
1

Advanced Algorithms

Ski-Rental Problem and Paging
Online Algorithms

Johannes Zink · WS23/24

 k
p3

p4 p9p7 p8

page request
p5

p1 p2

p6 p9

2 - 1

Ski-Rental Problem

Winter has begun (even in Würzburg!) . . .

Introduction

2 - 2

Ski-Rental Problem

Winter has begun (even in Würzburg!) . . . this means the skiing season is back!

Introduction

2 - 3

Ski-Rental Problem

Winter has begun (even in Würzburg!) . . . this means the skiing season is back!

� But what if there is not always enough snow? Or snow but “bad” weather?

Introduction

2 - 4

Ski-Rental Problem

Winter has begun (even in Würzburg!) . . . this means the skiing season is back!

� But what if there is not always enough snow? Or snow but “bad” weather?

Introduction

2 - 5

Ski-Rental Problem

Winter has begun (even in Würzburg!) . . . this means the skiing season is back!

� But what if there is not always enough snow? Or snow but “bad” weather?

� Is it worth buying new skis?

� Or should we rather rent them?

2 - 6

Ski-Rental Problem

Winter has begun (even in Würzburg!) . . . this means the skiing season is back!

� But what if there is not always enough snow? Or snow but “bad” weather?

� Is it worth buying new skis?

� Or should we rather rent them?

� We don’t know the weather (much) in advance.

3 - 1

Ski-Rental Problem – Definition

Behavior.
� Every day when there is “good” weather, you go skiing.
� We call this is a good day.

3 - 2

Ski-Rental Problem – Definition

Behavior.
� Every day when there is “good” weather, you go skiing.
� We call this is a good day.

� Each morning, we can check if today is a good day, but we can’t check any earlier.

3 - 3

Ski-Rental Problem – Definition

Behavior.
� Every day when there is “good” weather, you go skiing.
� We call this is a good day.

� Each morning, we can check if today is a good day, but we can’t check any earlier.

Costs.
� Renting skis for 1 day costs 1 [Euro].

3 - 4

Ski-Rental Problem – Definition

Behavior.
� Every day when there is “good” weather, you go skiing.
� We call this is a good day.

� Each morning, we can check if today is a good day, but we can’t check any earlier.

� Buying skis costs M [Euros] and you have them forever.

Costs.
� Renting skis for 1 day costs 1 [Euro].

3 - 5

Ski-Rental Problem – Definition

Behavior.
� Every day when there is “good” weather, you go skiing.
� We call this is a good day.

� Each morning, we can check if today is a good day, but we can’t check any earlier.

� Buying skis costs M [Euros] and you have them forever.

� In the end, there will have been T good days.

Costs.
� Renting skis for 1 day costs 1 [Euro].

3 - 6

Ski-Rental Problem – Definition

Behavior.
� Every day when there is “good” weather, you go skiing.
� We call this is a good day.

� Each morning, we can check if today is a good day, but we can’t check any earlier.

� Buying skis costs M [Euros] and you have them forever.

� In the end, there will have been T good days.

(When to) buy skis?

Costs.
� Renting skis for 1 day costs 1 [Euro].

3 - 7

Ski-Rental Problem – Definition

Behavior.
� Every day when there is “good” weather, you go skiing.
� We call this is a good day.

� Each morning, we can check if today is a good day, but we can’t check any earlier.

� Buying skis costs M [Euros] and you have them forever.

� In the end, there will have been T good days.

(When to) buy skis?

Costs.
� Renting skis for 1 day costs 1 [Euro].

Task.
� Not knowing T, devise a strategy if and when to buy skis.

4 - 1

Ski-Rental Problem – Strategies I and II
Renting costs 1 per day

Buying costs M
T good days

4 - 2

Ski-Rental Problem – Strategies I and II
Renting costs 1 per day

Buying costs M
T good daysStrategy I: Buy on the first good day

4 - 3

Ski-Rental Problem – Strategies I and II
Renting costs 1 per day

Buying costs M
T good daysStrategy I: Buy on the first good day

� Imagine this was the only good day the whole winter.

4 - 4

Ski-Rental Problem – Strategies I and II
Renting costs 1 per day

Buying costs M
T good daysStrategy I: Buy on the first good day

� Imagine this was the only good day the whole winter.

� Then we have paid M; optimally, we would have rented and paid 1.

4 - 5

Ski-Rental Problem – Strategies I and II
Renting costs 1 per day

Buying costs M
T good daysStrategy I: Buy on the first good day

� Imagine this was the only good day the whole winter.

� Then we have paid M; optimally, we would have rented and paid 1.

� So Strategy I is M times worse than the optimal strategy.

4 - 6

Ski-Rental Problem – Strategies I and II
Renting costs 1 per day

Buying costs M
T good daysStrategy I: Buy on the first good day

� Imagine this was the only good day the whole winter.

� Then we have paid M; optimally, we would have rented and paid 1.

� So Strategy I is M times worse than the optimal strategy.

→ for arbitrarily large M arbitrarily bad

4 - 7

Ski-Rental Problem – Strategies I and II
Renting costs 1 per day

Buying costs M
T good daysStrategy I: Buy on the first good day

Strategy II: never buy, always rent

� Imagine this was the only good day the whole winter.

� Then we have paid M; optimally, we would have rented and paid 1.

� So Strategy I is M times worse than the optimal strategy.

→ for arbitrarily large M arbitrarily bad

4 - 8

Ski-Rental Problem – Strategies I and II
Renting costs 1 per day

Buying costs M
T good daysStrategy I: Buy on the first good day

Strategy II: never buy, always rent

� Imagine this was the only good day the whole winter.

� Then we have paid M; optimally, we would have rented and paid 1.

� So Strategy I is M times worse than the optimal strategy.

→ for arbitrarily large M arbitrarily bad

� Suppose there are many good days, i.e., T > M.

4 - 9

Ski-Rental Problem – Strategies I and II
Renting costs 1 per day

Buying costs M
T good daysStrategy I: Buy on the first good day

Strategy II: never buy, always rent

� Imagine this was the only good day the whole winter.

� Then we have paid M; optimally, we would have rented and paid 1.

� So Strategy I is M times worse than the optimal strategy.

→ for arbitrarily large M arbitrarily bad

� Suppose there are many good days, i.e., T > M.

� Then we have paid T.
Optimally, we would have bought on or before the first good day and paid M.

4 - 10

Ski-Rental Problem – Strategies I and II
Renting costs 1 per day

Buying costs M
T good daysStrategy I: Buy on the first good day

Strategy II: never buy, always rent

� Imagine this was the only good day the whole winter.

� Then we have paid M; optimally, we would have rented and paid 1.

� So Strategy I is M times worse than the optimal strategy.

→ for arbitrarily large M arbitrarily bad

� Suppose there are many good days, i.e., T > M.

� Then we have paid T.
Optimally, we would have bought on or before the first good day and paid M.

� Strategy II is T/M times worse than the optimal strategy.

4 - 11

Ski-Rental Problem – Strategies I and II
Renting costs 1 per day

Buying costs M
T good daysStrategy I: Buy on the first good day

Strategy II: never buy, always rent

� Imagine this was the only good day the whole winter.

� Then we have paid M; optimally, we would have rented and paid 1.

� So Strategy I is M times worse than the optimal strategy.

→ for arbitrarily large M arbitrarily bad

� Suppose there are many good days, i.e., T > M.

� Then we have paid T.
Optimally, we would have bought on or before the first good day and paid M.

� Strategy II is T/M times worse than the optimal strategy.

→ for arbitrarily large T arbitrarily bad

4 - 12

Ski-Rental Problem – Strategies I and II
Renting costs 1 per day

Buying costs M
T good daysStrategy I: Buy on the first good day

Strategy II: never buy, always rent

� Imagine this was the only good day the whole winter.

� Then we have paid M; optimally, we would have rented and paid 1.

� So Strategy I is M times worse than the optimal strategy.

→ for arbitrarily large M arbitrarily bad

� Suppose there are many good days, i.e., T > M.

� Then we have paid T.
Optimally, we would have bought on or before the first good day and paid M.

� Strategy II is T/M times worse than the optimal strategy.

→ for arbitrarily large T arbitrarily bad

competitive
ratio

5 - 1

Ski-Rental Problem – Strategy III

Is there a strategy that cannot become arbitrarily bad? – Yes!

Renting costs 1 per day
Buying costs M

T good days

5 - 2

Ski-Rental Problem – Strategy III

Is there a strategy that cannot become arbitrarily bad? – Yes!

Renting costs 1 per day
Buying costs M

T good days

5 - 3

Ski-Rental Problem – Strategy III

Is there a strategy that cannot become arbitrarily bad? – Yes!

Strategy III: buy on the M-th good day

Renting costs 1 per day
Buying costs M

T good days

5 - 4

Ski-Rental Problem – Strategy III

Is there a strategy that cannot become arbitrarily bad? – Yes!

Strategy III: buy on the M-th good day

� Observation: the optimal solution pays min(M, T)

Renting costs 1 per day
Buying costs M

T good days

5 - 5

Ski-Rental Problem – Strategy III

Is there a strategy that cannot become arbitrarily bad? – Yes!

Strategy III: buy on the M-th good day

� Observation: the optimal solution pays min(M, T)
� If T < M, the competitive ratio is 1.

Renting costs 1 per day
Buying costs M

T good days

5 - 6

Ski-Rental Problem – Strategy III

Is there a strategy that cannot become arbitrarily bad? – Yes!

Strategy III: buy on the M-th good day

� Observation: the optimal solution pays min(M, T)
� If T < M, the competitive ratio is 1. Otherwise, it is 2M−1

M = 2− 1
M

Renting costs 1 per day
Buying costs M

T good days

5 - 7

Ski-Rental Problem – Strategy III

Is there a strategy that cannot become arbitrarily bad? – Yes!

Strategy III: buy on the M-th good day

� Observation: the optimal solution pays min(M, T)
� If T < M, the competitive ratio is 1. Otherwise, it is 2M−1

M = 2− 1
M

Renting costs 1 per day
Buying costs M

T good days

M ∞
= 2.Otherwise, it is 2M−1

M = 2− 1
M

5 - 8

Ski-Rental Problem – Strategy III

Is there a strategy that cannot become arbitrarily bad? – Yes!

Strategy III: buy on the M-th good day

� Observation: the optimal solution pays min(M, T)
� If T < M, the competitive ratio is 1. Otherwise, it is 2M−1

M = 2− 1
M

⇒ Strategy III is deterministic and 2-competitive.

Renting costs 1 per day
Buying costs M

T good days

M ∞
= 2.Otherwise, it is 2M−1

M = 2− 1
M

5 - 9

Ski-Rental Problem – Strategy III

Is there a strategy that cannot become arbitrarily bad? – Yes!

Strategy III: buy on the M-th good day

� Observation: the optimal solution pays min(M, T)
� If T < M, the competitive ratio is 1. Otherwise, it is 2M−1

M = 2− 1
M

⇒ Strategy III is deterministic and 2-competitive.

Renting costs 1 per day
Buying costs M

T good days

M ∞
= 2.Otherwise, it is 2M−1

M = 2− 1
M

Theorem 1. No det. strategy is better than 2-competitive (for M ∞; in general: 2− 1
M).

5 - 10

Ski-Rental Problem – Strategy III

Is there a strategy that cannot become arbitrarily bad? – Yes!

Strategy III: buy on the M-th good day

� Observation: the optimal solution pays min(M, T)
� If T < M, the competitive ratio is 1. Otherwise, it is 2M−1

M = 2− 1
M

⇒ Strategy III is deterministic and 2-competitive.

Proof Idea.

Renting costs 1 per day
Buying costs M

T good days

M ∞
= 2.Otherwise, it is 2M−1

M = 2− 1
M

Theorem 1. No det. strategy is better than 2-competitive (for M ∞; in general: 2− 1
M).

5 - 11

Ski-Rental Problem – Strategy III

Is there a strategy that cannot become arbitrarily bad? – Yes!

Strategy III: buy on the M-th good day

� Observation: the optimal solution pays min(M, T)
� If T < M, the competitive ratio is 1. Otherwise, it is 2M−1

M = 2− 1
M

⇒ Strategy III is deterministic and 2-competitive.

Proof Idea.

� Any det. strategy can be formulated as “buy on the X-th day of rental” for a fixed X.

Renting costs 1 per day
Buying costs M

T good days

M ∞
= 2.Otherwise, it is 2M−1

M = 2− 1
M

Theorem 1. No det. strategy is better than 2-competitive (for M ∞; in general: 2− 1
M).

5 - 12

Ski-Rental Problem – Strategy III

Is there a strategy that cannot become arbitrarily bad? – Yes!

Strategy III: buy on the M-th good day

� Observation: the optimal solution pays min(M, T)
� If T < M, the competitive ratio is 1. Otherwise, it is 2M−1

M = 2− 1
M

⇒ Strategy III is deterministic and 2-competitive.

Proof Idea.

� Any det. strategy can be formulated as “buy on the X-th day of rental” for a fixed X.

� For X = 0 and X = ∞ it’s arbitrarily bad; assume X ∈N+. Observe, w.c. is T = X.

Renting costs 1 per day
Buying costs M

T good days

M ∞
= 2.Otherwise, it is 2M−1

M = 2− 1
M

Theorem 1. No det. strategy is better than 2-competitive (for M ∞; in general: 2− 1
M).

5 - 13

Ski-Rental Problem – Strategy III

Is there a strategy that cannot become arbitrarily bad? – Yes!

Strategy III: buy on the M-th good day

� Observation: the optimal solution pays min(M, T)
� If T < M, the competitive ratio is 1. Otherwise, it is 2M−1

M = 2− 1
M

⇒ Strategy III is deterministic and 2-competitive.

Proof Idea.

� Any det. strategy can be formulated as “buy on the X-th day of rental” for a fixed X.

� For X = 0 and X = ∞ it’s arbitrarily bad; assume X ∈N+. Observe, w.c. is T = X.

�
cdet

cOPT
= X−1+M

min(X,M)
≥ min

(
X−1+X+1

X , M−1+M
M

)
= min

(
2, 2− 1

M

)
= 2− 1

M
M ∞
= 2

costs for deterministic startegy

costs for optimal startegy

Renting costs 1 per day
Buying costs M

T good days

M ∞
= 2.Otherwise, it is 2M−1

M = 2− 1
M

Theorem 1. No det. strategy is better than 2-competitive (for M ∞; in general: 2− 1
M).

5 - 14

Ski-Rental Problem – Strategy III

Is there a strategy that cannot become arbitrarily bad? – Yes!

Strategy III: buy on the M-th good day

� Observation: the optimal solution pays min(M, T)
� If T < M, the competitive ratio is 1. Otherwise, it is 2M−1

M = 2− 1
M

⇒ Strategy III is deterministic and 2-competitive.

Proof Idea.

� Any det. strategy can be formulated as “buy on the X-th day of rental” for a fixed X.

� For X = 0 and X = ∞ it’s arbitrarily bad; assume X ∈N+. Observe, w.c. is T = X.

�
cdet

cOPT
= X−1+M

min(X,M)
≥ min

(
X−1+X+1

X , M−1+M
M

)
= min

(
2, 2− 1

M

)
= 2− 1

M
M ∞
= 2

Renting costs 1 per day
Buying costs M

T good days

M ∞
= 2.Otherwise, it is 2M−1

M = 2− 1
M

Theorem 1. No det. strategy is better than 2-competitive (for M ∞; in general: 2− 1
M).

5 - 15

Ski-Rental Problem – Strategy III

case M ≤ X

Is there a strategy that cannot become arbitrarily bad? – Yes!

Strategy III: buy on the M-th good day

� Observation: the optimal solution pays min(M, T)
� If T < M, the competitive ratio is 1. Otherwise, it is 2M−1

M = 2− 1
M

⇒ Strategy III is deterministic and 2-competitive.

Proof Idea.

� Any det. strategy can be formulated as “buy on the X-th day of rental” for a fixed X.

� For X = 0 and X = ∞ it’s arbitrarily bad; assume X ∈N+. Observe, w.c. is T = X.

�
cdet

cOPT
= X−1+M

min(X,M)
≥ min

(
X−1+X+1

X , M−1+M
M

)
= min

(
2, 2− 1

M

)
= 2− 1

M
M ∞
= 2

Renting costs 1 per day
Buying costs M

T good days

M ∞
= 2.Otherwise, it is 2M−1

M = 2− 1
M

Theorem 1. No det. strategy is better than 2-competitive (for M ∞; in general: 2− 1
M).

case X < M

5 - 16

Ski-Rental Problem – Strategy III

case M ≤ X

Is there a strategy that cannot become arbitrarily bad? – Yes!

Strategy III: buy on the M-th good day

� Observation: the optimal solution pays min(M, T)
� If T < M, the competitive ratio is 1. Otherwise, it is 2M−1

M = 2− 1
M

⇒ Strategy III is deterministic and 2-competitive.

Proof Idea.

� Any det. strategy can be formulated as “buy on the X-th day of rental” for a fixed X.

� For X = 0 and X = ∞ it’s arbitrarily bad; assume X ∈N+. Observe, w.c. is T = X.

�
cdet

cOPT
= X−1+M

min(X,M)
≥ min

(
X−1+X+1

X , M−1+M
M

)
= min

(
2, 2− 1

M

)
= 2− 1

M
M ∞
= 2

Renting costs 1 per day
Buying costs M

T good days

M ∞
= 2.Otherwise, it is 2M−1

M = 2− 1
M

Theorem 1. No det. strategy is better than 2-competitive (for M ∞; in general: 2− 1
M).

case X < M

5 - 17

Ski-Rental Problem – Strategy III

case M ≤ X

Is there a strategy that cannot become arbitrarily bad? – Yes!

Strategy III: buy on the M-th good day

� Observation: the optimal solution pays min(M, T)
� If T < M, the competitive ratio is 1. Otherwise, it is 2M−1

M = 2− 1
M

⇒ Strategy III is deterministic and 2-competitive.

Proof Idea.

� Any det. strategy can be formulated as “buy on the X-th day of rental” for a fixed X.

� For X = 0 and X = ∞ it’s arbitrarily bad; assume X ∈N+. Observe, w.c. is T = X.

�
cdet

cOPT
= X−1+M

min(X,M)
≥ min

(
X−1+X+1

X , M−1+M
M

)
= min

(
2, 2− 1

M

)
= 2− 1

M
M ∞
= 2

Renting costs 1 per day
Buying costs M

T good days

M ∞
= 2.Otherwise, it is 2M−1

M = 2− 1
M

Theorem 1. No det. strategy is better than 2-competitive (for M ∞; in general: 2− 1
M).

case X < M

6 - 1

Ski-Rental Problem – Strategy IV

Can we get below this bound using randomization? – Let’s try!

Renting costs 1 per day
Buying costs M

T good days

6 - 2

Ski-Rental Problem – Strategy IV

Can we get below this bound using randomization? – Let’s try!

Renting costs 1 per day
Buying costs M

T good days

6 - 3

Ski-Rental Problem – Strategy IV

Can we get below this bound using randomization? – Let’s try!

Strategy IV: throw a coin; HEADS: buy on the M-th good day
TAILS: buy on the αM-th good day (α ∈ (0, 1))

Renting costs 1 per day
Buying costs M

T good days

6 - 4

Ski-Rental Problem – Strategy IV

Can we get below this bound using randomization? – Let’s try!

Strategy IV: throw a coin; HEADS: buy on the M-th good day
TAILS: buy on the αM-th good day (α ∈ (0, 1))

� Observation: worst case can only be T = M or T = αM

Renting costs 1 per day
Buying costs M

T good days

6 - 5

Ski-Rental Problem – Strategy IV

Can we get below this bound using randomization? – Let’s try!

Strategy IV: throw a coin; HEADS: buy on the M-th good day
TAILS: buy on the αM-th good day (α ∈ (0, 1))

� Observation: worst case can only be T = M or T = αM

� Case T = M:
E[cStrategyIV]

cOPT
=

1
2 ·(2M−1)+ 1

2 ·((1+α)M−1)
M = 3+α

2 −
1
M

M ∞
= 3+α

2

Renting costs 1 per day
Buying costs M

T good days

6 - 6

Ski-Rental Problem – Strategy IV

Can we get below this bound using randomization? – Let’s try!

Strategy IV: throw a coin; HEADS: buy on the M-th good day
TAILS: buy on the αM-th good day (α ∈ (0, 1))

� Observation: worst case can only be T = M or T = αM

� Case T = αM:
E[cStrategyIV]

cOPT
=

1
2 ·αM+ 1

2 ·((1+α)M−1)
αM = 1 + 1

2α −
1

2αM
M ∞
= 1 + 1

2α

� Case T = M:
E[cStrategyIV]

cOPT
=

1
2 ·(2M−1)+ 1

2 ·((1+α)M−1)
M = 3+α

2 −
1
M

M ∞
= 3+α

2

Renting costs 1 per day
Buying costs M

T good days

6 - 7

Ski-Rental Problem – Strategy IV

Can we get below this bound using randomization? – Let’s try!

Strategy IV: throw a coin; HEADS: buy on the M-th good day
TAILS: buy on the αM-th good day (α ∈ (0, 1))

� Observation: worst case can only be T = M or T = αM

� Case T = αM:
E[cStrategyIV]

cOPT
=

1
2 ·αM+ 1

2 ·((1+α)M−1)
αM = 1 + 1

2α −
1

2αM
M ∞
= 1 + 1

2α

� Case T = M:
E[cStrategyIV]

cOPT
=

1
2 ·(2M−1)+ 1

2 ·((1+α)M−1)
M = 3+α

2 −
1
M

M ∞
= 3+α

2

try α = 1
2

Renting costs 1 per day
Buying costs M

T good days

6 - 8

Ski-Rental Problem – Strategy IV

Can we get below this bound using randomization? – Let’s try!

Strategy IV: throw a coin; HEADS: buy on the M-th good day
TAILS: buy on the αM-th good day (α ∈ (0, 1))

� Observation: worst case can only be T = M or T = αM

� Case T = αM:
E[cStrategyIV]

cOPT
=

1
2 ·αM+ 1

2 ·((1+α)M−1)
αM = 1 + 1

2α −
1

2αM
M ∞
= 1 + 1

2α

� Case T = M:
E[cStrategyIV]

cOPT
=

1
2 ·(2M−1)+ 1

2 ·((1+α)M−1)
M = 3+α

2 −
1
M

M ∞
= 3+α

2

try α = 1
2

= 7
4 < 2

Renting costs 1 per day
Buying costs M

T good days

6 - 9

Ski-Rental Problem – Strategy IV

Can we get below this bound using randomization? – Let’s try!

Strategy IV: throw a coin; HEADS: buy on the M-th good day
TAILS: buy on the αM-th good day (α ∈ (0, 1))

� Observation: worst case can only be T = M or T = αM

� Case T = αM:
E[cStrategyIV]

cOPT
=

1
2 ·αM+ 1

2 ·((1+α)M−1)
αM = 1 + 1

2α −
1

2αM
M ∞
= 1 + 1

2α

� Case T = M:
E[cStrategyIV]

cOPT
=

1
2 ·(2M−1)+ 1

2 ·((1+α)M−1)
M = 3+α

2 −
1
M

M ∞
= 3+α

2

try α = 1
2

= 7
4 < 2

= 2

Renting costs 1 per day
Buying costs M

T good days

6 - 10

Ski-Rental Problem – Strategy IV

Can we get below this bound using randomization? – Let’s try!

Strategy IV: throw a coin; HEADS: buy on the M-th good day
TAILS: buy on the αM-th good day (α ∈ (0, 1))

� Observation: worst case can only be T = M or T = αM

� Case T = αM:
E[cStrategyIV]

cOPT
=

1
2 ·αM+ 1

2 ·((1+α)M−1)
αM = 1 + 1

2α −
1

2αM
M ∞
= 1 + 1

2α

� Case T = M:
E[cStrategyIV]

cOPT
=

1
2 ·(2M−1)+ 1

2 ·((1+α)M−1)
M = 3+α

2 −
1
M

M ∞
= 3+α

2

try α = 1
2

= 7
4 < 2

= 2

not better than the deterministic Strategy III

Renting costs 1 per day
Buying costs M

T good days

6 - 11

Ski-Rental Problem – Strategy IV

Can we get below this bound using randomization? – Let’s try!

Strategy IV: throw a coin; HEADS: buy on the M-th good day
TAILS: buy on the αM-th good day (α ∈ (0, 1))

� Observation: worst case can only be T = M or T = αM

� Case T = αM:
E[cStrategyIV]

cOPT
=

1
2 ·αM+ 1

2 ·((1+α)M−1)
αM = 1 + 1

2α −
1

2αM
M ∞
= 1 + 1

2α

� The w.c. ratio is minimum if 3+α
2 = 1 + 1

2α ⇒ α =
√
5−1
2

� Case T = M:
E[cStrategyIV]

cOPT
=

1
2 ·(2M−1)+ 1

2 ·((1+α)M−1)
M = 3+α

2 −
1
M

M ∞
= 3+α

2

Renting costs 1 per day
Buying costs M

T good days

6 - 12

Ski-Rental Problem – Strategy IV

Can we get below this bound using randomization? – Let’s try!

Strategy IV: throw a coin; HEADS: buy on the M-th good day
TAILS: buy on the αM-th good day (α ∈ (0, 1))

� Observation: worst case can only be T = M or T = αM

� Case T = αM:
E[cStrategyIV]

cOPT
=

1
2 ·αM+ 1

2 ·((1+α)M−1)
αM = 1 + 1

2α −
1

2αM
M ∞
= 1 + 1

2α

� The w.c. ratio is minimum if 3+α
2 = 1 + 1

2α ⇒ α =
√
5−1
2

� Case T = M:
E[cStrategyIV]

cOPT
=

1
2 ·(2M−1)+ 1

2 ·((1+α)M−1)
M = 3+α

2 −
1
M

M ∞
= 3+α

2

Renting costs 1 per day
Buying costs M

T good days

6 - 13

Ski-Rental Problem – Strategy IV

Can we get below this bound using randomization? – Let’s try!

Strategy IV: throw a coin; HEADS: buy on the M-th good day
TAILS: buy on the αM-th good day (α ∈ (0, 1))

� Observation: worst case can only be T = M or T = αM

� Case T = αM:
E[cStrategyIV]

cOPT
=

1
2 ·αM+ 1

2 ·((1+α)M−1)
αM = 1 + 1

2α −
1

2αM
M ∞
= 1 + 1

2α

� The w.c. ratio is minimum if 3+α
2 = 1 + 1

2α ⇒ α =
√
5−1
2

� Case T = M:
E[cStrategyIV]

cOPT
=

1
2 ·(2M−1)+ 1

2 ·((1+α)M−1)
M = 3+α

2 −
1
M

M ∞
= 3+α

2

⇒ Strategy IV (with α =
√
5−1
2 ≈ 0.62) is 1.81-competitive, randomized, and better

than any deterministic strategy.

Renting costs 1 per day
Buying costs M

T good days

6 - 14

Ski-Rental Problem – Strategy IV

Can we get below this bound using randomization? – Let’s try!

Strategy IV: throw a coin; HEADS: buy on the M-th good day
TAILS: buy on the αM-th good day (α ∈ (0, 1))

� Observation: worst case can only be T = M or T = αM

� Case T = αM:
E[cStrategyIV]

cOPT
=

1
2 ·αM+ 1

2 ·((1+α)M−1)
αM = 1 + 1

2α −
1

2αM
M ∞
= 1 + 1

2α

� The w.c. ratio is minimum if 3+α
2 = 1 + 1

2α ⇒ α =
√
5−1
2

� Case T = M:
E[cStrategyIV]

cOPT
=

1
2 ·(2M−1)+ 1

2 ·((1+α)M−1)
M = 3+α

2 −
1
M

M ∞
= 3+α

2

⇒ Strategy IV (with α =
√
5−1
2 ≈ 0.62) is 1.81-competitive, randomized, and better

than any deterministic strategy.

� With a more sophisticated probability distribution for the time we buy skis,
we can expect even a competitive ratio of e

e−1 ≈ 1.58.

Renting costs 1 per day
Buying costs M

T good days

7 - 1

Online vs. Offline Algorithms

7 - 2

Online vs. Offline Algorithms

Online Algorithm

7 - 3

Online vs. Offline Algorithms

Online Algorithm

� No full information available initially
(online problem)

7 - 4

Online vs. Offline Algorithms

Online Algorithm

� No full information available initially
(online problem)

� Decisions are made with
incomplete information.

7 - 5

Online vs. Offline Algorithms

Online Algorithm

� No full information available initially
(online problem)

� Decisions are made with
incomplete information.

� The algorithm may get more information over time or by exploring the instance.

7 - 6

Online vs. Offline Algorithms

Online Algorithm

� No full information available initially
(online problem)

� Decisions are made with
incomplete information.

� The algorithm may get more information over time or by exploring the instance.

Offline Algorithm

7 - 7

Online vs. Offline Algorithms

Online Algorithm

� No full information available initially
(online problem)

� Decisions are made with
incomplete information.

� The algorithm may get more information over time or by exploring the instance.

Offline Algorithm

� Full information available initially
(offline problem)

7 - 8

Online vs. Offline Algorithms

Online Algorithm

� No full information available initially
(online problem)

� Decisions are made with
incomplete information.

� The algorithm may get more information over time or by exploring the instance.

Offline Algorithm

� Full information available initially
(offline problem)

� Decisions are made with
complete information.

7 - 9

Online vs. Offline Algorithms

Online Algorithm

� No full information available initially
(online problem)

� Decisions are made with
incomplete information.

� The algorithm may get more information over time or by exploring the instance.

Offline Algorithm

� Full information available initially
(offline problem)

� Decisions are made with
complete information.

� The objective value of the returned solution divided by the objective value of an
optimal (offline) solution is the competitive ratio.

7 - 10

Online vs. Offline Algorithms

Online Algorithm

� No full information available initially
(online problem)

� Decisions are made with
incomplete information.

� The algorithm may get more information over time or by exploring the instance.

Offline Algorithm

� Full information available initially
(offline problem)

� Decisions are made with
complete information.

� The objective value of the returned solution divided by the objective value of an
optimal (offline) solution is the competitive ratio.

7 - 11

Online vs. Offline Algorithms

Online Algorithm

� No full information available initially
(online problem)

� Decisions are made with
incomplete information.

� The algorithm may get more information over time or by exploring the instance.

Offline Algorithm

� Full information available initially
(offline problem)

� Decisions are made with
complete information.

� The objective value of the returned solution divided by the objective value of an
optimal (offline) solution is the competitive ratio.

in the w.c. (determ. algo.)

7 - 12

Online vs. Offline Algorithms

Online Algorithm

� No full information available initially
(online problem)

� Decisions are made with
incomplete information.

� The algorithm may get more information over time or by exploring the instance.

Offline Algorithm

� Full information available initially
(offline problem)

� Decisions are made with
complete information.

� The objective value of the returned solution divided by the objective value of an
optimal (offline) solution is the competitive ratio.

in the w.c. (determ. algo.)
in the worst avg.c. (random. algo.)

7 - 13

Online vs. Offline Algorithms

Online Algorithm

� No full information available initially
(online problem)

� Decisions are made with
incomplete information.

� The algorithm may get more information over time or by exploring the instance.

Offline Algorithm

� Full information available initially
(offline problem)

� Decisions are made with
complete information.

� The objective value of the returned solution divided by the objective value of an
optimal (offline) solution is the competitive ratio.

in the w.c. (determ. algo.)
in the worst avg.c. (random. algo.)

� Examples (problems & algos.):
Ski-Rental Problem, searching in unkown environments, Cow-Path Problem,
Job-Shop Scheduling, Insertion Sort, Paging (replacing entries in a memory)

7 - 14

Online vs. Offline Algorithms

Online Algorithm

� No full information available initially
(online problem)

� Decisions are made with
incomplete information.

� The algorithm may get more information over time or by exploring the instance.

Offline Algorithm

� Full information available initially
(offline problem)

� Decisions are made with
complete information.

� The objective value of the returned solution divided by the objective value of an
optimal (offline) solution is the competitive ratio.

in the w.c. (determ. algo.)
in the worst avg.c. (random. algo.)

� Examples (problems & algos.):
Ski-Rental Problem, searching in unkown environments, Cow-Path Problem,
Job-Shop Scheduling, Insertion Sort, Paging (replacing entries in a memory)

7 - 15

Online vs. Offline Algorithms

Online Algorithm

� No full information available initially
(online problem)

� Decisions are made with
incomplete information.

� The algorithm may get more information over time or by exploring the instance.

Offline Algorithm

� Full information available initially
(offline problem)

� Decisions are made with
complete information.

� The objective value of the returned solution divided by the objective value of an
optimal (offline) solution is the competitive ratio.

in the w.c. (determ. algo.)
in the worst avg.c. (random. algo.)

� Examples (problems & algos.):
Ski-Rental Problem, searching in unkown environments, Cow-Path Problem,
Job-Shop Scheduling, Insertion Sort, Paging (replacing entries in a memory)

8 - 1

Paging – Definition

Given (offline/online):

8 - 2

Paging – Definition

Given (offline/online):

� Fast access memory (a cache) with a capacity of k pages

 k
p1 p5 p8

8 - 3

Paging – Definition

Given (offline/online):

� Fast access memory (a cache) with a capacity of k pages

� Slow access memory with unlimited capacity

 k
p1 p5 p8

p2 p3 p4 p9p6 p7

8 - 4

Paging – Definition

Given (offline/online):

� Fast access memory (a cache) with a capacity of k pages

� Slow access memory with unlimited capacity

� If a page is requested, but it is not in the cache (page fault), it has to be swapped
with a page in the cache. A page request is fulfilled if the page is in the cache.

 k
p1 p5 p8

p2 p3 p4 p9p6 p7

page request

p3

8 - 5

Paging – Definition

Given (offline/online):

� Fast access memory (a cache) with a capacity of k pages

� Slow access memory with unlimited capacity

� If a page is requested, but it is not in the cache (page fault), it has to be swapped
with a page in the cache. A page request is fulfilled if the page is in the cache.

 k
p1 p5 p8

p2 p3 p4 p9p6 p7

page request

p3

page fault

8 - 6

Paging – Definition

Given (offline/online):

� Fast access memory (a cache) with a capacity of k pages

� Slow access memory with unlimited capacity

� If a page is requested, but it is not in the cache (page fault), it has to be swapped
with a page in the cache. A page request is fulfilled if the page is in the cache.

 k
p1 p5 p8

p2 p3 p4 p9p6 p7

page request

p3
swap

8 - 7

Paging – Definition

Given (offline/online):

� Fast access memory (a cache) with a capacity of k pages

� Slow access memory with unlimited capacity

� If a page is requested, but it is not in the cache (page fault), it has to be swapped
with a page in the cache. A page request is fulfilled if the page is in the cache.

 k
p5 p8

p2 p4 p9p6 p7

page request

p3
swap

p3

p1

8 - 8

Paging – Definition

Given (offline/online):

� Fast access memory (a cache) with a capacity of k pages

� Slow access memory with unlimited capacity

� If a page is requested, but it is not in the cache (page fault), it has to be swapped
with a page in the cache. A page request is fulfilled if the page is in the cache.

 k
p5 p8

p2 p4 p9p6 p7

page request
p3

p1

fulfilled page requests

p3

8 - 9

Paging – Definition

Given (offline/online):

� Fast access memory (a cache) with a capacity of k pages

� Slow access memory with unlimited capacity

� If a page is requested, but it is not in the cache (page fault), it has to be swapped
with a page in the cache. A page request is fulfilled if the page is in the cache.

� Sequence σ of page requests that need to be fulfilled in order. / where we just see
one request and have to fulfill that request before we see the next request.

 k
p5 p8

p2 p4 p9p6 p7

page request
p3

p1

fulfilled page requests

p3 p4 p8 p3 ← σ

8 - 10

Paging – Definition

Given (offline/online):

� Fast access memory (a cache) with a capacity of k pages

� Slow access memory with unlimited capacity

� If a page is requested, but it is not in the cache (page fault), it has to be swapped
with a page in the cache. A page request is fulfilled if the page is in the cache.

� Sequence σ of page requests that need to be fulfilled in order. / where we just see
one request and have to fulfill that request before we see the next request.

 k
p5 p8

p2 p4 p9p6 p7

page request
p3

p1

fulfilled page requests

p3 p4 p8 p3 ← σ

swap

8 - 11

Paging – Definition

Given (offline/online):

� Fast access memory (a cache) with a capacity of k pages

� Slow access memory with unlimited capacity

� If a page is requested, but it is not in the cache (page fault), it has to be swapped
with a page in the cache. A page request is fulfilled if the page is in the cache.

� Sequence σ of page requests that need to be fulfilled in order. / where we just see
one request and have to fulfill that request before we see the next request.

 k
p5 p8

p2 p9p6 p7

page requestfulfilled page requests

p3 p4 p8 p3 ← σ

swap
p1

p4

p3

8 - 12

Paging – Definition

Given (offline/online):

� Fast access memory (a cache) with a capacity of k pages

� Slow access memory with unlimited capacity

� If a page is requested, but it is not in the cache (page fault), it has to be swapped
with a page in the cache. A page request is fulfilled if the page is in the cache.

� Sequence σ of page requests that need to be fulfilled in order. / where we just see
one request and have to fulfill that request before we see the next request.

 k
p5 p8

p2 p9p6 p7

page requestfulfilled page requests

p3 ← σ

p1

p4

p3

p4 p8 p3

8 - 13

Paging – Definition

Given (offline/online):

� Fast access memory (a cache) with a capacity of k pages

� Slow access memory with unlimited capacity

� If a page is requested, but it is not in the cache (page fault), it has to be swapped
with a page in the cache. A page request is fulfilled if the page is in the cache.

� Sequence σ of page requests that need to be fulfilled in order. / where we just see
one request and have to fulfill that request before we see the next request.

 k
p5 p8

p2 p9p6 p7

page requestfulfilled page requests

p3 ← σ

p1

p4

p3

p4 p8 p3

8 - 14

Paging – Definition

Given (offline/online):

� Fast access memory (a cache) with a capacity of k pages

� Slow access memory with unlimited capacity

� If a page is requested, but it is not in the cache (page fault), it has to be swapped
with a page in the cache. A page request is fulfilled if the page is in the cache.

� Sequence σ of page requests that need to be fulfilled in order. / where we just see
one request and have to fulfill that request before we see the next request.

 k
p5 p8

p2 p9p6 p7

page requestfulfilled page requests

p3 ← σ

swap
p1

p4

p3

p4 p8 p3

8 - 15

Paging – Definition

Given (offline/online):

� Fast access memory (a cache) with a capacity of k pages

� Slow access memory with unlimited capacity

� If a page is requested, but it is not in the cache (page fault), it has to be swapped
with a page in the cache. A page request is fulfilled if the page is in the cache.

� Sequence σ of page requests that need to be fulfilled in order. / where we just see
one request and have to fulfill that request before we see the next request.

 k
p5 p8

p2 p4 p9p6 p7

page request
p3

p1

fulfilled page requests

p3 ← σ

swap
p1

p4 p8 p3

8 - 16

Paging – Definition

Given (offline/online):

� Fast access memory (a cache) with a capacity of k pages

� Slow access memory with unlimited capacity

� If a page is requested, but it is not in the cache (page fault), it has to be swapped
with a page in the cache. A page request is fulfilled if the page is in the cache.

� Sequence σ of page requests that need to be fulfilled in order. / where we just see
one request and have to fulfill that request before we see the next request.

 k
p5 p8

p2 p4 p9p6 p7

page request
p3

p1

fulfilled page requests

p3

p1

p4 p8 p3

8 - 17

Paging – Definition

Given (offline/online):

� Fast access memory (a cache) with a capacity of k pages

� Slow access memory with unlimited capacity

� If a page is requested, but it is not in the cache (page fault), it has to be swapped
with a page in the cache. A page request is fulfilled if the page is in the cache.

� Sequence σ of page requests that need to be fulfilled in order. / where we just see
one request and have to fulfill that request before we see the next request.

Objective value:

 k
p5 p8

p2 p4 p9p6 p7

page request
p3

p1

fulfilled page requests

p3

p1

p4 p8 p3

8 - 18

Paging – Definition

Given (offline/online):

� Fast access memory (a cache) with a capacity of k pages

� Slow access memory with unlimited capacity

� If a page is requested, but it is not in the cache (page fault), it has to be swapped
with a page in the cache. A page request is fulfilled if the page is in the cache.

� Sequence σ of page requests that need to be fulfilled in order. / where we just see
one request and have to fulfill that request before we see the next request.

Objective value:

� Minimize the number of page faults while fulfilling σ.

 k
p5 p8

p2 p4 p9p6 p7

page request
p3

p1

fulfilled page requests

p3

p1

p4 p8 p3

9 - 1

Paging – Det. Strat.

� On a page fault, a Paging algorithm chooses which page to evict from the cache.

9 - 2

Paging – Det. Strat.

� On a page fault, a Paging algorithm chooses which page to evict from the cache.

 k
p5 p8

p1 p9p6 p7

page requestfulfilled page requests

p8 ← σ

p2

p4

p3

p8 p5 p3p4 p4

9 - 3

Paging – Det. Strat.

� On a page fault, a Paging algorithm chooses which page to evict from the cache.

 k
p5 p8

p1 p9p6 p7

page requestfulfilled page requests

p8 ← σ

p2

p4

p3

p8 p5 p3p4 p4

page fault

9 - 4

Paging – Det. Strat.

� On a page fault, a Paging algorithm chooses which page to evict from the cache.

Deterministic Strategies: Evict the page that has . . .

 k
p5 p8

p1 p9p6 p7

page requestfulfilled page requests

p8 ← σ

p2

p4

p3

p8 p5 p3p4 p4

9 - 5

Paging – Det. Strat.

� On a page fault, a Paging algorithm chooses which page to evict from the cache.

Deterministic Strategies: Evict the page that has . . .

� Least Frequently Used (LFU): . . . the lowest number of accesses since it was loaded.

 k
p5 p8

p1 p9p6 p7

page requestfulfilled page requests

p8 ← σ

p2

p4

p3

p8 p5 p3p4 p4

9 - 6

Paging – Det. Strat.

� On a page fault, a Paging algorithm chooses which page to evict from the cache.

Deterministic Strategies: Evict the page that has . . .

� Least Frequently Used (LFU): . . . the lowest number of accesses since it was loaded.

 k
p5 p8

p1 p9p6 p7

page requestfulfilled page requests

p8 ← σ

p2

p4

p3

p8 p5 p3

swap

p4 p4

9 - 7

Paging – Det. Strat.

� On a page fault, a Paging algorithm chooses which page to evict from the cache.

Deterministic Strategies: Evict the page that has . . .

� Least Frequently Used (LFU): . . . the lowest number of accesses since it was loaded.

� Least Recently Used (LRU): . . . been accessed least recently.

 k
p5 p8

p1 p9p6 p7

page requestfulfilled page requests

p8 ← σ

p2

p4

p3

p8 p5 p3p4 p4

9 - 8

Paging – Det. Strat.

� On a page fault, a Paging algorithm chooses which page to evict from the cache.

Deterministic Strategies: Evict the page that has . . .

� Least Frequently Used (LFU): . . . the lowest number of accesses since it was loaded.

� Least Recently Used (LRU): . . . been accessed least recently.

 k
p5 p8

p1 p9p6 p7

page requestfulfilled page requests

p8 ← σ

p2

p4

p3

p8 p5 p3p4 p4

swap

9 - 9

Paging – Det. Strat.

� On a page fault, a Paging algorithm chooses which page to evict from the cache.

Deterministic Strategies: Evict the page that has . . .

� Least Frequently Used (LFU): . . . the lowest number of accesses since it was loaded.

� Least Recently Used (LRU): . . . been accessed least recently.

� First-in-first-out (FIFO): . . . been in the cache the longest.

 k
p5 p8

p1 p9p6 p7

page requestfulfilled page requests

p8 ← σ

p2

p4

p3

p8 p5 p3p4 p4

9 - 10

Paging – Det. Strat.

� On a page fault, a Paging algorithm chooses which page to evict from the cache.

Deterministic Strategies: Evict the page that has . . .

� Least Frequently Used (LFU): . . . the lowest number of accesses since it was loaded.

� Least Recently Used (LRU): . . . been accessed least recently.

� First-in-first-out (FIFO): . . . been in the cache the longest.

 k
p5 p8

p1 p9p6 p7

page requestfulfilled page requests

p8 ← σ

p2

p4

p3

p8 p5 p3p4 p4

swap

9 - 11

Paging – Det. Strat.

� On a page fault, a Paging algorithm chooses which page to evict from the cache.

Deterministic Strategies: Evict the page that has . . .

� Least Frequently Used (LFU): . . . the lowest number of accesses since it was loaded.

� Least Recently Used (LRU): . . . been accessed least recently.

� First-in-first-out (FIFO): . . . been in the cache the longest.

Which of them is – theoretically provable – the best strategy?

 k
p5 p8

p1 p9p6 p7

page requestfulfilled page requests

p8 ← σ

p2

p4

p3

p8 p5 p3p4 p4

9 - 12

Paging – Det. Strat.

� On a page fault, a Paging algorithm chooses which page to evict from the cache.

Deterministic Strategies: Evict the page that has . . .

� Least Frequently Used (LFU): . . . the lowest number of accesses since it was loaded.

� Least Recently Used (LRU): . . . been accessed least recently.

� First-in-first-out (FIFO): . . . been in the cache the longest.

Which of them is – theoretically provable – the best strategy?

 k
p5 p8

p1 p9p6 p7

page requestfulfilled page requests

p8 ← σ

p2

p4

p3

p8 p5 p3p4 p4

Theorem 2. LRU & FIFO are k-competitive. No deterministic strategy is better.

10 - 1

Paging – Det. Strategies – Analysis

Theorem 2. LRU & FIFO are k-competitive. No deterministic strategy is better.

10 - 2

Paging – Det. Strategies – Analysis

Proof. (only for LRU, FIFO similar)

Theorem 2. LRU & FIFO are k-competitive. No deterministic strategy is better.

10 - 3

Paging – Det. Strategies – Analysis

Proof. (only for LRU, FIFO similar) MIN: optimal strategy
σ: sequence of pages

Theorem 2. LRU & FIFO are k-competitive. No deterministic strategy is better.

10 - 4

Paging – Det. Strategies – Analysis

� Initially, the cache contains the same pages for all strategies.

Proof. (only for LRU, FIFO similar) MIN: optimal strategy
σ: sequence of pages

Theorem 2. LRU & FIFO are k-competitive. No deterministic strategy is better.

10 - 5

Paging – Det. Strategies – Analysis

� Initially, the cache contains the same pages for all strategies.

� We partition σ into phases P0, P1, . . . , s.t. LRU has at most k faults in P0
and exactly k faults in each other phase.

Proof. (only for LRU, FIFO similar) MIN: optimal strategy
σ: sequence of pages

Theorem 2. LRU & FIFO are k-competitive. No deterministic strategy is better.

10 - 6

Paging – Det. Strategies – Analysis

� Initially, the cache contains the same pages for all strategies.

� We partition σ into phases P0, P1, . . . , s.t. LRU has at most k faults in P0
and exactly k faults in each other phase.

� We show next: MIN has at least 1 fault in each phase.

Proof. (only for LRU, FIFO similar) MIN: optimal strategy
σ: sequence of pages

Theorem 2. LRU & FIFO are k-competitive. No deterministic strategy is better.

10 - 7

Paging – Det. Strategies – Analysis

� Initially, the cache contains the same pages for all strategies.

� We partition σ into phases P0, P1, . . . , s.t. LRU has at most k faults in P0
and exactly k faults in each other phase.

� We show next: MIN has at least 1 fault in each phase.

� Clearly, MIN also faults in P0; consider Pi (i ≥ 1) and let p be the last page of Pi−1.

Proof. (only for LRU, FIFO similar) MIN: optimal strategy
σ: sequence of pages

Theorem 2. LRU & FIFO are k-competitive. No deterministic strategy is better.

10 - 8

Paging – Det. Strategies – Analysis

� Initially, the cache contains the same pages for all strategies.

� We partition σ into phases P0, P1, . . . , s.t. LRU has at most k faults in P0
and exactly k faults in each other phase.

� We show next: MIN has at least 1 fault in each phase.

� Clearly, MIN also faults in P0; consider Pi (i ≥ 1) and let p be the last page of Pi−1.

Proof. (only for LRU, FIFO similar)

� Show: Pi contains k distinct page requests different from p (implies a fault for MIN).

MIN: optimal strategy
σ: sequence of pages

Theorem 2. LRU & FIFO are k-competitive. No deterministic strategy is better.

10 - 9

Paging – Det. Strategies – Analysis

� Initially, the cache contains the same pages for all strategies.

� We partition σ into phases P0, P1, . . . , s.t. LRU has at most k faults in P0
and exactly k faults in each other phase.

� We show next: MIN has at least 1 fault in each phase.

� Clearly, MIN also faults in P0; consider Pi (i ≥ 1) and let p be the last page of Pi−1.

Proof. (only for LRU, FIFO similar)

� Show: Pi contains k distinct page requests different from p (implies a fault for MIN).

� If the k page faults of LRU in Pi are on distinct pages (different from p), we’re done.

MIN: optimal strategy
σ: sequence of pages

Theorem 2. LRU & FIFO are k-competitive. No deterministic strategy is better.

10 - 10

Paging – Det. Strategies – Analysis

� Initially, the cache contains the same pages for all strategies.

� We partition σ into phases P0, P1, . . . , s.t. LRU has at most k faults in P0
and exactly k faults in each other phase.

� We show next: MIN has at least 1 fault in each phase.

� Clearly, MIN also faults in P0; consider Pi (i ≥ 1) and let p be the last page of Pi−1.

Proof. (only for LRU, FIFO similar)

� Show: Pi contains k distinct page requests different from p (implies a fault for MIN).

� If the k page faults of LRU in Pi are on distinct pages (different from p), we’re done.

� Assume LRU has in Pi two page faults on one page q. In between, q has to be evicted
from the cache. According to LRU, there were k distinct page requests in between.

MIN: optimal strategy
σ: sequence of pages

Theorem 2. LRU & FIFO are k-competitive. No deterministic strategy is better.

10 - 11

Paging – Det. Strategies – Analysis

� Initially, the cache contains the same pages for all strategies.

� We partition σ into phases P0, P1, . . . , s.t. LRU has at most k faults in P0
and exactly k faults in each other phase.

� We show next: MIN has at least 1 fault in each phase.

� Clearly, MIN also faults in P0; consider Pi (i ≥ 1) and let p be the last page of Pi−1.

Proof. (only for LRU, FIFO similar)

� Show: Pi contains k distinct page requests different from p (implies a fault for MIN).

� If the k page faults of LRU in Pi are on distinct pages (different from p), we’re done.

� Assume LRU has in Pi two page faults on one page q. In between, q has to be evicted
from the cache. According to LRU, there were k distinct page requests in between.

� Similarly, if LRU faults on p in Pi, there were k distinct page requests in between.

MIN: optimal strategy
σ: sequence of pages

Theorem 2. LRU & FIFO are k-competitive. No deterministic strategy is better.

10 - 12

Paging – Det. Strategies – Analysis

Proof. (only for LRU, FIFO similar)

� Remains to prove: No deterministic strategy is better than k-competitive.

Theorem 2. LRU & FIFO are k-competitive. No deterministic strategy is better.

10 - 13

Paging – Det. Strategies – Analysis

Proof. (only for LRU, FIFO similar)

� Remains to prove: No deterministic strategy is better than k-competitive.

� Let there be k + 1 pages in the memory system.

Theorem 2. LRU & FIFO are k-competitive. No deterministic strategy is better.

10 - 14

Paging – Det. Strategies – Analysis

Proof. (only for LRU, FIFO similar)

� Remains to prove: No deterministic strategy is better than k-competitive.

� Let there be k + 1 pages in the memory system.

� For any deterministic strategy there is a worst-case page sequence σ?

always requesting the page that is currently not in the cache.

Theorem 2. LRU & FIFO are k-competitive. No deterministic strategy is better.

10 - 15

Paging – Det. Strategies – Analysis

Proof. (only for LRU, FIFO similar)

� Remains to prove: No deterministic strategy is better than k-competitive.

� Let there be k + 1 pages in the memory system.

� For any deterministic strategy there is a worst-case page sequence σ?

always requesting the page that is currently not in the cache.

� Let MIN have a page fault on the i-th page of σ?.

Theorem 2. LRU & FIFO are k-competitive. No deterministic strategy is better.

10 - 16

Paging – Det. Strategies – Analysis

Proof. (only for LRU, FIFO similar)

� Remains to prove: No deterministic strategy is better than k-competitive.

� Let there be k + 1 pages in the memory system.

� For any deterministic strategy there is a worst-case page sequence σ?

always requesting the page that is currently not in the cache.

� Let MIN have a page fault on the i-th page of σ?.

� Then the next k− 1 requested pages are in the cache already & the next fault occurs
on the (i + k)-th page of σ? the earliest. Until then, the det. strategy has k faults.

Theorem 2. LRU & FIFO are k-competitive. No deterministic strategy is better.

10 - 17

Paging – Det. Strategies – Analysis

Proof. (only for LRU, FIFO similar)

� Remains to prove: No deterministic strategy is better than k-competitive.

� Let there be k + 1 pages in the memory system.

� For any deterministic strategy there is a worst-case page sequence σ?

always requesting the page that is currently not in the cache.

� Let MIN have a page fault on the i-th page of σ?.

� Then the next k− 1 requested pages are in the cache already & the next fault occurs
on the (i + k)-th page of σ? the earliest. Until then, the det. strategy has k faults.

⇒ The competitive ratio cannot be better than |σ? |⌈
|σ? |

k

⌉ |σ? | ∞
= k.

�

Theorem 2. LRU & FIFO are k-competitive. No deterministic strategy is better.

11 - 1

Paging – Rand. Strat.

Randomized strategy: MARKING

11 - 2

Paging – Rand. Strat.

Randomized strategy: MARKING

� Proceeds in phases

11 - 3

Paging – Rand. Strat.

Randomized strategy: MARKING

� Proceeds in phases

� At the beginning of each phase, all pages are unmarked.

11 - 4

Paging – Rand. Strat.

Randomized strategy: MARKING

� Proceeds in phases

� At the beginning of each phase, all pages are unmarked.

� When a page is requested, it gets marked.

11 - 5

Paging – Rand. Strat.

Randomized strategy: MARKING

� Proceeds in phases

� At the beginning of each phase, all pages are unmarked.

� When a page is requested, it gets marked.

� A page for eviction is chosen uniformly at random from the unmarked pages.

11 - 6

Paging – Rand. Strat.

Randomized strategy: MARKING

� Proceeds in phases

� At the beginning of each phase, all pages are unmarked.

� When a page is requested, it gets marked.

� A page for eviction is chosen uniformly at random from the unmarked pages.

� If all pages are marked and a page fault occurs, unmark all and start new phase.

11 - 7

Paging – Rand. Strat.

Randomized strategy: MARKING

� Proceeds in phases

� At the beginning of each phase, all pages are unmarked.

� When a page is requested, it gets marked.

� A page for eviction is chosen uniformly at random from the unmarked pages.

� If all pages are marked and a page fault occurs, unmark all and start new phase.

 k
p2 p3

p4 p6 p9p7 p8

p1

p5

Phase P1

11 - 8

Paging – Rand. Strat.

Randomized strategy: MARKING

� Proceeds in phases

� At the beginning of each phase, all pages are unmarked.

� When a page is requested, it gets marked.

� A page for eviction is chosen uniformly at random from the unmarked pages.

� If all pages are marked and a page fault occurs, unmark all and start new phase.

 k
p2 p3

p4 p6 p9p7 p8

page request
p1

p5

p5

Phase P1

11 - 9

Paging – Rand. Strat.

Randomized strategy: MARKING

� Proceeds in phases

� At the beginning of each phase, all pages are unmarked.

� When a page is requested, it gets marked.

� A page for eviction is chosen uniformly at random from the unmarked pages.

� If all pages are marked and a page fault occurs, unmark all and start new phase.

 k
p2 p3

p4 p6 p9p7 p8

page request
p1

p5

p5

Phase P1

choose u.a.r.

11 - 10

Paging – Rand. Strat.

Randomized strategy: MARKING

� Proceeds in phases

� At the beginning of each phase, all pages are unmarked.

� When a page is requested, it gets marked.

� A page for eviction is chosen uniformly at random from the unmarked pages.

� If all pages are marked and a page fault occurs, unmark all and start new phase.

 k
p2 p3

p4 p6 p9p7 p8

page request
p1

p5

p5

Phase P1

swap

11 - 11

Paging – Rand. Strat.

Randomized strategy: MARKING

� Proceeds in phases

� At the beginning of each phase, all pages are unmarked.

� When a page is requested, it gets marked.

� A page for eviction is chosen uniformly at random from the unmarked pages.

� If all pages are marked and a page fault occurs, unmark all and start new phase.

 k
p3

p4 p6 p9p7 p8

page request
p1 p5

Phase P1

p5

p2

11 - 12

Paging – Rand. Strat.

Randomized strategy: MARKING

� Proceeds in phases

� At the beginning of each phase, all pages are unmarked.

� When a page is requested, it gets marked.

� A page for eviction is chosen uniformly at random from the unmarked pages.

� If all pages are marked and a page fault occurs, unmark all and start new phase.

 k
p3

p4 p6 p9p7 p8

page request
p1 p5

Phase P1

mark requested page p5

p2

11 - 13

Paging – Rand. Strat.

Randomized strategy: MARKING

� Proceeds in phases

� At the beginning of each phase, all pages are unmarked.

� When a page is requested, it gets marked.

� A page for eviction is chosen uniformly at random from the unmarked pages.

� If all pages are marked and a page fault occurs, unmark all and start new phase.

 k
p3

p4 p6 p9p7 p8

page request
p1

Phase P1

p5

p2

p3

11 - 14

Paging – Rand. Strat.

Randomized strategy: MARKING

� Proceeds in phases

� At the beginning of each phase, all pages are unmarked.

� When a page is requested, it gets marked.

� A page for eviction is chosen uniformly at random from the unmarked pages.

� If all pages are marked and a page fault occurs, unmark all and start new phase.

 k
p3

p4 p6 p9p7 p8

page request
p1

Phase P1

mark requested page p5

p2

p3

11 - 15

Paging – Rand. Strat.

Randomized strategy: MARKING

� Proceeds in phases

� At the beginning of each phase, all pages are unmarked.

� When a page is requested, it gets marked.

� A page for eviction is chosen uniformly at random from the unmarked pages.

� If all pages are marked and a page fault occurs, unmark all and start new phase.

 k
p3

p4 p6 p9p7 p8

page request
p1 p5

Phase P1

p5

p2

11 - 16

Paging – Rand. Strat.

Randomized strategy: MARKING

� Proceeds in phases

� At the beginning of each phase, all pages are unmarked.

� When a page is requested, it gets marked.

� A page for eviction is chosen uniformly at random from the unmarked pages.

� If all pages are marked and a page fault occurs, unmark all and start new phase.

 k
p3

p4 p6 p9p7 p8

page request
p1 p5

Phase P1

p5

p2

is already marked

11 - 17

Paging – Rand. Strat.

Randomized strategy: MARKING

� Proceeds in phases

� At the beginning of each phase, all pages are unmarked.

� When a page is requested, it gets marked.

� A page for eviction is chosen uniformly at random from the unmarked pages.

� If all pages are marked and a page fault occurs, unmark all and start new phase.

 k
p3

p4 p6 p9p7 p8

page request
p1

Phase P1

p5

p2

p2

11 - 18

Paging – Rand. Strat.

Randomized strategy: MARKING

� Proceeds in phases

� At the beginning of each phase, all pages are unmarked.

� When a page is requested, it gets marked.

� A page for eviction is chosen uniformly at random from the unmarked pages.

� If all pages are marked and a page fault occurs, unmark all and start new phase.

 k
p3

p4 p6 p9p7 p8

page request
p1

Phase P1

choose u.a.r. p5

p2

p2

11 - 19

Paging – Rand. Strat.

Randomized strategy: MARKING

� Proceeds in phases

� At the beginning of each phase, all pages are unmarked.

� When a page is requested, it gets marked.

� A page for eviction is chosen uniformly at random from the unmarked pages.

� If all pages are marked and a page fault occurs, unmark all and start new phase.

 k
p3

p4 p6 p9p7 p8

page request
p1

Phase P1

p5

p2

p2

swap

11 - 20

Paging – Rand. Strat.

Randomized strategy: MARKING

� Proceeds in phases

� At the beginning of each phase, all pages are unmarked.

� When a page is requested, it gets marked.

� A page for eviction is chosen uniformly at random from the unmarked pages.

� If all pages are marked and a page fault occurs, unmark all and start new phase.

 k
p3

p4 p6 p9p7 p8

page request

Phase P1

p5 p2p2

p1

11 - 21

Paging – Rand. Strat.

Randomized strategy: MARKING

� Proceeds in phases

� At the beginning of each phase, all pages are unmarked.

� When a page is requested, it gets marked.

� A page for eviction is chosen uniformly at random from the unmarked pages.

� If all pages are marked and a page fault occurs, unmark all and start new phase.

 k
p3

p4 p6 p9p7 p8

page request

Phase P1

mark requested page p5 p2p2

p1

11 - 22

Paging – Rand. Strat.

Randomized strategy: MARKING

� Proceeds in phases

� At the beginning of each phase, all pages are unmarked.

� When a page is requested, it gets marked.

� A page for eviction is chosen uniformly at random from the unmarked pages.

� If all pages are marked and a page fault occurs, unmark all and start new phase.

 k
p3

p4 p6 p9p7 p8

page request

Phase P1

p5p2

p1

p3

11 - 23

Paging – Rand. Strat.

Randomized strategy: MARKING

� Proceeds in phases

� At the beginning of each phase, all pages are unmarked.

� When a page is requested, it gets marked.

� A page for eviction is chosen uniformly at random from the unmarked pages.

� If all pages are marked and a page fault occurs, unmark all and start new phase.

 k
p3

p4 p6 p9p7 p8

page request

Phase P1

p5is already marked p2

p1

p3

11 - 24

Paging – Rand. Strat.

Randomized strategy: MARKING

� Proceeds in phases

� At the beginning of each phase, all pages are unmarked.

� When a page is requested, it gets marked.

� A page for eviction is chosen uniformly at random from the unmarked pages.

� If all pages are marked and a page fault occurs, unmark all and start new phase.

 k
p3

p4 p6 p9p7 p8

page request

Phase P1

p5p2

p1

p6

11 - 25

Paging – Rand. Strat.

Randomized strategy: MARKING

� Proceeds in phases

� At the beginning of each phase, all pages are unmarked.

� When a page is requested, it gets marked.

� A page for eviction is chosen uniformly at random from the unmarked pages.

� If all pages are marked and a page fault occurs, unmark all and start new phase.

 k
p3

p4 p6 p9p7 p8

page request

Phase P1

p5p2

p1

p6unmark all

11 - 26

Paging – Rand. Strat.

Randomized strategy: MARKING

� Proceeds in phases

� At the beginning of each phase, all pages are unmarked.

� When a page is requested, it gets marked.

� A page for eviction is chosen uniformly at random from the unmarked pages.

� If all pages are marked and a page fault occurs, unmark all and start new phase.

 k
p3

p4 p6 p9p7 p8

page request
p5p2

p1

p6unmark all

start new phase Phase P2

11 - 27

Paging – Rand. Strat.

Randomized strategy: MARKING

� Proceeds in phases

� At the beginning of each phase, all pages are unmarked.

� When a page is requested, it gets marked.

� A page for eviction is chosen uniformly at random from the unmarked pages.

� If all pages are marked and a page fault occurs, unmark all and start new phase.

 k
p3

p4 p6 p9p7 p8

page request
choose u.a.r. p5p2

p1

p6

Phase P2

11 - 28

Paging – Rand. Strat.

Randomized strategy: MARKING

� Proceeds in phases

� At the beginning of each phase, all pages are unmarked.

� When a page is requested, it gets marked.

� A page for eviction is chosen uniformly at random from the unmarked pages.

� If all pages are marked and a page fault occurs, unmark all and start new phase.

 k
p3

p4 p6 p9p7 p8

page request
p5p2

p1

p6

Phase P2

swap

11 - 29

Paging – Rand. Strat.

Randomized strategy: MARKING

� Proceeds in phases

� At the beginning of each phase, all pages are unmarked.

� When a page is requested, it gets marked.

� A page for eviction is chosen uniformly at random from the unmarked pages.

� If all pages are marked and a page fault occurs, unmark all and start new phase.

 k
p3

p4 p9p7 p8

page request
p5

p1

p6

Phase P2

p2

p6

11 - 30

Paging – Rand. Strat.

Randomized strategy: MARKING

� Proceeds in phases

� At the beginning of each phase, all pages are unmarked.

� When a page is requested, it gets marked.

� A page for eviction is chosen uniformly at random from the unmarked pages.

� If all pages are marked and a page fault occurs, unmark all and start new phase.

 k
p3

p4 p9p7 p8

page request
mark requested page p5

p1

p6

Phase P2

p2

p6

11 - 31

Paging – Rand. Strat.

Randomized strategy: MARKING

� Proceeds in phases

� At the beginning of each phase, all pages are unmarked.

� When a page is requested, it gets marked.

� A page for eviction is chosen uniformly at random from the unmarked pages.

� If all pages are marked and a page fault occurs, unmark all and start new phase.

 k
p3

p4 p9p7 p8

page request
p5

p1

Phase P2

p2

p6 p9

11 - 32

Paging – Rand. Strat.

Randomized strategy: MARKING

� Proceeds in phases

� At the beginning of each phase, all pages are unmarked.

� When a page is requested, it gets marked.

� A page for eviction is chosen uniformly at random from the unmarked pages.

� If all pages are marked and a page fault occurs, unmark all and start new phase.

 k
p3

p4 p9p7 p8

page request
choose u.a.r. p5

p1

Phase P2

p2

p6 p9

11 - 33

Paging – Rand. Strat.

Randomized strategy: MARKING

� Proceeds in phases

� At the beginning of each phase, all pages are unmarked.

� When a page is requested, it gets marked.

� A page for eviction is chosen uniformly at random from the unmarked pages.

� If all pages are marked and a page fault occurs, unmark all and start new phase.

Hk = 1 + 1
2 +

1
3 + . . . + 1

k is the k-th harmonic number and for k ≥ 2: Hk < ln(k) + 1.

Remark.

 k
p3

p4 p9p7 p8

page request
choose u.a.r. p5

p1

Phase P2

p2

p6 p9

Theorem 3. MARKING is 2Hk-competitive.

12 - 1

Paging – Rand. Strategy – Analysis

Proof.

Theorem 3. MARKING is 2Hk-competitive.

12 - 2

Paging – Rand. Strategy – Analysis

Proof. We consider
phase Pi.

Theorem 3. MARKING is 2Hk-competitive.

12 - 3

Paging – Rand. Strategy – Analysis

Proof.
� A page is stale if it is unmarked, but was marked in Pi−1.

We consider
phase Pi.

Theorem 3. MARKING is 2Hk-competitive.

12 - 4

Paging – Rand. Strategy – Analysis

Proof.
� A page is stale if it is unmarked, but was marked in Pi−1.

� A page is clean if it is unmarked, but not stale.

We consider
phase Pi.

Theorem 3. MARKING is 2Hk-competitive.

12 - 5

Paging – Rand. Strategy – Analysis

Proof.
� A page is stale if it is unmarked, but was marked in Pi−1.

� A page is clean if it is unmarked, but not stale.

� SMARK (SMIN): set of pages in the cache of MARKING (MIN)

We consider
phase Pi.

Theorem 3. MARKING is 2Hk-competitive.

12 - 6

Paging – Rand. Strategy – Analysis

Proof.
� A page is stale if it is unmarked, but was marked in Pi−1.

� A page is clean if it is unmarked, but not stale.

� SMARK (SMIN): set of pages in the cache of MARKING (MIN)

� dbegin: |SMIN − SMARK| at the beginning of Pi

We consider
phase Pi.

Theorem 3. MARKING is 2Hk-competitive.

12 - 7

Paging – Rand. Strategy – Analysis

Proof.
� A page is stale if it is unmarked, but was marked in Pi−1.

� A page is clean if it is unmarked, but not stale.

� SMARK (SMIN): set of pages in the cache of MARKING (MIN)

� dbegin: |SMIN − SMARK| at the beginning of Pi

� dend: |SMIN − SMARK| at the end of Pi

We consider
phase Pi.

Theorem 3. MARKING is 2Hk-competitive.

12 - 8

Paging – Rand. Strategy – Analysis

� c: number of clean pages requested in Pi

Proof.
� A page is stale if it is unmarked, but was marked in Pi−1.

� A page is clean if it is unmarked, but not stale.

� SMARK (SMIN): set of pages in the cache of MARKING (MIN)

� dbegin: |SMIN − SMARK| at the beginning of Pi

� dend: |SMIN − SMARK| at the end of Pi

We consider
phase Pi.

Theorem 3. MARKING is 2Hk-competitive.

12 - 9

Paging – Rand. Strategy – Analysis

� MIN has ≥ max(c− dbegin, dend) ≥ 1
2 (c− dbegin + dend) = c

2 −
dbegin
2 + dend

2 faults.

Over all phases, all
dbegin
2 and dend

2 cancel out, except the first
dbegin
2 and the last dend

2 .

faults.

� c: number of clean pages requested in Pi

Proof.
� A page is stale if it is unmarked, but was marked in Pi−1.

� A page is clean if it is unmarked, but not stale.

� SMARK (SMIN): set of pages in the cache of MARKING (MIN)

� dbegin: |SMIN − SMARK| at the beginning of Pi

� dend: |SMIN − SMARK| at the end of Pi

We consider
phase Pi.

faults.

Theorem 3. MARKING is 2Hk-competitive.

12 - 10

Paging – Rand. Strategy – Analysis

� MIN has ≥ max(c− dbegin, dend) ≥ 1
2 (c− dbegin + dend) = c

2 −
dbegin
2 + dend

2 faults.

Over all phases, all
dbegin
2 and dend

2 cancel out, except the first
dbegin
2 and the last dend

2 .

faults.

� c: number of clean pages requested in Pi

Proof.
� A page is stale if it is unmarked, but was marked in Pi−1.

� A page is clean if it is unmarked, but not stale.

� SMARK (SMIN): set of pages in the cache of MARKING (MIN)

� dbegin: |SMIN − SMARK| at the beginning of Pi

� dend: |SMIN − SMARK| at the end of Pi

We consider
phase Pi.

Theorem 3. MARKING is 2Hk-competitive.

12 - 11

Paging – Rand. Strategy – Analysis

� MIN has ≥ max(c− dbegin, dend) ≥ 1
2 (c− dbegin + dend) = c

2 −
dbegin
2 + dend

2 faults.

Over all phases, all
dbegin
2 and dend

2 cancel out, except the first
dbegin
2 and the last dend

2 .

� c: number of clean pages requested in Pi

Proof.
� A page is stale if it is unmarked, but was marked in Pi−1.

� A page is clean if it is unmarked, but not stale.

� SMARK (SMIN): set of pages in the cache of MARKING (MIN)

� dbegin: |SMIN − SMARK| at the beginning of Pi

� dend: |SMIN − SMARK| at the end of Pi

We consider
phase Pi.

Theorem 3. MARKING is 2Hk-competitive.

12 - 12

Paging – Rand. Strategy – Analysis

� MIN has ≥ max(c− dbegin, dend) ≥ 1
2 (c− dbegin + dend) = c

2 −
dbegin
2 + dend

2 faults.

Over all phases, all
dbegin
2 and dend

2 cancel out, except the first
dbegin
2 and the last dend

2 .

� c: number of clean pages requested in Pi

Proof.
� A page is stale if it is unmarked, but was marked in Pi−1.

� A page is clean if it is unmarked, but not stale.

� SMARK (SMIN): set of pages in the cache of MARKING (MIN)

� dbegin: |SMIN − SMARK| at the beginning of Pi

� dend: |SMIN − SMARK| at the end of Pi

We consider
phase Pi.

Theorem 3. MARKING is 2Hk-competitive.

12 - 13

Paging – Rand. Strategy – Analysis

� MIN has ≥ max(c− dbegin, dend) ≥ 1
2 (c− dbegin + dend) = c

2 −
dbegin
2 + dend

2 faults.

Over all phases, all
dbegin
2 and dend

2 cancel out, except the first
dbegin
2 and the last dend

2 .

� c: number of clean pages requested in Pi

� Since the first dbegin = 0, MIN has at least c
2 faults per phase.

Proof.
� A page is stale if it is unmarked, but was marked in Pi−1.

� A page is clean if it is unmarked, but not stale.

� SMARK (SMIN): set of pages in the cache of MARKING (MIN)

� dbegin: |SMIN − SMARK| at the beginning of Pi

� dend: |SMIN − SMARK| at the end of Pi

We consider
phase Pi.

Theorem 3. MARKING is 2Hk-competitive.

12 - 14

Paging – Rand. Strategy – Analysis

Proof. We consider
phase Pi.� For the clean pages, MARKING has c faults.

Theorem 3. MARKING is 2Hk-competitive.

12 - 15

Paging – Rand. Strategy – Analysis

Proof. We consider
phase Pi.� For the clean pages, MARKING has c faults.

� For the stale pages, there are s = k− c ≤ k− 1 requests.

Theorem 3. MARKING is 2Hk-competitive.

12 - 16

Paging – Rand. Strategy – Analysis

Proof. We consider
phase Pi.� For the clean pages, MARKING has c faults.

� For the stale pages, there are s = k− c ≤ k− 1 requests.

� For requests j = 1, . . . , s to stale pages, consider the expected number of faults E[Fj].

Theorem 3. MARKING is 2Hk-competitive.

12 - 17

Paging – Rand. Strategy – Analysis

Proof. We consider
phase Pi.� For the clean pages, MARKING has c faults.

� For the stale pages, there are s = k− c ≤ k− 1 requests.

� c(j): # clean pages requested in Pi at the time the j-th stale page is requested
s(j): # pages that were stale at the beginning of Pi and have not been requested

� For requests j = 1, . . . , s to stale pages, consider the expected number of faults E[Fj].

Theorem 3. MARKING is 2Hk-competitive.

12 - 18

Paging – Rand. Strategy – Analysis

Proof. We consider
phase Pi.� For the clean pages, MARKING has c faults.

� For the stale pages, there are s = k− c ≤ k− 1 requests.

� c(j): # clean pages requested in Pi at the time the j-th stale page is requested
s(j): # pages that were stale at the beginning of Pi and have not been requested

� E[Fj] =
s(j)−c(j)

s(j) · 0 + c(j)
s(j) · 1 ≤

c
k+1−j

� For requests j = 1, . . . , s to stale pages, consider the expected number of faults E[Fj].

Theorem 3. MARKING is 2Hk-competitive.

12 - 19

Paging – Rand. Strategy – Analysis

Proof. We consider
phase Pi.� For the clean pages, MARKING has c faults.

� For the stale pages, there are s = k− c ≤ k− 1 requests.

� c(j): # clean pages requested in Pi at the time the j-th stale page is requested
s(j): # pages that were stale at the beginning of Pi and have not been requested

� E[Fj] =
s(j)−c(j)

s(j) · 0 + c(j)
s(j) · 1 ≤

c
k+1−j

� For requests j = 1, . . . , s to stale pages, consider the expected number of faults E[Fj].

Theorem 3. MARKING is 2Hk-competitive.

s(j) = k− (j− 1)

12 - 20

Paging – Rand. Strategy – Analysis

Proof. We consider
phase Pi.� For the clean pages, MARKING has c faults.

� For the stale pages, there are s = k− c ≤ k− 1 requests.

� c(j): # clean pages requested in Pi at the time the j-th stale page is requested
s(j): # pages that were stale at the beginning of Pi and have not been requested

� E[Fj] =
s(j)−c(j)

s(j) · 0 + c(j)
s(j) · 1 ≤

c
k+1−j

� E

[
s
∑

j=1
Fj

]
=

s
∑

j=1
E[Fj] ≤

s
∑

j=1

c
k+1−j ≤

k
∑

j=2

c
j = c · (Hk − 1)

� For requests j = 1, . . . , s to stale pages, consider the expected number of faults E[Fj].

Theorem 3. MARKING is 2Hk-competitive.

s(j) = k− (j− 1)

12 - 21

Paging – Rand. Strategy – Analysis

Proof. We consider
phase Pi.� For the clean pages, MARKING has c faults.

� For the stale pages, there are s = k− c ≤ k− 1 requests.

� c(j): # clean pages requested in Pi at the time the j-th stale page is requested
s(j): # pages that were stale at the beginning of Pi and have not been requested

� E[Fj] =
s(j)−c(j)

s(j) · 0 + c(j)
s(j) · 1 ≤

c
k+1−j

� E

[
s
∑

j=1
Fj

]
=

s
∑

j=1
E[Fj] ≤

s
∑

j=1

c
k+1−j ≤

k
∑

j=2

c
j = c · (Hk − 1)

� For requests j = 1, . . . , s to stale pages, consider the expected number of faults E[Fj].

Theorem 3. MARKING is 2Hk-competitive.

s(j) = k− (j− 1)

12 - 22

Paging – Rand. Strategy – Analysis

Proof. We consider
phase Pi.� For the clean pages, MARKING has c faults.

� For the stale pages, there are s = k− c ≤ k− 1 requests.

� c(j): # clean pages requested in Pi at the time the j-th stale page is requested
s(j): # pages that were stale at the beginning of Pi and have not been requested

� E[Fj] =
s(j)−c(j)

s(j) · 0 + c(j)
s(j) · 1 ≤

c
k+1−j

� E

[
s
∑

j=1
Fj

]
=

s
∑

j=1
E[Fj] ≤

s
∑

j=1

c
k+1−j ≤

k
∑

j=2

c
j = c · (Hk − 1)

� For requests j = 1, . . . , s to stale pages, consider the expected number of faults E[Fj].

Theorem 3. MARKING is 2Hk-competitive.

s(j) = k− (j− 1)

12 - 23

Paging – Rand. Strategy – Analysis

Proof. We consider
phase Pi.� For the clean pages, MARKING has c faults.

� For the stale pages, there are s = k− c ≤ k− 1 requests.

� c(j): # clean pages requested in Pi at the time the j-th stale page is requested
s(j): # pages that were stale at the beginning of Pi and have not been requested

� E[Fj] =
s(j)−c(j)

s(j) · 0 + c(j)
s(j) · 1 ≤

c
k+1−j

� E

[
s
∑

j=1
Fj

]
=

s
∑

j=1
E[Fj] ≤

s
∑

j=1

c
k+1−j ≤

k
∑

j=2

c
j = c · (Hk − 1)

� For requests j = 1, . . . , s to stale pages, consider the expected number of faults E[Fj].

Theorem 3. MARKING is 2Hk-competitive.

s(j) = k− (j− 1)

12 - 24

Paging – Rand. Strategy – Analysis

Proof. We consider
phase Pi.� For the clean pages, MARKING has c faults.

� For the stale pages, there are s = k− c ≤ k− 1 requests.

� c(j): # clean pages requested in Pi at the time the j-th stale page is requested
s(j): # pages that were stale at the beginning of Pi and have not been requested

� E[Fj] =
s(j)−c(j)

s(j) · 0 + c(j)
s(j) · 1 ≤

c
k+1−j

� E

[
s
∑

j=1
Fj

]
=

s
∑

j=1
E[Fj] ≤

s
∑

j=1

c
k+1−j ≤

k
∑

j=2

c
j = c · (Hk − 1)

� For requests j = 1, . . . , s to stale pages, consider the expected number of faults E[Fj].

Theorem 3. MARKING is 2Hk-competitive.

s(j) = k− (j− 1)

12 - 25

Paging – Rand. Strategy – Analysis

Proof. We consider
phase Pi.� For the clean pages, MARKING has c faults.

� For the stale pages, there are s = k− c ≤ k− 1 requests.

� c(j): # clean pages requested in Pi at the time the j-th stale page is requested
s(j): # pages that were stale at the beginning of Pi and have not been requested

� E[Fj] =
s(j)−c(j)

s(j) · 0 + c(j)
s(j) · 1 ≤

c
k+1−j

� E

[
s
∑

j=1
Fj

]
=

s
∑

j=1
E[Fj] ≤

s
∑

j=1

c
k+1−j ≤

k
∑

j=2

c
j = c · (Hk − 1)

� So the competitive ratio of MARKING is at most
c+c(Hk−1)

c/2 = 2Hk ∈ O(log k)

� For requests j = 1, . . . , s to stale pages, consider the expected number of faults E[Fj].

�

Theorem 3. MARKING is 2Hk-competitive.

s(j) = k− (j− 1)

12 - 26

Paging – Rand. Strategy – Analysis

Proof.
� For the clean pages, MARKING has c faults.

� For the stale pages, there are s = k− c ≤ k− 1 requests.

� c(j): # clean pages requested in Pi at the time the j-th stale page is requested
s(j): # pages that were stale at the beginning of Pi and have not been requested

� E[Fj] =
s(j)−c(j)

s(j) · 0 + c(j)
s(j) · 1 ≤

c
k+1−j

� E

[
s
∑

j=1
Fj

]
=

s
∑

j=1
E[Fj] ≤

s
∑

j=1

c
k+1−j ≤

k
∑

j=2

c
j = c · (Hk − 1)

� So the competitive ratio of MARKING is at most
c+c(Hk−1)

c/2 = 2Hk ∈ O(log k)

� For requests j = 1, . . . , s to stale pages, consider the expected number of faults E[Fj].

�

No deterministic strategy is
better than k-competitive.

Reminder.

Theorem 3. MARKING is 2Hk-competitive.

s(j) = k− (j− 1)

12 - 27

Paging – Rand. Strategy – Analysis

Proof.
� For the clean pages, MARKING has c faults.

� For the stale pages, there are s = k− c ≤ k− 1 requests.

� c(j): # clean pages requested in Pi at the time the j-th stale page is requested
s(j): # pages that were stale at the beginning of Pi and have not been requested

� E[Fj] =
s(j)−c(j)

s(j) · 0 + c(j)
s(j) · 1 ≤

c
k+1−j

� E

[
s
∑

j=1
Fj

]
=

s
∑

j=1
E[Fj] ≤

s
∑

j=1

c
k+1−j ≤

k
∑

j=2

c
j = c · (Hk − 1)

� So the competitive ratio of MARKING is at most
c+c(Hk−1)

c/2 = 2Hk ∈ O(log k)

� For requests j = 1, . . . , s to stale pages, consider the expected number of faults E[Fj].

�

No deterministic strategy is
better than k-competitive.

Reminder.

Theorem 3. MARKING is 2Hk-competitive.

s(j) = k− (j− 1)

MARKING is O(log k)-competitive

12 - 28

Paging – Rand. Strategy – Analysis

Proof.
� For the clean pages, MARKING has c faults.

� For the stale pages, there are s = k− c ≤ k− 1 requests.

� c(j): # clean pages requested in Pi at the time the j-th stale page is requested
s(j): # pages that were stale at the beginning of Pi and have not been requested

� E[Fj] =
s(j)−c(j)

s(j) · 0 + c(j)
s(j) · 1 ≤

c
k+1−j

� E

[
s
∑

j=1
Fj

]
=

s
∑

j=1
E[Fj] ≤

s
∑

j=1

c
k+1−j ≤

k
∑

j=2

c
j = c · (Hk − 1)

� So the competitive ratio of MARKING is at most
c+c(Hk−1)

c/2 = 2Hk ∈ O(log k)

� For requests j = 1, . . . , s to stale pages, consider the expected number of faults E[Fj].

�

No deterministic strategy is
better than k-competitive.

Reminder.

Theorem 3. MARKING is 2Hk-competitive.

s(j) = k− (j− 1)

MARKING is O(log k)-competitive

⇒ exponential improvement!

13 - 1

Discussion

� Online algorithms operate in a setting different from that of classical algorithms.
However, this setting of incomplete information is very natural and occurs often in
real-world applications. Can you think of further examples?

13 - 2

Discussion

� Online algorithms operate in a setting different from that of classical algorithms.
However, this setting of incomplete information is very natural and occurs often in
real-world applications. Can you think of further examples?

� We might also transform a classical problem with incomplete information into an
online problem. E.g.: Matching problem for ride sharing.

13 - 3

Discussion

� Online algorithms operate in a setting different from that of classical algorithms.
However, this setting of incomplete information is very natural and occurs often in
real-world applications. Can you think of further examples?

� We might also transform a classical problem with incomplete information into an
online problem. E.g.: Matching problem for ride sharing.

� Randomization can help to improve our behavior on worst-case instances. You may
also think of: we are less predictable for an adversary.

14

Literature

Main source:

� Sabine Storandt’s lecture script “Randomized Algorithms” (2016–2017)

Original papers:

� [Belady ’66] “A Study of Replacement Algorithms for Virtual-Storage Computer.”

� [Sleator, Tarjan ’85] “Amortized Efficiency of List Update and Paging Rules.”

� [Fiat, Karp, Luby, McGeoch, Sleator, Young ’91] “Competitive Paging Algorithms.”

	Title page
	Ski-Rental Problem
	Motivation
	Definition
	Strategies I and II
	Strategy III
	Strategy IV

	Online vs. Offline Algorithms
	Paging
	Definition
	Deterministric strategy
	Deterministric strategies analysis
	Randomized strategies
	Randomized strategy analysis

	Discussion
	Literature

