sum_{x \in S} c(S p l a y(x)) \\
& \leq n \log n+\sum_{x \in S}(1+3 \log (W / w(x))) \\
& \leq n \log n+|S|+3|S| \log n
\end{aligned}
$$

Balance
Lemma. The (amortized) cost of $\operatorname{Splay}(x)$ is $c($ Splay $(x)) \leq 1+3 \log (W / w(x))$.

Definition. A BST is balanced if the (amortized) cost of any query is $O(\log n)$ (for at least n queries in total).

Theorem. Splay Trees are balanced.
Proof. Choose $w(x)=1$ for each $x \quad \Rightarrow W=n$ $\operatorname{Splay}(x)$ costs at least as much as finding x
\Rightarrow total time $=\Phi_{0}-\Phi_{|S|}+\sum_{x \in S} c(\operatorname{Splay}(x))$

$$
\begin{aligned}
& \leq \sum_{x \in T}(\log W-\log w(x))+\sum_{x \in S} c(\operatorname{Splay}(x)) \\
& \leq n \log n+\sum_{x \in S}(1+3 \log (W / w(x))) \\
& \leq n \log n+|S|+3|S| \log n \in O(|S| \log n)
\end{aligned}
$$

Balance
Lemma. The (amortized) cost of $\operatorname{Splay}(x)$ is $c($ Splay $(x)) \leq 1+3 \log (W / w(x))$.

Definition. A BST is balanced if the (amortized) cost of any query is $O(\log n)$ (for at least n queries in total).

Theorem. Splay Trees are balanced.
Proof. Choose $w(x)=1$ for each $x \quad \Rightarrow W=n$ Splay (x) costs at least as much as finding x
\Rightarrow total time $=\Phi_{0}-\Phi_{|S|}+\sum_{x \in S} c(\operatorname{Splay}(x))$

$$
\begin{aligned}
& \leq \sum_{x \in T}(\log W-\log w(x))+\sum_{x \in S} c(S p l a y(x)) \\
& \leq n \log n+\sum_{x \in S}(1+3 \log (W / w(x))) \\
& \leq n \log n+|S|+3|S| \log n \in O(|S| \log n)
\end{aligned}
$$

\Rightarrow Queries take (amort.) $O(\log n)$ time.

Balance
Lemma. The (amortized) cost of $\operatorname{Splay}(x)$ is $c($ Splay $(x)) \leq 1+3 \log (W / w(x))$.

Definition. A BST is balanced if the (amortized) cost of any query is $O(\log n)$ (for at least n queries in total).

Theorem. Splay Trees are balanced.
Proof. Choose $w(x)=1$ for each $x \quad \Rightarrow W=n$ Splay (x) costs at least as much as finding x
\Rightarrow total time $=\Phi_{0}-\Phi_{|S|}+\sum_{x \in S} c(\operatorname{Splay}(x))$

$$
\begin{aligned}
& \leq \sum_{x \in T}(\log W-\log w(x))+\sum_{x \in S} c(S p l a y(x)) \\
& \leq n \log n+\sum_{x \in S}(1+3 \log (W / w(x))) \\
& \leq n \log n+|S|+3|S| \log n \in O(|S| \log n)
\end{aligned}
$$

\Rightarrow Queries take (amort.) $O(\log n)$ time.

Entropy

Lemma. The (amortized) cost of $\operatorname{Splay}(x)$ is $c($ Splay $(x)) \leq 1+3 \log (W / w(x))$.

Definition. A BST has the entropy property if queries take expected $O\left(1-\sum_{i=1}^{n} p_{i} \log p_{i}\right)$ time.

Entropy

Lemma. The (amortized) cost of $\operatorname{Splay}(x)$ is $c($ Splay $(x)) \leq 1+3 \log (W / w(x))$.

Definition. A BST has the entropy property if queries take expected $O\left(1-\sum_{i=1}^{n} p_{i} \log p_{i}\right)$ time.

Theorem. Splay Trees have the entropy property.

Entropy

Lemma. The (amortized) cost of $\operatorname{Splay}(x)$ is $c($ Splay $(x)) \leq 1+3 \log (W / w(x))$.

Definition. A BST has the entropy property if queries take expected $O\left(1-\sum_{i=1}^{n} p_{i} \log p_{i}\right)$ time.

Theorem. Splay Trees have the entropy property.
Proof.

Entropy

Lemma. The (amortized) cost of $\operatorname{Splay}(x)$ is $c($ Splay $(x)) \leq 1+3 \log (W / w(x))$.

Definition. A BST has the entropy property if queries take expected $O\left(1-\sum_{i=1}^{n} p_{i} \log p_{i}\right)$ time.

Theorem. Splay Trees have the entropy property.
Proof. Choose $w\left(x_{i}\right)=p_{i}$

Entropy

Lemma. The (amortized) cost of $\operatorname{Splay}(x)$ is $c($ Splay $(x)) \leq 1+3 \log (W / w(x))$.

Definition. A BST has the entropy property if queries take expected $O\left(1-\sum_{i=1}^{n} p_{i} \log p_{i}\right)$ time.

Theorem. Splay Trees have the entropy property.
Proof. Choose $w\left(x_{i}\right)=p_{i} \quad \Rightarrow W=1$

Entropy

Lemma. The (amortized) cost of $\operatorname{Splay}(x)$ is $c($ Splay $(x)) \leq 1+3 \log (W / w(x))$.

Definition. A BST has the entropy property if queries take expected $O\left(1-\sum_{i=1}^{n} p_{i} \log p_{i}\right)$ time.

Theorem. Splay Trees have the entropy property.
Proof. Choose $w\left(x_{i}\right)=p_{i} \quad \Rightarrow W=1$
Amortized cost to query x_{i} :

Entropy

Lemma. The (amortized) cost of $\operatorname{Splay}(x)$ is $c($ Splay $(x)) \leq 1+3 \log (W / w(x))$.

Definition. A BST has the entropy property if queries take expected $O\left(1-\sum_{i=1}^{n} p_{i} \log p_{i}\right)$ time.

Theorem. Splay Trees have the entropy property.
Proof. Choose $w\left(x_{i}\right)=p_{i} \quad \Rightarrow W=1$
Amortized cost to query x_{i} :

$$
\leq 1+3 \log \left(W / w\left(x_{i}\right)\right)
$$

Entropy

Lemma. The (amortized) cost of $\operatorname{Splay}(x)$ is $c($ Splay $(x)) \leq 1+3 \log (W / w(x))$.

Definition. A BST has the entropy property if queries take expected $O\left(1-\sum_{i=1}^{n} p_{i} \log p_{i}\right)$ time.

Theorem. Splay Trees have the entropy property.
Proof. Choose $w\left(x_{i}\right)=p_{i} \quad \Rightarrow W=1$
Amortized cost to query x_{i} :

$$
\begin{aligned}
& \leq 1+3 \log \left(W / w\left(x_{i}\right)\right) \\
& =1+3 \log \left(1 / p_{i}\right)
\end{aligned}
$$

Entropy

Lemma. The (amortized) cost of $\operatorname{Splay}(x)$ is $c($ Splay $(x)) \leq 1+3 \log (W / w(x))$.

Definition. A BST has the entropy property if queries take expected $O\left(1-\sum_{i=1}^{n} p_{i} \log p_{i}\right)$ time.

Theorem. Splay Trees have the entropy property.
Proof. Choose $w\left(x_{i}\right)=p_{i} \quad \Rightarrow W=1$
Amortized cost to query x_{i} :

$$
\begin{aligned}
& \leq 1+3 \log \left(W / w\left(x_{i}\right)\right) \\
& =1+3 \log \left(1 / p_{i}\right) \\
& =1-3 \log p_{i}
\end{aligned}
$$

Entropy

Lemma. The (amortized) cost of $\operatorname{Splay}(x)$ is $c($ Splay $(x)) \leq 1+3 \log (W / w(x))$.

Definition. A BST has the entropy property if queries take expected $O\left(1-\sum_{i=1}^{n} p_{i} \log p_{i}\right)$ time.

Theorem. Splay Trees have the entropy property.
Proof. Choose $w\left(x_{i}\right)=p_{i} \quad \Rightarrow W=1$
Amortized cost to query x_{i} :
$\leq 1+3 \log \left(W / w\left(x_{i}\right)\right)$
$=1+3 \log \left(1 / p_{i}\right)$
$=1-3 \log p_{i}$
\Rightarrow expected query time:

Entropy

Lemma. The (amortized) cost of $\operatorname{Splay}(x)$ is $c($ Splay $(x)) \leq 1+3 \log (W / w(x))$.

Definition. A BST has the entropy property if queries take expected $O\left(1-\sum_{i=1}^{n} p_{i} \log p_{i}\right)$ time.

Theorem. Splay Trees have the entropy property.
Proof. Choose $w\left(x_{i}\right)=p_{i} \quad \Rightarrow W=1$
Amortized cost to query x_{i} :
$\leq 1+3 \log \left(W / w\left(x_{i}\right)\right)$
$=1+3 \log \left(1 / p_{i}\right)$
$=1-3 \log p_{i}$
\Rightarrow expected query time:

$$
O\left(\sum_{i=1}^{n} p_{i}\left(1-3 \log p_{i}\right)\right)
$$

Entropy

Lemma. The (amortized) cost of $\operatorname{Splay}(x)$ is $c($ Splay $(x)) \leq 1+3 \log (W / w(x))$.

Definition. A BST has the entropy property if queries take expected $O\left(1-\sum_{i=1}^{n} p_{i} \log p_{i}\right)$ time.

Theorem. Splay Trees have the entropy property.
Proof. Choose $w\left(x_{i}\right)=p_{i} \quad \Rightarrow W=1$
Amortized cost to query x_{i} :

$$
\leq 1+3 \log \left(W / w\left(x_{i}\right)\right)
$$

$$
=1+3 \log \left(1 / p_{i}\right)
$$

$$
=1-3 \log p_{i}
$$

\Rightarrow expected query time:

$$
O\left(\sum_{i=1}^{n} p_{i}\left(1-3 \log p_{i}\right)\right)=O\left(1-\sum_{i=1}^{n} p_{i} \log p_{i}\right)
$$

Entropy

Lemma. \quad The (amortized) cost of $\operatorname{Splay}(x)$ is $c($ Splay $(x)) \leq 1+3 \log (W / w(x))$.

Definition. A BST has the entropy property if queries take expected $O\left(1-\sum_{i=1}^{n} p_{i} \log p_{i}\right)$ time.

Theorem. Splay Trees have the entropy property.
Proof. \quad Choose $w\left(x_{i}\right)=p_{i} \quad \Rightarrow W=1$
Amortized cost to query x_{i} :

$$
\leq 1+3 \log \left(W / w\left(x_{i}\right)\right)
$$

$$
=1+3 \log \left(1 / p_{i}\right)
$$

$$
=1-3 \log p_{i}
$$

\Rightarrow expected query time:

$$
O\left(\sum_{i=1}^{n} p_{i}\left(1-3 \log p_{i}\right)\right)=O\left(1-\sum_{i=1}^{n} p_{i} \log p_{i}\right)
$$

Static Optimality

Given a sequence S of queries.

Static Optimality

Given a sequence S of queries.
Let T_{S}^{\star} be an optimal static tree with the shortest query time OPT_{S} for S.

Static Optimality

Given a sequence S of queries.

$$
\text { e.g. } S=2,5,2,5,2, \ldots, 5
$$

Let T_{S}^{\star} be an optimal static tree with the shortest query time OPT_{S} for S.

Static Optimality

Given a sequence S of queries.
Let T_{S}^{\star} be an optimal static tree with the shortest query time OPT_{S} for S.

$$
\text { e.g. } S=2,5,2,5,2, \ldots, 5
$$

T^{\star} :

Static Optimality

Given a sequence S of queries.
Let T_{S}^{\star} be an optimal static tree with the shortest query time OPT_{S} for S.

$$
\text { e.g. } S=2,5,2,5,2, \ldots, 5
$$

Static Optimality

Given a sequence S of queries.
Let T_{S}^{\star} be an optimal static tree with the shortest query time OPT_{S} for S.

$$
\text { e.g. } S=2,5,2,5,2, \ldots, 5
$$

Definition. A BST is statically optimal if queries take (amort.) $O\left(\mathrm{OPT}_{S}\right)$ time for every S.

Static Optimality

Given a sequence S of queries.
Let T_{S}^{\star} be an optimal static tree with the shortest query time OPT_{S} for S.
e.g. $S=2,5,2,5,2, \ldots, 5$

Definition. A BST is statically optimal if queries take (amort.) $O\left(\mathrm{OPT}_{S}\right)$ time for every S.

Theorem. Splay Trees are statically optimal.

Static Optimality

Given a sequence S of queries.
Let T_{S}^{\star} be an optimal static tree with the shortest query time OPT_{S} for S.

$$
\text { e.g. } S=2,5,2,5,2, \ldots, 5
$$

Definition. A BST is statically optimal if queries take (amort.) $O\left(\mathrm{OPT}_{S}\right.$) time for every S.

Theorem. Splay Trees are statically optimal.
Proof.

Static Optimality

Given a sequence S of queries.
Let T_{S}^{\star} be an optimal static tree with the shortest query time OPT_{S} for S.
e.g. $S=2,5,2,5,2, \ldots, 5$

Definition. A BST is statically optimal if queries take (amort.) $O\left(\mathrm{OPT}_{S}\right)$ time for every S.

Theorem. Splay Trees are statically optimal.
Proof. Let f_{i} be the depth of x_{i} in T^{\star} (root has depth 1).

Static Optimality

Given a sequence S of queries.
Let T_{S}^{\star} be an optimal static tree with the shortest query time OPT_{S} for S.

$$
\text { e.g. } S=2,5,2,5,2, \ldots, 5
$$

T^{\star} :
OPT: $|S|$

Definition. A BST is statically optimal if queries take (amort.) $O\left(\mathrm{OPT}_{S}\right)$ time for every S.

Theorem. Splay Trees are statically optimal.
Proof. Let f_{i} be the depth of x_{i} in T^{\star} (root has depth 1). Let $w_{i}:=3^{-f_{i}}$.

Static Optimality

Given a sequence S of queries.
Let T_{S}^{\star} be an optimal static tree with the shortest query time OPT_{S} for S.

$$
\text { e.g. } S=2,5,2,5,2, \ldots, 5
$$

T^{\star} :
OPT: $|S|$

Definition. A BST is statically optimal if queries take (amort.) $O\left(\mathrm{OPT}_{S}\right)$ time for every S.

Theorem. Splay Trees are statically optimal.
Proof. Let f_{i} be the depth of x_{i} in T^{\star} (root has depth 1).
Let $w_{i}:=3^{-f_{i}} . \Rightarrow W \leq 1$

Static Optimality

Given a sequence S of queries.
Let T_{S}^{\star} be an optimal static tree with the shortest query time OPT_{S} for S.

$$
\text { e.g. } S=2,5,2,5,2, \ldots, 5
$$

T^{\star} :
OPT: $|S|$

Definition. A BST is statically optimal if queries take (amort.) $O\left(\mathrm{OPT}_{S}\right)$ time for every S.

Theorem. Splay Trees are statically optimal.
Proof. Let f_{i} be the depth of x_{i} in T^{\star} (root has depth 1).
Let $w_{i}:=3^{-f_{i}} \Rightarrow W \leq 1$
$\Rightarrow c\left(\operatorname{Splay}\left(x_{i}\right)\right)=1+3 \log \left(W / w\left(x_{i}\right)\right)$

Static Optimality

Given a sequence S of queries.
Let T_{S}^{\star} be an optimal static tree with the shortest query time OPT_{S} for S.

$$
\text { e.g. } S=2,5,2,5,2, \ldots, 5
$$

T^{\star} :
OPT: $|S|$

Definition. A BST is statically optimal if queries take (amort.) $O\left(\mathrm{OPT}_{S}\right)$ time for every S.

Theorem. Splay Trees are statically optimal.
Proof. Let f_{i} be the depth of x_{i} in T^{\star} (root has depth 1).

$$
\text { Let } w_{i}:=3^{-f_{i}} \Rightarrow W \leq 1
$$

$$
\Rightarrow c\left(\operatorname{Splay}\left(x_{i}\right)\right)=1+\overline{3} \log \left(W / w\left(x_{i}\right)\right)
$$

$$
\leq 1+3 \log 3^{f_{i}}
$$

Static Optimality

Given a sequence S of queries.
Let T_{S}^{\star} be an optimal static tree with the shortest query time OPT_{S} for S.

$$
\text { e.g. } S=2,5,2,5,2, \ldots, 5
$$

T^{\star} :
OPT: $|S|$

Definition. A BST is statically optimal if queries take (amort.) $O\left(\mathrm{OPT}_{S}\right)$ time for every S.

Theorem. Splay Trees are statically optimal.
Proof. Let f_{i} be the depth of x_{i} in T^{\star} (root has depth 1).

$$
\text { Let } w_{i}:=3^{-f_{i}} \Rightarrow W \leq 1
$$

$$
\Rightarrow c\left(\operatorname{Splay}\left(x_{i}\right)\right)=1+\overline{3} \log \left(W / w\left(x_{i}\right)\right)
$$

$$
\leq 1+3 \log 3^{f_{i}} \in O\left(f_{i}\right)
$$

Static Optimality

Given a sequence S of queries.
Let T_{S}^{\star} be an optimal static tree with the shortest query time OPT_{S} for S.

$$
\text { e.g. } S=2,5,2,5,2, \ldots, 5
$$

T^{\star} :
OPT: $|S|$

Definition. A BST is statically optimal if queries take (amort.) $O\left(\mathrm{OPT}_{S}\right)$ time for every S.

Theorem. Splay Trees are statically optimal.
Proof. Let f_{i} be the depth of x_{i} in T^{\star} (root has depth 1).

$$
\text { Let } w_{i}:=3^{-f_{i}} \Rightarrow W \leq 1
$$

$$
\Rightarrow c\left(\operatorname{Splay}\left(x_{i}\right)\right)=1+\overline{3} \log \left(W / w\left(x_{i}\right)\right)
$$

$$
\leq 1+3 \log 3^{f_{i}} \in O\left(f_{i}\right)
$$

Dynamic Optimality
Given a sequence S of queries.

Dynamic Optimality

Given a sequence S of queries.
Let D_{S}^{\star} be an optimal dynamic tree with the shortest query time OPT_{S}^{\star} for S.

Dynamic Optimality

Given a sequence S of queries.
Let D_{S}^{\star} be an optimal dynamic tree with the shortest query time OPT ${ }_{S}^{\star}$ for S.
(That is, modifications are allowed, e.g., rotations)

Dynamic Optimality

Given a sequence S of queries.
Let D_{S}^{\star} be an optimal dynamic tree with the shortest query time OPT ${ }_{S}^{\star}$ for S.
(That is, modifications are allowed, e.g., rotations)
Definition.
A BST is dynamically optimal if queries take (amort.) $O\left(\mathrm{OPT}_{S}^{\star}\right)$ time for every S.

Dynamic Optimality

Given a sequence S of queries.
Let D_{S}^{\star} be an optimal dynamic tree with the shortest query time OPT ${ }_{S}^{\star}$ for S.
(That is, modifications are allowed, e.g., rotations)
Definition. A BST is dynamically optimal if queries take (amort.) O (OPT_{S}^{\star}) time for every S.

Splay Trees: Queries take $O\left(\mathrm{OPT}_{S}^{\star} \cdot \log n\right)$ time.

Dynamic Optimality

Given a sequence S of queries.
Let D_{S}^{\star} be an optimal dynamic tree with the shortest query time OPT_{S}^{\star} for S.
(That is, modifications are allowed, e.g., rotations)
Definition. A BST is dynamically optimal if queries take (amort.) $O\left(\mathrm{OPT}_{S}^{\star}\right)$ time for every S.

Splay Trees: Queries take $O\left(\mathrm{OPT}_{S}^{\star} \cdot \log n\right)$ time.
Tango Trees: Queries take $O\left(\mathrm{OPT}_{S}^{\star} \cdot \log \log n\right)$ time.
[Demaine, Harmon, Iacono, Pătrașcu '04]

Dynamic Optimality

Given a sequence S of queries.
Let D_{S}^{\star} be an optimal dynamic tree with the shortest query time OPT_{S}^{\star} for S.
(That is, modifications are allowed, e.g., rotations)
Definition. A BST is dynamically optimal if queries take (amort.) $O\left(\mathrm{OPT}_{S}^{\star}\right)$ time for every S.

Splay Trees: Queries take $O\left(\mathrm{OPT}_{S}^{\star} \cdot \log n\right)$ time.
Tango Trees: Queries take $O\left(\mathrm{OPT}_{S}^{\star} \cdot \log \log n\right)$ time.
[Demaine, Harmon, Iacono, Pătrașcu '04]
Open Problem. Does a dynamically optimal BST exist?

Dynamic Optimality

Given a sequence S of queries.
Let D_{S}^{\star} be an optimal dynamic tree with the shortest query time OPT_{S}^{\star} for S.
(That is, modifications are allowed, e.g., rotations)
Definition. A BST is dynamically optimal if queries take (amort.) O (OPT_{S}^{\star}) time for every S.

Splay Trees: Queries take $O\left(\mathrm{OPT}_{S}^{\star} \cdot \log n\right)$ time.
Tango Trees: Queries take $O\left(\mathrm{OPT}_{S}^{\star} \cdot \log \log n\right)$ time.
[Demaine, Harmon, Iacono, Pătrașcu '04]
Open Problem. Does a dynamically optimal BST exist?
This is one of the biggest open problems in algorithms.

Dynamic Optimality

Given a sequence S of queries.
Let D_{S}^{\star} be an optimal dynamic tree with the shortest query time OPT_{S}^{\star} for S.
(That is, modifications are allowed, e.g., rotations)
Definition. A BST is dynamically optimal if queries take (amort.) $O\left(\mathrm{OPT}_{S}^{\star}\right)$ time for every S.

Splay Trees: Queries take $O\left(\mathrm{OPT}_{S}^{\star} \cdot \log n\right)$ time.
Tango Trees: Queries take $O\left(\mathrm{OPT}_{S}^{\star} \cdot \log \log n\right)$ time.
[Demaine, Harmon, lacono, Pătrașcu '04]
Open Problem. Does a dynamically optimal BST exist?
This is one of the biggest open problems in algorithms.

Conjecture. Splay Trees are dynamically optimal.

