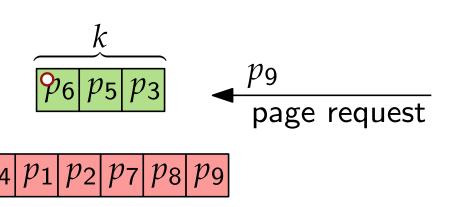


Advanced Algorithms

Online Algorithms

Ski-Rental Problem and Paging

Johannes Zink · WS23/24



Ski-Rental Problem

Winter has begun (even in Würzburg!) ... this means the skiing season is back!

- But what if there is not always enough snow? Or snow but "bad" weather?
- Is it worth buying new skis?
- Or should we rather rent them?
- We don't know the weather (much) in advance.

Ski-Rental Problem – Definition

Behavior.

- Every day when there is "good" weather, you go skiing.
 - We call this is a good day.
- Each morning, we can check if today is a good day, but we can't check any earlier.

Costs.

- Renting skis for 1 day costs 1 [Euro].
- \blacksquare Buying skis costs M [Euros] and you have them forever.
- \blacksquare In the end, there will have been T good days.

(When to) buy skis?

Task.

 \blacksquare Not knowing T, devise a strategy if and when to buy skis.

Ski-Rental Problem – Strategies I and II

Renting costs 1 per day Buying costs M T good days

Strategy I: Buy on the first good day

- Imagine this was the only good day the whole winter.
- lacktriangle Then we have paid M; optimally, we would have rented and paid 1.
- \blacksquare So Strategy I is M times worse than the optimal strategy.

ightarrow for arbitrarily large M arbitrarily bad

Strategy II: never buy, always rent

competitive ratio

- lacksquare Suppose there are many good days, i.e., T>M.
- Then we have paid T.

 Optimally, we would have bought on or before the first good day and paid M.
- \blacksquare Strategy II is T/M times worse than the optimal strategy.

 \rightarrow for arbitrarily large T arbitrarily bad

Ski-Rental Problem – Strategy III

Renting costs 1 per day Buying costs M T good days

Is there a strategy that cannot become arbitrarily bad? – Yes!

Strategy III: buy on the **M**-th good day

- lacksquare Observation: the optimal solution pays min(M,T)
- If T < M, the competitive ratio is 1. Otherwise, it is $\frac{2M-1}{M} = 2 \frac{1}{M} \stackrel{M \to \infty}{=} 2$.
- \Rightarrow Strategy III is deterministic and 2-competitive.

Theorem 1. No det. strategy is better than 2-competitive (for $M \rightsquigarrow \infty$; in general: $2 - \frac{1}{M}$).

Proof Idea.

- \blacksquare Any det. strategy can be formulated as "buy on the X-th day of rental" for a fixed X.
- For X=0 and $X=\infty$ it's arbitrarily bad; assume $X\in\mathbb{N}^+$. Observe, w.c. is T=X.

$$\frac{c_{\text{det}}}{c_{\text{OPT}}} = \frac{X - 1 + M}{\min(X, M)} \ge \min\left(\frac{X - 1 + X + 1}{X}, \frac{M - 1 + M}{M}\right) = \min\left(2, 2 - \frac{1}{M}\right) = 2 - \frac{1}{M} \stackrel{M \to \infty}{=} 2$$

$$\text{case } X < M \text{ case } M < X$$

Ski-Rental Problem – Strategy IV

Renting costs 1 per day Buying costs M T good days

Can we get below this bound using randomization? — Let's try!

Strategy IV: throw a coin; **HEADS:** buy on the **M**-th good day **TAILS:** buy on the α **M**-th good day ($\alpha \in (0,1)$)

- Observation: worst case can only be T = M or $T = \alpha M$
- Case T = M: $\frac{E[c_{\text{StrategyIV}}]}{c_{\text{OPT}}} = \frac{\frac{1}{2} \cdot (2M-1) + \frac{1}{2} \cdot ((1+\alpha)M-1)}{M} = \frac{3+\alpha}{2} \frac{1}{M} \stackrel{M \to \infty}{=} \frac{3+\alpha}{2}$
- Case $T = \alpha M$: $\frac{E[c_{\mathsf{StrategyIV}}]}{c_{\mathsf{OPT}}} = \frac{\frac{1}{2} \cdot \alpha M + \frac{1}{2} \cdot ((1+\alpha)M 1)}{\alpha M} = 1 + \frac{1}{2\alpha} \frac{1}{2\alpha M} \stackrel{M \to \infty}{=} 1 + \frac{1}{2\alpha}$
- The w.c. ratio is minimum if $\frac{3+\alpha}{2} = 1 + \frac{1}{2\alpha} \Rightarrow \alpha = \frac{\sqrt{5-1}}{2}$
- \Rightarrow Strategy IV (with $\alpha=\frac{\sqrt{5}-1}{2}\approx 0.62$) is 1.81-competitive, randomized, and better than any deterministic strategy.
- With a more sophisticated probability distribution for the time we buy skis, we can expect even a competitive ratio of $\frac{e}{e-1} \approx 1.58$.

Online vs. Offline Algorithms

Online Algorithm

- No full information available initially (online problem)
- Decisions are made with incomplete information.

- **Offline Algorithm**
- Full information available initially (offline problem)
- Decisions are made with complete information.
- The algorithm may get more information over time or by exploring the instance.

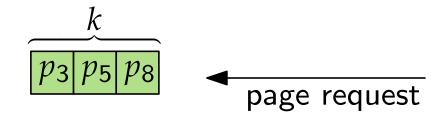
```
in the w.c. (determ. algo.)
```

in the worst avg.c. (random. algo.)

- The objective value of the returned solution divided by the objective value of an optimal (offline) solution is the *competitive ratio*.
- Examples (problems & algos.):
 Ski-Rental Problem, searching in unknown environments, Cow-Path Problem,
 Job-Shop Scheduling, Insertion Sort, Paging (replacing entries in a memory)

Paging – Definition

 p_3 p_4 p_8 p_3 fulfilled page requests



p₂ p₁ p₄ p₆ p₇ p₉

Given (offline/online):

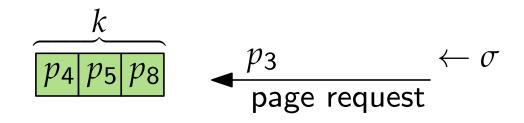
- \blacksquare Fast access memory (a cache) with a capacity of k pages
- Slow access memory with unlimited capacity
- If a page is requested, but it is not in the cache (page fault), it has to be swapped with a page in the cache. A page request is fulfilled if the page is in the cache.
- Sequence σ of page requests that need to be fulfilled in order. / where we just see one request and have to fulfill that request before we see the next request.

Objective value:

lacksquare Minimize the number of page faults while fulfilling $\sigma.$

Paging – Det. Strat. p4 p8 p8 p5 p4

$$p_4$$
 p_8 p_8 p_5 p_4 fulfilled page requests



$$p_1$$
 p_2 p_3 p_6 p_7 p_9

On a page fault, a Paging algorithm chooses which page to evict from the cache.

Deterministic Strategies: Evict the page that has

- Least Frequently Used (LFU): ...the lowest number of accesses since it was loaded.
- Least Recently Used (LRU): ... been accessed least recently.
- First-in-first-out (FIFO): ... been in the cache the longest.

Which of them is – theoretically provable – the best strategy?

Theorem 2. LRU & FIFO are k-competitive. No deterministic strategy is better.

Paging – Det. Strategies – Analysis

Theorem 2. LRU & FIFO are k-competitive. No deterministic strategy is better.

Proof. (only for LRU, FIFO similar)

- MIN: optimal strategy σ : sequence of pages
- Initially, the cache contains the same pages for all strategies.
- We partition σ into phases P_0, P_1, \ldots , s.t. LRU has at most k faults in P_0 and exactly k faults in each other phase.
- We show next: MIN has at least 1 fault in each phase.
- Clearly, MIN also faults in P_0 ; consider P_i ($i \ge 1$) and let p be the last page of P_{i-1} .
- Show: P_i contains k distinct page requests different from p (implies a fault for MIN).
- If the k page faults of LRU in P_i are on distinct pages (different from p), we're done.
- Assume LRU has in P_i two page faults on one page q. In between, q has to be evicted from the cache. According to LRU, there were k distinct page requests in between.
- \blacksquare Similarly, if LRU faults on p in P_i , there were k distinct page requests in between.

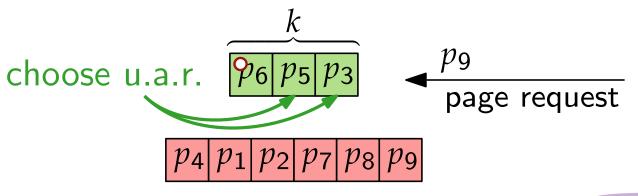
Paging – Det. Strategies – Analysis

Theorem 2. LRU & FIFO are k-competitive. No deterministic strategy is better.

Proof. (only for LRU, FIFO similar)

- \blacksquare Remains to prove: No deterministic strategy is better than k-competitive.
- \blacksquare Let there be k+1 pages in the memory system.
- For any deterministic strategy there is a worst-case page sequence σ^* always requesting the page that is currently not in the cache.
- Let MIN have a page fault on the *i*-th page of σ^* .
- Then the next k-1 requested pages are in the cache already & the next fault occurs on the (i+k)-th page of σ^* the earliest. Until then, the det. strategy has k faults.
- \Rightarrow The competitive ratio cannot be better than $\frac{|\sigma^{\star}|}{\left\lceil \frac{|\sigma^{\star}|}{k} \right\rceil} \stackrel{|\sigma^{\star}| \to \infty}{=} k$.

Paging – Rand. Strat.



Randomized strategy: MARKING

Phase P_2

- Proceeds in phases
- At the beginning of each phase, all pages are unmarked.
- When a page is requested, it gets marked.
- A page for eviction is chosen uniformly at random from the unmarked pages.
- If all pages are marked and a page fault occurs, unmark all and start new phase.

Theorem 3. MARKING is $2H_k$ -competitive.

Remark.

$$H_k = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k}$$
 is the k-th harmonic number and for $k \geq 2$: $H_k < \ln(k) + 1$.

Paging – Rand. Strategy – Analysis

Theorem 3. MARKING is $2H_k$ -competitive.

Proof.

- \blacksquare A page is *stale* if it is unmarked, but was marked in P_{i-1} .
- A page is *clean* if it is unmarked, but not stale.
- \blacksquare S_{MARK} (S_{MIN}) : set of pages in the cache of MARKING (MIN)
- d_{begin} : $|S_{\text{MIN}} S_{\text{MARK}}|$ at the beginning of P_i
- \blacksquare d_{end} : $|S_{\text{MIN}} S_{\text{MARK}}|$ at the end of P_i
- lacktriangle c: number of clean pages requested in P_i
- MIN has $\geq \max(c d_{\text{begin}}, d_{\text{end}}) \geq \frac{1}{2}(c d_{\text{begin}} + d_{\text{end}}) = \frac{c}{2} \frac{d_{\text{begin}}}{2} + \frac{d_{\text{end}}}{2}$ faults. Over all phases, all $\frac{d_{\text{begin}}}{2}$ and $\frac{d_{\text{end}}}{2}$ cancel out, except the first $\frac{d_{\text{begin}}}{2}$ and the last $\frac{d_{\text{end}}}{2}$.
- Since the first $d_{begin} = 0$, MIN has at least $\frac{c}{2}$ faults per phase.

We consider phase P_i .

Paging – Rand. Strategy – Analysis

Theorem 3. MARKING is $2H_k$ -competitive.

Proof.

- For the clean pages, MARKING has c faults.
- For the stale pages, there are $s = k c \le k 1$ requests.
- For requests $j = 1, \ldots, s$ to stale pages, consider the expected number of faults $E[F_i]$.
- c(j): # clean pages requested in P_i at the time the j-th stale page is requested s(i): # pages that were stale at the beginning of P_i and have not been requested

$$E[F_j] = \frac{s(j) - c(j)}{s(j)} \cdot 0 + \frac{c(j)}{s(j)} \cdot 1 \le \frac{c}{k+1-j}$$

So the competitive ratio of MARKING is at most $\frac{c+c(H_k-1)}{c/2}=2H_k\in O(\log k)$

No deterministic strategy is better than k-competitive.

MARKING is $O(\log k)$ -competitive

⇒ exponential improvement!

$$\frac{c+c(H_k-1)}{c/2}=2H_k\in O(\log k)$$

Discussion

- Online algorithms operate in a setting different from that of classical algorithms. However, this setting of incomplete information is very natural and occurs often in real-world applications. Can you think of further examples?
- We might also transform a classical problem with incomplete information into an online problem. E.g.: Matching problem for ride sharing.
- Randomization can help to improve our behavior on worst-case instances. You may also think of: we are less predictable for an adversary.

Literature

Main source:

■ Sabine Storandt's lecture script "Randomized Algorithms" (2016–2017)

Original papers:

- [Belady '66] "A Study of Replacement Algorithms for Virtual-Storage Computer."
- [Sleator, Tarjan '85] "Amortized Efficiency of List Update and Paging Rules."
- [Fiat, Karp, Luby, McGeoch, Sleator, Young '91] "Competitive Paging Algorithms."