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Data Structures – Informal Definition

A data structure is a concept to
� store,
� organize, and
� manage data.

Remarks.
� We look at data structures as a designer/implementer

(and not necessarily as a user).

� To define a data structure and to implement it are two different tasks.

� What do we represent?

� How much space is required?

� Dynamic or static?

� Which operations are defined?

� How fast are they?

⇒
As such, it is a collection of
� data values,
� their relations, and
� the operations that can be applied to the data.
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Succinct Data Structures

Goal.
� Use space “close” to information-theoretical minimum,

� but still support time-efficient operations.

Let L be the information-theoretical lower bound
to represent a class of objects.
Then a data structure, which still supports
time-efficient operations, is called

� implicit, if it takes L + O(1) bits of space;

� succinct, if it takes L + o(L) bits of space;

� compact, if it takes O(L) bits of space.
Examples?
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Examples for Implicit Data Structures

� arrays to represent lists
� but why not linked lists?

� sorted arrays to represent sorted lists
� but why not binary search trees?

� arrays to represent complete binary trees and heaps

leftChild(i) = 2i

rightChild(i) = 2i + 1
parent(i) = b i

2c

1 2 3 4 5 6 . . .
And unbalanced

trees?

7

� 1-dim arrays to represent multi-dimensional arrays
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Succinct Indexable Dictionary

Represent a subset S ⊆ {1, 2, . . . , n} and support the following operations in O(1) time:

� member(i) returns if i ∈ S

� rank(i) = number of elements in S that are less or equal to i

� select(j) = j-th element in S

� predecessor(i)

� successor(i)

How many bits of space do we need to distinguish them?

How many different subsets of {1, 2, . . . , n} are there? 2n

log 2n = n bits
our logarithms are all to basis 2, i.e., log2
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Succinct Indexable Dictionary

Represent S with a bit vector b of length n where

b[i] =

{
1 if i ∈ S
0 otherwise

S = {3, 4, 6, 8, 9, 14} where n = 15

0 0 0 0 0 0 0 0 01 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

plus o(n)-space data structures to answer in O(1) time

b

select(5) = 9

� rank(i) = # 1s at or before position i

� select(j) = position of j-th 1 bit

rank(15) = 6

rank(9) = 5 = rank(12)

Exercise: Use these methods to
answer predecessor(i) and
successor(i) in O(1) time.

⇒

member(i) can trivially be answered in O(1) time
(assuming that we can access any entry in constant time)

number of
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Rank in o(n) Bits

b

1. Split into (log2 n)-bit chunks

log2 n

and store cumulative rank: each needs ≤ log n bits

⇒ O( n
log2 n

log n) = O( n
log n ) ⊆ o(n) bits

2. Split chunks into ( 12 log n)-bit subchunks

1
2 log n

⇒ O( n
log n log log n) ⊆ o(n) bits

and store cumulative rank within chunk: each needs ≤ log log2 n = 2 log log n bits

{{

# subchunks rel. rank

{ {

3 5

1 1 1 1 1 111
31

log2 n = (log n)2
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Rank in o(n) Bits

b

1. Split into (log2 n)-bit chunks

log2 n

and store cumulative rank: each needs ≤ log n bits

⇒ O( n
log2 n

log n) = O( n
log n ) ⊆ o(n) bits

2. Split chunks into ( 12 log n)-bit subchunks

1
2 log n

⇒ O( n
log n log log n) ⊆ o(n) bits

and store cumulative rank within chunk: each needs ≤ log log2 n = 2 log log n bits

3. Use lookup table for bitstrings of length ( 12 log n):
⇒ O(

√
n log n log log n) ⊆ o(n) bits

# rows # columns rel. rank

{{

{ { {

3 5

1 1 1 1 1 111
31

log2 n = (log n)2

2
1
2 log n =

√
n distinct bitstrings

Example: n = 64⇒ 1
2 log n = 3

000
001

111

010
011

110

100
101

0
0
0
0

0
0

0

1
1
1

1
1
1

1
1
1
1

1
2

2
2 2
2 3

b
it

st
ri

n
g

1 2 3position →
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Rank in o(n) Bits

b

1. Split into (log2 n)-bit chunks

log2 n

and store cumulative rank: each needs ≤ log n bits

⇒ O( n
log2 n

log n) = O( n
log n ) ⊆ o(n) bits

2. Split chunks into ( 12 log n)-bit subchunks

1
2 log n

⇒ O( n
log n log log n) ⊆ o(n) bits

and store cumulative rank within chunk: each needs ≤ log log2 n = 2 log log n bits

3. Use lookup table for bitstrings of length ( 12 log n):
⇒ O(

√
n log n log log n) ⊆ o(n) bits

4. rank(i) = rank of chunk
+ relative rank of subchunk within chunk
+ relative rank of element i within subchunk

{{
⇒ O(1) time

3 5

1 1 1 1 1 111
31

+ O(1) Time
log2 n = (log n)2

2
1
2 log n =

√
n distinct bitstrings

(assume read/write numbers in O(1) time)
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Select in o(n) Bits

b

1. Store indices of every (log n log log n)-th 1 bit in array

⇒ O( n
log n log log n log n) = O( n

log log n ) ⊆ o(n) bits

2. Within group of (log n log log n) 1 bits of length r bits:

if r ≥ (log n log log n)2

then store indices of 1 bits in group in array
⇒ O( n

(log n log log n)2 (log n log log n) log n) ⊆ O( n
log log n ) bits

else problem is reduced to bitstrings of length r < (log n log log n)2

3. Repeat 1. and 2. on reduced bitstrings

log n log log n 1s{
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Select in o(n) Bits

b

3. Repeat 1. and 2. on reduced bitstrings (r < (log n log log n)2):

1’ Store relative indices of every (log log n)2-th 1 bit in array

⇒ O( n
(log log n)2 log log n) = O( n

log log n ) bits

2’ Within group of (log log n)2 1 bits of length r′ bits:

if r′ ≥ (log log n)4

then store relative indices of 1 bits in subgroup in array

⇒ O( n
(log log n)4 (log log n)2 log log n) = O( n

log log n ) bits

else problem is reduced to bitstrings of length r′ < (log log n)4

log n log log n 1s{

{(log log n)2 1s
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Select in o(n) Bits

b

3. Repeat 1. and 2. on reduced bitstrings (r < (log n log log n)2):

1’ Store relative indices of every (log log n)2-th 1 bit in array

⇒ O( n
(log log n)2 log log n) = O( n

log log n ) bits

2’ Within group of (log log n)2 1 bits of length r′ bits:

if r′ ≥ (log log n)4

then store relative indices of 1 bits in subgroup in array

⇒ O( n
(log log n)4 (log log n)2 log log n) = O( n

log log n ) bits

else problem is reduced to bitstrings of length r′ < (log log n)4

4. Use lookup table for bitstrings of length r′ ≤ (log log n)4:

⇒ O(
√

n log n log log n) = o(n) bits

log n log log n 1s{

{(log log n)2 1s

{ { {

Example: n = 10⇒ (log log n)2 ≈ 3

00000111 6
5
5

7
7

8

6
8
8

21
1
1

5
2 4
2 3

b
it

st
ri

n
g

1 2 3select →
⇒ r′ < (log log n)4 ≈ 9

00001011
00001101

11001000
11010000
11100000

..
.

# rows # columns rel. index

2(log log n)4 ∈ O(2
1
2 log n) = O(

√
n); (log log n)2 ∈ O(log n){ {

# rows # columns
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Select in o(n) Bits

b

log n log log n 1s{

{(log log n)2 1s
+ O(1) Time

4. select(j) = select J-th group where J = bj/(log n log log n)c

+ directly select (j− J)-th 1 bit
or select J′-th subgroup where J′ = b(j− J)/(log log n)2c

+ directly select (j− J − J′)-th 1 bit
or select it in the lookup table
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Succinct Representation of Binary Trees

Number of binary trees on n vertices: Cn =
n−1
∑

i=0
Ci · Cn−1−i =

(2n)!
(n+1)! n!

Cn is the n-th Catalan number and C0 = 1

n = 0: “empty tree”

1 possibility

n = 1:

1 possibility

n = 2:

2 possibilities

n = 3:

5 possibilities
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Succinct Representation of Binary Trees

Number of binary trees on n vertices: Cn =
n−1
∑

i=0
Ci · Cn−1−i =

(2n)!
(n+1)! n!

log Cn = 2n + o(n) (by Stirling’s approximation)

⇒ We can use 2n + o(n) bits to represent binary trees.

Difficulty is when a binary tree is not full.
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Succinct Representation of Binary Trees

15

1

2 3

4 5 6 7

8 9 10 11 12 13

14 16 18 1917

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

b 1 01 1 1 0 0 01 1 0 0 0 0 001 1 1

Size.
� 2n + 1 bits for b

� o(n) for rank
and selectrank(7) = 6

rank(10) = 7

Operations.
� parent(i) = select(b i

2c)
� leftChild(i) = 2 rank(i)

� rightChild(i) = 2 rank(i) + 1

� rank(i) is index for array storing actual values

Idea.
� Add external nodes to have

out-degree 2 or 0 at every node

� Read internal nodes as 1

� Read external nodes as 0

� Use rank and select

Proof is

exercise.
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Succinct Representation of Trees - LOUDS

1

[Level Order Unary Degree Sequence]

� unary encoding of out-degree terminated by a 010

1110

110

110

10

10

0 0 0

0

0

� gives LOUDS sequence

0 0 0 00 0 0 0 0 01 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0
20 21

⇒ 2n + o(n) bits

Size.
� each vertex (except root) is represented twice,

namely with a 1 and with a 0

� o(n) bits for rank and select

� add extra root with out-degree 1
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Succinct Representation of Trees - LOUDS

1

[Level Order Unary Degree Sequence]

� unary encoding of out-degree terminated by a 010

1110

110

110

10

10

0 0 0

0

0

� gives LOUDS sequence

0 0 0 00 0 0 0 0 01 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0
20 21

Operations.
� Let i be index of 1 in LOUDS sequence.

This 1 represents a node (e.g. first 1
represents the root).

� rank(i) is index for array storing
actual values of the nodes.

� add extra root with out-degree 1
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Succinct Representation of Trees - LOUDS

1

1

[Level Order Unary Degree Sequence]

� unary encoding of out-degree terminated by a 010

1110

110

110

10

10

0 0 0

0

0

� gives LOUDS sequence

0 0 0 00 0 0 0 0 01 1 1 1 1 1 1 1 1

� firstChild(i) = select0(rank1(i)) + 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

20 21

firstChild(8) = select0(rank1(8)) + 1
= select0(6) + 1 = 14 + 1 = 15

11

� nextSibling(i) = i + 1
Exercise: chil

d(i, j)

with validity check

� parent(i) = select1(rank0(i))

parent(8) = select1(rank0(8))
= select1(2) = 3

1

1

0 0 0 00 0 0 0 0 01 1 1 1 1 1 1 1 1 01

execute select(j) on
the 0s instead of the 1s

execute rank(i) on
the 1s (as before)

� add extra root with out-degree 1
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Discussion

� Succinct data structures are
� space efficient
� support fast operations
but
� are mostly static (dynamic at extra cost),
� number of operations is limited,
� complex → harder to implement,
� the o(n) and O(1) term hide constants that might dominate before any asym-

ptotic advantage over the “best” compact data structures becomes apparent.
→ primarily a theoretical result (also does not consider hardware architecture)

� rank and select form the basis for many succinct representations
(e.g., for specific types of trees or strings).

that means insertions & deletions

� There are implementations of succinct data structures being used in practice for large
data sets in information retrieval, language model representation, bioinformatics, etc.
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Literature

Main reference:

� Lecture 17 of Advanced Data Structures (MIT, Fall’17) by Erik Demaine

� [Jac ’89] “Space efficient Static Trees and Graphs”

Recommendations:

� Lecture 18 of Demaine’s course on compact & succinct arrays & trees
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