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Phylogenetic Trees

... represent the evolutionary history of a set of taxa.
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Phylogenetic Trees

. represent the evolutionary history of a set of taxa.

Coraciidae

Properties (in the biological sense):
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Phylogenetic Trees

Let X ={1,2,3,..., nt.

A (rooted, binary) phylogenetic tree T

Is a rooted tree with the following

properties:

B The unique root is labeled p and has
outdegree 1.

B The leaves are bijectively labeled by X.

B All other vertices have indegree 1 and
outdegree 2 (i.e., it is a binary tree).

Remarks. Here, in our definition
B vertices have no heights and

B the order of the children of a vertex
does not matter.

root

Inner tree
vertex

leaf



Problem

For the san Definti
phylogenet € lntlpnc.l _ _
B differen A metric d is a function of two

parameters such that:

- B d(x,x) =0 (no distance to itself)
m differen  w d(x,y) > 0 for x # y (positive)
We want t4 ™ d(x,y) = d(y, x) (symmetric)

different pff ™ d(x,z) <d(x,y) +d(y, z)
How? (triangle inequality holds)

B differen

Goal.
Define a hat specifies how similar

two phylogenetic trees on the same set X
are and devise algorithms to compute it.



Problem

For the same taxa, we may infer different
phylogenetic trees because of the use of T T’
B different inference methods, P P

B different models, or

B different data.

We want to be able to compare

different phylogenetic trees. 1 2 3 4 5 5 2 3 4
How?

Goal. Idea.

Define a metric that specifies how similar Count the number of rearrangement
two phylogenetic trees on the same set X operations that are necessary to

are and devise algorithms to compute it. transform T into T’.



Subtree Prune & Regraft (SPR)

An SPR operation transforms one phylogenetic tree into another one.

SPR

T o T T’
o o o

1 2 3 4 5 1 2 3 4 5 1 4 2 3 5
/ ~ ~
subtree prune regraft

B Note that an SPR operation is reversible.



SPR-Graph

The SPR operations induce the SPR-graph G = (V, E) for a set X:
BV ={T|Tis a phylogenetic tree on X}
mE={{T, T'} | T can be transformed into T” with a single SPR operation}



SPR-Distance

The SPR-distance dgpr(T,T") of T and T’ is defined as
the distance of T and T’ in the SPR-graph G.

Lemma 1. Lemma 2.
The SPR-graph G is connected. The SPR-distance is a metric.

Proof. G is connected and undirected.

Defintion: All properties of a metric follow.

A metric d is a function of two
parameters such that:

B d(x,x) =0 (no distance to itself) | trivial
B d(x,y) >0 for x #y (positive) shortest path exists because G is connected

v

B d(x,y) =d(y,x) (symmetric) v | all paths can be reversed bc. G is undirected

B d(x,z)<d(x,vy)+dy, z) V| the triangle inequality holds because we can
(triangle inequality holds) compose the path x ~» z by x ~» y ~> z




SPR-Distance

The SPR-distance dgpr(T,T") of T and T’ is defined as
the distance of T and T’ in the SPR-graph G.

Lemma 1. Lemma 2.
The SPR-graph G is connected. The SPR-distance is a metric.
Proof exercise Proof. G is connected and undirected.

Goal.
Compute the SPR-distance dspr (T, T').

] All properties of a metric follow.

.. but G is huge!
ViG)|=2n-3)'=2n—-3)-(2n—5)-...-5-3

B Can we rephrase the problem?




Maximum Agreement Forests

SPR
3 4 5

SPR

/Q\A



Maximum Agreement Forests

SPR SPR
3 4 5 4 2

Finto T F Finto T’

. AANT A

1 2 3 4 5 4 1 2 3 5



Maximum Agreement Forests

AJ\JKI p

3 4 5 2 3 4 4 1 2 3 5

An agreement forest (AF) F of T and T’ is a forest {Tp, T1,To, ..., Ty} such that
B the label sets of the T; partition X U {p},
B o is in the label set of T,, and

B there is an edge-disjoint embedding of the T;s into T and T’ where all edges of T
and T’ are covered. In other words, we can place all T:s onto T and T’ such that
the T;s do not overlap and every edge of T and T’ lies under some T;.

If k is minimum, F is a maximum agreement forest (MAF).

- 10



Characterization

Let T and T’ be two phylogenetic trees on X and let
F={T, T1,To,...,Ti} be a MAF of T and T’.
Define m(T, T') = k = |F| — 1.
(Theorem 3. m(T,T') = dspr(T, T') |

Proof of “<" by induction on d = dgpr(T, T').
B Cased = 0is trivial and Case d = 1 is easy. v

B Assume m(T, T") < dspr(T, T’) holds for all d < £.

AA is




Characterization

Let T and T’ be two phylogenetic trees on X and let
F={T,,T1,To. ..., T} bea MAFof Tand T". ®m 3 MAF F for T & T of size £ + 1

Define m(T, T') = k = |F| — 1. and MAF lj’ for T & T’ of fize 2.
/ / B Compose T by subtrees of F. The

[Theorem 3. m(T,T") = dspr(T,T") ] subtree T; of F’ is rooted at one
Proof of “<" by induction on d = dgpr(T, T').  edge of T within one subtree of F.
B If d = ¢+ 1, then there exists T with B Subdivide the corresponding tree
dspr(T, T) = £ and dspr(T, T') = 1. to obtain F from F, which is an

AF for T and T'.
F

¢ SPR pi A SPR - pi A
K§ A% A% A<§>A\ pﬁi AAA



Characterization

Let T and T’ be two phylogenetic trees on X and let
F={T, T1,To,...,Ti} be a MAF of T and T’.
Define m(T, T') = k = |F| — 1.
(Theorem 3. m(T,T') = dspr(T, T') |

Proof of “>" by induction on m = m(T, T’).
B Case m = 0 is trivial and Case m = 1 is easy. v

B Assume m(T,T") > dgpr(T, T) holds for all m < /.

ii AA

_14



Characterization

Let T and T’ be two phylogenetic trees on X and let
F={T, Ty, To....,T;} be a MAF of T and T".

Define m(T,T') =k = |F| — 1.
[Theorem 3. m(T,T") =dspr(T, T') ]

Proof of “>" by induction on m = m(T,T'). m Regraft T; according to the em-

B Let F bea MAF of T and T’ of size ¢ 4 2. bedding of Finto T/ = T & F
B There exists a T; that can be pruned in T m LisAF for T & T’ and “5’ — (41
due to the nesting structure of subtrees. A o
2 » B = dspr(T,T7) </

F .
B dspr(T.T) =1
A A b

‘AR m depp(T.T) < l+1=m(T,T)

A




Problem & Plan

[Theorem 4. [HJWZ '96, BS '05] ]

Computing dspr (T, T') is NP-hard.

Proof by reduction from Exact Cover by 3-Sets.

Plan.

B Construct kernel of the problem.
B Replace T and T’ with smaller S and S’

m Derive dgpr(T, T") from dspr(S, S’).
B Show that the size of the kernel depends on dspr (T, T').
B Devise an FPT algorithm with respect to dgpgr.

B Sketch an approximation algorithm.

10 -



Kernelization — Subtrees

Common subtree reduction.
B Replace any subtree (with > 2 leaves) that occurs identically
in both trees by a single leaf with a new Iabel

Ab AA

[Lemma 5. Applying the common subtree

reduction is safe, i.e., dgpr(T, T') = dspr(S, S’ )

Proof. _ |
Is covered by then there is an
Suppose two trees of alternative MAF

MAF of the same size

11 -



Kernelization — Chains

Chain reduction.
B Replace any chain of leaves that occurs identically (from bottom to top)
in both trees by three new leaves.

AN AAM

Lemma 6. Applying chain reduction is safe
.e., dspr(T, T') = dspr(S, S').

Proof.
B Show there is a tree with abc-chain B Swap abc-chain with original
in a MAF of S and S’ chain for MAF of T and T'.

12 -



Kernelization — Chains

Chain reduction.
B Replace any chain of leaves that occurs identically (from bottom to top)
in both trees by three new leaves.

AN AAM

[Lemma 0. Applying chain reduction is safe

.e., dspr(T, T') = dspr(S, S').
Proof. Case 1

B Consider embedding of — —
a MAF F into S. D:;C ) é C C
b b Dbab i a Dbab b

a

12 -
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Kernelization — Chains

Chain reduction.
B Replace any chain of leaves that occurs identically (from bottom to top)
in both trees by three new leaves.

AN AAM

[Lemma 0. Applying chain reduction is safe

.e., dspr(T, T') = dspr(S, S').
Proof. Case 2

B Consider embedding of \ \ \d \
a MAF F into S. /%C K@C @ é
D:;b b b ‘iab i
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Kernelization — Chains

Chain reduction.
B Replace any chain of leaves that occurs identically (from bottom to top)
In both trees by three new leaves.

T T’ S S’
— X\

[Lemma 0. Applying chain reduction is safe

I.€., dSPR(Tv T’ ) =5 dSPR(Sv S’ )
Proof. Case 3

B Consider embedding of
a MAF F into S. ‘i
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Kernelization — Chains

Chain reduction.
B Replace any chain of leaves that occurs identically (from bottom to top)
in both trees by three new leaves.

i z i A Why not using a chain of length < 27

Lemma 6. Applying chain reduction is safe
.e., dspr(T, T') = dspr(S, S').




Kernel Size

( N\
Lemma 7.

Reduce T and T’ to S and S’ by exhaustively
applying the reduction rules. Let S and S’ be on X'.

Then X' < 28dspr(T, T').

\_ — )

Proof. Let F = {T, Ty,..., Te} be MAF for S anc
Let n(T;) := |[{T; | T € FAT; and T; touch in S}|.
Similarly, let n'(T;) :=

Claim 1. X o(n(T. ) +n'(T;)) < 4k.

E{&
AN

H

/<l\.

S’

13-10

We know
k= dspr(S,S") = dspr(T, T').

H{T; | T, EF/\T and T; touch in §'}|.

V(H)| =k+1
= |[E(H)| +1
Y¥  n(T;) = 2|E(H)| < 2k
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Kernel Size

Lemma 7. )

Reduce T and T’ to S and S’ by exhaustively We Know

applying the reduction rules. Let S and S’ be on X'. k = dspr(S, ') = dspr(T, T').
Ther | X'| <28dspr(T, T'). )

Proof. Let F={T, T1,.... Ti.} be MAF for S and S'.

Let n(T;) := |{T; | T; € FAT; and T; touch in S}|.
Similarly, let n'(T;) := [{T; | T; € F/\T and T; touch in §'}|.

Claim 1. X ,(n(T;) +n'(T)) < 4k. \X’\—Z # leaves of T;

Claim 2. # Ieaves of T; < 7(n(T;) 4+ n’ < Z ( ( i) +n'(T;))
T T 7 leaves < 28k
1 1
A8 »&




FPT Algorithm

‘Theorem 8.
Computing dspr(T, T') is fixed-parameter
tractable when parameterized by dspr(T, T").

Proof.

J

B Reduce T and T’ to S and S’ by exhaustively applying the reduction rules.

B Let S and S’ be on X’ and let k = dgpgr(S, S').

B S has at most 4| X’|? neighbors in the SPR-graph G.
m S has less than 2|X’| edges to cut and to attach to. by Lemma 7

B Length-k BFS from S visits at most O((4\X’\2)k> = O((56k)?*) trees.

B Since k = dgpr(S,S’) = dspr(T, T'), this yields an FPT algorithm.

14 -



Approximation Algorithm

ldea.
B Given trees T and T, which are reduced by the previous rules,
we compute an agreement forest F by

B successively making “cuts’ and “eliminations’.
B These steps let T and T’ shrink further and further.

B Show that |F| is at most 3|F*|,
where F* is a MAF of T and T’.

15 -



Approximation Algorithm

APPROXDSPR(T, T’)

11

G« T

H; < T’

while d pair of sibling leaves a2 and b in G; do

find the case that applies to a and b in H;

apply the corresponding modification

to obtain G;,1 from G; and H; 1 from H;
1+ +
return |H;| — 1

Case 1 Case 2

a b a b

A

a b

Case 3

240N

Case 4

15 -



Approximation Algorithm — Example

T=G T"=H
0 L 0 L Case 2
B Should we cut off leaf 1
or leat 2 or everything
° ° between them in H{?
3 3 B Do parts of each!



Approximation Algorithm — Example

G2 H»
0 P
§)
3 4 5 6 3 4
I 11
1 2 5

16 -

Case 1

B If the same “cherry” (i.e.,
pair of leaves) occurs in G;
and H;, we simply reduce it.



Approximation Algorithm — Example

G3 H3
Y 0
o 2
S 8§ g

Case 4

M Leaf b is the only leaf of
a tree in H;.

B Cutoff b in G;.

16 -
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Approximation Algorithm — Example

Gy Hy
o Y
[/K [/K B Return 3.
a 6 a 6
J I 7
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Approximation Algorithm — Analysis

Case —= G H; 4 Cost

G; H;
1 no
A A J> J> mistake
a b a b

C C
.,L‘ 3 cuts
2 A : > fl\l; ZJ:XD :L(l; 1+ good
3 2 cuts
N Ah Y A e
’ A [ / E\I; [ 11g(<:>l;td

a b b b



Approximation Algorithm — Analysis

Case G H; — = Gjy1 Hii1
1
N\ N\ } )
a b a b C C

2 / Theorem 9
APPROXDSPR is a 3-approximation algorithm for [;ELO
dSPR(T T') with an O(|X|?) running time.

> A CAACAA fu\) oﬂioﬂi

Cost

no
mistake

3 cuts
1+ good

2 cuts
1+ good

1 cut
1 good

17 -



Discussion

Kernelization.
B Kernelization is an important technique to construct FPT algorithms.

B Result important since SPR-distance small in practice.

18 -

B Reduction rules actually give a kernel of size at most 15k — 9 (we have shown 28k).

m With further reduction rules, we can get a size below 11k — 9. [KL "18]

B Divide & conquer techniques can (in practice) further reduce the problem sizes.
[LS "11]

Approximation algorithm.

B There exists a 2-approximation algorithms for the SPR-distance
with a running time in O(n3). [CHW '17]



Discussion

Phylogenetic trees.
B There are other classes of phylogenetic trees: unrooted,

non-binary, ranked, . ..
B Trees can be generalized to phylogenetic networks, A
which can also have indegree 2 outdegree 1 vertices.
1 2 3

Maximum Agreement Forests.
B Reframing (characterizing) a problem in a different way,

can sometimes make your life a lot easier.

B MAF can be generalized to Maximum Agreement Graphs, but
these do not characterize the SPR-distance of networks anymore.

[K "20]

18 -
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