Julius-Maximilians-
UNIVERSITAT
WURZBURG

Advanced Algorithms

Succinct Data Structures
Indexable Dictionaries and Trees

Johannes Zink - WS23/24

Data Structures — Informal Definition

Data Structures — Informal Definition

A data structure is a concept to
H store,

B organize, and

B manage data.

Data Structures — Informal Definition

A data structure is a concept to
H store,

B organize, and

B manage data.

As such, it is a collection of

B data values,

B their relations, and

B the operations that can be applied to the data.

Data Structures — Informal Definition

A data structure is a concept to
H store,

B organize, and

B manage data.

As such, it is a collection of

B data values,

B their relations, and

B the operations that can be applied to the data.

Remarks.
B We look at data structures as a designer/implementer
(and not necessarily as a user).

B To define a data structure and to implement it are two different tasks.

Data Structures — Informal Definition

A data structure is a concept to
H store, B What do we represent?

B organize, and B How much space is required?

H manage data. . .
5 = B Dynamic or static?

As such, it is a collection of

B data values,

B their relations, and

B the operations that can be applied to the data.

B Which operations are defined?
B How fast are they?

Remarks.
B We look at data structures as a designer/implementer
(and not necessarily as a user).

B To define a data structure and to implement it are two different tasks.

Succinct Data Structures

Goal.
B Use space “close” to information-theoretical minimum,

B but still support time-efficient operations.

Succinct Data Structures

Goal.
B Use space “close” to information-theoretical minimum,

B but still support time-efficient operations.

Let L. be the information-theoretical lower bound
to represent a class of objects.

Then a data structure, which still supports
time-efficient operations, is called

B implicit, if it takes L + O(1) bits of space;

Succinct Data Structures

Goal.
B Use space “close” to information-theoretical minimum,

B but still support time-efficient operations.

Let L. be the information-theoretical lower bound
to represent a class of objects.

Then a data structure, which still supports
time-efficient operations, is called

B implicit, if it takes L + O(1) bits of space;

B succinct, if it takes L + o(L) bits of space;

Succinct Data Structures

Goal.
B Use space “close” to information-theoretical minimum,

B but still support time-efficient operations.

Let L. be the information-theoretical lower bound
to represent a class of objects.

Then a data structure, which still supports
time-efficient operations, is called

B implicit, if it takes L + O(1) bits of space;
B succinct, if it takes L + o(L) bits of space;

B compact, if it takes O(L) bits of space.

Succinct Data Structures

Goal.
B Use space “close” to information-theoretical minimum,

B but still support time-efficient operations.

Let L. be the information-theoretical lower bound
to represent a class of objects.

Then a data structure, which still supports
time-efficient operations, is called

B implicit, if it takes L + O(1) bits of space;
n
6‘
Q®

B succinct, if it takes L + o(L) bits of space; (/;19((\

B compact, if it takes O(L) bits of space.

Examples for Implicit Data Structures

Examples for Implicit Data Structures

B arrays to represent lists
m but why not linked lists?

Examples for Implicit Data Structures

B arrays to represent lists
m but why not linked lists?

B 1-dim arrays to represent multi-dimensional arrays

Examples for Implicit Data Structures

B arrays to represent lists
m but why not linked lists?

B 1-dim arrays to represent multi-dimensional arrays

B sorted arrays to represent sorted lists
m but why not binary search trees?

Examples for Implicit Data Structures

B arrays to represent lists
m but why not linked lists?

B 1-dim arrays to represent multi-dimensional arrays

B sorted arrays to represent sorted lists
m but why not binary search trees?

B arrays to represent complete binary trees and heaps

AN 0

~—
leftChild(i) =

rightChild(i) =

parent(i) =

Examples for Implicit Data Structures

B arrays to represent lists
m but why not linked lists?

B 1-dim arrays to represent multi-dimensional arrays

B sorted arrays to represent sorted lists
m but why not binary search trees?

B arrays to represent complete binary trees and heaps

AN 0

~—~—~
leftChild(i) = 2i

rightChild(i) =

parent(i) =

Examples for Implicit Data Structures

B arrays to represent lists
m but why not linked lists?

B 1-dim arrays to represent multi-dimensional arrays

B sorted arrays to represent sorted lists
m but why not binary search trees?

B arrays to represent complete binary trees and heaps

AN 0

~—~—~
leftChild(i) = 2i

rightChild(i) = 2i+1

parent(i) =

Examples for Implicit Data Structures

B arrays to represent lists
m but why not linked lists?

B 1-dim arrays to represent multi-dimensional arrays

B sorted arrays to represent sorted lists
m but why not binary search trees?

B arrays to represent complete binary trees and heaps

AN 0

~—~—~
leftChild(i) = 2i

rightChild(i) = 2i+1

parent(i) = L%J

Examples for Implicit Data Structures

B arrays to represent lists
m but why not linked lists?

B 1-dim arrays to represent multi-dimensional arrays

B sorted arrays to represent sorted lists
m but why not binary search trees?

B arrays to represent complete binary trees and heaps

AN 0

~—~—~
leftChild(i) = 2i

rightChild(i) = 2i+1

parent(i) = L%J

And unbalanced
trees?

Succinct Indexable Dictionary

Represent a subset S C {1,2,..., n} and support the following operations in O(1) time:
B member(i) returnsif i € S

B rank(i) = number of elements in S that are less or equal to i

B select(j) = j-th element in S

B predecessor(i)

B successor(i)

Succinct Indexable Dictionary

Represent a subset S C {1,2,..., n} and support the following operations in O(1) time:
B member(i) returnsif i € S

B rank(i) = number of elements in S that are less or equal to i

B select(j) = j-th element in S

B predecessor(i)

B successor(i)

How many different subsets of {1,2,..., n} are there?

How many bits of space do we need to distinguish them?

Succinct Indexable Dictionary

Represent a subset S C {1,2,..., n} and support the following operations in O(1) time:
B member(i) returnsif i € S

B rank(i) = number of elements in S that are less or equal to i

B select(j) = j-th element in S

B predecessor(i)

B successor(i)

How many different subsets of {1,2,..., n} are there? 2

How many bits of space do we need to distinguish them?

Succinct Indexable Dictionary

Represent a subset S C {1,2,..., n} and support the following operations in O(1) time:
B member(i) returnsif i € S

B rank(i) = number of elements in S that are less or equal to i

B select(j) = j-th element in S

B predecessor(i)

B successor(i)

How many different subsets of {1,2,..., n} are there? 2

How many bits of space do we need to distinguish them?

log 2" = n bits

Succinct Indexable Dictionary

Represent S with a bit vector b of length n where
1 ifies
\O otherwise

bli]| = <

Succinct Indexable Dictionary

Represent S with a bit vector b of length n where

S=1{3,4,6,8,9,14} where n = 15

bli

r

f1e€S
\O otherwise

b|0]0

1

1

0

1

0

1

1

0

0

0

0

1

Succinct Indexable Dictionary

Represent S with a bit vector b of length n where
1 ifies
\O otherwise

bli]| = <

S=1{3,4,6,8,9,14} where n = 15

b|0{0]1[1]0|1]0]1({1]0(0]|0|0]|1]O

member (i) can trivially be answered in O(1) time
(assuming that we can access any entry in constant time)

Succinct Indexable Dictionary

Represent S with a bit vector b of length n where
1 ifies
\O otherwise

bli]| = <

plus o(7)-space data structures to answer in O(1) time

B rank(i) = # 1s at or before position i
B select(j) = position of j-th 1 bit

S=1{3,4,6,8,9,14} where n = 15

b|0{0]1[1]0|1]0]1({1]0(0]|0|0]|1]O

member (i) can trivially be answered in O(1) time
(assuming that we can access any entry in constant time)

Succinct Indexable Dictionary

Represent S with a bit vector b of length n where
1 ifies
\O otherwise

bli]| = <

plus o(7)-space data structures to answer in O(1) time

B rank(i) = # 1s at or before position i
B select(j) = position of j-th 1 bit

S=1{3,4,6,8,9,14} where n = 15

b|0{0]1[1]0|1]0]1({1]0(0]|0|0]|1]O

member (i) can trivially be answered in O(1) time
(assuming that we can access any entry in constant time)

select(b)

Succinct Indexable Dictionary

Represent S with a bit vector b of length n where
1 ifies
\O otherwise

bli]| = <

plus o(7)-space data structures to answer in O(1) time

B rank(i) = # 1s at or before position i
B select(j) = position of j-th 1 bit

S=1{3,4,6,8,9,14} where n = 15

b|0{0]1[1]0|1]0]1({1]0(0]|0|0]|1]O

member (i) can trivially be answered in O(1) time
(assuming that we can access any entry in constant time)

select(5) =9

Succinct Indexable Dictionary

Represent S with a bit vector b of length n where
1 ifies
\O otherwise

bli]| = <

plus o(7)-space data structures to answer in O(1) time

B rank(i) = # 1s at or before position i
B select(j) = position of j-th 1 bit

S=1{3,4,6,8,9, 14} where n = 15 select(5) =9

plololtl1lolt]ol1lLlolololol1l0 rank(9) =

member (i) can trivially be answered in O(1) time
(assuming that we can access any entry in constant time)

Succinct Indexable Dictionary

Represent S with a bit vector b of length n where
1 ifies
\O otherwise

bli]| = <

plus o(7)-space data structures to answer in O(1) time

B rank(i) = # 1s at or before position i
B select(j) = position of j-th 1 bit

S=1{3,4,6,8,9,14} where n = 15

b|0{0]1[1]0|1]0]1({1]0(0]|0|0]|1]O

member (i) can trivially be answered in O(1) time
(assuming that we can access any entry in constant time)

select(5) =
rank(9) = 5

9

Succinct Indexable Dictionary

Represent S with a bit vector b of length n where
1 ifies
\O otherwise

bli]| = <

plus o(7)-space data structures to answer in O(1) time

B rank(i) = # 1s at or before position i
B select(j) = position of j-th 1 bit

S=1{3,4,6,8,9,14} where n = 15

b|0{0]1[1]0|1]0]1({1]0(0]|0|0]|1]O

member (i) can trivially be answered in O(1) time
(assuming that we can access any entry in constant time)

select(5) =9
rank(9) = 5 = rank(12)

Succinct Indexable Dictionary

Represent S with a bit vector b of length n where
1 ifies
\O otherwise

bli]| = <

plus o(7)-space data structures to answer in O(1) time

B rank(i) = # 1s at or before position i
B select(j) = position of j-th 1 bit

S=1{3,4,6,8,9,14} where n = 15

b|0{0]1[1]0|1]0]1({1]0(0]|0|0]|1]O

member (i) can trivially be answered in O(1) time
(assuming that we can access any entry in constant time)

select(5) =
rank(9) = 5
rank(15) =

9

rank(12)

- 10

Succinct Indexable Dictionary

Represent S with a bit vector b of length n where
1 ifies
\O otherwise

bli]| = <

plus o(7)-space data structures to answer in O(1) time

B rank(i) = # 1s at or before position i
B select(j) = position of j-th 1 bit

S=1{3,4,6,8,9,14} where n = 15

b|0{0]1[1]0|1]0]1({1]0(0]|0|0]|1]O

member (i) can trivially be answered in O(1) time
(assuming that we can access any entry in constant time)

select(5) =9
rank(9) = 5 = rank(12)
rank(15) = 6

- 11

Succinct Indexable Dictionary

Represent S with a bit vector b of length n where
1 ifies
\O otherwise

bli]| = <

plus o(7)-space data structures to answer in O(1) time

Exercise: Use these methods to

B rank(i) = # 1 f ition 1 ‘
rank(i) = # 1s at or before position = answer predecessor(i) and

B select(j) = position of j-th 1 bit successor(i) in O(1) time.
S = {3, 4 6, 8, 9, 14} where n = 15 Select(S) — 0
p[0Jo[1]1]0]1]0]1]2]0]0]0]0]1]0 rank(9) =5 = rank(12)
rank(15) = 6

member (i) can trivially be answered in O(1) time
(assuming that we can access any entry in constant time)

Rank in o(n) Bits

b

Rank in o(n) Bits

Iog2 n

b

1. Split into (log? n)-bit chunks

and store cumulative rank:

each needs < logn bits

7-2

log® n = (logn)

Rank in o(n) Bits

3

5

Iog2 n

bl 1

1

1

1

1

1. Split into (log? n)-bit chunks

and store cumulative rank:

each needs < logn bits

7-3

log® n = (logn)

Rank in o(n) Bits

3

5

Iog2 n

7-4

log® n = (log n)?

bl 1

1

1

1

1

1. Split into (log? n)-bit chunks

and store cumulative rank:

each needs < logn bits
= O(——logn) = O(

Iogzn

A

7

chunks rank

n
log n

) C o(n) bits

7-5

. . 2 .
Rank In 0(7/1) Bits %Iogn Iogfn log=n = (logn)
3 5 ~— ~ N
bl 11 1 1 1] |
1. Split into (log? n)-bit chunks
and store cumulative rank: each needs < logn bits
= O(i—7—logn) = O(1g;7) € o(n) bits

Iogzn
2. Split chunks into (3 logn)-bit subchunks

and store cumulative rank within chunk:

7-6

. . 2 .
Rank In 0(7/1) Bits %Iogn Iogfn log=n = (logn)
3 5 1 3 ~ N
bl 11 1| 1 1 [1]11 |
1. Split into (log? n)-bit chunks
and store cumulative rank: each needs < logn bits
= O(i—7—logn) = O(1g;7) € o(n) bits

Iogzn
2. Split chunks into (3 logn)-bit subchunks

and store cumulative rank within chunk:

7-7

: : , ,
Rank In O(n) Bits %Iogn Iogfn log=n = (logn)
3 5 1 3 ~ N
bl 11 1| 1 1 [1]11 |
1. Split into (log? n)-bit chunks
and store cumulative rank: each needs < logn bits
= O(i—7—logn) = O(1g;7) € o(n) bits

Iogzn
2. Split chunks into (3 logn)-bit subchunks

and store cumulative rank within chunk: each needs < Ioglog2 n = 2loglogn bits

7-8

: : , ,
Rank In O(n) Bits %Iogn Iogfn log=n = (logn)
3 5 1 3 - N
bl 11 1| 1 1 [1]11 |
1. Split into (log? n)-bit chunks
and store cumulative rank: each needs < logn bits
= O(Iog - logn1) = O(gg7) € 0(n) bits

2. Split chunks into (3 logn)-bit subchunks

and store cumulative rank within chunk: each needs < Ioglog2 n = 2loglogn bits
= O(+L loglogn) C o(n) bits

A > 4
-~

7 subchunks rel. rank

log n

Rank 1n O(n) Bits %|Og7fl Iogzn log® n = (logn)

3 5 1 3 M 'a N

bl 11 1| 1 1 [1]11 |
1. Split into (log? n)-bit chunks

and store cumulative rank: each needs < logn bits
= O(—Z—logn) = O(=%=) C o(n) bits

log n

Iog n
2. Split chunks into (3 logn)-bit subchunks

and store cumulative rank within chunk: each needs < Ioglog2 n = 2loglogn bits
= O(+L loglogn) C o(n) bits

log n

3. Use for bitstrings of length (3 logn):

7-10

. . 2 . 2
Rank 1n 0(7/1) Bits %|Og7fl Iogfn log=n = (logn)
3 5 1 3 —= 7 N
bl 11 1| 1 1 [1]ad |
1. Split Example: n = 64 = % logn = 3
and s < logn bits
O(Iog - logn1) = O(gg7) € 0(n) bits
2. Split ks
and . each needs < Ioglog2 n = 2loglogn bits
= O(Iogn loglogn) C o(n) bits

3. Use 4 for bitstrings of length (3 logn):

7-11

Rank In O(Yl) BItS %logn Iogzn log® 1 = (logn)?

3 5 1 ~= -~ Y

3
bl 11 1| 1 1|_1'11 |

1. Splitf Example: n = 64 = 5 Liogn =3

position —

000
001
010
011
100
101
110
111

3. Use 4 for bitstrings of length (3 logn):

and

s < logn bits
O(——logn) = O(==) C o(n) bits

log n

Iog n
2. Split

and

ks

. each needs < Ioglog n = 2loglogn bits
= O(=% loglogn) C o(n) bits

bitstring
HFPRPRPRPROOOO|IH
NN EREEOO|N
WNONRFRLNRFRRFRO|W

log n

7-12

Rank In O(Yl) BItS %logn Iogzn log® 1 = (logn)?

3 5 1 ~= -~ Y

3
bl 11 1| 1 1 [1]ad |

1. Split Example: n = 64 = % logn = 3
position —

000
001
010
011
100
101
110
111

3. Use 4 for bitstrings of length (% logn): o3 logn _ \/n distinct bitstrings

and

s < logn bits
O(——logn) = O(==) C o(n) bits

log n

Iog n
2. Split

and

ks

. each needs < Ioglog n = 2loglogn bits
= O(=% loglogn) C o(n) bits

bitstring

WNONRFLNRFR RO

NN RO O|ND

HFPRPRPRPROOOO|IH

log n

7-13

' ' D log? n = (log 1)?
Rank 1n O(Yl) Bits %logn loin og~n = (logn)
3 5]__3 ~ 7 B
bl 11 1| 1 1 [1]ad |
1. Split Example: n = 64 = % logn = 3
and position —| 1 | 2 | 3 s < logn bits
000 |0 10]O0 i |
o 8(1)% 8 (1) % O(Iog - logn1) = O(gg7) € 0(n) bits
- £ 011 |0 |12 K
2. Split B 100 |1|1|1 S
and 0 %% % % % - each needs < loglog? n = 2loglog n bits
111|123 = O(jog7 loglogn) C o(n) bits
3. Use 4 for bitstrings of length (% logn): 25 logn _ /1 distinct bitstrings

= O(y/nlognloglogn) C o(n) bits
—— —— - ™

rows # columns rel. rank

1.

7-14

. . 2 . 2
Rank 1n O(n) Bits %|Og7fl Iogfn log=n = (logn)
3 5 1 3 —= 7 N
bl 11 1] 1 1 [1]ad |
Split into (log? n)-bit chunks
and store cumulative rank: each needs < logn bits
= O(i—7—logn) = O(1g;7) € o(n) bits

Iog n

. Split chunks into (3 logn)-bit subchunks

and store cumulative rank within chunk: each needs < Ioglog2 n = 2loglogn bits
= O(+L loglogn) C o(n) bits

log n

. Use for bitstrings of length (% logn): o3 logn _ \/n distinct bitstrings

= O(y/nlognloglogn) C o(n) bits

. rank(i) = rank of chunk

+ relative rank of subchunk within chunk
+ relative rank of element 7 within subchunk

1

) Time s

: : 1 2 _
Rank in o(n) Bitst+ O(1) [% ogn s (osn
3 5]__3 ~ 7 N
bl 11 1] 1 1 [1]ad |
Split into (log? n)-bit chunks
and store cumulative rank: each needs < logn bits
= O(|o§2n logn1) = O(gg7) € 0(n) bits

. Split chunks into (3 logn)-bit subchunks

and store cumulative rank within chunk: each needs < Ioglog2 n = 2loglogn bits
= O(+L loglogn) C o(n) bits

log n

. Use for bitstrings of length (% logn): o3 logn _ \/n distinct bitstrings

= O(y/nlognloglogn) C o(n) bits

. rank(i) = rank of chunk

+ relative rank of subchunk within chunk = O(1) time
+ relative rank of element i within subchunk (assume read/write numbers in O(1) time)

Select in o(n) Bits

b

Select in o(n) Bits g nlog log n 1s

=\
7 Y

b

1. Store indices of every (lognloglogn)-th 1 bit in array

Select in o(n) Bits g nlog log n 1s

=\
7 Y

b
1. Store indices of every (lognloglogn)-th 1 bit in array

= O(l%nlggbgﬂ Io%n) = O(logflogn) C o(n) bits
#£ groups index

Select in o(n) Bits g nlog log n 1s

=\
7 Y

b
1. Store indices of every (lognloglogn)-th 1 bit in array
= O(Iognlci)flglogn Iogn) — O(Iogrogn) C O(Tl) bits

2. Within group of (lognloglogn) 1 bits of length 7 bits:

Select in o(n) Bits g nlog log n 1s

=\
7 Y

b |

1. Store indices of every (lognloglogn)-th 1 bit in array
= O(logn) = O(

C o(n) bits

n n)
log nlog logn loglogn/ —

2. Within group of (lognloglogn) 1 bits of length 7 bits:
if r > (lognloglogn)?
then store indices of 1 bits in group in array
= O((Iognlorélogn)Z (lognloglogn)logn) € O(1gz15g7) bits

— S — - >4

— —— Ve

groups # 1 bits index

Select in o(n) Bits g nlog log n 1s

p[T 1|]

=\
7 Y

1. Store indices of every (lognloglogn)-th 1 bit in array
= O(Iognlci)/lglogn Iogn) — O(Iogrogn) C O(Tl) bits

2. Within group of (lognloglogn) 1 bits of length 7 bits:

if r > (lognloglogn)?
then store indices of 1 bits in group in array

= O((Iognloz; oz)2 (lognloglogn)logn) C O

- :
log log n) bits

else problem is reduced to bitstrings of length » < (log 1 log log 11)?

Select in o(n) Bits g nlog log n 1s

-\

7 N
]]]]]]

p [T 1 I S

1. Store indices of every (lognloglogn)-th 1 bit in array
= O(Iognlci)/lglogn Iogn) — O(Iogrogn) C O(Tl) bits

2. Within group of (lognloglogn) 1 bits of length 7 bits:

if r > (lognloglogn)?
then store indices of 1 bits in group in array

= O((Iognlorélogn)Z (lognloglogn)logn) € O(1gz15g7) bits

else problem is reduced to bitstrings of length » < (log 1 log log 11)?

3. Repeat 1. and 2. on reduced bitstrings

Select in o(n) Bits og nlog log n 1s

-\

~
]]]]]]]]

bl | | | [[] | |

3. Repeat 1. and 2. on reduced bitstrings (r < (logn loglogn)?):

Select in o(n) Bits og nlog log n 1s

b] HE I I I

3. Repeat 1. and 2. on reduced bitstrings (r < (logn loglogn)?):

1' Store relative indices of every (loglog#)2-th 1 bit in array

Select in o(n) Bits og nlog log n 1s

-\

p[T T 1 I I

3. Repeat 1. and 2. on reduced bitstrings (r < (logn loglogn)?):
1' Store relative indices of every (loglog#)2-th 1 bit in array

= O((Ioglzgn)2 loglogn) = O(15z167) bits

- - N -
N N

subgroups rel. index

Select in o(n) Bits g nlog log n 1s

b] HE I I I

3. Repeat 1. and 2. on reduced bitstrings (r < (logn loglogn)?):
1' Store relative indices of every (loglog#)2-th 1 bit in array

= O((Ioglzgn)2 loglogn) = O(15z167) bits

2" Within group of (loglog n)2 1 bits of length 7’ bits:

- 11

Select in o(n) Bits g nlog log n 1s

b] HE L1

3. Repeat 1. and 2. on reduced bitstrings (r < (logn loglogn)?):

1' Store relative indices of every (loglog#)2-th 1 bit in array

= O((Ioglzgn)2 loglogn) = O(15z167) bits

2" Within group of (loglog n)2 1 bits of length 7’ bits:

if ' > (loglogn)*
then store relative indices of 1 bits in subgroup in array

Select in o(n) Bits g nlog log n 1s

b] HE L1

3. Repeat 1. and 2. on reduced bitstrings (r < (logn loglogn)?):

1' Store relative indices of every (loglog#)2-th 1 bit in array

= O((Iog I’;gn)Q loglogn) = O(

2" Within group of (loglog n)2 1 bits of length 7’ bits:
if ' > (loglogn)*
then store relative indices of 1 bits in subgroup in array

= O(Tog IZgn)“ (loglogn)? loglogn) = O(roglogn) bits

- N 2 7
T " Ve

#£ subgroups # 1 bits rel. index

- :
log log n) bits

Select in o(n) Bits g nlog log n 1s

b] HE L1

3. Repeat 1. and 2. on reduced bitstrings (r < (logn loglogn)?):

1' Store relative indices of every (loglog#)2-th 1 bit in array

= O((IogIZgn)Q loglogn) = O(Iogrogn) bits

2" Within group of (loglog n)2 1 bits of length 7’ bits:
if ' > (loglogn)*
then store relative indices of 1 bits in subgroup in array
= O(Tog IZgn)“ (loglogn)? loglogn) = O(roglogn) bits

else problem is reduced to bitstrings of length

Select in o(n) Bits g nlog log n 1s

b] HE L1

3. Repeat 1. and 2. on reduced bitstrings (r < (logn loglogn)?):

1' Store relative indices of every (loglog#)2-th 1 bit in array

= O((IogIZgn)Q loglogn) = O(15z167) bits

2" Within group of (loglog n)2 1 bits of length 7’ bits:
if ' > (loglogn)*
then store relative indices of 1 bits in subgroup in array
2 .
= O((Iogl’;gn)4(loglog n)<loglogn) = O(gziegr) bits

else problem is reduced to bitstrings of length

4. Use for bitstrings of length /' < (loglog n)%:

Select in o(n) Bits

- (log log n)?
. L 11
3. Repea Example: n = 10 = (loglogn)< ~ 3 1 log log 1)?):
=1’ < (loglogn)*~9 |
1" Store 1 bit in array
select = | 1 | 2 | 3
00000111 | 6 | 7 | 8 oz loglogn) = O(
00001011 | 5 | 7 | 8
2" Witk & 00001101 | 5 | 6 | 8 r’ bits:
if v/ E
then s 11001000 | 1 |2 |5 1p In array
11010000 | 1 |2 | 4 5
11100000 |1 | 2 | 3 n)<loglogn) = O(
else proble7/is reduced to bitstrings of length
4. Use for bitstrings of length /' < (loglog n)%:

log :/log n)

n
log log n

bits

) bits

Select in o(n) Bits

la
3. Repea Example: n = 10 = (loglogn)< ~ 3 1 log log 1)?):
=1’ < (loglogn)*~9 |
1" Store 1 bit in array
select = | 1 | 2 | 3
00000111 | 6 | 7 | 8 oz loglogn) = O(
00001011 {5 | 7 | 8
2" With %0 00001101 | 5 | 6 | 8 r’ bits:
if v/ E f
then s 11001000 | 1 |2 |5 1p In array
11010000 |1 [2 | 4 5
11100000 |1 | 2 | 3 n)<loglogn) = O(
else proble7/is reduced to bitstrings of length
4. Use for bitstrings of length /' < (loglog n)%:

2(Iog|ogn)4 c 0(2% Iogn) - O(\/ﬁ);

N

> 4

-~

rows

columns

(loglogn)? € O(logn)

log :/log n)

n
log log n

bits

) bits

Select in o(n) Bits og nlog log n 1s

b- L1

: . P ~ | | I |
3. Repea Example: n = 10 = (Ioglogn)4 3 1 log log 1)?):
= 1’ < (loglogn)* ~ 9 o
1" Store 1 bit in array
select =+ | 1 | 2 | 3 . _
00000111 [6 | 7 | 8 Sz loglog 1) = O(jgiogs) bits
00001011 |5 | 7 | 8
2" Witk 80 00001101 |5 | 6 | 8 r’ bits:
if v/ 7 |
then s 11001000 | 1 |2 |5 1p In array
11010000 |1 [2 | 4 5 ; _
11100000 |1 | 2 | 3 n)<loglogn) = O(gziegr) bits

else proble7/is reduced to bitstrings of length

4. Use for bitstrings of length /' < (loglog n)%:
ollegloen) = O(251een) — O(/n): (loglogn)? € O(logn) = O(y/nlognloglogn) = o(n) bits
~— —— ————

A\ - > 4 A - —

-~

rows # columns # rows # columns rel. index

b] HE L1

4. select(j) = select J-th group where | = |j/(lognloglogn)|

+ directly select (j — J)-th 1 bit
or select J'-th subgroup where |’ = | (j — J)/(loglogn)?

+ directly select (j—] —J')-th 1 bit
or select it In the lookup table

- 19

SeleCt in O(Yl) BItS’\’ O(]—) T\n;\ojnloglogn 1s

b] HE L1

4. select(j) = select J-th group where | = |j/(lognloglogn)|

+ directly select (j — J)-th 1 bit
or select J'-th subgroup where |’ = | (j — J)/(loglogn)?

+ directly select (j—] —J')-th 1 bit
or select it In the lookup table

- 20

Succinct Representation of Binary Trees

Number of binary trees on n vertices:

Succinct Representation of Binary Trees

Number of binary trees on n vertices:

n = 0: “empty tree”

1 possibility

Succinct Representation of Binary Trees

Number of binary trees on n vertices:

n = 0: “empty tree”

1 possibility

n=1: ®

1 possibility

Succinct Representation of Binary Trees

Number of binary trees on n vertices:

n = 0: “empty tree” n=2: ® start with root
1 possibility
n=1: ®

1 possibility

Succinct Representation of Binary Trees

Number of binary trees on n vertices:

n =0: “empty tree” n—=2: start with root
oy e)
1 pOSSIbIlIty appendw’
n=1 @ append 1 child right

1 possibility

Succinct Representation of Binary Trees

Number of binary trees on n vertices:

n = 0: “empty treel n—=2: \
1 possibility
append no child right
0= 1 @\start with rooj’ o .
1 possibility =

append 1 child left

Succinct Representation of Binary Trees

Number of binary trees on n vertices:

n = 0: “empty tree” n=2: \
1 possibility

n=1: o /
1 possibility

2 possibilities

Succinct Representation of Binary Trees

Number of binary trees on n vertices:

n = 0: “empty tree” n=2: \ n=3: ® start with root
1 possibility

n=1: ® /
1 possibility

2 possibilities

Succinct Representation of Binary Trees

Number of binary trees on n vertices:

append no child left

n = 0: “empty tree”
1 possibility
n=1: ®
1 possibility

n—=2: n—

& start with root

/ append 2 children right

2 possibilities

Succinct Representation of Binary Trees

Number of binary trees on n vertices:
append no child left

/

n = 0: “empty tree” n=2: \
1 possibility

= L start with root
1 possibility append 2 children right

2 possibilities

- 10

Succinct Representation of Binary Trees

Number of binary trees on n vertices:

n = 0: “empty tree”

1 possibility

n = 1.

1 possibility

n—=2: \ n = 3:

2 possibilities

/ append 1 chdeft}\/‘

A& start with root

append 1 child right

-11

Succinct Representation of Binary Trees

Number of binary trees on n vertices:

append no child right _
start with root

n = 0: “empty tree”
1 possibility
n=1: ®
1 possibility

2 possibilities

> append 2 children left

- 12

Succinct Representation of Binary Trees

Number of binary trees on n vertices: append no child right

n = 0: “empty tree” n=2: \ n=3: ./\
1 possibility
n=1: o ﬁ Nrt with root

1 possibility append 2 children left 7

2 possibilities

Succinct Representation of Binary Trees

Number of binary trees on n vertices:

n = 0: “empty tree”

1 possibility

n=1: ®

1 possibility

n=2: \
/

2 possibilities

4

N

5 possibilities

<
/

_14

Succinct Representation of Binary Trees

Number of binary trees on n vertices: C,, =) C;-C,,_1_; =

/ C, is the n-th Catalan number and Cy =1
n

—1 (2n)!

(1]
20 (n+1)!n!

n = 0: “empty tree”

1 possibility

n=1: ®

1 possibility

n=2: \
/

2 possibilities

TN A <

- 15

Succinct Representation of Binary Trees

n—1
Number of binary trees on n vertices: C,, =) C;-C,,_1_; =
1=0

log C,, = 2n 4+ o(n) (by Stirling’s approximation)

- 16

Succinct Representation of Binary Trees

n—1

Number of binary trees on n vertices: C,, =) C;-C,,_1_; =
1=0

log C,, = 2n 4+ o(n) (by Stirling’s approximation)

= We can use 2n + o(n) bits to represent binary trees.

- 17

Succinct Representation of Binary Trees

n—1

Number of binary trees on n vertices: C,, =) C;-C,,_1_; =
1=0

log C,, = 2n + o(n) (by Stirling's approximation)
= We can use 2n + o(n) bits to represent binary trees.

Difficulty is when a binary tree is not full.

- 18

Succinct Representation of Binary Trees

ldea.

- 19

Succinct Representation of Binary Trees

Idea.
B Add external nodes to have
out-degree 2 or 0 at every node

- 20

Succinct Representation of Binary Trees

b

B Add external nodes to have
out-degree 2 or 0 at every node

ldea.

Succinct Representation of Binary Trees

1 2 3 4 5 6 ¢ 8 9 10 11 12 13 14 15 16 17 138 19

Idea. b|1(1]1(1]1/0]1]0(0|1(0[1|1]0/0]0]0|0]|0

B Add external nodes to have
out-degree 2 or 0 at every node

B Read internal nodes as 1

B Read external nodes as O

Succinct Representation of Binary Trees

51
I4 5
8 9 510 11

__

1 2 3 4 5 6 ¢ 8 9 10 11 12

13 14 15 16 17 18 19

idea. b[1]1]1]1]170]1]0]0

1

0

1

110

0

0

0

0

0

B Add external nodes to have
out-degree 2 or 0 at every node

B Read internal nodes as 1

B Read external nodes as O

Size.
B 21+ 1 bits for b

B o(n) for rank
and select

- 23

Succinct Representation of Binary Trees

‘1
o 3~
VN 5NG 6 S TN

__

1 2 3 4 5 6 ¢ 8 9 10 11 12 13 14 15 16 17 138 19

Idea. b|1(1]1(1]1/0]1]0(0|1(0[1|1]0/0]0]0|0]|0

B Add external nodes to have Operations.
out-degree 2 or 0 at every node M parent(i) = 7
B Read internal nodes as 1 B leftChild(i) = 7

B Read external nodes as 0 B rightChild(i) = 7

Size.
B 21+ 1 bits for b

B o(n) for rank
and select

24

Succinct Representation of Binary Trees

‘1
o 3~
VN 5NG 6 S TN

__

1 2 3 4 5 6 ¢ 8 9 10 11 12 13 14 15 16 17 138 19

Idea. b|1(1]1(1]1/0]1]0(0|1(0[1|1]0/0]0]0|0]|0

B Add external nodes to have Operations.
out-degree 2 or 0 at every node M parent(i) = 7

B Read internal nodes as 1 B leftChild(i) = 7

B Read external nodes as 0 B rightChild(i) = 7

B Use rank and select

Size.
B 21+ 1 bits for b

B o(n) for rank
and select

- 25

Succinct Representation of Binary Trees .
e SiZE,

B 21+ 1 bits for b

> 3

| B o(n) for rank
e Ny o 7\ rax(j—6 and select
s /0 o\ w0 / N 12 /1 N
_____________________ af NG5 e T\ o

1 2 3 4 5 6 ¢ 8 9 10 11 12 13 14 15 16 17 138 19

Idea. b|1(1]1(1]1/0]1]0(0|1(0[1|1]0/0]0]0|0]|0

B Add external nodes to have Operations.
out-degree 2 or 0 at every node M parent(i) = 7

B Read internal nodes as 1 B leftChild(i) = 7

B Read external nodes as 0 B rightChild(i) = 7

B Use rank and select

Succinct Representation of Binary Trees .
e SiZE,

B 21+ 1 bits for b

5 3
| B o(n) for rank
VN 5 _________________ 6 7 rank(7) _¢ and select
s /1 9 L10 ______ 15 U 12 /J N
Cioy 714/ T\ 6/ "\i718/ " \io

1 2 3 4 5 6 ¢ 8 9 10 11 12 13 14 15 16 17 138 19

Idea. b|1(1]1(1]1/0]1]0(0|1(0[1|1]0/0]0]0|0]|0

B Add external nodes to have Operations.
out-degree 2 or 0 at every node M parent(i) = 7

B Read internal nodes as 1 B leftChild(i) = 7
B Read external nodes as 0 B rightChild(i) = 7

B Use rank and select

Succinct Representation of Binary Trees .
e SiZE,

B 21+ 1 bits for b

5 3
| B o(n) for rank
Eri _________________ 5 _________________ 6 7 rank(7) _¢ and select
s /J 9 ________ w0 J/ 15 U 12 /J N
Cioy 714/ T\ 16/ \i7i18/ "\io

1 2 3 4 5 6 ¢ 8 9 10 11 12 13 14 15 16 17 138 19

Idea. b|1(1]1(1]1/0]1]0(0|1(0[1|1]0/0]0]0|0]|0

B Add external nodes to have Operations.
out-degree 2 or 0 at every node M parent(i) = 7
B Read internal nodes as 1 B leftChild(i) = 2 rank(i)
B Read external nodes as 0 B rightChild(i) = 2 rank(i) +1

B Use rank and select

- 28

Succinct Representation of Binary Trees .
e SiZE,

B 21+ 1 bits for b

5 3
| B o(n) for rank
Eri _________________ 5 _________________ 6 7 rank(7) _¢ and select
s /J 9 ________ w0 J/ 15 U 12 /J N
Cioy 714/ T\ 16/ \i7i18/ "\io

1 2 3 4 5 6 ¢ 8 9 10 11 12 13 14 15 16 17 138 19

Idea. b|1(1]1(1]1/0]1]0(0|1(0[1|1]0/0]0]0|0]|0

B Add external nodes to have Operations. |
out-degree 2 or 0 at every node M parent(i) = select(|5])

B Read internal nodes as 1 B leftChild(i) = 2 rank(i)

B Read external nodes as 0 B rightChild(i) = 2 rank(i) +1

B Use rank and select

- 29

Succinct Representation of Binary Trees .
e SiZE,

B 21+ 1 bits for b

: > B o(n) for rank
e 5Ny 6 7N\ remx(rj—6 and select
s / o\ w0 / o\ 12 /1 13"""':
rank(lO)z? /N5 16/ \17:118/ 1 \19
12 3 a5 6 7 8 9 10 11 12 13 1a 15 16 17 18 10
‘dea. b[1]1]1]1]1]0]1[0]0]1]0 1 1]0J0o]0]0]0 &
. O~ ¢.
B Add external nodes to have Operations. | ?@@(cﬁe
out-degree 2 or 0 at every node M parent(i) = select(|5])
B Read internal nodes as 1 B leftChild(i) = 2 rank(i)
B Read external nodes as 0 B rightChild(i) = 2 rank(i) +1

B Use rank and select

- 30

Succinct Representation of Binary Trees .
e SiZE,

B 21+ 1 bits for b

B o(n) for rank
and select

1 2 3 4 5 6 ¢ 8 9 10 11 12 13 14 15 16 17 138 19

Id b|1|1|1]1]1]0]1]0]0|1]|0f1]1]0]|0]|0|0]0]0 ¢ \S
ea. ?(Oo o
B Add nodes to have Operations. | eD@/(c,\":
out-degree 2 or 0 at every node M parent(i) = select(|5])
B Read internal nodes as 1 B leftChild(i) = 2 rank(i)
B Read nodes as 0 B rightChild(i) = 2 rank(i) +1

B Use rank and select B rank(i) is index for array storing actual values

- 31

Succinct Representation of Trees - LOUDS

10-2

Succinct Representation of Trees - LOUDS
[Level Order Unary Degree Sequence]

10 -

Succinct Representation of Trees - LOUDS

[Level Order Unary Degree Sequence]
B add extra root with out-degree 1

10 -

Succinct Representation of Trees - LOUDS

[Level Order Unary Degree Sequence]
B add extra root with out-degree 1

10 B unary encoding of out-degree terminated by a 0

10 -

Succinct Representation of Trees - LOUDS

[Level Order Unary Degree Sequence]
B add extra root with out-degree 1

10 B unary encoding of out-degree terminated by a 0
B gives LOUDS sequence

9 1011 12 13 14 15 16 17 18 19 20 21
0/{0(1|0|1({0|1f{1]0(0|0]|0]O

1 3 4 5 [8
1 1({1(1 1(1

6
0

2
0

10 -

Succinct Representation of Trees - LOUDS

[Level Order Unary Degree Sequence]
B add extra root with out-degree 1

10 B unary encoding of out-degree terminated by a 0
B gives LOUDS sequence

9 1011 12 13 14 15 16 17 18 19 20 21
0/{0(1|0|1({0|1f{1]0(0|0]|0]O

1 3 4 5 [8
1 1({1(1 1(1

6
0

2
0

Size.
B each vertex (except root) is represented twice,
namely with a 1 and with a 0

B o(n) bits for rank and select

10 -

Succinct Representation of Trees - LOUDS

[Level Order Unary Degree Sequence]
B add extra root with out-degree 1

10 B unary encoding of out-degree terminated by a 0
B gives LOUDS sequence

9 1011 12 13 14 15 16 17 18 19 20 21
0/{0(1|0|1({0|1f{1]0(0|0]|0]O

1 3 4 5 [8
1 1({1(1 1(1

6
0

2
0

Size.
B each vertex (except root) is represented twice,

namely with a 1 and with a 0 = 211 + o(n) bits

B o(n) bits for rank and select

10 -

Succinct Representation of Trees - LOUDS
[Level Order Unary Degree Sequence]

B add extra root with out-degree 1
10 B unary encoding of out-degree terminated by a 0

B gives LOUDS sequence

9 1011 12 13 14 15 16 17 18 19 20 21
0/{0(1|0|1({0|1f{1]0(0|0]|0]O

3 4 5 [8
1({1(1 1(1

1 6
1 0

2
0

Operations.

B Let 7 be index of 1 in LOUDS sequence.
This 1 represents a node (e.g. first 1
represents the root).

B rank(i) is index for array storing
actual values of the nodes.

10 -

Succinct Representation of Trees - LOUDS

[Level Order Unary Degree Sequence]
B add extra root with out-degree 1

10 B unary encoding of out-degree terminated by a 0
B gives LOUDS sequence

9 1011 12 13 14 15 16 17 18 19 20 21
0/{0(1|0|1({0|1f{1]0(0|0]|0]O

1 3 4 5 [8
1 1({1(1 1(1

6
0

2
0

B firstChild(i) = selectg(rankj(i)) + 1

Succinct Representation of Trees - LOUDS

10 - 10

[Level Order Unary Degree Sequence]
B add extra root with out-degree 1

8

9 1011 12 13 14 15 16 17 18 19 20 21

B gives LOUDS sequence

10 B unary encoding of out-degree terminated by a 0

1 3 4 5
1 1({1(1

6
0

2
0

= |

1

0

0

1

0

1

0

1

1

0

0

0

0

0

B firstChild(i) = selectg(rankj(i)) + 1
firstChild(8) = selectg(ranki(8)) + 1

10-11

Succinct Representation of Trees - LOUDS

[Level Order Unary Degree Sequence]
B add extra root with out-degree 1

10 B unary encoding of out-degree terminated by a 0
B gives LOUDS sequence

d 9 1011 12 13 14 15 16 17 18 19 20 21
110(0|1({0}|1(0|1|1({0|0(0]|0O|O

1 3 4 5
1 1({1(1

= [~

6
0

2
0

B firstChild(i) = selectg(rankj(i)) + 1

(
firstChild(8) = selectg(ranki(8)) + 1
= selectg(6) + 1

10 - 12

Succinct Representation of Trees - LOUDS

[Level Order Unary Degree Sequence]
B add extra root with out-degree 1

10 B unary encoding of out-degree terminated by a 0
B gives LOUDS sequence

d 9 1011 12 13 14 15 16 17 18 19 20 21
110(0|1f{0|1(0|1|1({0|0(0]|0|O

1 3 4 5
1 1({1(1

= [~

6
0

2
0

B firstChild(i) = selectg(rankj(i)) + 1

(
firstChild(8) = selectg(ranki(8)) + 1
= selectg(6)+1=14+1=

10 - 13

Succinct Representation of Trees - LOUDS
[Level Order Unary Degree Sequence]

B add extra root with out-degree 1
10 B unary encoding of out-degree terminated by a 0
B gives LOUDS sequence

3 4 5
1({1(1

d 9 1011 12 13 14 15 16 17 18 19 20 21
110(0|1f{0|1(0|1|1({0|0(0]|0|O

1
1

= [~

6
0

2
0

B firstChild(i) = selectg(rankj(i)) + 1

firstChild(8) = selectg(ranki(8)) + 1
= selectg(6)+1=14+1=

B nextSibling(i) =i+ 1

10 - 14

Succinct Representation of Trees - LOUDS
[Level Order Unary Degree Sequence]

B add extra root with out-degree 1
10 B unary encoding of out-degree terminated by a 0

B gives LOUDS sequence

1 2 3 4 5 6 v 8 9 1011 12 13 14 15 16 17 18 19 20 21
110(1)1(1(0(1}1(0{0|1{0|1|0}1(1]0(0]|0|0]|O

B firstChild(i) = selectg(rankj(i)) + 1

firstChild(8) = selectg(ranki(8)) + 1
= selectg(6)+1=14+1=
B nextSibling(i) =i+ 1 ise: ledﬁvkﬂ
Exe i chec
\N\'\—,‘ﬂ \[a\\d\ y

10 - 15

Succinct Representation of Trees - LOUDS
[Level Order Unary Degree Sequence]

B add extra root with out-degree 1
10 B unary encoding of out-degree terminated by a 0
B gives LOUDS sequence

1 2 3 4 5 6 ¢ 8 9 1011 121314151617 18 19 2021
1Jo[1aa]o]x[1Tofo 1 o]z Jo]1 1 o o o o]0
B firstChild(i) = selectg(rankj(i)) + 1 B parent(i) = selecty(rankg(i))

firstChild(8) = selectg(ranki(8)) + 1
= selectg(6)+1=14+1=

B nextSibling(i) — i+ 1 o aand)
nextSiblingli) =i+ Exercise: c:,\h check

10 - 16

Succinct Representation of Trees - LOUDS

[Level Order Unary Degree Sequence]
B add extra root with out-degree 1

10 B unary encoding of out-degree terminated by a 0
B gives LOUDS sequence
1 2 3 4 5 6 ¢ 8 9 1011 121314151617 18 19 2021
1Jof1[a]xfof11]oJo]1 o]z Jo]1]1 o oJo]o]o0
1JoJ1]1]1]o]z]1]o]o]1]o]z]o[1]1]0]0]o] o]0
B firstChild(i) = selectg(rankj(i)) + 1 B parent(i) = selecty(rankg(i))
firstChild(8) = selectg(ranki(8)) +1 parent(8) = selecti(rankg(8))
= selectg(6)+1=14+1=
B nextSibling(i) =i+ 1 o cmldU'D
Exercise: - . Check
\'\',h \,a\\d\y

10 - 17

Succinct Representation of Trees - LOUDS

[Level Order Unary Degree Sequence]
B add extra root with out-degree 1

10 B unary encoding of out-degree terminated by a 0
B gives LOUDS sequence
1 2 3 4 5 6 ¢ 8 9 1011 121314151617 18 19 2021
1Jof1[a]xfof11]oJo]1 o]z Jo]1]1 o oJo]o]o0
110f1|1f1j0(f1}|1(0j0|1{0|21|(0O}J1f(1]|0O(0]0O]|0O]O
B firstChild(i) = selectg(rankj(i)) + 1 B parent(i) = selecty(rankg(i))
firstChild(8) = selectg(ranki(8)) +1 parent(8) = selecti(rankg(8))
= selectg(6)+1=14+1= = selectq(2)
B nextSibling(i) =i+ 1 o cmldU'D
Exercise: - . Check
\'\',h \,a\\d\y

10 - 18

Succinct Representation of Trees - LOUDS

[Level Order Unary Degree Sequence]
B add extra root with out-degree 1

10 B unary encoding of out-degree terminated by a 0
B gives LOUDS sequence
1 2 3 4 5 6 ¢ 8 9 1011 121314151617 18 19 2021
1Jof1[a]xfof11]oJo]1 o]z Jo]1]1 o oJo]o]o0
1Jof1]1]1]o]t1]o]o]1]o]z]o[1]1]0 o]0 o]0
B firstChild(i) = selectg(rankj(i)) + 1 B parent(i) = selecty(rankg(i))
firstChild(8) = selectg(ranki(8)) +1 parent(8) = selecti(rankg(8))
= selectg(6)+1=14+1= = selectq(2) =3
B nextSibling(i) =i+1 . ‘n'lldv‘]3
&) Exercise: c:,t check
\'\',h \,a\\d\y

Discussion

B Succinct data structures are
m space efficient
m support fast operations

11 -

11 -

Discussion

B Succinct data structures are
m space efficient
m support fast operations
but
are mostly static (dynamic at extra cost),
number of operations is limited,
complex — harder to implement,
the o(n) and O(1) term hide constants that might dominate before any asym-
ptotic advantage over the "best” compact data structures becomes apparent.
— primarily a theoretical result (also does not consider hardware architecture)

11 -

Discussion

B Succinct data structures are
m space efficient
m support fast operations
but
are mostly static (dynamic at extra cost),
number of operations is limited,
complex — harder to implement,
the o(n) and O(1) term hide constants that might dominate before any asym-
ptotic advantage over the "best” compact data structures becomes apparent.
— primarily a theoretical result (also does not consider hardware architecture)

B rank and select form the basis for many succinct representations
(e.g., for specific types of trees or strings).

11 -

Discussion

B Succinct data structures are
m space efficient
m support fast operations
but
are mostly static (dynamic at extra cost),
number of operations is limited,
complex — harder to implement,
the o(n) and O(1) term hide constants that might dominate before any asym-
ptotic advantage over the "best” compact data structures becomes apparent.
— primarily a theoretical result (also does not consider hardware architecture)

B rank and select form the basis for many succinct representations
(e.g., for specific types of trees or strings).

B There are implementations of succinct data structures being used in practice for large
data sets in information retrieval, language model representation, bioinformatics, etc.

| iterature

Main reference:
B Lecture 17 of Advanced Data Structures (MIT, Fall’17) by Erik Demaine

B [Jac '89] “Space efficient Static Trees and Graphs”
Recommendations:

B Lecture 18 of Demaine’s course on compact & succinct arrays & trees

12

	Title page
	Data Structures -- Informal Definition
	Succinct Data Structures
	Examples for implicit data structures

	Succinct indexable dictionary
	Idea
	Rank in o(n) bits and O(1) time
	Select in o(n) bits and O(1) time

	Succinct representation of binary trees
	Succinct representation of trees - LOUDS
	Discussion
	Literature

