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Ski-Rental Problem

Winter has begun (even in Würzburg!) . . . this means the skiing season is back!

� But what if there is not always enough snow? Or snow but “bad” weather?

� Is it worth buying new skis?

� Or should we rather rent them?

� We don’t know the weather (much) in advance.
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Ski-Rental Problem – Definition

Behavior.
� Every day when there is “good” weather, you go skiing.
� We call this is a good day.

� Each morning, we can check if today is a good day, but we can’t check any earlier.

� Buying skis costs M [Euros] and you have them forever.

� In the end, there will have been T good days.

(When to) buy skis?

Costs.
� Renting skis for 1 day costs 1 [Euro].

Task.
� Not knowing T, devise a strategy if and when to buy skis.
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� So Strategy I is M times worse than the optimal strategy.

→ for arbitrarily large M arbitrarily bad

� Suppose there are many good days, i.e., T > M.

� Then we have paid T.
Optimally, we would have bought on or before the first good day and paid M.

� Strategy II is T/M times worse than the optimal strategy.
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competitive
ratio
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⇒ Strategy IV (with α =
√
5−1
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� With a more sophisticated probability distribution for the time we buy skis,
we can expect even a competitive ratio of e

e−1 ≈ 1.58.
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� If the k page faults of LRU in Pi are on distinct pages (different from p), we’re done.

� Assume LRU has in Pi two page faults on one page q. In between, q has to be evicted
from the cache. According to LRU, there were k distinct page requests in between.

� Similarly, if LRU faults on p in Pi, there were k distinct page requests in between.
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Theorem 2. LRU & FIFO are k-competitive. No deterministic strategy is better.
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Proof. (only for LRU, FIFO similar)

� Remains to prove: No deterministic strategy is better than k-competitive.

� Let there be k + 1 pages in the memory system.

� For any deterministic strategy there is a worst-case page sequence σ?

always requesting the page that is currently not in the cache.

� Let MIN have a page fault on the i-th page of σ?.

� Then the next k− 1 requested pages are in the cache already & the next fault occurs
on the (i + k)-th page of σ? the earliest. Until then, the det. strategy has k faults.

⇒ The competitive ratio cannot be better than |σ? |⌈
|σ? |

k

⌉ |σ? | ∞
= k.

�

Theorem 2. LRU & FIFO are k-competitive. No deterministic strategy is better.
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Randomized strategy: MARKING

� Proceeds in phases

� At the beginning of each phase, all pages are unmarked.

� When a page is requested, it gets marked.

� A page for eviction is chosen uniformly at random from the unmarked pages.

� If all pages are marked and a page fault occurs, unmark all and start new phase.

Hk = 1 + 1
2 +

1
3 + . . . + 1

k is the k-th harmonic number and for k ≥ 2: Hk < ln(k) + 1.

Remark.

                  k
p3

p4 p9p7 p8

page request
choose u.a.r. p5

p1

Phase P2

p2

p6 p9

Theorem 3. MARKING is 2Hk-competitive.
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� Since the first dbegin = 0, MIN has at least c
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Proof. We consider
phase Pi.� For the clean pages, MARKING has c faults.

� For the stale pages, there are s = k− c ≤ k− 1 requests.
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Discussion

� Online algorithms operate in a setting different from that of classical algorithms.
However, this setting of incomplete information is very natural and occurs often in
real-world applications. Can you think of further examples?

� We might also transform a classical problem with incomplete information into an
online problem. E.g.: Matching problem for ride sharing.

� Randomization can help to improve our behavior on worst-case instances. You may
also think of: we are less predictable for an adversary.
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