Advanced Algorithms

Online Algorithms

Ski-Rental Problem and Paging

Johannes Zink • WS23/24

$$
\begin{array}{l|l|l|}
\hline p_{6} & p_{5} & p_{3} \\
k
\end{array} \frac{p_{9}}{\text { page request }}
$$

$$
\begin{array}{|l|l|l|l|l|l|}
\hline p_{4} & p_{1} & p_{2} & p_{7} & p_{8} & p_{9} \\
\hline
\end{array}
$$

Introduction

Winter has begun (even in Würzburg!) ...

Introduction

Winter has begun (even in Würzburg!) ... this means the skiing season is back!

Introduction

Winter has begun (even in Würzburg!) ... this means the skiing season is back!

- But what if there is not always enough snow?

Introduction

Winter has begun (even in Würzburg!) ... this means the skiing season is back!

■ But what if there is not always enough snow? Or snow but "bad" weather?

Ski-Rental Problem

Winter has begun (even in Würzburg!) ... this means the skiing season is back!

■ But what if there is not always enough snow? Or snow but "bad" weather?

- Is it worth buying new skis?

■ Or should we rather rent them?

Ski-Rental Problem

Winter has begun (even in Würzburg!) ... this means the skiing season is back!

■ But what if there is not always enough snow? Or snow but "bad" weather?

- Is it worth buying new skis?

■ Or should we rather rent them?

- We don't know the weather (much) in advance.

Ski-Rental Problem - Definition

Behavior.

- Every day when there is "good" weather, you go skiing.
- We call this is a good day.

Ski-Rental Problem - Definition

Behavior.

- Every day when there is "good" weather, you go skiing.
- We call this is a good day.

■ Each morning, we can check if today is a good day, but we can't check any earlier.

Ski-Rental Problem - Definition

Behavior.

■ Every day when there is "good" weather, you go skiing.
\square We call this is a good day.
■ Each morning, we can check if today is a good day, but we can't check any earlier.

Costs.
\square Renting skis for 1 day costs 1 [Euro].

Ski-Rental Problem - Definition

Behavior.

- Every day when there is "good" weather, you go skiing.
- We call this is a good day.

■ Each morning, we can check if today is a good day, but we can't check any earlier.

Costs.

- Renting skis for 1 day costs 1 [Euro].

■ Buying skis costs M [Euros] and you have them forever.

Ski-Rental Problem - Definition

Behavior.

- Every day when there is "good" weather, you go skiing.
\square We call this is a good day.
■ Each morning, we can check if today is a good day, but we can't check any earlier.

Costs.

■ Renting skis for 1 day costs 1 [Euro].

- Buying skis costs M [Euros] and you have them forever.
- In the end, there will have been T good days.

Ski-Rental Problem - Definition

Behavior.

■ Every day when there is "good" weather, you go skiing.

- We call this is a good day.

■ Each morning, we can check if today is a good day, but we can't check any earlier.

Costs.

■ Renting skis for 1 day costs 1 [Euro].

- Buying skis costs M [Euros] and you have them forever.
- In the end, there will have been T good days.
(When to) buy skis?

Ski-Rental Problem - Definition

Behavior.

■ Every day when there is "good" weather, you go skiing.
\square We call this is a good day.
■ Each morning, we can check if today is a good day, but we can't check any earlier.

Costs.

■ Renting skis for 1 day costs 1 [Euro].
■ Buying skis costs M [Euros] and you have them forever.

- In the end, there will have been T good days.
(When to) buy skis?

Task.

- Not knowing T, devise a strategy if and when to buy skis.

Ski-Rental Problem - Strategies I and II

Ski-Rental Problem - Strategies I and II
Strategy I: Buy on the first good day

Ski-Rental Problem - Strategies I and II
Strategy I: Buy on the first good day
■ Imagine this was the only good day the whole winter.

Ski-Rental Problem - Strategies I and II

Strategy I: Buy on the first good day

- Imagine this was the only good day the whole winter.

■ Then we have paid M; optimally, we would have rented and paid 1 .

Ski-Rental Problem - Strategies I and II

Strategy I: Buy on the first good day

- Imagine this was the only good day the whole winter.
- Then we have paid M; optimally, we would have rented and paid 1.
\square So Strategy I is M times worse than the optimal strategy.

Ski-Rental Problem - Strategies I and II

Strategy I: Buy on the first good day
Buying costs M
T good days

- Imagine this was the only good day the whole winter.
- Then we have paid M; optimally, we would have rented and paid 1.
\square So Strategy I is M times worse than the optimal strategy.
\rightarrow for arbitrarily large M arbitrarily bad

Ski-Rental Problem - Strategies I and II

Strategy I: Buy on the first good day
Buying costs M
T good days

- Imagine this was the only good day the whole winter.
- Then we have paid M; optimally, we would have rented and paid 1.
\square So Strategy I is M times worse than the optimal strategy.
\rightarrow for arbitrarily large M arbitrarily bad
Strategy II: never buy, always rent

Ski-Rental Problem - Strategies I and II

Strategy I: Buy on the first good day

- Imagine this was the only good day the whole winter.

■ Then we have paid M; optimally, we would have rented and paid 1.
\square So Strategy I is M times worse than the optimal strategy.
\rightarrow for arbitrarily large M arbitrarily bad
Strategy II: never buy, always rent
\square Suppose there are many good days, i.e., $T>M$.

Ski-Rental Problem - Strategies I and II

Strategy I: Buy on the first good day

- Imagine this was the only good day the whole winter.

■ Then we have paid M; optimally, we would have rented and paid 1.
\square So Strategy I is M times worse than the optimal strategy.
\rightarrow for arbitrarily large M arbitrarily bad
Strategy II: never buy, always rent
■ Suppose there are many good days, i.e., $T>M$.

- Then we have paid T.

Optimally, we would have bought on or before the first good day and paid M.

Ski-Rental Problem - Strategies I and II

Strategy I: Buy on the first good day

- Imagine this was the only good day the whole winter.
- Then we have paid M; optimally, we would have rented and paid 1.
\square So Strategy I is M times worse than the optimal strategy.
\rightarrow for arbitrarily large M arbitrarily bad
Strategy II: never buy, always rent
- Suppose there are many good days, i.e., $T>M$.
- Then we have paid T.

Optimally, we would have bought on or before the first good day and paid M.

- Strategy II is T / M times worse than the optimal strategy.

Ski-Rental Problem - Strategies I and II

Strategy I: Buy on the first good day

- Imagine this was the only good day the whole winter.

■ Then we have paid M; optimally, we would have rented and paid 1.
\square So Strategy I is M times worse than the optimal strategy.
\rightarrow for arbitrarily large M arbitrarily bad
Strategy II: never buy, always rent
■ Suppose there are many good days, i.e., $T>M$.

- Then we have paid T.

Optimally, we would have bought on or before the first good day and paid M.
■ Strategy II is T / M times worse than the optimal strategy.

Ski-Rental Problem - Strategies I and II

Strategy I: Buy on the first good day

- Imagine this was the only good day the whole winter.

■ Then we have paid M; optimally, we would have rented and paid 1.
\square So Strategy I is M times worse than the optimal strategy.
\rightarrow for arbitrarily large M arbitrarily bad
Strategy II: never buy, always rent competitive

- Suppose there are many good days, i.e., $T>M$. ratio
- Then we have paid T.

Optimally, we would have bought on or before the first good day and paid M.

- Strategy II is T / M times worse than the optimal strategy.
\rightarrow for arbitrarily large T arbitrarily bad

Ski-Rental Problem

Is there a strategy that cannot become arbitrarily bad?

Ski-Rental Problem

Is there a strategy that cannot become arbitrarily bad? - Yes!

Ski-Rental Problem - Strategy III

Strategy III: buy on the M-th good day

Ski-Rental Problem - Strategy III

Is there a strategy that cannot become arbitrarily bad? - Yes!
Strategy III: buy on the M-th good day
■ Observation: the optimal solution pays $\min (M, T)$

Ski-Rental Problem - Strategy III

Is there a strategy that cannot become arbitrarily bad? - Yes!
Strategy III: buy on the M-th good day

- Observation: the optimal solution pays $\min (M, T)$

■ If $T<M$, the competitive ratio is 1 .

Ski-Rental Problem - Strategy III

Strategy III: buy on the M-th good day

- Observation: the optimal solution pays $\min (M, T)$

■ If $T<M$, the competitive ratio is 1 . Otherwise, it is $\frac{2 M-1}{M}=2-\frac{1}{M}$

Ski-Rental Problem - Strategy III

Strategy III: buy on the M-th good day

- Observation: the optimal solution pays $\min (M, T)$

■ If $T<M$, the competitive ratio is 1 . Otherwise, it is $\frac{2 M-1}{M}=2-\frac{1}{M} \stackrel{M m \infty}{=} 2$.

Ski-Rental Problem - Strategy III

Strategy III: buy on the M-th good day
■ Observation: the optimal solution pays $\min (M, T)$
■ If $T<M$, the competitive ratio is 1 . Otherwise, it is $\frac{2 M-1}{M}=2-\frac{1}{M} \stackrel{M m \infty}{=} 2$.
\Rightarrow Strategy III is deterministic and 2 -competitive.

Ski-Rental Problem - Strategy III

Is there a strategy that cannot become arbitrarily bad? - Yes!
Strategy III: buy on the M-th good day
■ Observation: the optimal solution pays $\min (M, T)$
■ If $T<M$, the competitive ratio is 1 . Otherwise, it is $\frac{2 M-1}{M}=2-\frac{1}{M} \stackrel{M \sim \infty}{=} 2$.
\Rightarrow Strategy III is deterministic and 2 -competitive.
Theorem 1. No det. strategy is better than 2-competitive (for $M \rightsquigarrow \infty$; in general: $2-\frac{1}{M}$).

Ski-Rental Problem - Strategy III

Is there a strategy that cannot become arbitrarily bad? - Yes!
Strategy III: buy on the M-th good day
■ Observation: the optimal solution pays $\min (M, T)$
■ If $T<M$, the competitive ratio is 1 . Otherwise, it is $\frac{2 M-1}{M}=2-\frac{1}{M} \stackrel{M m \infty}{=} 2$.
\Rightarrow Strategy III is deterministic and 2 -competitive.
Theorem 1. No det. strategy is better than 2-competitive (for $M \rightsquigarrow \infty$; in general: $2-\frac{1}{M}$).

Proof Idea.

Ski-Rental Problem - Strategy III

Is there a strategy that cannot become arbitrarily bad? - Yes!
Strategy III: buy on the M-th good day
■ Observation: the optimal solution pays $\min (M, T)$
■ If $T<M$, the competitive ratio is 1 . Otherwise, it is $\frac{2 M-1}{M}=2-\frac{1}{M} \stackrel{M m \infty}{=} 2$.
\Rightarrow Strategy III is deterministic and 2 -competitive.
Theorem 1. No det. strategy is better than 2-competitive (for $M \rightsquigarrow \infty$; in general: $2-\frac{1}{M}$).

Proof Idea.

■ Any det. strategy can be formulated as "buy on the X-th day of rental" for a fixed X.

Ski-Rental Problem - Strategy III

Is there a strategy that cannot become arbitrarily bad? - Yes!
Strategy III: buy on the M-th good day
■ Observation: the optimal solution pays $\min (M, T)$
■ If $T<M$, the competitive ratio is 1 . Otherwise, it is $\frac{2 M-1}{M}=2-\frac{1}{M} \stackrel{M \sim \infty}{=} 2$.
\Rightarrow Strategy III is deterministic and 2 -competitive.
Theorem 1. No det. strategy is better than 2-competitive (for $M \rightsquigarrow \infty$; in general: $2-\frac{1}{M}$).

Proof Idea.

- Any det. strategy can be formulated as "buy on the X-th day of rental" for a fixed X.

■ For $X=0$ and $X=\infty$ it's arbitrarily bad; assume $X \in \mathbb{N}^{+}$. Observe, w.c. is $T=X$.

Ski-Rental Problem - Strategy III

Is there a strategy that cannot become arbitrarily bad? - Yes!
Strategy III: buy on the M-th good day
■ Observation: the optimal solution pays $\min (M, T)$
■ If $T<M$, the competitive ratio is 1 . Otherwise, it is $\frac{2 M-1}{M}=2-\frac{1}{M} \stackrel{M m \infty}{=} 2$.
\Rightarrow Strategy III is deterministic and 2 -competitive.
Theorem 1. No det. strategy is better than 2-competitive (for $M \rightsquigarrow \infty$; in general: $2-\frac{1}{M}$).

Proof Idea.

- Any det. strategy can be formulated as "buy on the X-th day of rental" for a fixed X.

■ For $X=0$ and $X=\infty$ it's arbitrarily bad; assume $X \in \mathbb{N}^{+}$. Observe, w.c. is $T=X$. costs for deterministic startegy

- $\frac{c_{\text {det }}}{c_{\mathrm{OPT}}}$ costs for optimal startegy

Ski-Rental Problem - Strategy III

Is there a strategy that cannot become arbitrarily bad? - Yes!
Strategy III: buy on the M-th good day

- Observation: the optimal solution pays $\min (M, T)$

■ If $T<M$, the competitive ratio is 1 . Otherwise, it is $\frac{2 M-1}{M}=2-\frac{1}{M} \stackrel{M \sim \infty}{=} 2$.
\Rightarrow Strategy III is deterministic and 2 -competitive.
Theorem 1. No det. strategy is better than 2-competitive (for $M \rightsquigarrow \infty$; in general: $2-\frac{1}{M}$).

Proof Idea.

■ Any det. strategy can be formulated as "buy on the X-th day of rental" for a fixed X.
■ For $X=0$ and $X=\infty$ it's arbitrarily bad; assume $X \in \mathbb{N}^{+}$. Observe, w.c. is $T=X$.

- $\frac{c_{\text {det }}}{c_{\text {OPT }}}=\frac{X-1+M}{\min (X, M)}$

Ski-Rental Problem - Strategy III

Is there a strategy that cannot become arbitrarily bad? - Yes!
Strategy III: buy on the M-th good day
■ Observation: the optimal solution pays $\min (M, T)$
■ If $T<M$, the competitive ratio is 1 . Otherwise, it is $\frac{2 M-1}{M}=2-\frac{1}{M} \stackrel{M m \infty}{=} 2$.
\Rightarrow Strategy III is deterministic and 2 -competitive.
Theorem 1. No det. strategy is better than 2-competitive (for $M \rightsquigarrow \infty$; in general: $2-\frac{1}{M}$).

Proof Idea.

- Any det. strategy can be formulated as "buy on the X-th day of rental" for a fixed X.
\square For $X=0$ and $X=\infty$ it's arbitrarily bad; assume $X \in \mathbb{N}^{+}$. Observe, w.c. is $T=X$.
$\square \frac{c_{\text {det }}}{c_{\text {OPT }}}=\frac{X-1+M}{\min (X, M)} \geq \min \left(\frac{X-1+X+1}{X}, \frac{M-1+M}{M}\right)$

Ski-Rental Problem - Strategy III

Is there a strategy that cannot become arbitrarily bad? - Yes!
Strategy III: buy on the M-th good day
\square Observation: the optimal solution pays $\min (M, T)$
■ If $T<M$, the competitive ratio is 1 . Otherwise, it is $\frac{2 M-1}{M}=2-\frac{1}{M} \stackrel{M m \infty}{=} 2$.
\Rightarrow Strategy III is deterministic and 2-competitive.
Theorem 1. No det. strategy is better than 2-competitive (for $M \rightsquigarrow \infty$; in general: $2-\frac{1}{M}$).

Proof Idea.

- Any det. strategy can be formulated as "buy on the X-th day of rental" for a fixed X.
\square For $X=0$ and $X=\infty$ it's arbitrarily bad; assume $X \in \mathbb{N}^{+}$. Observe, w.c. is $T=X$.
$\square \frac{c_{\text {det }}}{c_{\text {OPT }}}=\frac{X-1+M}{\min (X, M)} \geq \min \left(\frac{X-1+X+1}{X}, \frac{M-1+M}{M}\right)=\min \left(2,2-\frac{1}{M}\right)=2-\frac{1}{M}$

Ski-Rental Problem - Strategy III

Is there a strategy that cannot become arbitrarily bad? - Yes!
Strategy III: buy on the M-th good day
■ Observation: the optimal solution pays $\min (M, T)$
■ If $T<M$, the competitive ratio is 1 . Otherwise, it is $\frac{2 M-1}{M}=2-\frac{1}{M} \stackrel{M m \infty}{=} 2$.
\Rightarrow Strategy III is deterministic and 2-competitive.
Theorem 1. No det. strategy is better than 2-competitive (for $M \rightsquigarrow \infty$; in general: $2-\frac{1}{M}$).

Proof Idea.

- Any det. strategy can be formulated as "buy on the X-th day of rental" for a fixed X.

■ For $X=0$ and $X=\infty$ it's arbitrarily bad; assume $X \in \mathbb{N}^{+}$. Observe, w.c. is $T=X$.
$\square \frac{c_{\text {det }}}{c_{\text {OPT }}}=\frac{X-1+M}{\min (X, M)} \geq \min \left(\frac{X-1+X+1}{X}, \frac{M-1+M}{M}\right)=\min \left(2,2-\frac{1}{M}\right)=2-\frac{1}{M} \stackrel{M \sim \infty}{=} 2$

Ski-Rental Problem

Can we get below this bound using randomization?

Ski-Rental Problem

Can we get below this bound using randomization? - Let's try!

Ski-Rental Problem - Strategy IV

Can we get below this bound using randomization? - Let's try!

Ski-Rental Problem - Strategy IV

Can we get below this bound using randomization? - Let's try!
Strategy IV: throw a coin; HEADS: buy on the M-th good day TAILS: buy on the α M-th good day $(\alpha \in(0,1))$
■ Observation: worst case can only be $T=M$ or $T=\alpha M$

Ski-Rental Problem - Strategy IV

Can we get below this bound using randomization? - Let's try!
Strategy IV: throw a coin; HEADS: buy on the M-th good day TAILS: buy on the α M-th good day $(\alpha \in(0,1))$

- Observation: worst case can only be $T=M$ or $T=\alpha M$

■ Case $T=M: \frac{E\left[c_{\text {strategy }} / \mathrm{v}\right]}{c_{\text {OPT }}}=\frac{\frac{1}{2} \cdot(2 M-1)+\frac{1}{2} \cdot((1+\alpha) M-1)}{M}=\frac{3+\alpha}{2}-\frac{1}{M} \stackrel{M \cdots \infty}{=} \frac{3+\alpha}{2}$

Ski-Rental Problem - Strategy IV

Can we get below this bound using randomization? - Let's try!
Strategy IV: throw a coin; HEADS: buy on the M-th good day TAILS: buy on the α M-th good day $(\alpha \in(0,1))$

- Observation: worst case can only be $T=M$ or $T=\alpha M$

■ Case $T=M: \frac{E\left[\text { strategy }^{\text {Cl }}\right]}{c_{\text {OPT }}}=\frac{\frac{1}{2} \cdot(2 M-1)+\frac{1}{2} \cdot((1+\alpha) M-1)}{M}=\frac{3+\alpha}{2}-\frac{1}{M} \stackrel{M \cdots \infty}{=} \frac{3+\alpha}{2}$
■ Case $T=\alpha M: \frac{E[\text { cstrateglv }]}{c_{\text {OPT }}}=\frac{\frac{1}{2} \cdot \alpha M+\frac{1}{2} \cdot((1+\alpha) M-1)}{\alpha M}=1+\frac{1}{2 \alpha}-\frac{1}{2 \alpha M} \stackrel{M ल \infty}{=} 1+\frac{1}{2 \alpha}$

Ski-Rental Problem - Strategy IV

Can we get below this bound using randomization? - Let's try!
Strategy IV: throw a coin; HEADS: buy on the M-th good day
TAILS: buy on the α M-th good day $(\alpha \in(0,1))$

- Observation: worst case can only be $T=M$ or $T=\alpha M$ $\operatorname{try} \alpha=\frac{1}{2}$
Case $T=M: \frac{E\left[c_{\text {Strategy }} / \mathrm{V}\right]}{c_{\text {PPT }}}=\frac{\frac{1}{2} \cdot(2 M-1)+\frac{1}{2} \cdot((1+\alpha) M-1)}{M}=\frac{3+\alpha}{2}-\frac{1}{M} \stackrel{M m \infty}{=} \frac{3+\alpha}{2}$
Case $T=\alpha M: \frac{E\left[c_{\text {ctrategylv }}\right]}{c_{\text {OPT }}}=\frac{\frac{1}{2} \cdot \alpha M+\frac{1}{2} \cdot((1+\alpha) M-1)}{\alpha M}=1+\frac{1}{2 \alpha}-\frac{1}{2 \alpha M} \stackrel{M ल \infty}{=} 1+\frac{1}{2 \alpha}$

Ski-Rental Problem - Strategy IV

Can we get below this bound using randomization? - Let's try!
Strategy IV: throw a coin; HEADS: buy on the M-th good day
TAILS: buy on the α M-th good day $(\alpha \in(0,1))$

- Observation: worst case can only be $T=M$ or $T=\alpha M$ $\operatorname{try} \alpha=\frac{1}{2}$ Case $T=M: \frac{E\left[c_{\text {strategyl }}\right]}{c_{\text {OPT }}}=\frac{\frac{1}{2} \cdot(2 M-1)+\frac{1}{2} \cdot((1+\alpha) M-1)}{M}=\frac{3+\alpha}{2}-\frac{1}{M} \stackrel{M m \infty}{=} \frac{3+\alpha}{2}=\frac{7}{4}<2$
Case $T=\alpha M: \frac{E\left[c_{\text {ctrategylv }}\right]}{c_{\text {OPT }}}=\frac{\frac{1}{2} \cdot \alpha M+\frac{1}{2} \cdot((1+\alpha) M-1)}{\alpha M}=1+\frac{1}{2 \alpha}-\frac{1}{2 \alpha M} \stackrel{M ल \infty}{=} 1+\frac{1}{2 \alpha}$

Ski-Rental Problem - Strategy IV

Can we get below this bound using randomization? - Let's try!
Strategy IV: throw a coin; HEADS: buy on the M-th good day
TAILS: buy on the α M-th good day $(\alpha \in(0,1))$
■ Observation: worst case can only be $T=M$ or $T=\alpha M$ $\operatorname{try} \alpha=\frac{1}{2}$ Case $T=M: \frac{E\left[c_{\text {strategyl }}\right]}{c_{\text {OPT }}}=\frac{\frac{1}{2} \cdot(2 M-1)+\frac{1}{2} \cdot((1+\alpha) M-1)}{M}=\frac{3+\alpha}{2}-\frac{1}{M} \stackrel{M m \infty}{=} \frac{3+\alpha}{2}=\frac{7}{4}<2$
Case $T=\alpha M: \frac{E\left[c_{\text {Strategylv }}\right]}{c_{\text {OPT }}}=\frac{\frac{1}{2} \cdot \alpha M+\frac{1}{2} \cdot((1+\alpha) M-1)}{\alpha M}=1+\frac{1}{2 \alpha}-\frac{1}{2 \alpha M} \stackrel{M m \infty}{=} 1+\frac{1}{2 \alpha}=2$

Ski-Rental Problem - Strategy IV

Can we get below this bound using randomization? - Let's try!
Strategy IV: throw a coin; HEADS: buy on the M-th good day
TAILS: buy on the α M-th good day $(\alpha \in(0,1))$

- Observation: worst case can only be $T=M$ or $T=\alpha M$ $\operatorname{try} \alpha=\frac{1}{2}$ Case $T=M: \frac{E\left[c_{\text {Strategylv }}\right]}{c_{\text {OPT }}}=\frac{\frac{1}{2} \cdot(2 M-1)+\frac{1}{2} \cdot((1+\alpha) M-1)}{M}=\frac{3+\alpha}{2}-\frac{1}{M} \stackrel{M m \infty}{=} \frac{3+\alpha}{2}=\frac{7}{4}<2$
Case $T=\alpha M: \frac{E\left[c_{\text {Strategy }} \mathrm{l}\right]}{c_{\mathrm{O} P \mathrm{P} T}}=\frac{\frac{1}{2} \cdot \alpha M+\frac{1}{2} \cdot((1+\alpha) M-1)}{\alpha M}=1+\frac{1}{2 \alpha}-\frac{1}{2 \alpha M} \stackrel{M m \infty}{=} 1+\frac{1}{2 \alpha}=2$ not better than the deterministic Strategy III

Ski-Rental Problem - Strategy IV

Can we get below this bound using randomization? - Let's try!
Strategy IV: throw a coin; HEADS: buy on the M-th good day TAILS: buy on the α M-th good day $(\alpha \in(0,1))$

- Observation: worst case can only be $T=M$ or $T=\alpha M$

■ Case $T=M: \frac{E\left[\text { strategy }^{\text {Cl }}\right]}{c_{\text {OPT }}}=\frac{\frac{1}{2} \cdot(2 M-1)+\frac{1}{2} \cdot((1+\alpha) M-1)}{M}=\frac{3+\alpha}{2}-\frac{1}{M} \stackrel{M \cdots \infty}{=} \frac{3+\alpha}{2}$
■ Case $T=\alpha M: \frac{E[\text { cstrateglv }]}{c_{\text {OPT }}}=\frac{\frac{1}{2} \cdot \alpha M+\frac{1}{2} \cdot((1+\alpha) M-1)}{\alpha M}=1+\frac{1}{2 \alpha}-\frac{1}{2 \alpha M} \stackrel{M_{m \times \infty}}{=} 1+\frac{1}{2 \alpha}$

- The w.c. ratio is minimum if $\frac{3+\alpha}{2}=1+\frac{1}{2 \alpha}$

Ski-Rental Problem - Strategy IV

Can we get below this bound using randomization? - Let's try!
Strategy IV: throw a coin; HEADS: buy on the M-th good day TAILS: buy on the α M-th good day $(\alpha \in(0,1))$

- Observation: worst case can only be $T=M$ or $T=\alpha M$

■ Case $T=M: \frac{E\left[c_{\text {strategy }} l \mathrm{l}\right]}{\mathrm{C}_{\text {OPT }}}=\frac{\frac{1}{2} \cdot(2 M-1)+\frac{1}{2} \cdot((1+\alpha) M-1)}{M}=\frac{3+\alpha}{2}-\frac{1}{M} \stackrel{M \cdots \infty \alpha}{=} \frac{3+\alpha}{2}$
■ Case $T=\alpha M: \frac{E[\text { cstrateglv }]}{c_{\text {OPT }}}=\frac{\frac{1}{2} \cdot \alpha M+\frac{1}{2} \cdot((1+\alpha) M-1)}{\alpha M}=1+\frac{1}{2 \alpha}-\frac{1}{2 \alpha M} \stackrel{M m \infty}{=} 1+\frac{1}{2 \alpha}$
■ The w.c. ratio is minimum if $\frac{3+\alpha}{2}=1+\frac{1}{2 \alpha} \Rightarrow \alpha=\frac{\sqrt{5}-1}{2}$

Ski-Rental Problem - Strategy IV

Can we get below this bound using randomization? - Let's try! Strategy IV: throw a coin; HEADS: buy on the M-th good day TAILS: buy on the α M-th good day $(\alpha \in(0,1))$
■ Observation: worst case can only be $T=M$ or $T=\alpha M$
\square Case $T=M: \frac{E\left[c_{\text {Strategylv }}\right]}{c_{\text {OPT }}}=\frac{\frac{1}{2} \cdot(2 M-1)+\frac{1}{2} \cdot((1+\alpha) M-1)}{M}=\frac{3+\alpha}{2}-\frac{1}{M} \stackrel{M \sim \infty}{=} \frac{3+\alpha}{2}$
■ Case $T=\alpha M: \frac{E\left[c_{\text {StrategylV }}\right]}{c_{\text {OPT }}}=\frac{\frac{1}{2} \cdot \alpha M+\frac{1}{2} \cdot((1+\alpha) M-1)}{\alpha M}=1+\frac{1}{2 \alpha}-\frac{1}{2 \alpha M} \stackrel{M \sim \infty}{=} 1+\frac{1}{2 \alpha}$
■ The w.c. ratio is minimum if $\frac{3+\alpha}{2}=1+\frac{1}{2 \alpha} \Rightarrow \alpha=\frac{\sqrt{5}-1}{2}$
\Rightarrow Strategy IV (with $\alpha=\frac{\sqrt{5}-1}{2} \approx 0.62$) is 1.81-competitive, randomized, and better than any deterministic strategy.

Ski-Rental Problem - Strategy IV

Can we get below this bound using randomization? - Let's try!
Strategy IV: throw a coin; HEADS: buy on the M-th good day
TAILS: buy on the α M-th good day $(\alpha \in(0,1))$
■ Observation: worst case can only be $T=M$ or $T=\alpha M$
\square Case $T=M: \frac{E\left[c_{\text {StrategylV }}\right]}{c_{\text {OPT }}}=\frac{\frac{1}{2} \cdot(2 M-1)+\frac{1}{2} \cdot((1+\alpha) M-1)}{M}=\frac{3+\alpha}{2}-\frac{1}{M} \stackrel{M \sim \infty}{=} \frac{3+\alpha}{2}$
■ Case $T=\alpha M: \frac{E\left[c_{\text {StrategylV }}\right]}{c_{\text {OPT }}}=\frac{\frac{1}{2} \cdot \alpha M+\frac{1}{2} \cdot((1+\alpha) M-1)}{\alpha M}=1+\frac{1}{2 \alpha}-\frac{1}{2 \alpha M} \stackrel{M \sim \infty}{=} 1+\frac{1}{2 \alpha}$
\square The w.c. ratio is minimum if $\frac{3+\alpha}{2}=1+\frac{1}{2 \alpha} \Rightarrow \alpha=\frac{\sqrt{5}-1}{2}$
\Rightarrow Strategy IV (with $\alpha=\frac{\sqrt{5}-1}{2} \approx 0.62$) is 1.81-competitive, randomized, and better than any deterministic strategy.
\square With a more sophisticated probability distribution for the time we buy skis, we can expect even a competitive ratio of $\frac{e}{e-1} \approx 1.58$.

Online vs. Offline Algorithms

Online vs. Offline Algorithms
Online Algorithm

Online vs. Offline Algorithms

Online Algorithm

■ No full information available initially (online problem)

Online vs. Offline Algorithms

Online Algorithm

■ No full information available initially (online problem)

- Decisions are made with incomplete information.

Online vs. Offline Algorithms

Online Algorithm

■ No full information available initially (online problem)

■ Decisions are made with incomplete information.

- The algorithm may get more information over time or by exploring the instance.

Online vs. Offline Algorithms

Online Algorithm

■ No full information available initially (online problem)

■ Decisions are made with incomplete information.

Offline Algorithm

- The algorithm may get more information over time or by exploring the instance.

Online vs. Offline Algorithms

Online Algorithm

- No full information available initially (online problem)

■ Decisions are made with incomplete information.

- The algorithm may get more information over time or by exploring the instance.

Online vs. Offline Algorithms

Online Algorithm

- No full information available initially (online problem)
- Decisions are made with incomplete information.

Offline Algorithm

- Full information available initially (offline problem)
- Decisions are made with complete information.
- The algorithm may get more information over time or by exploring the instance.

Online vs. Offline Algorithms

Online Algorithm

- No full information available initially (online problem)
- Decisions are made with incomplete information.

Offline Algorithm

- Full information available initially (offline problem)
- Decisions are made with complete information.
- The algorithm may get more information over time or by exploring the instance.

■ The objective value of the returned solution divided by the objective value of an optimal (offline) solution is the competitive ratio.

Online vs. Offline Algorithms

Online Algorithm

- No full information available initially (online problem)
- Decisions are made with incomplete information.

Offline Algorithm

- Full information available initially (offline problem)
- Decisions are made with complete information.
- The algorithm may get more information over time or by exploring the instance.
- The objective value of the returned solution divided by the objective value of an optimal (offline) solution is the competitive ratio.

Online vs. Offline Algorithms

Online Algorithm

- No full information available initially (online problem)
- Decisions are made with incomplete information.

Offline Algorithm

- Full information available initially (offline problem)
- Decisions are made with complete information.
- The algorithm may get more information over time or by exploring the instance.

```
in the w.c. (determ. algo.)
```

- The objective value of the returned solution divided by the objective value of an optimal (offline) solution is the competitive ratio.

Online vs. Offline Algorithms

Online Algorithm

- No full information available initially (online problem)

■ Decisions are made with incomplete information.

Offline Algorithm

- Full information available initially (offline problem)
- Decisions are made with complete information.
- The algorithm may get more information over time or by exploring the instance.

```
in the w.c. (determ. algo.)
```

```
in the worst avg.c. (random. algo.)
```

- The objective value of the returned solution divided by the objective value of an optimal (offline) solution is the competitive ratio.

Online vs. Offline Algorithms

Online Algorithm

- No full information available initially (online problem)
- Decisions are made with incomplete information.

Offline Algorithm

- Full information available initially (offline problem)
- Decisions are made with complete information.
- The algorithm may get more information over time or by exploring the instance.

```
in the w.c. (determ. algo.)
```

in the worst avg.c. (random. algo.)

- The objective value of the returned solution divided by the objective value of an optimal (offline) solution is the competitive ratio.
- Examples (problems \& algos.):

Online vs. Offline Algorithms

Online Algorithm

■ No full information available initially (online problem)

■ Decisions are made with incomplete information.

Offline Algorithm

- Full information available initially (offline problem)
- Decisions are made with complete information.
- The algorithm may get more information over time or by exploring the instance.

```
in the w.c. (determ. algo.)
```

in the worst avg.c. (random. algo.)

■ The objective value of the returned solution divided by the objective value of an optimal (offline) solution is the competitive ratio.

- Examples (problems \& algos.):

Ski-Rental Problem, searching in unkown environments, Cow-Path Problem, Job-Shop Scheduling, Insertion Sort, Paging (replacing entries in a memory)

Online vs. Offline Algorithms

Online Algorithm

- No full information available initially (online problem)

■ Decisions are made with incomplete information.

Offline Algorithm

- Full information available initially (offline problem)
- Decisions are made with complete information.
- The algorithm may get more information over time or by exploring the instance.

```
in the w.c. (determ. algo.)
```

in the worst avg.c. (random. algo.)

- The objective value of the returned solution divided by the objective value of an optimal (offline) solution is the competitive ratio.
- Examples (problems \& algos.):

Ski-Rental Problem, searching in unkown environments, Cow-Path Problem, Job-Shop Scheduling, Insertion Sort, Paging (replacing entries in a memory)

Paging - Definition

Given (offline/online):

Paging - Definition

Given (offline/online):
■ Fast access memory (a cache) with a capacity of k pages

Paging - Definition

Given (offline/online):

- Fast access memory (a cache) with a capacity of k pages

■ Slow access memory with unlimited capacity

Paging - Definition

p_{2}	p_{3}	p_{4}	p_{6}	p_{7}	p_{9}

Given (offline/online):

- Fast access memory (a cache) with a capacity of k pages

■ Slow access memory with unlimited capacity

- If a page is requested, but it is not in the cache (page fault), it has to be swapped with a page in the cache. A page request is fulfilled if the page is in the cache.

Paging - Definition

Given (offline/online):

- Fast access memory (a cache) with a capacity of k pages
- Slow access memory with unlimited capacity
- If a page is requested, but it is not in the cache (page fault), it has to be swapped with a page in the cache. A page request is fulfilled if the page is in the cache.

Paging - Definition

Given (offline/online):
■ Fast access memory (a cache) with a capacity of k pages

- Slow access memory with unlimited capacity
- If a page is requested, but it is not in the cache (page fault), it has to be swapped with a page in the cache. A page request is fulfilled if the page is in the cache.

Paging - Definition

Given (offline/online):

- Fast access memory (a cache) with a capacity of k pages
- Slow access memory with unlimited capacity
- If a page is requested, but it is not in the cache (page fault), it has to be swapped with a page in the cache. A page request is fulfilled if the page is in the cache.

$$
\begin{array}{|l|l|l|l|l|}
\hline p_{2} & p_{1} & p_{4} & p_{6} & p_{7} \\
\hline
\end{array}
$$

Given (offline/online):

- Fast access memory (a cache) with a capacity of k pages
- Slow access memory with unlimited capacity

■ If a page is requested, but it is not in the cache (page fault), it has to be swapped with a page in the cache. A page request is fulfilled if the page is in the cache.

$$
\begin{array}{|l|l|l|l|l|}
\hline p_{2} & p_{1} & p_{4} & p_{6} & p_{7} \\
\hline
\end{array}
$$

Given (offline/online):

- Fast access memory (a cache) with a capacity of k pages

■ Slow access memory with unlimited capacity
■ If a page is requested, but it is not in the cache (page fault), it has to be swapped with a page in the cache. A page request is fulfilled if the page is in the cache.
■ Sequence σ of page requests that need to be fulfilled in order. / where we just see one request and have to fulfill that request before we see the next request.

Paging - Definition

fulfilled page requests

$$
\begin{aligned}
& k \\
& \underset{\text { page request }}{p_{4} p_{8} p_{3}} \leftarrow \sigma
\end{aligned}
$$

Given (offline/online):

- Fast access memory (a cache) with a capacity of k pages

■ Slow access memory with unlimited capacity

- If a page is requested, but it is not in the cache (page fault), it has to be swapped with a page in the cache. A page request is fulfilled if the page is in the cache.
\square Sequence σ of page requests that need to be fulfilled in order. / where we just see one request and have to fulfill that request before we see the next request.

Given (offline/online):
■ Fast access memory (a cache) with a capacity of k pages
■ Slow access memory with unlimited capacity
■ If a page is requested, but it is not in the cache (page fault), it has to be swapped with a page in the cache. A page request is fulfilled if the page is in the cache.
\square Sequence σ of page requests that need to be fulfilled in order. / where we just see one request and have to fulfill that request before we see the next request.

Paging - Definition

$p_{3} p_{4}$
fulfilled page requests

$$
p_{2}\left|p_{1}\right| p_{3}\left|p_{6}\right| p_{7} \mid p_{9}
$$

Given (offline/online):

- Fast access memory (a cache) with a capacity of k pages

■ Slow access memory with unlimited capacity
■ If a page is requested, but it is not in the cache (page fault), it has to be swapped with a page in the cache. A page request is fulfilled if the page is in the cache.
■ Sequence σ of page requests that need to be fulfilled in order. / where we just see one request and have to fulfill that request before we see the next request.

Paging - Definition

$$
\begin{gathered}
p_{3} p_{4} p_{8} \\
\text { fulfilled page requests }
\end{gathered} \overbrace{p_{4}\left|p_{5}\right| p_{8}}^{k}<\frac{p_{3}}{\text { page request }} \leftarrow \sigma
$$

$$
p_{2}\left|p_{1}\right| p_{3}\left|p_{6}\right| p_{7} \mid p_{9}
$$

Given (offline/online):

- Fast access memory (a cache) with a capacity of k pages

■ Slow access memory with unlimited capacity

- If a page is requested, but it is not in the cache (page fault), it has to be swapped with a page in the cache. A page request is fulfilled if the page is in the cache.
■ Sequence σ of page requests that need to be fulfilled in order. / where we just see one request and have to fulfill that request before we see the next request.

Paging - Definition

$$
\begin{aligned}
& p_{3} p_{4} p_{8} \\
& \text { fulfilled page requests } \\
& k \\
& \begin{array}{|l|l|l|l|l|}
\hline p_{2} & p_{1} & p_{3} & p_{6} & p_{7} \\
\hline
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& k \\
& \begin{array}{|l|l|l|l|l|}
\hline p_{2} & p_{1} & p_{3} & p_{6} & p_{7} \\
\hline
\end{array}
\end{aligned}
$$

Given (offline/online):

- Fast access memory (a cache) with a capacity of k pages

■ Slow access memory with unlimited capacity

- If a page is requested, but it is not in the cache (page fault), it has to be swapped with a page in the cache. A page request is fulfilled if the page is in the cache.
\square Sequence σ of page requests that need to be fulfilled in order. / where we just see one request and have to fulfill that request before we see the next request.

Paging - Definition

$$
\begin{aligned}
& p_{3} p_{4} p_{8} \\
& \text { fulfilled page requests } \\
& k \\
& \begin{array}{|l|l|l|l|l|}
\hline p_{2} & p_{1} & p_{4} & p_{6} & p_{7} \\
\hline
\end{array}
\end{aligned}
$$

s

Given (offline/online):

- Fast access memory (a cache) with a capacity of k pages

■ Slow access memory with unlimited capacity

- If a page is requested, but it is not in the cache (page fault), it has to be swapped with a page in the cache. A page request is fulfilled if the page is in the cache.
■ Sequence σ of page requests that need to be fulfilled in order. / where we just see one request and have to fulfill that request before we see the next request.

Paging - Definition

$$
\begin{array}{|l|l|l|l|l|l|}
\hline p_{2} & p_{1} & p_{4} & p_{6} & p_{7} & p_{9} \\
\hline
\end{array}
$$

Given (offline/online):

- Fast access memory (a cache) with a capacity of k pages

■ Slow access memory with unlimited capacity
■ If a page is requested, but it is not in the cache (page fault), it has to be swapped with a page in the cache. A page request is fulfilled if the page is in the cache.
■ Sequence σ of page requests that need to be fulfilled in order. / where we just see one request and have to fulfill that request before we see the next request.

Paging - Definition

$$
\begin{array}{|l|l|l|l|l|l|}
\hline p_{2} & p_{1} & p_{4} & p_{6} & p_{7} & p_{9} \\
\hline
\end{array}
$$

Given (offline/online):

■ Fast access memory (a cache) with a capacity of k pages
■ Slow access memory with unlimited capacity
■ If a page is requested, but it is not in the cache (page fault), it has to be swapped with a page in the cache. A page request is fulfilled if the page is in the cache.
\square Sequence σ of page requests that need to be fulfilled in order. / where we just see one request and have to fulfill that request before we see the next request.

Objective value:

Paging - Definition

$$
\begin{array}{|l|l|l|l|l|l|}
\hline p_{2} & p_{1} & p_{4} & p_{6} & p_{7} & p_{9} \\
\hline
\end{array}
$$

Given (offline/online):

■ Fast access memory (a cache) with a capacity of k pages
■ Slow access memory with unlimited capacity

- If a page is requested, but it is not in the cache (page fault), it has to be swapped with a page in the cache. A page request is fulfilled if the page is in the cache.
\square Sequence σ of page requests that need to be fulfilled in order. / where we just see one request and have to fulfill that request before we see the next request.

Objective value:

- Minimize the number of page faults while fulfilling σ.

Paging - Det. Strat.

■ On a page fault, a Paging algorithm chooses which page to evict from the cache.

Paging - Det. Strat. $p_{4} p_{8} p_{8} p_{5} p_{4}$
 fulfilled page requests

$$
\begin{array}{|l|l|l|l|l|}
\hline p_{1} & p_{2} & p_{3} & p_{6} & p_{7} \\
\hline
\end{array}
$$

■ On a page fault, a Paging algorithm chooses which page to evict from the cache.

 $$
\begin{array}{|l|l|l|l|l|} \hline p_{1} & p_{2} & p_{3} & p_{6} & p_{7} \\ \hline \end{array} p_{9} \quad \zeta \text { page fault }
$$

 $\$$ page fault

 $\$$ page fault}

- On a page fault, a Paging algorithm chooses which page to evict from the cache.

Paging - Det. Strat. $p_{4} p_{8} p_{8} p_{5} p_{4}$
 fulfilled page requests

$$
\begin{array}{|l|l|l|l|l|l|}
\hline p_{1} & p_{2} & p_{3} & p_{6} & p_{7} & p_{9} \\
\hline
\end{array}
$$

■ On a page fault, a Paging algorithm chooses which page to evict from the cache. Deterministic Strategies: Evict the page that has ...

Paging - Det. Strat. $\quad p_{4} p_{8} p_{8} p_{5} p_{4}$
fulfilled page requests

$$
\begin{array}{|l|l|l|l|l|l|}
\hline p_{1} & p_{2} & p_{3} & p_{6} & p_{7} & p_{9} \\
\hline
\end{array}
$$

■ On a page fault, a Paging algorithm chooses which page to evict from the cache.
Deterministic Strategies: Evict the page that has ...
■ Least Frequently Used (LFU): . . . the lowest number of accesses since it was loaded.

Paging - Det. Strat. $p_{4} p_{8} p_{8} p_{5} p_{4}$
 fulfilled page requests

■ On a page fault, a Paging algorithm chooses which page to evict from the cache.
Deterministic Strategies: Evict the page that has ...
■ Least Frequently Used (LFU): . . . the lowest number of accesses since it was loaded.

Paging - Det. Strat. $\quad p_{4} p_{8} p_{8} p_{5} p_{4}$
 fulfilled page requests

$$
\begin{array}{|l|l|l|l|l|l|}
\hline p_{1} & p_{2} & p_{3} & p_{6} & p_{7} & p_{9} \\
\hline
\end{array}
$$

■ On a page fault, a Paging algorithm chooses which page to evict from the cache.
Deterministic Strategies: Evict the page that has ...
■ Least Frequently Used (LFU): . . . the lowest number of accesses since it was loaded.
■ Least Recently Used (LRU): . . . been accessed least recently.

Paging - Det. Strat. $p_{4} p_{8} p_{8} p_{5} p_{4}$
 fulfilled page requests

■ On a page fault, a Paging algorithm chooses which page to evict from the cache.
Deterministic Strategies: Evict the page that has ...
■ Least Frequently Used (LFU): . . . the lowest number of accesses since it was loaded.
■ Least Recently Used (LRU): . . . been accessed least recently.

Paging - Det. Strat. $p_{4} p_{8} p_{8} p_{5} p_{4}$
 fulfilled page requests

$$
p_{1}\left|p_{2}\right| p_{3}\left|p_{6}\right| p_{7} \mid p_{9}
$$

■ On a page fault, a Paging algorithm chooses which page to evict from the cache.
Deterministic Strategies: Evict the page that has ...
■ Least Frequently Used (LFU): . . . the lowest number of accesses since it was loaded.
■ Least Recently Used (LRU): . . . been accessed least recently.
■ First-in-first-out (FIFO): ... been in the cache the longest.

Paging - Det. Strat. $\quad p_{4} p_{8} p_{8} p_{5} p_{4}$

fulfilled page requests

$$
\begin{array}{|l|l|l|l|l|}
\hline p_{1} & p_{2} & p_{3} & p_{6} & p_{7} \\
\hline
\end{array}
$$

■ On a page fault, a Paging algorithm chooses which page to evict from the cache.

Deterministic Strategies: Evict the page that has ...
■ Least Frequently Used (LFU): . . . the lowest number of accesses since it was loaded.
■ Least Recently Used (LRU): . . . been accessed least recently.

- First-in-first-out (FIFO): . . . been in the cache the longest.

Paging - Det. Strat. $p_{4} p_{8} p_{8} p_{5} p_{4}$
 fulfilled page requests

$$
p_{1}\left|p_{2}\right| p_{3}\left|p_{6}\right| p_{7} \mid p_{9}
$$

■ On a page fault, a Paging algorithm chooses which page to evict from the cache.
Deterministic Strategies: Evict the page that has ...
■ Least Frequently Used (LFU): . . . the lowest number of accesses since it was loaded.
■ Least Recently Used (LRU): . . . been accessed least recently.
■ First-in-first-out (FIFO): ... been in the cache the longest.

Which of them is - theoretically provable - the best strategy?

Paging - Det. Strat. $\quad p_{4} p_{8} p_{8} p_{5} p_{4}$
 fulfilled page requests

$$
p_{1}\left|p_{2}\right| p_{3}\left|p_{6}\right| p_{7} \mid p_{9}
$$

■ On a page fault, a Paging algorithm chooses which page to evict from the cache.
Deterministic Strategies: Evict the page that has ...
■ Least Frequently Used (LFU): ... the lowest number of accesses since it was loaded.
■ Least Recently Used (LRU): . . . been accessed least recently.
■ First-in-first-out (FIFO): ... been in the cache the longest.

Which of them is - theoretically provable - the best strategy?

Theorem 2. LRU \& FIFO are k-competitive. No deterministic strategy is better.

Paging - Det. Strategies - Analysis

Theorem 2. LRU \& FIFO are k-competitive. No deterministic strategy is better.

Paging - Det. Strategies - Analysis

Theorem 2. LRU \& FIFO are k-competitive. No deterministic strategy is better. Proof. (only for LRU, FIFO similar)

Paging - Det. Strategies - Analysis

Theorem 2. LRU \& FIFO are k-competitive. No deterministic strategy is better.
Proof. (only for LRU, FIFO similar)

```
MIN: optimal strategy
\sigma \text { : sequence of pages}
```


Paging - Det. Strategies - Analysis

Theorem 2. LRU \& FIFO are k-competitive. No deterministic strategy is better.
Proof. (only for LRU, FIFO similar)
■ Initially, the cache contains the same pages for all strategies.
MIN: optimal strategy
σ : sequence of pages

Paging - Det. Strategies - Analysis

Theorem 2. LRU \& FIFO are k-competitive. No deterministic strategy is better.
Proof. (only for LRU, FIFO similar)

- Initially, the cache contains the same pages for all strategies.
- We partition σ into phases P_{0}, P_{1}, \ldots, s.t. LRU has at most k faults in P_{0} and exactly k faults in each other phase.

Paging - Det. Strategies - Analysis

Theorem 2. LRU \& FIFO are k-competitive. No deterministic strategy is better.

Proof. (only for LRU, FIFO similar)

■ Initially, the cache contains the same pages for all strategies.

MIN: optimal strategy σ : sequence of pages

- We partition σ into phases P_{0}, P_{1}, \ldots, s.t. LRU has at most k faults in P_{0} and exactly k faults in each other phase.
■ We show next: MIN has at least 1 fault in each phase.

Paging - Det. Strategies - Analysis

Theorem 2. LRU \& FIFO are k-competitive. No deterministic strategy is better.

Proof. (only for LRU, FIFO similar)

■ Initially, the cache contains the same pages for all strategies.

```
MIN: optimal strategy
\sigma}\mathrm{ : sequence of pages
```

\square We partition σ into phases P_{0}, P_{1}, \ldots, s.t. LRU has at most k faults in P_{0} and exactly k faults in each other phase.

- We show next: MIN has at least 1 fault in each phase.
- Clearly, MIN also faults in P_{0}; consider $P_{i}(i \geq 1)$ and let p be the last page of P_{i-1}.

Paging - Det. Strategies - Analysis

Theorem 2. LRU \& FIFO are k-competitive. No deterministic strategy is better.

Proof. (only for LRU, FIFO similar)

■ Initially, the cache contains the same pages for all strategies.

MIN: optimal strategy

 σ : sequence of pages\square We partition σ into phases P_{0}, P_{1}, \ldots, s.t. LRU has at most k faults in P_{0} and exactly k faults in each other phase.
■ We show next: MIN has at least 1 fault in each phase.

- Clearly, MIN also faults in P_{0}; consider $P_{i}(i \geq 1)$ and let p be the last page of P_{i-1}.
\square Show: P_{i} contains k distinct page requests different from p (implies a fault for MIN).

Paging - Det. Strategies - Analysis

Theorem 2. LRU \& FIFO are k-competitive. No deterministic strategy is better.

Proof. (only for LRU, FIFO similar)

■ Initially, the cache contains the same pages for all strategies.

MIN: optimal strategy σ : sequence of pages

- We partition σ into phases P_{0}, P_{1}, \ldots, s.t. LRU has at most k faults in P_{0} and exactly k faults in each other phase.
- We show next: MIN has at least 1 fault in each phase.
- Clearly, MIN also faults in P_{0}; consider $P_{i}(i \geq 1)$ and let p be the last page of P_{i-1}.
\square Show: P_{i} contains k distinct page requests different from p (implies a fault for MIN).
\square If the k page faults of LRU in P_{i} are on distinct pages (different from p), we're done.

Paging - Det. Strategies - Analysis

Theorem 2. LRU \& FIFO are k-competitive. No deterministic strategy is better.

Proof. (only for LRU, FIFO similar)

- Initially, the cache contains the same pages for all strategies.

MIN: optimal strategy σ : sequence of pages

■ We partition σ into phases P_{0}, P_{1}, \ldots, s.t. LRU has at most k faults in P_{0} and exactly k faults in each other phase.

- We show next: MIN has at least 1 fault in each phase.
- Clearly, MIN also faults in P_{0}; consider $P_{i}(i \geq 1)$ and let p be the last page of P_{i-1}.
- Show: P_{i} contains k distinct page requests different from p (implies a fault for MIN).
\square If the k page faults of LRU in P_{i} are on distinct pages (different from p), we're done.
- Assume LRU has in P_{i} two page faults on one page q. In between, q has to be evicted from the cache. According to LRU, there were k distinct page requests in between.

Paging - Det. Strategies - Analysis

Theorem 2. LRU \& FIFO are k-competitive. No deterministic strategy is better.

Proof. (only for LRU, FIFO similar)

- Initially, the cache contains the same pages for all strategies.

MIN: optimal strategy σ : sequence of pages

■ We partition σ into phases P_{0}, P_{1}, \ldots, s.t. LRU has at most k faults in P_{0} and exactly k faults in each other phase.

- We show next: MIN has at least 1 fault in each phase.
- Clearly, MIN also faults in P_{0}; consider $P_{i}(i \geq 1)$ and let p be the last page of P_{i-1}.
- Show: P_{i} contains k distinct page requests different from p (implies a fault for MIN).
- If the k page faults of LRU in P_{i} are on distinct pages (different from p), we're done.
- Assume LRU has in P_{i} two page faults on one page q. In between, q has to be evicted from the cache. According to LRU, there were k distinct page requests in between.

■ Similarly, if LRU faults on p in P_{i}, there were k distinct page requests in between.

Paging - Det. Strategies - Analysis

Theorem 2. LRU \& FIFO are k-competitive. No deterministic strategy is better. Proof. (only for LRU, FIFO similar)
■ Remains to prove: No deterministic strategy is better than k-competitive.

Paging - Det. Strategies - Analysis

Theorem 2. LRU \& FIFO are k-competitive. No deterministic strategy is better. Proof. (only for LRU, FIFO similar)
■ Remains to prove: No deterministic strategy is better than k-competitive.
■ Let there be $k+1$ pages in the memory system.

Paging - Det. Strategies - Analysis

Theorem 2. LRU \& FIFO are k-competitive. No deterministic strategy is better.

Proof. (only for LRU, FIFO similar)

■ Remains to prove: No deterministic strategy is better than k-competitive.
■ Let there be $k+1$ pages in the memory system.

- For any deterministic strategy there is a worst-case page sequence σ^{\star} always requesting the page that is currently not in the cache.

Paging - Det. Strategies - Analysis

Theorem 2. LRU \& FIFO are k-competitive. No deterministic strategy is better.

Proof. (only for LRU, FIFO similar)

■ Remains to prove: No deterministic strategy is better than k-competitive.
■ Let there be $k+1$ pages in the memory system.
■ For any deterministic strategy there is a worst-case page sequence σ^{\star} always requesting the page that is currently not in the cache.
■ Let MIN have a page fault on the i-th page of σ^{\star}.

Paging - Det. Strategies - Analysis

Theorem 2. LRU \& FIFO are k-competitive. No deterministic strategy is better.

Proof. (only for LRU, FIFO similar)

■ Remains to prove: No deterministic strategy is better than k-competitive.
■ Let there be $k+1$ pages in the memory system.
■ For any deterministic strategy there is a worst-case page sequence σ^{\star} always requesting the page that is currently not in the cache.
■ Let MIN have a page fault on the i-th page of σ^{\star}.

- Then the next $k-1$ requested pages are in the cache already \& the next fault occurs on the $(i+k)$-th page of σ^{\star} the earliest. Until then, the det. strategy has k faults.

Paging - Det. Strategies - Analysis

Theorem 2. LRU \& FIFO are k-competitive. No deterministic strategy is better.

Proof. (only for LRU, FIFO similar)

■ Remains to prove: No deterministic strategy is better than k-competitive.
■ Let there be $k+1$ pages in the memory system.

- For any deterministic strategy there is a worst-case page sequence σ^{\star} always requesting the page that is currently not in the cache.
■ Let MIN have a page fault on the i-th page of σ^{\star}.
- Then the next $k-1$ requested pages are in the cache already \& the next fault occurs on the $(i+k)$-th page of σ^{\star} the earliest. Until then, the det. strategy has k faults.
\Rightarrow The competitive ratio cannot be better than $\frac{\left|\sigma^{\star}\right|}{\left|\frac{\sigma^{\star} \mid}{k}\right|} \stackrel{\left|\sigma^{\star}\right| \mid \cdots \infty}{=} k$.

Paging - Rand. Strat.

Randomized strategy: MARKING

Paging - Rand. Strat.

Randomized strategy: MARKING
■ Proceeds in phases

Paging - Rand. Strat.

Randomized strategy: MARKING

■ Proceeds in phases
■ At the beginning of each phase, all pages are unmarked.

Paging - Rand. Strat.

Randomized strategy: MARKING

■ Proceeds in phases

- At the beginning of each phase, all pages are unmarked.
- When a page is requested, it gets marked.

Paging - Rand. Strat.

Randomized strategy: MARKING

■ Proceeds in phases

- At the beginning of each phase, all pages are unmarked.
- When a page is requested, it gets marked.

■ A page for eviction is chosen uniformly at random from the unmarked pages.

Paging - Rand. Strat.

Randomized strategy: MARKING

■ Proceeds in phases

- At the beginning of each phase, all pages are unmarked.
- When a page is requested, it gets marked.
- A page for eviction is chosen uniformly at random from the unmarked pages.

■ If all pages are marked and a page fault occurs, unmark all and start new phase.

Paging - Rand. Strat.

Randomized strategy: MARKING

- Proceeds in phases
- At the beginning of each phase, all pages are unmarked.
- When a page is requested, it gets marked.
- A page for eviction is chosen uniformly at random from the unmarked pages.

■ If all pages are marked and a page fault occurs, unmark all and start new phase.

Paging - Rand. Strat.

Randomized strategy: MARKING

■ Proceeds in phases

- At the beginning of each phase, all pages are unmarked.
- When a page is requested, it gets marked.
- A page for eviction is chosen uniformly at random from the unmarked pages.

■ If all pages are marked and a page fault occurs, unmark all and start new phase.

Paging - Rand. Strat.

Randomized strategy: MARKING

- Proceeds in phases
- At the beginning of each phase, all pages are unmarked.
- When a page is requested, it gets marked.
- A page for eviction is chosen uniformly at random from the unmarked pages.

■ If all pages are marked and a page fault occurs, unmark all and start new phase.

Paging - Rand. Strat.

Paging - Rand. Strat.

$$
\begin{array}{|l|l|l|l|l|l|}
\hline p_{4} & p_{2} & p_{6} & p_{7} & p_{8} & p_{9} \\
\hline
\end{array}
$$

Randomized strategy: MARKING

- Proceeds in phases
- At the beginning of each phase, all pages are unmarked.

■ When a page is requested, it gets marked.

- A page for eviction is chosen uniformly at random from the unmarked pages.
- If all pages are marked and a page fault occurs, unmark all and start new phase.

Paging - Rand. Strat. mark requested page $\xlongequal[p_{1} \mid p_{5} p_{3}]{k}$

Randomized strategy: MARKING
■ Proceeds in phases
■ At the beginning of each phase, all pages are unmarked.

- When a page is requested, it gets marked.

■ A page for eviction is chosen uniformly at random from the unmarked pages.
■ If all pages are marked and a page fault occurs, unmark all and start new phase.

Paging - Rand. Strat.

Randomized strategy: MARKING

- Proceeds in phases
- At the beginning of each phase, all pages are unmarked.
- When a page is requested, it gets marked.
- A page for eviction is chosen uniformly at random from the unmarked pages.

■ If all pages are marked and a page fault occurs, unmark all and start new phase.

$p_{q} p_{p} p_{2} p_{g} p_{7} \mid p_{8} p_{p}$

Randomized strategy: MARKING

■ Proceeds in phases

- At the beginning of each phase, all pages are unmarked.
- When a page is requested, it gets marked.
- A page for eviction is chosen uniformly at random from the unmarked pages.

■ If all pages are marked and a page fault occurs, unmark all and start new phase.

Paging - Rand. Strat.

p_{4}	p_{2}	p_{6}	p_{7}	p_{8}	p_{9}

Randomized strategy: MARKING

■ Proceeds in phases

- At the beginning of each phase, all pages are unmarked.
- When a page is requested, it gets marked.
- A page for eviction is chosen uniformly at random from the unmarked pages.

■ If all pages are marked and a page fault occurs, unmark all and start new phase.

Paging - Rand. Strat.

is already marked $\overbrace{p_{1}\left|\rho_{5}\right| q_{3}}^{k} \stackrel{p_{5}}{\text { page request }}$

p_{4}	p_{2}	p_{6}	p_{7}	p_{8}

Randomized strategy: MARKING

- Proceeds in phases
- At the beginning of each phase, all pages are unmarked.

■ When a page is requested, it gets marked.

- A page for eviction is chosen uniformly at random from the unmarked pages.

■ If all pages are marked and a page fault occurs, unmark all and start new phase.

Paging - Rand. Strat.

$$
\begin{array}{|l|l|l|l|l|l|}
\hline p_{4} & p_{2} & p_{6} & p_{7} & p_{8} & p_{9} \\
\hline
\end{array}
$$

Randomized strategy: MARKING

- Proceeds in phases
- At the beginning of each phase, all pages are unmarked.

■ When a page is requested, it gets marked.

- A page for eviction is chosen uniformly at random from the unmarked pages.
- If all pages are marked and a page fault occurs, unmark all and start new phase.

Paging - Rand. Strat.

$$
\begin{array}{|l|l|l|l|l|}
\hline p_{4} & p_{2} & p_{6} & p_{7} & p_{8} \\
\hline
\end{array}
$$

Randomized strategy: MARKING

- Proceeds in phases
- At the beginning of each phase, all pages are unmarked.
- When a page is requested, it gets marked.
- A page for eviction is chosen uniformly at random from the unmarked pages.
- If all pages are marked and a page fault occurs, unmark all and start new phase.

Paging - Rand. Strat.

Randomized strategy: MARKING

- Proceeds in phases
- At the beginning of each phase, all pages are unmarked.

■ When a page is requested, it gets marked.

- A page for eviction is chosen uniformly at random from the unmarked pages.

■ If all pages are marked and a page fault occurs, unmark all and start new phase.

Paging - Rand. Strat.

$$
\begin{array}{|l|l|l|l|l|}
\hline p_{4} & p_{1} & p_{6} & p_{7} & p_{8} \\
\hline
\end{array}
$$

Randomized strategy: MARKING

- Proceeds in phases
- At the beginning of each phase, all pages are unmarked.

■ When a page is requested, it gets marked.

- A page for eviction is chosen uniformly at random from the unmarked pages.
- If all pages are marked and a page fault occurs, unmark all and start new phase.

Paging - Rand. Strat. mark requested page $\overbrace{\underbrace{\rho_{2}\left|\rho_{5}\right| \rho_{3}}}^{k}<\frac{p_{2}}{\text { page request }}$

$$
\begin{array}{|l|l|l|l|l|}
\hline p_{4} & p_{1} & p_{6} & p_{7} & p_{8} \\
\hline
\end{array}
$$

Randomized strategy: MARKING

- Proceeds in phases
- At the beginning of each phase, all pages are unmarked.
- When a page is requested, it gets marked.
- A page for eviction is chosen uniformly at random from the unmarked pages.
- If all pages are marked and a page fault occurs, unmark all and start new phase.

Paging - Rand. Strat.

- Proceeds in phases
- At the beginning of each phase, all pages are unmarked.
- When a page is requested, it gets marked.
- A page for eviction is chosen uniformly at random from the unmarked pages.

■ If all pages are marked and a page fault occurs, unmark all and start new phase.

Paging - Rand. Strat.

Phase P_{1}
Randomized strategy: MARKING
■ Proceeds in phases
■ At the beginning of each phase, all pages are unmarked.

- When a page is requested, it gets marked.
- A page for eviction is chosen uniformly at random from the unmarked pages.

■ If all pages are marked and a page fault occurs, unmark all and start new phase.

Paging - Rand. Strat.

$$
\begin{array}{|l|l|l|l|l|}
\hline p_{4} & p_{1} & p_{6} & p_{7} & p_{8} \\
\hline
\end{array}
$$

Randomized strategy: MARKING

- Proceeds in phases
- At the beginning of each phase, all pages are unmarked.

■ When a page is requested, it gets marked.

- A page for eviction is chosen uniformly at random from the unmarked pages.
- If all pages are marked and a page fault occurs, unmark all and start new phase.

Paging - Rand. Strat.

Randomized strategy: MARKING

■ Proceeds in phases

- At the beginning of each phase, all pages are unmarked.
- When a page is requested, it gets marked.
- A page for eviction is chosen uniformly at random from the unmarked pages.

■ If all pages are marked and a page fault occurs, unmark all and start new phase.

Paging - Rand. Strat.

p_{4}	p_{1}	p_{6}	p_{7}	p_{8}	p_{9}

Randomized strategy: MARKING

- Proceeds in phases

■ At the beginning of each phase, all pages are unmarked.
■ When a page is requested, it gets marked.

- A page for eviction is chosen uniformly at random from the unmarked pages.
- If all pages are marked and a page fault occurs, unmark all and start new phase.

Paging - Rand. Strat.

- Proceeds in phases
- At the beginning of each phase, all pages are unmarked.
- When a page is requested, it gets marked.
- A page for eviction is chosen uniformly at random from the unmarked pages.

■ If all pages are marked and a page fault occurs, unmark all and start new phase.

Paging - Rand. Strat.

Randomized strategy: MARKING

- Proceeds in phases
- At the beginning of each phase, all pages are unmarked.
- When a page is requested, it gets marked.
- A page for eviction is chosen uniformly at random from the unmarked pages.

■ If all pages are marked and a page fault occurs, unmark all and start new phase.

Paging - Rand. Strat.

$p_{4}\left|p_{1}\right| p_{2}\left|p_{7}\right| p_{8} \mid p_{9}$

Randomized strategy: MARKING

■ Proceeds in phases

- At the beginning of each phase, all pages are unmarked.
- When a page is requested, it gets marked.
- A page for eviction is chosen uniformly at random from the unmarked pages.

■ If all pages are marked and a page fault occurs, unmark all and start new phase.

Paging - Rand. Strat. mark requested page $\overbrace{\underbrace{\rho_{6} p_{5} \mid p_{3}}_{6}}^{k} \quad \frac{p_{6}}{\text { page request }}$

$$
\begin{array}{|l|l|l|l|l|l|l|}
\hline p_{4} & p_{1} & p_{2} & p_{7} & p_{8} & p_{9} \\
\hline
\end{array}
$$

Randomized strategy: MARKING

- Proceeds in phases
- At the beginning of each phase, all pages are unmarked.
- When a page is requested, it gets marked.
- A page for eviction is chosen uniformly at random from the unmarked pages.
- If all pages are marked and a page fault occurs, unmark all and start new phase.

Paging - Rand. Strat.

p_{4}	p_{1}	p_{2}	p_{7}	p_{8}	p_{9}

Randomized strategy: MARKING

- Proceeds in phases
- At the beginning of each phase, all pages are unmarked.
- When a page is requested, it gets marked.
- A page for eviction is chosen uniformly at random from the unmarked pages.
- If all pages are marked and a page fault occurs, unmark all and start new phase.

Paging - Rand. Strat.

Randomized strategy: MARKING
■ Proceeds in phases

- At the beginning of each phase, all pages are unmarked.
- When a page is requested, it gets marked.
- A page for eviction is chosen uniformly at random from the unmarked pages.

■ If all pages are marked and a page fault occurs, unmark all and start new phase.

Paging - Rand. Strat.

Randomized strategy: MARKING

- Proceeds in phases
- At the beginning of each phase, all pages are unmarked.
- When a page is requested, it gets marked.
- A page for eviction is chosen uniformly at random from the unmarked pages.
- If all pages are marked and a page fault occurs, unmark all and start new phase.

Theorem 3. MARKING is $2 H_{k}$-competitive.

Remark.

$H_{k}=1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{k}$ is the k-th harmonic number and for $k \geq 2: H_{k}<\ln (k)+1$.

Paging - Rand. Strategy - Analysis

Theorem 3. MARKING is $2 H_{k}$-competitive.
Proof.

Paging - Rand. Strategy - Analysis

Theorem 3. MARKING is $2 H_{k}$-competitive.
Proof.

Paging - Rand. Strategy - Analysis

Theorem 3. MARKING is $2 H_{k}$-competitive.

Proof.

- A page is stale if it is unmarked, but was marked in P_{i-1}.

Paging - Rand. Strategy - Analysis

Theorem 3. MARKING is $2 H_{k}$-competitive.

Proof.

- A page is stale if it is unmarked, but was marked in P_{i-1}.
- A page is clean if it is unmarked, but not stale.

Paging - Rand. Strategy - Analysis

Theorem 3. MARKING is $2 H_{k}$-competitive.

Proof.

\square A page is stale if it is unmarked, but was marked in P_{i-1}.

- A page is clean if it is unmarked, but not stale.
- $S_{\text {MARK }}\left(S_{\text {MIN }}\right)$: set of pages in the cache of MARKING (MIN)

Paging - Rand. Strategy - Analysis

Theorem 3. MARKING is $2 H_{k}$-competitive.

Proof.

\square A page is stale if it is unmarked, but was marked in P_{i-1}.

- A page is clean if it is unmarked, but not stale.
- $S_{\text {MARK }}\left(S_{\text {MIN }}\right)$: set of pages in the cache of MARKING (MIN)
$\square d_{\text {begin }}:\left|S_{\text {MIN }}-S_{\text {MARK }}\right|$ at the beginning of P_{i}

Paging - Rand. Strategy - Analysis

Theorem 3. MARKING is $2 H_{k}$-competitive.

Proof.

\square A page is stale if it is unmarked, but was marked in P_{i-1}.

- A page is clean if it is unmarked, but not stale.
- $S_{\text {MARK }}\left(S_{\text {MIN }}\right)$: set of pages in the cache of MARKING (MIN)
$\square d_{\text {begin }}:\left|S_{\text {MIN }}-S_{\text {MARK }}\right|$ at the beginning of P_{i}
$\square d_{\text {end }}:\left|S_{\text {MIN }}-S_{\text {MARK }}\right|$ at the end of P_{i}

Paging - Rand. Strategy - Analysis

Theorem 3. MARKING is $2 H_{k}$-competitive.

Proof.

\square A page is stale if it is unmarked, but was marked in P_{i-1}.

- A page is clean if it is unmarked, but not stale.
- $S_{\text {MARK }}\left(S_{\text {MIN }}\right)$: set of pages in the cache of MARKING (MIN)
$\square d_{\text {begin }}:\left|S_{\text {MIN }}-S_{\text {MARK }}\right|$ at the beginning of P_{i}
- $d_{\text {end }}:\left|S_{\text {MIN }}-S_{\text {MARK }}\right|$ at the end of P_{i}

■ : number of clean pages requested in P_{i}

Paging - Rand. Strategy - Analysis

Theorem 3. MARKING is $2 H_{k}$-competitive.

Proof.

\square A page is stale if it is unmarked, but was marked in P_{i-1}.

- A page is clean if it is unmarked, but not stale.
- $S_{\text {MARK }}\left(S_{\text {MIN }}\right)$: set of pages in the cache of MARKING (MIN)
$\square d_{\text {begin }}:\left|S_{\text {MIN }}-S_{\text {MARK }}\right|$ at the beginning of P_{i}
- $d_{\text {end }}:\left|S_{\text {MIN }}-S_{\text {MARK }}\right|$ at the end of P_{i}

■ c: number of clean pages requested in P_{i}
\square MIN has $\geq \max \left(c-d_{\text {begin }}, d_{\text {end }}\right)$ faults.

Paging - Rand. Strategy - Analysis

Theorem 3. MARKING is $2 H_{k}$-competitive.

Proof.

\square A page is stale if it is unmarked, but was marked in P_{i-1}.

- A page is clean if it is unmarked, but not stale.
- $S_{\text {MARK }}\left(S_{\text {MIN }}\right)$: set of pages in the cache of MARKING (MIN)
$\square d_{\text {begin }}:\left|S_{\text {MIN }}-S_{\text {MARK }}\right|$ at the beginning of P_{i}
- $d_{\text {end }}:\left|S_{\text {MIN }}-S_{\text {MARK }}\right|$ at the end of P_{i}

■ c: number of clean pages requested in P_{i}
\square MIN has $\geq \max \left(c-d_{\text {begin }}, d_{\text {end }}\right) \geq \frac{1}{2}\left(c-d_{\text {begin }}+d_{\text {end }}\right)$ faults.

Paging - Rand. Strategy - Analysis

Theorem 3. MARKING is $2 H_{k}$-competitive.

Proof.

\square A page is stale if it is unmarked, but was marked in P_{i-1}.

- A page is clean if it is unmarked, but not stale.
- $S_{\text {MARK }}\left(S_{\text {MIN }}\right)$: set of pages in the cache of MARKING (MIN)
$\square d_{\text {begin }}:\left|S_{\text {MIN }}-S_{\text {MARK }}\right|$ at the beginning of P_{i}
$\square d_{\text {end }}:\left|S_{\text {MIN }}-S_{\text {MARK }}\right|$ at the end of P_{i}
- c: number of clean pages requested in P_{i}
\square MIN has $\geq \max \left(c-d_{\text {begin }}, d_{\mathrm{end}}\right) \geq \frac{1}{2}\left(c-d_{\text {begin }}+d_{\mathrm{end}}\right)=\frac{c}{2}-\frac{d_{\text {begin }}}{2}+\frac{d_{\text {end }}}{2}$ faults.

Paging - Rand. Strategy - Analysis

Theorem 3. MARKING is $2 H_{k}$-competitive.

Proof.

\square A page is stale if it is unmarked, but was marked in P_{i-1}.

- A page is clean if it is unmarked, but not stale.
- $S_{\text {MARK }}\left(S_{\text {MIN }}\right)$: set of pages in the cache of MARKING (MIN)
$\square d_{\text {begin }}:\left|S_{\text {MIN }}-S_{\text {MARK }}\right|$ at the beginning of P_{i}
- $d_{\text {end }}:\left|S_{\text {MIN }}-S_{\text {MARK }}\right|$ at the end of P_{i}

■ c: number of clean pages requested in P_{i}
MIN has $\geq \max \left(c-d_{\text {begin }}, d_{\text {end }}\right) \geq \frac{1}{2}\left(c-d_{\text {begin }}+d_{\text {end }}\right)=\frac{c}{2}-\frac{d_{\text {begin }}}{2}+\frac{d_{\text {end }}}{2}$ faults. Over all phases, all $\frac{d_{\text {begin }}}{2}$ and $\frac{d_{\text {end }}}{2}$ cancel out, except the first $\frac{d_{\text {begin }}}{2}$ and the last $\frac{d_{\text {end }}}{2}$.

Paging - Rand. Strategy - Analysis

Theorem 3. MARKING is $2 H_{k}$-competitive.

Proof.

- A page is clean if it is unmarked, but not stale.
- $S_{\text {MARK }}\left(S_{\text {MIN }}\right)$: set of pages in the cache of MARKING (MIN)
- $d_{\text {begin }}:\left|S_{\text {MIN }}-S_{\text {MARK }}\right|$ at the beginning of P_{i}
$\square d_{\text {end }}:\left|S_{\text {MIN }}-S_{\text {MARK }}\right|$ at the end of P_{i}
- c: number of clean pages requested in P_{i}
\square MIN has $\geq \max \left(c-d_{\text {begin }}, d_{\text {end }}\right) \geq \frac{1}{2}\left(c-d_{\text {begin }}+d_{\text {end }}\right)=\frac{c}{2}-\frac{d_{\text {begin }}}{2}+\frac{d_{\text {end }}}{2}$ faults. Over all phases, all $\frac{d_{\text {begin }}}{2}$ and $\frac{d_{\text {end }}}{2}$ cancel out, except the first $\frac{d_{\text {begin }}}{2}$ and the last $\frac{d_{\text {end }}}{2}$.
\square Since the first $d_{\text {begin }}=0$, MIN has at least $\frac{c}{2}$ faults per phase.

Paging - Rand. Strategy - Analysis

Theorem 3. MARKING is $2 \mathrm{H}_{k}$-competitive.
Proof.

- For the clean pages, MARKING has c faults.

We consider phase P_{i}.

Paging - Rand. Strategy - Analysis

Theorem 3. MARKING is $2 H_{k}$-competitive.

Proof.

■ For the clean pages, MARKING has c faults.
\square For the stale pages, there are $s=k-c \leq k-1$ requests.

Paging - Rand. Strategy - Analysis

Theorem 3. MARKING is $2 H_{k}$-competitive.

Proof.

■ For the clean pages, MARKING has c faults.

We consider phase P_{i}.

■ For the stale pages, there are $s=k-c \leq k-1$ requests.
\square For requests $j=1, \ldots, s$ to stale pages, consider the expected number of faults $E\left[F_{j}\right]$.

Paging - Rand. Strategy - Analysis

Theorem 3. MARKING is $2 \mathrm{H}_{k}$-competitive.

Proof.

- For the clean pages, MARKING has c faults.

We consider phase P_{i}.

\square For the stale pages, there are $s=k-c \leq k-1$ requests.

- For requests $j=1, \ldots, s$ to stale pages, consider the expected number of faults $E\left[F_{j}\right]$.
$\square c(j): \#$ clean pages requested in P_{i} at the time the j-th stale page is requested $s(j)$: \# pages that were stale at the beginning of P_{i} and have not been requested

Paging - Rand. Strategy - Analysis

Theorem 3. MARKING is $2 H_{k}$-competitive.

Proof.

- For the clean pages, MARKING has c faults.

We consider phase P_{i}.

\square For the stale pages, there are $s=k-c \leq k-1$ requests.

- For requests $j=1, \ldots, s$ to stale pages, consider the expected number of faults $E\left[F_{j}\right]$.
$\square c(j): \#$ clean pages requested in P_{i} at the time the j-th stale page is requested $s(j)$: \# pages that were stale at the beginning of P_{i} and have not been requested
$\square E\left[F_{j}\right]=\frac{s(j)-c(j)}{s(j)} \cdot 0+\frac{c(j)}{s(j)} \cdot 1$

Paging - Rand. Strategy - Analysis

Theorem 3. MARKING is $2 H_{k}$-competitive.

Proof.

- For the clean pages, MARKING has c faults.

We consider phase P_{i}.

\square For the stale pages, there are $s=k-c \leq k-1$ requests.

- For requests $j=1, \ldots, s$ to stale pages, consider the expected number of faults $E\left[F_{j}\right]$.
$\square c(j): \#$ clean pages requested in P_{i} at the time the j-th stale page is requested $s(j)$: \# pages that were stale at the beginning of P_{i} and have not been requested
$\square E\left[F_{j}\right]=\frac{s(j)-c(j)}{s(j)} \cdot 0+\frac{c(j)}{s(j)} \cdot 1 \leq \frac{c}{k+1-j}$

Paging - Rand. Strategy - Analysis

Theorem 3. MARKING is $2 H_{k}$-competitive.

Proof.

- For the clean pages, MARKING has c faults.

We consider phase P_{i}.

\square For the stale pages, there are $s=k-c \leq k-1$ requests.

- For requests $j=1, \ldots, s$ to stale pages, consider the expected number of faults $E\left[F_{j}\right]$.
$\square c(j): \#$ clean pages requested in P_{i} at the time the j-th stale page is requested $s(j)$: \# pages that were stale at the beginning of P_{i} and have not been requested
$\square E\left[F_{j}\right]=\frac{s(j)-c(j)}{s(j)} \cdot 0+\frac{c(j)}{s(j)} \cdot 1 \leq \frac{c}{k+1-j}$
- $E\left[\sum_{j=1}^{s} F_{j}\right]$

Paging - Rand. Strategy - Analysis

Theorem 3. MARKING is $2 H_{k}$-competitive.

Proof.

- For the clean pages, MARKING has c faults.

We consider phase P_{i}.

\square For the stale pages, there are $s=k-c \leq k-1$ requests.

- For requests $j=1, \ldots, s$ to stale pages, consider the expected number of faults $E\left[F_{j}\right]$.
$\square c(j): \#$ clean pages requested in P_{i} at the time the j-th stale page is requested $s(j)$: \# pages that were stale at the beginning of P_{i} and have not been requested
$\square E\left[F_{j}\right]=\frac{s(j)-c(j)}{s(j)} \cdot 0+\frac{c(j)}{s(j)} \cdot 1 \leq \frac{c}{k+1-j}$
■E[$\left.\sum_{j=1}^{s} F_{j}\right]=\sum_{j=1}^{s} E\left[F_{j}\right]$

$$
s(j)=k-(j-1)
$$

Paging - Rand. Strategy - Analysis

Theorem 3. MARKING is $2 H_{k}$-competitive.

Proof.

- For the clean pages, MARKING has c faults.

We consider phase P_{i}.

- For the stale pages, there are $s=k-c \leq k-1$ requests.
- For requests $j=1, \ldots, s$ to stale pages, consider the expected number of faults $E\left[F_{j}\right]$.
$\square c(j): \#$ clean pages requested in P_{i} at the time the j-th stale page is requested $s(j)$: \# pages that were stale at the beginning of P_{i} and have not been requested
$\square E\left[F_{j}\right]=\frac{s(j)-c(j)}{s(j)} \cdot 0+\frac{c(j)}{s(j)} \cdot 1 \leq \frac{c}{k+1-j}$
■ $E\left[\sum_{j=1}^{s} F_{j}\right]=\sum_{j=1}^{s} E\left[F_{j}\right] \leq \sum_{j=1}^{s} \frac{c}{k+1-j}$

Paging - Rand. Strategy - Analysis

Theorem 3. MARKING is $2 H_{k}$-competitive.

Proof.

- For the clean pages, MARKING has c faults.

We consider phase P_{i}.

\square For the stale pages, there are $s=k-c \leq k-1$ requests.

- For requests $j=1, \ldots, s$ to stale pages, consider the expected number of faults $E\left[F_{j}\right]$.
$\square c(j): \#$ clean pages requested in P_{i} at the time the j-th stale page is requested $s(j)$: \# pages that were stale at the beginning of P_{i} and have not been requested
$\square E\left[F_{j}\right]=\frac{s(j)-c(j)}{s(j)} \cdot 0+\frac{c(j)}{s(j)} \cdot 1 \leq \frac{c}{k+1-j}$ $s(j)=k-(j-1)$

■E[$\left.\sum_{j=1}^{s} F_{j}\right]=\sum_{j=1}^{s} E\left[F_{j}\right] \leq \sum_{j=1}^{s} \frac{c}{k+1-j} \leq \sum_{j=2}^{k} \frac{c}{j}$

Paging - Rand. Strategy - Analysis

Theorem 3. MARKING is $2 H_{k}$-competitive.

Proof.

- For the clean pages, MARKING has c faults.

We consider phase P_{i}.

- For the stale pages, there are $s=k-c \leq k-1$ requests.
- For requests $j=1, \ldots, s$ to stale pages, consider the expected number of faults $E\left[F_{j}\right]$.
$\square c(j): \#$ clean pages requested in P_{i} at the time the j-th stale page is requested $s(j)$: \# pages that were stale at the beginning of P_{i} and have not been requested
$\square E\left[F_{j}\right]=\frac{s(j)-c(j)}{s(j)} \cdot 0+\frac{c(j)}{s(j)} \cdot 1 \leq \frac{c}{k+1-j}$

$$
s(j)=k-(j-1)
$$

■ $\left[\sum_{j=1}^{s} F_{j}\right]=\sum_{j=1}^{s} E\left[F_{j}\right] \leq \sum_{j=1}^{s} \frac{c}{k+1-j} \leq \sum_{j=2}^{k} \frac{c}{j}=c \cdot\left(H_{k}-1\right)$

Paging - Rand. Strategy - Analysis

Theorem 3. MARKING is $2 H_{k}$-competitive.

Proof.

- For the clean pages, MARKING has c faults.
- For the stale pages, there are $s=k-c \leq k-1$ requests.
- For requests $j=1, \ldots, s$ to stale pages, consider the expected number of faults $E\left[F_{j}\right]$.
$\square c(j): \#$ clean pages requested in P_{i} at the time the j-th stale page is requested $s(j)$: \# pages that were stale at the beginning of P_{i} and have not been requested
$\square E\left[F_{j}\right]=\frac{s(j)-c(j)}{s(j)} \cdot 0+\frac{c(j)}{s(j)} \cdot 1 \leq \frac{c}{k+1-j}$
■ $E\left[\sum_{j=1}^{s} F_{j}\right]=\sum_{j=1}^{s} E\left[F_{j}\right] \leq \sum_{j=1}^{s} \frac{c}{k+1-j} \leq \sum_{j=2}^{k} \frac{c}{j}=c \cdot\left(H_{k}-1\right)$
\square So the competitive ratio of MARKING is at most $\frac{c+c\left(H_{k}-1\right)}{c / 2}=2 H_{k} \in O(\log k)$

Paging - Rand. Strategy - Analysis

Reminder.

No deterministic strategy is

Theorem 3. MARKING is $2 H_{k}$-competitive.

Proof.

- For the clean pages, MARKING has c faults.
\square For the stale pages, there are $s=k-c \leq k-1$ requests.
- For requests $j=1, \ldots, s$ to stale pages, consider the expected number of faults $E\left[F_{j}\right]$.
$\square c(j): \#$ clean pages requested in P_{i} at the time the j-th stale page is requested $s(j)$: \# pages that were stale at the beginning of P_{i} and have not been requested
$\square E\left[F_{j}\right]=\frac{s(j)-c(j)}{s(j)} \cdot 0+\frac{c(j)}{s(j)} \cdot 1 \leq \frac{c}{k+1-j}$

$$
s(j)=k-(j-1)
$$

$\square E\left[\sum_{j=1}^{s} F_{j}\right]=\sum_{j=1}^{s} E\left[F_{j}\right] \leq \sum_{j=1}^{s} \frac{c}{k+1-j} \leq \sum_{j=2}^{k} \frac{c}{j}=c \cdot\left(H_{k}-1\right)$

- So the competitive ratio of MARKING is at most $\frac{c+c\left(H_{k}-1\right)}{c / 2}=2 H_{k} \in O(\log k)$

Paging - Rand. Strategy - Analysis

Reminder.

No deterministic strategy is better than k-competitive.
MARKING is $O(\log k)$-competitive

Proof.

Theorem 3. MARKING is $2 H_{k}$-competitive.

■ For the clean pages, MARKING has c faults.
■ For the stale pages, there are $s=k-c \leq k-1$ requests.
■ For requests $j=1, \ldots, s$ to stale pages, consider the expected number of faults $E\left[F_{j}\right]$.
■ $c(j)$: \# clean pages requested in P_{i} at the time the j-th stale page is requested $s(j)$: \# pages that were stale at the beginning of P_{i} and have not been requested
$\square E\left[F_{j}\right]=\frac{s(j)-c(j)}{s(j)} \cdot 0+\frac{c(j)}{s(j)} \cdot 1 \leq \frac{c}{k+1-j}$
■ $E\left[\sum_{j=1}^{s} F_{j}\right]=\sum_{j=1}^{s} E\left[F_{j}\right] \leq \sum_{j=1}^{s} \frac{c}{k+1-j} \leq \sum_{j=2}^{k} \frac{c}{j}=c \cdot\left(H_{k}-1\right)$
■ So the competitive ratio of MARKING is at most $\frac{c+c\left(H_{k}-1\right)}{c / 2}=2 H_{k} \in O(\log k)$

Paging - Rand. Strategy - Analysis

Reminder.

No deterministic strategy is better than k-competitive.
MARKING is $O(\log k)$-competitive
\Rightarrow exponential improvement!

Proof.

■ For the clean pages, MARKING has c faults.

■ For the stale pages, there are $s=k-c \leq k-1$ requests.
■ For requests $j=1, \ldots, s$ to stale pages, consider the expected number of faults $E\left[F_{j}\right]$.
■ $c(j)$: \# clean pages requested in P_{i} at the time the j-th stale page is requested $s(j)$: \# pages that were stale at the beginning of P_{i} and have not been requested
$\square E\left[F_{j}\right]=\frac{s(j)-c(j)}{s(j)} \cdot 0+\frac{c(j)}{s(j)} \cdot 1 \leq \frac{c}{k+1-j}$
■ $E\left[\sum_{j=1}^{s} F_{j}\right]=\sum_{j=1}^{s} E\left[F_{j}\right] \leq \sum_{j=1}^{s} \frac{c}{k+1-j} \leq \sum_{j=2}^{k} \frac{c}{j}=c \cdot\left(H_{k}-1\right)$

- So the competitive ratio of MARKING is at most $\frac{c+c\left(H_{k}-1\right)}{c / 2}=2 H_{k} \in O(\log k)$

Discussion

■ Online algorithms operate in a setting different from that of classical algorithms. However, this setting of incomplete information is very natural and occurs often in real-world applications. Can you think of further examples?

Discussion

■ Online algorithms operate in a setting different from that of classical algorithms. However, this setting of incomplete information is very natural and occurs often in real-world applications. Can you think of further examples?

- We might also transform a classical problem with incomplete information into an online problem. E.g.: Matching problem for ride sharing.

Discussion

■ Online algorithms operate in a setting different from that of classical algorithms. However, this setting of incomplete information is very natural and occurs often in real-world applications. Can you think of further examples?

- We might also transform a classical problem with incomplete information into an online problem. E.g.: Matching problem for ride sharing.

■ Randomization can help to improve our behavior on worst-case instances. You may also think of: we are less predictable for an adversary.

Literature

Main source:
■ Sabine Storandt's lecture script "Randomized Algorithms" (2016-2017)
Original papers:

- [Belady '66] "A Study of Replacement Algorithms for Virtual-Storage Computer."

■ [Sleator, Tarjan '85] "Amortized Efficiency of List Update and Paging Rules."
■ [Fiat, Karp, Luby, McGeoch, Sleator, Young '91] "Competitive Paging Algorithms."

