
1

Advanced Algorithms

Indexable Dictionaries and Trees
Succinct Data Structures

Johannes Zink · WS23/24
10

1110

110

110

10

10

0 0 0

0

0

2 - 5

Data Structures – Informal Definition

A data structure is a concept to
� store,
� organize, and
� manage data.

Remarks.
� We look at data structures as a designer/implementer

(and not necessarily as a user).

� To define a data structure and to implement it are two different tasks.

� What do we represent?

� How much space is required?

� Dynamic or static?

� Which operations are defined?

� How fast are they?

⇒
As such, it is a collection of
� data values,
� their relations, and
� the operations that can be applied to the data.

3 - 5

Succinct Data Structures

Goal.
� Use space “close” to information-theoretical minimum,

� but still support time-efficient operations.

Let L be the information-theoretical lower bound
to represent a class of objects.
Then a data structure, which still supports
time-efficient operations, is called

� implicit, if it takes L + O(1) bits of space;

� succinct, if it takes L + o(L) bits of space;

� compact, if it takes O(L) bits of space.
Examples?

4 - 9

Examples for Implicit Data Structures

� arrays to represent lists
� but why not linked lists?

� sorted arrays to represent sorted lists
� but why not binary search trees?

� arrays to represent complete binary trees and heaps

leftChild(i) = 2i

rightChild(i) = 2i + 1
parent(i) = b i

2c

1 2 3 4 5 6 . . .
And unbalanced

trees?

7

� 1-dim arrays to represent multi-dimensional arrays

5 - 4

Succinct Indexable Dictionary

Represent a subset S ⊆ {1, 2, . . . , n} and support the following operations in O(1) time:

� member(i) returns if i ∈ S

� rank(i) = number of elements in S that are less or equal to i

� select(j) = j-th element in S

� predecessor(i)

� successor(i)

How many bits of space do we need to distinguish them?

How many different subsets of {1, 2, . . . , n} are there? 2n

log 2n = n bits
our logarithms are all to basis 2, i.e., log2

6 - 12

Succinct Indexable Dictionary

Represent S with a bit vector b of length n where

b[i] =

{
1 if i ∈ S
0 otherwise

S = {3, 4, 6, 8, 9, 14} where n = 15

0 0 0 0 0 0 0 0 01 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

plus o(n)-space data structures to answer in O(1) time

b

select(5) = 9

� rank(i) = # 1s at or before position i

� select(j) = position of j-th 1 bit

rank(15) = 6

rank(9) = 5 = rank(12)

Exercise: Use these methods to
answer predecessor(i) and
successor(i) in O(1) time.

⇒

member(i) can trivially be answered in O(1) time
(assuming that we can access any entry in constant time)

number of

7 - 8

Rank in o(n) Bits

b

1. Split into (log2 n)-bit chunks

log2 n

and store cumulative rank: each needs ≤ log n bits

⇒ O(n
log2 n

log n) = O(n
log n) ⊆ o(n) bits

2. Split chunks into (12 log n)-bit subchunks

1
2 log n

⇒ O(n
log n log log n) ⊆ o(n) bits

and store cumulative rank within chunk: each needs ≤ log log2 n = 2 log log n bits

{{

subchunks rel. rank

{ {

3 5

1 1 1 1 1 111
31

log2 n = (log n)2

7 - 13

Rank in o(n) Bits

b

1. Split into (log2 n)-bit chunks

log2 n

and store cumulative rank: each needs ≤ log n bits

⇒ O(n
log2 n

log n) = O(n
log n) ⊆ o(n) bits

2. Split chunks into (12 log n)-bit subchunks

1
2 log n

⇒ O(n
log n log log n) ⊆ o(n) bits

and store cumulative rank within chunk: each needs ≤ log log2 n = 2 log log n bits

3. Use lookup table for bitstrings of length (12 log n):
⇒ O(

√
n log n log log n) ⊆ o(n) bits

rows # columns rel. rank

{{

{ { {

3 5

1 1 1 1 1 111
31

log2 n = (log n)2

2
1
2 log n =

√
n distinct bitstrings

Example: n = 64⇒ 1
2 log n = 3

000
001

111

010
011

110

100
101

0
0
0
0

0
0

0

1
1
1

1
1
1

1
1
1
1

1
2

2
2 2
2 3

b
it

st
ri

n
g

1 2 3position →

7 - 15

Rank in o(n) Bits

b

1. Split into (log2 n)-bit chunks

log2 n

and store cumulative rank: each needs ≤ log n bits

⇒ O(n
log2 n

log n) = O(n
log n) ⊆ o(n) bits

2. Split chunks into (12 log n)-bit subchunks

1
2 log n

⇒ O(n
log n log log n) ⊆ o(n) bits

and store cumulative rank within chunk: each needs ≤ log log2 n = 2 log log n bits

3. Use lookup table for bitstrings of length (12 log n):
⇒ O(

√
n log n log log n) ⊆ o(n) bits

4. rank(i) = rank of chunk
+ relative rank of subchunk within chunk
+ relative rank of element i within subchunk

{{
⇒ O(1) time

3 5

1 1 1 1 1 111
31

+ O(1) Time
log2 n = (log n)2

2
1
2 log n =

√
n distinct bitstrings

(assume read/write numbers in O(1) time)

8 - 7

Select in o(n) Bits

b

1. Store indices of every (log n log log n)-th 1 bit in array

⇒ O(n
log n log log n log n) = O(n

log log n) ⊆ o(n) bits

2. Within group of (log n log log n) 1 bits of length r bits:

if r ≥ (log n log log n)2

then store indices of 1 bits in group in array
⇒ O(n

(log n log log n)2 (log n log log n) log n) ⊆ O(n
log log n) bits

else problem is reduced to bitstrings of length r < (log n log log n)2

3. Repeat 1. and 2. on reduced bitstrings

log n log log n 1s{

8 - 14

Select in o(n) Bits

b

3. Repeat 1. and 2. on reduced bitstrings (r < (log n log log n)2):

1’ Store relative indices of every (log log n)2-th 1 bit in array

⇒ O(n
(log log n)2 log log n) = O(n

log log n) bits

2’ Within group of (log log n)2 1 bits of length r′ bits:

if r′ ≥ (log log n)4

then store relative indices of 1 bits in subgroup in array

⇒ O(n
(log log n)4 (log log n)2 log log n) = O(n

log log n) bits

else problem is reduced to bitstrings of length r′ < (log log n)4

log n log log n 1s{

{(log log n)2 1s

8 - 18

Select in o(n) Bits

b

3. Repeat 1. and 2. on reduced bitstrings (r < (log n log log n)2):

1’ Store relative indices of every (log log n)2-th 1 bit in array

⇒ O(n
(log log n)2 log log n) = O(n

log log n) bits

2’ Within group of (log log n)2 1 bits of length r′ bits:

if r′ ≥ (log log n)4

then store relative indices of 1 bits in subgroup in array

⇒ O(n
(log log n)4 (log log n)2 log log n) = O(n

log log n) bits

else problem is reduced to bitstrings of length r′ < (log log n)4

4. Use lookup table for bitstrings of length r′ ≤ (log log n)4:

⇒ O(
√

n log n log log n) = o(n) bits

log n log log n 1s{

{(log log n)2 1s

{ { {

Example: n = 10⇒ (log log n)2 ≈ 3

00000111 6
5
5

7
7

8

6
8
8

21
1
1

5
2 4
2 3

b
it

st
ri

n
g

1 2 3select →
⇒ r′ < (log log n)4 ≈ 9

00001011
00001101

11001000
11010000
11100000

..
.

rows # columns rel. index

2(log log n)4 ∈ O(2
1
2 log n) = O(

√
n); (log log n)2 ∈ O(log n){ {

rows # columns

8 - 20

Select in o(n) Bits

b

log n log log n 1s{

{(log log n)2 1s
+ O(1) Time

4. select(j) = select J-th group where J = bj/(log n log log n)c

+ directly select (j− J)-th 1 bit
or select J′-th subgroup where J′ = b(j− J)/(log log n)2c

+ directly select (j− J − J′)-th 1 bit
or select it in the lookup table

9 - 15

Succinct Representation of Binary Trees

Number of binary trees on n vertices: Cn =
n−1
∑

i=0
Ci · Cn−1−i =

(2n)!
(n+1)! n!

Cn is the n-th Catalan number and C0 = 1

n = 0: “empty tree”

1 possibility

n = 1:

1 possibility

n = 2:

2 possibilities

n = 3:

5 possibilities

9 - 18

Succinct Representation of Binary Trees

Number of binary trees on n vertices: Cn =
n−1
∑

i=0
Ci · Cn−1−i =

(2n)!
(n+1)! n!

log Cn = 2n + o(n) (by Stirling’s approximation)

⇒ We can use 2n + o(n) bits to represent binary trees.

Difficulty is when a binary tree is not full.

9 - 31

Succinct Representation of Binary Trees

15

1

2 3

4 5 6 7

8 9 10 11 12 13

14 16 18 1917

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

b 1 01 1 1 0 0 01 1 0 0 0 0 001 1 1

Size.
� 2n + 1 bits for b

� o(n) for rank
and selectrank(7) = 6

rank(10) = 7

Operations.
� parent(i) = select(b i

2c)
� leftChild(i) = 2 rank(i)

� rightChild(i) = 2 rank(i) + 1

� rank(i) is index for array storing actual values

Idea.
� Add external nodes to have

out-degree 2 or 0 at every node

� Read internal nodes as 1

� Read external nodes as 0

� Use rank and select

Proof is

exercise.

10 - 7

Succinct Representation of Trees - LOUDS

1

[Level Order Unary Degree Sequence]

� unary encoding of out-degree terminated by a 010

1110

110

110

10

10

0 0 0

0

0

� gives LOUDS sequence

0 0 0 00 0 0 0 0 01 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0
20 21

⇒ 2n + o(n) bits

Size.
� each vertex (except root) is represented twice,

namely with a 1 and with a 0

� o(n) bits for rank and select

� add extra root with out-degree 1

10 - 8

Succinct Representation of Trees - LOUDS

1

[Level Order Unary Degree Sequence]

� unary encoding of out-degree terminated by a 010

1110

110

110

10

10

0 0 0

0

0

� gives LOUDS sequence

0 0 0 00 0 0 0 0 01 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0
20 21

Operations.
� Let i be index of 1 in LOUDS sequence.

This 1 represents a node (e.g. first 1
represents the root).

� rank(i) is index for array storing
actual values of the nodes.

� add extra root with out-degree 1

10 - 18

Succinct Representation of Trees - LOUDS

1

1

[Level Order Unary Degree Sequence]

� unary encoding of out-degree terminated by a 010

1110

110

110

10

10

0 0 0

0

0

� gives LOUDS sequence

0 0 0 00 0 0 0 0 01 1 1 1 1 1 1 1 1

� firstChild(i) = select0(rank1(i)) + 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

20 21

firstChild(8) = select0(rank1(8)) + 1
= select0(6) + 1 = 14 + 1 = 15

11

� nextSibling(i) = i + 1
Exercise: chil

d(i, j)

with validity check

� parent(i) = select1(rank0(i))

parent(8) = select1(rank0(8))
= select1(2) = 3

1

1

0 0 0 00 0 0 0 0 01 1 1 1 1 1 1 1 1 01

execute select(j) on
the 0s instead of the 1s

execute rank(i) on
the 1s (as before)

� add extra root with out-degree 1

11 - 4

Discussion

� Succinct data structures are
� space efficient
� support fast operations
but
� are mostly static (dynamic at extra cost),
� number of operations is limited,
� complex → harder to implement,
� the o(n) and O(1) term hide constants that might dominate before any asym-

ptotic advantage over the “best” compact data structures becomes apparent.
→ primarily a theoretical result (also does not consider hardware architecture)

� rank and select form the basis for many succinct representations
(e.g., for specific types of trees or strings).

that means insertions & deletions

� There are implementations of succinct data structures being used in practice for large
data sets in information retrieval, language model representation, bioinformatics, etc.

12

Literature

Main reference:

� Lecture 17 of Advanced Data Structures (MIT, Fall’17) by Erik Demaine

� [Jac ’89] “Space efficient Static Trees and Graphs”

Recommendations:

� Lecture 18 of Demaine’s course on compact & succinct arrays & trees

	Title page
	Data Structures -- Informal Definition
	Succinct Data Structures
	Examples for implicit data structures

	Succinct indexable dictionary
	Idea
	Rank in o(n) bits and O(1) time
	Select in o(n) bits and O(1) time

	Succinct representation of binary trees
	Succinct representation of trees - LOUDS
	Discussion
	Literature

