
1

Advanced Algorithms

Splay Trees
Optimal Binary Search Trees

Johannes Zink · WS23/24

2 5 8 11 13 17 21 27

3 9 14 24

6 19

12

2 - 1

How Good is a Binary Search Tree?

63

5

2

13

1912

9 14 24

8 11 17 21 27

Binary search tree (BST):

2 - 2

How Good is a Binary Search Tree?

63

5

2

13

1912

9 14 24

8 11 17 21 27

Binary search tree (BST):

2 - 3

How Good is a Binary Search Tree?

63

5

2

13

1912

9 14 24

8 11 17 21 27

Binary search tree (BST):

2 - 4

How Good is a Binary Search Tree?

63

5

2

13

1912

9 14 24

8 11 17 21 27

Binary search tree (BST): w.c. query time Θ(n)

2 - 5

How Good is a Binary Search Tree?

2 5 8 11 13 17 21 27

3 9 14 24

6 19

12

Binary search tree (BST): w.c. query time Θ(n)

Balanced binary search tree:
(e.g., Red-Black-Tree, AVL-Tree)

2 - 6

How Good is a Binary Search Tree?

2 5 8 11 13 17 21 27

3 9 14 24

6 19

12

Binary search tree (BST): w.c. query time Θ(n)

Balanced binary search tree:
(e.g., Red-Black-Tree, AVL-Tree)

2 - 7

How Good is a Binary Search Tree?

2 5 8 11 13 17 21 27

3 9 14 24

6 19

12

Binary search tree (BST): w.c. query time Θ(n)

Balanced binary search tree:
(e.g., Red-Black-Tree, AVL-Tree)

w.c. query time Θ(log n)

2 - 8

How Good is a Binary Search Tree?

2 5 8 11 13 17 21 27

3 9 14 24

6 19

12

Binary search tree (BST): w.c. query time Θ(n)

Balanced binary search tree:
(e.g., Red-Black-Tree, AVL-Tree)

w.c. query time Θ(log n)

optimal

2 - 9

How Good is a Binary Search Tree?

What if we know the query before?

2 5 8 11 13 17 21 27

3 9 14 24

6 19

12

Binary search tree (BST): w.c. query time Θ(n)

Balanced binary search tree:
(e.g., Red-Black-Tree, AVL-Tree)

w.c. query time Θ(log n)

optimal

2 - 10

How Good is a Binary Search Tree?

What if we know the query before?

Binary search tree (BST): w.c. query time Θ(n)

Balanced binary search tree:
(e.g., Red-Black-Tree, AVL-Tree)

w.c. query time Θ(log n)

optimal

6

3

5

2 13

19

129

14 24

8

11

17 21 27

2 - 11

How Good is a Binary Search Tree?

What if we know the query before?

Binary search tree (BST): w.c. query time Θ(n)

Balanced binary search tree:
(e.g., Red-Black-Tree, AVL-Tree)

w.c. query time Θ(log n)

optimal

6

3

5

2 13

19

129

14 24

8

11

17 21 27

2 - 12

How Good is a Binary Search Tree?

What if we know the query before? w.c. query time 1

Binary search tree (BST): w.c. query time Θ(n)

Balanced binary search tree:
(e.g., Red-Black-Tree, AVL-Tree)

w.c. query time Θ(log n)

optimal

6

3

5

2 13

19

129

14 24

8

11

17 21 27

2 - 13

How Good is a Binary Search Tree?

What if we know the query before? w.c. query time 1

2 5 8 11 13 17 21 27

3 9 14 24

6 19

12

Binary search tree (BST): w.c. query time Θ(n)

Balanced binary search tree:
(e.g., Red-Black-Tree, AVL-Tree)

w.c. query time Θ(log n)

optimal

Sequence of queries?

2 - 14

How Good is a Binary Search Tree?

What if we know the query before? w.c. query time 1

2 5 8 11 13 17 21 27

3 9 14 24

6 19

12

Binary search tree (BST): w.c. query time Θ(n)

Balanced binary search tree:
(e.g., Red-Black-Tree, AVL-Tree)

w.c. query time Θ(log n)

optimal

e.g. 2—13—5
Sequence of queries?

2 - 15

How Good is a Binary Search Tree?

What if we know the query before? w.c. query time 1

2 5 8 11 13 17 21 27

3 9 14 24

6 19

12

Binary search tree (BST): w.c. query time Θ(n)

Balanced binary search tree:
(e.g., Red-Black-Tree, AVL-Tree)

w.c. query time Θ(log n)

optimal

e.g. 2—13—5
Sequence of queries?

2 - 16

How Good is a Binary Search Tree?

What if we know the query before? w.c. query time 1

2 5 8 11 13 17 21 27

3 9 14 24

6 19

12

Binary search tree (BST): w.c. query time Θ(n)

Balanced binary search tree:
(e.g., Red-Black-Tree, AVL-Tree)

w.c. query time Θ(log n)

optimal

e.g. 2—13—5
Sequence of queries?

2 - 17

How Good is a Binary Search Tree?

What if we know the query before? w.c. query time 1

2 5 8 11 13 17 21 27

3 9 14 24

6 19

12

Binary search tree (BST): w.c. query time Θ(n)

Balanced binary search tree:
(e.g., Red-Black-Tree, AVL-Tree)

w.c. query time Θ(log n)

optimal

e.g. 2—13—5
Sequence of queries?

2 - 18

How Good is a Binary Search Tree?

What if we know the query before? w.c. query time 1

2 5 8 11 13 17 21 27

3 9 14 24

6 19

12

Binary search tree (BST): w.c. query time Θ(n)

Balanced binary search tree:
(e.g., Red-Black-Tree, AVL-Tree)

w.c. query time Θ(log n)

optimal

e.g. 2—13—5
or 2—13—2—13—2. . .

Sequence of queries?

2 - 19

How Good is a Binary Search Tree?

What if we know the query before? w.c. query time 1

2 5 8 11 13 17 21 27

3 9 14 24

6 19

12

Binary search tree (BST): w.c. query time Θ(n)

Balanced binary search tree:
(e.g., Red-Black-Tree, AVL-Tree)

w.c. query time Θ(log n)

optimal

e.g. 2—13—5
O(log n) per query

or 2—13—2—13—2. . .

Sequence of queries?

2 - 20

How Good is a Binary Search Tree?

What if we know the query before? w.c. query time 1

2 5 8 11 13 17 21 27

3 9 14 24

6 19

12

Binary search tree (BST): w.c. query time Θ(n)

Balanced binary search tree:
(e.g., Red-Black-Tree, AVL-Tree)

w.c. query time Θ(log n)

optimal

e.g. 2—13—5
O(log n) per query

optimal?
or 2—13—2—13—2. . .

Sequence of queries?

2 - 21

How Good is a Binary Search Tree?

What if we know the query before? w.c. query time 1

2 5 8 11 13 17 21 27

3 9 14 24

6 19

12

Binary search tree (BST): w.c. query time Θ(n)

Balanced binary search tree:
(e.g., Red-Black-Tree, AVL-Tree)

w.c. query time Θ(log n)

optimal

e.g. 2—13—5
O(log n) per query

optimal?

6

1912

3

9 14 24

2

5

8 11

13

17 21 27

or 2—13—2—13—2. . .

Sequence of queries?

2 - 22

How Good is a Binary Search Tree?

What if we know the query before? w.c. query time 1

2 5 8 11 13 17 21 27

3 9 14 24

6 19

12

Binary search tree (BST): w.c. query time Θ(n)

Balanced binary search tree:
(e.g., Red-Black-Tree, AVL-Tree)

w.c. query time Θ(log n)

optimal

e.g. 2—13—5
O(log n) per query

optimal?

6

1912

3

9 14 24

2

5

8 11

13

17 21 27

or 2—13—2—13—2. . .

Sequence of queries?

2 - 23

How Good is a Binary Search Tree?

What if we know the query before? w.c. query time 1

2 5 8 11 13 17 21 27

3 9 14 24

6 19

12

Binary search tree (BST): w.c. query time Θ(n)

Balanced binary search tree:
(e.g., Red-Black-Tree, AVL-Tree)

w.c. query time Θ(log n)

optimal

e.g. 2—13—5
O(log n) per query

optimal?
not always!or 2—13—2—13—2. . .

Sequence of queries?

The performance
of a BST depends
on the model!

3 - 1

Model 1: Malicious Queries

Given a BST, what is the worst sequence of queries?

3 - 2

Model 1: Malicious Queries

Given a BST, what is the worst sequence of queries?

2 5 8 11 13 17 21 27

3 9 14 24

6 19

12

3 - 3

Model 1: Malicious Queries

Given a BST, what is the worst sequence of queries?

2 5 8 11 13 17 21 27

3 9 14 24

6 19

12

Lemma. The worst-case malicious query cost in any BST with
n nodes is at least Ω(log n) per query.

3 - 4

Model 1: Malicious Queries

Given a BST, what is the worst sequence of queries?

2 5 8 11 13 17 21 27

3 9 14 24

6 19

12

Lemma. The worst-case malicious query cost in any BST with
n nodes is at least Ω(log n) per query.

Definition. A BST is balanced if the cost of any sequence
of m queries is O(m log n + n log n).

3 - 5

Model 1: Malicious Queries

Given a BST, what is the worst sequence of queries?

2 5 8 11 13 17 21 27

3 9 14 24

6 19

12

Lemma. The worst-case malicious query cost in any BST with
n nodes is at least Ω(log n) per query.

Definition. A BST is balanced if the cost of any sequence
of m queries is O(m log n + n log n).
⇒ the (amortized) cost of each query is O(log n)
(for at least n queries)

4 - 1

Model 2: Known Probability Distribution

4 - 2

Model 2: Known Probability Distribution

2 5 8 11

3 9

6

4 - 3

Model 2: Known Probability Distribution

2 5 8 11

3 9

6

Access Probabilities: 2 3 5 6 8 9 11

2% 20% 30% 8% 20% 15% 5%

4 - 4

Model 2: Known Probability Distribution

2 5 8 11

3 9

6

Access Probabilities: 2 3 5 6 8 9 11

2% 20% 30% 8% 20% 15% 5%
Idea: Place nodes with higher probability higher in the tree.

4 - 5

Model 2: Known Probability Distribution

Access Probabilities: 2 3 5 6 8 9 11

2% 20% 30% 8% 20% 15% 5%
Idea: Place nodes with higher probability higher in the tree.

5

3

2

8

6 9

11

4 - 6

Model 2: Known Probability Distribution

Access Probabilities: 2 3 5 6 8 9 11

2% 20% 30% 8% 20% 15% 5%
Idea: Place nodes with higher probability higher in the tree.

5

3

2

8

6 9

11

4 - 7

Model 2: Known Probability Distribution

Access Probabilities: 2 3 5 6 8 9 11

2% 20% 30% 8% 20% 15% 5%
Idea: Place nodes with higher probability higher in the tree.

prob. ≤ 1/2

5

3

2

8

6 9

11

level 1

level 2

4 - 8

Model 2: Known Probability Distribution

Access Probabilities: 2 3 5 6 8 9 11

2% 20% 30% 8% 20% 15% 5%
Idea: Place nodes with higher probability higher in the tree.

prob. ≤ 1/2

prob. ≤ 1/2`−1

5

3

2

8

6 9

11

level 1

level 2

level `

4 - 9

Model 2: Known Probability Distribution

Access Probabilities: 2 3 5 6 8 9 11

2% 20% 30% 8% 20% 15% 5%
Idea: Place nodes with higher probability higher in the tree.

prob. ≤ 1/2

prob. ≤ 1/2`−1

5

3

2

8

6 9

11

OPT: prob. p⇒ level

level 1

level 2

level `

4 - 10

Model 2: Known Probability Distribution

Access Probabilities: 2 3 5 6 8 9 11

2% 20% 30% 8% 20% 15% 5%
Idea: Place nodes with higher probability higher in the tree.

prob. ≤ 1/2

prob. ≤ 1/2`−1

5

3

2

8

6 9

11

OPT: prob. p⇒ level

level 1

level 2

level `

p ≤ 1

2i−1
⇔

log2 p ≤ log2
1

2i−1
⇔

log2 p ≤ 1− i ⇔
i ≤ 1− log2 p

4 - 11

Model 2: Known Probability Distribution

Access Probabilities: 2 3 5 6 8 9 11

2% 20% 30% 8% 20% 15% 5%
Idea: Place nodes with higher probability higher in the tree.

prob. ≤ 1/2

prob. ≤ 1/2`−1

5

3

2

8

6 9

11

OPT: prob. p⇒ level

level 1

level 2

level `

p ≤ 1

2i−1
⇔

log2 p ≤ log2
1

2i−1
⇔

log2 p ≤ 1− i ⇔
i ≤ 1− log2 p

4 - 12

Model 2: Known Probability Distribution

Access Probabilities: 2 3 5 6 8 9 11

2% 20% 30% 8% 20% 15% 5%
Idea: Place nodes with higher probability higher in the tree.

prob. ≤ 1/2

prob. ≤ 1/2`−1

5

3

2

8

6 9

11

OPT: prob. p⇒ level ≤ 1− log2 p

level 1

level 2

level `

p ≤ 1

2i−1
⇔

log2 p ≤ log2
1

2i−1
⇔

log2 p ≤ 1− i ⇔
i ≤ 1− log2 p

4 - 13

Model 2: Known Probability Distribution

Access Probabilities: 2 3 5 6 8 9 11

2% 20% 30% 8% 20% 15% 5%
Idea: Place nodes with higher probability higher in the tree.

prob. ≤ 1/2

prob. ≤ 1/2`−1

Lemma.

OPT: prob. p⇒ level ≤ 1− log2 p

The expected query cost in any BST is at least
Ω(1 + H) per query with H = ∑n

i=1−pi log pi.

level 1

level 2

level `

4 - 14

Model 2: Known Probability Distribution

Access Probabilities: 2 3 5 6 8 9 11

2% 20% 30% 8% 20% 15% 5%
Idea: Place nodes with higher probability higher in the tree.

prob. ≤ 1/2

prob. ≤ 1/2`−1

Lemma.

OPT: prob. p⇒ level ≤ 1− log2 p

The expected query cost in any BST is at least
Ω(1 + H) per query with H = ∑n

i=1−pi log pi.

level 1

level 2

level `

4 - 15

Model 2: Known Probability Distribution

Access Probabilities: 2 3 5 6 8 9 11

2% 20% 30% 8% 20% 15% 5%
Idea: Place nodes with higher probability higher in the tree.

prob. ≤ 1/2

prob. ≤ 1/2`−1

Definition. A BST has the entropy property if it reaches this
bound, i.e., the expected query cost is in O(1 + H).

Lemma.

OPT: prob. p⇒ level ≤ 1− log2 p

The expected query cost in any BST is at least
Ω(1 + H) per query with H = ∑n

i=1−pi log pi.

level 1

level 2

level `

4 - 16

Model 2: Known Probability Distribution

Access Probabilities: 2 3 5 6 8 9 11

2% 20% 30% 8% 20% 15% 5%
Idea: Place nodes with higher probability higher in the tree.

prob. ≤ 1/2

prob. ≤ 1/2`−1

pi = 1/n⇒ H =
n

∑
i=1

1/n · log n = log n

Definition. A BST has the entropy property if it reaches this
bound, i.e., the expected query cost is in O(1 + H).

Lemma.

OPT: prob. p⇒ level ≤ 1− log2 p

The expected query cost in any BST is at least
Ω(1 + H) per query with H = ∑n

i=1−pi log pi.

level 1

level 2

level `

4 - 17

Model 2: Known Probability Distribution

Access Probabilities: 2 3 5 6 8 9 11

2% 20% 30% 8% 20% 15% 5%
Idea: Place nodes with higher probability higher in the tree.

prob. ≤ 1/2

prob. ≤ 1/2`−1

pi = 1/n⇒ H =
n

∑
i=1

1/n · log n = log n

Definition. A BST has the entropy property if it reaches this
bound, i.e., the expected query cost is in O(1 + H).

Lemma.

OPT: prob. p⇒ level ≤ 1− log2 p

The expected query cost in any BST is at least
Ω(1 + H) per query with H = ∑n

i=1−pi log pi.

level 1

level 2

level `

4 - 18

Model 2: Known Probability Distribution

Access Probabilities: 2 3 5 6 8 9 11

2% 20% 30% 8% 20% 15% 5%
Idea: Place nodes with higher probability higher in the tree.

prob. ≤ 1/2

prob. ≤ 1/2`−1

pi = 1/n⇒ H =
n

∑
i=1

1/n · log n = log n

Definition. A BST has the entropy property if it reaches this
bound, i.e., the expected query cost is in O(1 + H).

Lemma.

OPT: prob. p⇒ level ≤ 1− log2 p

The expected query cost in any BST is at least
Ω(1 + H) per query with H = ∑n

i=1−pi log pi.

level 1

level 2

level `

4 - 19

Model 2: Known Probability Distribution

Access Probabilities: 2 3 5 6 8 9 11

2% 20% 30% 8% 20% 15% 5%
Idea: Place nodes with higher probability higher in the tree.

prob. ≤ 1/2

prob. ≤ 1/2`−1

pi = 1/n⇒ H =
n

∑
i=1

1/n · log n = log n p1 ≈ 1, pi ≈ 0⇒ H ≈ − log 1 = 0

Definition. A BST has the entropy property if it reaches this
bound, i.e., the expected query cost is in O(1 + H).

Lemma.

OPT: prob. p⇒ level ≤ 1− log2 p

The expected query cost in any BST is at least
Ω(1 + H) per query with H = ∑n

i=1−pi log pi.

level 1

level 2

level `

4 - 20

Model 2: Known Probability Distribution

Access Probabilities: 2 3 5 6 8 9 11

2% 20% 30% 8% 20% 15% 5%
Idea: Place nodes with higher probability higher in the tree.

prob. ≤ 1/2

prob. ≤ 1/2`−1

pi = 1/n⇒ H =
n

∑
i=1

1/n · log n = log n p1 ≈ 1, pi ≈ 0⇒ H ≈ − log 1 = 0

Definition. A BST has the entropy property if it reaches this
bound, i.e., the expected query cost is in O(1 + H).

Lemma.

OPT: prob. p⇒ level ≤ 1− log2 p

The expected query cost in any BST is at least
Ω(1 + H) per query with H = ∑n

i=1−pi log pi.

level 1

level 2

level `

4 - 21

Model 2: Known Probability Distribution

Access Probabilities: 2 3 5 6 8 9 11

2% 20% 30% 8% 20% 15% 5%
Idea: Place nodes with higher probability higher in the tree.

prob. ≤ 1/2

prob. ≤ 1/2`−1

pi = 1/n⇒ H =
n

∑
i=1

1/n · log n = log n p1 ≈ 1, pi ≈ 0⇒ H ≈ − log 1 = 0

Definition. A BST has the entropy property if it reaches this
bound, i.e., the expected query cost is in O(1 + H).

Lemma.

OPT: prob. p⇒ level ≤ 1− log2 p

The expected query cost in any BST is at least
Ω(1 + H) per query with H = ∑n

i=1−pi log pi.

level 1

level 2

level `

5 - 1

Model 3: Spacial Locality

If a key is queried, then keys with nearby values are more likely to be queried.

5 - 2

Model 3: Spacial Locality

If a key is queried, then keys with nearby values are more likely to be queried.

Suppose we queried key xi and want to query key xj next.

5 - 3

Model 3: Spacial Locality

If a key is queried, then keys with nearby values are more likely to be queried.

Suppose we queried key xi and want to query key xj next.

2 5 8 11 13 17 21 27

3 9 14 24

6 19

12

5 - 4

Model 3: Spacial Locality

If a key is queried, then keys with nearby values are more likely to be queried.

Suppose we queried key xi and want to query key xj next.

2 5 8 11 13 17 21 27

3 9 14 24

6 19

12

5 - 5

Model 3: Spacial Locality

If a key is queried, then keys with nearby values are more likely to be queried.

Suppose we queried key xi and want to query key xj next.

2 5 8 11 13 17 21 27

3 9 14 24

6 19

12

5 - 6

Model 3: Spacial Locality

If a key is queried, then keys with nearby values are more likely to be queried.

Suppose we queried key xi and want to query key xj next.
Let δij = | rank(xj)− rank(xi)|.

2 5 8 11 13 17 21 27

3 9 14 24

6 19

12

5 - 7

Model 3: Spacial Locality

If a key is queried, then keys with nearby values are more likely to be queried.

Suppose we queried key xi and want to query key xj next.
Let δij = | rank(xj)− rank(xi)|.

2 5 8 11 13 17 21 27

3 9 14 24

6 19

12

δij = 2

5 - 8

Model 3: Spacial Locality

If a key is queried, then keys with nearby values are more likely to be queried.

Suppose we queried key xi and want to query key xj next.
Let δij = | rank(xj)− rank(xi)|.

2 5 8 11 13 17 21 27

3 9 14 24

6 19

12

δij = 2

Definition. A BST has the dynamic finger property if the
(amortized) cost of queries are O(log δij).

5 - 9

Model 3: Spacial Locality

If a key is queried, then keys with nearby values are more likely to be queried.

Suppose we queried key xi and want to query key xj next.
Let δij = | rank(xj)− rank(xi)|.

2 5 8 11 13 17 21 27

3 9 14 24

6 19

12

δij = 2

:-(

Definition. A BST has the dynamic finger property if the
(amortized) cost of queries are O(log δij).

5 - 10

Model 3: Spacial Locality

If a key is queried, then keys with nearby values are more likely to be queried.

Suppose we queried key xi and want to query key xj next.
Let δij = | rank(xj)− rank(xi)|.

2 5 8 11 13 17 21 27

3 9 14 24

6 19

12

δij = 2

:-(

Definition. A BST has the dynamic finger property if the
(amortized) cost of queries are O(log δij).

5 - 11

Model 3: Spacial Locality

If a key is queried, then keys with nearby values are more likely to be queried.

Suppose we queried key xi and want to query key xj next.
Let δij = | rank(xj)− rank(xi)|.

2 5 8 11 13 17 21 27

3 9 14 24

6 19

12

δij = 2

:-)

Definition. A BST has the dynamic finger property if the
(amortized) cost of queries are O(log δij).

5 - 12

Model 3: Spacial Locality

Lemma. A level-linked Red-Black-Tree has the dynamic finger
property.

If a key is queried, then keys with nearby values are more likely to be queried.

Suppose we queried key xi and want to query key xj next.
Let δij = | rank(xj)− rank(xi)|.

2 5 8 11 13 17 21 27

3 9 14 24

6 19

12

δij = 2

:-)

Definition. A BST has the dynamic finger property if the
(amortized) cost of queries are O(log δij).

6 - 1

Model 4: Temporal Locality

If a key is queried, then it is likely to be queried again soon.

6 - 2

Model 4: Temporal Locality

If a key is queried, then it is likely to be queried again soon.

A static tree will have a hard time...

6 - 3

Model 4: Temporal Locality

If a key is queried, then it is likely to be queried again soon.

A static tree will have a hard time... What if we can move elements?

6 - 4

Model 4: Temporal Locality

If a key is queried, then it is likely to be queried again soon.

A static tree will have a hard time... What if we can move elements?

Idea: Use a sequence of trees

6 - 5

Model 4: Temporal Locality

If a key is queried, then it is likely to be queried again soon.

A static tree will have a hard time... What if we can move elements?

Idea: Use a sequence of trees

6 - 6

Model 4: Temporal Locality

If a key is queried, then it is likely to be queried again soon.

A static tree will have a hard time... What if we can move elements?

Idea: Use a sequence of trees

6 - 7

Model 4: Temporal Locality

If a key is queried, then it is likely to be queried again soon.

A static tree will have a hard time... What if we can move elements?

Idea: Use a sequence of trees

6 - 8

Model 4: Temporal Locality

If a key is queried, then it is likely to be queried again soon.

A static tree will have a hard time... What if we can move elements?

Idea: Use a sequence of trees

. . .

6 - 9

Model 4: Temporal Locality

If a key is queried, then it is likely to be queried again soon.

A static tree will have a hard time... What if we can move elements?

Idea: Use a sequence of trees

. . .

6 - 10

Model 4: Temporal Locality

If a key is queried, then it is likely to be queried again soon.

A static tree will have a hard time... What if we can move elements?

Idea: Use a sequence of trees

. . .

Move queried key to first tree, then kick out oldest key.

6 - 11

Model 4: Temporal Locality

If a key is queried, then it is likely to be queried again soon.

A static tree will have a hard time... What if we can move elements?

Idea: Use a sequence of trees

. . .

Move queried key to first tree, then kick out oldest key.

6 - 12

Model 4: Temporal Locality

If a key is queried, then it is likely to be queried again soon.

A static tree will have a hard time... What if we can move elements?

Idea: Use a sequence of trees

. . .

Move queried key to first tree, then kick out oldest key.

Definition. A BST has the working set property if the
(amortized) cost of a query for key x is O(log t),
where t is the number of keys queried more recently
than x.

7 - 1

Model 5: Static Optimality

Given a sequence S of queries.

7 - 2

Model 5: Static Optimality

Given a sequence S of queries.

Let T?
S be an optimal static tree with

the shortest query time OPTS for S.

7 - 3

Model 5: Static Optimality

Given a sequence S of queries.

Let T?
S be an optimal static tree with

the shortest query time OPTS for S.

e.g. S = 2, 5, 2, 5, 2, . . . , 5

7 - 4

Model 5: Static Optimality

Given a sequence S of queries.

Let T?
S be an optimal static tree with

the shortest query time OPTS for S. 84

3 7 9

2

e.g. S = 2, 5, 2, 5, 2, . . . , 5
T?

S :

5

7 - 5

Model 5: Static Optimality

Given a sequence S of queries.

Let T?
S be an optimal static tree with

the shortest query time OPTS for S. 84

3 7 9

2

e.g. S = 2, 5, 2, 5, 2, . . . , 5
T?

S :

5
OPT: |S|

7 - 6

Model 5: Static Optimality

Given a sequence S of queries.

Let T?
S be an optimal static tree with

the shortest query time OPTS for S. 84

3 7 9

2

e.g. S = 2, 5, 2, 5, 2, . . . , 5
T?

S :

5
OPT: |S|

Definition. A BST is statically optimal if queries take
(amortized) O(OPTS) time for every S.

8 - 1

All These Models . . .

Balanced:

Entropy:

Dynamic Finger:

Working Set:

Queries take (amortized) O(log n) time

Queries take expected O(1 + H) time

Queries take O(log δi) time (δi: rank diff.)

Queries take O(log t) time (t: recency)

Queries take (amortized) O(OPTS) time.Static Optimality:

8 - 2

All These Models . . .

Balanced:

Entropy:

Dynamic Finger:

Working Set:

Queries take (amortized) O(log n) time

Queries take expected O(1 + H) time

Queries take O(log δi) time (δi: rank diff.)

Queries take O(log t) time (t: recency)

... is there one BST to rule them all?

Queries take (amortized) O(OPTS) time.Static Optimality:

8 - 3

All These Models . . .

Balanced:

Entropy:

Dynamic Finger:

Working Set:

Queries take (amortized) O(log n) time

Queries take expected O(1 + H) time

Queries take O(log δi) time (δi: rank diff.)

Queries take O(log t) time (t: recency)

... is there one BST to rule them all?

Yes! Splay Tree

Queries take (amortized) O(OPTS) time.Static Optimality:

9 - 1

Splay Trees

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985

9 - 2

Splay Trees

Whenever we query a key,
rotate it to the root.

Idea:

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985

9 - 3

Splay Trees

Whenever we query a key,
rotate it to the root.

Idea:

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985

Known from
the lecture
algorithms and
data structures
(ADS):

9 - 4

Splay Trees

y
x

Whenever we query a key,
rotate it to the root.

Idea:

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985

Known from
the lecture
algorithms and
data structures
(ADS):

9 - 5

Splay Trees

y
x y

x
Right(x)

Whenever we query a key,
rotate it to the root.

Idea:

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985

Known from
the lecture
algorithms and
data structures
(ADS):

9 - 6

Splay Trees

y
x y

x
Right(x)

Left(y)

Whenever we query a key,
rotate it to the root.

Idea:

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985

Known from
the lecture
algorithms and
data structures
(ADS):

9 - 7

Splay Trees

y
x y

x
Right(x)

Left(y)

Splay(x): Rotate x to the root

Whenever we query a key,
rotate it to the root.

Idea:

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985

Known from
the lecture
algorithms and
data structures
(ADS):

New:

9 - 8

Splay Trees

y
x y

x
Right(x)

Left(y)

Splay(x): Rotate x to the root

Query(x): Splay(x), then return root

Whenever we query a key,
rotate it to the root.

Idea:

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985

Known from
the lecture
algorithms and
data structures
(ADS):

New:

9 - 9

Splay Trees

y
x y

x
Right(x)

Left(y)

Splay(x): Rotate x to the root

Query(x): Splay(x), then return root

2

3

5

6

8

Whenever we query a key,
rotate it to the root.

Idea:

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985

Known from
the lecture
algorithms and
data structures
(ADS):

New:

9 - 10

Splay Trees

y
x y

x
Right(x)

Left(y)

Splay(x): Rotate x to the root

Query(x): Splay(x), then return root

2

3

5

6

8

Query(8)

Whenever we query a key,
rotate it to the root.

Idea:

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985

Known from
the lecture
algorithms and
data structures
(ADS):

New:

9 - 11

Splay Trees

y
x y

x
Right(x)

Left(y)

Splay(x): Rotate x to the root

Query(x): Splay(x), then return root

2

3

5

6

8

Query(8)

Whenever we query a key,
rotate it to the root.

Idea:

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985

Known from
the lecture
algorithms and
data structures
(ADS):

New:

9 - 12

Splay Trees

y
x y

x
Right(x)

Left(y)

Splay(x): Rotate x to the root

Query(x): Splay(x), then return root

Query(8)

2

3

5

6

8

Whenever we query a key,
rotate it to the root.

Idea:

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985

Known from
the lecture
algorithms and
data structures
(ADS):

New:

9 - 13

Splay Trees

y
x y

x
Right(x)

Left(y)

Splay(x): Rotate x to the root

Query(x): Splay(x), then return root

Query(8)

2

3

5

6

8

Whenever we query a key,
rotate it to the root.

Idea:

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985

Known from
the lecture
algorithms and
data structures
(ADS):

New:

9 - 14

Splay Trees

y
x y

x
Right(x)

Left(y)

Splay(x): Rotate x to the root

Query(x): Splay(x), then return root

Query(8)

2

3

5

6

8

Whenever we query a key,
rotate it to the root.

Idea:

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985

Known from
the lecture
algorithms and
data structures
(ADS):

New:

9 - 15

Splay Trees

y
x y

x
Right(x)

Left(y)

Splay(x): Rotate x to the root

Query(x): Splay(x), then return root

Query(8)

2

3

5

6

8

Whenever we query a key,
rotate it to the root.

Idea:

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985

Known from
the lecture
algorithms and
data structures
(ADS):

New:

9 - 16

Splay Trees

y
x y

x
Right(x)

Left(y)

Splay(x): Rotate x to the root

Query(x): Splay(x), then return root

Query(8)

2

3

5

6

8

Query(6)

Whenever we query a key,
rotate it to the root.

Idea:

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985

Known from
the lecture
algorithms and
data structures
(ADS):

New:

9 - 17

Splay Trees

y
x y

x
Right(x)

Left(y)

Splay(x): Rotate x to the root

Query(x): Splay(x), then return root

Query(8) Query(6)
2

3

5

6

8

Whenever we query a key,
rotate it to the root.

Idea:

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985

Known from
the lecture
algorithms and
data structures
(ADS):

New:

9 - 18

Splay Trees

y
x y

x
Right(x)

Left(y)

Splay(x): Rotate x to the root

Query(x): Splay(x), then return root

Query(8) Query(6)
2

3

5

6

8
Query(5)

Whenever we query a key,
rotate it to the root.

Idea:

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985

Known from
the lecture
algorithms and
data structures
(ADS):

New:

9 - 19

Splay Trees

y
x y

x
Right(x)

Left(y)

Splay(x): Rotate x to the root

Query(x): Splay(x), then return root

Query(8) Query(6) Query(5)
2

3

5

6

8

Whenever we query a key,
rotate it to the root.

Idea:

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985

Known from
the lecture
algorithms and
data structures
(ADS):

New:

9 - 20

Splay Trees

y
x y

x
Right(x)

Left(y)

Splay(x): Rotate x to the root

Query(x): Splay(x), then return root

Query(8) Query(6) Query(5)
2

3

5

6

8Query(3)

Whenever we query a key,
rotate it to the root.

Idea:

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985

Known from
the lecture
algorithms and
data structures
(ADS):

New:

9 - 21

Splay Trees

y
x y

x
Right(x)

Left(y)

Splay(x): Rotate x to the root

Query(x): Splay(x), then return root

Query(8) Query(6) Query(5)
Query(3)

2

3

5

6

8

Whenever we query a key,
rotate it to the root.

Idea:

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985

Known from
the lecture
algorithms and
data structures
(ADS):

New:

9 - 22

Splay Trees

y
x y

x
Right(x)

Left(y)

Splay(x): Rotate x to the root

Query(x): Splay(x), then return root

Query(8) Query(6) Query(5)
Query(3)

2

3

5

6

8
Query(2)

Whenever we query a key,
rotate it to the root.

Idea:

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985

Known from
the lecture
algorithms and
data structures
(ADS):

New:

9 - 23

Splay Trees

y
x y

x
Right(x)

Left(y)

Splay(x): Rotate x to the root

Query(x): Splay(x), then return root

Query(8) Query(6) Query(5)
Query(3)
Query(2)

2

3

5

6

8

Whenever we query a key,
rotate it to the root.

Idea:

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985

Known from
the lecture
algorithms and
data structures
(ADS):

New:

9 - 24

Splay Trees

y
x y

x
Right(x)

Left(y)

Splay(x): Rotate x to the root

Query(x): Splay(x), then return root

Query(8) Query(6) Query(5)
Query(3)
Query(2)

2

3

5

6

8

We’re back at the start...

Whenever we query a key,
rotate it to the root.

Idea:

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985

Known from
the lecture
algorithms and
data structures
(ADS):

New:

9 - 25

Splay Trees

y
x y

x
Right(x)

Left(y)

Splay(x): Rotate x to the root

Query(x): Splay(x), then return root

Query(8) Query(6) Query(5)
Query(3)
Query(2)

2

3

5

6

8

We’re back at the start...
and we did Θ(n2) rotations

Whenever we query a key,
rotate it to the root.

Idea:

Daniel D. Sleator Robert E. Tarjan
J. ACM 1985

Known from
the lecture
algorithms and
data structures
(ADS):

New:

10 - 1

Rotations II

y
x y

x
Right(x)

Left(y)

10 - 2

Rotations II

y
x y

x
Right(x)

Left(y)

z
y

x

10 - 3

Rotations II

y
x y

x
Right(x)

Left(y)

z
y

x

x
y

z

10 - 4

Rotations II

y
x y

x
Right(x)

Left(y)

z
y

x

x
y

z
Right(y)

10 - 5

Rotations II

y
x y

x
Right(x)

Left(y)

z
y

x

x
y

z
Right(y)

x
y

z

10 - 6

Rotations II

y
x y

x
Right(x)

Left(y)

z
y

x

x
y

z
Right(y)

x
y

z

Ri
gh
t(

x)

10 - 7

Rotations II

y
x y

x
Right(x)

Left(y)

z
y

x

x
y

z
Right(y)

x
y

z

Ri
gh
t(

x)

Right-Right(x)

10 - 8

Rotations II

y
x y

x
Right(x)

Left(y)

z
y

x

x
y

z
Right(y)

x
y

z

Ri
gh
t(

x)

Right-Right(x)

Le
ft(

y)

10 - 9

Rotations II

y
x y

x
Right(x)

Left(y)

z
y

x

x
y

z
Right(y)

x
y

z

Ri
gh
t(

x)

Right-Right(x)

Le
ft(

y)Left(z)

10 - 10

Rotations II

y
x y

x
Right(x)

Left(y)

z
y

x

x
y

z
Right(y)

x
y

z

Ri
gh
t(

x)

Right-Right(x)

Left-Left(z)

Le
ft(

y)Left(z)

10 - 11

Rotations II

z

y
x

x

y
z

z
y

x

x
y

z
Right(y)

x
y

z

Ri
gh
t(

x)

Right-Right(x)

Left-Left(z)

Le
ft(

y)Left(z)

10 - 12

Rotations II

z

y
x

x

y
z

L
ef

t(
y)
z

y
x

x
y

z
Right(y)

x
y

z

Ri
gh
t(

x)

Right-Right(x)

Left-Left(z)

Le
ft(

y)Left(z)

10 - 13

Rotations II

z

y
x

Left-Right(y)

x

y
z

L
ef

t(
y)
z

y
x

x
y

z
Right(y)

x
y

z

Ri
gh
t(

x)

Right-Right(x)

Left-Left(z)

Le
ft(

y)Left(z)

10 - 14

Rotations II

z

y
x

Left-Right(y)

x

y
z

L
ef

t(
y)

R
igh

t(y
)

z
y

x

x
y

z
Right(y)

x
y

z

Ri
gh
t(

x)

Right-Right(x)

Left-Left(z)

Le
ft(

y)Left(z)

10 - 15

Rotations II

z

y
x

Left-Right(y)

x

y
z

Right-Left(y)

L
ef

t(
y)

R
igh

t(y
)

z
y

x

x
y

z
Right(y)

x
y

z

Ri
gh
t(

x)

Right-Right(x)

Left-Left(z)

Le
ft(

y)Left(z)

10 - 16

Rotations II

z

y
x

Left-Right(y)

x

y
z

Right-Left(y)

L
ef

t(
y)

R
igh

t(y
)

z
y

x

x
y

z
Right(y)

x
y

z

Ri
gh
t(

x)

Right-Right(x)

Left-Left(z)

Le
ft(

y)Left(z)

L
ef

t-
R

ig
h

t(
z)

10 - 17

Rotations II

z

y
x

Left-Right(y)

x

y
z

Right-Left(y)

L
ef

t(
y)

R
igh

t(y
)

z
y

x

x
y

z
Right(y)

x
y

z

Ri
gh
t(

x)

Right-Right(x)

Left-Left(z)

Le
ft(

y)Left(z)

L
ef

t-
R

ig
h

t(
z)

R
igh

t-L
eft(x

)

10 - 18

Rotations II

z

y
x

Left-Right(y)

x

y
z

Right-Left(y)

z
y

x

x
y

z
Right(y)

x
y

z

Right-Right(x)

Left-Left(z)

Le
ft(

y)Ri
gh
t(

x)

Left(z)
R

igh
t(y

)

L
ef

t-
R

ig
h

t(
z)

R
igh

t-L
eft(x

)

L
ef

t(
y)

11 - 1

Splay

Algorithm: Splay(x)
if x 6= root then

y = parent of x
if y = root then

if x < y then Right(x)
if y < x then Left(x)

else
z = parent of y
if x < y < z then Right-Right(x)
if z < y < x then Left-Left(x)
if y < x < z then Left-Right(x)
if z < x < y then Right-Left(x)

Splay(x)

11 - 2

Splay

Algorithm: Splay(x)
if x 6= root then

y = parent of x
if y = root then

if x < y then Right(x)
if y < x then Left(x)

else
z = parent of y
if x < y < z then Right-Right(x)
if z < y < x then Left-Left(x)
if y < x < z then Left-Right(x)
if z < x < y then Right-Left(x)

Splay(x)

11 - 3

Splay

Algorithm: Splay(x)
if x 6= root then

y = parent of x
if y = root then

if x < y then Right(x)
if y < x then Left(x)

else
z = parent of y
if x < y < z then Right-Right(x)
if z < y < x then Left-Left(x)
if y < x < z then Left-Right(x)
if z < x < y then Right-Left(x)

Splay(x)

11 - 4

Splay

Algorithm: Splay(x)
if x 6= root then

y = parent of x
if y = root then

if x < y then Right(x)
if y < x then Left(x)

else
z = parent of y
if x < y < z then Right-Right(x)
if z < y < x then Left-Left(x)
if y < x < z then Left-Right(x)
if z < x < y then Right-Left(x)

Splay(x)

11 - 5

Splay

Algorithm: Splay(x)
if x 6= root then

y = parent of x
if y = root then

if x < y then Right(x)
if y < x then Left(x)

else
z = parent of y
if x < y < z then Right-Right(x)
if z < y < x then Left-Left(x)
if y < x < z then Left-Right(x)
if z < x < y then Right-Left(x)

Splay(x)

y
x

11 - 6

Splay

Algorithm: Splay(x)
if x 6= root then

y = parent of x
if y = root then

if x < y then Right(x)
if y < x then Left(x)

else
z = parent of y
if x < y < z then Right-Right(x)
if z < y < x then Left-Left(x)
if y < x < z then Left-Right(x)
if z < x < y then Right-Left(x)

Splay(x)

y
x

y
x

Right(x)

11 - 7

Splay

Algorithm: Splay(x)
if x 6= root then

y = parent of x
if y = root then

if x < y then Right(x)
if y < x then Left(x)

else
z = parent of y
if x < y < z then Right-Right(x)
if z < y < x then Left-Left(x)
if y < x < z then Left-Right(x)
if z < x < y then Right-Left(x)

Splay(x)

x
y

x
y

Left(x)

11 - 8

Splay

Algorithm: Splay(x)
if x 6= root then

y = parent of x
if y = root then

if x < y then Right(x)
if y < x then Left(x)

else
z = parent of y
if x < y < z then Right-Right(x)
if z < y < x then Left-Left(x)
if y < x < z then Left-Right(x)
if z < x < y then Right-Left(x)

Splay(x)

11 - 9

Splay

Algorithm: Splay(x)
if x 6= root then

y = parent of x
if y = root then

if x < y then Right(x)
if y < x then Left(x)

else
z = parent of y
if x < y < z then Right-Right(x)
if z < y < x then Left-Left(x)
if y < x < z then Left-Right(x)
if z < x < y then Right-Left(x)

Splay(x)

z
y

x

11 - 10

Splay

x
y

z

Algorithm: Splay(x)
if x 6= root then

y = parent of x
if y = root then

if x < y then Right(x)
if y < x then Left(x)

else
z = parent of y
if x < y < z then Right-Right(x)
if z < y < x then Left-Left(x)
if y < x < z then Left-Right(x)
if z < x < y then Right-Left(x)

Splay(x)

Right-Right(x)

z
y

x

x

11 - 11

Splay

z
y

x

Algorithm: Splay(x)
if x 6= root then

y = parent of x
if y = root then

if x < y then Right(x)
if y < x then Left(x)

else
z = parent of y
if x < y < z then Right-Right(x)
if z < y < x then Left-Left(x)
if y < x < z then Left-Right(x)
if z < x < y then Right-Left(x)

Splay(x)

Left-Left(x)

x
y

z

11 - 12

Splay

Algorithm: Splay(x)
if x 6= root then

y = parent of x
if y = root then

if x < y then Right(x)
if y < x then Left(x)

else
z = parent of y
if x < y < z then Right-Right(x)
if z < y < x then Left-Left(x)
if y < x < z then Left-Right(x)
if z < x < y then Right-Left(x)

Splay(x)

z

x
y

11 - 13

Splay

Algorithm: Splay(x)
if x 6= root then

y = parent of x
if y = root then

if x < y then Right(x)
if y < x then Left(x)

else
z = parent of y
if x < y < z then Right-Right(x)
if z < y < x then Left-Left(x)
if y < x < z then Left-Right(x)
if z < x < y then Right-Left(x)

Splay(x)

y
x

z

z

x
y

Left-Right(x)

11 - 14

Splay

Algorithm: Splay(x)
if x 6= root then

y = parent of x
if y = root then

if x < y then Right(x)
if y < x then Left(x)

else
z = parent of y
if x < y < z then Right-Right(x)
if z < y < x then Left-Left(x)
if y < x < z then Left-Right(x)
if z < x < y then Right-Left(x)

Splay(x)

y
x

z

Right-Left(x)

z

x
y

11 - 15

Splay

Algorithm: Splay(x)
if x 6= root then

y = parent of x
if y = root then

if x < y then Right(x)
if y < x then Left(x)

else
z = parent of y
if x < y < z then Right-Right(x)
if z < y < x then Left-Left(x)
if y < x < z then Left-Right(x)
if z < x < y then Right-Left(x)

Splay(x)

11 - 16

Splay

Algorithm: Splay(x)
if x 6= root then

y = parent of x
if y = root then

if x < y then Right(x)
if y < x then Left(x)

else
z = parent of y
if x < y < z then Right-Right(x)
if z < y < x then Left-Left(x)
if y < x < z then Left-Right(x)
if z < x < y then Right-Left(x)

Splay(x)

6

7

5

4

3

2

1

Splay(3):

11 - 17

Splay

Algorithm: Splay(x)
if x 6= root then

y = parent of x
if y = root then

if x < y then Right(x)
if y < x then Left(x)

else
z = parent of y
if x < y < z then Right-Right(x)
if z < y < x then Left-Left(x)
if y < x < z then Left-Right(x)
if z < x < y then Right-Left(x)

Splay(x)

6

7

5

4

3

2

1

Splay(3):

11 - 18

Splay

Algorithm: Splay(x)
if x 6= root then

y = parent of x
if y = root then

if x < y then Right(x)
if y < x then Left(x)

else
z = parent of y
if x < y < z then Right-Right(x)
if z < y < x then Left-Left(x)
if y < x < z then Left-Right(x)
if z < x < y then Right-Left(x)

Splay(x)

6

7

5

4

3

2

1

Splay(3):

11 - 19

Splay

Algorithm: Splay(x)
if x 6= root then

y = parent of x
if y = root then

if x < y then Right(x)
if y < x then Left(x)

else
z = parent of y
if x < y < z then Right-Right(x)
if z < y < x then Left-Left(x)
if y < x < z then Left-Right(x)
if z < x < y then Right-Left(x)

Splay(x)

Splay(3):

6

7

5

4

3

2

1

11 - 20

Splay

Algorithm: Splay(x)
if x 6= root then

y = parent of x
if y = root then

if x < y then Right(x)
if y < x then Left(x)

else
z = parent of y
if x < y < z then Right-Right(x)
if z < y < x then Left-Left(x)
if y < x < z then Left-Right(x)
if z < x < y then Right-Left(x)

Splay(x)

Splay(3):

6

7

5

4

3

2

1

11 - 21

Splay

Algorithm: Splay(x)
if x 6= root then

y = parent of x
if y = root then

if x < y then Right(x)
if y < x then Left(x)

else
z = parent of y
if x < y < z then Right-Right(x)
if z < y < x then Left-Left(x)
if y < x < z then Left-Right(x)
if z < x < y then Right-Left(x)

Splay(x)

5

741

62

3

Splay(3):

11 - 22

Splay

Algorithm: Splay(x)
if x 6= root then

y = parent of x
if y = root then

if x < y then Right(x)
if y < x then Left(x)

else
z = parent of y
if x < y < z then Right-Right(x)
if z < y < x then Left-Left(x)
if y < x < z then Left-Right(x)
if z < x < y then Right-Left(x)

Splay(x)

5

741

62

3

Splay(3):

Call Splay(x):

11 - 23

Splay

Algorithm: Splay(x)
if x 6= root then

y = parent of x
if y = root then

if x < y then Right(x)
if y < x then Left(x)

else
z = parent of y
if x < y < z then Right-Right(x)
if z < y < x then Left-Left(x)
if y < x < z then Left-Right(x)
if z < x < y then Right-Left(x)

Splay(x)

5

741

62

3

Splay(3):

Call Splay(x):
� after Search(x)

11 - 24

Splay

Algorithm: Splay(x)
if x 6= root then

y = parent of x
if y = root then

if x < y then Right(x)
if y < x then Left(x)

else
z = parent of y
if x < y < z then Right-Right(x)
if z < y < x then Left-Left(x)
if y < x < z then Left-Right(x)
if z < x < y then Right-Left(x)

Splay(x)

5

741

62

3

Splay(3):

Call Splay(x):
� after Search(x)
� after Insert(x)

11 - 25

Splay

Algorithm: Splay(x)
if x 6= root then

y = parent of x
if y = root then

if x < y then Right(x)
if y < x then Left(x)

else
z = parent of y
if x < y < z then Right-Right(x)
if z < y < x then Left-Left(x)
if y < x < z then Left-Right(x)
if z < x < y then Right-Left(x)

Splay(x)

5

741

62

3

Splay(3):

Call Splay(x):
� after Search(x)
� after Insert(x)
� before Delete(x)

12 - 1

Why is Splay Fast?

63

5

2

13

1912

9 14 24

8 11 17 21 27

12 - 2

Why is Splay Fast?

63

5

2

13

1912

9 14 24

8 11 17 21 27

w(x): weight of x (here 1), W = ∑ w(x) (here n)

12 - 3

Why is Splay Fast?

63

5

2

13

1912

9 14 24

8 11 17 21 27

w(x): weight of x (here 1), W = ∑ w(x) (here n)

1

1

1

1

1

1

1 1

1

1

1 1 1

1

1

12 - 4

Why is Splay Fast?

63

5

2

13

1912

9 14 24

8 11 17 21 27

w(x): weight of x (here 1), W = ∑ w(x) (here n)

s(x): sum of all w(x) in subtree of x
1

1

1

1

1

1

1 1

1

1

1 1 1

1

1

12 - 5

Why is Splay Fast?

63

5

2

13

1912

9 14 24

8 11 17 21 27

w(x): weight of x (here 1), W = ∑ w(x) (here n)

s(x): sum of all w(x) in subtree of x
1

1

1

1

1

1

1 1

1

1

1 1 1

1

1

1 1

1 1 1 1

12 - 6

Why is Splay Fast?

63

5

2

13

1912

9 14 24

8 11 17 21 27

w(x): weight of x (here 1), W = ∑ w(x) (here n)

s(x): sum of all w(x) in subtree of x
1

1

1

1

1

1

1 1

1

1

1 1 1

1

1

1 1

1 1 1 1

3

12 - 7

Why is Splay Fast?

63

5

2

13

1912

9 14 24

8 11 17 21 27

w(x): weight of x (here 1), W = ∑ w(x) (here n)

s(x): sum of all w(x) in subtree of x
1

1

1

1

1

1

1 1

1

1

1 1 1

1

1

1 1

1 1 1 1

3

4

12 - 8

Why is Splay Fast?

63

5

2

13

1912

9 14 24

8 11 17 21 27

w(x): weight of x (here 1), W = ∑ w(x) (here n)

s(x): sum of all w(x) in subtree of x
1

1

1

1

1

1

1 1

1

1

1 1 1

1

1

1 1

1 1 1 1

3

4

6

12 - 9

Why is Splay Fast?

63

5

2

13

1912

9 14 24

8 11 17 21 27

w(x): weight of x (here 1), W = ∑ w(x) (here n)

s(x): sum of all w(x) in subtree of x
1

1

1

1

1

1

1 1

1

1

1 1 1

1

1

1 1

1 1 1 1

3

4

6

7

12 - 10

Why is Splay Fast?

63

5

2

13

1912

9 14 24

8 11 17 21 27

w(x): weight of x (here 1), W = ∑ w(x) (here n)

s(x): sum of all w(x) in subtree of x
1

1

1

1

1

1

1 1

1

1

1 1 1

1

1

1 1

1 1 1 1

3

4

6

7

2 3

6

12 - 11

Why is Splay Fast?

63

5

2

13

1912

9 14 24

8 11 17 21 27

w(x): weight of x (here 1), W = ∑ w(x) (here n)

s(x): sum of all w(x) in subtree of x
1

1

1

1

1

1

1 1

1

1

1 1 1

1

1

1 1

1 1 1 1

3

4

6

7

2 3

6

14

15

12 - 12

Why is Splay Fast?

63

5

2

13

1912

9 14 24

8 11 17 21 27

w(x): weight of x (here 1), W = ∑ w(x) (here n)

s(x): sum of all w(x) in subtree of x
1

1

1

1

1

1

1 1

1

1

1 1 1

1

1

1 1

1 1 1 1

3

4

6

7

2 3

6

14

15mark edges:

12 - 13

Why is Splay Fast?

63

5

2

13

1912

9 14 24

8 11 17 21 27

w(x): weight of x (here 1), W = ∑ w(x) (here n)

s(x): sum of all w(x) in subtree of x
1

1

1

1

1

1

1 1

1

1

1 1 1

1

1

1 1

1 1 1 1

3

4

6

7

2 3

6

14

15mark edges:
s(child) ≤ s(parent)/2

12 - 14

Why is Splay Fast?

63

5

2

13

1912

9 14 24

8 11 17 21 27

w(x): weight of x (here 1), W = ∑ w(x) (here n)

s(x): sum of all w(x) in subtree of x
1

1

1

1

1

1

1 1

1

1

1 1 1

1

1

1 1

1 1 1 1

3

4

6

7

2 3

6

14

15mark edges:
s(child) ≤ s(parent)/2
s(child) > s(parent)/2

12 - 15

Why is Splay Fast?

63

5

2

13

1912

9 14 24

8 11 17 21 27

w(x): weight of x (here 1), W = ∑ w(x) (here n)

s(x): sum of all w(x) in subtree of x
1

1

1

1

1

1

1 1

1

1

1 1 1

1

1

1 1

1 1 1 1

3

4

6

7

2 3

6

14

15mark edges:
s(child) ≤ s(parent)/2
s(child) > s(parent)/2

12 - 16

Why is Splay Fast?

63

5

2

13

1912

9 14 24

8 11 17 21 27

w(x): weight of x (here 1), W = ∑ w(x) (here n)

s(x): sum of all w(x) in subtree of x
1

1

1

1

1

1

1 1

1

1

1 1 1

1

1

1 1

1 1 1 1

3

4

6

7

2 3

6

14

15mark edges:
s(child) ≤ s(parent)/2
s(child) > s(parent)/2

12 - 17

Why is Splay Fast?

63

5

2

13

1912

9 14 24

8 11 17 21 27

w(x): weight of x (here 1), W = ∑ w(x) (here n)

s(x): sum of all w(x) in subtree of x
1

1

1

1

1

1

1 1

1

1

1 1 1

1

1

1 1

1 1 1 1

3

4

6

7

2 3

6

14

15mark edges:
s(child) ≤ s(parent)/2
s(child) > s(parent)/2

12 - 18

Why is Splay Fast?

63

5

2

13

1912

9 14 24

8 11 17 21 27

w(x): weight of x (here 1), W = ∑ w(x) (here n)

s(x): sum of all w(x) in subtree of x
1

1

1

1

1

1

1 1

1

1

1 1 1

1

1

1 1

1 1 1 1

3

4

6

7

2 3

6

14

15mark edges:
s(child) ≤ s(parent)/2
s(child) > s(parent)/2

12 - 19

Why is Splay Fast?

63

5

2

13

1912

9 14 24

8 11 17 21 27

w(x): weight of x (here 1), W = ∑ w(x) (here n)

s(x): sum of all w(x) in subtree of x
1

1

1

1

1

1

1 1

1

1

1 1 1

1

1

1 1

1 1 1 1

3

4

6

7

2 3

6

14

15mark edges:
s(child) ≤ s(parent)/2
s(child) > s(parent)/2

12 - 20

Why is Splay Fast?

63

5

2

13

1912

9 14 24

8 11 17 21 27

w(x): weight of x (here 1), W = ∑ w(x) (here n)

s(x): sum of all w(x) in subtree of x
1

1

1

1

1

1

1 1

1

1

1 1 1

1

1

1 1

1 1 1 1

3

4

6

7

2 3

6

14

15mark edges:
s(child) ≤ s(parent)/2
s(child) > s(parent)/2

12 - 21

Why is Splay Fast?

63

5

2

13

1912

9 14 24

8 11 17 21 27

w(x): weight of x (here 1), W = ∑ w(x) (here n)

s(x): sum of all w(x) in subtree of x
1

1

1

1

1

1

1 1

1

1

1 1 1

1

1

1 1

1 1 1 1

3

4

6

7

2 3

6

14

15mark edges:
s(child) ≤ s(parent)/2
s(child) > s(parent)/2

12 - 22

Why is Splay Fast?

63

5

2

13

1912

9 14 24

8 11 17 21 27

w(x): weight of x (here 1), W = ∑ w(x) (here n)

s(x): sum of all w(x) in subtree of x
1

1

1

1

1

1

1 1

1

1

1 1 1

1

1

1 1

1 1 1 1

3

4

6

7

2 3

6

14

15mark edges:
s(child) ≤ s(parent)/2
s(child) > s(parent)/2

12 - 23

Why is Splay Fast?

63

5

2

13

1912

9 14 24

8 11 17 21 27

w(x): weight of x (here 1), W = ∑ w(x) (here n)

s(x): sum of all w(x) in subtree of x
1

1

1

1

1

1

1 1

1

1

1 1 1

1

1

1 1

1 1 1 1

3

4

6

7

2 3

6

14

15mark edges:
s(child) ≤ s(parent)/2
s(child) > s(parent)/2

Cost to query x:

12 - 24

Why is Splay Fast?

63

5

2

13

1912

9 14 24

8 11 17 21 27

w(x): weight of x (here 1), W = ∑ w(x) (here n)

s(x): sum of all w(x) in subtree of x
1

1

1

1

1

1

1 1

1

1

1 1 1

1

1

1 1

1 1 1 1

3

4

6

7

2 3

6

14

15mark edges:
s(child) ≤ s(parent)/2
s(child) > s(parent)/2

Cost to query x: O(#blue + #red)

12 - 25

Why is Splay Fast?

63

5

2

13

1912

9 14 24

8 11 17 21 27

w(x): weight of x (here 1), W = ∑ w(x) (here n)

s(x): sum of all w(x) in subtree of x
1

1

1

1

1

1

1 1

1

1

1 1 1

1

1

1 1

1 1 1 1

3

4

6

7

2 3

6

14

15mark edges:
s(child) ≤ s(parent)/2
s(child) > s(parent)/2

Cost to query x: O(#blue + #red)

Idea: blue edges halve the weight

12 - 26

Why is Splay Fast?

63

5

2

13

1912

9 14 24

8 11 17 21 27

w(x): weight of x (here 1), W = ∑ w(x) (here n)

s(x): sum of all w(x) in subtree of x
1

1

1

1

1

1

1 1

1

1

1 1 1

1

1

1 1

1 1 1 1

3

4

6

7

2 3

6

14

15mark edges:
s(child) ≤ s(parent)/2
s(child) > s(parent)/2

Cost to query x: O(#blue + #red)

Idea: blue edges halve the weight
⇒ #blue ∈ O(log W)

12 - 27

Why is Splay Fast?

63

5

2

13

1912

9 14 24

8 11 17 21 27

w(x): weight of x (here 1), W = ∑ w(x) (here n)

s(x): sum of all w(x) in subtree of x
1

1

1

1

1

1

1 1

1

1

1 1 1

1

1

1 1

1 1 1 1

3

4

6

7

2 3

6

14

15mark edges:
s(child) ≤ s(parent)/2
s(child) > s(parent)/2

Cost to query x:

Idea: blue edges halve the weight
⇒ #blue ∈ O(log W)

O(log W + #red)

12 - 28

Why is Splay Fast?

63

5

2

13

1912

9 14 24

8 11 17 21 27

w(x): weight of x (here 1), W = ∑ w(x) (here n)

s(x): sum of all w(x) in subtree of x
1

1

1

1

1

1

1 1

1

1

1 1 1

1

1

1 1

1 1 1 1

3

4

6

7

2 3

6

14

15mark edges:
s(child) ≤ s(parent)/2
s(child) > s(parent)/2

Cost to query x:

Idea: blue edges halve the weight
⇒ #blue ∈ O(log W)

O(log W + #red)

How can we amortize red edges?

12 - 29

Why is Splay Fast?

63

5

2

13

1912

9 14 24

8 11 17 21 27

w(x): weight of x (here 1), W = ∑ w(x) (here n)

s(x): sum of all w(x) in subtree of x
1

1

1

1

1

1

1 1

1

1

1 1 1

1

1

1 1

1 1 1 1

3

4

6

7

2 3

6

14

15mark edges:
s(child) ≤ s(parent)/2
s(child) > s(parent)/2

Cost to query x:

Idea: blue edges halve the weight
⇒ #blue ∈ O(log W)

O(log W + #red)

How can we amortize red edges?

Use sum-of-logs potential
Φ = ∑ log s(x)

12 - 30

Why is Splay Fast?

63

5

2

13

1912

9 14 24

8 11 17 21 27

w(x): weight of x (here 1), W = ∑ w(x) (here n)

s(x): sum of all w(x) in subtree of x
1

1

1

1

1

1

1 1

1

1

1 1 1

1

1

1 1

1 1 1 1

3

4

6

7

2 3

6

14

15mark edges:
s(child) ≤ s(parent)/2
s(child) > s(parent)/2

Cost to query x:

Idea: blue edges halve the weight
⇒ #blue ∈ O(log W)

O(log W + #red)

How can we amortize red edges?

Use sum-of-logs potential
Φ = ∑ log s(x)
Amortized cost:
real cost + Φ+ −Φ

(potential after splay)

(potential before splay)

13 - 1

What is Potential?

Φ represents work that has been “paid for” but not yet performed.

13 - 2

What is Potential?

Φ represents work that has been “paid for” but not yet performed.

amortized cost per step: real cost + Φ+ −Φ

13 - 3

What is Potential?

Φ represents work that has been “paid for” but not yet performed.

total cost = Φ0 −Φend + ∑ amortized cost

amortized cost per step: real cost + Φ+ −Φ

(potential at the end)(initial potential)

13 - 4

What is Potential?

Φ represents work that has been “paid for” but not yet performed.

total cost = Φ0 −Φend + ∑ amortized cost

Example (from ADS): Stack with multipop

amortized cost per step: real cost + Φ+ −Φ

(potential at the end)(initial potential)

13 - 5

What is Potential?

Φ represents work that has been “paid for” but not yet performed.

total cost = Φ0 −Φend + ∑ amortized cost

Example (from ADS): Stack with multipop

Φ := size of the stack

amortized cost per step: real cost + Φ+ −Φ

(potential at the end)(initial potential)

13 - 6

What is Potential?

Φ represents work that has been “paid for” but not yet performed.

total cost = Φ0 −Φend + ∑ amortized cost

Example (from ADS): Stack with multipop

Φ := size of the stack
Φ = 0

amortized cost per step: real cost + Φ+ −Φ

(potential at the end)(initial potential)

13 - 7

What is Potential?

Φ represents work that has been “paid for” but not yet performed.

total cost = Φ0 −Φend + ∑ amortized cost

Example (from ADS): Stack with multipop

Φ := size of the stack

push(1)

Φ = 0

amortized cost per step: real cost + Φ+ −Φ

(potential at the end)(initial potential)

13 - 8

What is Potential?

Φ represents work that has been “paid for” but not yet performed.

total cost = Φ0 −Φend + ∑ amortized cost

Example (from ADS): Stack with multipop

Φ := size of the stack
1

push(1)

Φ = 1

amortized cost per step: real cost + Φ+ −Φ

(potential at the end)(initial potential)

13 - 9

What is Potential?

Φ represents work that has been “paid for” but not yet performed.

total cost = Φ0 −Φend + ∑ amortized cost

Example (from ADS): Stack with multipop

Φ := size of the stack
1

push(2)

Φ = 1

amortized cost per step: real cost + Φ+ −Φ

(potential at the end)(initial potential)

13 - 10

What is Potential?

Φ represents work that has been “paid for” but not yet performed.

total cost = Φ0 −Φend + ∑ amortized cost

Example (from ADS): Stack with multipop

Φ := size of the stack
1
2

push(2)

Φ = 2

amortized cost per step: real cost + Φ+ −Φ

(potential at the end)(initial potential)

13 - 11

What is Potential?

Φ represents work that has been “paid for” but not yet performed.

total cost = Φ0 −Φend + ∑ amortized cost

Example (from ADS): Stack with multipop

Φ := size of the stack
1
2

push(3)

Φ = 2

amortized cost per step: real cost + Φ+ −Φ

(potential at the end)(initial potential)

13 - 12

What is Potential?

Φ represents work that has been “paid for” but not yet performed.

total cost = Φ0 −Φend + ∑ amortized cost

Example (from ADS): Stack with multipop

Φ := size of the stack
1

3
2

push(3)

Φ = 3

amortized cost per step: real cost + Φ+ −Φ

(potential at the end)(initial potential)

13 - 13

What is Potential?

Φ represents work that has been “paid for” but not yet performed.

total cost = Φ0 −Φend + ∑ amortized cost

Example (from ADS): Stack with multipop

Φ := size of the stack
1

3
2

pop(2)

Φ = 3

amortized cost per step: real cost + Φ+ −Φ

(potential at the end)(initial potential)

13 - 14

What is Potential?

Φ represents work that has been “paid for” but not yet performed.

total cost = Φ0 −Φend + ∑ amortized cost

Example (from ADS): Stack with multipop

Φ := size of the stack
1

pop(2)

Φ = 1

amortized cost per step: real cost + Φ+ −Φ

(potential at the end)(initial potential)

13 - 15

What is Potential?

Φ represents work that has been “paid for” but not yet performed.

total cost = Φ0 −Φend + ∑ amortized cost

Example (from ADS): Stack with multipop

Φ := size of the stack
1

pop(2)

Φ = 1
push:

pop(k):

amortized cost per step: real cost + Φ+ −Φ

(potential at the end)(initial potential)

13 - 16

What is Potential?

Φ represents work that has been “paid for” but not yet performed.

total cost = Φ0 −Φend + ∑ amortized cost

Example (from ADS): Stack with multipop

Φ := size of the stack
1

pop(2)

Φ = 1
push:

pop(k):

1 + Φ+ −Φ

amortized cost per step: real cost + Φ+ −Φ

(potential at the end)(initial potential)

13 - 17

What is Potential?

Φ represents work that has been “paid for” but not yet performed.

total cost = Φ0 −Φend + ∑ amortized cost

Example (from ADS): Stack with multipop

Φ := size of the stack
1

pop(2)

Φ = 1
push: = 2

pop(k):

1 + Φ+ −Φ

amortized cost per step: real cost + Φ+ −Φ

(potential at the end)(initial potential)

13 - 18

What is Potential?

Φ represents work that has been “paid for” but not yet performed.

total cost = Φ0 −Φend + ∑ amortized cost

Example (from ADS): Stack with multipop

Φ := size of the stack
1

pop(2)

Φ = 1
push: = 2

pop(k):

1 + Φ+ −Φ

k + Φ+ −Φ

amortized cost per step: real cost + Φ+ −Φ

(potential at the end)(initial potential)

13 - 19

What is Potential?

Φ represents work that has been “paid for” but not yet performed.

total cost = Φ0 −Φend + ∑ amortized cost

Example (from ADS): Stack with multipop

Φ := size of the stack
1

pop(2)

Φ = 1
push: = 2

pop(k):

1 + Φ+ −Φ

k + Φ+ −Φ = 0

amortized cost per step: real cost + Φ+ −Φ

(potential at the end)(initial potential)

13 - 20

What is Potential?

Φ represents work that has been “paid for” but not yet performed.

total cost = Φ0 −Φend + ∑ amortized cost

Example (from ADS): Stack with multipop

Φ := size of the stack
1

pop(2)

Φ = 1
push: = 2

pop(k):

1 + Φ+ −Φ

k + Φ+ −Φ = 0

total cost = Φ0 −Φend + amortized cost

amortized cost per step: real cost + Φ+ −Φ

(potential at the end)(initial potential)

13 - 21

What is Potential?

Φ represents work that has been “paid for” but not yet performed.

total cost = Φ0 −Φend + ∑ amortized cost

Example (from ADS): Stack with multipop

Φ := size of the stack
1

pop(2)

Φ = 1
push: = 2

pop(k):

1 + Φ+ −Φ

k + Φ+ −Φ = 0

total cost = Φ0 −Φend + amortized cost

≤ Φ0 −Φend + 2n

amortized cost per step: real cost + Φ+ −Φ

(potential at the end)(initial potential)

13 - 22

What is Potential?

Φ represents work that has been “paid for” but not yet performed.

total cost = Φ0 −Φend + ∑ amortized cost

Example (from ADS): Stack with multipop

Φ := size of the stack
1

pop(2)

Φ = 1
push: = 2

pop(k):

1 + Φ+ −Φ

k + Φ+ −Φ = 0

total cost = Φ0 −Φend + amortized cost

≤ Φ0 −Φend + 2n
≤ 2n

amortized cost per step: real cost + Φ+ −Φ

(potential at the end)(initial potential)

13 - 23

What is Potential?

Φ represents work that has been “paid for” but not yet performed.

total cost = Φ0 −Φend + ∑ amortized cost

Example (from ADS): Stack with multipop

Φ := size of the stack
1

pop(2)

Φ = 1
push: = 2

pop(k):

1 + Φ+ −Φ

k + Φ+ −Φ = 0

total cost = Φ0 −Φend + amortized cost

≤ Φ0 −Φend + 2n
≤ 2n ∈ O(n)

amortized cost per step: real cost + Φ+ −Φ

(potential at the end)(initial potential)

14 - 1

Why is Splay Fast?

63

5

2

13

1912

9 14 24

8 11 17 21 27

w(x): weight of x (here 1), W = ∑ w(x) (here n)

s(x): sum of all w(x) in subtree of xi
1

1

1

1

1

1

1 1

1

1

1 1 1

1

1

1 1

1 1 1 1

3

4

6

7

2 3

6

14

15mark edges:
s(child) ≤ s(parent)/2
s(child) > s(parent)/2

Cost to query xi:

Idea: blue edges halve the weight
⇒ #blue ∈ O(log W)

O(log W + #red)

How can we amortize red edges?

Use sum-of-logs potential
Φ = ∑ log s(x)
Amortized cost:
real cost + Φ+ −Φ

(potential after splay)

(potential before splay)

14 - 2

Why is Splay Fast?

63

5

2

13

1912

9 14 24

8 11 17 21 27

w(x): weight of x (here 1), W = ∑ w(x) (here n)

s(x): sum of all w(x) in subtree of xi
1

1

1

1

1

1

1 1

1

1

1 1 1

1

1

1 1

1 1 1 1

3

4

6

7

2 3

6

14

15mark edges:
s(child) ≤ s(parent)/2
s(child) > s(parent)/2

Cost to query xi:

Idea: blue edges halve the weight
⇒ #blue ∈ O(log W)

O(log W + #red)

How can we amortize red edges?

Use sum-of-logs potential
Φ = ∑ log s(x)
Amortized cost:
real cost + Φ+ −Φ

(potential after splay)

(potential before splay)

14 - 3

Why is Splay Fast?

63

5

2

13

1912

9 14 24

8 11 17 21 27

w(x): weight of x (here 1), W = ∑ w(x) (here n)

s(x): sum of all w(x) in subtree of xi
1

1

1

1

1

1

1 1

1

1

1 1 1

1

1

1 1

1 1 1 1

3

4

6

7

2 3

6

14

15mark edges:
s(child) ≤ s(parent)/2
s(child) > s(parent)/2

Cost to query xi:

Idea: blue edges halve the weight
⇒ #blue ∈ O(log W)

O(log W + #red)

How can we amortize red edges?

Use sum-of-logs potential
Φ = ∑ log s(x)
Amortized cost:
real cost + Φ+ −Φ

(potential after splay)

Φ = ∑n
i=1 log i

(potential before splay)

14 - 4

Why is Splay Fast?

63

5

2

13

1912

9 14 24

8 11 17 21 27

w(x): weight of x (here 1), W = ∑ w(x) (here n)

s(x): sum of all w(x) in subtree of xi
1

1

1

1

1

1

1 1

1

1

1 1 1

1

1

1 1

1 1 1 1

3

4

6

7

2 3

6

14

15mark edges:
s(child) ≤ s(parent)/2
s(child) > s(parent)/2

Cost to query xi:

Idea: blue edges halve the weight
⇒ #blue ∈ O(log W)

O(log W + #red)

How can we amortize red edges?

Use sum-of-logs potential
Φ = ∑ log s(x)
Amortized cost:
real cost + Φ+ −Φ

(potential after splay)

Φ = ∑n
i=1 log i

∈ Θ(n log n)

(potential before splay)

14 - 5

Why is Splay Fast?

63

5

2

13

1912

9 14 24

8 11 17 21 27

w(x): weight of x (here 1), W = ∑ w(x) (here n)

s(x): sum of all w(x) in subtree of xi
1

1

1

1

1

1

1 1

1

1

1 1 1

1

1

1 1

1 1 1 1

3

4

6

7

2 3

6

14

15mark edges:
s(child) ≤ s(parent)/2
s(child) > s(parent)/2

Cost to query xi:

Idea: blue edges halve the weight
⇒ #blue ∈ O(log W)

O(log W + #red)

How can we amortize red edges?

Use sum-of-logs potential
Φ = ∑ log s(x)
Amortized cost:
real cost + Φ+ −Φ

(potential after splay)

Φ = ∑n
i=1 log i

∈ Θ(n log n)

(potential before splay)

14 - 6

Why is Splay Fast?

63

5

2

13

1912

9 14 24

8 11 17 21 27

w(x): weight of x (here 1), W = ∑ w(x) (here n)

s(x): sum of all w(x) in subtree of xi
1

1

1

1

1

1

1 1

1

1

1 1 1

1

1

1 1

1 1 1 1

3

4

6

7

2 3

6

14

15mark edges:
s(child) ≤ s(parent)/2
s(child) > s(parent)/2

Cost to query xi:

Idea: blue edges halve the weight
⇒ #blue ∈ O(log W)

O(log W + #red)

How can we amortize red edges?

Use sum-of-logs potential
Φ = ∑ log s(x)
Amortized cost:
real cost + Φ+ −Φ

(potential after splay)

Φ = ∑n
i=1 log i

∈ Θ(n log n)

Φ ≈ ∑log n−1
i=0 2i log n

2i
(potential before splay)

14 - 7

Why is Splay Fast?

63

5

2

13

1912

9 14 24

8 11 17 21 27

w(x): weight of x (here 1), W = ∑ w(x) (here n)

s(x): sum of all w(x) in subtree of xi
1

1

1

1

1

1

1 1

1

1

1 1 1

1

1

1 1

1 1 1 1

3

4

6

7

2 3

6

14

15mark edges:
s(child) ≤ s(parent)/2
s(child) > s(parent)/2

Cost to query xi:

Idea: blue edges halve the weight
⇒ #blue ∈ O(log W)

O(log W + #red)

How can we amortize red edges?

Use sum-of-logs potential
Φ = ∑ log s(x)
Amortized cost:
real cost + Φ+ −Φ

(potential after splay)

Φ = ∑n
i=1 log i

∈ Θ(n log n)

Φ ≈ ∑log n−1
i=0 2i log n

2i
(potential before splay)

∈ Θ(n)

15 - 1

Potential after Rotation

Consider any rotation; s(x) before rotation, s+(x) afterwards

15 - 2

Potential after Rotation

Consider any rotation; s(x) before rotation, s+(x) afterwards

Lemma. After a single rotation, the potential increases by
≤ 3 (log s+(x)− log s(x)).

15 - 3

Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Right(x)

Lemma. After a single rotation, the potential increases by
≤ 3 (log s+(x)− log s(x)).

15 - 4

Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Right(x) y
x y

x

Lemma. After a single rotation, the potential increases by
≤ 3 (log s+(x)− log s(x)).

15 - 5

Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Right(x) y
x y

x

Only s(x) and s(y) change.Observe:

Lemma. After a single rotation, the potential increases by
≤ 3 (log s+(x)− log s(x)).

15 - 6

Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Right(x) y
x y

x

Only s(x) and s(y) change.Observe:

pot. change log s+(x) + log s+(y)
− log s(x)− log s(y)

=

Lemma. After a single rotation, the potential increases by
≤ 3 (log s+(x)− log s(x)).

15 - 7

Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Right(x) y
x y

x

Only s(x) and s(y) change.Observe:

pot. change log s+(x) + log s+(y)
− log s(x)− log s(y)

(s+(y) ≤ s(y))

=

Lemma. After a single rotation, the potential increases by
≤ 3 (log s+(x)− log s(x)).

15 - 8

Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Right(x) y
x y

x

Only s(x) and s(y) change.Observe:

pot. change log s+(x) + log s+(y)
− log s(x)− log s(y)

(s+(y) ≤ s(y)) ≤ log s+(x)− log s(x)

=

Lemma. After a single rotation, the potential increases by
≤ 3 (log s+(x)− log s(x)).

15 - 9

Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Right(x) y
x y

x

Only s(x) and s(y) change.Observe:

pot. change log s+(x) + log s+(y)
− log s(x)− log s(y)

(s+(y) ≤ s(y)) ≤ log s+(x)− log s(x)

(s+(x) > s(x))

=

Lemma. After a single rotation, the potential increases by
≤ 3 (log s+(x)− log s(x)).

15 - 10

Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Right(x) y
x y

x

Only s(x) and s(y) change.Observe:

pot. change log s+(x) + log s+(y)
− log s(x)− log s(y)

(s+(y) ≤ s(y)) ≤ log s+(x)− log s(x)

(s+(x) > s(x)) ≤ 3 (log s+(x)− log s(x))

=

Lemma. After a single rotation, the potential increases by
≤ 3 (log s+(x)− log s(x)).

15 - 11

Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Right(x) y
x y

x

Only s(x) and s(y) change.Observe:

pot. change log s+(x) + log s+(y)
− log s(x)− log s(y)

(s+(y) ≤ s(y)) ≤ log s+(x)− log s(x)

(s+(x) > s(x)) ≤ 3 (log s+(x)− log s(x)) X

=

Lemma. After a single rotation, the potential increases by
≤ 3 (log s+(x)− log s(x)).

15 - 12

Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Right(x) y
x y

x

Only s(x) and s(y) change.Observe:

pot. change log s+(x) + log s+(y)
− log s(x)− log s(y)

(s+(y) ≤ s(y)) ≤ log s+(x)− log s(x)

(s+(x) > s(x)) ≤ 3 (log s+(x)− log s(x)) X
Left(x) analogue X

=

Lemma. After a single rotation, the potential increases by
≤ 3 (log s+(x)− log s(x)).

16 - 1

Potential after Rotation

Consider any rotation; s(x) before rotation, s+(x) afterwards

Lemma. After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.

16 - 2

Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Lemma. After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.

16 - 3

Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 1. Right-Right(x)

Lemma. After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.

16 - 4

Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 1. Right-Right(x)
z

y
x

x
y

z

Lemma. After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.

16 - 5

Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 1. Right-Right(x)

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

z
y

x

x
y

z

Lemma. After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.

16 - 6

Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 1. Right-Right(x)

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

z
y

x

x
y

z

(s+(x) = s(z))

Lemma. After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.

16 - 7

Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 1. Right-Right(x)

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

z
y

x

x
y

z

(s+(x) = s(z)) log s+(y) + log s+(z)− log s(x)− log s(y)=

Lemma. After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.

16 - 8

Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 1. Right-Right(x)

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

z
y

x

x
y

z

(s+(x) = s(z))

(s(x) ≤ s(y))

log s+(y) + log s+(z)− log s(x)− log s(y)=

Lemma. After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.

16 - 9

Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 1. Right-Right(x)

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

z
y

x

x
y

z

(s+(x) = s(z))

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)
log s+(y) + log s+(z)− log s(x)− log s(y)=

Lemma. After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.

16 - 10

Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 1. Right-Right(x)

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

z
y

x

x
y

z

(s+(x) = s(z))

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)
log s+(y) + log s+(z)− log s(x)− log s(y)=

(s+(y) ≤ s+(x))

Lemma. After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.

16 - 11

Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 1. Right-Right(x)

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

z
y

x

x
y

z

(s+(x) = s(z))

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)
log s+(y) + log s+(z)− log s(x)− log s(y)=

(s+(y) ≤ s+(x)) ≤ log s+(x) + log s+(z)− 2 log s(x)

Lemma. After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.

16 - 12

Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 1. Right-Right(x)

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

z
y

x

x
y

z

(s+(x) = s(z))

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)
log s+(y) + log s+(z)− log s(x)− log s(y)=

(s+(y) ≤ s+(x)) ≤ log s+(x) + log s+(z)− 2 log s(x)

Lemma. After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.

16 - 13

Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 1. Right-Right(x)

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

z
y

x

x
y

z

(s+(x) = s(z))

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)
log s+(y) + log s+(z)− log s(x)− log s(y)=

(s+(y) ≤ s+(x)) ≤ log s+(x) + log s+(z)− 2 log s(x)

Lemma. After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.

16 - 14

Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 1. Right-Right(x)

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

z
y

x

x
y

z

(s+(x) = s(z))

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)
log s+(y) + log s+(z)− log s(x)− log s(y)=

(s+(y) ≤ s+(x)) ≤ log s+(x) + log s+(z)− 2 log s(x)

Lemma. After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.

16 - 15

Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 1. Right-Right(x)

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

z
y

x

x
y

z

(s+(x) = s(z))

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)
log s+(y) + log s+(z)− log s(x)− log s(y)=

(s+(y) ≤ s+(x)) ≤ log s+(x) + log s+(z)− 2 log s(x)

(?) : s(x) + s+(z) ≤ s+(x)

Lemma. After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.

16 - 16

Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 1. Right-Right(x)

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

z
y

x

x
y

z

(s+(x) = s(z))

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)
log s+(y) + log s+(z)− log s(x)− log s(y)=

(s+(y) ≤ s+(x)) ≤ log s+(x) + log s+(z)− 2 log s(x)

(?) : s(x) + s+(z) ≤ s+(x)

Lemma. After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.

Inequality of arithmetic and
geometric means (AM-GM):

x1+x2+···+xk
k ≥ k

√
x1 · x2 · . . . · xk

(arithmetic mean) (geometric mean)

for k = 2:
x+y

2 ≥
√

xy ⇒ xy ≤
(

x+y
2

)2

16 - 17

Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 1. Right-Right(x)

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

z
y

x

x
y

z

(s+(x) = s(z))

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)
log s+(y) + log s+(z)− log s(x)− log s(y)=

(s+(y) ≤ s+(x)) ≤ log s+(x) + log s+(z)− 2 log s(x)

(?) : s(x) + s+(z) ≤ s+(x) log s(x) + log s+(z)

Lemma. After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.

Inequality of arithmetic and
geometric means (AM-GM):

x1+x2+···+xk
k ≥ k

√
x1 · x2 · . . . · xk

(arithmetic mean) (geometric mean)

for k = 2:
x+y

2 ≥
√

xy ⇒ xy ≤
(

x+y
2

)2

16 - 18

Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 1. Right-Right(x)

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

z
y

x

x
y

z

(s+(x) = s(z))

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)
log s+(y) + log s+(z)− log s(x)− log s(y)=

(s+(y) ≤ s+(x)) ≤ log s+(x) + log s+(z)− 2 log s(x)

(?) : s(x) + s+(z) ≤ s+(x) log s(x) + log s+(z) = log(s(x)s+(z))

Lemma. After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.

Inequality of arithmetic and
geometric means (AM-GM):

x1+x2+···+xk
k ≥ k

√
x1 · x2 · . . . · xk

(arithmetic mean) (geometric mean)

for k = 2:
x+y

2 ≥
√

xy ⇒ xy ≤
(

x+y
2

)2

16 - 19

Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 1. Right-Right(x)

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

z
y

x

x
y

z

(s+(x) = s(z))

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)
log s+(y) + log s+(z)− log s(x)− log s(y)=

(s+(y) ≤ s+(x)) ≤ log s+(x) + log s+(z)− 2 log s(x)

(?) : s(x) + s+(z) ≤ s+(x)

(AM-GM)

log s(x) + log s+(z) = log(s(x)s+(z))
≤ log(((s(x) + s+(z))/2)2)

Lemma. After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.

Inequality of arithmetic and
geometric means (AM-GM):

x1+x2+···+xk
k ≥ k

√
x1 · x2 · . . . · xk

(arithmetic mean) (geometric mean)

for k = 2:
x+y

2 ≥
√

xy ⇒ xy ≤
(

x+y
2

)2

16 - 20

Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 1. Right-Right(x)

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

z
y

x

x
y

z

(s+(x) = s(z))

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)
log s+(y) + log s+(z)− log s(x)− log s(y)=

(s+(y) ≤ s+(x)) ≤ log s+(x) + log s+(z)− 2 log s(x)

(?) : s(x) + s+(z) ≤ s+(x)

(AM-GM)

log s(x) + log s+(z) = log(s(x)s+(z))
≤ log(((s(x) + s+(z))/2)2)

Lemma. After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.

Inequality of arithmetic and
geometric means (AM-GM):

x1+x2+···+xk
k ≥ k

√
x1 · x2 · . . . · xk

(arithmetic mean) (geometric mean)

for k = 2:
x+y

2 ≥
√

xy ⇒ xy ≤
(

x+y
2

)2

≤ log((s+(x)/2)2)
(?)

16 - 21

Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 1. Right-Right(x)

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

z
y

x

x
y

z

(s+(x) = s(z))

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)
log s+(y) + log s+(z)− log s(x)− log s(y)=

(s+(y) ≤ s+(x)) ≤ log s+(x) + log s+(z)− 2 log s(x)

(?) : s(x) + s+(z) ≤ s+(x)

(AM-GM)

log s(x) + log s+(z) = log(s(x)s+(z))
≤ log(((s(x) + s+(z))/2)2) = 2 log s+(x)− 2

Lemma. After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.

≤ log((s+(x)/2)2)
(?)

16 - 22

Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 1. Right-Right(x)

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

z
y

x

x
y

z

(s+(x) = s(z))

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)
log s+(y) + log s+(z)− log s(x)− log s(y)=

(s+(y) ≤ s+(x)) ≤ log s+(x) + log s+(z)− 2 log s(x)

(?) : s(x) + s+(z) ≤ s+(x)

(AM-GM)

log s(x) + log s+(z) = log(s(x)s+(z))
≤ log(((s(x) + s+(z))/2)2) = 2 log s+(x)− 2

Lemma. After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.

≤ log((s+(x)/2)2)
(?)

16 - 23

Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 1. Right-Right(x)

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

z
y

x

x
y

z

(s+(x) = s(z))

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)
log s+(y) + log s+(z)− log s(x)− log s(y)=

(s+(y) ≤ s+(x)) ≤ log s+(x) + log s+(z)− 2 log s(x)

(?) : s(x) + s+(z) ≤ s+(x)

(AM-GM)

log s(x) + log s+(z) = log(s(x)s+(z))
≤ log(((s(x) + s+(z))/2)2) = 2 log s+(x)− 2

≤ 3 log s+(x)− 3 log s(x)− 2

Lemma. After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.

≤ log((s+(x)/2)2)
(?)

16 - 24

Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 1. Right-Right(x)

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

z
y

x

x
y

z

(s+(x) = s(z))

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)

X

log s+(y) + log s+(z)− log s(x)− log s(y)=

(s+(y) ≤ s+(x)) ≤ log s+(x) + log s+(z)− 2 log s(x)

(?) : s(x) + s+(z) ≤ s+(x)

(AM-GM)

log s(x) + log s+(z) = log(s(x)s+(z))
≤ log(((s(x) + s+(z))/2)2) = 2 log s+(x)− 2

≤ 3 log s+(x)− 3 log s(x)− 2

Lemma. After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.

≤ log((s+(x)/2)2)
(?)

16 - 25

Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 1. Right-Right(x)

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

z
y

x

x
y

z

(s+(x) = s(z))

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)

X

log s+(y) + log s+(z)− log s(x)− log s(y)=

(s+(y) ≤ s+(x)) ≤ log s+(x) + log s+(z)− 2 log s(x)

(?) : s(x) + s+(z) ≤ s+(x)

(AM-GM)

log s(x) + log s+(z) = log(s(x)s+(z))
≤ log(((s(x) + s+(z))/2)2) = 2 log s+(x)− 2

≤ 3 log s+(x)− 3 log s(x)− 2

/ Left-Left(x)

Lemma. After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.

≤ log((s+(x)/2)2)
(?)

17 - 1

Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 2. Right-Left(x)
z

x
y

z

x
y

Lemma. After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.

17 - 2

Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 2. Right-Left(x)
z

x
y

z

x
y

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

Lemma. After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.

17 - 3

Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 2. Right-Left(x)
z

x
y

z

x
y

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

(s+(x) = s(z)) log s+(y) + log s+(z)− log s(x)− log s(y)=

Lemma. After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.

17 - 4

Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 2. Right-Left(x)
z

x
y

z

x
y

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

(s+(x) = s(z)) log s+(y) + log s+(z)− log s(x)− log s(y)=

(s(x) ≤ s(y))

Lemma. After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.

17 - 5

Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 2. Right-Left(x)
z

x
y

z

x
y

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

(s+(x) = s(z)) log s+(y) + log s+(z)− log s(x)− log s(y)=

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)

Lemma. After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.

17 - 6

Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 2. Right-Left(x)
z

x
y

z

x
y

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

(s+(x) = s(z)) log s+(y) + log s+(z)− log s(x)− log s(y)=

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)

Lemma. After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.

17 - 7

Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 2. Right-Left(x)
z

x
y

z

x
y

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

(s+(x) = s(z)) log s+(y) + log s+(z)− log s(x)− log s(y)=

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)

Lemma. After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.

17 - 8

Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 2. Right-Left(x)
z

x
y

z

x
y

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

(s+(x) = s(z)) log s+(y) + log s+(z)− log s(x)− log s(y)=

(?) : s+(y) + s+(z) ≤ s+(x)

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)

Lemma. After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.

17 - 9

Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 2. Right-Left(x)
z

x
y

z

x
y

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

(s+(x) = s(z)) log s+(y) + log s+(z)− log s(x)− log s(y)=

(?) : s+(y) + s+(z) ≤ s+(x) log s+(y) + log s+(z) ≤ 2 log s+(x)− 2

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)

Lemma. After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.

(AM-GM)
(?)

17 - 10

Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 2. Right-Left(x)
z

x
y

z

x
y

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

(s+(x) = s(z)) log s+(y) + log s+(z)− log s(x)− log s(y)=

(?) : s+(y) + s+(z) ≤ s+(x) log s+(y) + log s+(z) ≤ 2 log s+(x)− 2

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)

Lemma. After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.

(AM-GM)
(?)

17 - 11

Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 2. Right-Left(x)
z

x
y

z

x
y

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

(s+(x) = s(z)) log s+(y) + log s+(z)− log s(x)− log s(y)=

(?) : s+(y) + s+(z) ≤ s+(x) log s+(y) + log s+(z) ≤ 2 log s+(x)− 2

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)
≤ 2 log s+(x)− 2 log s(x)− 2

Lemma. After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.

(AM-GM)
(?)

17 - 12

Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 2. Right-Left(x)
z

x
y

z

x
y

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

(s+(x) = s(z)) log s+(y) + log s+(z)− log s(x)− log s(y)=

(?) : s+(y) + s+(z) ≤ s+(x) log s+(y) + log s+(z) ≤ 2 log s+(x)− 2

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)
≤ 2 log s+(x)− 2 log s(x)− 2

(s+(x) > s(x))

Lemma. After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.

(AM-GM)
(?)

17 - 13

Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 2. Right-Left(x)
z

x
y

z

x
y

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

(s+(x) = s(z)) log s+(y) + log s+(z)− log s(x)− log s(y)=

(?) : s+(y) + s+(z) ≤ s+(x) log s+(y) + log s+(z) ≤ 2 log s+(x)− 2

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)
≤ 2 log s+(x)− 2 log s(x)− 2

(s+(x) > s(x)) ≤ 3 log s+(x)− 3 log s(x)− 2

Lemma. After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.

(AM-GM)
(?)

17 - 14

Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 2. Right-Left(x)
z

x
y

z

x
y

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

(s+(x) = s(z)) log s+(y) + log s+(z)− log s(x)− log s(y)=

(?) : s+(y) + s+(z) ≤ s+(x) log s+(y) + log s+(z) ≤ 2 log s+(x)− 2

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)
≤ 2 log s+(x)− 2 log s(x)− 2

(s+(x) > s(x)) ≤ 3 log s+(x)− 3 log s(x)− 2 X

Lemma. After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.

(AM-GM)
(?)

17 - 15

Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 2. Right-Left(x)
z

x
y

z

x
y

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

(s+(x) = s(z)) log s+(y) + log s+(z)− log s(x)− log s(y)=

(?) : s+(y) + s+(z) ≤ s+(x) log s+(y) + log s+(z) ≤ 2 log s+(x)− 2

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)
≤ 2 log s+(x)− 2 log s(x)− 2

(s+(x) > s(x)) ≤ 3 log s+(x)− 3 log s(x)− 2 X

/ Left-Right(x)

Lemma. After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.

(AM-GM)
(?)

18 - 1

Access Lemma
Lemma. After a single rotation, the potential increases by

≤ 3 (log s+(x)− log s(x)).
After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.

18 - 2

Access Lemma
Lemma. After a single rotation, the potential increases by

≤ 3 (log s+(x)− log s(x)).
After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.

Lemma. The (amortized) cost of Splay(x) is
c(Splay(x)) ≤ 1 + 3 log(W/w(x)).

18 - 3

Access Lemma

Proof.

Lemma. After a single rotation, the potential increases by
≤ 3 (log s+(x)− log s(x)).
After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.

Lemma. The (amortized) cost of Splay(x) is
c(Splay(x)) ≤ 1 + 3 log(W/w(x)).

18 - 4

Access Lemma

Proof. W.l.o.g. k double rotations and 1 single rotation.

Lemma. After a single rotation, the potential increases by
≤ 3 (log s+(x)− log s(x)).
After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.

Lemma. The (amortized) cost of Splay(x) is
c(Splay(x)) ≤ 1 + 3 log(W/w(x)).

18 - 5

Access Lemma

Proof. W.l.o.g. k double rotations and 1 single rotation.
Let si(x) be s(x) after i single/double rotations.

Lemma. After a single rotation, the potential increases by
≤ 3 (log s+(x)− log s(x)).
After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.

Lemma. The (amortized) cost of Splay(x) is
c(Splay(x)) ≤ 1 + 3 log(W/w(x)).

18 - 6

Access Lemma

Proof. W.l.o.g. k double rotations and 1 single rotation.
Let si(x) be s(x) after i single/double rotations.
Potential increases by at most

Lemma. After a single rotation, the potential increases by
≤ 3 (log s+(x)− log s(x)).
After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.

Lemma. The (amortized) cost of Splay(x) is
c(Splay(x)) ≤ 1 + 3 log(W/w(x)).

18 - 7

Access Lemma

Proof. W.l.o.g. k double rotations and 1 single rotation.
Let si(x) be s(x) after i single/double rotations.
Potential increases by at most

∑k
i=1 (3 (log si(x)− log si−1(x))− 2)

Lemma. After a single rotation, the potential increases by
≤ 3 (log s+(x)− log s(x)).
After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.

Lemma. The (amortized) cost of Splay(x) is
c(Splay(x)) ≤ 1 + 3 log(W/w(x)).

18 - 8

Access Lemma

Proof. W.l.o.g. k double rotations and 1 single rotation.
Let si(x) be s(x) after i single/double rotations.
Potential increases by at most

∑k
i=1 (3 (log si(x)− log si−1(x))− 2)

+3 (log sk+1(x)− log sk(x))

Lemma. After a single rotation, the potential increases by
≤ 3 (log s+(x)− log s(x)).
After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.

Lemma. The (amortized) cost of Splay(x) is
c(Splay(x)) ≤ 1 + 3 log(W/w(x)).

18 - 9

Access Lemma

Proof. W.l.o.g. k double rotations and 1 single rotation.
Let si(x) be s(x) after i single/double rotations.
Potential increases by at most

∑k
i=1 (3 (log si(x)− log si−1(x))− 2)

+3 (log sk+1(x)− log sk(x))
= 3 (log sk+1(x)− log s(x))− 2k

Lemma. After a single rotation, the potential increases by
≤ 3 (log s+(x)− log s(x)).
After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.

Lemma. The (amortized) cost of Splay(x) is
c(Splay(x)) ≤ 1 + 3 log(W/w(x)).

(id. entries rem.)

18 - 10

Access Lemma

Proof. W.l.o.g. k double rotations and 1 single rotation.
Let si(x) be s(x) after i single/double rotations.
Potential increases by at most

∑k
i=1 (3 (log si(x)− log si−1(x))− 2)

+3 (log sk+1(x)− log sk(x))
= 3 (log sk+1(x)− log s(x))− 2k

root!

Lemma. After a single rotation, the potential increases by
≤ 3 (log s+(x)− log s(x)).
After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.

Lemma. The (amortized) cost of Splay(x) is
c(Splay(x)) ≤ 1 + 3 log(W/w(x)).

(id. entries rem.)

18 - 11

Access Lemma

Proof. W.l.o.g. k double rotations and 1 single rotation.
Let si(x) be s(x) after i single/double rotations.
Potential increases by at most

∑k
i=1 (3 (log si(x)− log si−1(x))− 2)

+3 (log sk+1(x)− log sk(x))
= 3 (log sk+1(x)− log s(x))− 2k

root!

= 3 (logW − log s(x))− 2k

Lemma. After a single rotation, the potential increases by
≤ 3 (log s+(x)− log s(x)).
After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.

Lemma. The (amortized) cost of Splay(x) is
c(Splay(x)) ≤ 1 + 3 log(W/w(x)).

(id. entries rem.)

18 - 12

Access Lemma

Proof. W.l.o.g. k double rotations and 1 single rotation.
Let si(x) be s(x) after i single/double rotations.
Potential increases by at most

∑k
i=1 (3 (log si(x)− log si−1(x))− 2)

+3 (log sk+1(x)− log sk(x))
= 3 (log sk+1(x)− log s(x))− 2k

root!

= 3 (logW − log s(x))− 2k
(s(x) ≥ w(x))

Lemma. After a single rotation, the potential increases by
≤ 3 (log s+(x)− log s(x)).
After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.

Lemma. The (amortized) cost of Splay(x) is
c(Splay(x)) ≤ 1 + 3 log(W/w(x)).

(id. entries rem.)

18 - 13

Access Lemma

Proof. W.l.o.g. k double rotations and 1 single rotation.
Let si(x) be s(x) after i single/double rotations.
Potential increases by at most

∑k
i=1 (3 (log si(x)− log si−1(x))− 2)

+3 (log sk+1(x)− log sk(x))
= 3 (log sk+1(x)− log s(x))− 2k

root!

= 3 (logW − log s(x))− 2k
(s(x) ≥ w(x)) ≤ 3 (logW − log w(x))− 2k

Lemma. After a single rotation, the potential increases by
≤ 3 (log s+(x)− log s(x)).
After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.

Lemma. The (amortized) cost of Splay(x) is
c(Splay(x)) ≤ 1 + 3 log(W/w(x)).

(id. entries rem.)

18 - 14

Access Lemma

Proof. W.l.o.g. k double rotations and 1 single rotation.
Let si(x) be s(x) after i single/double rotations.
Potential increases by at most

∑k
i=1 (3 (log si(x)− log si−1(x))− 2)

+3 (log sk+1(x)− log sk(x))
= 3 (log sk+1(x)− log s(x))− 2k

root!

= 3 (logW − log s(x))− 2k
(s(x) ≥ w(x)) ≤ 3 (logW − log w(x))− 2k = 3 log(W/w(x))− 2k

Lemma. After a single rotation, the potential increases by
≤ 3 (log s+(x)− log s(x)).
After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.

Lemma. The (amortized) cost of Splay(x) is
c(Splay(x)) ≤ 1 + 3 log(W/w(x)).

(id. entries rem.)

18 - 15

Access Lemma

Proof. W.l.o.g. k double rotations and 1 single rotation.
Let si(x) be s(x) after i single/double rotations.
Potential increases by at most

∑k
i=1 (3 (log si(x)− log si−1(x))− 2)

+3 (log sk+1(x)− log sk(x))
= 3 (log sk+1(x)− log s(x))− 2k

root!

= 3 (logW − log s(x))− 2k

2k + 1 rotations ⇒ (amort.) cost

(s(x) ≥ w(x)) ≤ 3 (logW − log w(x))− 2k = 3 log(W/w(x))− 2k

Lemma. After a single rotation, the potential increases by
≤ 3 (log s+(x)− log s(x)).
After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.

Lemma. The (amortized) cost of Splay(x) is
c(Splay(x)) ≤ 1 + 3 log(W/w(x)).

(id. entries rem.)

18 - 16

Access Lemma

Proof. W.l.o.g. k double rotations and 1 single rotation.
Let si(x) be s(x) after i single/double rotations.
Potential increases by at most

∑k
i=1 (3 (log si(x)− log si−1(x))− 2)

+3 (log sk+1(x)− log sk(x))
= 3 (log sk+1(x)− log s(x))− 2k

root!

= 3 (logW − log s(x))− 2k

2k + 1 rotations ⇒ (amort.) cost c(Splay(x)) ≤ 1+ 3 log(W/w(x))

(s(x) ≥ w(x)) ≤ 3 (logW − log w(x))− 2k = 3 log(W/w(x))− 2k

Lemma. After a single rotation, the potential increases by
≤ 3 (log s+(x)− log s(x)).
After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.

Lemma. The (amortized) cost of Splay(x) is
c(Splay(x)) ≤ 1 + 3 log(W/w(x)).

(id. entries rem.)

18 - 17

Access Lemma

Proof. W.l.o.g. k double rotations and 1 single rotation.
Let si(x) be s(x) after i single/double rotations.
Potential increases by at most

∑k
i=1 (3 (log si(x)− log si−1(x))− 2)

+3 (log sk+1(x)− log sk(x))
= 3 (log sk+1(x)− log s(x))− 2k

root!

= 3 (logW − log s(x))− 2k

2k + 1 rotations ⇒ (amort.) cost c(Splay(x)) ≤ 1+ 3 log(W/w(x))

(s(x) ≥ w(x)) ≤ 3 (logW − log w(x))− 2k = 3 log(W/w(x))− 2k

Lemma. After a single rotation, the potential increases by
≤ 3 (log s+(x)− log s(x)).
After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.

Lemma. The (amortized) cost of Splay(x) is
c(Splay(x)) ≤ 1 + 3 log(W/w(x)).

(id. entries rem.)

19 - 1

All These Models . . .

Balanced:

Entropy:

Dynamic Finger:

Working Set:

Queries take (amortized) O(log n) time

Queries take expected O(1 + H) time

Queries take O(log δi) time (δi: rank diff.)

Queries take O(log t) time (t: recency)

... is there one BST to rule them all?

Yes! Splay Tree

Queries take (amortized) O(OPTS) time.Static Optimality:

19 - 2

All These Models . . .

Balanced:

Entropy:

Dynamic Finger:

Working Set:

Queries take (amortized) O(log n) time

Queries take expected O(1 + H) time

Queries take O(log δi) time (δi: rank diff.)

Queries take O(log t) time (t: recency)

... is there one BST to rule them all?

Yes! Splay Tree

Queries take (amortized) O(OPTS) time.Static Optimality:

All of these properties can be
shown by chosing the weight
function accordingly.
Note that the actual algorithm
is always the same!

20 - 1

Querying a Sequence

Let S be a sequence of queries.

20 - 2

Querying a Sequence

Let S be a sequence of queries.

What is the real cost of querying S?

20 - 3

Querying a Sequence

Let S be a sequence of queries.

What is the real cost of querying S?

Let Φi be the potential after query i.

20 - 4

Querying a Sequence

Let S be a sequence of queries.

What is the real cost of querying S?

⇒ total cost = Φ0 −Φ|S| + ∑x∈S c(Splay(x))

Let Φi be the potential after query i.
(amort. cost to execute Splay(x))

20 - 5

Querying a Sequence

Let S be a sequence of queries.

What is the real cost of querying S?

⇒ total cost = Φ0 −Φ|S| + ∑x∈S c(Splay(x))

Let Φi be the potential after query i.

How can we bound Φ0 −Φ|S|?

(amort. cost to execute Splay(x))

20 - 6

Querying a Sequence

Let S be a sequence of queries.

What is the real cost of querying S?

⇒ total cost = Φ0 −Φ|S| + ∑x∈S c(Splay(x))

Let Φi be the potential after query i.

How can we bound Φ0 −Φ|S|?

Reminder: Φ = ∑ log s(x)

(amort. cost to execute Splay(x))

20 - 7

Querying a Sequence

Let S be a sequence of queries.

What is the real cost of querying S?

⇒ total cost = Φ0 −Φ|S| + ∑x∈S c(Splay(x))

Let Φi be the potential after query i.

How can we bound Φ0 −Φ|S|?

Reminder: Φ = ∑ log s(x)
s(x) ≥ w(x)

(amort. cost to execute Splay(x))

20 - 8

Querying a Sequence

Let S be a sequence of queries.

What is the real cost of querying S?

⇒ total cost = Φ0 −Φ|S| + ∑x∈S c(Splay(x))

Let Φi be the potential after query i.

How can we bound Φ0 −Φ|S|?

Reminder: Φ = ∑ log s(x)
s(x) ≥ w(x) ⇒ Φ|S| ≥ ∑x∈T log w(x)

(amort. cost to execute Splay(x))

20 - 9

Querying a Sequence

Let S be a sequence of queries.

What is the real cost of querying S?

⇒ total cost = Φ0 −Φ|S| + ∑x∈S c(Splay(x))

Let Φi be the potential after query i.

How can we bound Φ0 −Φ|S|?

Reminder: Φ = ∑ log s(x)
s(x) ≥ w(x) ⇒ Φ|S| ≥ ∑x∈T log w(x)

s(root) = log W

(amort. cost to execute Splay(x))

20 - 10

Querying a Sequence

Let S be a sequence of queries.

What is the real cost of querying S?

⇒ total cost = Φ0 −Φ|S| + ∑x∈S c(Splay(x))

Let Φi be the potential after query i.

How can we bound Φ0 −Φ|S|?

Reminder: Φ = ∑ log s(x)
s(x) ≥ w(x) ⇒ Φ|S| ≥ ∑x∈T log w(x)

s(root) = log W ⇒ Φ0 ≤ ∑x∈T log W

(amort. cost to execute Splay(x))

20 - 11

Querying a Sequence

Let S be a sequence of queries.

What is the real cost of querying S?

⇒ total cost = Φ0 −Φ|S| + ∑x∈S c(Splay(x))

Let Φi be the potential after query i.

How can we bound Φ0 −Φ|S|?

Reminder: Φ = ∑ log s(x)
s(x) ≥ w(x) ⇒ Φ|S| ≥ ∑x∈T log w(x)

s(root) = log W ⇒ Φ0 ≤ ∑x∈T log W
⇒ Φ0 −Φ|S| ≤ ∑x∈T(log W − log w(x))

(amort. cost to execute Splay(x))

20 - 12

Querying a Sequence

Let S be a sequence of queries.

What is the real cost of querying S?

⇒ total cost = Φ0 −Φ|S| + ∑x∈S c(Splay(x))

Let Φi be the potential after query i.

How can we bound Φ0 −Φ|S|?

Reminder: Φ = ∑ log s(x)
s(x) ≥ w(x) ⇒ Φ|S| ≥ ∑x∈T log w(x)

s(root) = log W ⇒ Φ0 ≤ ∑x∈T log W
⇒ Φ0 −Φ|S| ≤ ∑x∈T(log W − log w(x)) ≤ ∑x∈T O (c(Splay(x)))

(amort. cost to execute Splay(x))

20 - 13

Querying a Sequence

Let S be a sequence of queries.

What is the real cost of querying S?

⇒ total cost = Φ0 −Φ|S| + ∑x∈S c(Splay(x))

Let Φi be the potential after query i.

How can we bound Φ0 −Φ|S|?

Reminder: Φ = ∑ log s(x)
s(x) ≥ w(x) ⇒ Φ|S| ≥ ∑x∈T log w(x)

s(root) = log W ⇒ Φ0 ≤ ∑x∈T log W
⇒ Φ0 −Φ|S| ≤ ∑x∈T(log W − log w(x)) ≤ ∑x∈T O (c(Splay(x)))

⇒ as long as every key is queried at least once, it doesn’t
change the asymptotic running time.

(amort. cost to execute Splay(x))

21 - 1

Balance

Definition. A BST is balanced if the (amortized) cost of any
query is O(log n) (for at least n queries in total).

Lemma. The (amortized) cost of Splay(x) is
c(Splay(x)) ≤ 1 + 3 log(W/w(x)).

21 - 2

Balance

Theorem. Splay Trees are balanced.

Definition. A BST is balanced if the (amortized) cost of any
query is O(log n) (for at least n queries in total).

Lemma. The (amortized) cost of Splay(x) is
c(Splay(x)) ≤ 1 + 3 log(W/w(x)).

21 - 3

Balance

Proof.

Theorem. Splay Trees are balanced.

Definition. A BST is balanced if the (amortized) cost of any
query is O(log n) (for at least n queries in total).

Lemma. The (amortized) cost of Splay(x) is
c(Splay(x)) ≤ 1 + 3 log(W/w(x)).

21 - 4

Balance

Proof. Choose w(x) = 1 for each x

Theorem. Splay Trees are balanced.

Definition. A BST is balanced if the (amortized) cost of any
query is O(log n) (for at least n queries in total).

Lemma. The (amortized) cost of Splay(x) is
c(Splay(x)) ≤ 1 + 3 log(W/w(x)).

21 - 5

Balance

Proof. Choose w(x) = 1 for each x ⇒W = n

Theorem. Splay Trees are balanced.

Definition. A BST is balanced if the (amortized) cost of any
query is O(log n) (for at least n queries in total).

Lemma. The (amortized) cost of Splay(x) is
c(Splay(x)) ≤ 1 + 3 log(W/w(x)).

21 - 6

Balance

Proof. Choose w(x) = 1 for each x
Splay(x) costs at least as much as finding x

⇒W = n

Theorem. Splay Trees are balanced.

Definition. A BST is balanced if the (amortized) cost of any
query is O(log n) (for at least n queries in total).

Lemma. The (amortized) cost of Splay(x) is
c(Splay(x)) ≤ 1 + 3 log(W/w(x)).

21 - 7

Balance

Proof. Choose w(x) = 1 for each x
Splay(x) costs at least as much as finding x

⇒W = n

Theorem. Splay Trees are balanced.

Definition. A BST is balanced if the (amortized) cost of any
query is O(log n) (for at least n queries in total).

Lemma. The (amortized) cost of Splay(x) is
c(Splay(x)) ≤ 1 + 3 log(W/w(x)).

⇒ total time = Φ0 −Φ|S| + ∑x∈S c(Splay(x))

21 - 8

Balance

Proof. Choose w(x) = 1 for each x
Splay(x) costs at least as much as finding x

≤ ∑x∈T(log W − log w(x)) + ∑x∈S c(Splay(x))

⇒W = n

Theorem. Splay Trees are balanced.

Definition. A BST is balanced if the (amortized) cost of any
query is O(log n) (for at least n queries in total).

Lemma. The (amortized) cost of Splay(x) is
c(Splay(x)) ≤ 1 + 3 log(W/w(x)).

⇒ total time = Φ0 −Φ|S| + ∑x∈S c(Splay(x))

21 - 9

Balance

Proof. Choose w(x) = 1 for each x
Splay(x) costs at least as much as finding x

≤ ∑x∈T(log W − log w(x)) + ∑x∈S c(Splay(x))

⇒W = n

Theorem. Splay Trees are balanced.

Definition. A BST is balanced if the (amortized) cost of any
query is O(log n) (for at least n queries in total).

≤ n log n + ∑x∈S (1 + 3 log(W/w(x)))

Lemma. The (amortized) cost of Splay(x) is
c(Splay(x)) ≤ 1 + 3 log(W/w(x)).

⇒ total time = Φ0 −Φ|S| + ∑x∈S c(Splay(x))

21 - 10

Balance

Proof. Choose w(x) = 1 for each x
Splay(x) costs at least as much as finding x

≤ ∑x∈T(log W − log w(x)) + ∑x∈S c(Splay(x))

⇒W = n

Theorem. Splay Trees are balanced.

Definition. A BST is balanced if the (amortized) cost of any
query is O(log n) (for at least n queries in total).

≤ n log n + ∑x∈S (1 + 3 log(W/w(x)))

Lemma. The (amortized) cost of Splay(x) is
c(Splay(x)) ≤ 1 + 3 log(W/w(x)).

≤ n log n + |S|+ 3|S| log n

⇒ total time = Φ0 −Φ|S| + ∑x∈S c(Splay(x))

21 - 11

Balance

Proof. Choose w(x) = 1 for each x
Splay(x) costs at least as much as finding x

≤ ∑x∈T(log W − log w(x)) + ∑x∈S c(Splay(x))

⇒W = n

Theorem. Splay Trees are balanced.

Definition. A BST is balanced if the (amortized) cost of any
query is O(log n) (for at least n queries in total).

≤ n log n + ∑x∈S (1 + 3 log(W/w(x)))

Lemma. The (amortized) cost of Splay(x) is
c(Splay(x)) ≤ 1 + 3 log(W/w(x)).

≤ n log n + |S|+ 3|S| log n

⇒ total time = Φ0 −Φ|S| + ∑x∈S c(Splay(x))

∈ O(|S| log n)

21 - 12

Balance

Proof. Choose w(x) = 1 for each x
Splay(x) costs at least as much as finding x

≤ ∑x∈T(log W − log w(x)) + ∑x∈S c(Splay(x))

⇒W = n

Theorem. Splay Trees are balanced.

Definition. A BST is balanced if the (amortized) cost of any
query is O(log n) (for at least n queries in total).

⇒ Queries take (amort.) O(log n) time.

≤ n log n + ∑x∈S (1 + 3 log(W/w(x)))

Lemma. The (amortized) cost of Splay(x) is
c(Splay(x)) ≤ 1 + 3 log(W/w(x)).

≤ n log n + |S|+ 3|S| log n

⇒ total time = Φ0 −Φ|S| + ∑x∈S c(Splay(x))

∈ O(|S| log n)

21 - 13

Balance

Proof. Choose w(x) = 1 for each x
Splay(x) costs at least as much as finding x

≤ ∑x∈T(log W − log w(x)) + ∑x∈S c(Splay(x))

⇒W = n

Theorem. Splay Trees are balanced.

Definition. A BST is balanced if the (amortized) cost of any
query is O(log n) (for at least n queries in total).

⇒ Queries take (amort.) O(log n) time.

≤ n log n + ∑x∈S (1 + 3 log(W/w(x)))

Lemma. The (amortized) cost of Splay(x) is
c(Splay(x)) ≤ 1 + 3 log(W/w(x)).

≤ n log n + |S|+ 3|S| log n

⇒ total time = Φ0 −Φ|S| + ∑x∈S c(Splay(x))

∈ O(|S| log n)

22 - 1

Entropy

Definition. A BST has the entropy property if queries take
expected O(1−∑n

i=1 pi log pi) time.

Lemma. The (amortized) cost of Splay(x) is
c(Splay(x)) ≤ 1 + 3 log(W/w(x)).

22 - 2

Entropy

Definition. A BST has the entropy property if queries take
expected O(1−∑n

i=1 pi log pi) time.

Theorem. Splay Trees have the entropy property.

Lemma. The (amortized) cost of Splay(x) is
c(Splay(x)) ≤ 1 + 3 log(W/w(x)).

22 - 3

Entropy

Proof.

Definition. A BST has the entropy property if queries take
expected O(1−∑n

i=1 pi log pi) time.

Theorem. Splay Trees have the entropy property.

Lemma. The (amortized) cost of Splay(x) is
c(Splay(x)) ≤ 1 + 3 log(W/w(x)).

22 - 4

Entropy

Proof. Choose w(xi) = pi

Definition. A BST has the entropy property if queries take
expected O(1−∑n

i=1 pi log pi) time.

Theorem. Splay Trees have the entropy property.

Lemma. The (amortized) cost of Splay(x) is
c(Splay(x)) ≤ 1 + 3 log(W/w(x)).

22 - 5

Entropy

Proof. Choose w(xi) = pi ⇒W = 1

Definition. A BST has the entropy property if queries take
expected O(1−∑n

i=1 pi log pi) time.

Theorem. Splay Trees have the entropy property.

Lemma. The (amortized) cost of Splay(x) is
c(Splay(x)) ≤ 1 + 3 log(W/w(x)).

22 - 6

Entropy

Proof. Choose w(xi) = pi ⇒W = 1
Amortized cost to query xi:

Definition. A BST has the entropy property if queries take
expected O(1−∑n

i=1 pi log pi) time.

Theorem. Splay Trees have the entropy property.

Lemma. The (amortized) cost of Splay(x) is
c(Splay(x)) ≤ 1 + 3 log(W/w(x)).

22 - 7

Entropy

Proof. Choose w(xi) = pi ⇒W = 1
Amortized cost to query xi:
≤ 1 + 3 log(W/w(xi))

Definition. A BST has the entropy property if queries take
expected O(1−∑n

i=1 pi log pi) time.

Theorem. Splay Trees have the entropy property.

Lemma. The (amortized) cost of Splay(x) is
c(Splay(x)) ≤ 1 + 3 log(W/w(x)).

22 - 8

Entropy

Proof. Choose w(xi) = pi ⇒W = 1
Amortized cost to query xi:
≤ 1 + 3 log(W/w(xi))
= 1 + 3 log(1/pi)

Definition. A BST has the entropy property if queries take
expected O(1−∑n

i=1 pi log pi) time.

Theorem. Splay Trees have the entropy property.

Lemma. The (amortized) cost of Splay(x) is
c(Splay(x)) ≤ 1 + 3 log(W/w(x)).

22 - 9

Entropy

Proof. Choose w(xi) = pi ⇒W = 1
Amortized cost to query xi:
≤ 1 + 3 log(W/w(xi))
= 1 + 3 log(1/pi)
= 1− 3 log pi

Definition. A BST has the entropy property if queries take
expected O(1−∑n

i=1 pi log pi) time.

Theorem. Splay Trees have the entropy property.

Lemma. The (amortized) cost of Splay(x) is
c(Splay(x)) ≤ 1 + 3 log(W/w(x)).

22 - 10

Entropy

Proof. Choose w(xi) = pi ⇒W = 1
Amortized cost to query xi:
≤ 1 + 3 log(W/w(xi))
= 1 + 3 log(1/pi)
= 1− 3 log pi

⇒ expected query time:

Definition. A BST has the entropy property if queries take
expected O(1−∑n

i=1 pi log pi) time.

Theorem. Splay Trees have the entropy property.

Lemma. The (amortized) cost of Splay(x) is
c(Splay(x)) ≤ 1 + 3 log(W/w(x)).

22 - 11

Entropy

Proof. Choose w(xi) = pi ⇒W = 1
Amortized cost to query xi:
≤ 1 + 3 log(W/w(xi))
= 1 + 3 log(1/pi)
= 1− 3 log pi

⇒ expected query time:
O(∑n

i=1 pi(1− 3 log pi))

Definition. A BST has the entropy property if queries take
expected O(1−∑n

i=1 pi log pi) time.

Theorem. Splay Trees have the entropy property.

Lemma. The (amortized) cost of Splay(x) is
c(Splay(x)) ≤ 1 + 3 log(W/w(x)).

22 - 12

Entropy

Proof. Choose w(xi) = pi ⇒W = 1
Amortized cost to query xi:
≤ 1 + 3 log(W/w(xi))
= 1 + 3 log(1/pi)
= 1− 3 log pi

⇒ expected query time:
O(∑n

i=1 pi(1− 3 log pi)) = O(1−∑n
i=1 pi log pi)

Definition. A BST has the entropy property if queries take
expected O(1−∑n

i=1 pi log pi) time.

Theorem. Splay Trees have the entropy property.

Lemma. The (amortized) cost of Splay(x) is
c(Splay(x)) ≤ 1 + 3 log(W/w(x)).

22 - 13

Entropy

Proof. Choose w(xi) = pi ⇒W = 1
Amortized cost to query xi:
≤ 1 + 3 log(W/w(xi))
= 1 + 3 log(1/pi)
= 1− 3 log pi

⇒ expected query time:
O(∑n

i=1 pi(1− 3 log pi)) = O(1−∑n
i=1 pi log pi)

Definition. A BST has the entropy property if queries take
expected O(1−∑n

i=1 pi log pi) time.

Theorem. Splay Trees have the entropy property.

Lemma. The (amortized) cost of Splay(x) is
c(Splay(x)) ≤ 1 + 3 log(W/w(x)).

23 - 1

Static Optimality

Given a sequence S of queries.

23 - 2

Static Optimality

Given a sequence S of queries.

Let T?
S be an optimal static tree with

the shortest query time OPTS for S.

23 - 3

Static Optimality

Given a sequence S of queries.

Let T?
S be an optimal static tree with

the shortest query time OPTS for S.

e.g. S = 2, 5, 2, 5, 2, . . . , 5

23 - 4

Static Optimality

Given a sequence S of queries.

Let T?
S be an optimal static tree with

the shortest query time OPTS for S.

84

3 7 9

2

e.g. S = 2, 5, 2, 5, 2, . . . , 5
T?:

5

23 - 5

Static Optimality

Given a sequence S of queries.

Let T?
S be an optimal static tree with

the shortest query time OPTS for S.

84

3 7 9

2

e.g. S = 2, 5, 2, 5, 2, . . . , 5
T?:

5
OPT: |S|

23 - 6

Static Optimality

Given a sequence S of queries.

Let T?
S be an optimal static tree with

the shortest query time OPTS for S.

84

3 7 9

2

e.g. S = 2, 5, 2, 5, 2, . . . , 5
T?:

5
OPT: |S|

Definition. A BST is statically optimal if queries take
(amort.) O(OPTS) time for every S.

23 - 7

Static Optimality

Given a sequence S of queries.

Let T?
S be an optimal static tree with

the shortest query time OPTS for S.

84

3 7 9

2

e.g. S = 2, 5, 2, 5, 2, . . . , 5
T?:

5
OPT: |S|

Definition. A BST is statically optimal if queries take
(amort.) O(OPTS) time for every S.

Theorem. Splay Trees are statically optimal.

23 - 8

Static Optimality

Given a sequence S of queries.

Let T?
S be an optimal static tree with

the shortest query time OPTS for S.

84

3 7 9

2

e.g. S = 2, 5, 2, 5, 2, . . . , 5
T?:

5
OPT: |S|

Definition. A BST is statically optimal if queries take
(amort.) O(OPTS) time for every S.

Theorem. Splay Trees are statically optimal.

Proof.

23 - 9

Static Optimality

Given a sequence S of queries.

Let T?
S be an optimal static tree with

the shortest query time OPTS for S.

84

3 7 9

2

e.g. S = 2, 5, 2, 5, 2, . . . , 5
T?:

5
OPT: |S|

Definition. A BST is statically optimal if queries take
(amort.) O(OPTS) time for every S.

Theorem. Splay Trees are statically optimal.

Proof. Let fi be the depth of xi in T? (root has depth 1).

23 - 10

Static Optimality

Given a sequence S of queries.

Let T?
S be an optimal static tree with

the shortest query time OPTS for S.

84

3 7 9

2

e.g. S = 2, 5, 2, 5, 2, . . . , 5
T?:

5
OPT: |S|

Definition. A BST is statically optimal if queries take
(amort.) O(OPTS) time for every S.

Theorem. Splay Trees are statically optimal.

Proof. Let fi be the depth of xi in T? (root has depth 1).

Let wi := 3− fi .

23 - 11

Static Optimality

Given a sequence S of queries.

Let T?
S be an optimal static tree with

the shortest query time OPTS for S.

84

3 7 9

2

e.g. S = 2, 5, 2, 5, 2, . . . , 5
T?:

5
OPT: |S|

Definition. A BST is statically optimal if queries take
(amort.) O(OPTS) time for every S.

Theorem. Splay Trees are statically optimal.

Proof. Let fi be the depth of xi in T? (root has depth 1).

Let wi := 3− fi . ⇒W ≤ 1

23 - 12

Static Optimality

Given a sequence S of queries.

Let T?
S be an optimal static tree with

the shortest query time OPTS for S.

84

3 7 9

2

e.g. S = 2, 5, 2, 5, 2, . . . , 5
T?:

5
OPT: |S|

Definition. A BST is statically optimal if queries take
(amort.) O(OPTS) time for every S.

Theorem. Splay Trees are statically optimal.

Proof. Let fi be the depth of xi in T? (root has depth 1).

Let wi := 3− fi .
⇒ c(Splay(xi)) = 1 + 3 log(W/w(xi))

⇒W ≤ 1

23 - 13

Static Optimality

Given a sequence S of queries.

Let T?
S be an optimal static tree with

the shortest query time OPTS for S.

84

3 7 9

2

e.g. S = 2, 5, 2, 5, 2, . . . , 5
T?:

5
OPT: |S|

Definition. A BST is statically optimal if queries take
(amort.) O(OPTS) time for every S.

Theorem. Splay Trees are statically optimal.

Proof. Let fi be the depth of xi in T? (root has depth 1).

Let wi := 3− fi .
⇒ c(Splay(xi)) = 1 + 3 log(W/w(xi))

⇒W ≤ 1

≤ 1 + 3 log 3 fi

23 - 14

Static Optimality

Given a sequence S of queries.

Let T?
S be an optimal static tree with

the shortest query time OPTS for S.

84

3 7 9

2

e.g. S = 2, 5, 2, 5, 2, . . . , 5
T?:

5
OPT: |S|

Definition. A BST is statically optimal if queries take
(amort.) O(OPTS) time for every S.

Theorem. Splay Trees are statically optimal.

Proof. Let fi be the depth of xi in T? (root has depth 1).

Let wi := 3− fi .
⇒ c(Splay(xi)) = 1 + 3 log(W/w(xi))

⇒W ≤ 1

≤ 1 + 3 log 3 fi ∈ O(fi)

23 - 15

Static Optimality

Given a sequence S of queries.

Let T?
S be an optimal static tree with

the shortest query time OPTS for S.

84

3 7 9

2

e.g. S = 2, 5, 2, 5, 2, . . . , 5
T?:

5
OPT: |S|

Definition. A BST is statically optimal if queries take
(amort.) O(OPTS) time for every S.

Theorem. Splay Trees are statically optimal.

Proof. Let fi be the depth of xi in T? (root has depth 1).

Let wi := 3− fi .
⇒ c(Splay(xi)) = 1 + 3 log(W/w(xi))

⇒W ≤ 1

≤ 1 + 3 log 3 fi ∈ O(fi)

24 - 1

Dynamic Optimality

Given a sequence S of queries.

24 - 2

Dynamic Optimality

Given a sequence S of queries.

Let D?
S be an optimal dynamic tree with the shortest query time OPT?

S for S.

24 - 3

Dynamic Optimality

Given a sequence S of queries.

Let D?
S be an optimal dynamic tree with the shortest query time OPT?

S for S.

(That is, modifications are allowed, e.g., rotations)

24 - 4

Dynamic Optimality

Given a sequence S of queries.

Let D?
S be an optimal dynamic tree with the shortest query time OPT?

S for S.

(That is, modifications are allowed, e.g., rotations)

Definition. A BST is dynamically optimal if queries take
(amort.) O(OPT?

S) time for every S.

24 - 5

Dynamic Optimality

Given a sequence S of queries.

Let D?
S be an optimal dynamic tree with the shortest query time OPT?

S for S.

(That is, modifications are allowed, e.g., rotations)

Splay Trees: Queries take O(OPT?
S · log n) time.

Definition. A BST is dynamically optimal if queries take
(amort.) O(OPT?

S) time for every S.

24 - 6

Dynamic Optimality

Given a sequence S of queries.

Let D?
S be an optimal dynamic tree with the shortest query time OPT?

S for S.

(That is, modifications are allowed, e.g., rotations)

Splay Trees: Queries take O(OPT?
S · log n) time.

Tango Trees: Queries take O(OPT?
S · log log n) time.

[Demaine, Harmon, Iacono, Pătras,cu ’04]

Definition. A BST is dynamically optimal if queries take
(amort.) O(OPT?

S) time for every S.

24 - 7

Dynamic Optimality

Given a sequence S of queries.

Let D?
S be an optimal dynamic tree with the shortest query time OPT?

S for S.

(That is, modifications are allowed, e.g., rotations)

Splay Trees: Queries take O(OPT?
S · log n) time.

Tango Trees: Queries take O(OPT?
S · log log n) time.

[Demaine, Harmon, Iacono, Pătras,cu ’04]

Open Problem. Does a dynamically optimal BST exist?

Definition. A BST is dynamically optimal if queries take
(amort.) O(OPT?

S) time for every S.

24 - 8

Dynamic Optimality

Given a sequence S of queries.

Let D?
S be an optimal dynamic tree with the shortest query time OPT?

S for S.

(That is, modifications are allowed, e.g., rotations)

This is one of the biggest open problems in algorithms.

Splay Trees: Queries take O(OPT?
S · log n) time.

Tango Trees: Queries take O(OPT?
S · log log n) time.

[Demaine, Harmon, Iacono, Pătras,cu ’04]

Open Problem. Does a dynamically optimal BST exist?

Definition. A BST is dynamically optimal if queries take
(amort.) O(OPT?

S) time for every S.

24 - 9

Dynamic Optimality

Given a sequence S of queries.

Let D?
S be an optimal dynamic tree with the shortest query time OPT?

S for S.

(That is, modifications are allowed, e.g., rotations)

This is one of the biggest open problems in algorithms.

Splay Trees: Queries take O(OPT?
S · log n) time.

Tango Trees: Queries take O(OPT?
S · log log n) time.

[Demaine, Harmon, Iacono, Pătras,cu ’04]

Open Problem. Does a dynamically optimal BST exist?

Conjecture. Splay Trees are dynamically optimal.

Definition. A BST is dynamically optimal if queries take
(amort.) O(OPT?

S) time for every S.

	How Good is a Binary Search Tree?
	How Good is a Binary Search Tree?
	Model 1: Malicious Queries
	Model 2: Known Probability Distribution
	Model 3: Spacial Locality
	Model 4: Temporal Locality
	Model 5: Static Optimality
	All These Models \dots
	Rotations
	Rotations II
	Splay
	Why is Splay Fast?
	What is Potential?
	Potential after Single Rotation
	Potential after Double Rotation (I)
	Potential after Double Rotation (II)
	Access Lemma
	All These Models \dots
	Querying a Sequence
	Balance

	Entropy
	Static Optimality
	Dynamic Optimality

