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The performance
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on the model!
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Lemma. The worst-case malicious query cost in any BST with
n nodes is at least Ω(log n) per query.

Definition. A BST is balanced if the cost of any sequence
of m queries is O(m log n + n log n).
⇒ the (amortized) cost of each query is O(log n)
(for at least n queries)
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Model 4: Temporal Locality

If a key is queried, then it is likely to be queried again soon.

A static tree will have a hard time... What if we can move elements?

Idea: Use a sequence of trees

. . .

Move queried key to first tree, then kick out oldest key.

Definition. A BST has the working set property if the
(amortized) cost of a query for key x is O(log t),
where t is the number of keys queried more recently
than x.
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Model 5: Static Optimality

Given a sequence S of queries.

Let T?
S be an optimal static tree with

the shortest query time OPTS for S. 84

3 7 9

2

e.g. S = 2, 5, 2, 5, 2, . . . , 5
T?

S :

5
OPT: |S|

Definition. A BST is statically optimal if queries take
(amortized) O(OPTS) time for every S.



8 - 1

All These Models . . .

Balanced:

Entropy:

Dynamic Finger:

Working Set:

Queries take (amortized) O(log n) time

Queries take expected O(1 + H) time

Queries take O(log δi) time (δi: rank diff.)

Queries take O(log t) time (t: recency)

Queries take (amortized) O(OPTS) time.Static Optimality:



8 - 2

All These Models . . .

Balanced:

Entropy:

Dynamic Finger:

Working Set:

Queries take (amortized) O(log n) time

Queries take expected O(1 + H) time

Queries take O(log δi) time (δi: rank diff.)

Queries take O(log t) time (t: recency)

... is there one BST to rule them all?

Queries take (amortized) O(OPTS) time.Static Optimality:



8 - 3

All These Models . . .

Balanced:

Entropy:

Dynamic Finger:

Working Set:

Queries take (amortized) O(log n) time

Queries take expected O(1 + H) time

Queries take O(log δi) time (δi: rank diff.)

Queries take O(log t) time (t: recency)

... is there one BST to rule them all?

Yes! Splay Tree

Queries take (amortized) O(OPTS) time.Static Optimality:
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Algorithm: Splay(x)
if x 6= root then
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else
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Use sum-of-logs potential
Φ = ∑ log s(x)
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(potential after splay)
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total cost = Φ0 −Φend + ∑ amortized cost
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What is Potential?

Φ represents work that has been “paid for” but not yet performed.

total cost = Φ0 −Φend + ∑ amortized cost

Example (from ADS): Stack with multipop
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amortized cost per step: real cost + Φ+ −Φ

(potential at the end)(initial potential)



13 - 11

What is Potential?

Φ represents work that has been “paid for” but not yet performed.

total cost = Φ0 −Φend + ∑ amortized cost

Example (from ADS): Stack with multipop

Φ := size of the stack
1
2
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Φ = 2

amortized cost per step: real cost + Φ+ −Φ

(potential at the end)(initial potential)
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What is Potential?

Φ represents work that has been “paid for” but not yet performed.

total cost = Φ0 −Φend + ∑ amortized cost

Example (from ADS): Stack with multipop

Φ := size of the stack
1

3
2

push(3)

Φ = 3

amortized cost per step: real cost + Φ+ −Φ
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Why is Splay Fast?
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s(child) ≤ s(parent)/2
s(child) > s(parent)/2
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O(log W + #red)

How can we amortize red edges?

Use sum-of-logs potential
Φ = ∑ log s(x)
Amortized cost:
real cost + Φ+ −Φ
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(potential before splay)
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Potential after Rotation

Consider any rotation; s(x) before rotation, s+(x) afterwards



15 - 2

Potential after Rotation

Consider any rotation; s(x) before rotation, s+(x) afterwards

Lemma. After a single rotation, the potential increases by
≤ 3 (log s+(x)− log s(x)).



15 - 3

Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Right(x)

Lemma. After a single rotation, the potential increases by
≤ 3 (log s+(x)− log s(x)).



15 - 4

Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Right(x) y
x y

x

Lemma. After a single rotation, the potential increases by
≤ 3 (log s+(x)− log s(x)).



15 - 5

Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Right(x) y
x y

x

Only s(x) and s(y) change.Observe:

Lemma. After a single rotation, the potential increases by
≤ 3 (log s+(x)− log s(x)).



15 - 6

Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Right(x) y
x y

x

Only s(x) and s(y) change.Observe:

pot. change log s+(x) + log s+(y)
− log s(x)− log s(y)

=

Lemma. After a single rotation, the potential increases by
≤ 3 (log s+(x)− log s(x)).



15 - 7

Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Right(x) y
x y

x

Only s(x) and s(y) change.Observe:

pot. change log s+(x) + log s+(y)
− log s(x)− log s(y)

(s+(y) ≤ s(y))

=

Lemma. After a single rotation, the potential increases by
≤ 3 (log s+(x)− log s(x)).



15 - 8

Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Right(x) y
x y

x

Only s(x) and s(y) change.Observe:

pot. change log s+(x) + log s+(y)
− log s(x)− log s(y)

(s+(y) ≤ s(y)) ≤ log s+(x)− log s(x)

=

Lemma. After a single rotation, the potential increases by
≤ 3 (log s+(x)− log s(x)).



15 - 9

Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Right(x) y
x y

x

Only s(x) and s(y) change.Observe:

pot. change log s+(x) + log s+(y)
− log s(x)− log s(y)

(s+(y) ≤ s(y)) ≤ log s+(x)− log s(x)

(s+(x) > s(x))

=

Lemma. After a single rotation, the potential increases by
≤ 3 (log s+(x)− log s(x)).



15 - 10

Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Right(x) y
x y

x

Only s(x) and s(y) change.Observe:

pot. change log s+(x) + log s+(y)
− log s(x)− log s(y)

(s+(y) ≤ s(y)) ≤ log s+(x)− log s(x)

(s+(x) > s(x)) ≤ 3 (log s+(x)− log s(x))

=

Lemma. After a single rotation, the potential increases by
≤ 3 (log s+(x)− log s(x)).



15 - 11

Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Right(x) y
x y

x

Only s(x) and s(y) change.Observe:

pot. change log s+(x) + log s+(y)
− log s(x)− log s(y)

(s+(y) ≤ s(y)) ≤ log s+(x)− log s(x)

(s+(x) > s(x)) ≤ 3 (log s+(x)− log s(x)) X

=

Lemma. After a single rotation, the potential increases by
≤ 3 (log s+(x)− log s(x)).



15 - 12

Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Right(x) y
x y

x

Only s(x) and s(y) change.Observe:

pot. change log s+(x) + log s+(y)
− log s(x)− log s(y)

(s+(y) ≤ s(y)) ≤ log s+(x)− log s(x)

(s+(x) > s(x)) ≤ 3 (log s+(x)− log s(x)) X
Left(x) analogue X

=

Lemma. After a single rotation, the potential increases by
≤ 3 (log s+(x)− log s(x)).



16 - 1

Potential after Rotation

Consider any rotation; s(x) before rotation, s+(x) afterwards

Lemma. After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.



16 - 2

Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Lemma. After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.



16 - 3

Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 1. Right-Right(x)

Lemma. After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.



16 - 4

Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 1. Right-Right(x)
z

y
x

x
y

z

Lemma. After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.



16 - 5

Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 1. Right-Right(x)

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

z
y

x

x
y

z

Lemma. After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.



16 - 6

Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 1. Right-Right(x)

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

z
y

x

x
y

z

(s+(x) = s(z))

Lemma. After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.



16 - 7

Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 1. Right-Right(x)

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

z
y

x

x
y

z

(s+(x) = s(z)) log s+(y) + log s+(z)− log s(x)− log s(y)=

Lemma. After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.



16 - 8

Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 1. Right-Right(x)

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

z
y

x

x
y

z

(s+(x) = s(z))

(s(x) ≤ s(y))

log s+(y) + log s+(z)− log s(x)− log s(y)=

Lemma. After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.



16 - 9

Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 1. Right-Right(x)

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

z
y

x

x
y

z

(s+(x) = s(z))

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)
log s+(y) + log s+(z)− log s(x)− log s(y)=

Lemma. After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.



16 - 10

Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 1. Right-Right(x)

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

z
y

x

x
y

z

(s+(x) = s(z))

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)
log s+(y) + log s+(z)− log s(x)− log s(y)=

(s+(y) ≤ s+(x))

Lemma. After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.



16 - 11

Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 1. Right-Right(x)

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

z
y

x

x
y

z

(s+(x) = s(z))

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)
log s+(y) + log s+(z)− log s(x)− log s(y)=

(s+(y) ≤ s+(x)) ≤ log s+(x) + log s+(z)− 2 log s(x)

Lemma. After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.



16 - 12

Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 1. Right-Right(x)

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

z
y

x

x
y

z

(s+(x) = s(z))

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)
log s+(y) + log s+(z)− log s(x)− log s(y)=

(s+(y) ≤ s+(x)) ≤ log s+(x) + log s+(z)− 2 log s(x)

Lemma. After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.



16 - 13

Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 1. Right-Right(x)

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

z
y

x

x
y

z

(s+(x) = s(z))

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)
log s+(y) + log s+(z)− log s(x)− log s(y)=

(s+(y) ≤ s+(x)) ≤ log s+(x) + log s+(z)− 2 log s(x)

Lemma. After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.



16 - 14

Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 1. Right-Right(x)

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

z
y

x

x
y

z

(s+(x) = s(z))

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)
log s+(y) + log s+(z)− log s(x)− log s(y)=

(s+(y) ≤ s+(x)) ≤ log s+(x) + log s+(z)− 2 log s(x)

Lemma. After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.



16 - 15

Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 1. Right-Right(x)

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

z
y

x

x
y

z

(s+(x) = s(z))

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)
log s+(y) + log s+(z)− log s(x)− log s(y)=

(s+(y) ≤ s+(x)) ≤ log s+(x) + log s+(z)− 2 log s(x)

(?) : s(x) + s+(z) ≤ s+(x)

Lemma. After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.



16 - 16

Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 1. Right-Right(x)

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

z
y

x

x
y

z

(s+(x) = s(z))

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)
log s+(y) + log s+(z)− log s(x)− log s(y)=

(s+(y) ≤ s+(x)) ≤ log s+(x) + log s+(z)− 2 log s(x)

(?) : s(x) + s+(z) ≤ s+(x)

Lemma. After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.

Inequality of arithmetic and
geometric means (AM-GM):

x1+x2+···+xk
k ≥ k

√
x1 · x2 · . . . · xk

(arithmetic mean) (geometric mean)

for k = 2:
x+y

2 ≥
√

xy ⇒ xy ≤
(

x+y
2

)2
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Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 1. Right-Right(x)

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

z
y

x

x
y

z

(s+(x) = s(z))

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)
log s+(y) + log s+(z)− log s(x)− log s(y)=

(s+(y) ≤ s+(x)) ≤ log s+(x) + log s+(z)− 2 log s(x)

(?) : s(x) + s+(z) ≤ s+(x) log s(x) + log s+(z)

Lemma. After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.

Inequality of arithmetic and
geometric means (AM-GM):

x1+x2+···+xk
k ≥ k

√
x1 · x2 · . . . · xk

(arithmetic mean) (geometric mean)

for k = 2:
x+y

2 ≥
√

xy ⇒ xy ≤
(

x+y
2

)2
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Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 1. Right-Right(x)

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

z
y

x

x
y

z

(s+(x) = s(z))

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)
log s+(y) + log s+(z)− log s(x)− log s(y)=

(s+(y) ≤ s+(x)) ≤ log s+(x) + log s+(z)− 2 log s(x)

(?) : s(x) + s+(z) ≤ s+(x) log s(x) + log s+(z) = log(s(x)s+(z))

Lemma. After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.

Inequality of arithmetic and
geometric means (AM-GM):

x1+x2+···+xk
k ≥ k

√
x1 · x2 · . . . · xk

(arithmetic mean) (geometric mean)

for k = 2:
x+y

2 ≥
√

xy ⇒ xy ≤
(

x+y
2

)2
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Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 1. Right-Right(x)

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

z
y

x

x
y

z

(s+(x) = s(z))

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)
log s+(y) + log s+(z)− log s(x)− log s(y)=

(s+(y) ≤ s+(x)) ≤ log s+(x) + log s+(z)− 2 log s(x)

(?) : s(x) + s+(z) ≤ s+(x)

(AM-GM)

log s(x) + log s+(z) = log(s(x)s+(z))
≤ log(((s(x) + s+(z))/2)2)

Lemma. After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.

Inequality of arithmetic and
geometric means (AM-GM):

x1+x2+···+xk
k ≥ k

√
x1 · x2 · . . . · xk

(arithmetic mean) (geometric mean)

for k = 2:
x+y

2 ≥
√

xy ⇒ xy ≤
(

x+y
2

)2
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Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 1. Right-Right(x)

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

z
y

x

x
y

z

(s+(x) = s(z))

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)
log s+(y) + log s+(z)− log s(x)− log s(y)=

(s+(y) ≤ s+(x)) ≤ log s+(x) + log s+(z)− 2 log s(x)

(?) : s(x) + s+(z) ≤ s+(x)

(AM-GM)

log s(x) + log s+(z) = log(s(x)s+(z))
≤ log(((s(x) + s+(z))/2)2)

Lemma. After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.

Inequality of arithmetic and
geometric means (AM-GM):

x1+x2+···+xk
k ≥ k

√
x1 · x2 · . . . · xk

(arithmetic mean) (geometric mean)

for k = 2:
x+y

2 ≥
√

xy ⇒ xy ≤
(

x+y
2

)2

≤ log((s+(x)/2)2)
(?)
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Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 1. Right-Right(x)

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

z
y

x

x
y

z

(s+(x) = s(z))

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)
log s+(y) + log s+(z)− log s(x)− log s(y)=

(s+(y) ≤ s+(x)) ≤ log s+(x) + log s+(z)− 2 log s(x)

(?) : s(x) + s+(z) ≤ s+(x)

(AM-GM)

log s(x) + log s+(z) = log(s(x)s+(z))
≤ log(((s(x) + s+(z))/2)2) = 2 log s+(x)− 2

Lemma. After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.

≤ log((s+(x)/2)2)
(?)
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Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 1. Right-Right(x)

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

z
y

x

x
y

z

(s+(x) = s(z))

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)
log s+(y) + log s+(z)− log s(x)− log s(y)=

(s+(y) ≤ s+(x)) ≤ log s+(x) + log s+(z)− 2 log s(x)

(?) : s(x) + s+(z) ≤ s+(x)

(AM-GM)

log s(x) + log s+(z) = log(s(x)s+(z))
≤ log(((s(x) + s+(z))/2)2) = 2 log s+(x)− 2

Lemma. After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.

≤ log((s+(x)/2)2)
(?)
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Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 1. Right-Right(x)

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

z
y

x

x
y

z

(s+(x) = s(z))

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)
log s+(y) + log s+(z)− log s(x)− log s(y)=

(s+(y) ≤ s+(x)) ≤ log s+(x) + log s+(z)− 2 log s(x)

(?) : s(x) + s+(z) ≤ s+(x)

(AM-GM)

log s(x) + log s+(z) = log(s(x)s+(z))
≤ log(((s(x) + s+(z))/2)2) = 2 log s+(x)− 2

≤ 3 log s+(x)− 3 log s(x)− 2

Lemma. After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.

≤ log((s+(x)/2)2)
(?)
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Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 1. Right-Right(x)

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

z
y

x

x
y

z

(s+(x) = s(z))

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)

X

log s+(y) + log s+(z)− log s(x)− log s(y)=

(s+(y) ≤ s+(x)) ≤ log s+(x) + log s+(z)− 2 log s(x)

(?) : s(x) + s+(z) ≤ s+(x)

(AM-GM)

log s(x) + log s+(z) = log(s(x)s+(z))
≤ log(((s(x) + s+(z))/2)2) = 2 log s+(x)− 2

≤ 3 log s+(x)− 3 log s(x)− 2

Lemma. After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.

≤ log((s+(x)/2)2)
(?)
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Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 1. Right-Right(x)

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

z
y

x

x
y

z

(s+(x) = s(z))

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)

X

log s+(y) + log s+(z)− log s(x)− log s(y)=

(s+(y) ≤ s+(x)) ≤ log s+(x) + log s+(z)− 2 log s(x)

(?) : s(x) + s+(z) ≤ s+(x)

(AM-GM)

log s(x) + log s+(z) = log(s(x)s+(z))
≤ log(((s(x) + s+(z))/2)2) = 2 log s+(x)− 2

≤ 3 log s+(x)− 3 log s(x)− 2

/ Left-Left(x)

Lemma. After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.

≤ log((s+(x)/2)2)
(?)
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Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 2. Right-Left(x)
z

x
y

z

x
y

Lemma. After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.
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Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 2. Right-Left(x)
z

x
y

z

x
y

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

Lemma. After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.
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Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 2. Right-Left(x)
z

x
y

z

x
y

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

(s+(x) = s(z)) log s+(y) + log s+(z)− log s(x)− log s(y)=

Lemma. After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.
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Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 2. Right-Left(x)
z

x
y

z

x
y

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

(s+(x) = s(z)) log s+(y) + log s+(z)− log s(x)− log s(y)=

(s(x) ≤ s(y))

Lemma. After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.
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Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 2. Right-Left(x)
z

x
y

z

x
y

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

(s+(x) = s(z)) log s+(y) + log s+(z)− log s(x)− log s(y)=

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)

Lemma. After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.
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Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 2. Right-Left(x)
z

x
y

z

x
y

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

(s+(x) = s(z)) log s+(y) + log s+(z)− log s(x)− log s(y)=

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)

Lemma. After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.
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Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 2. Right-Left(x)
z

x
y

z

x
y

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

(s+(x) = s(z)) log s+(y) + log s+(z)− log s(x)− log s(y)=

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)

Lemma. After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.
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Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 2. Right-Left(x)
z

x
y

z

x
y

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

(s+(x) = s(z)) log s+(y) + log s+(z)− log s(x)− log s(y)=

(?) : s+(y) + s+(z) ≤ s+(x)

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)

Lemma. After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.
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Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 2. Right-Left(x)
z

x
y

z

x
y

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

(s+(x) = s(z)) log s+(y) + log s+(z)− log s(x)− log s(y)=

(?) : s+(y) + s+(z) ≤ s+(x) log s+(y) + log s+(z) ≤ 2 log s+(x)− 2

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)

Lemma. After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.

(AM-GM)
(?)
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Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 2. Right-Left(x)
z

x
y

z

x
y

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

(s+(x) = s(z)) log s+(y) + log s+(z)− log s(x)− log s(y)=

(?) : s+(y) + s+(z) ≤ s+(x) log s+(y) + log s+(z) ≤ 2 log s+(x)− 2

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)

Lemma. After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.

(AM-GM)
(?)
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Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 2. Right-Left(x)
z

x
y

z

x
y

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

(s+(x) = s(z)) log s+(y) + log s+(z)− log s(x)− log s(y)=

(?) : s+(y) + s+(z) ≤ s+(x) log s+(y) + log s+(z) ≤ 2 log s+(x)− 2

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)
≤ 2 log s+(x)− 2 log s(x)− 2

Lemma. After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.

(AM-GM)
(?)
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Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 2. Right-Left(x)
z

x
y

z

x
y

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

(s+(x) = s(z)) log s+(y) + log s+(z)− log s(x)− log s(y)=

(?) : s+(y) + s+(z) ≤ s+(x) log s+(y) + log s+(z) ≤ 2 log s+(x)− 2

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)
≤ 2 log s+(x)− 2 log s(x)− 2

(s+(x) > s(x))

Lemma. After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.

(AM-GM)
(?)
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Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 2. Right-Left(x)
z

x
y

z

x
y

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

(s+(x) = s(z)) log s+(y) + log s+(z)− log s(x)− log s(y)=

(?) : s+(y) + s+(z) ≤ s+(x) log s+(y) + log s+(z) ≤ 2 log s+(x)− 2

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)
≤ 2 log s+(x)− 2 log s(x)− 2

(s+(x) > s(x)) ≤ 3 log s+(x)− 3 log s(x)− 2

Lemma. After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.

(AM-GM)
(?)
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Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 2. Right-Left(x)
z

x
y

z

x
y

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

(s+(x) = s(z)) log s+(y) + log s+(z)− log s(x)− log s(y)=

(?) : s+(y) + s+(z) ≤ s+(x) log s+(y) + log s+(z) ≤ 2 log s+(x)− 2

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)
≤ 2 log s+(x)− 2 log s(x)− 2

(s+(x) > s(x)) ≤ 3 log s+(x)− 3 log s(x)− 2 X

Lemma. After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.

(AM-GM)
(?)
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Potential after Rotation

Proof.

Consider any rotation; s(x) before rotation, s+(x) afterwards

Case 2. Right-Left(x)
z

x
y

z

x
y

pot. change log s+(x) + log s+(y) + log s+(z)
− log s(x)− log s(y)− log s(z)

=

(s+(x) = s(z)) log s+(y) + log s+(z)− log s(x)− log s(y)=

(?) : s+(y) + s+(z) ≤ s+(x) log s+(y) + log s+(z) ≤ 2 log s+(x)− 2

(s(x) ≤ s(y)) ≤ log s+(y) + log s+(z)− 2 log s(x)
≤ 2 log s+(x)− 2 log s(x)− 2

(s+(x) > s(x)) ≤ 3 log s+(x)− 3 log s(x)− 2 X

/ Left-Right(x)

Lemma. After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.

(AM-GM)
(?)
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Access Lemma
Lemma. After a single rotation, the potential increases by

≤ 3 (log s+(x)− log s(x)).
After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.
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Access Lemma
Lemma. After a single rotation, the potential increases by

≤ 3 (log s+(x)− log s(x)).
After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.

Lemma. The (amortized) cost of Splay(x) is
c(Splay(x)) ≤ 1 + 3 log(W/w(x)).
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Access Lemma

Proof.

Lemma. After a single rotation, the potential increases by
≤ 3 (log s+(x)− log s(x)).
After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.

Lemma. The (amortized) cost of Splay(x) is
c(Splay(x)) ≤ 1 + 3 log(W/w(x)).
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Access Lemma

Proof. W.l.o.g. k double rotations and 1 single rotation.

Lemma. After a single rotation, the potential increases by
≤ 3 (log s+(x)− log s(x)).
After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.

Lemma. The (amortized) cost of Splay(x) is
c(Splay(x)) ≤ 1 + 3 log(W/w(x)).



18 - 5

Access Lemma

Proof. W.l.o.g. k double rotations and 1 single rotation.
Let si(x) be s(x) after i single/double rotations.

Lemma. After a single rotation, the potential increases by
≤ 3 (log s+(x)− log s(x)).
After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.

Lemma. The (amortized) cost of Splay(x) is
c(Splay(x)) ≤ 1 + 3 log(W/w(x)).
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Access Lemma

Proof. W.l.o.g. k double rotations and 1 single rotation.
Let si(x) be s(x) after i single/double rotations.
Potential increases by at most

Lemma. After a single rotation, the potential increases by
≤ 3 (log s+(x)− log s(x)).
After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.

Lemma. The (amortized) cost of Splay(x) is
c(Splay(x)) ≤ 1 + 3 log(W/w(x)).
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Access Lemma

Proof. W.l.o.g. k double rotations and 1 single rotation.
Let si(x) be s(x) after i single/double rotations.
Potential increases by at most

∑k
i=1 (3 (log si(x)− log si−1(x))− 2)

Lemma. After a single rotation, the potential increases by
≤ 3 (log s+(x)− log s(x)).
After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.

Lemma. The (amortized) cost of Splay(x) is
c(Splay(x)) ≤ 1 + 3 log(W/w(x)).
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Access Lemma

Proof. W.l.o.g. k double rotations and 1 single rotation.
Let si(x) be s(x) after i single/double rotations.
Potential increases by at most

∑k
i=1 (3 (log si(x)− log si−1(x))− 2)

+3 (log sk+1(x)− log sk(x))

Lemma. After a single rotation, the potential increases by
≤ 3 (log s+(x)− log s(x)).
After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.

Lemma. The (amortized) cost of Splay(x) is
c(Splay(x)) ≤ 1 + 3 log(W/w(x)).
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Access Lemma

Proof. W.l.o.g. k double rotations and 1 single rotation.
Let si(x) be s(x) after i single/double rotations.
Potential increases by at most

∑k
i=1 (3 (log si(x)− log si−1(x))− 2)

+3 (log sk+1(x)− log sk(x))
= 3 (log sk+1(x)− log s(x))− 2k

Lemma. After a single rotation, the potential increases by
≤ 3 (log s+(x)− log s(x)).
After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.

Lemma. The (amortized) cost of Splay(x) is
c(Splay(x)) ≤ 1 + 3 log(W/w(x)).

(id. entries rem.)
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Access Lemma

Proof. W.l.o.g. k double rotations and 1 single rotation.
Let si(x) be s(x) after i single/double rotations.
Potential increases by at most

∑k
i=1 (3 (log si(x)− log si−1(x))− 2)

+3 (log sk+1(x)− log sk(x))
= 3 (log sk+1(x)− log s(x))− 2k

root!

Lemma. After a single rotation, the potential increases by
≤ 3 (log s+(x)− log s(x)).
After a double rotation, the potential increases by
≤ 3 (log s+(x)− log s(x))− 2.
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All These Models . . .

Balanced:

Entropy:

Dynamic Finger:

Working Set:

Queries take (amortized) O(log n) time

Queries take expected O(1 + H) time

Queries take O(log δi) time (δi: rank diff.)

Queries take O(log t) time (t: recency)

... is there one BST to rule them all?

Yes! Splay Tree

Queries take (amortized) O(OPTS) time.Static Optimality:
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All of these properties can be
shown by chosing the weight
function accordingly.
Note that the actual algorithm
is always the same!
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Let S be a sequence of queries.

What is the real cost of querying S?

⇒ total cost = Φ0 −Φ|S| + ∑x∈S c(Splay(x))

Let Φi be the potential after query i.

How can we bound Φ0 −Φ|S|?

Reminder: Φ = ∑ log s(x)
s(x) ≥ w(x) ⇒ Φ|S| ≥ ∑x∈T log w(x)

s(root) = log W ⇒ Φ0 ≤ ∑x∈T log W
⇒ Φ0 −Φ|S| ≤ ∑x∈T(log W − log w(x)) ≤ ∑x∈T O (c(Splay(x)))

⇒ as long as every key is queried at least once, it doesn’t
change the asymptotic running time.

(amort. cost to execute Splay(x))
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Lemma. The (amortized) cost of Splay(x) is
c(Splay(x)) ≤ 1 + 3 log(W/w(x)).
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Dynamic Optimality

Given a sequence S of queries.

Let D?
S be an optimal dynamic tree with the shortest query time OPT?

S for S.

(That is, modifications are allowed, e.g., rotations)

This is one of the biggest open problems in algorithms.

Splay Trees: Queries take O(OPT?
S · log n) time.

Tango Trees: Queries take O(OPT?
S · log log n) time.

[Demaine, Harmon, Iacono, Pătras,cu ’04]

Open Problem. Does a dynamically optimal BST exist?

Conjecture. Splay Trees are dynamically optimal.

Definition. A BST is dynamically optimal if queries take
(amort.) O(OPT?

S) time for every S.
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