Advanced Algorithms

Parameterized Algorithms Structural Parametrization

Johannes Zink • WS23/24

Dealing with NP-Hard Problems

What should we do?
■ Sacrifice optimality for speed
■ Heuristics

- Approximation Algorithms
- Optimal Solutions
- Exact exponential-time algorithms
- Fine-grained analysis - parameterized algorithms

Heuristic | Approximation | |
| ---: | :--- |
| NP-hard | |
| Exponential | FPT |

Dealing with NP-Hard Problems

What should we do?
■ Sacrifice optimality for speed
■ Heuristics

- Approximation Algorithms
- Optimal Solutions

■ Exact exponential-time algorithms

- Fine-grained analysis - parameterized algorithms

Heuristic	Approximation
Exponential	FPT

Parameterized Algorithms

Classical complexity theory:

Running time is expressed as a function in the input size.

Parameterized algorithmics:

Running time is expressed as a function in the input size, as well as one or more additional parameter(s).

Parameterized Algorithms

Classical complexity theory:

Running time is expressed as a function in the input size.

Parameterized algorithmics:

Running time is expressed as a function in the input size, as well as one or more additional parameter(s).

Example: (recall from AGT)
k-Vertex Cover
Input \quad Graph $G=(V, E), \quad k \in \mathbb{N}$
Question Is there a set $C \subseteq V$ with $|C| \leq k$
s.t. $\forall\{u, v\} \in E:\{u, v\} \cap C \neq \varnothing$?

Parameterized Algorithms

Classical complexity theory:

Running time is expressed as a function in the input size.

Parameterized algorithmics:

Running time is expressed as a function in the input size, as well as one or more additional parameter(s).
Example: (recall from AGT)
k-Vertex Cover

Input \quad Graph $G=(V, E), k \in \mathbb{N}$
Question Is there a set $C \subseteq V$ with $|C| \leq k$ s.t. $\forall\{u, v\} \in E:\{u, v\} \cap C \neq \varnothing$?

- NP-complete,
\square but there is an algorithm with runtime $\mathcal{O}\left(2^{k} \cdot k \cdot(|V|+|E|)\right)$.

Parameterized Algorithms

Classical complexity theory:

Running time is expressed as a function in the input size.

Parameterized algorithmics:

Running time is expressed as a function in the input size, as well as one or more additional parameter(s).
Example: (recall from AGT)
k-Vertex Cover

Input \quad Graph $G=(V, E), \quad k \in \mathbb{N}$
Question Is there a set $C \subseteq V$ with $|C| \leq k$ s.t. $\forall\{u, v\} \in E:\{u, v\} \cap C \neq \varnothing$?

- NP-complete,
- but there is an algorithm with runtime $\mathcal{O}\left(2^{k} \cdot k \cdot(|V|+|E|)\right)$.

Idea: If $k \in \mathcal{O}(1)$, then $\mathcal{O}\left(2^{k} \cdot k \cdot(|V|+|E|)\right) \subseteq \mathcal{O}(|V|+|E|)$

Parameterized Algorithms

Classical complexity theory:

Running time is expressed as a function in the input size.

Parameterized algorithmics:

Running time is expressed as a function in the input size, as well as one or more additional parameter(s).
Example: (recall from AGT)
k-Vertex Cover

Input \quad Graph $G=(V, E), \quad k \in \mathbb{N}$
Question Is there a set $C \subseteq V$ with $|C| \leq k$ s.t. $\forall\{u, v\} \in E:\{u, v\} \cap C \neq \varnothing$?

- NP-complete,

■ but there is an algorithm with runtime $\mathcal{O}\left(2^{k} \cdot k \cdot(|V|+|E|)\right)$.

Idea: If $k \in \mathcal{O}(1)$, then $\mathcal{O}\left(2^{k} \cdot k \cdot(|V|+|E|)\right) \subseteq \mathcal{O}(|V|+|E|)$, in other words, if we assume the parameter k to be fixed, k-VERTEX Cover becomes tractable.

Parameterized Complexity Classes

Definition.

Let Π be a decision problem. If there is

- an algorithm \mathcal{A} and
- a computable function f
such that, given an instance I of Π and a parameter $k \in \mathbb{N}$, the algorithm \mathcal{A} provides the correct answer to I in time $f(k) \cdot|I|^{\mathcal{O}(1)}$, then \mathcal{A} (and Π) are called fixed-parameter tractable (FPT) with respect to k.

Parameterized Complexity Classes

Definition.

Let Π be a decision problem. If there is

- an algorithm \mathcal{A} and
- a computable function f
such that, given an instance I of Π and a parameter $k \in \mathbb{N}$, the algorithm \mathcal{A} provides the correct answer to I in time $f(k) \cdot|I|^{\mathcal{O}(1)}$, then \mathcal{A} (and Π) are called fixed-parameter tractable (FPT) with respect to k. If \mathcal{A} provides the correct answer to I in time $|I|^{f(k)}$, then \mathcal{A} (and Π) are called slice-wise polynomial (XP) with respect to k. (Note that FPT \subsetneq XP.)

Parameterized Complexity Classes

Definition.

Let Π be a decision problem. If there is
■ an algorithm \mathcal{A} and

- a computable function f
such that, given an instance I of Π and a parameter $k \in \mathbb{N}$, the algorithm \mathcal{A} provides the correct answer to I in time $f(k) \cdot|I|^{\mathcal{O}(1)}$, then \mathcal{A} (and Π) are called fixed-parameter tractable (FPT) with respect to k. If \mathcal{A} provides the correct answer to I in time $|I|^{f(k)}$, then \mathcal{A} (and Π) are called slice-wise polynomial (XP) with respect to k. (Note that FPT \subsetneq XP.)

Example. $\quad k$-Vertex Cover can be solved in time $\mathcal{O}\left(2^{k} \cdot k \cdot(|V|+|E|)\right)$.

Parameterized Complexity Classes

Definition.

Let Π be a decision problem. If there is

- an algorithm \mathcal{A} and
- a computable function f
such that, given an instance I of Π and a parameter $k \in \mathbb{N}$, the algorithm \mathcal{A} provides the correct answer to I in time $f(k) \cdot|I|^{\mathcal{O}(1)}$, then \mathcal{A} (and Π) are called fixed-parameter tractable (FPT) with respect to k.
If \mathcal{A} provides the correct answer to I in time $|I|^{f(k)}$, then \mathcal{A} (and Π) are called slice-wise polynomial (XP) with respect to k. (Note that FPT \subsetneq XP.)

Example. $\quad k$-VERTEX CoVER can be solved in time $\mathcal{O}(\underbrace{2^{k} \cdot k} \cdot(\underbrace{|V|+|E|})$.

Parameterized Complexity Classes

Definition.

Let Π be a decision problem. If there is
■ an algorithm \mathcal{A} and

- a computable function f
such that, given an instance I of Π and a parameter $k \in \mathbb{N}$, the algorithm \mathcal{A} provides the correct answer to I in time $f(k) \cdot|I|^{\mathcal{O}(1)}$, then \mathcal{A} (and Π) are called fixed-parameter tractable (FPT) with respect to k. If \mathcal{A} provides the correct answer to I in time $|I|^{f(k)}$, then \mathcal{A} (and Π) are called slice-wise polynomial (XP) with respect to k. (Note that FPT \subsetneq XP.)

Example. $\quad k$-VERTEX COVER can be solved in time $\mathcal{O}(\underbrace{2^{k} \cdot k} \cdot(\underbrace{|V|+|E|})$.
$\Rightarrow k$-VERTEX Cover is FPT (and therefore also XP) with respect to k.

Examples and Counterexamples

k-Vertex Cover
■ NP-complete
■ but FPT with respect to k

Examples and Counterexamples

k-Vertex Cover

- NP-complete
- but FPT with respect to k
k-Clique
- NP-complete
- but XP with respect to k

■ Under common assumptions, k-CLIQUE is not FPT with respect to k (namely, k-CliQue is W [1]-complete with respect to $k ; \rightarrow$ Section 13 in [1])

Examples and Counterexamples

k-Vertex Cover

- NP-complete

■ but FPT with respect to k
k-Clique

- NP-complete
- but XP with respect to k

■ Under common assumptions, k-CLIQUE is not FPT with respect to k (namely, k-CliQue is W [1]-complete with respect to $k ; \rightarrow$ Section 13 in [1])

Vertex k-Coloring
■ NP-complete for every $k \geq 3$
$\square \Rightarrow$ neither FPT nor XP with respect to k, unless $P=N P$

Examples and Counterexamples

k-Vertex Cover

- NP-complete
- but FPT with respect to k

In all these examples, k is the natural parameter that comes with the decision problem.
k-Clique

- NP-complete
- but XP with respect to k
- Under common assumptions, k-CLIQUE is not FPT with respect to k (namely, k-CLIQUE is $W[1]$-complete with respect to $k ; \rightarrow$ Section 13 in [1])

VErtex k-Coloring
■ NP-complete for every $k \geq 3$
$\square \Rightarrow$ neither FPT nor XP with respect to k, unless $P=N P$

Examples and Counterexamples

k-Vertex Cover

- NP-complete
- but FPT with respect to k
k-Clique
- NP-complete
- but XP with respect to k

■ Under common assumptions, k-CLIQUE is not FPT with respect to k (namely, k-CLIQUE is $W[1]$-complete with respect to $k ; \rightarrow$ Section 13 in [1])

Vertex k-Coloring
■ NP-complete for every $k \geq 3$
$\square \Rightarrow$ neither FPT nor XP with respect to k, unless $P=N P$

Examples and Counterexamples

k-Vertex Cover
■ NP-complete

- but FPT with respect to k
k-Clique
- NP-complete
- but XP with respect to k
- Under common assumptions, k-CLIQUE is not FPT with respect to k (namely, k-CLIQUE is $W[1]$-complete with respect to $k ; \rightarrow$ Section 13 in [1])
- There is an $\mathcal{O}\left(2^{\Delta} \cdot \Delta^{2} \cdot(|V|+|E|)\right)$ time algorithm for k-ClIQUE, where Δ is the maximum degree of the input graph $\Rightarrow k$-CLIQUE is FPT with respect to Δ.
Vertex k-Coloring
■ NP-complete for every $k \geq 3$
$\square \Rightarrow$ neither FPT nor XP with respect to k, unless $P=N P$

Pathwidth and Treewidth (Intuition)

Pathwidth describes how path-like a graph is.

Pathwidth and Treewidth (Intuition)

Pathwidth describes how path-like a graph is.

Pathwidth and Treewidth (Intuition)

Pathwidth describes how path-like a graph is.

1

2

Pathwidth and Treewidth (Intuition)

Pathwidth describes how path-like a graph is.

1

Pathwidth and Treewidth (Intuition)

Pathwidth describes how path-like a graph is.

1

2

$n-1$

Treewidth describes how tree-like a graph is.

Pathwidth and Treewidth (Intuition)

Pathwidth describes how path-like a graph is.

1

2

$n-1$

Treewidth describes how tree-like a graph is.

Pathwidth and Treewidth (Intuition)

Pathwidth describes how path-like a graph is.

1

2

$n-1$

Treewidth describes how tree-like a graph is.

Pathwidth and Treewidth (Intuition)

Pathwidth describes how path-like a graph is.

1

2

$n-1$

Treewidth describes how tree-like a graph is.

Pathwidth and Treewidth (Intuition)

Pathwidth describes how path-like a graph is.

1

$n-1$
Treewidth describes how tree-like a graph is.

Pathwidth and Treewidth (Intuition)

Pathwidth describes how path-like a graph is.

1

2

$n-1$

Treewidth describes how tree-like a graph is.

Path-/tree-like structure can be useful for designing dynamic programming algorithms.

(Weighted) Independent Set

Input. A graph $G=(V, E)$. Weight function $w: V \rightarrow \mathbb{N}$.
Output. A set $I \subseteq V$ that is independent, i.e., $\forall u, v \in I:\{u, v\} \notin E$, and has maximum weight, i.e., $w(I):=\sum_{v \in I} w(v)$ is maximized.

(Weighted) Independent Set
Input. A graph $G=(V, E)$. Weight function $w: V \rightarrow \mathbb{N}$.
Output. A set $I \subseteq V$ that is independent, i.e., $\forall u, v \in I:\{u, v\} \notin E$, and has maximum weight, i.e., $w(I):=\sum_{v \in I} w(v)$ is maximized.

(Weighted) Independent Set

Input. A graph $G=(V, E)$. Weight function $w: V \rightarrow \mathbb{N}$.
Output. A set $I \subseteq V$ that is independent, i.e., $\forall u, v \in I:\{u, v\} \notin E$, and has maximum weight, i.e., $w(I):=\sum_{v \in I} w(v)$ is maximized.

■ (Already unweighted) Independent Set is NP-complete,

(Weighted) Independent Set

Input. A graph $G=(V, E)$. Weight function $w: V \rightarrow \mathbb{N}$.
Output. A set $I \subseteq V$ that is independent, i.e., $\forall u, v \in I:\{u, v\} \notin E$, and has maximum weight, i.e., $w(I):=\sum_{v \in I} w(v)$ is maximized.

■ (Already unweighted) Independent Set is NP-complete,
■ but can be solved efficiently on tree-like graphs (also when weighted).

(Weighted) Independent Set

Input. A graph $G=(V, E)$. Weight function $w: V \rightarrow \mathbb{N}$.
Output. A set $I \subseteq V$ that is independent, i.e., $\forall u, v \in I:\{u, v\} \notin E$, and has maximum weight, i.e., $w(I):=\sum_{v \in I} w(v)$ is maximized.

- (Already unweighted) Independent SET is NP-complete,
- but can be solved efficiently on tree-like graphs (also when weighted).

■ On trees, (Weighted) Independent Set can be solved in linear time.

Independent Set in Trees

Choose an arbitrary root r.

Independent Set in Trees

Choose an arbitrary root r.
Let $T(v):=$ subtree rooted at v

Independent Set in Trees

Choose an arbitrary root r.
Let $T(v):=$ subtree rooted at v
Let $A(v):=$ maximum weight of an independent set I in $T(v)$

Independent Set in Trees

Choose an arbitrary root r.
Let $T(v):=$ subtree rooted at v
Let $A(v):=$ maximum weight of an independent set I in $T(v)$

Independent Set in Trees

Choose an arbitrary root r.
Let $T(v):=$ subtree rooted at v
Let $A(v):=$ maximum weight of an independent set I in $T(v)$

Independent Set in Trees

Choose an arbitrary root r.
Let $T(v):=$ subtree rooted at v
Let $A(v):=$ maximum weight of an independent set I in $T(v)$

If $v \in V$ is part of the indepent set I, then none of its neighbors $\mathrm{N}(v)$ is also in I.

Independent Set in Trees

Choose an arbitrary root r.
Let $T(v):=$ subtree rooted at v
Let $A(v):=$ maximum weight of an independent set I in $T(v)$

Let $B(v):=$ maximum weight of an independent set I in $T(v)$ where $v \notin I$

Independent Set in Trees

Choose an arbitrary root r.
Let $T(v):=$ subtree rooted at v
Let $A(v):=$ maximum weight of an independent set I in $T(v)$

Let $B(v):=$ maximum weight of an independent set I in $T(v)$ where $v \notin I$

- If v is a leaf: $B(v)=$

Independent Set in Trees

Choose an arbitrary root r.
Let $T(v):=$ subtree rooted at v
Let $A(v):=$ maximum weight of an independent set I in $T(v)$
Let $B(v):=$ maximum weight of an independent set I in $T(v)$ where $v \notin I$

- If v is a leaf: $B(v)=0$ and $A(v)=$

Independent Set in Trees

Choose an arbitrary root r.
Let $T(v):=$ subtree rooted at v
Let $A(v):=$ maximum weight of an independent set I in $T(v)$
Let $B(v):=$ maximum weight of an independent set I in $T(v)$ where $v \notin I$

■ If v is a leaf: $B(v)=0$ and $A(v)=w(v)$

Independent Set in Trees

Choose an arbitrary root r.
Let $T(v):=$ subtree rooted at v
Let $A(v):=$ maximum weight of an independent set I in $T(v)$
Let $B(v):=$ maximum weight of an independent set I in $T(v)$ where $v \notin I$

■ If v is a leaf: $B(v)=0$ and $A(v)=w(v)$

- If v has children x_{1}, \ldots, x_{ℓ} :

$$
B(v)=
$$

Independent Set in Trees

Choose an arbitrary root r.
Let $T(v):=$ subtree rooted at v
Let $A(v):=$ maximum weight of an independent set I in $T(v)$
Let $B(v):=$ maximum weight of an independent set I in $T(v)$ where $v \notin I$

■ If v is a leaf: $B(v)=0$ and $A(v)=w(v)$

- If v has children x_{1}, \ldots, x_{ℓ} :

$$
B(v)=\sum_{i=1}^{\ell} A\left(x_{i}\right) ;
$$

Independent Set in Trees

Choose an arbitrary root r.
Let $T(v):=$ subtree rooted at v
Let $A(v):=$ maximum weight of an independent set I in $T(v)$
Let $B(v):=$ maximum weight of an independent set I in $T(v)$ where $v \notin I$

■ If v is a leaf: $B(v)=0$ and $A(v)=w(v)$

- If v has children x_{1}, \ldots, x_{ℓ} :

$$
B(v)=\sum_{i=1}^{\ell} A\left(x_{i}\right) ; A(v)=
$$

Independent Set in Trees

Choose an arbitrary root r.
Let $T(v):=$ subtree rooted at v
Let $A(v):=$ maximum weight of an independent set I in $T(v)$
Let $B(v):=$ maximum weight of an independent set I in $T(v)$ where $v \notin I$

■ If v is a leaf: $B(v)=0$ and $A(v)=w(v)$

- If v has children x_{1}, \ldots, x_{ℓ} :

$$
B(v)=\sum_{i=1}^{\ell} A\left(x_{i}\right) ; A(v)=\quad w(v)
$$

Independent Set in Trees

Choose an arbitrary root r.
Let $T(v):=$ subtree rooted at v
Let $A(v):=$ maximum weight of an independent set I in $T(v)$
Let $B(v):=$ maximum weight of an independent set I in $T(v)$ where $v \notin I$

■ If v is a leaf: $B(v)=0$ and $A(v)=w(v)$

- If v has children x_{1}, \ldots, x_{ℓ} :

$$
B(v)=\sum_{i=1}^{\ell} A\left(x_{i}\right) ; A(v)=\quad w(v)+\sum_{i=1}^{\ell} B\left(x_{i}\right)
$$

Independent Set in Trees

Choose an arbitrary root r.
Let $T(v):=$ subtree rooted at v
Let $A(v):=$ maximum weight of an independent set I in $T(v)$
Let $B(v):=$ maximum weight of an independent set I in $T(v)$ where $v \notin I$

■ If v is a leaf: $B(v)=0$ and $A(v)=w(v)$

- If v has children x_{1}, \ldots, x_{ℓ} :

$$
B(v)=\sum_{i=1}^{\ell} A\left(x_{i}\right) ; A(v)=\max \left\{B(v), w(v)+\sum_{i=1}^{\ell} B\left(x_{i}\right)\right\}
$$

Independent Set in Trees

Choose an arbitrary root r.
Let $T(v):=$ subtree rooted at v
Let $A(v):=$ maximum weight of an independent set I in $T(v)$
Let $B(v):=$ maximum weight of an independent set I in $T(v)$ where $v \notin I$

- If v is a leaf: $B(v)=0$ and $A(v)=w(v)$
- If v has children x_{1}, \ldots, x_{ℓ} :

$$
B(v)=\sum_{i=1}^{\ell} A\left(x_{i}\right) ; A(v)=\max \left\{B(v), w(v)+\sum_{i=1}^{\ell} B\left(x_{i}\right)\right\}
$$

Algorithm: Compute $A(\cdot)$ and $B(\cdot)$ bottom-up, return $A(r)$.

Grid Graphs

In a $k \times N$ grid graph

- the vertex set consist of all pairs (i, j) where $1 \leq i \leq k$ and $1 \leq j \leq N$, and

■ two vertices $\left(i_{1}, j_{1}\right)$ and $\left(i_{2}, j_{2}\right)$ are adjacent if and only if $\left|i_{1}-i_{2}\right|+\left|j_{1}-j_{2}\right|=1$.

Grid Graphs

In a $k \times N$ grid graph
■ the vertex set consist of all pairs (i, j) where $1 \leq i \leq k$ and $1 \leq j \leq N$, and
■ two vertices $\left(i_{1}, j_{1}\right)$ and $\left(i_{2}, j_{2}\right)$ are adjacent if and only if $\left|i_{1}-i_{2}\right|+\left|j_{1}-j_{2}\right|=1$.

We will study Independent Set in subgraphs of $k \times N$ grid graphs.

Grid Graphs

In a $k \times N$ grid graph
■ the vertex set consist of all pairs (i, j) where $1 \leq i \leq k$ and $1 \leq j \leq N$, and
■ two vertices $\left(i_{1}, j_{1}\right)$ and $\left(i_{2}, j_{2}\right)$ are adjacent if and only if $\left|i_{1}-i_{2}\right|+\left|j_{1}-j_{2}\right|=1$.

We will study Independent Set in subgraphs of $k \times N$ grid graphs.

Grid Graphs

In a $k \times N$ grid graph

- the vertex set consist of all pairs (i, j) where $1 \leq i \leq k$ and $1 \leq j \leq N$, and

■ two vertices $\left(i_{1}, j_{1}\right)$ and $\left(i_{2}, j_{2}\right)$ are adjacent if and only if $\left|i_{1}-i_{2}\right|+\left|j_{1}-j_{2}\right|=1$.

We will study Independent Set in subgraphs of $k \times N$ grid graphs.
Goal: An FPT algorithm with respect to the parameter k.

Indenpendent Set in $k \times N$ Grid Graphs

Let X_{j} be the j-th column, that is, $X_{j}=\vee(G) \cap\{(i, j) \mid 1 \leq i \leq k\}$.
Let G_{j} be the graph induced by the first j columns $X_{1} \cup X_{2} \cup \ldots X_{j}$.

Indenpendent Set in $k \times N$ Grid Graphs

Let X_{j} be the j-th column, that is, $X_{j}=\vee(G) \cap\{(i, j) \mid 1 \leq i \leq k\}$.
Let G_{j} be the graph induced by the first j columns $X_{1} \cup X_{2} \cup \ldots X_{j}$.

Indenpendent Set in $k \times N$ Grid Graphs

Let X_{j} be the j-th column, that is, $X_{j}=\vee(G) \cap\{(i, j) \mid 1 \leq i \leq k\}$.
Let G_{j} be the graph induced by the first j columns $X_{1} \cup X_{2} \cup \ldots X_{j}$.

Indenpendent Set in $k \times N$ Grid Graphs

Let X_{j} be the j-th column, that is, $X_{j}=\vee(G) \cap\{(i, j) \mid 1 \leq i \leq k\}$.
Let G_{j} be the graph induced by the first j columns $X_{1} \cup X_{2} \cup \ldots X_{j}$.

Indenpendent Set in $k \times N$ Grid Graphs

Let X_{j} be the j-th column, that is, $X_{j}=\vee(G) \cap\{(i, j) \mid 1 \leq i \leq k\}$.
Let G_{j} be the graph induced by the first j columns $X_{1} \cup X_{2} \cup \ldots X_{j}$.

Indenpendent Set in $k \times N$ Grid Graphs

Let X_{j} be the j-th column, that is, $X_{j}=\mathrm{V}(G) \cap\{(i, j) \mid 1 \leq i \leq k\}$.
Let G_{j} be the graph induced by the first j columns $X_{1} \cup X_{2} \cup \ldots X_{j}$.

Indenpendent Set in $k \times N$ Grid Graphs

Let X_{j} be the j-th column, that is, $X_{j}=\vee(G) \cap\{(i, j) \mid 1 \leq i \leq k\}$.
Let G_{j} be the graph induced by the first j columns $X_{1} \cup X_{2} \cup \ldots X_{j}$.

Indenpendent Set in $k \times N$ Grid Graphs

Let X_{j} be the j-th column, that is, $X_{j}=\vee(G) \cap\{(i, j) \mid 1 \leq i \leq k\}$.
Let G_{j} be the graph induced by the first j columns $X_{1} \cup X_{2} \cup \ldots X_{j}$.

Indenpendent Set in $k \times N$ Grid Graphs

Let X_{j} be the j-th column, that is, $X_{j}=\vee(G) \cap\{(i, j) \mid 1 \leq i \leq k\}$.
Let G_{j} be the graph induced by the first j columns $X_{1} \cup X_{2} \cup \ldots X_{j}$.

Indenpendent Set in $k \times N$ Grid Graphs

Let X_{j} be the j-th column, that is, $X_{j}=\vee(G) \cap\{(i, j) \mid 1 \leq i \leq k\}$.
Let G_{j} be the graph induced by the first j columns $X_{1} \cup X_{2} \cup \ldots X_{j}$.

Indenpendent Set in $k \times N$ Grid Graphs

Let X_{j} be the j-th column, that is, $X_{j}=\vee(G) \cap\{(i, j) \mid 1 \leq i \leq k\}$.
Let G_{j} be the graph induced by the first j columns $X_{1} \cup X_{2} \cup \ldots X_{j}$.

Let $1 \leq j \leq N$. For each $Y \subseteq X_{j}$ let

Indenpendent Set in $k \times N$ Grid Graphs

Let X_{j} be the j-th column, that is, $X_{j}=\vee(G) \cap\{(i, j) \mid 1 \leq i \leq k\}$.
Let G_{j} be the graph induced by the first j columns $X_{1} \cup X_{2} \cup \ldots X_{j}$.
Let $1 \leq j \leq N$. For each $Y \subseteq X_{j}$ let

$C[j, Y]:=$ maximum weight of an independent set I in G_{j} such that $I \cap Y=\varnothing$

Indenpendent Set in $k \times N$ Grid Graphs

Let X_{j} be the j-th column, that is, $X_{j}=\vee(G) \cap\{(i, j) \mid 1 \leq i \leq k\}$.
Let G_{j} be the graph induced by the first j columns $X_{1} \cup X_{2} \cup \ldots X_{j}$.

Let $1 \leq j \leq N$. For each $Y \subseteq X_{j}$ let

$C[j, Y]:=$ maximum weight of an independent set I in G_{j} such that $I \cap Y=\varnothing$

$$
C[N, \varnothing]=\text { solution }
$$

Indenpendent Set in $k \times N$ Grid Graphs

Let X_{j} be the j-th column, that is, $X_{j}=\vee(G) \cap\{(i, j) \mid 1 \leq i \leq k\}$.
Let G_{j} be the graph induced by the first j columns $X_{1} \cup X_{2} \cup \ldots X_{j}$.
Let $1 \leq j \leq N$. For each $Y \subseteq X_{j}$ let

$C[j, Y]:=$ maximum weight of an independent set I in G_{j} such that $I \cap Y=\varnothing$ $C[1, Y]=$

Indenpendent Set in $k \times N$ Grid Graphs

Let X_{j} be the j-th column, that is, $X_{j}=\vee(G) \cap\{(i, j) \mid 1 \leq i \leq k\}$.
Let G_{j} be the graph induced by the first j columns $X_{1} \cup X_{2} \cup \ldots X_{j}$.
Let $1 \leq j \leq N$. For each $Y \subseteq X_{j}$ let

$C[j, Y]:=$ maximum weight of an independent set I in G_{j} such that $I \cap Y=\varnothing$

Indenpendent Set in $k \times N$ Grid Graphs

Let X_{j} be the j-th column, that is, $X_{j}=\vee(G) \cap\{(i, j) \mid 1 \leq i \leq k\}$.
Let G_{j} be the graph induced by the first j columns $X_{1} \cup X_{2} \cup \ldots X_{j}$.
Let $1 \leq j \leq N$. For each $Y \subseteq X_{j}$ let
G_{4}

$C[j, Y]:=$ maximum weight of an independent set I in G_{j} such that $I \cap Y=\varnothing$
$C[1, Y]=\max _{I \subseteq X_{1} \backslash Y}$ where I independent $\{w(I)\}$
$C[j, Y]=$

Indenpendent Set in $k \times N$ Grid Graphs

Let X_{j} be the j-th column, that is, $X_{j}=\vee(G) \cap\{(i, j) \mid 1 \leq i \leq k\}$.
Let G_{j} be the graph induced by the first j columns $X_{1} \cup X_{2} \cup \ldots X_{j}$.
Let $1 \leq j \leq N$. For each $Y \subseteq X_{j}$ let

G4

$C[j, Y]:=$ maximum weight of an independent set I in G_{j} such that $I \cap Y=\varnothing$
$C[1, Y]=\max _{I \subseteq X_{1} \backslash Y}$ where I independent $\{w(I)\}$
$C[j, Y]=$

Indenpendent Set in $k \times N$ Grid Graphs

Let X_{j} be the j-th column, that is, $X_{j}=\vee(G) \cap\{(i, j) \mid 1 \leq i \leq k\}$.
Let G_{j} be the graph induced by the first j columns $X_{1} \cup X_{2} \cup \ldots X_{j}$.
Let $1 \leq j \leq N$. For each $Y \subseteq X_{j}$ let
G_{4}

$C[j, Y]:=$ maximum weight of an independent set I in G_{j} such that $I \cap Y=\varnothing$
$C[1, Y]=\max _{I \subseteq X_{1} \backslash Y}$ where I independent $\{w(I)\}$
$C[j, Y]=$

Indenpendent Set in $k \times N$ Grid Graphs

Let X_{j} be the j-th column, that is, $X_{j}=\vee(G) \cap\{(i, j) \mid 1 \leq i \leq k\}$.

Let G_{j} be the graph induced by the first j columns $X_{1} \cup X_{2} \cup \ldots X_{j}$.
Let $1 \leq j \leq N$. For each $Y \subseteq X_{j}$ let

G4

$C[j, Y]:=$ maximum weight of an independent set I in G_{j} such that $I \cap Y=\varnothing$

$C[j, Y]=\max _{I \subseteq X_{j} \backslash Y}$ where I independent $\left\{w(I)+C\left[j-1, X_{j-1} \cap \mathrm{~N}(I)\right]\right\}$

Indenpendent Set in $k \times N$ Grid Graphs

Let X_{j} be the j-th column, that is, $X_{j}=\vee(G) \cap\{(i, j) \mid 1 \leq i \leq k\}$.
Let G_{j} be the graph induced by the first j columns $X_{1} \cup X_{2} \cup \ldots X_{j}$.
Let $1 \leq j \leq N$. For each $Y \subseteq X_{j}$ let

G4

$C[j, Y]:=$ maximum weight of an independent set I in G_{j} such that $I \cap Y=\varnothing$

$C[j, Y]=\max _{I \subseteq X_{j} \backslash Y}$ where I independent $\left\{w(I)+C\left[j-1, X_{j-1} \cap \mathrm{~N}(I)\right]\right\}$
For each j there are $\leq 2^{k}$ choices of Y, and for each Y there are $2^{\left|X_{j} \backslash Y\right|}$ choices of I.

Indenpendent Set in $k \times N$ Grid Graphs

Let X_{j} be the j-th column, that is, $X_{j}=\vee(G) \cap\{(i, j) \mid 1 \leq i \leq k\}$.
Let G_{j} be the graph induced by the first j columns $X_{1} \cup X_{2} \cup \ldots X_{j}$.
Let $1 \leq j \leq N$. For each $Y \subseteq X_{j}$ let
G_{4}

$C[j, Y]:=$ maximum weight of an independent set I in G_{j} such that $I \cap Y=\varnothing$

$C[j, Y]=\max _{I \subseteq X_{j} \backslash Y \text { where } I \text { independent }}\left\{w(I)+C\left[j-1, X_{j-1} \cap \mathrm{~N}(I)\right]\right\}$
For each j there are $\leq 2^{k}$ choices of Y, and for each Y there are $2^{\left|X_{j} \backslash Y\right|}$ choices of I. For each of these $\leq N 4^{k}$ choices of I, we need to test if I is independent.

Indenpendent Set in $k \times N$ Grid Graphs

Let X_{j} be the j-th column, that is, $X_{j}=\vee(G) \cap\{(i, j) \mid 1 \leq i \leq k\}$.
Let G_{j} be the graph induced by the first j columns $X_{1} \cup X_{2} \cup \ldots X_{j}$.
Let $1 \leq j \leq N$. For each $Y \subseteq X_{j}$ let
Gu

$C[j, Y]:=$ maximum weight of an independent set I in G_{j} such that $I \cap Y=\varnothing$

$C[j, Y]=\max _{I \subseteq X_{j} \backslash Y}$ where I independent $\left\{w(I)+C\left[j-1, X_{j-1} \cap \mathrm{~N}(I)\right]\right\}$
For each j there are $\leq 2^{k}$ choices of Y, and for each Y there are $2^{\left|X_{j} \backslash Y\right|}$ choices of I. For each of these $\leq N 3^{k}$ choices of I, we need to test if I is independent.

Indenpendent Set in $k \times N$ Grid Graphs

Let X_{j} be the j-th column, that is, $X_{j}=\mathrm{V}(G) \cap\{(i, j) \mid 1 \leq i \leq k\}$.

Let G_{j} be the graph induced by the first j columns $X_{1} \cup X_{2} \cup \ldots X_{j}$.

Let $1 \leq j \leq N$. For each $Y \subseteq X_{j}$ let
G_{4}

$C[j, Y]:=$ maximum weight of an independent set I in G_{j} such that $I \cap Y=\varnothing$
$C[1, Y]=\max _{I \subseteq X_{1} \backslash Y \text { where } I \text { independent }}\{w(I)\}$
$C[j, Y]=\max _{I \subseteq X_{j} \backslash Y \text { where } I \text { independent }}\left\{w(I)+C\left[j-1, X_{j-1} \cap \mathrm{~N}(I)\right]\right\}$
For each j there are $\leq 2^{k}$ choices of Y, and for each Y there are $2^{\left|X_{j} \backslash Y\right|}$ choices of I. For each of these $\leq N 3^{k}$ choices of I, we need to test if I is independent.
\rightarrow total running time $\leq 3^{k} k^{\mathcal{O}(1)} N$.

Can We Apply This Approach to Other Graphs?

Yes!

Can We Apply This Approach to Other Graphs?

We mainly used the fact that the graph consists of a sequence of small separators.

Can We Apply This Approach to Other Graphs?

We mainly used the fact that the graph consists of a sequence of small separators. A similiar fact was used in the algorithm for trees.

Can We Apply This Approach to Other Graphs?

We mainly used the fact that the graph consists of a sequence of small separators.
A similiar fact was used in the algorithm for trees.
Goal: Define a more general graph class featuring a structure that is suited for this kind of dynamic programming approach.

Path Decompositions

Let $G=(V, E)$ be a graph.
A path decomposition of G is a sequence $P=\left(X_{1}, X_{2}, \ldots, X_{r}\right)$ of bags, where $X_{i} \subseteq V$, such that

Path Decompositions

Let $G=(V, E)$ be a graph.
A path decomposition of G is a sequence $P=\left(X_{1}, X_{2}, \ldots, X_{r}\right)$ of bags, where $X_{i} \subseteq V$, such that
(P1) $\bigcup_{i=1}^{r} X_{i}=V$

Path Decompositions

Path Decompositions

Let $G=(V, E)$ be a graph.
A path decomposition of G is a sequence $P=\left(X_{1}, X_{2}, \ldots, X_{r}\right)$ of bags, where $X_{i} \subseteq V$, such that
(P1) $\bigcup_{i=1}^{r} X_{i}=V$

Path Decompositions

Let $G=(V, E)$ be a graph.
A path decomposition of G is a sequence $P=\left(X_{1}, X_{2}, \ldots, X_{r}\right)$ of bags, where $X_{i} \subseteq V$, such that
(P1) $\bigcup_{i=1}^{r} X_{i}=V$

(P2) $\forall\{u, v\} \in E \exists i \in\{1,2, \ldots, r\}: u, v \in X_{i}$

Path Decompositions

(P1) $\cup_{i=1}^{r} X_{i}=V$
(P2) $\forall\{u, v\} \in E \exists i \in\{1,2, \ldots, r\}: u, v \in X_{i}$

Path Decompositions

Let $G=(V, E)$ be a graph.
A path decomposition of G is a sequence $P=\left(X_{1}, X_{2}, \ldots, X_{r}\right)$ of bags, where $X_{i} \subseteq V$, such that

(P1) $\cup_{i=1}^{r} X_{i}=V$
(P2) $\forall\{u, v\} \in E \exists i \in\{1,2, \ldots, r\}: u, v \in X_{i}$

Path Decompositions

Let $G=(V, E)$ be a graph.
A path decomposition of G is a sequence $P=\left(X_{1}, X_{2}, \ldots, X_{r}\right)$ of bags, where $X_{i} \subseteq V$, such that
(P1) $\bigcup_{i=1}^{r} X_{i}=V$

(P2) $\forall\{u, v\} \in E \exists i \in\{1,2, \ldots, r\}: u, v \in X_{i}$
(P3) $\forall v \in V$, if $v \in X_{i} \cap X_{j}$ with $i \leq j$, then $v \in X_{i} \cap X_{i+1} \cap \cdots \cap X_{j}$

Path Decompositions

(P1) $\bigcup_{i=1}^{r} X_{i}=V$
(P2) $\forall\{u, v\} \in E \exists i \in\{1,2, \ldots, r\}: u, v \in X_{i}$
(P3) $\forall v \in V$, if $v \in X_{i} \cap X_{j}$ with $i \leq j$, then $v \in X_{i} \cap X_{i+1} \cap \cdots \cap X_{j}$

Path Decompositions

Let $G=(V, E)$ be a graph.
A path decomposition of G is a sequence $P=\left(X_{1}, X_{2}, \ldots, X_{r}\right)$ of bags, where $X_{i} \subseteq V$, such that
(P1) $\bigcup_{i=1}^{r} X_{i}=V$

(P2) $\forall\{u, v\} \in E \exists i \in\{1,2, \ldots, r\}: u, v \in X_{i}$
(P3) $\forall v \in V$, if $v \in X_{i} \cap X_{j}$ with $i \leq j$, then $v \in X_{i} \cap X_{i+1} \cap \cdots \cap X_{j}$

Path Decompositions

Let $G=(V, E)$ be a graph.
A path decomposition of G is a sequence $P=\left(X_{1}, X_{2}, \ldots, X_{r}\right)$ of bags, where

(P1) $\cup_{i=1}^{r} X_{i}=V$
(P2) $\forall\{u, v\} \in E \exists i \in\{1,2, \ldots, r\}: u, v \in X_{i}$
(P3) $\forall v \in V$, if $v \in X_{i} \cap X_{j}$ with $i \leq j$, then $v \in X_{i} \cap X_{i+1} \cap \cdots \cap X_{j}$

Path Decompositions

$$
\mathrm{w}(P)=3
$$

Let $G=(V, E)$ be a graph.
A path decomposition of G is a sequence $P=\left(X_{1}, X_{2}, \ldots, X_{r}\right)$ of bags, where $X_{i} \subseteq V$, such that
(P1) $\bigcup_{i=1}^{r} X_{i}=V$
(P2) $\forall\{u, v\} \in E \exists i \in\{1,2, \ldots, r\}: u, v \in X_{i}$
(P3) $\forall v \in V$, if $v \in X_{i} \cap X_{j}$ with $i \leq j$, then $v \in X_{i} \cap X_{i+1} \cap \cdots \cap X_{j}$
The width of P is $\mathrm{w}(P)=\max _{1 \leq I \leq r}\left|X_{i}\right|-1$.

Path Decompositions

$$
\mathrm{w}(P)=3
$$

$$
\mathrm{pw}(G) \leq 3
$$

Let $G=(V, E)$ be a graph.
A path decomposition of G is a sequence $P=\left(X_{1}, X_{2}, \ldots, X_{r}\right)$ of bags, where $X_{i} \subseteq V$, such that
(P1) $\bigcup_{i=1}^{r} X_{i}=V$
(P2) $\forall\{u, v\} \in E \exists i \in\{1,2, \ldots, r\}: u, v \in X_{i}$

(P3) $\forall v \in V$, if $v \in X_{i} \cap X_{j}$ with $i \leq j$, then $v \in X_{i} \cap X_{i+1} \cap \cdots \cap X_{j}$
The width of P is $\mathrm{w}(P)=\max _{1 \leq I \leq r}\left|X_{i}\right|-1$.
The pathwidth $\mathrm{pw}(G)$ of G is the minimum width of a path decomposition of G.

Path Decompositions

$$
\mathrm{w}(P)=3
$$

$$
\mathrm{pw}(G) \leq 3
$$

Let $G=(V, E)$ be a graph.
A path decomposition of G is a sequence $P=\left(X_{1}, X_{2}, \ldots, X_{r}\right)$ of bags, where $X_{i} \subseteq V$, such that
(P1) $\bigcup_{i=1}^{r} X_{i}=V$
(P2) $\forall\{u, v\} \in E \exists i \in\{1,2, \ldots, r\}: u, v \in X_{i}$

(P3) $\forall v \in V$, if $v \in X_{i} \cap X_{j}$ with $i \leq j$, then $v \in X_{i} \cap X_{i+1} \cap \cdots \cap X_{j}$
The width of P is $w(P)=\max _{1 \leq I \leq r}\left|X_{i}\right|-1$.
The pathwidth $\operatorname{pw}(G)$ of G is the minimum width of a path decomposition of G.

a, b
b, c
c, d

$$
\operatorname{pw}(G)=1
$$

Okay - But Where Are the Separators?

(P1) $\bigcup_{i=1}^{r} X_{i}=V$
(P2) $\forall\{u, v\} \in E \exists i \in\{1,2, \ldots, r\}: u, v \in X_{i}$
(P3) $\forall v \in V$, if $v \in X_{i} \cap X_{j}$ with $i \leq j$, then $v \in X_{i} \cap X_{i+1} \cap \cdots \cap X_{j}$

Okay - But Where Are the Separators?

(P1) $\mathrm{U}_{i=1}^{r} \mathrm{X}_{i}=V$
(P2) $\forall\{u, v\} \in E \exists i \in\{1,2, \ldots, r\}: u, v \in X_{i}$
(P3) $\forall v \in V$, if $v \in X_{i} \cap X_{j}$ with $i \leq j$, then $v \in X_{i} \cap X_{i+1} \cap \cdots \cap X_{j}$

Okay - But Where Are the Separators?

Lemma. Let $i<r$. Then there is no edge between $A=\left(X_{1} \cup X_{2} \cup \cdots \cup X_{i}\right) \backslash\left(X_{i} \cap X_{i+1}\right)$ and
$B=\left(X_{i+1} \cup X_{i+2} \cup \cdots \cup X_{r}\right) \backslash\left(X_{i} \cap X_{i+1}\right)$.

Okay - But Where Are the Separators?

Lemma. Let $i<r$. Then there is no edge between

$$
\begin{aligned}
& A=\left(X_{1} \cup X_{2} \cup \cdots \cup X_{i}\right) \backslash\left(X_{i} \cap X_{i+1}\right) \text { and } \\
& B=\left(X_{i+1} \cup X_{i+2} \cup \cdots \cup X_{r}\right) \backslash\left(X_{i} \cap X_{i+1}\right) .
\end{aligned}
$$

Proof. Assume there are $a \in A$ and $b \in B$ s.t. $\{a, b\} \in E$. Let $j \leq i$ s.t. $a \in X_{j}$ and let $k \geq i+1$ s.t. $b \in X_{k}$.

Okay - But Where Are the Separators?

Lemma. Let $i<r$. Then there is no edge between

$$
\begin{aligned}
& A=\left(X_{1} \cup X_{2} \cup \cdots \cup X_{i}\right) \backslash\left(X_{i} \cap X_{i+1}\right) \text { and } \\
& B=\left(X_{i+1} \cup X_{i+2} \cup \cdots \cup X_{r}\right) \backslash\left(X_{i} \cap X_{i+1}\right) .
\end{aligned}
$$

Proof. Assume there are $a \in A$ and $b \in B$ s.t. $\{a, b\} \in E$.
Let $j \leq i$ s.t. $a \in X_{j}$ and let $k \geq i+1$ s.t. $b \in X_{k}$.
$(\mathrm{P} 2) \Rightarrow$ there is a bag X_{ℓ} s.t. $a, b \in X_{\ell}$, w.l.o.g. let $\ell \geq i+1$.

Okay - But Where Are the Separators?

Lemma. Let $i<r$. Then there is no edge between $A=\left(X_{1} \cup X_{2} \cup \cdots \cup X_{i}\right) \backslash\left(X_{i} \cap X_{i+1}\right)$ and $B=\left(X_{i+1} \cup X_{i+2} \cup \cdots \cup X_{r}\right) \backslash\left(X_{i} \cap X_{i+1}\right)$.

Proof. Assume there are $a \in A$ and $b \in B$ s.t. $\{a, b\} \in E$.
Let $j \leq i$ s.t. $a \in X_{j}$ and let $k \geq i+1$ s.t. $b \in X_{k}$.
$(\mathrm{P} 2) \Rightarrow$ there is a bag X_{ℓ} s.t. $a, b \in X_{\ell}$, w.l.o.g. let $\ell \geq i+1$.
$(\mathrm{P} 2) \Rightarrow$ there is a bag X_{ℓ} s.t. $a, b \in X_{\ell}$, w.l.o.g.
(P3) $\Rightarrow a \in X_{i} \cap X_{i+1}$; contradiction to $a \in A$.

Computing Path Decompositions

k-PATHWIDTH
Input. \quad Graph $G=(V, E), \quad k \in \mathbb{N}$
Question. Is the pathwidth of G at most k ?
■ NP-complete

- FPT in k
- The algorithm constructs a path decomposition of width $\leq k$.
- Its runtime depends linearly on $|V|+|E|$.

Computing Path Decompositions

k-Pathwidth
Input. \quad Graph $G=(V, E), \quad k \in \mathbb{N}$
Question. Is the pathwidth of G at most k ?
■ NP-complete

- FPT in k
- The algorithm constructs a path decomposition of width $\leq k$.

■ Its runtime depends linearly on $|V|+|E|$.
\Rightarrow When designing FPT algorithms with respect to the pathwidth, we may assume to be given a path decomposition!

Nice Path Decompositions

A path decomposition is nice if $\left|X_{1}\right|=1$ and each other bag has one of two types:

Nice Path Decompositions

A path decomposition is nice if $\left|X_{1}\right|=1$ and each other bag has one of two types:
X_{i+1} is of type Introduce if

Nice Path Decompositions

A path decomposition is nice if $\left|X_{1}\right|=1$ and each other bag has one of two types:
X_{i+1} is of type Introduce if

$$
X_{i+1}=X_{i} \cup\{v\} \text { where } v \notin X_{i}
$$

X_{i+1} is of type Forget if

$$
X_{i}=X_{i+1} \cup\{v\} \text { where } v \notin X_{i+1}
$$

Nice Path Decompositions

A path decomposition is nice if $\left|X_{1}\right|=1$ and each other bag has one of two types: X_{i+1} is of type Introduce if

$$
X_{i+1}=X_{i} \cup\{v\} \text { where } v \notin X_{i}
$$

Observation. The number of bags is $r \leq 2|V|-1$.

$$
X_{i}=X_{i+1} \cup\{v\} \text { where } v \notin X_{i+1}
$$

Nice Path Decompositions

A path decomposition is nice if $\left|X_{1}\right|=1$ and each other bag has one of two types:
X_{i+1} is of type Introduce if

$$
X_{i+1}=X_{i} \cup\{v\} \text { where } v \notin X_{i}
$$

X_{i+1} is of type Forget if

$$
X_{i}=X_{i+1} \cup\{v\} \text { where } v \notin X_{i+1}
$$

Observation. The number of bags is $r \leq 2|V|-1$.
Lemma. A path decomposition of width k can be transformed into a nice path decomposition of width k in polynomial time.

Nice Path Decompositions

A path decomposition is nice if $\left|X_{1}\right|=1$ and each other bag has one of two types:
X_{i+1} is of type Introduce if

$$
X_{i+1} \text { is of type Forget if }
$$

$$
X_{i+1}=X_{i} \cup\{v\} \text { where } v \notin X_{i} \quad X_{i}=X_{i+1} \cup\{v\} \text { where } v \notin X_{i+1}
$$

Observation. The number of bags is $r \leq 2|V|-1$.
Lemma. A path decomposition of width k can be transformed into a nice path decomposition of width k in polynomial time.
\Rightarrow When designing FPT algorithms w.r.t. the pathwidth, we may assume to be given a nice path decomposition.

Independent Set in Graphs of Bounded Pathwidth

Assume we are given a nice path decomposition $P=\left(X_{1}, X_{2}, \ldots, X_{r}\right)$ of width k.

Independent Set in Graphs of Bounded Pathwidth

Assume we are given a nice path decomposition $P=\left(X_{1}, X_{2}, \ldots, X_{r}\right)$ of width k. Let G_{i} be the graph induced by $X_{1} \cup X_{2} \cup \cdots \cup X_{i}$ for some $i \in\{1,2, \ldots, r\}$.

Independent Set in Graphs of Bounded Pathwidth

Assume we are given a nice path decomposition $P=\left(X_{1}, X_{2}, \ldots, X_{r}\right)$ of width k.
Let G_{i} be the graph induced by $X_{1} \cup X_{2} \cup \cdots \cup X_{i}$ for some $i \in\{1,2, \ldots, r\}$.
For each $S \subseteq X_{i}$ let
$D[i, S]:=$ maximum weight of an independent set I in G_{i} such that $I \cap X_{i}=S$.

Independent Set in Graphs of Bounded Pathwidth

Assume we are given a nice path decomposition $P=\left(X_{1}, X_{2}, \ldots, X_{r}\right)$ of width k. Let G_{i} be the graph induced by $X_{1} \cup X_{2} \cup \cdots \cup X_{i}$ for some $i \in\{1,2, \ldots, r\}$. For each $S \subseteq X_{i}$ let
$D[i, S]:=$ maximum weight of an independent set I in G_{i} such that $I \cap X_{i}=S$. (P1) $\Rightarrow G_{r}=G \Rightarrow$ solution $=\max S \subseteq X_{r} D[r, S]$

$$
G_{i}
$$

Independent Set in Graphs of Bounded Pathwidth

Assume we are given a nice path decomposition $P=\left(X_{1}, X_{2}, \ldots, X_{r}\right)$ of width k. Let G_{i} be the graph induced by $X_{1} \cup X_{2} \cup \cdots \cup X_{i}$ for some $i \in\{1,2, \ldots, r\}$. For each $S \subseteq X_{i}$ let
$D[i, S]:=$ maximum weight of an independent set I in G_{i} such that $I \cap X_{i}=S$.

$$
D[1, S]= \begin{cases}0 & , \text { if } S=\varnothing \\ w(v) & , \text { if } S=\{v\}\end{cases}
$$

Independent Set in Graphs of Bounded Pathwidth

Assume we are given a nice path decomposition $P=\left(X_{1}, X_{2}, \ldots, X_{r}\right)$ of width k. Let G_{i} be the graph induced by $X_{1} \cup X_{2} \cup \cdots \cup X_{i}$ for some $i \in\{1,2, \ldots, r\}$. For each $S \subseteq X_{i}$ let
$D[i, S]:=$ maximum weight of an independent set I in G_{i} such that $I \cap X_{i}=S$.
Assume that $i>1$. If S is not independent, $D[i, S]=-\infty$.

Independent Set in Graphs of Bounded Pathwidth

Assume we are given a nice path decomposition $P=\left(X_{1}, X_{2}, \ldots, X_{r}\right)$ of width k. Let G_{i} be the graph induced by $X_{1} \cup X_{2} \cup \cdots \cup X_{i}$ for some $i \in\{1,2, \ldots, r\}$. For each $S \subseteq X_{i}$ let
$D[i, S]:=$ maximum weight of an independent set I in G_{i} such that $I \cap X_{i}=S$.
Assume that $i>1$. If S is not independent, $D[i, S]=-\infty$.
Otherwise, we distinguish between the two types of X_{i}.

Independent Set in Graphs of Bounded Pathwidth

Assume we are given a nice path decomposition $P=\left(X_{1}, X_{2}, \ldots, X_{r}\right)$ of width k. Let G_{i} be the graph induced by $X_{1} \cup X_{2} \cup \cdots \cup X_{i}$ for some $i \in\{1,2, \ldots, r\}$. For each $S \subseteq X_{i}$ let
$D[i, S]:=$ maximum weight of an independent set I in G_{i} such that $I \cap X_{i}=S$.
Assume that $i>1$. If S is not independent, $D[i, S]=-\infty$. Otherwise, we distinguish between the two types of X_{i}. If X_{i} is Introduce, then

$$
\begin{equation*}
D[i, S]= \tag{i}
\end{equation*}
$$

Independent Set in Graphs of Bounded Pathwidth

Assume we are given a nice path decomposition $P=\left(X_{1}, X_{2}, \ldots, X_{r}\right)$ of width k. Let G_{i} be the graph induced by $X_{1} \cup X_{2} \cup \cdots \cup X_{i}$ for some $i \in\{1,2, \ldots, r\}$. For each $S \subseteq X_{i}$ let
$D[i, S]:=$ maximum weight of an independent set I in G_{i} such that $I \cap X_{i}=S$.
Assume that $i>1$. If S is not independent, $D[i, S]=-\infty$. Otherwise, we distinguish between the two types of X_{i}. If X_{i} is Introduce, then

$$
\begin{equation*}
D[i, S]= \tag{i}
\end{equation*}
$$

Independent Set in Graphs of Bounded Pathwidth

Assume we are given a nice path decomposition $P=\left(X_{1}, X_{2}, \ldots, X_{r}\right)$ of width k. Let G_{i} be the graph induced by $X_{1} \cup X_{2} \cup \cdots \cup X_{i}$ for some $i \in\{1,2, \ldots, r\}$. For each $S \subseteq X_{i}$ let
$D[i, S]:=$ maximum weight of an independent set I in G_{i} such that $I \cap X_{i}=S$.
Assume that $i>1$. If S is not independent, $D[i, S]=-\infty$. Otherwise, we distinguish between the two types of X_{i}. If X_{i} is Introduce, then

$$
\begin{equation*}
D[i, S]= \tag{i}
\end{equation*}
$$

Independent Set in Graphs of Bounded Pathwidth

Assume we are given a nice path decomposition $P=\left(X_{1}, X_{2}, \ldots, X_{r}\right)$ of width k. Let G_{i} be the graph induced by $X_{1} \cup X_{2} \cup \cdots \cup X_{i}$ for some $i \in\{1,2, \ldots, r\}$. For each $S \subseteq X_{i}$ let
$D[i, S]:=$ maximum weight of an independent set I in G_{i} such that $I \cap X_{i}=S$.
Assume that $i>1$. If S is not independent, $D[i, S]=-\infty$. Otherwise, we distinguish between the two types of X_{i}. If X_{i} is Introduce, then

$$
D[i, S]= \begin{cases}, & \text { if } v \notin S \\ & \text {,f } v \in S\end{cases}
$$

G_{i}

Independent Set in Graphs of Bounded Pathwidth

Assume we are given a nice path decomposition $P=\left(X_{1}, X_{2}, \ldots, X_{r}\right)$ of width k. Let G_{i} be the graph induced by $X_{1} \cup X_{2} \cup \cdots \cup X_{i}$ for some $i \in\{1,2, \ldots, r\}$. For each $S \subseteq X_{i}$ let
$D[i, S]:=$ maximum weight of an independent set I in G_{i} such that $I \cap X_{i}=S$.
Assume that $i>1$. If S is not independent, $D[i, S]=-\infty$. Otherwise, we distinguish between the two types of X_{i}. If X_{i} is Introduce, then

$$
\begin{equation*}
D[i, S]=\{D[i-1, S] \tag{i}
\end{equation*}
$$

$$
\begin{aligned}
& \text {, if } v \notin S \\
& \text {, if } v \in S
\end{aligned}
$$

Independent Set in Graphs of Bounded Pathwidth

Assume we are given a nice path decomposition $P=\left(X_{1}, X_{2}, \ldots, X_{r}\right)$ of width k. Let G_{i} be the graph induced by $X_{1} \cup X_{2} \cup \cdots \cup X_{i}$ for some $i \in\{1,2, \ldots, r\}$. For each $S \subseteq X_{i}$ let
$D[i, S]:=$ maximum weight of an independent set I in G_{i} such that $I \cap X_{i}=S$.
Assume that $i>1$. If S is not independent, $D[i, S]=-\infty$. Otherwise, we distinguish between the two types of X_{i}. If X_{i} is Introduce, then

$$
D[i, S]= \begin{cases}D[i-1, S] & , \text { if } v \notin S \tag{i}\\ & , \text { if } v \in S\end{cases}
$$

Independent Set in Graphs of Bounded Pathwidth

Assume we are given a nice path decomposition $P=\left(X_{1}, X_{2}, \ldots, X_{r}\right)$ of width k. Let G_{i} be the graph induced by $X_{1} \cup X_{2} \cup \cdots \cup X_{i}$ for some $i \in\{1,2, \ldots, r\}$. For each $S \subseteq X_{i}$ let
$D[i, S]:=$ maximum weight of an independent set I in G_{i} such that $I \cap X_{i}=S$.
Assume that $i>1$. If S is not independent, $D[i, S]=-\infty$. Otherwise, we distinguish between the two types of X_{i}. If X_{i} is Introduce, then

$$
D[i, S]= \begin{cases}D[i-1, S] & , \text { if } v \notin S \tag{i}\\ w(v)+D[i-1, S \backslash\{v\}] & , \text { if } v \in S\end{cases}
$$

Independent Set in Graphs of Bounded Pathwidth

Assume we are given a nice path decomposition $P=\left(X_{1}, X_{2}, \ldots, X_{r}\right)$ of width k. Let G_{i} be the graph induced by $X_{1} \cup X_{2} \cup \cdots \cup X_{i}$ for some $i \in\{1,2, \ldots, r\}$. For each $S \subseteq X_{i}$ let
$D[i, S]:=$ maximum weight of an independent set I in G_{i} such that $I \cap X_{i}=S$.
Assume that $i>1$. If S is not independent, $D[i, S]=-\infty$.
Otherwise, we distinguish between the two types of X_{i}. If X_{i} is Introduce, then

$$
D[i, S]= \begin{cases}D[i-1, S] & , \text { if } v \notin S \\ w(v)+D[i-1, S \backslash\{v\}] & , \text { if } v \in S\end{cases}
$$

Let I^{\prime} denote the independent set corresponding to G_{i}
 Why is $I^{\prime} \cup\{v\}$ independent?

Independent Set in Graphs of Bounded Pathwidth

Assume we are given a nice path decomposition $P=\left(X_{1}, X_{2}, \ldots, X_{r}\right)$ of width k. Let G_{i} be the graph induced by $X_{1} \cup X_{2} \cup \cdots \cup X_{i}$ for some $i \in\{1,2, \ldots, r\}$. For each $S \subseteq X_{i}$ let
$D[i, S]:=$ maximum weight of an independent set I in G_{i} such that $I \cap X_{i}=S$.
Assume that $i>1$. If S is not independent, $D[i, S]=-\infty$.
Otherwise, we distinguish between the two types of X_{i}. If X_{i} is Introduce, then

$$
D[i, S]= \begin{cases}D[i-1, S] & , \text { if } v \notin S \\ w(v)+D[i-1, S \backslash\{v\}] & , \text { if } v \in S\end{cases}
$$

Let I^{\prime} denote the independent set corresponding to Why is $I^{\prime} \cup\{v\}$ independent? due to Lemma 1!

Independent Set in Graphs of Bounded Pathwidth

Assume we are given a nice path decomposition $P=\left(X_{1}, X_{2}, \ldots, X_{r}\right)$ of width k. Let G_{i} be the graph induced by $X_{1} \cup X_{2} \cup \cdots \cup X_{i}$ for some $i \in\{1,2, \ldots, r\}$. For each $S \subseteq X_{i}$ let
$D[i, S]:=$ maximum weight of an independent set I in G_{i} such that $I \cap X_{i}=S$.
Assume that $i>1$. If S is not independent, $D[i, S]=-\infty$.
Otherwise, we distinguish between the two types of X_{i}.

Independent Set in Graphs of Bounded Pathwidth

Assume we are given a nice path decomposition $P=\left(X_{1}, X_{2}, \ldots, X_{r}\right)$ of width k. Let G_{i} be the graph induced by $X_{1} \cup X_{2} \cup \cdots \cup X_{i}$ for some $i \in\{1,2, \ldots, r\}$. For each $S \subseteq X_{i}$ let
$D[i, S]:=$ maximum weight of an independent set I in G_{i} such that $I \cap X_{i}=S$.
Assume that $i>1$. If S is not independent, $D[i, S]=-\infty$. Otherwise, we distinguish between the two types of X_{i}. If X_{i} is Forget, then

$$
D[i, S]=
$$

Independent Set in Graphs of Bounded Pathwidth

Assume we are given a nice path decomposition $P=\left(X_{1}, X_{2}, \ldots, X_{r}\right)$ of width k. Let G_{i} be the graph induced by $X_{1} \cup X_{2} \cup \cdots \cup X_{i}$ for some $i \in\{1,2, \ldots, r\}$. For each $S \subseteq X_{i}$ let
$D[i, S]:=$ maximum weight of an independent set I in G_{i} such that $I \cap X_{i}=S$.
Assume that $i>1$. If S is not independent, $D[i, S]=-\infty$. Otherwise, we distinguish between the two types of X_{i}. If X_{i} is Forget, then

$$
D[i, S]=\max \{
$$

Independent Set in Graphs of Bounded Pathwidth

Assume we are given a nice path decomposition $P=\left(X_{1}, X_{2}, \ldots, X_{r}\right)$ of width k. Let G_{i} be the graph induced by $X_{1} \cup X_{2} \cup \cdots \cup X_{i}$ for some $i \in\{1,2, \ldots, r\}$. For each $S \subseteq X_{i}$ let
$D[i, S]:=$ maximum weight of an independent set I in G_{i} such that $I \cap X_{i}=S$.
Assume that $i>1$. If S is not independent, $D[i, S]=-\infty$.
Otherwise, we distinguish between the two types of X_{i}. If X_{i} is Forget, then

$$
D[i, S]=\max \{
$$

$$
G_{i}=G_{i-1}
$$

Independent Set in Graphs of Bounded Pathwidth

Assume we are given a nice path decomposition $P=\left(X_{1}, X_{2}, \ldots, X_{r}\right)$ of width k. Let G_{i} be the graph induced by $X_{1} \cup X_{2} \cup \cdots \cup X_{i}$ for some $i \in\{1,2, \ldots, r\}$. For each $S \subseteq X_{i}$ let
$D[i, S]:=$ maximum weight of an independent set I in G_{i} such that $I \cap X_{i}=S$.
Assume that $i>1$. If S is not independent, $D[i, S]=-\infty$. Otherwise, we distinguish between the two types of X_{i}. If X_{i} is Forget, then

$$
\begin{gathered}
D[i, S]=\max \{ \\
v \notin I \Rightarrow I \cap X_{i-1}=S
\end{gathered}
$$

$$
\begin{aligned}
& \} \\
& G_{i}=G_{i-1}
\end{aligned}
$$

Independent Set in Graphs of Bounded Pathwidth

Assume we are given a nice path decomposition $P=\left(X_{1}, X_{2}, \ldots, X_{r}\right)$ of width k. Let G_{i} be the graph induced by $X_{1} \cup X_{2} \cup \cdots \cup X_{i}$ for some $i \in\{1,2, \ldots, r\}$. For each $S \subseteq X_{i}$ let
$D[i, S]:=$ maximum weight of an independent set I in G_{i} such that $I \cap X_{i}=S$.
Assume that $i>1$. If S is not independent, $D[i, S]=-\infty$.
Otherwise, we distinguish between the two types of X_{i}. If X_{i} is Forget, then

$$
\begin{aligned}
& D[i, S]=\max \left\{\begin{array}{l}
D[i-1, S], \\
v \notin I \Rightarrow I \cap X_{i-1}=S
\end{array}\right.
\end{aligned}
$$

$$
\text { \} }
$$

$$
G_{i}=G_{i-1}
$$

Independent Set in Graphs of Bounded Pathwidth

Assume we are given a nice path decomposition $P=\left(X_{1}, X_{2}, \ldots, X_{r}\right)$ of width k. Let G_{i} be the graph induced by $X_{1} \cup X_{2} \cup \cdots \cup X_{i}$ for some $i \in\{1,2, \ldots, r\}$. For each $S \subseteq X_{i}$ let
$D[i, S]:=$ maximum weight of an independent set I in G_{i} such that $I \cap X_{i}=S$.
Assume that $i>1$. If S is not independent, $D[i, S]=-\infty$.
Otherwise, we distinguish between the two types of X_{i}. If X_{i} is Forget, then

$$
\begin{aligned}
& D[i, S]=\max \left\{\begin{array}{l}
D \\
\nearrow
\end{array}\right) \\
& v \notin I \Rightarrow I \cap X_{i-1}=S
\end{aligned}
$$

$$
\neq G_{i}=G_{i-1}
$$

$$
v \in I \Rightarrow I \cap X_{i-1}=S \cup\{v\}
$$

Independent Set in Graphs of Bounded Pathwidth

Assume we are given a nice path decomposition $P=\left(X_{1}, X_{2}, \ldots, X_{r}\right)$ of width k. Let G_{i} be the graph induced by $X_{1} \cup X_{2} \cup \cdots \cup X_{i}$ for some $i \in\{1,2, \ldots, r\}$. For each $S \subseteq X_{i}$ let
$D[i, S]:=$ maximum weight of an independent set I in G_{i} such that $I \cap X_{i}=S$.
Assume that $i>1$. If S is not independent, $D[i, S]=-\infty$.
Otherwise, we distinguish between the two types of X_{i}. If X_{i} is Forget, then

$$
\begin{gathered}
D[i, S]=\max \{D[i-1, S], D[i-1, S \cup\{v\}]\} \\
v \notin I \Rightarrow I \cap X_{i-1}=S \\
v \in I \Rightarrow I \cap X_{i-1}=S \cup\{v\}
\end{gathered}
$$

Independent Set in Graphs of Bounded Pathwidth

Assume we are given a nice path decomposition $P=\left(X_{1}, X_{2}, \ldots, X_{r}\right)$ of width k. Let G_{i} be the graph induced by $X_{1} \cup X_{2} \cup \cdots \cup X_{i}$ for some $i \in\{1,2, \ldots, r\}$. For each $S \subseteq X_{i}$ let
$D[i, S]:=$ maximum weight of an independent set I in G_{i} such that $I \cap X_{i}=S$.
Assume that $i>1$. If S is not independent, $D[i, S]=-\infty$.
Otherwise, we distinguish between the two types of X_{i}.

Independent Set in Graphs of Bounded Pathwidth

Assume we are given a nice path decomposition $P=\left(X_{1}, X_{2}, \ldots, X_{r}\right)$ of width k. Let G_{i} be the graph induced by $X_{1} \cup X_{2} \cup \cdots \cup X_{i}$ for some $i \in\{1,2, \ldots, r\}$. For each $S \subseteq X_{i}$ let
$D[i, S]:=$ maximum weight of an independent set I in G_{i} such that $I \cap X_{i}=S$.
Assume that $i>1$. If S is not independent, $D[i, S]=-\infty$.
Otherwise, we distinguish between the two types of X_{i}.
For each of the $\leq 2|V|-1$ many bags, there are $\leq 2^{k+1}$ choices for S.

Independent Set in Graphs of Bounded Pathwidth

Assume we are given a nice path decomposition $P=\left(X_{1}, X_{2}, \ldots, X_{r}\right)$ of width k. Let G_{i} be the graph induced by $X_{1} \cup X_{2} \cup \cdots \cup X_{i}$ for some $i \in\{1,2, \ldots, r\}$. For each $S \subseteq X_{i}$ let
$D[i, S]:=$ maximum weight of an independent set I in G_{i} such that $I \cap X_{i}=S$.
Assume that $i>1$. If S is not independent, $D[i, S]=-\infty$.
Otherwise, we distinguish between the two types of X_{i}.
For each of the $\leq 2|V|-1$ many bags, there are $\leq 2^{k+1}$ choices for S.
For each of these choices, we need to test if S is independent, which can be done in $k^{\mathcal{O}(1)}$ time $(\rightarrow$ Section 7.3.1 in [1]).

Independent Set in Graphs of Bounded Pathwidth

Assume we are given a nice path decomposition $P=\left(X_{1}, X_{2}, \ldots, X_{r}\right)$ of width k. Let G_{i} be the graph induced by $X_{1} \cup X_{2} \cup \cdots \cup X_{i}$ for some $i \in\{1,2, \ldots, r\}$. For each $S \subseteq X_{i}$ let
$D[i, S]:=$ maximum weight of an independent set I in G_{i} such that $I \cap X_{i}=S$.
Assume that $i>1$. If S is not independent, $D[i, S]=-\infty$.
Otherwise, we distinguish between the two types of X_{i}.
For each of the $\leq 2|V|-1$ many bags, there are $\leq 2^{k+1}$ choices for S.
For each of these choices, we need to test if S is independent, which can be done in $k^{\mathcal{O}(1)}$ time $(\rightarrow$ Section 7.3.1 in [1]).
\Rightarrow total running time $\leq 2^{k+2} k^{\mathcal{O}(1)}|V|$

Independent Set in Graphs of Bounded Pathwidth

Assume we are given a nice path decomposition $P=\left(X_{1}, X_{2}, \ldots, X_{r}\right)$ of width k. Let G_{i} be the graph induced by $X_{1} \cup X_{2} \cup \cdots \cup X_{i}$ for some $i \in\{1,2, \ldots, r\}$. For each $S \subseteq X_{i}$ let
$D[i, S]:=$ maximum weight of an independent set I in G_{i} such that $I \cap X_{i}=S$.
Assume that $i>1$. If S is not independent, $D[i, S]=-\infty$.
Otherwise, we distinguish between the two types of X_{i}.
For each of the $\leq 2|V|-1$ many bags, there are $\leq 2^{k+1}$ choices for S.
For each of these choices, we need to test if S is independent, which can be done in $k^{\mathcal{O}(1)}$ time (\rightarrow Section 7.3.1 in [1]).
\Rightarrow total running time $\leq 2^{k+2} k^{\mathcal{O}(1)}|V|$
Theorem. Independent Set is FPT with respect to the pathwidth.

Discussion

■ The fixed-parameter tractability of a problem may be studied with respect to various structural parameters.
■ The assumption that the chosen parameter is small should be plausible!

Discussion

■ The fixed-parameter tractability of a problem may be studied with respect to various structural parameters.

- The assumption that the chosen parameter is small should be plausible!

■ Treewidth is among the most studied parameters.
■ It is defined like pathwidth, except that the bags form a tree instead of a path.
■ Nice tree decomposition only have one additional bag type ...

- ... and can be constructed efficiently from a tree decomposition.

Discussion

- The fixed-parameter tractability of a problem may be studied with respect to various structural parameters.
- The assumption that the chosen parameter is small should be plausible!
\square Treewidth is among the most studied parameters.
■ It is defined like pathwidth, except that the bags form a tree instead of a path.
■ Nice tree decomposition only have one additional bag type ...
- ... and can be constructed efficiently from a tree decomposition.

■ Our $\leq 2^{\mathrm{pw}(G)} \mathrm{pw}(G)^{\mathcal{O}(1)}|V|$-time algorithm for Independent Set can easily be turned into an algorithm with running time $\leq 2^{\operatorname{tw}(G)} \operatorname{tw}(G)^{\mathcal{O}(1)}|V|$.

Theorem. Independent Set is FPT with respect to the treewidth.

References and Literature

[1] Parameterized Algorithms,
M. Cygan, F. Fomin, Ł. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, S. Saurabh, Springer International Publishing 2015.

Sections 1, 7.1, 7.2, 7.3

