

Advanced Algorithms

Succinct Data Structures

Indexable Dictionaries and Trees

Johannes Zink · WS23/24

A data structure is a concept to

- store,
- organize, and
- **manage** data.

A data structure is a concept to

- **store**,
- organize, and
- manage data.

As such, it is a collection of

- data values,
- their relations, and
- the operations that can be applied to the data.

A data structure is a concept to

- **store**,
- organize, and
- manage data.

As such, it is a collection of

- data values,
- their relations, and
- the operations that can be applied to the data.

Remarks.

- We look at data structures as a designer/implementer (and not necessarily as a user).
- To define a data structure and to implement it are two different tasks.

A data structure is a concept to

- store,
- organize, and
- manage data.

As such, it is a collection of

- data values,
- their relations, and
- the operations that can be applied to the data.

- What do we represent?
- How much space is required?
- Dynamic or static?
- Which operations are defined?
- How fast are they?

Remarks.

- We look at data structures as a designer/implementer (and not necessarily as a user).
- To define a data structure and to implement it are two different tasks.

Goal.

- Use space "close" to information-theoretical minimum,
- but still support time-efficient operations.

Goal.

- Use space "close" to information-theoretical minimum,
- but still support time-efficient operations.

Let *L* be the information-theoretical lower bound to represent a class of objects.

Then a data structure, which still supports time-efficient operations, is called

Implicit, if it takes L + O(1) bits of space;

Goal.

- Use space "close" to information-theoretical minimum,
- but still support time-efficient operations.

Let L be the information-theoretical lower bound to represent a class of objects.

Then a data structure, which still supports time-efficient operations, is called

- implicit, if it takes L + O(1) bits of space;
- **succinct**, if it takes L + o(L) bits of space;

Goal.

- Use space "close" to information-theoretical minimum,
- but still support time-efficient operations.

Let L be the information-theoretical lower bound to represent a class of objects.

Then a data structure, which still supports time-efficient operations, is called

- implicit, if it takes L + O(1) bits of space;
- **succinct**, if it takes L + o(L) bits of space;
- **compact**, if it takes O(L) bits of space.

Goal.

- Use space "close" to information-theoretical minimum,
- but still support time-efficient operations.

Let L be the information-theoretical lower bound to represent a class of objects.

Then a data structure, which still supports time-efficient operations, is called

- implicit, if it takes L + O(1) bits of space;
- **succinct**, if it takes L + o(L) bits of space;
- **compact**, if it takes O(L) bits of space.

Examples!

- arrays to represent lists
 - but why not linked lists?

- arrays to represent lists
 - but why not linked lists?
- 1-dim arrays to represent multi-dimensional arrays

- arrays to represent lists
 - but why not linked lists?
- 1-dim arrays to represent multi-dimensional arrays
- sorted arrays to represent sorted lists
 - but why not binary search trees?

- arrays to represent lists
 - but why not linked lists?
- 1-dim arrays to represent multi-dimensional arrays
- sorted arrays to represent sorted lists
 - but why not binary search trees?
- arrays to represent complete binary trees and heaps

$$ext{leftChild}(i) = ext{parent}(i) = ext{rightChild}(i)$$

- arrays to represent lists
 - but why not linked lists?
- 1-dim arrays to represent multi-dimensional arrays
- sorted arrays to represent sorted lists
 - but why not binary search trees?
- arrays to represent complete binary trees and heaps

$${\tt leftChild}(i) = 2i \\ {\tt rightChild}(i) = {\tt parent}(i) = {\tt rightChild}(i)$$

- arrays to represent lists
 - but why not linked lists?
- 1-dim arrays to represent multi-dimensional arrays
- sorted arrays to represent sorted lists
 - but why not binary search trees?
- arrays to represent complete binary trees and heaps

$$\begin{array}{l} \texttt{leftChild}(i) = 2i \\ \texttt{rightChild}(i) = 2i + 1 \end{array} \quad \texttt{parent}(i) = \\ \end{array}$$

- arrays to represent lists
 - but why not linked lists?
- 1-dim arrays to represent multi-dimensional arrays
- sorted arrays to represent sorted lists
 - but why not binary search trees?
- arrays to represent complete binary trees and heaps

$$\begin{array}{l} \texttt{leftChild}(i) = 2i \\ \texttt{rightChild}(i) = 2i + 1 \end{array} \quad \texttt{parent}(i) = \lfloor \frac{i}{2} \rfloor \end{array}$$

- arrays to represent lists
 - but why not linked lists?
- 1-dim arrays to represent multi-dimensional arrays
- sorted arrays to represent sorted lists
 - but why not binary search trees?
- arrays to represent complete binary trees and heaps

$$leftChild(i) = 2i$$
 $rightChild(i) = 2i + 1$

$$parent(i) = \lfloor \frac{i}{2} \rfloor$$

And unbalanced trees?

Represent a subset $S \subseteq \{1, 2, ..., n\}$ and support the following operations in O(1) time:

- lacksquare member(i) returns if $i \in S$
- ightharpoonup rank(i) = number of elements in S that are less or equal to i
- \blacksquare select(j) = j-th element in S
- predecessor(i)
- \blacksquare successor(i)

Represent a subset $S \subseteq \{1, 2, ..., n\}$ and support the following operations in O(1) time:

- lacksquare member(i) returns if $i \in S$
- ightharpoonup rank(i) = number of elements in S that are less or equal to i
- \blacksquare select(j) = j-th element in S
- predecessor(i)
- \blacksquare successor(i)

How many different subsets of $\{1, 2, ..., n\}$ are there?

How many bits of space do we need to distinguish them?

Represent a subset $S \subseteq \{1, 2, ..., n\}$ and support the following operations in O(1) time:

- lacksquare member(i) returns if $i \in S$
- ightharpoonup rank(i) = number of elements in S that are less or equal to i
- \blacksquare select(j) = j-th element in S
- predecessor(i)
- \blacksquare successor(i)

How many different subsets of $\{1, 2, ..., n\}$ are there? 2^n

How many bits of space do we need to distinguish them?

Represent a subset $S \subseteq \{1, 2, ..., n\}$ and support the following operations in O(1) time:

- lacksquare member(i) returns if $i \in S$
- ightharpoonup rank(i) = number of elements in S that are less or equal to i
- \blacksquare select(j) = j-th element in S
- predecessor(i)
- \blacksquare successor(i)

How many different subsets of $\{1, 2, ..., n\}$ are there? 2^n

How many bits of space do we need to distinguish them?

$$\log 2^n = n$$
 bits

Represent S with a bit vector b of length n where

$$b[i] = \begin{cases} 1 & \text{if } i \in S \\ 0 & \text{otherwise} \end{cases}$$

Represent S with a bit vector b of length n where

$$b[i] = \begin{cases} 1 & \text{if } i \in S \\ 0 & \text{otherwise} \end{cases}$$

$$S = \{3, 4, 6, 8, 9, 14\}$$
 where $n = 15$

Represent S with a bit vector b of length n where

$$b[i] = \begin{cases} 1 & \text{if } i \in S \\ 0 & \text{otherwise} \end{cases}$$

Represent S with a bit vector b of length n where

$$b[i] = \begin{cases} 1 & \text{if } i \in S \\ 0 & \text{otherwise} \end{cases}$$

plus o(n)-space data structures to answer in O(1) time

- $ightharpoonup {\it rank}(i) = \# \ {\it 1s} \ {\it at or before position} \ i$
- \blacksquare select(j) = position of j-th 1 bit

$$S = \{3, 4, 6, 8, 9, 14\}$$
 where $n = 15$

Represent S with a bit vector b of length n where

$$b[i] = \begin{cases} 1 & \text{if } i \in S \\ 0 & \text{otherwise} \end{cases}$$

plus o(n)-space data structures to answer in O(1) time

- $ightharpoonup {\it rank}(i) = \# \ {\it 1s} \ {\it at or before position} \ i$
- \blacksquare select(j) = position of j-th 1 bit

$$S = \{3, 4, 6, 8, 9, 14\}$$
 where $n = 15$

$$select(5) =$$

Represent S with a bit vector b of length n where

$$b[i] = \begin{cases} 1 & \text{if } i \in S \\ 0 & \text{otherwise} \end{cases}$$

plus o(n)-space data structures to answer in O(1) time

- $ightharpoonup {\it rank}(i) = \# \ {\it 1s} \ {\it at or before position} \ i$
- \blacksquare select(j) = position of j-th 1 bit

$$S = \{3, 4, 6, 8, 9, 14\}$$
 where $n = 15$

$$select(5) = 9$$

Represent S with a bit vector b of length n where

$$b[i] = \begin{cases} 1 & \text{if } i \in S \\ 0 & \text{otherwise} \end{cases}$$

plus o(n)-space data structures to answer in O(1) time

- $ightharpoonup {\it rank}(i) = \# \ {\it 1s} \ {\it at or before position} \ i$
- \blacksquare select(j) = position of j-th 1 bit

$$select(5) = 9$$
 $rank(9) =$

Represent S with a bit vector b of length n where

$$b[i] = \begin{cases} 1 & \text{if } i \in S \\ 0 & \text{otherwise} \end{cases}$$

plus o(n)-space data structures to answer in O(1) time

- $ightharpoonup {\it rank}(i) = \# \ {\it 1s} \ {\it at or before position} \ i$
- \blacksquare select(j) = position of j-th 1 bit

$$select(5) = 9$$

$$rank(9) = 5$$

Represent S with a bit vector b of length n where

$$b[i] = \begin{cases} 1 & \text{if } i \in S \\ 0 & \text{otherwise} \end{cases}$$

plus o(n)-space data structures to answer in O(1) time

- $ightharpoonup {\it rank}(i) = \# \ {\it 1s} \ {\it at or before position} \ i$
- \blacksquare select(j) = position of j-th 1 bit

$$select(5) = 9$$

$$rank(9) = 5 = rank(12)$$

Represent S with a bit vector b of length n where

$$b[i] = \begin{cases} 1 & \text{if } i \in S \\ 0 & \text{otherwise} \end{cases}$$

plus o(n)-space data structures to answer in O(1) time

- $ightharpoonup {\it rank}(i) = \# \ {\it 1s} \ {\it at or before position} \ i$
- \blacksquare select(j) = position of j-th 1 bit

$$select(5) = 9$$
 $rank(9) = 5 = rank(12)$
 $rank(15) =$

Represent S with a bit vector b of length n where

$$b[i] = \begin{cases} 1 & \text{if } i \in S \\ 0 & \text{otherwise} \end{cases}$$

plus o(n)-space data structures to answer in O(1) time

- $ightharpoonup {\it rank}(i) = \# \ {\it 1s} \ {\it at or before position} \ i$
- \blacksquare select(j) = position of j-th 1 bit

$$select(5) = 9$$
 $rank(9) = 5 = rank(12)$
 $rank(15) = 6$

Represent S with a bit vector b of length n where

$$b[i] = \begin{cases} 1 & \text{if } i \in S \\ 0 & \text{otherwise} \end{cases}$$

plus o(n)-space data structures to answer in O(1) time

- $ightharpoonup {
 m rank}(i) = \# {
 m 1s} {
 m at} {
 m or before position} {
 m is} {
 m number of} {
 m of}$
- \blacksquare select(j) = position of j-th 1 bit

$$S = \{3, 4, 6, 8, 9, 14\}$$
 where $n = 15$

 $\mathtt{member}(i)$ can trivially be answered in O(1) time (assuming that we can access any entry in constant time)

Exercise: Use these methods to \Rightarrow answer predecessor(i) and successor(i) in O(1) time.

$$select(5) = 9$$
 $rank(9) = 5 = rank(12)$
 $rank(15) = 6$

Rank in o(n) Bits

_	
1	
10	
ν	
,,	
•	

 $\log^2 n \qquad \qquad \log^2 n = (\log n)^2$

b

1. Split into $(\log^2 n)$ -bit **chunks** and store cumulative rank: each needs $\leq \log n$ bits

 $\log^2 n$

- 1. Split into $(\log^2 n)$ -bit chunks
 - and store cumulative rank: each needs $\leq \log n$ bits

1. Split into $(\log^2 n)$ -bit chunks

and store cumulative rank:

each needs $\leq \log n$ bits

$$\Rightarrow O(\frac{n}{\log^2 n} \log n) = O(\frac{n}{\log n}) \subseteq o(n) \text{ bits}$$
chunks rank

1. Split into $(\log^2 n)$ -bit **chunks** and store cumulative rank: each needs $\leq \log n$ bits

$$\Rightarrow O(\frac{n}{\log^2 n} \log n) = O(\frac{n}{\log n}) \subseteq o(n)$$
 bits

2. Split **chunks** into $(\frac{1}{2} \log n)$ -bit **subchunks** and store cumulative rank within **chunk**:

1. Split into $(\log^2 n)$ -bit chunks

and store cumulative rank: each needs $\leq \log n$ bits

$$\Rightarrow O(\frac{n}{\log^2 n} \log n) = O(\frac{n}{\log n}) \subseteq o(n)$$
 bits

2. Split **chunks** into $(\frac{1}{2} \log n)$ -bit **subchunks** and store cumulative rank within **chunk**:

1. Split into $(\log^2 n)$ -bit **chunks**

and store cumulative rank: each needs $\leq \log n$ bits

$$\Rightarrow O(\frac{n}{\log^2 n} \log n) = O(\frac{n}{\log n}) \subseteq o(n)$$
 bits

2. Split chunks into $(\frac{1}{2} \log n)$ -bit subchunks and store cumulative rank within chunk: each needs $\leq \log \log^2 n = 2 \log \log n$ bits

1. Split into $(\log^2 n)$ -bit chunks

and store cumulative rank: each needs $\leq \log n$ bits

$$\Rightarrow O(\frac{n}{\log^2 n} \log n) = O(\frac{n}{\log n}) \subseteq o(n)$$
 bits

2. Split chunks into $(\frac{1}{2} \log n)$ -bit subchunks

and store cumulative rank within **chunk**: each needs $\leq \log \log^2 n = 2 \log \log n$ bits $\Rightarrow O(\frac{n}{\log n} \log \log n) \subseteq o(n)$ bits

1. Split into $(\log^2 n)$ -bit chunks

and store cumulative rank: each needs $\leq \log n$ bits

$$\Rightarrow O(\frac{n}{\log^2 n} \log n) = O(\frac{n}{\log n}) \subseteq o(n)$$
 bits

- 2. Split **chunks** into $(\frac{1}{2} \log n)$ -bit **subchunks** and store cumulative rank within **chunk**: each needs $\leq \log \log^2 n = 2 \log \log n$ bits $\Rightarrow O(\frac{n}{\log n} \log \log n) \subseteq o(n)$ bits
- 3. Use **lookup table** for bitstrings of length $(\frac{1}{2} \log n)$:

- 1. Split **Example:** $n = 64 \Rightarrow \frac{1}{2} \log n = 3$
 - $O(\frac{n}{\log^2 n} \log n) = O(\frac{n}{\log n}) \subseteq o(n)$ bits

 $s \leq \log n$ bits

2. Split and

and

- each needs $\leq \log \log^2 n = 2 \log \log n$ bits $\Rightarrow O(\frac{n}{\log n} \log \log n) \subseteq o(n)$ bits
- 3. Use lookup table for bitstrings of length $(\frac{1}{2} \log n)$:

1. Split Example: $n = 64 \Rightarrow \frac{1}{2} \log n = 3$ and position $\rightarrow 1$ 2 3

2. Split

and

 $s \leq \log n$ bits

$$O(\frac{n}{\log^2 n} \log n) = O(\frac{n}{\log n}) \subseteq o(n)$$
 bits

ks

each needs $\leq \log \log^2 n = 2 \log \log n$ bits $\Rightarrow O(\frac{n}{\log n} \log \log n) \subseteq o(n)$ bits

3. Use lookup table for bitstrings of length $(\frac{1}{2} \log n)$:

1.	Split
	and

Example: $n = 64 \Rightarrow \frac{1}{2} \log n = 3$ position

/	4	_)	
00	0	0	0	
01	0	0	1	
10	0	1	1	

2. Split and

bitstring

 $s \leq \log n$ bits

$$O(\frac{n}{\log^2 n} \log n) = O(\frac{n}{\log n}) \subseteq o(n)$$
 bits

ks

each needs $\leq \log \log^2 n = 2 \log \log n$ bits $\Rightarrow O(\frac{n}{\log n} \log \log n) \subseteq o(n)$ bits

3. Use lookup table for bitstrings of length $(\frac{1}{2} \log n)$: $2^{\frac{1}{2} \log n} = \sqrt{n}$ distinct bitstrings

1. Split and

2. Split

and

position \rightarrow oitstring

Example: $n = 64 \Rightarrow \frac{1}{2} \log n = 3$

 $s \leq \log n$ bits

$$O(\frac{n}{\log^2 n} \log n) = O(\frac{n}{\log n}) \subseteq o(n)$$
 bits

ks

each needs $\leq \log \log^2 n = 2 \log \log n$ bits $\Rightarrow O(\frac{n}{\log n} \log \log n) \subseteq o(n)$ bits

- 3. Use lookup table for bitstrings of length $(\frac{1}{2} \log n)$: $2^{\frac{1}{2} \log n} = \sqrt{n}$ distinct bitstrings
 - $\Rightarrow O(\sqrt{n} \log n \log \log n) \subseteq o(n)$ bits

rows # columns rel. rank

1. Split into $(\log^2 n)$ -bit chunks

and store cumulative rank: each needs $\leq \log n$ bits

$$\Rightarrow O(\frac{n}{\log^2 n} \log n) = O(\frac{n}{\log n}) \subseteq o(n)$$
 bits

- 2. Split **chunks** into $(\frac{1}{2} \log n)$ -bit **subchunks** and store cumulative rank within **chunk**: each needs $\leq \log \log^2 n = 2 \log \log n$ bits $\Rightarrow O(\frac{n}{\log n} \log \log n) \subseteq o(n)$ bits
- 3. Use lookup table for bitstrings of length $(\frac{1}{2} \log n)$: $2^{\frac{1}{2} \log n} = \sqrt{n}$ distinct bitstrings $\Rightarrow O(\sqrt{n} \log n \log \log n) \subseteq o(n)$ bits
- 4. rank(i) = rank of chunk
 - + relative rank of subchunk within chunk
 - + relative rank of element i within subchunk

1. Split into $(\log^2 n)$ -bit chunks

and store cumulative rank: each needs $\leq \log n$ bits

$$\Rightarrow O(\frac{n}{\log^2 n} \log n) = O(\frac{n}{\log n}) \subseteq o(n)$$
 bits

2. Split chunks into $(\frac{1}{2} \log n)$ -bit subchunks

and store cumulative rank within **chunk**: each needs $\leq \log \log^2 n = 2 \log \log n$ bits $\Rightarrow O(\frac{n}{\log n} \log \log n) \subseteq o(n)$ bits

- 3. Use lookup table for bitstrings of length $(\frac{1}{2} \log n)$: $2^{\frac{1}{2} \log n} = \sqrt{n}$ distinct bitstrings $\Rightarrow O(\sqrt{n} \log n \log \log n) \subseteq o(n)$ bits
- 4. rank(i) = rank of**chunk**
 - + relative rank of subchunk within chunk

+ relative rank of element i within subchunk

 $\Rightarrow O(1)$ time

(assume read/write numbers in O(1) time)

b

 $\log n \log \log n$ 1s

1. Store indices of every $(\log n \log \log n)$ -th 1 bit in array

 $\log n \log \log n$ 1s

1. Store indices of every $(\log n \log \log n)$ -th 1 bit in array

$$\Rightarrow O(\frac{n}{\log n \log \log n} \log n) = O(\frac{n}{\log \log n}) \subseteq o(n) \text{ bits}$$
groups index

 $\log n \log \log n$ 1s

1. Store indices of every $(\log n \log \log n)$ -th 1 bit in array

$$\Rightarrow O(\frac{n}{\log n \log \log n} \log n) = O(\frac{n}{\log \log n}) \subseteq o(n)$$
 bits

2. Within group of $(\log n \log \log n)$ 1 bits of length r bits:

 $\log n \log \log n$ 1s

1. Store indices of every $(\log n \log \log n)$ -th 1 bit in array

$$\Rightarrow O(\frac{n}{\log n \log \log n} \log n) = O(\frac{n}{\log \log n}) \subseteq o(n)$$
 bits

2. Within group of $(\log n \log \log n)$ 1 bits of length r bits:

if
$$r \ge (\log n \log \log n)^2$$

then store indices of 1 bits in group in array

$$\Rightarrow O(\frac{n}{(\log n \log \log n)^2}(\log n \log \log n) \log n) \subseteq O(\frac{n}{\log \log n}) \text{ bits}$$
groups # 1 bits index

 $\log n \log \log n$ 1s

1. Store indices of every $(\log n \log \log n)$ -th 1 bit in array

$$\Rightarrow O(\frac{n}{\log n \log \log n} \log n) = O(\frac{n}{\log \log n}) \subseteq o(n)$$
 bits

2. Within group of $(\log n \log \log n)$ 1 bits of length r bits:

if
$$r \ge (\log n \log \log n)^2$$

then store indices of 1 bits in group in array

$$\Rightarrow O(\frac{n}{(\log n \log \log n)^2}(\log n \log \log n) \log n) \subseteq O(\frac{n}{\log \log n})$$
 bits

else problem is reduced to bitstrings of length $r < (\log n \log \log n)^2$

 $\log n \log \log n$ 1s

1. Store indices of every $(\log n \log \log n)$ -th 1 bit in array

$$\Rightarrow O(\frac{n}{\log n \log \log n} \log n) = O(\frac{n}{\log \log n}) \subseteq o(n)$$
 bits

2. Within group of $(\log n \log \log n)$ 1 bits of length r bits:

if
$$r \ge (\log n \log \log n)^2$$

then store indices of 1 bits in group in array

$$\Rightarrow O(\frac{n}{(\log n \log \log n)^2}(\log n \log \log n) \log n) \subseteq O(\frac{n}{\log \log n})$$
 bits

else problem is reduced to bitstrings of length $r < (\log n \log \log n)^2$

3. Repeat 1. and 2. on reduced bitstrings

 $\log n \log \log n$ 1s

3. Repeat 1. and 2. on reduced bitstrings $(r < (\log n \log \log n)^2)$:

- 3. Repeat 1. and 2. on reduced bitstrings $(r < (\log n \log \log n)^2)$:
 - 1' Store relative indices of every $(\log \log n)^2$ -th 1 bit in array

- 3. Repeat 1. and 2. on reduced bitstrings $(r < (\log n \log \log n)^2)$:
 - 1' Store relative indices of every $(\log \log n)^2$ -th 1 bit in array

$$\Rightarrow O(\underbrace{\frac{n}{(\log\log n)^2}\log\log n}) = O(\frac{n}{\log\log n}) \text{ bits}$$
subgroups rel. index

- 3. Repeat 1. and 2. on reduced bitstrings $(r < (\log n \log \log n)^2)$:
 - 1' Store relative indices of every $(\log \log n)^2$ -th 1 bit in array

$$\Rightarrow O(\frac{n}{(\log \log n)^2} \log \log n) = O(\frac{n}{\log \log n})$$
 bits

2' Within group of $(\log \log n)^2$ 1 bits of length r' bits:

- 3. Repeat 1. and 2. on reduced bitstrings $(r < (\log n \log \log n)^2)$:
 - 1' Store relative indices of every $(\log \log n)^2$ -th 1 bit in array

$$\Rightarrow O(\frac{n}{(\log \log n)^2} \log \log n) = O(\frac{n}{\log \log n})$$
 bits

2' Within group of $(\log \log n)^2$ 1 bits of length r' bits:

if
$$r' \ge (\log \log n)^4$$

then store relative indices of 1 bits in subgroup in array

- 3. Repeat 1. and 2. on reduced bitstrings $(r < (\log n \log \log n)^2)$:
 - 1' Store relative indices of every $(\log \log n)^2$ -th 1 bit in array

$$\Rightarrow O(\frac{n}{(\log \log n)^2} \log \log n) = O(\frac{n}{\log \log n})$$
 bits

2' Within group of $(\log \log n)^2$ 1 bits of length r' bits:

if
$$r' \ge (\log \log n)^4$$

then store relative indices of 1 bits in subgroup in array

$$\Rightarrow O(\frac{n}{(\log\log n)^4}(\log\log n)^2\log\log n) = O(\frac{n}{\log\log n}) \text{ bits}$$
subgroups # 1 bits rel. index

- 3. Repeat 1. and 2. on reduced bitstrings $(r < (\log n \log \log n)^2)$:
 - 1' Store relative indices of every $(\log \log n)^2$ -th 1 bit in array

$$\Rightarrow O(\frac{n}{(\log \log n)^2} \log \log n) = O(\frac{n}{\log \log n})$$
 bits

2' Within group of $(\log \log n)^2$ 1 bits of length r' bits:

if
$$r' \ge (\log \log n)^4$$

then store relative indices of 1 bits in subgroup in array

$$\Rightarrow O(\frac{n}{(\log \log n)^4}(\log \log n)^2 \log \log n) = O(\frac{n}{\log \log n})$$
 bits

else problem is reduced to bitstrings of length $r' < (\log \log n)^4$

- 3. Repeat 1. and 2. on reduced bitstrings $(r < (\log n \log \log n)^2)$:
 - 1' Store relative indices of every $(\log \log n)^2$ -th 1 bit in array

$$\Rightarrow O(\frac{n}{(\log \log n)^2} \log \log n) = O(\frac{n}{\log \log n})$$
 bits

2' Within group of $(\log \log n)^2$ 1 bits of length r' bits:

if
$$r' \ge (\log \log n)^4$$

then store relative indices of 1 bits in subgroup in array

$$\Rightarrow O(\frac{n}{(\log \log n)^4}(\log \log n)^2 \log \log n) = O(\frac{n}{\log \log n})$$
 bits

else problem is reduced to bitstrings of length $r' < (\log \log n)^4$

4. Use lookup table for bitstrings of length $r' \leq (\log \log n)^4$:

 $\log n \log \log n \text{ 1s} \qquad (\log \log n)^2 \text{ 1s}$

3. Repea

1' Store

2' With if r'

then

Example: $n = 10 \Rightarrow (\log \log n)^2 \approx 3$	$\frac{1}{1} \log \log n$) ²).
Example: $n = 10 \Rightarrow (\log \log n)^2 \approx 3$ $\Rightarrow r' < (\log \log n)^4 \approx 9$	$n \log \log n$

1 bit in array

$$\log \log n = O(\frac{n}{\log \log n})$$
 bits

r' bits:

up in array

$$(n)^2 \log \log n = O(\frac{n}{\log \log n})$$
 bits

else problem is reduced to bitstrings of length $r' < (\log \log n)^4$

4. Use lookup 'table for bitstrings of length $r' \leq (\log \log n)^4$:

select

oitstring

1' Store

2' With

then

	select o	1	2	3
ing	00000111 00001011 00001101	6 5 5	7 7 6	8000
bitstring	: 11001000 11010000 11100000	1 1 1	2 2 2	543

1 bit in array

 $\frac{1}{(n)^2}\log\log n) = O(\frac{n}{\log\log n})$ bits

r' bits:

up in array

 $(n)^2 \log \log n) = O(\frac{n}{\log \log n})$ bits

else problem/is reduced to bitstrings of length $r' < (\log \log n)^4$

4. Use lookup 'table for bitstrings of length $r' \leq (\log \log n)^4$:

$$\underbrace{2^{(\log\log n)^4}}_{\text{# rows}} \in O(2^{\frac{1}{2}\log n}) = O(\sqrt{n}); \quad \underbrace{(\log\log n)^2}_{\text{# columns}} \in O(\log n)$$

- 3. Repea
 - 1' Store

2' With if r'

then

$-10 \rightarrow (\log \log n) \sim 3$	$\frac{1}{2}$
$\Rightarrow r' < (\log \log n)^4 \approx 9$	$n \log \log n$
$\rightarrow r < (\log \log n) \sim 9$	

1 bit in array

 $\frac{1}{(n)^2} \log \log n = O(\frac{n}{\log \log n})$ bits

r' bits:

up in array

 $(n)^2 \log \log n = O(\frac{n}{\log \log n})$ bits

else problem is reduced to bitstrings of length $r' < (\log \log n)^4$

4. Use lookup table for bitstrings of length $r' \leq (\log \log n)^4$:

select

bitstring

$$2^{(\log\log n)^4} \in O(2^{\frac{1}{2}\log n}) = O(\sqrt{n}); \quad (\log\log n)^2 \in O(\log n) \Rightarrow O(\sqrt{n}\log \log\log n) = o(n) \text{ bits}$$
rows # columns rel. index

- 4. select(j) = select J-th group where $J = \lfloor j/(\log n \log \log n) \rfloor$
 - + directly select (j-J)-th 1 bit or select J'-th subgroup where $J' = \lfloor (j-J)/(\log\log n)^2 \rfloor$
 - + directly select $(j-J-J^\prime)$ -th 1 bit or select it in the lookup table

- 4. select(j) = select J-th group where $J = \lfloor j/(\log n \log \log n) \rfloor$
 - + directly select (j-J)-th 1 bit or select J'-th subgroup where $J' = \lfloor (j-J)/(\log\log n)^2 \rfloor$
 - + directly select $(j-J-J^\prime)$ -th 1 bit or select it in the lookup table

Succinct Representation of Binary Trees

Number of binary trees on n vertices:


```
n=0: "empty tree" 1 possibility
```



```
n=0: "empty tree" 1 \text{ possibility} n=1: \bullet 1 \text{ possibility}
```



```
n=0: "empty tree" n=2: \bullet start with root n=1: \bullet n=1: \bullet 1 possibility
```



```
n=0: "empty tree" n=2: start with root

1 possibility append no child left

n=1: append 1 child right

1 possibility
```


Number of binary trees on n vertices:

append no child left

Number of binary trees on n vertices:

append no child left

Number of binary trees on n vertices:

append no child right

n=0: "empty tree" n=2: n=3: n=1: append 2 children left 2 possibilities

Number of binary trees on n vertices:

append no child right

 C_n is the n-th extstyle Catalan number and $C_0=1$

Number of binary trees on n vertices: $C_n = \sum_{i=0}^{n-1} C_i \cdot C_{n-1-i} = \frac{(2n)!}{(n+1)! \, n!}$

Number of binary trees on n vertices: $C_n = \sum_{i=0}^{n-1} C_i \cdot C_{n-1-i} = \frac{(2n)!}{(n+1)! \, n!}$

 $\log C_n = 2n + o(n)$ (by Stirling's approximation)

Number of binary trees on n vertices: $C_n = \sum_{i=0}^{n-1} C_i \cdot C_{n-1-i} = \frac{(2n)!}{(n+1)! \, n!}$

 $\log C_n = 2n + o(n)$ (by Stirling's approximation)

 \Rightarrow We can use 2n + o(n) bits to represent binary trees.

Number of binary trees on n vertices: $C_n = \sum_{i=0}^{n-1} C_i \cdot C_{n-1-i} = \frac{(2n)!}{(n+1)! \, n!}$

 $\log C_n = 2n + o(n)$ (by Stirling's approximation)

 \Rightarrow We can use 2n + o(n) bits to represent binary trees.

Difficulty is when a binary tree is not full.

Idea.

Idea.

Add external nodes to have out-degree 2 or 0 at every node

Idea.

Add external nodes to have out-degree 2 or 0 at every node

Idea.

- Add external nodes to have out-degree 2 or 0 at every node
- Read internal nodes as 1
- Read external nodes as 0

Size.

- \blacksquare 2*n* + 1 bits for *b*
- o(n) for rank and select

Idea.

- Add external nodes to have out-degree 2 or 0 at every node
- Read internal nodes as 1
- Read external nodes as 0

Idea.

- Add external nodes to have out-degree 2 or 0 at every node
- Read internal nodes as 1
- Read external nodes as 0

Operations.

- \blacksquare parent(i) = ?
- \blacksquare leftChild(i) = ?
- \blacksquare rightChild(i) = ?

- \blacksquare 2*n* + 1 bits for *b*
- o(n) for rank and select

Idea.

- Add external nodes to have out-degree 2 or 0 at every node
- Read internal nodes as 1
- Read external nodes as 0
- Use rank and select

Operations.

- \blacksquare parent(i) = ?
- \blacksquare leftChild(i) = ?
- \blacksquare rightChild(i) = ?

- \blacksquare 2*n* + 1 bits for *b*
- o(n) for rank and select

ldea.

- Add external nodes to have out-degree 2 or 0 at every node
- Read internal nodes as 1
- Read external nodes as 0
- Use rank and select

Operations.

- \blacksquare parent(i) = ?
- lacksquare leftChild(i)= ?
- \blacksquare rightChild(i) = ?

- \blacksquare 2n+1 bits for b
- o(n) for rank and select

Idea.

- Add external nodes to have out-degree 2 or 0 at every node
- Read internal nodes as 1
- Read external nodes as 0
- Use rank and select

Operations.

- \blacksquare parent(i) = ?
- lacksquare leftChild(i) = ?
- \blacksquare rightChild(i) = ?

- \blacksquare 2n+1 bits for b
- o(n) for rank and select

Size.

- \blacksquare 2*n* + 1 bits for *b*
- o(n) for rank and select

Idea.

- Add external nodes to have out-degree 2 or 0 at every node
- Read internal nodes as 1
- Read external nodes as 0
- Use rank and select

- \blacksquare parent(i) = ?
- \blacksquare leftChild $(i) = 2 \operatorname{rank}(i)$
- \blacksquare rightChild $(i) = 2 \operatorname{rank}(i) + 1$

Size.

- \blacksquare 2*n* + 1 bits for *b*
- o(n) for rank and select

Idea.

- Add external nodes to have out-degree 2 or 0 at every node
- Read internal nodes as 1
- Read external nodes as 0
- Use rank and select

- lacksquare parent $(i) = \operatorname{select}(\lfloor \frac{1}{2} \rfloor)$
- \blacksquare leftChild $(i) = 2 \operatorname{rank}(i)$
- \blacksquare rightChild $(i) = 2 \operatorname{rank}(i) + 1$

Size.

 \blacksquare 2*n* + 1 bits for *b*

Proof is exercise.

o(n) for rank and select

Idea.

- Add external nodes to have out-degree 2 or 0 at every node
- Read internal nodes as 1
- Read external nodes as 0
- Use rank and select

- parent $(i) = select(\lfloor \frac{1}{2} \rfloor)$
- lacksquare leftChild $(i) = 2 \operatorname{rank}(i)$
- \blacksquare rightChild $(i) = 2 \operatorname{rank}(i) + 1$

Size.

 \blacksquare 2n+1 bits for b

Proof is exercise.

o(n) for rank and select

Idea.

- Add external nodes to have out-degree 2 or 0 at every node
- Read internal nodes as 1
- Read external nodes as 0
- Use rank and select

- parent $(i) = select(\lfloor \frac{1}{2} \rfloor)$
- lacksquare leftChild $(i) = 2 \operatorname{rank}(i)$
- \blacksquare rightChild $(i) = 2 \operatorname{rank}(i) + 1$
- \blacksquare rank(i) is index for array storing actual values

[Level Order Unary Degree Sequence]

[Level Order Unary Degree Sequence]

add extra root with out-degree 1

[Level Order Unary Degree Sequence]

- add extra root with out-degree 1
- unary encoding of out-degree terminated by a 0

[Level Order Unary Degree Sequence]

- unary encoding of out-degree terminated by a 0
- gives LOUDS sequence

[Level Order Unary Degree Sequence]

- unary encoding of out-degree terminated by a 0
- gives LOUDS sequence

- each vertex (except root) is represented twice, namely with a 1 and with a 0
- o(n) bits for rank and select

[Level Order Unary Degree Sequence]

- unary encoding of out-degree terminated by a 0
- gives LOUDS sequence

Size.

- each vertex (except root) is represented twice, namely with a 1 and with a 0 $\Rightarrow 2n + o(n)$ bits
- o(n) bits for rank and select

[Level Order Unary Degree Sequence]

- unary encoding of out-degree terminated by a 0
- gives LOUDS sequence

Operations.

- Let *i* be index of 1 in LOUDS sequence. This 1 represents a node (e.g. first 1 represents the root).
- ightharpoonup rank(i) is index for array storing actual values of the nodes.

[Level Order Unary Degree Sequence]

- add extra root with out-degree 1
- unary encoding of out-degree terminated by a 0
- gives LOUDS sequence

execute select(j) on the 0s instead of the 1s (as before) firstChild(i) = select $_0(\operatorname{rank}_1(i)) + 1$

[Level Order Unary Degree Sequence]

- unary encoding of out-degree terminated by a 0
- gives LOUDS sequence

execute select(j) on the 0s instead of the 1s (as before) firstChild(i) = select $_0(\operatorname{rank}_1(i)) + 1$

 $\mathtt{firstChild}(\textcolor{red}{8}) = \mathtt{select}_0(\mathtt{rank}_1(\textcolor{red}{8})) + 1$

[Level Order Unary Degree Sequence]

- add extra root with out-degree 1
- unary encoding of out-degree terminated by a 0
- gives LOUDS sequence

execute select(j) on the Os instead of the 1s (as before) the 1stChild(i) = select $_0(\operatorname{rank}_1(i)) + 1$

 $firstChild(8) = select_0(rank_1(8)) + 1$ $= select_0(6) + 1$

[Level Order Unary Degree Sequence]

- add extra root with out-degree 1
- unary encoding of out-degree terminated by a 0
- gives LOUDS sequence

execute select(j) on the Os instead of the 1s (as before) firstChild(i) = select $_0(\operatorname{rank}_1(i)) + 1$

$$\begin{aligned} & \texttt{firstChild}(8) = \texttt{select}_0(\texttt{rank}_1(8)) + 1 \\ & = \texttt{select}_0(6) + 1 = 14 + 1 = 15 \end{aligned}$$

[Level Order Unary Degree Sequence]

- add extra root with out-degree 1
- unary encoding of out-degree terminated by a 0
- gives LOUDS sequence

execute select(j) on the Os instead of the 1s (as before) the 1stChild(i) = select $_0(\operatorname{rank}_1(i)) + 1$

 $firstChild(8) = select_0(rank_1(8)) + 1$ $= select_0(6) + 1 = 14 + 1 = 15$

nextSibling(i) = i + 1

[Level Order Unary Degree Sequence]

- add extra root with out-degree 1
- unary encoding of out-degree terminated by a 0
- gives LOUDS sequence

execute select(j) on execute rank(i) on the 0s instead of the 1s (as before)

 $\mathtt{firstChild}(i) = \mathtt{select}_0(\mathtt{rank}_1(i)) + 1$

$$\begin{aligned} & \texttt{firstChild}(8) = \texttt{select}_0(\texttt{rank}_1(8)) + 1 \\ & = \texttt{select}_0(6) + 1 = 14 + 1 = 15 \end{aligned}$$

nextSibling(i) = i + 1

[Level Order Unary Degree Sequence]

 \blacksquare parent $(i) = select_1(rank_0(i))$

- unary encoding of out-degree terminated by a 0
- gives LOUDS sequence

execute select(j) on execute rank(i) on the 0s instead of the 1s (as before)

 $\mathtt{firstChild}(i) = \mathtt{select}_0(\mathtt{rank}_1(i)) + 1$

 $firstChild(8) = select_0(rank_1(8)) + 1$ $= select_0(6) + 1 = 14 + 1 = 15$

nextSibling(i) = i + 1

Exercise: child(i, j)
with validity check

[Level Order Unary Degree Sequence]

- add extra root with out-degree 1
- unary encoding of out-degree terminated by a 0
- gives LOUDS sequence

execute select(j) on execute rank(i) or the 0s instead of the 1s f the 1s (as before)

execute rank(i) on

 $\mathtt{firstChild}(i) = \mathtt{select}_0(\mathtt{rank}_1(i)) + 1$

1110

 $firstChild(8) = select_0(rank_1(8)) + 1$ $= select_0(6) + 1 = 14 + 1 = 15$

Exercise: child(i, j) with validity check

nextSibling(i) = i + 1

 \blacksquare parent $(i) = select_1(rank_0(i))$

 $parent(8) = select_1(rank_0(8))$

[Level Order Unary Degree Sequence]

ightharpoonup parent $(i) = select_1(rank_0(i))$

- add extra root with out-degree 1
- unary encoding of out-degree terminated by a 0
- gives LOUDS sequence

execute select(j) on execute rank(i) of the 0s instead of the 1s (as before)

execute rank(i) on

 $firstChild(i) = select_0(rank_1(i)) + 1$

1110

110

 $firstChild(8) = select_0(rank_1(8)) + 1$

Exercise: child(i, j)
with validity check

$$\begin{aligned} & \texttt{firstChild}(8) = \texttt{select}_0(\texttt{rank}_1(8)) + 1 & \texttt{parent}(8) = \texttt{select}_1(\texttt{rank}_0(8)) \\ &= \texttt{select}_0(6) + 1 = 14 + 1 = 15 & \texttt{select}_1(2) \end{aligned}$$

 $\mathtt{nextSibling}(i) = i + 1$

[Level Order Unary Degree Sequence]

- add extra root with out-degree 1
- unary encoding of out-degree terminated by a 0
- gives LOUDS sequence

execute select(j) on execute rank(i) of the 0s instead of the 1s f the 1s (as before)

execute rank(i) on

 $firstChild(i) = select_0(rank_1(i)) + 1$

\1110

 $firstChild(8) = select_0(rank_1(8)) + 1$ $= select_0(6) + 1 = 14 + 1 = 15$

ightharpoonup parent $(i) = select_1(rank_0(i))$

 $parent(8) = select_1(rank_0(8))$ = select₁(2) = 3

 $\mathtt{nextSibling}(i) = i + 1$

Exercise: child(i, j)
with validity check

- Succinct data structures are
 - space efficient
 - support fast operations

- Succinct data structures are
 - space efficient
 - support fast operations

but

that means insertions & deletions

- are mostly static (dynámic at extra cost),
- number of operations is limited,
- \blacksquare complex \rightarrow harder to implement,
- the o(n) and O(1) term hide constants that might dominate before any asymptotic advantage over the "best" compact data structures becomes apparent.
 - → primarily a theoretical result (also does not consider hardware architecture)

- Succinct data structures are
 - space efficient
 - support fast operations but
 that means insertions & deletions
 - are mostly static (dynámic at extra cost),
 - number of operations is limited,
 - \blacksquare complex \rightarrow harder to implement,
 - the o(n) and O(1) term hide constants that might dominate before any asymptotic advantage over the "best" compact data structures becomes apparent.
 - → primarily a theoretical result (also does not consider hardware architecture)
- rank and select form the basis for many succinct representations (e.g., for specific types of trees or strings).

- Succinct data structures are
 - space efficient
 - support fast operations but
 that means insertions & deletions
 - are mostly static (dynámic at extra cost),
 - number of operations is limited,
 - \blacksquare complex \rightarrow harder to implement,
 - the o(n) and O(1) term hide constants that might dominate before any asymptotic advantage over the "best" compact data structures becomes apparent.
 - → primarily a theoretical result (also does not consider hardware architecture)
- rank and select form the basis for many succinct representations (e.g., for specific types of trees or strings).
- There are implementations of succinct data structures being used in practice for large data sets in information retrieval, language model representation, bioinformatics, etc.

Literature

Main reference:

- Lecture 17 of Advanced Data Structures (MIT, Fall'17) by Erik Demaine
- [Jac '89] "Space efficient Static Trees and Graphs"

Recommendations:

■ Lecture 18 of Demaine's course on compact & succinct arrays & trees