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Data Structures — Informal Definition

A data structure is a concept to
H store, B What do we represent?

B organize, and B How much space is required?

H manage data. . .
5 = B Dynamic or static?

As such, it is a collection of

B data values,

B their relations, and

B the operations that can be applied to the data.

B Which operations are defined?
B How fast are they?

Remarks.
B We look at data structures as a designer/implementer
(and not necessarily as a user).

B To define a data structure and to implement it are two different tasks.
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Succinct Data Structures

Goal.
B Use space “close” to information-theoretical minimum,

B but still support time-efficient operations.

Let L. be the information-theoretical lower bound
to represent a class of objects.

Then a data structure, which still supports
time-efficient operations, is called

B implicit, if it takes L + O(1) bits of space;
n
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B succinct, if it takes L + o(L) bits of space; (/;19((\

B compact, if it takes O(L) bits of space.
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Examples for Implicit Data Structures

B arrays to represent lists
m but why not linked lists?

B 1-dim arrays to represent multi-dimensional arrays

B sorted arrays to represent sorted lists
m but why not binary search trees?

B arrays to represent complete binary trees and heaps

AN 0

~—~—~
leftChild(i) = 2i

rightChild(i) = 2i+1

parent(i) = L%J

And unbalanced
trees?
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Succinct Indexable Dictionary

Represent a subset S C {1,2,..., n} and support the following operations in O(1) time:
B member(i) returnsif i € S

B rank(i) = number of elements in S that are less or equal to i

B select(j) = j-th element in S

B predecessor(i)

B successor(i)

How many different subsets of {1,2,..., n} are there? 2

How many bits of space do we need to distinguish them?

log 2" = n bits
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Represent S with a bit vector b of length n where
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Succinct Indexable Dictionary

Represent S with a bit vector b of length n where
1 ifies
\O otherwise

bli]| = <

plus o(7)-space data structures to answer in O(1) time

Exercise: Use these methods to

B rank(i) = # 1 f ition 1 ‘
rank(i) = # 1s at or before position = answer predecessor(i) and

B select(j) = position of j-th 1 bit successor(i) in O(1) time.
S = {3, 4 6, 8, 9, 14} where n = 15 Select(S) — 0
p[0Jo[1]1]0]1]0]1]2]0]0]0]0]1]0 rank(9) =5 = rank(12)
rank(15) = 6

member (i) can trivially be answered in O(1) time
(assuming that we can access any entry in constant time)
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3

5

Iog2 n

7-4

log® n = (log n)?

bl 1

1

1

1

1

1. Split into (log? n)-bit chunks

and store cumulative rank:

each needs < logn bits
= O(——logn) = O(

Iogzn

A

7

# chunks rank

n
log n

) C o(n) bits
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Rank In O(n) Bits %Iogn Iogfn log=n = (logn)
3 5 1 3 - N
bl 11 1| 1 1 [1]11 |
1. Split into (log? n)-bit chunks
and store cumulative rank:  each needs < logn bits
= O(Iog - logn1) = O(gg7) € 0(n) bits

2. Split chunks into (3 logn)-bit subchunks

and store cumulative rank within chunk: each needs < Ioglog2 n = 2loglogn bits
= O(+L loglogn) C o(n) bits

A > 4
-~

7 subchunks rel. rank

log n
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bl 11 1| 1 1 [1]11 |
1. Split into (log? n)-bit chunks

and store cumulative rank:  each needs < logn bits
= O(—Z—logn) = O(=%=) C o(n) bits

log n

Iog n
2. Split chunks into (3 logn)-bit subchunks

and store cumulative rank within chunk: each needs < Ioglog2 n = 2loglogn bits
= O(+L loglogn) C o(n) bits

log n

3. Use for bitstrings of length (3 logn):
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Rank 1n 0(7/1) Bits %|Og7fl Iogfn log=n = (logn)
3 5 1 3 —= 7 N
bl 11 1| 1 1 [1]ad |
1. Split Example: n = 64 = % logn = 3
and s < logn bits
O(Iog - logn1) = O(gg7) € 0(n) bits
2. Split ks
and . each needs < Ioglog2 n = 2loglogn bits
= O(Iogn loglogn) C o(n) bits

3. Use 4 for bitstrings of length (3 logn):
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Rank In O(Yl) BItS %logn Iogzn log® 1 = (logn)?

3 5 1 ~= -~ Y

3
bl 11 1| 1 1|_1'11 |

1. Splitf Example: n = 64 = 5 Liogn =3

position —

000
001
010
011
100
101
110
111

3. Use 4 for bitstrings of length (3 logn):

and

s < logn bits
O(——logn) = O(==) C o(n) bits

log n

Iog n
2. Split

and

ks

. each needs < Ioglog n = 2loglogn bits
= O(=% loglogn) C o(n) bits

bitstring
HFPRPRPRPROOOO|IH
NN EREEOO|N
WNONRFRLNRFRRFRO|W

log n
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Rank In O(Yl) BItS %logn Iogzn log® 1 = (logn)?

3 5 1 ~= -~ Y

3
bl 11 1| 1 1 [1]ad |

1. Split Example: n = 64 = % logn = 3
position —

000
001
010
011
100
101
110
111

3. Use 4 for bitstrings of length (% logn): o3 logn _ \/n distinct bitstrings

and

s < logn bits
O(——logn) = O(==) C o(n) bits

log n

Iog n
2. Split

and

ks

. each needs < Ioglog n = 2loglogn bits
= O(=% loglogn) C o(n) bits

bitstring

WNONRFLNRFR RO

NN RO O|ND

HFPRPRPRPROOOO|IH

log n
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' ' D log? n = (log 1)?
Rank 1n O(Yl) Bits %logn loin og~n = (logn)
3 5 ]__3 ~ 7 B
bl 11 1| 1 1 [1]ad |
1. Split Example: n = 64 = % logn = 3
and position —| 1 | 2 | 3 s < logn bits
000 |0 10]O0 i |
o 8(1)% 8 (1) % O(Iog - logn1) = O(gg7) € 0(n) bits
- £ 011 |0 |12 K
2. Split B 100 |1|1|1 S
and 0 %% % % % - each needs < loglog? n = 2loglog n bits
111|123 = O(jog7 loglogn) C o(n) bits
3. Use 4 for bitstrings of length (% logn): 25 logn _ /1 distinct bitstrings

= O(y/nlognloglogn) C o(n) bits
—— —— - ™

# rows # columns rel. rank




1.

7-14

. . 2 . 2
Rank 1n O(n) Bits %|Og7fl Iogfn log=n = (logn)
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Split into (log? n)-bit chunks
and store cumulative rank:  each needs < logn bits
= O(i—7—logn) = O(1g;7) € o(n) bits

Iog n

. Split chunks into (3 logn)-bit subchunks

and store cumulative rank within chunk: each needs < Ioglog2 n = 2loglogn bits
= O(+L loglogn) C o(n) bits

log n

. Use for bitstrings of length (% logn): o3 logn _ \/n distinct bitstrings

= O(y/nlognloglogn) C o(n) bits

. rank(i) = rank of chunk

+ relative rank of subchunk within chunk
+ relative rank of element 7 within subchunk
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) Time s

: : 1 2 _
Rank in o(n) Bitst+ O(1) [ % ogn s (osn
3 5 ]__3 ~ 7 N
bl 11 1] 1 1 [1]ad |
Split into (log? n)-bit chunks
and store cumulative rank:  each needs < logn bits
= O(|o§2n logn1) = O(gg7) € 0(n) bits

. Split chunks into (3 logn)-bit subchunks

and store cumulative rank within chunk: each needs < Ioglog2 n = 2loglogn bits
= O(+L loglogn) C o(n) bits

log n

. Use for bitstrings of length (% logn): o3 logn _ \/n distinct bitstrings

= O(y/nlognloglogn) C o(n) bits

. rank(i) = rank of chunk

+ relative rank of subchunk within chunk = O(1) time
+ relative rank of element i within subchunk (assume read/write numbers in O(1) time)
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#£ groups index




Select in o(n) Bits g nlog log n 1s

=\
7 Y

b
1. Store indices of every (lognloglogn)-th 1 bit in array
= O(Iognlci)flglogn Iogn) — O(Iogrogn) C O(Tl) bits

2. Within group of (lognloglogn) 1 bits of length 7 bits:
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=\
7 Y

b |

1. Store indices of every (lognloglogn)-th 1 bit in array
= O( logn) = O(

C o(n) bits

n n )
log nlog logn loglogn/ —

2. Within group of (lognloglogn) 1 bits of length 7 bits:
if r > (lognloglogn)?
then store indices of 1 bits in group in array
= O((Iognlorélogn)Z (lognloglogn)logn) € O(1gz15g7) bits

— S — - >4

— —— Ve

# groups # 1 bits index
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1. Store indices of every (lognloglogn)-th 1 bit in array
= O(Iognlci)/lglogn Iogn) — O(Iogrogn) C O(Tl) bits

2. Within group of (lognloglogn) 1 bits of length 7 bits:

if r > (lognloglogn)?
then store indices of 1 bits in group in array

= O( (Iognloz; oz )2 (lognloglogn)logn) C O

- :
log log n ) bits

else problem is reduced to bitstrings of length » < (log 1 log log 11)?
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1. Store indices of every (lognloglogn)-th 1 bit in array
= O(Iognlci)/lglogn Iogn) — O(Iogrogn) C O(Tl) bits

2. Within group of (lognloglogn) 1 bits of length 7 bits:

if r > (lognloglogn)?
then store indices of 1 bits in group in array

= O((Iognlorélogn)Z (lognloglogn)logn) € O(1gz15g7) bits

else problem is reduced to bitstrings of length » < (log 1 log log 11)?

3. Repeat 1. and 2. on reduced bitstrings
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-\

~
] ] ] ] ] ] ] ]

bl | | | [ [ ] | |

3. Repeat 1. and 2. on reduced bitstrings (r < (logn loglogn)?):
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3. Repeat 1. and 2. on reduced bitstrings (r < (logn loglogn)?):

1' Store relative indices of every (loglog#)2-th 1 bit in array
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-\

p[T T 1 I I

3. Repeat 1. and 2. on reduced bitstrings (r < (logn loglogn)?):
1' Store relative indices of every (loglog#)2-th 1 bit in array

= O((Ioglzgn)2 loglogn) = O(15z167) bits

- - N -
N N

# subgroups  rel. index
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3. Repeat 1. and 2. on reduced bitstrings (r < (logn loglogn)?):
1' Store relative indices of every (loglog#)2-th 1 bit in array

= O((Ioglzgn)2 loglogn) = O(15z167) bits

2" Within group of (loglog n)2 1 bits of length 7’ bits:

- 11
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3. Repeat 1. and 2. on reduced bitstrings (r < (logn loglogn)?):

1' Store relative indices of every (loglog#)2-th 1 bit in array

= O((Ioglzgn)2 loglogn) = O(15z167) bits

2" Within group of (loglog n)2 1 bits of length 7’ bits:

if ' > (loglogn)*
then store relative indices of 1 bits in subgroup in array
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b ] HE L1

3. Repeat 1. and 2. on reduced bitstrings (r < (logn loglogn)?):

1' Store relative indices of every (loglog#)2-th 1 bit in array

= O((Iog I’;gn)Q loglogn) = O(

2" Within group of (loglog n)2 1 bits of length 7’ bits:
if ' > (loglogn)*
then store relative indices of 1 bits in subgroup in array

= O( Tog IZgn)“ (loglogn)? loglogn) = O(roglogn) bits

- N 2 7
T " Ve

#£ subgroups # 1 bits rel. index

- :
log log n ) bits




Select in o(n) Bits g nlog log n 1s

b ] HE L1

3. Repeat 1. and 2. on reduced bitstrings (r < (logn loglogn)?):

1' Store relative indices of every (loglog#)2-th 1 bit in array

= O((IogIZgn)Q loglogn) = O(Iogrogn) bits

2" Within group of (loglog n)2 1 bits of length 7’ bits:
if ' > (loglogn)*
then store relative indices of 1 bits in subgroup in array
= O( Tog IZgn)“ (loglogn)? loglogn) = O(roglogn) bits

else problem is reduced to bitstrings of length




Select in o(n) Bits g nlog log n 1s

b ] HE L1

3. Repeat 1. and 2. on reduced bitstrings (r < (logn loglogn)?):

1' Store relative indices of every (loglog#)2-th 1 bit in array

= O((IogIZgn)Q loglogn) = O(15z167) bits

2" Within group of (loglog n)2 1 bits of length 7’ bits:
if ' > (loglogn)*
then store relative indices of 1 bits in subgroup in array
2 .
= O((Iogl’;gn)4(loglog n)<loglogn) = O(gziegr) bits

else problem is reduced to bitstrings of length

4. Use for bitstrings of length /' < (loglog n)%:



Select in o(n) Bits

- (log log n)?
. L 11
3. Repea Example: n = 10 = (loglogn)< ~ 3 1 log log 1)?):
=1’ < (loglogn)*~9 |
1" Store 1 bit in array
select = | 1 | 2 | 3
00000111 | 6 | 7 | 8 oz loglogn) = O(
00001011 | 5 | 7 | 8
2" Witk & 00001101 | 5 | 6 | 8 r’ bits:
if v/ E
then s 11001000 | 1 |2 |5 1p In array
11010000 | 1 |2 | 4 5
11100000 |1 | 2 | 3 n)<loglogn) = O(
else proble7/is reduced to bitstrings of length
4. Use for bitstrings of length /' < (loglog n)%:

log :/log n )

n
log log n

bits

) bits



Select in o(n) Bits

la
3. Repea Example: n = 10 = (loglogn)< ~ 3 1 log log 1)?):
=1’ < (loglogn)*~9 |
1" Store 1 bit in array
select = | 1 | 2 | 3
00000111 | 6 | 7 | 8 oz loglogn) = O(
00001011 {5 | 7 | 8
2" With %0 00001101 | 5 | 6 | 8 r’ bits:
if v/ E f
then s 11001000 | 1 |2 |5 1p In array
11010000 |1 [ 2 | 4 5
11100000 |1 | 2 | 3 n)<loglogn) = O(
else proble7/is reduced to bitstrings of length
4. Use for bitstrings of length /' < (loglog n)%:

2(Iog|ogn)4 c 0(2% Iogn) - O(\/ﬁ);

N

> 4

-~

# rows

# columns

(loglogn)? € O(logn)

log :/log n )

n
log log n

bits

) bits



Select in o(n) Bits og nlog log n 1s

b- L1

: . P ~ | | I |
3. Repea Example: n = 10 = (Ioglogn)4 3 1 log log 1)?):
= 1’ < (loglogn)* ~ 9 o
1" Store 1 bit in array
select =+ | 1 | 2 | 3 . _
00000111 [ 6 | 7 | 8 Sz loglog 1) = O(jgiogs ) bits
00001011 |5 | 7 | 8
2" Witk 80 00001101 |5 | 6 | 8 r’ bits:
if v/ 7 |
then s 11001000 | 1 |2 |5 1p In array
11010000 |1 [ 2 | 4 5 ; _
11100000 |1 | 2 | 3 n)<loglogn) = O(gziegr) bits

else proble7/is reduced to bitstrings of length

4. Use for bitstrings of length /' < (loglog n)%:
ollegloen) = O(251een) — O(/n): (loglogn)? € O(logn) = O(y/nlognloglogn) = o(n) bits
~— —— ————

A\ - > 4 A - —

-~

# rows # columns # rows # columns rel. index



b ] HE L1

4. select(j) = select J-th group where | = |j/(lognloglogn)|

+ directly select (j — J)-th 1 bit
or select J'-th subgroup where |’ = | (j — J)/(loglogn)?

+ directly select (j— ] —J')-th 1 bit
or select it In the lookup table

- 19



SeleCt in O(Yl) BItS’\’ O(]—) T\n;\ojnloglogn 1s

b ] HE L1

4. select(j) = select J-th group where | = |j/(lognloglogn)|

+ directly select (j — J)-th 1 bit
or select J'-th subgroup where |’ = | (j — J)/(loglogn)?

+ directly select (j— ] —J')-th 1 bit
or select it In the lookup table

- 20



Succinct Representation of Binary Trees

Number of binary trees on n vertices:



Succinct Representation of Binary Trees

Number of binary trees on n vertices:

n = 0: “empty tree”

1 possibility




Succinct Representation of Binary Trees

Number of binary trees on n vertices:

n = 0: “empty tree”

1 possibility

n=1: ®

1 possibility




Succinct Representation of Binary Trees

Number of binary trees on n vertices:

n = 0: “empty tree” n=2: ® start with root
1 possibility
n=1: ®

1 possibility




Succinct Representation of Binary Trees

Number of binary trees on n vertices:

n =0: “empty tree” n—=2: start with root
oy e )
1 pOSSIbIlIty appendw’
n=1 @ append 1 child right

1 possibility




Succinct Representation of Binary Trees

Number of binary trees on n vertices:

n = 0: “empty treel n—=2: \
1 possibility
append no child right
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1 possibility =

append 1 child left




Succinct Representation of Binary Trees

Number of binary trees on n vertices:

n = 0: “empty tree” n=2: \
1 possibility

n=1: o /
1 possibility

2 possibilities




Succinct Representation of Binary Trees

Number of binary trees on n vertices:

n = 0: “empty tree” n=2: \ n=3: ® start with root
1 possibility

n=1: ® /
1 possibility

2 possibilities




Succinct Representation of Binary Trees

Number of binary trees on n vertices:

append no child left

n = 0: “empty tree”
1 possibility
n=1: ®
1 possibility

n—=2: n—

& start with root

/ append 2 children right

2 possibilities




Succinct Representation of Binary Trees

Number of binary trees on n vertices:
append no child left

/

n = 0: “empty tree” n=2: \
1 possibility

= L start with root
1 possibility append 2 children right

2 possibilities
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Succinct Representation of Binary Trees

Number of binary trees on n vertices:

n = 0: “empty tree”

1 possibility

n = 1.

1 possibility

n—=2: \ n = 3:

2 possibilities

/ append 1 chdeft}\/‘

A& start with root

append 1 child right
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Succinct Representation of Binary Trees

Number of binary trees on n vertices:

append no child right _
start with root

n = 0: “empty tree”
1 possibility
n=1: ®
1 possibility

2 possibilities

> append 2 children left

- 12



Succinct Representation of Binary Trees

Number of binary trees on n vertices: append no child right

n = 0: “empty tree” n=2: \ n=3: ./\
1 possibility
n=1: o ﬁ Nrt with root

1 possibility append 2 children left 7

2 possibilities




Succinct Representation of Binary Trees

Number of binary trees on n vertices:

n = 0: “empty tree”

1 possibility

n=1: ®

1 possibility

n=2: \
/

2 possibilities

4

N

5 possibilities

<
/

_14



Succinct Representation of Binary Trees

Number of binary trees on n vertices: C,, = ) C;-C,,_1_; =

/ C, is the n-th Catalan number and Cy =1
n

—1 (2n)!

(1]
20 (n+1)!n!

n = 0: “empty tree”

1 possibility

n=1: ®

1 possibility

n=2: \
/

2 possibilities

TN A <

- 15



Succinct Representation of Binary Trees

n—1
Number of binary trees on n vertices: C,, = ) C;-C,,_1_; =
1=0

log C,, = 2n 4+ o(n) (by Stirling’s approximation)

- 16



Succinct Representation of Binary Trees

n—1

Number of binary trees on n vertices: C,, = ) C;-C,,_1_; =
1=0

log C,, = 2n 4+ o(n) (by Stirling’s approximation)

= We can use 2n + o(n) bits to represent binary trees.
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Succinct Representation of Binary Trees

n—1

Number of binary trees on n vertices: C,, = ) C;-C,,_1_; =
1=0

log C,, = 2n + o(n) (by Stirling's approximation)
= We can use 2n + o(n) bits to represent binary trees.

Difficulty is when a binary tree is not full.

- 18



Succinct Representation of Binary Trees

ldea.
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Succinct Representation of Binary Trees

Idea.
B Add external nodes to have
out-degree 2 or 0 at every node
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Succinct Representation of Binary Trees

b

B Add external nodes to have
out-degree 2 or 0 at every node

ldea.




Succinct Representation of Binary Trees

1 2 3 4 5 6 ¢ 8 9 10 11 12 13 14 15 16 17 138 19

Idea. b|1(1]1(1]1/0]1]0(0|1(0[1|1]0/0]0]0|0]|0

B Add external nodes to have
out-degree 2 or 0 at every node

B Read internal nodes as 1

B Read external nodes as O



Succinct Representation of Binary Trees

_____________________________________________________________________________

_____________________________________________________________________________

___________________________________________________________________________

51
I4 5
8 9 510 11

______________________________________________________________________________

_________________________________________________________________________________

1 2 3 4 5 6 ¢ 8 9 10 11 12

13 14 15 16 17 18 19

idea.  b[1]1]1]1]170]1]0]0

1

0

1

110

0

0

0

0

0

B Add external nodes to have
out-degree 2 or 0 at every node

B Read internal nodes as 1

B Read external nodes as O

Size.
B 21+ 1 bits for b

B o(n) for rank
and select
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Succinct Representation of Binary Trees

‘1
o 3~
VN 5NG 6 S TN

______________________________________________________________________________

_________________________________________________________________________________

1 2 3 4 5 6 ¢ 8 9 10 11 12 13 14 15 16 17 138 19

Idea. b|1(1]1(1]1/0]1]0(0|1(0[1|1]0/0]0]0|0]|0

B Add external nodes to have Operations.
out-degree 2 or 0 at every node M parent(i) = 7
B Read internal nodes as 1 B leftChild(i) = 7

B Read external nodes as 0 B rightChild(i) = 7

Size.
B 21+ 1 bits for b

B o(n) for rank
and select
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Succinct Representation of Binary Trees

‘1
o 3~
VN 5NG 6 S TN

______________________________________________________________________________

_________________________________________________________________________________

1 2 3 4 5 6 ¢ 8 9 10 11 12 13 14 15 16 17 138 19

Idea. b|1(1]1(1]1/0]1]0(0|1(0[1|1]0/0]0]0|0]|0

B Add external nodes to have Operations.
out-degree 2 or 0 at every node M parent(i) = 7

B Read internal nodes as 1 B leftChild(i) = 7

B Read external nodes as 0 B rightChild(i) = 7

B Use rank and select

Size.
B 21+ 1 bits for b

B o(n) for rank
and select

- 25



Succinct Representation of Binary Trees .
e SiZE,

B 21+ 1 bits for b

_____________________________________________________________________________

> 3

| B o(n) for rank
e Ny o 7\ rax(j—6 and select
s /0 o\ w0 / N 12 /1 N
_____________________ af NG5 e T\ o

_________________________________________________________________________________

1 2 3 4 5 6 ¢ 8 9 10 11 12 13 14 15 16 17 138 19

Idea. b|1(1]1(1]1/0]1]0(0|1(0[1|1]0/0]0]0|0]|0

B Add external nodes to have Operations.
out-degree 2 or 0 at every node M parent(i) = 7

B Read internal nodes as 1 B leftChild(i) = 7

B Read external nodes as 0 B rightChild(i) = 7

B Use rank and select



Succinct Representation of Binary Trees .
e SiZE,

B 21+ 1 bits for b

_____________________________________________________________________________

5 3
| B o(n) for rank
VN 5 _________________ 6 7 rank(7) _¢ and select
s /1 9 L10 ______ 15 U 12 /J N
Cioy 714/ T\ 6/ "\i718/ " \io

_________________________________________________________________________________

1 2 3 4 5 6 ¢ 8 9 10 11 12 13 14 15 16 17 138 19

Idea. b|1(1]1(1]1/0]1]0(0|1(0[1|1]0/0]0]0|0]|0

B Add external nodes to have Operations.
out-degree 2 or 0 at every node M parent(i) = 7

B Read internal nodes as 1 B leftChild(i) = 7
B Read external nodes as 0 B rightChild(i) = 7

B Use rank and select



Succinct Representation of Binary Trees .
e SiZE,

B 21+ 1 bits for b

_____________________________________________________________________________

5 3
| B o(n) for rank
Eri _________________ 5 _________________ 6 7 rank(7) _¢ and select
s /J 9 ________ w0 J/ 15 U 12 /J N
Cioy 714/ T\ 16/ \i7i18/ "\io

_________________________________________________________________________________

1 2 3 4 5 6 ¢ 8 9 10 11 12 13 14 15 16 17 138 19

Idea. b|1(1]1(1]1/0]1]0(0|1(0[1|1]0/0]0]0|0]|0

B Add external nodes to have Operations.
out-degree 2 or 0 at every node M parent(i) = 7
B Read internal nodes as 1 B leftChild(i) = 2 rank(i)
B Read external nodes as 0 B rightChild(i) = 2 rank(i) +1

B Use rank and select
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Succinct Representation of Binary Trees .
e SiZE,

B 21+ 1 bits for b

_____________________________________________________________________________

5 3
| B o(n) for rank
Eri _________________ 5 _________________ 6 7 rank(7) _¢ and select
s /J 9 ________ w0 J/ 15 U 12 /J N
Cioy 714/ T\ 16/ \i7i18/ "\io

_________________________________________________________________________________

1 2 3 4 5 6 ¢ 8 9 10 11 12 13 14 15 16 17 138 19

Idea. b|1(1]1(1]1/0]1]0(0|1(0[1|1]0/0]0]0|0]|0

B Add external nodes to have Operations. |
out-degree 2 or 0 at every node M parent(i) = select(|5])

B Read internal nodes as 1 B leftChild(i) = 2 rank(i)

B Read external nodes as 0 B rightChild(i) = 2 rank(i) +1

B Use rank and select
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Succinct Representation of Binary Trees .
e SiZE,

B 21+ 1 bits for b

_____________________________________________________________________________

: > B o(n) for rank
e 5Ny 6 7N\ remx(rj—6 and select
s / o\ w0 / o\ 12 /1 13"""':
rank(lO)z? /N5 16/ \17:118/ 1 \19
12 3 a5 6 7 8 9 10 11 12 13 1a 15 16 17 18 10
‘dea. b[1]1]1]1]1]0]1[0]0]1]0 1 1]0J0o]0]0]0 &
. O~ ¢.
B Add external nodes to have Operations. | ?@@(cﬁe
out-degree 2 or 0 at every node M parent(i) = select(|5])
B Read internal nodes as 1 B leftChild(i) = 2 rank(i)
B Read external nodes as 0 B rightChild(i) = 2 rank(i) +1

B Use rank and select
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Succinct Representation of Binary Trees .
e SiZE,

B 21+ 1 bits for b

B o(n) for rank
and select

1 2 3 4 5 6 ¢ 8 9 10 11 12 13 14 15 16 17 138 19

Id b|1|1|1]1]1]0]1]0]0|1]|0f1]1]0]|0]|0|0]0]0 ¢ \S
ea. ?(Oo o
B Add nodes to have Operations. | eD@/(c,\":
out-degree 2 or 0 at every node M parent(i) = select(|5])
B Read internal nodes as 1 B leftChild(i) = 2 rank(i)
B Read nodes as 0 B rightChild(i) = 2 rank(i) +1

B Use rank and select B rank(i) is index for array storing actual values
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Succinct Representation of Trees - LOUDS
[Level Order Unary Degree Sequence]
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Succinct Representation of Trees - LOUDS

[Level Order Unary Degree Sequence]
B add extra root with out-degree 1

10 B unary encoding of out-degree terminated by a 0
B gives LOUDS sequence

9 1011 12 13 14 15 16 17 18 19 20 21
0/{0(1|0|1({0|1f{1]0(0|0]|0]O

1 3 4 5 [ 8
1 1({1(1 1(1

6
0

2
0
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Succinct Representation of Trees - LOUDS

[Level Order Unary Degree Sequence]
B add extra root with out-degree 1

10 B unary encoding of out-degree terminated by a 0
B gives LOUDS sequence

9 1011 12 13 14 15 16 17 18 19 20 21
0/{0(1|0|1({0|1f{1]0(0|0]|0]O

1 3 4 5 [ 8
1 1({1(1 1(1

6
0

2
0

Size.
B each vertex (except root) is represented twice,
namely with a 1 and with a 0

B o(n) bits for rank and select
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Succinct Representation of Trees - LOUDS

[Level Order Unary Degree Sequence]
B add extra root with out-degree 1

10 B unary encoding of out-degree terminated by a 0
B gives LOUDS sequence

9 1011 12 13 14 15 16 17 18 19 20 21
0/{0(1|0|1({0|1f{1]0(0|0]|0]O

1 3 4 5 [ 8
1 1({1(1 1(1

6
0

2
0

Size.
B each vertex (except root) is represented twice,

namely with a 1 and with a 0 = 211 + o(n) bits

B o(n) bits for rank and select
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Succinct Representation of Trees - LOUDS
[Level Order Unary Degree Sequence]

B add extra root with out-degree 1
10 B unary encoding of out-degree terminated by a 0

B gives LOUDS sequence

9 1011 12 13 14 15 16 17 18 19 20 21
0/{0(1|0|1({0|1f{1]0(0|0]|0]O

3 4 5 [ 8
1({1(1 1(1

1 6
1 0

2
0

Operations.

B Let 7 be index of 1 in LOUDS sequence.
This 1 represents a node (e.g. first 1
represents the root).

B rank(i) is index for array storing
actual values of the nodes.
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Succinct Representation of Trees - LOUDS

[Level Order Unary Degree Sequence]
B add extra root with out-degree 1

10 B unary encoding of out-degree terminated by a 0
B gives LOUDS sequence

9 1011 12 13 14 15 16 17 18 19 20 21
0/{0(1|0|1({0|1f{1]0(0|0]|0]O

1 3 4 5 [ 8
1 1({1(1 1(1

6
0

2
0

B firstChild(i) = selectg(rankj(i)) + 1



Succinct Representation of Trees - LOUDS

10 - 10

[Level Order Unary Degree Sequence]
B add extra root with out-degree 1

8

9 1011 12 13 14 15 16 17 18 19 20 21

B gives LOUDS sequence

10 B unary encoding of out-degree terminated by a 0

1 3 4 5
1 1({1(1

6
0

2
0

= |

1

0

0

1

0

1

0

1

1

0

0

0

0

0

B firstChild(i) = selectg(rankj(i)) + 1
firstChild(8) = selectg(ranki(8)) + 1
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Succinct Representation of Trees - LOUDS

[Level Order Unary Degree Sequence]
B add extra root with out-degree 1

10 B unary encoding of out-degree terminated by a 0
B gives LOUDS sequence

d 9 1011 12 13 14 15 16 17 18 19 20 21
110(0|1({0}|1(0|1|1({0|0(0]|0O|O

1 3 4 5
1 1({1(1

= [~

6
0

2
0

B firstChild(i) = selectg(rankj(i)) + 1

(
firstChild(8) = selectg(ranki(8)) + 1
= selectg(6) + 1
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Succinct Representation of Trees - LOUDS

[Level Order Unary Degree Sequence]
B add extra root with out-degree 1

10 B unary encoding of out-degree terminated by a 0
B gives LOUDS sequence

d 9 1011 12 13 14 15 16 17 18 19 20 21
110(0|1f{0|1(0|1|1({0|0(0]|0|O

1 3 4 5
1 1({1(1

= [~

6
0

2
0

B firstChild(i) = selectg(rankj(i)) + 1

(
firstChild(8) = selectg(ranki(8)) + 1
= selectg(6)+1=14+1=
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Succinct Representation of Trees - LOUDS
[Level Order Unary Degree Sequence]

B add extra root with out-degree 1
10 B unary encoding of out-degree terminated by a 0
B gives LOUDS sequence

3 4 5
1({1(1

d 9 1011 12 13 14 15 16 17 18 19 20 21
110(0|1f{0|1(0|1|1({0|0(0]|0|O

1
1

= [~

6
0

2
0

B firstChild(i) = selectg(rankj(i)) + 1

firstChild(8) = selectg(ranki(8)) + 1
= selectg(6)+1=14+1=

B nextSibling(i) =i+ 1
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Succinct Representation of Trees - LOUDS
[Level Order Unary Degree Sequence]

B add extra root with out-degree 1
10 B unary encoding of out-degree terminated by a 0

B gives LOUDS sequence

1 2 3 4 5 6 v 8 9 1011 12 13 14 15 16 17 18 19 20 21
110(1)1(1(0(1}1(0{0|1{0|1|0}1(1]0(0]|0|0]|O

B firstChild(i) = selectg(rankj(i)) + 1

firstChild(8) = selectg(ranki(8)) + 1
= selectg(6)+1=14+1=
B nextSibling(i) =i+ 1 ise: ledﬁvkﬂ
Exe i chec
\N\'\—,‘ﬂ \[a\\d\ y
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Succinct Representation of Trees - LOUDS
[Level Order Unary Degree Sequence]

B add extra root with out-degree 1
10 B unary encoding of out-degree terminated by a 0
B gives LOUDS sequence

1 2 3 4 5 6 ¢ 8 9 1011 121314151617 18 19 2021
1Jo[1aa]o]x[1Tofo 1 o]z Jo]1 1 o o o o]0
B firstChild(i) = selectg(rankj(i)) + 1 B parent(i) = selecty(rankg(i))

firstChild(8) = selectg(ranki(8)) + 1
= selectg(6)+1=14+1=

B nextSibling(i) — i+ 1 o aand)
nextSiblingli) =i+ Exercise: c:,\h check
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Succinct Representation of Trees - LOUDS

[Level Order Unary Degree Sequence]
B add extra root with out-degree 1

10 B unary encoding of out-degree terminated by a 0
B gives LOUDS sequence
1 2 3 4 5 6 ¢ 8 9 1011 121314151617 18 19 2021
1Jof1[a]xfof11]oJo]1 o]z Jo]1]1 o oJo]o]o0
1JoJ1]1]1]o]z]1]o]o]1]o]z]o[1]1]0]0]o] o]0
B firstChild(i) = selectg(rankj(i)) + 1 B parent(i) = selecty(rankg(i))
firstChild(8) = selectg(ranki(8)) +1 parent(8) = selecti(rankg(8))
= selectg(6)+1=14+1=
B nextSibling(i) =i+ 1 o cmldU'D
Exercise: - . Check
\'\',h \,a\\d\y
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Succinct Representation of Trees - LOUDS

[Level Order Unary Degree Sequence]
B add extra root with out-degree 1

10 B unary encoding of out-degree terminated by a 0
B gives LOUDS sequence
1 2 3 4 5 6 ¢ 8 9 1011 121314151617 18 19 2021
1Jof1[a]xfof11]oJo]1 o]z Jo]1]1 o oJo]o]o0
110f1|1f1j0(f1}|1(0j0|1{0|21|(0O}J1f(1]|0O(0]0O]|0O]O
B firstChild(i) = selectg(rankj(i)) + 1 B parent(i) = selecty(rankg(i))
firstChild(8) = selectg(ranki(8)) +1 parent(8) = selecti(rankg(8))
= selectg(6)+1=14+1= = selectq(2)
B nextSibling(i) =i+ 1 o cmldU'D
Exercise: - . Check
\'\',h \,a\\d\y
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Succinct Representation of Trees - LOUDS

[Level Order Unary Degree Sequence]
B add extra root with out-degree 1

10 B unary encoding of out-degree terminated by a 0
B gives LOUDS sequence
1 2 3 4 5 6 ¢ 8 9 1011 121314151617 18 19 2021
1Jof1[a]xfof11]oJo]1 o]z Jo]1]1 o oJo]o]o0
1Jof1]1]1]o]t1]o]o]1]o]z]o[1]1]0 o]0 o]0
B firstChild(i) = selectg(rankj(i)) + 1 B parent(i) = selecty(rankg(i))
firstChild(8) = selectg(ranki(8)) +1 parent(8) = selecti(rankg(8))
= selectg(6)+1=14+1= = selectq(2) =3
B nextSibling(i) =i+1 . ‘n'lldv‘]3
&) Exercise: c:,t check
\'\',h \,a\\d\y



Discussion

B Succinct data structures are
m space efficient
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Discussion

B Succinct data structures are
m space efficient
m support fast operations
but
are mostly static (dynamic at extra cost),
number of operations is limited,
complex — harder to implement,
the o(n) and O(1) term hide constants that might dominate before any asym-
ptotic advantage over the "best” compact data structures becomes apparent.
— primarily a theoretical result (also does not consider hardware architecture)
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Discussion

B Succinct data structures are
m space efficient
m support fast operations
but
are mostly static (dynamic at extra cost),
number of operations is limited,
complex — harder to implement,
the o(n) and O(1) term hide constants that might dominate before any asym-
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ptotic advantage over the "best” compact data structures becomes apparent.
— primarily a theoretical result (also does not consider hardware architecture)

B rank and select form the basis for many succinct representations
(e.g., for specific types of trees or strings).

B There are implementations of succinct data structures being used in practice for large
data sets in information retrieval, language model representation, bioinformatics, etc.



| iterature

Main reference:
B Lecture 17 of Advanced Data Structures (MIT, Fall’17) by Erik Demaine

B [Jac '89] “Space efficient Static Trees and Graphs”
Recommendations:

B Lecture 18 of Demaine’s course on compact & succinct arrays & trees
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