Advanced Algorithms

Succinct Data Structures
 Indexable Dictionaries and Trees

> Johannes Zink • WS23/24

Data Structures - Informal Definition

A data structure is a concept to
■ store,

- organize, and

■ manage data.
As such, it is a collection of
■ data values,

- their relations, and
- What do we represent?
- How much space is required?
$\Rightarrow \quad \square$ Dynamic or static?
- Which operations are defined?

■ How fast are they?

■ the operations that can be applied to the data.

Remarks.

- We look at data structures as a designer/implementer (and not necessarily as a user).
- To define a data structure and to implement it are two different tasks.

Succinct Data Structures

Goal.

■ Use space "close" to information-theoretical minimum,

- but still support time-efficient operations.

Let L be the information-theoretical lower bound to represent a class of objects.
Then a data structure, which still supports time-efficient operations, is called

■ implicit, if it takes $L+O(1)$ bits of space;
■ succinct, if it takes $L+o(L)$ bits of space;
■ compact, if it takes $O(L)$ bits of space.

Examples for Implicit Data Structures

■ arrays to represent lists
■ but why not linked lists?

- 1-dim arrays to represent multi-dimensional arrays

■ sorted arrays to represent sorted lists
■ but why not binary search trees?
■ arrays to represent complete binary trees and heaps

$$
\begin{aligned}
& \operatorname{leftChild}(i)=2 i \\
& \operatorname{rightChild}(i)=2 i+1
\end{aligned}
$$

And unbalanced trees?

Succinct Indexable Dictionary

Represent a subset $S \subseteq\{1,2, \ldots, n\}$ and support the following operations in $O(1)$ time:
\square member (i) returns if $i \in S$
■ $\operatorname{rank}(i)=$ number of elements in S that are less or equal to i

- select $(j)=j$-th element in S
- predecessor (i)
- successor (i)

How many different subsets of $\{1,2, \ldots, n\}$ are there? 2^{n}
How many bits of space do we need to distinguish them?

$$
\log 2^{n}=n \text { bits }
$$

Succinct Indexable Dictionary

Represent S with a bit vector b of length n where

$$
b[i]= \begin{cases}1 & \text { if } i \in S \\ 0 & \text { otherwise }\end{cases}
$$

plus $o(n)$-space data structures to answer in $O(1)$ time
$\square \operatorname{rank}(i)=\# 1 \mathrm{~s}$ at or before position i number of \Rightarrow answer predecessor (i) and successor (i) in $O(1)$ time.

$$
S=\{3,4,6,8,9,14\} \text { where } n=15
$$

	0	1	1	0	1	0	1	1	0	0	0	0	1	0

member (i) can trivially be answered in $O(1)$ time

$$
\begin{aligned}
& \operatorname{select}(5)=9 \\
& \operatorname{rank}(9)=5=\operatorname{rank}(12) \\
& \operatorname{rank}(15)=6
\end{aligned}
$$ (assuming that we can access any entry in constant time)

1. Split into $\left(\log ^{2} n\right)$-bit chunks and store cumulative rank: each needs $\leq \log n$ bits

$$
\Rightarrow O\left(\frac{n}{\log ^{2} n} \log n\right)=O\left(\frac{n}{\log n}\right) \subseteq o(n) \text { bits }
$$

2. Split chunks into $\left(\frac{1}{2} \log n\right)$-bit subchunks and store cumulative rank within chunk: each needs $\leq \log \log ^{2} n=2 \log \log n$ bits

$$
\Rightarrow O(\underbrace{\frac{n}{\log n}}_{\# \text { subchunks }} \underbrace{\log \log n)}_{\text {rel. rank }} \subseteq o(n) \text { bits }
$$

b

1		1	1	11				

1. Split Example: $n=64 \Rightarrow \frac{1}{2} \log n=3$
2. Split and

position \rightarrow		1	2	3
$\begin{aligned} & .00 \\ & . \frac{1}{4} \\ & 0.0 \\ & 0.0 \end{aligned}$	000	0	0	0
	001	0	0	1
	010	0	1	1
	011	0	1	2
	100	1	1	1
	101	1	1	2
	110	1	2	2
	111	1	2	3

$s \leq \log n$ bits
$O\left(\frac{n}{\log ^{2} n} \log n\right)=O\left(\frac{n}{\log n}\right) \subseteq o(n)$ bits ks
each needs $\leq \log \log ^{2} n=2 \log \log n$ bits
$\Rightarrow O\left(\frac{n}{\log n} \log \log n\right) \subseteq o(n)$ bits
3. Use lookup table for bitstrings of length $\left(\frac{1}{2} \log n\right): \quad 2^{\frac{1}{2} \log n}=\sqrt{n}$ distinct bitstrings

$$
\Rightarrow O(\underbrace{\sqrt{n}}_{\# \text { rows }} \underbrace{\log n}_{\# \text { columns rel. rank }} \underbrace{\log \log n}) \subseteq o(n) \text { bits }
$$

Rank in $o(n)$ Bits $+O(1)$ Time

1. Split into $\left(\log ^{2} n\right)$-bit chunks and store cumulative rank: each needs $\leq \log n$ bits

$$
\Rightarrow O\left(\frac{n}{\log ^{2} n} \log n\right)=O\left(\frac{n}{\log n}\right) \subseteq o(n) \text { bits }
$$

2. Split chunks into $\left(\frac{1}{2} \log n\right)$-bit subchunks
and store cumulative rank within chunk: each needs $\leq \log \log ^{2} n=2 \log \log n$ bits

$$
\Rightarrow O\left(\frac{n}{\log n} \log \log n\right) \subseteq o(n) \text { bits }
$$

3. Use lookup table for bitstrings of length $\left(\frac{1}{2} \log n\right): \quad 2^{\frac{1}{2} \log n}=\sqrt{n}$ distinct bitstrings

$$
\Rightarrow O(\sqrt{n} \log n \log \log n) \subseteq o(n) \text { bits }
$$

4. $\operatorname{rank}(i)=$ rank of chunk

+ relative rank of subchunk within chunk
$\Rightarrow O(1)$ time
+ relative rank of element i within subchunk

Select in $o(n)$ Bits

1. Store indices of every $(\log n \log \log n)$-th 1 bit in array

$$
\Rightarrow O\left(\frac{n}{\log n \log \log n} \log n\right)=O\left(\frac{n}{\log \log n}\right) \subseteq o(n) \text { bits }
$$

2. Within group of $(\log n \log \log n) 1$ bits of length r bits:
if $r \geq(\log n \log \log n)^{2}$
then store indices of 1 bits in group in array

$$
\Rightarrow O\left(\frac{n}{(\log n \log \log n)^{2}}(\log n \log \log n) \log n\right) \subseteq O\left(\frac{n}{\log \log n}\right) \text { bits }
$$

else problem is reduced to bitstrings of length $r<(\log n \log \log n)^{2}$
3. Repeat 1. and 2. on reduced bitstrings

Select in $o(n)$ Bits

b

3. Repeat 1. and 2. on reduced bitstrings $\left(r<(\log n \log \log n)^{2}\right)$:
1^{\prime} Store relative indices of every $(\log \log n)^{2}$-th 1 bit in array

$$
\Rightarrow O\left(\frac{n}{(\log \log n)^{2}} \log \log n\right)=O\left(\frac{n}{\log \log n}\right) \text { bits }
$$

2' Within group of $(\log \log n)^{2} 1$ bits of length r^{\prime} bits:
if $r^{\prime} \geq(\log \log n)^{4}$
then store relative indices of 1 bits in subgroup in array

$$
\Rightarrow O\left(\frac{n}{(\log \log n)^{4}}(\log \log n)^{2} \log \log n\right)=O\left(\frac{n}{\log \log n}\right) \text { bits }
$$

else problem is reduced to bitstrings of length $r^{\prime}<(\log \log n)^{4}$

Select in $o(n)$ Bits
 Sele in $0(n)$ Bits

Example: $n=10 \Rightarrow(\log \log n)^{2} \approx 3$

$$
\Rightarrow r^{\prime}<(\log \log n)^{4} \approx 9
$$

3. Repea 1' Stor

	select \rightarrow	1	2	3
	00000111	6	7	8
	00001011	5	7	8
	00001101	5	6	8
	11001000			
	11010000	1	2	4
	11100000	1	2	3

$\left.n \log \log n)^{2}\right):$
1 bit in array
$\left.\frac{n)^{2}}{} \log \log n\right)=O\left(\frac{n}{\log \log n}\right)$ bits
r^{\prime} bits:
ıp in array
$\left.n)^{2} \log \log n\right)=O\left(\frac{n}{\log \log n}\right)$ bits
else problem/is reduced to bitstrings of length $r^{\prime}<(\log \log n)^{4}$
4. Use lookup table for bitstrings of length $r^{\prime} \leq(\log \log n)^{4}$:

$$
\underbrace{2^{(\log \log n)^{4}} \in O\left(2^{\frac{1}{2} \log n}\right)=O(\sqrt{n}) ; \underbrace{(\log \log n)^{2}}_{\# \text { columns }} \in O(\log n) \Rightarrow O(\underbrace{\sqrt{n} \log n}_{\# \text { rows } \# \text { columns rel. index }} \underbrace{0 g} \log n)=0(n) \operatorname{bits}}_{\# \text { rows }}
$$

Select in $o(n)$ Bits $+O(1)$ Time $\log n$

4. $\operatorname{select}(j)=$ select J-th group where $J=\lfloor j /(\log n \log \log n)\rfloor$

+ directly select $(j-J)$-th 1 bit or select J^{\prime}-th subgroup where $J^{\prime}=\left\lfloor(j-J) /(\log \log n)^{2}\right\rfloor$
+ directly select $\left(j-J-J^{\prime}\right)$-th 1 bit or select it in the lookup table

Succinct Representation of Binary Trees

$-C_{n}$ is the n-th Catalan number and $C_{0}=1$

Number of binary trees on n vertices: $C_{n}=\sum_{i=0}^{n-1} C_{i} \cdot C_{n-1-i}=\frac{(2 n)!}{(n+1)!n!}$

Succinct Representation of Binary Trees

Number of binary trees on n vertices: $C_{n}=\sum_{i=0}^{n-1} C_{i} \cdot C_{n-1-i}=\frac{(2 n)!}{(n+1)!n!}$

$$
\log C_{n}=2 n+o(n) \text { (by Stirling's approximation) }
$$

\Rightarrow We can use $2 n+o(n)$ bits to represent binary trees.
Difficulty is when a binary tree is not full.

Succinct Representation of Binary Trees

Idea.

- Add external nodes to have out-degree 2 or 0 at every node
■ Read internal nodes as 1
- Read external nodes as 0

■ Use rank and select

Operations.

- parent $(i)=\operatorname{select}\left(\left\lfloor\frac{i}{2}\right\rfloor\right)$
- leftChild $(i)=2 \operatorname{rank}(i)$

■ rightChild $(i)=2 \operatorname{rank}(i)+1$
rank (i) is index for array storing actual values

Succinct Representation of Trees - LOUDS

 [Level Order Unary Degree Sequence]■ add extra root with out-degree 1

■ unary encoding of out-degree terminated by a 0

- gives LOUDS sequence

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| :---: |

Size.

- each vertex (except root) is represented twice, namely with a 1 and with a 0

$$
\Rightarrow 2 n+o(n) \text { bits }
$$

$\square o(n)$ bits for rank and select

Succinct Representation of Trees - LOUDS

 [Level Order Unary Degree Sequence]■ add extra root with out-degree 1

■ unary encoding of out-degree terminated by a 0

- gives LOUDS sequence

Operations.

- Let i be index of 1 in LOUDS sequence.

This 1 represents a node (e.g. first 1
represents the root).
■ $\operatorname{rank}(i)$ is index for array storing actual values of the nodes.

Succinct Representation of Trees - LOUDS

 [Level Order Unary Degree Sequence]■ add extra root with out-degree 1

■ unary encoding of out-degree terminated by a 0

- gives LOUDS sequence

1	0	1	1	1	0	1	1	0	0	1	0	1	0	1	1	0	0	0	0	0

execute select (j) on
the 0 s instead of the 1 s (the 1 s (as before)
$\square \operatorname{firstChild}(i)=\operatorname{select}_{0}\left(\operatorname{rank}_{1}(i)\right)+1 \quad \square \operatorname{parent}(i)=\operatorname{select}_{1}\left(\operatorname{rank}_{0}(i)\right)$ $\operatorname{firstChild}(8)=\operatorname{select}_{0}\left(\operatorname{rank}_{1}(8)\right)+1 \quad \operatorname{parent}(8)=\operatorname{select}_{1}\left(\operatorname{rank}_{0}(8)\right)$
$=\operatorname{select}_{0}(6)+1=14+1=15$

■ nextSibling $(i)=i+1$
Exercise: child (i, j) with validity check

Discussion

- Succinct data structures are
- space efficient
- support fast operations but

```
that means insertions & deletions
```

\square are mostly static (dynamic at extra cost),

- number of operations is limited,
- complex \rightarrow harder to implement,

■ the $o(n)$ and $O(1)$ term hide constants that might dominate before any asymptotic advantage over the "best" compact data structures becomes apparent. \rightarrow primarily a theoretical result (also does not consider hardware architecture)

- rank and select form the basis for many succinct representations (e.g., for specific types of trees or strings).
- There are implementations of succinct data structures being used in practice for large data sets in information retrieval, language model representation, bioinformatics, etc.

Literature

Main reference:

- Lecture 17 of Advanced Data Structures (MIT, Fall'17) by Erik Demaine

■ [Jac '89] "Space efficient Static Trees and Graphs"
Recommendations:
■ Lecture 18 of Demaine's course on compact \& succinct arrays \& trees

