
1

Advanced Algorithms

Structural Parametrization
Parameterized Algorithms

Johannes Zink · WS23/24

2 - 1

Dealing with NP-Hard Problems

Heuristic

NP-hard

Exponential FPT

Approximation

� Optimal Solutions
� Exact exponential-time algorithms
� Fine-grained analysis – parameterized algorithms

� Sacrifice optimality for speed
� Heuristics
� Approximation Algorithms

What should we do?

2 - 2

Dealing with NP-Hard Problems

Heuristic

NP-hard

Exponential FPT

Approximation

� Optimal Solutions
� Exact exponential-time algorithms
� Fine-grained analysis – parameterized algorithms

� Sacrifice optimality for speed
� Heuristics
� Approximation Algorithms

What should we do?

this lecture

3 - 1

Parameterized Algorithms

Classical complexity theory:

Running time is expressed as a function in the input size.

Parameterized algorithmics:

Running time is expressed as a function in the input size, as well as one or more
additional parameter(s).

3 - 2

Parameterized Algorithms

Classical complexity theory:

Running time is expressed as a function in the input size.

Parameterized algorithmics:

Running time is expressed as a function in the input size, as well as one or more
additional parameter(s).

Example: (recall from AGT)

k-Vertex Cover

Graph G = (V, E), k ∈NInput

Question Is there a set C ⊆ V with |C| ≤ k
s.t. ∀{u, v} ∈ E : {u, v} ∩ C 6= ∅?

3 - 3

Parameterized Algorithms

Classical complexity theory:

Running time is expressed as a function in the input size.

Parameterized algorithmics:

Running time is expressed as a function in the input size, as well as one or more
additional parameter(s).

Example: (recall from AGT)

k-Vertex Cover

Graph G = (V, E), k ∈NInput

Question Is there a set C ⊆ V with |C| ≤ k
s.t. ∀{u, v} ∈ E : {u, v} ∩ C 6= ∅?

� NP-complete,

� but there is an algorithm with
runtime O(2k · k · (|V|+ |E|)).

3 - 4

Parameterized Algorithms

Classical complexity theory:

Running time is expressed as a function in the input size.

Parameterized algorithmics:

Running time is expressed as a function in the input size, as well as one or more
additional parameter(s).

Example: (recall from AGT)

k-Vertex Cover

Graph G = (V, E), k ∈NInput

Question Is there a set C ⊆ V with |C| ≤ k
s.t. ∀{u, v} ∈ E : {u, v} ∩ C 6= ∅?

� NP-complete,

� but there is an algorithm with
runtime O(2k · k · (|V|+ |E|)).

Idea: If k ∈ O(1), then O(2k · k · (|V|+ |E|)) ⊆ O(|V|+ |E|), in other words,
if we assume the parameter k to be fixed, k-Vertex Cover becomes tractable.

3 - 5

Parameterized Algorithms

Classical complexity theory:

Running time is expressed as a function in the input size.

Parameterized algorithmics:

Running time is expressed as a function in the input size, as well as one or more
additional parameter(s).

Example: (recall from AGT)

k-Vertex Cover

Graph G = (V, E), k ∈NInput

Question Is there a set C ⊆ V with |C| ≤ k
s.t. ∀{u, v} ∈ E : {u, v} ∩ C 6= ∅?

� NP-complete,

� but there is an algorithm with
runtime O(2k · k · (|V|+ |E|)).

Idea: If k ∈ O(1), then O(2k · k · (|V|+ |E|)) ⊆ O(|V|+ |E|), in other words,
if we assume the parameter k to be fixed, k-Vertex Cover becomes tractable.

4 - 1

Parameterized Complexity Classes

Let Π be a decision problem. If there is
� an algorithm A and
� a computable function f

such that, given an instance I of Π and a parameter k ∈N,
the algorithm A provides the correct answer to I in time f (k) · |I|O(1),
then A (and Π) are called fixed-parameter tractable (FPT) with respect to k.

Definition.

4 - 2

Parameterized Complexity Classes

Let Π be a decision problem. If there is
� an algorithm A and
� a computable function f

such that, given an instance I of Π and a parameter k ∈N,
the algorithm A provides the correct answer to I in time f (k) · |I|O(1),
then A (and Π) are called fixed-parameter tractable (FPT) with respect to k.

Definition.

If A provides the correct answer to I in time |I| f (k), then A (and Π) are called
slice-wise polynomial (XP) with respect to k. (Note that FPT (XP.)

4 - 3

Parameterized Complexity Classes

Let Π be a decision problem. If there is
� an algorithm A and
� a computable function f

such that, given an instance I of Π and a parameter k ∈N,
the algorithm A provides the correct answer to I in time f (k) · |I|O(1),
then A (and Π) are called fixed-parameter tractable (FPT) with respect to k.

Definition.

Example. k-Vertex Cover can be solved in time O(2k · k · (|V|+ |E|)).

If A provides the correct answer to I in time |I| f (k), then A (and Π) are called
slice-wise polynomial (XP) with respect to k. (Note that FPT (XP.)

4 - 4

Parameterized Complexity Classes

Let Π be a decision problem. If there is
� an algorithm A and
� a computable function f

such that, given an instance I of Π and a parameter k ∈N,
the algorithm A provides the correct answer to I in time f (k) · |I|O(1),
then A (and Π) are called fixed-parameter tractable (FPT) with respect to k.

Definition.

Example. k-Vertex Cover can be solved in time O(2k · k · (|V|+ |E|)).{

f (k) |I|O(1)

{

If A provides the correct answer to I in time |I| f (k), then A (and Π) are called
slice-wise polynomial (XP) with respect to k. (Note that FPT (XP.)

4 - 5

Parameterized Complexity Classes

Let Π be a decision problem. If there is
� an algorithm A and
� a computable function f

such that, given an instance I of Π and a parameter k ∈N,
the algorithm A provides the correct answer to I in time f (k) · |I|O(1),
then A (and Π) are called fixed-parameter tractable (FPT) with respect to k.

Definition.

Example. k-Vertex Cover can be solved in time O(2k · k · (|V|+ |E|)).{

f (k) |I|O(1)

{

⇒ k-Vertex Cover is FPT (and therefore also XP) with respect to k.

If A provides the correct answer to I in time |I| f (k), then A (and Π) are called
slice-wise polynomial (XP) with respect to k. (Note that FPT (XP.)

5 - 1

Examples and Counterexamples

k-Vertex Cover
� NP-complete

� but FPT with respect to k

5 - 2

Examples and Counterexamples

k-Vertex Cover
� NP-complete

� but FPT with respect to k
k-Clique

� NP-complete

� but XP with respect to k
� Under common assumptions, k-Clique is not FPT with respect to k

(namely, k-Clique is W[1]-complete with respect to k; → Section 13 in [1])

� There is an O(2∆ · ∆2 · (|V|+ |E|)) time algorithm for k-Clique, where ∆ is the
maximum degree of the input graph ⇒ k-Clique is FPT with respect to ∆.

5 - 3

Examples and Counterexamples

k-Vertex Cover
� NP-complete

� but FPT with respect to k

Vertex k-Coloring
� NP-complete for every k ≥ 3

� ⇒ neither FPT nor XP with respect to k, unless P = NP

k-Clique
� NP-complete

� but XP with respect to k
� Under common assumptions, k-Clique is not FPT with respect to k

(namely, k-Clique is W[1]-complete with respect to k; → Section 13 in [1])

� There is an O(2∆ · ∆2 · (|V|+ |E|)) time algorithm for k-Clique, where ∆ is the
maximum degree of the input graph ⇒ k-Clique is FPT with respect to ∆.

5 - 4

Examples and Counterexamples

k-Vertex Cover
� NP-complete

� but FPT with respect to k

Vertex k-Coloring
� NP-complete for every k ≥ 3

� ⇒ neither FPT nor XP with respect to k, unless P = NP

k-Clique
� NP-complete

� but XP with respect to k
� Under common assumptions, k-Clique is not FPT with respect to k

(namely, k-Clique is W[1]-complete with respect to k; → Section 13 in [1])

� There is an O(2∆ · ∆2 · (|V|+ |E|)) time algorithm for k-Clique, where ∆ is the
maximum degree of the input graph ⇒ k-Clique is FPT with respect to ∆.

In all these examples, k is the
natural parameter that comes
with the decision problem.

5 - 5

Examples and Counterexamples

k-Vertex Cover
� NP-complete

� but FPT with respect to k

Vertex k-Coloring
� NP-complete for every k ≥ 3

� ⇒ neither FPT nor XP with respect to k, unless P = NP

k-Clique
� NP-complete

� but XP with respect to k
� Under common assumptions, k-Clique is not FPT with respect to k

(namely, k-Clique is W[1]-complete with respect to k; → Section 13 in [1])

� There is an O(2∆ · ∆2 · (|V|+ |E|)) time algorithm for k-Clique, where ∆ is the
maximum degree of the input graph ⇒ k-Clique is FPT with respect to ∆.

In all these examples, k is the
natural parameter that comes
with the decision problem.

We can also study other types
of parameters!

5 - 6

Examples and Counterexamples

k-Vertex Cover
� NP-complete

� but FPT with respect to k

Vertex k-Coloring
� NP-complete for every k ≥ 3

� ⇒ neither FPT nor XP with respect to k, unless P = NP

k-Clique
� NP-complete

� but XP with respect to k
� Under common assumptions, k-Clique is not FPT with respect to k

(namely, k-Clique is W[1]-complete with respect to k; → Section 13 in [1])

� There is an O(2∆ · ∆2 · (|V|+ |E|)) time algorithm for k-Clique, where ∆ is the
maximum degree of the input graph ⇒ k-Clique is FPT with respect to ∆.

In all these examples, k is the
natural parameter that comes
with the decision problem.

We can also study other types
of parameters!

6 - 1

Pathwidth and Treewidth (Intuition)

Pathwidth describes how path-like a graph is.

6 - 2

Pathwidth and Treewidth (Intuition)

Pathwidth describes how path-like a graph is.

1

6 - 3

Pathwidth and Treewidth (Intuition)

Pathwidth describes how path-like a graph is.

1 2

6 - 4

Pathwidth and Treewidth (Intuition)

Pathwidth describes how path-like a graph is.

1 2 n− 1

6 - 5

Pathwidth and Treewidth (Intuition)

Pathwidth describes how path-like a graph is.

Treewidth describes how tree-like a graph is.

1 2 n− 1

6 - 6

Pathwidth and Treewidth (Intuition)

Pathwidth describes how path-like a graph is.

Treewidth describes how tree-like a graph is.

1 2 n− 1

1

6 - 7

Pathwidth and Treewidth (Intuition)

Pathwidth describes how path-like a graph is.

Treewidth describes how tree-like a graph is.

1 2 n− 1

1 2

6 - 8

Pathwidth and Treewidth (Intuition)

Pathwidth describes how path-like a graph is.

Treewidth describes how tree-like a graph is.

1 2 n− 1

1 2

6 - 9

Pathwidth and Treewidth (Intuition)

Pathwidth describes how path-like a graph is.

Treewidth describes how tree-like a graph is.

1 2 n− 1

1 2 3

6 - 10

Pathwidth and Treewidth (Intuition)

Pathwidth describes how path-like a graph is.

Treewidth describes how tree-like a graph is.

Path-/tree-like structure can be useful for designing dynamic programming algorithms.

1 2 n− 1

1 2 3

7 - 1

(Weighted) Independent Set

A graph G = (V, E). Weight function w : V →N.Input.

Output. A set I ⊆ V that is independent, i.e., ∀u, v ∈ I : {u, v} /∈ E,
and has maximum weight, i.e., w(I) := ∑v∈I w(v) is maximized.

7 - 2

(Weighted) Independent Set

A graph G = (V, E). Weight function w : V →N.Input.

Output. A set I ⊆ V that is independent, i.e., ∀u, v ∈ I : {u, v} /∈ E,
and has maximum weight, i.e., w(I) := ∑v∈I w(v) is maximized.

7 - 3

(Weighted) Independent Set

A graph G = (V, E). Weight function w : V →N.Input.

Output. A set I ⊆ V that is independent, i.e., ∀u, v ∈ I : {u, v} /∈ E,
and has maximum weight, i.e., w(I) := ∑v∈I w(v) is maximized.

� (Already unweighted) Independent Set is NP-complete,

� but can be solved efficiently on tree-like graphs (also when weighted).

� On trees, (Weighted) Independent Set can be solved in linear time.

7 - 4

(Weighted) Independent Set

A graph G = (V, E). Weight function w : V →N.Input.

Output. A set I ⊆ V that is independent, i.e., ∀u, v ∈ I : {u, v} /∈ E,
and has maximum weight, i.e., w(I) := ∑v∈I w(v) is maximized.

� (Already unweighted) Independent Set is NP-complete,

� but can be solved efficiently on tree-like graphs (also when weighted).

� On trees, (Weighted) Independent Set can be solved in linear time.

7 - 5

(Weighted) Independent Set

A graph G = (V, E). Weight function w : V →N.Input.

Output. A set I ⊆ V that is independent, i.e., ∀u, v ∈ I : {u, v} /∈ E,
and has maximum weight, i.e., w(I) := ∑v∈I w(v) is maximized.

� (Already unweighted) Independent Set is NP-complete,

� but can be solved efficiently on tree-like graphs (also when weighted).

� On trees, (Weighted) Independent Set can be solved in linear time.

8 - 1

Independent Set in Trees

Choose an arbitrary root r. r

8 - 2

Independent Set in Trees

Choose an arbitrary root r.

Let T(v) := subtree rooted at v

T(v)

r

v

8 - 3

Independent Set in Trees

Choose an arbitrary root r.

Let T(v) := subtree rooted at v

T(v)

Let A(v) := maximum weight of an
independent set I in T(v)

r

v

8 - 4

Independent Set in Trees

Choose an arbitrary root r.

Let T(v) := subtree rooted at v

Let A(v) := maximum weight of an
independent set I in T(v)

r

A(r) = solution

8 - 5

Independent Set in Trees

Choose an arbitrary root r.

Let T(v) := subtree rooted at v

Let A(v) := maximum weight of an
independent set I in T(v)

rv

8 - 6

Independent Set in Trees

Choose an arbitrary root r.

Let T(v) := subtree rooted at v

Let A(v) := maximum weight of an
independent set I in T(v)

r

If v ∈ V is part of the indepent set I,
then none of its neighbors N(v) is also in I.

v

8 - 7

Independent Set in Trees

Choose an arbitrary root r.

Let T(v) := subtree rooted at v

T(v)

Let A(v) := maximum weight of an
independent set I in T(v)

Let B(v) := maximum weight of an
independent set I in T(v) where v 6∈ I

r

v

8 - 8

Independent Set in Trees

Choose an arbitrary root r.

Let T(v) := subtree rooted at v

Let A(v) := maximum weight of an
independent set I in T(v)

Let B(v) := maximum weight of an
independent set I in T(v) where v 6∈ I v

r

� If v is a leaf: B(v) =

8 - 9

Independent Set in Trees

Choose an arbitrary root r.

Let T(v) := subtree rooted at v

Let A(v) := maximum weight of an
independent set I in T(v)

Let B(v) := maximum weight of an
independent set I in T(v) where v 6∈ I v

0 and A(v) =

r

� If v is a leaf: B(v) =

8 - 10

Independent Set in Trees

Choose an arbitrary root r.

Let T(v) := subtree rooted at v

Let A(v) := maximum weight of an
independent set I in T(v)

Let B(v) := maximum weight of an
independent set I in T(v) where v 6∈ I v

0 and A(v) =w(v)

r

� If v is a leaf: B(v) =

8 - 11

Independent Set in Trees

Choose an arbitrary root r.

Let T(v) := subtree rooted at v

T(v)

Let A(v) := maximum weight of an
independent set I in T(v)

Let B(v) := maximum weight of an
independent set I in T(v) where v 6∈ I

0 and A(v) =w(v)

B(v) =

r

x1 x2 x3

v

� If v is a leaf: B(v) =
� If v has children x1, . . . , x`:

8 - 12

Independent Set in Trees

Choose an arbitrary root r.

Let T(v) := subtree rooted at v

T(v)

Let A(v) := maximum weight of an
independent set I in T(v)

Let B(v) := maximum weight of an
independent set I in T(v) where v 6∈ I

0 and A(v) =w(v)

B(v) = ∑`
i=1 A(xi);

r

x1 x2 x3

v

� If v is a leaf: B(v) =
� If v has children x1, . . . , x`:

8 - 13

Independent Set in Trees

Choose an arbitrary root r.

Let T(v) := subtree rooted at v

T(v)

Let A(v) := maximum weight of an
independent set I in T(v)

Let B(v) := maximum weight of an
independent set I in T(v) where v 6∈ I

0 and A(v) =w(v)

B(v) = ∑`
i=1 A(xi); A(v) =

r

x1 x2 x3

v

� If v is a leaf: B(v) =
� If v has children x1, . . . , x`:

8 - 14

Independent Set in Trees

Choose an arbitrary root r.

Let T(v) := subtree rooted at v

T(v)

Let A(v) := maximum weight of an
independent set I in T(v)

Let B(v) := maximum weight of an
independent set I in T(v) where v 6∈ I

0 and A(v) =w(v)

B(v) = ∑`
i=1 A(xi); A(v) = w(v) + ∑`

i=1 B(xi)}

r

x1 x2 x3

v

� If v is a leaf: B(v) =
� If v has children x1, . . . , x`:

8 - 15

Independent Set in Trees

Choose an arbitrary root r.

Let T(v) := subtree rooted at v

T(v)

Let A(v) := maximum weight of an
independent set I in T(v)

Let B(v) := maximum weight of an
independent set I in T(v) where v 6∈ I

0 and A(v) =w(v)

B(v) = ∑`
i=1 A(xi); A(v) = w(v) + ∑`

i=1 B(xi)}

r

x1 x2 x3

v

� If v is a leaf: B(v) =
� If v has children x1, . . . , x`:

8 - 16

Independent Set in Trees

Choose an arbitrary root r.

Let T(v) := subtree rooted at v

T(v)

Let A(v) := maximum weight of an
independent set I in T(v)

Let B(v) := maximum weight of an
independent set I in T(v) where v 6∈ I

0 and A(v) =w(v)

B(v) = ∑`
i=1 A(xi); A(v) =max{B(v), w(v) + ∑`

i=1 B(xi)}

r

x1 x2 x3

v

� If v is a leaf: B(v) =
� If v has children x1, . . . , x`:

8 - 17

Independent Set in Trees

Choose an arbitrary root r.

Let T(v) := subtree rooted at v

Let A(v) := maximum weight of an
independent set I in T(v)

Let B(v) := maximum weight of an
independent set I in T(v) where v 6∈ I

0 and A(v) =w(v)

B(v) = ∑`
i=1 A(xi); A(v) =max{B(v), w(v) + ∑`

i=1 B(xi)}

Algorithm: Compute A(·) and B(·) bottom-up, return A(r).

r

A(r) = solution

� If v is a leaf: B(v) =
� If v has children x1, . . . , x`:

9 - 1

Grid Graphs

In a k× N grid graph
� the vertex set consist of all pairs (i, j) where 1 ≤ i ≤ k and 1 ≤ j ≤ N, and
� two vertices (i1, j1) and (i2, j2) are adjacent if and only if |i1 − i2|+ |j1 − j2| = 1.

k

N

9 - 2

Grid Graphs

In a k× N grid graph
� the vertex set consist of all pairs (i, j) where 1 ≤ i ≤ k and 1 ≤ j ≤ N, and
� two vertices (i1, j1) and (i2, j2) are adjacent if and only if |i1 − i2|+ |j1 − j2| = 1.

We will study Independent Set in subgraphs of k× N grid graphs.

k

N

9 - 3

Grid Graphs

In a k× N grid graph
� the vertex set consist of all pairs (i, j) where 1 ≤ i ≤ k and 1 ≤ j ≤ N, and
� two vertices (i1, j1) and (i2, j2) are adjacent if and only if |i1 − i2|+ |j1 − j2| = 1.

We will study Independent Set in subgraphs of k× N grid graphs.

k

N

9 - 4

Grid Graphs

In a k× N grid graph
� the vertex set consist of all pairs (i, j) where 1 ≤ i ≤ k and 1 ≤ j ≤ N, and
� two vertices (i1, j1) and (i2, j2) are adjacent if and only if |i1 − i2|+ |j1 − j2| = 1.

We will study Independent Set in subgraphs of k× N grid graphs.

Goal: An FPT algorithm with respect to the parameter k.

k

N

10 - 1

Indenpendent Set in k× N Grid Graphs

X5

Let Xj be the j-th column, that is,
Xj = V(G) ∩ {(i, j) | 1 ≤ i ≤ k}.

k

N

X1

10 - 2

Indenpendent Set in k× N Grid Graphs

Let Xj be the j-th column, that is,
Xj = V(G) ∩ {(i, j) | 1 ≤ i ≤ k}.

k

N

Let Gj be the graph induced by the
first j columns X1 ∪ X2 ∪ . . . Xj.

G1

10 - 3

Indenpendent Set in k× N Grid Graphs

Let Xj be the j-th column, that is,
Xj = V(G) ∩ {(i, j) | 1 ≤ i ≤ k}.

k

N

Let Gj be the graph induced by the
first j columns X1 ∪ X2 ∪ . . . Xj.

G2

10 - 4

Indenpendent Set in k× N Grid Graphs

Let Xj be the j-th column, that is,
Xj = V(G) ∩ {(i, j) | 1 ≤ i ≤ k}.

k

N

Let Gj be the graph induced by the
first j columns X1 ∪ X2 ∪ . . . Xj.

G3

10 - 5

Indenpendent Set in k× N Grid Graphs

Let Xj be the j-th column, that is,
Xj = V(G) ∩ {(i, j) | 1 ≤ i ≤ k}.

k

N

Let Gj be the graph induced by the
first j columns X1 ∪ X2 ∪ . . . Xj.

G4

10 - 6

Indenpendent Set in k× N Grid Graphs

Let Xj be the j-th column, that is,
Xj = V(G) ∩ {(i, j) | 1 ≤ i ≤ k}.

k

N

Let Gj be the graph induced by the
first j columns X1 ∪ X2 ∪ . . . Xj.

G4 X4

10 - 7

Indenpendent Set in k× N Grid Graphs

Let Xj be the j-th column, that is,
Xj = V(G) ∩ {(i, j) | 1 ≤ i ≤ k}.

k

N

Let Gj be the graph induced by the
first j columns X1 ∪ X2 ∪ . . . Xj.

G4 X4

10 - 8

Indenpendent Set in k× N Grid Graphs

Let Xj be the j-th column, that is,
Xj = V(G) ∩ {(i, j) | 1 ≤ i ≤ k}.

k

N

Let Gj be the graph induced by the
first j columns X1 ∪ X2 ∪ . . . Xj.

G4 X4

10 - 9

Indenpendent Set in k× N Grid Graphs

Let Xj be the j-th column, that is,
Xj = V(G) ∩ {(i, j) | 1 ≤ i ≤ k}.

k

N

Let Gj be the graph induced by the
first j columns X1 ∪ X2 ∪ . . . Xj.

G3 X4

10 - 10

Indenpendent Set in k× N Grid Graphs

Let Xj be the j-th column, that is,
Xj = V(G) ∩ {(i, j) | 1 ≤ i ≤ k}.

k

N

Let Gj be the graph induced by the
first j columns X1 ∪ X2 ∪ . . . Xj.

G3 X4

10 - 11

Indenpendent Set in k× N Grid Graphs

X3

Let Xj be the j-th column, that is,
Xj = V(G) ∩ {(i, j) | 1 ≤ i ≤ k}.

k

N

Let Gj be the graph induced by the
first j columns X1 ∪ X2 ∪ . . . Xj.

G3

10 - 12

Indenpendent Set in k× N Grid Graphs

X3

Let Xj be the j-th column, that is,
Xj = V(G) ∩ {(i, j) | 1 ≤ i ≤ k}.

k

N

Let Gj be the graph induced by the
first j columns X1 ∪ X2 ∪ . . . Xj.

Let 1 ≤ j ≤ N. For each Y ⊆ Xj let

G3

10 - 13

Indenpendent Set in k× N Grid Graphs

X3

Let Xj be the j-th column, that is,
Xj = V(G) ∩ {(i, j) | 1 ≤ i ≤ k}.

k

N

Let Gj be the graph induced by the
first j columns X1 ∪ X2 ∪ . . . Xj.

Let 1 ≤ j ≤ N. For each Y ⊆ Xj let

C[j, Y] := maximum weight of an independent set I in Gj such that I ∩Y = ∅

G3

10 - 14

Indenpendent Set in k× N Grid Graphs

Let Xj be the j-th column, that is,
Xj = V(G) ∩ {(i, j) | 1 ≤ i ≤ k}.

k

N

Let Gj be the graph induced by the
first j columns X1 ∪ X2 ∪ . . . Xj.

Let 1 ≤ j ≤ N. For each Y ⊆ Xj let

C[j, Y] := maximum weight of an independent set I in Gj such that I ∩Y = ∅

C[N, ∅] = solution

10 - 15

Indenpendent Set in k× N Grid Graphs

Let Xj be the j-th column, that is,
Xj = V(G) ∩ {(i, j) | 1 ≤ i ≤ k}.

k

N

Let Gj be the graph induced by the
first j columns X1 ∪ X2 ∪ . . . Xj.

Let 1 ≤ j ≤ N. For each Y ⊆ Xj let

C[j, Y] := maximum weight of an independent set I in Gj such that I ∩Y = ∅

C[1, Y] = max I⊆X1\Y where I independent{w(I)}

G1

X1

10 - 16

Indenpendent Set in k× N Grid Graphs

Let Xj be the j-th column, that is,
Xj = V(G) ∩ {(i, j) | 1 ≤ i ≤ k}.

k

N

Let Gj be the graph induced by the
first j columns X1 ∪ X2 ∪ . . . Xj.

Let 1 ≤ j ≤ N. For each Y ⊆ Xj let

C[j, Y] := maximum weight of an independent set I in Gj such that I ∩Y = ∅

C[1, Y] = max I⊆X1\Y where I independent{w(I)}

G1

X1

10 - 17

Indenpendent Set in k× N Grid Graphs

X3

Let Xj be the j-th column, that is,
Xj = V(G) ∩ {(i, j) | 1 ≤ i ≤ k}.

k

N

Let Gj be the graph induced by the
first j columns X1 ∪ X2 ∪ . . . Xj.

Let 1 ≤ j ≤ N. For each Y ⊆ Xj let

C[j, Y] := maximum weight of an independent set I in Gj such that I ∩Y = ∅

C[1, Y] = max I⊆X1\Y where I independent{w(I)}

C[j, Y] = max I⊆Xj\Y where I independent{w(I) + C[j− 1, Xj−1 ∩N(I)]}

G4 X4

10 - 18

Indenpendent Set in k× N Grid Graphs

X3

Let Xj be the j-th column, that is,
Xj = V(G) ∩ {(i, j) | 1 ≤ i ≤ k}.

k

N

Let Gj be the graph induced by the
first j columns X1 ∪ X2 ∪ . . . Xj.

Let 1 ≤ j ≤ N. For each Y ⊆ Xj let

C[j, Y] := maximum weight of an independent set I in Gj such that I ∩Y = ∅

C[1, Y] = max I⊆X1\Y where I independent{w(I)}

C[j, Y] = max I⊆Xj\Y where I independent{w(I) + C[j− 1, Xj−1 ∩N(I)]}

G4 X4

10 - 19

Indenpendent Set in k× N Grid Graphs

X3

Let Xj be the j-th column, that is,
Xj = V(G) ∩ {(i, j) | 1 ≤ i ≤ k}.

k

N

Let Gj be the graph induced by the
first j columns X1 ∪ X2 ∪ . . . Xj.

Let 1 ≤ j ≤ N. For each Y ⊆ Xj let

C[j, Y] := maximum weight of an independent set I in Gj such that I ∩Y = ∅

C[1, Y] = max I⊆X1\Y where I independent{w(I)}

C[j, Y] = max I⊆Xj\Y where I independent{w(I) + C[j− 1, Xj−1 ∩N(I)]}

G4 X4

10 - 20

Indenpendent Set in k× N Grid Graphs

X3

Let Xj be the j-th column, that is,
Xj = V(G) ∩ {(i, j) | 1 ≤ i ≤ k}.

k

N

Let Gj be the graph induced by the
first j columns X1 ∪ X2 ∪ . . . Xj.

Let 1 ≤ j ≤ N. For each Y ⊆ Xj let

C[j, Y] := maximum weight of an independent set I in Gj such that I ∩Y = ∅

C[1, Y] = max I⊆X1\Y where I independent{w(I)}

C[j, Y] = max I⊆Xj\Y where I independent{w(I) + C[j− 1, Xj−1 ∩N(I)]}

G4 X4

10 - 21

Indenpendent Set in k× N Grid Graphs

X3

Let Xj be the j-th column, that is,
Xj = V(G) ∩ {(i, j) | 1 ≤ i ≤ k}.

k

N

Let Gj be the graph induced by the
first j columns X1 ∪ X2 ∪ . . . Xj.

Let 1 ≤ j ≤ N. For each Y ⊆ Xj let

C[j, Y] := maximum weight of an independent set I in Gj such that I ∩Y = ∅

C[1, Y] = max I⊆X1\Y where I independent{w(I)}

C[j, Y] = max I⊆Xj\Y where I independent{w(I) + C[j− 1, Xj−1 ∩N(I)]}

For each j there are ≤ 2k choices of Y, and for each Y there are 2|Xj\Y| choices of I.

G4 X4

10 - 22

Indenpendent Set in k× N Grid Graphs

X3

Let Xj be the j-th column, that is,
Xj = V(G) ∩ {(i, j) | 1 ≤ i ≤ k}.

k

N

Let Gj be the graph induced by the
first j columns X1 ∪ X2 ∪ . . . Xj.

Let 1 ≤ j ≤ N. For each Y ⊆ Xj let

C[j, Y] := maximum weight of an independent set I in Gj such that I ∩Y = ∅

C[1, Y] = max I⊆X1\Y where I independent{w(I)}

C[j, Y] = max I⊆Xj\Y where I independent{w(I) + C[j− 1, Xj−1 ∩N(I)]}

For each j there are ≤ 2k choices of Y, and for each Y there are 2|Xj\Y| choices of I.

For each of these ≤ N4k choices of I, we need to test if I is independent.

G4 X4

10 - 23

Indenpendent Set in k× N Grid Graphs

X3

Let Xj be the j-th column, that is,
Xj = V(G) ∩ {(i, j) | 1 ≤ i ≤ k}.

k

N

Let Gj be the graph induced by the
first j columns X1 ∪ X2 ∪ . . . Xj.

Let 1 ≤ j ≤ N. For each Y ⊆ Xj let

C[j, Y] := maximum weight of an independent set I in Gj such that I ∩Y = ∅

C[1, Y] = max I⊆X1\Y where I independent{w(I)}

C[j, Y] = max I⊆Xj\Y where I independent{w(I) + C[j− 1, Xj−1 ∩N(I)]}

For each j there are ≤ 2k choices of Y, and for each Y there are 2|Xj\Y| choices of I.

G4 X4

For each of these ≤ N3k choices of I, we need to test if I is independent.
each element in a column has one of three options: being in Y or I or none of them

10 - 24

Indenpendent Set in k× N Grid Graphs

X3

Let Xj be the j-th column, that is,
Xj = V(G) ∩ {(i, j) | 1 ≤ i ≤ k}.

k

N

Let Gj be the graph induced by the
first j columns X1 ∪ X2 ∪ . . . Xj.

Let 1 ≤ j ≤ N. For each Y ⊆ Xj let

C[j, Y] := maximum weight of an independent set I in Gj such that I ∩Y = ∅

C[1, Y] = max I⊆X1\Y where I independent{w(I)}

C[j, Y] = max I⊆Xj\Y where I independent{w(I) + C[j− 1, Xj−1 ∩N(I)]}

For each j there are ≤ 2k choices of Y, and for each Y there are 2|Xj\Y| choices of I.

→ total running time ≤ 3kkO(1)N.

G4 X4

For each of these ≤ N3k choices of I, we need to test if I is independent.

11 - 1

Can We Apply This Approach to Other Graphs?

11 - 2

Can We Apply This Approach to Other Graphs?

11 - 3

Can We Apply This Approach to Other Graphs?

11 - 4

Can We Apply This Approach to Other Graphs?

Yes!

11 - 5

Can We Apply This Approach to Other Graphs?

Yes!

We mainly used the fact that the graph consists of a sequence of small separators.

11 - 6

Can We Apply This Approach to Other Graphs?

Yes!

We mainly used the fact that the graph consists of a sequence of small separators.

A similiar fact was used in the algorithm for trees.

11 - 7

Can We Apply This Approach to Other Graphs?

Yes!

We mainly used the fact that the graph consists of a sequence of small separators.

A similiar fact was used in the algorithm for trees.

Goal: Define a more general graph class featuring a structure that is suited for this
kind of dynamic programming approach.

12 - 1

Path Decompositions
a

b c

d e

f g h i

d, e, f , g

b, e, d, c

a, b, c

d, e, h

i, e, h

Let G = (V, E) be a graph.

A path decomposition of G is a sequence
P = (X1, X2, . . . , Xr) of bags, where
Xi ⊆ V, such that

X1

X2

X3

X4

X5

12 - 2

Path Decompositions
a

b c

d e

f g h i

d, e, f , g

b, e, d, c

a, b, c

d, e, h

i, e, h

Let G = (V, E) be a graph.

A path decomposition of G is a sequence
P = (X1, X2, . . . , Xr) of bags, where
Xi ⊆ V, such that

(P1)
⋃r

i=1 Xi = V X1

X2

X3

X4

X5

12 - 3

Path Decompositions
a

b c

d e

f g h i

d, e, f , g

b, e, d, c

a, b, c

d, e, h

i, e, h

Let G = (V, E) be a graph.

A path decomposition of G is a sequence
P = (X1, X2, . . . , Xr) of bags, where
Xi ⊆ V, such that

(P1)
⋃r

i=1 Xi = V X1

X2

X3

X4

X5

12 - 4

Path Decompositions
a

b c

d e

f g h i

d, e, f , g

b, e, d, c

a, b, c

d, e, h

i, e, h

Let G = (V, E) be a graph.

A path decomposition of G is a sequence
P = (X1, X2, . . . , Xr) of bags, where
Xi ⊆ V, such that

(P1)
⋃r

i=1 Xi = V X1

X2

X3

X4

X5

12 - 5

Path Decompositions
a

b c

d e

f g h i

d, e, f , g

b, e, d, c

a, b, c

d, e, h

i, e, h

Let G = (V, E) be a graph.

A path decomposition of G is a sequence
P = (X1, X2, . . . , Xr) of bags, where
Xi ⊆ V, such that

(P1)
⋃r

i=1 Xi = V

(P2) ∀{u, v} ∈ E ∃i ∈ {1, 2, . . . , r} : u, v ∈ Xi

X1

X2

X3

X4

X5

12 - 6

Path Decompositions
a

b c

d e

f g h i

d, e, f , g

b, e, d, c

a, b, c

d, e, h

i, e, h

Let G = (V, E) be a graph.

A path decomposition of G is a sequence
P = (X1, X2, . . . , Xr) of bags, where
Xi ⊆ V, such that

(P1)
⋃r

i=1 Xi = V

(P2) ∀{u, v} ∈ E ∃i ∈ {1, 2, . . . , r} : u, v ∈ Xi

X1

X2

X3

X4

X5

12 - 7

Path Decompositions
a

b c

d e

f g h i

d, e, f , g

b, e, d, c

a, b, c

d, e, h

i, e, h

Let G = (V, E) be a graph.

A path decomposition of G is a sequence
P = (X1, X2, . . . , Xr) of bags, where
Xi ⊆ V, such that

(P1)
⋃r

i=1 Xi = V

(P2) ∀{u, v} ∈ E ∃i ∈ {1, 2, . . . , r} : u, v ∈ Xi

X1

X2

X3

X4

X5

12 - 8

Path Decompositions
a

b c

d e

f g h i

d, e, f , g

b, e, d, c

a, b, c

d, e, h

i, e, h

Let G = (V, E) be a graph.

A path decomposition of G is a sequence
P = (X1, X2, . . . , Xr) of bags, where
Xi ⊆ V, such that

(P1)
⋃r

i=1 Xi = V

(P2) ∀{u, v} ∈ E ∃i ∈ {1, 2, . . . , r} : u, v ∈ Xi

(P3) ∀v ∈ V, if v ∈ Xi ∩ Xj with i ≤ j, then v ∈ Xi ∩ Xi+1 ∩ · · · ∩ Xj

X1

X2

X3

X4

X5

12 - 9

Path Decompositions
a

b c

d e

f g h i

d, e, f , g

b, e, d, c

a, b, c

d, e, h

i, e, h

Let G = (V, E) be a graph.

A path decomposition of G is a sequence
P = (X1, X2, . . . , Xr) of bags, where
Xi ⊆ V, such that

(P1)
⋃r

i=1 Xi = V

(P2) ∀{u, v} ∈ E ∃i ∈ {1, 2, . . . , r} : u, v ∈ Xi

(P3) ∀v ∈ V, if v ∈ Xi ∩ Xj with i ≤ j, then v ∈ Xi ∩ Xi+1 ∩ · · · ∩ Xj

X1

X2

X3

X4

X5

12 - 10

Path Decompositions
a

b c

d e

f g h i

d, e, f , g

b, e, d, c

a, b, c

d, e, h

i, e, h

Let G = (V, E) be a graph.

A path decomposition of G is a sequence
P = (X1, X2, . . . , Xr) of bags, where
Xi ⊆ V, such that

(P1)
⋃r

i=1 Xi = V

(P2) ∀{u, v} ∈ E ∃i ∈ {1, 2, . . . , r} : u, v ∈ Xi

(P3) ∀v ∈ V, if v ∈ Xi ∩ Xj with i ≤ j, then v ∈ Xi ∩ Xi+1 ∩ · · · ∩ Xj

X1

X2

X3

X4

X5

12 - 11

Path Decompositions
a

b c

d e

f g h i

d, e, f , g

b, e, d, c

a, b, c

d, e, h

i, e, h

Let G = (V, E) be a graph.

A path decomposition of G is a sequence
P = (X1, X2, . . . , Xr) of bags, where
Xi ⊆ V, such that

(P1)
⋃r

i=1 Xi = V

(P2) ∀{u, v} ∈ E ∃i ∈ {1, 2, . . . , r} : u, v ∈ Xi

(P3) ∀v ∈ V, if v ∈ Xi ∩ Xj with i ≤ j, then v ∈ Xi ∩ Xi+1 ∩ · · · ∩ Xj

X1

X2

X3

X4

X5

12 - 12

Path Decompositions
a

b c

d e

f g h i

d, e, f , g

b, e, d, c

a, b, c

d, e, h

i, e, h

Let G = (V, E) be a graph.

A path decomposition of G is a sequence
P = (X1, X2, . . . , Xr) of bags, where
Xi ⊆ V, such that

(P1)
⋃r

i=1 Xi = V

(P2) ∀{u, v} ∈ E ∃i ∈ {1, 2, . . . , r} : u, v ∈ Xi

(P3) ∀v ∈ V, if v ∈ Xi ∩ Xj with i ≤ j, then v ∈ Xi ∩ Xi+1 ∩ · · · ∩ Xj

The width of P is w(P) = max1≤I≤r|Xi| − 1.

X1

X2

X3

X4

X5
w(P) = 3

12 - 13

Path Decompositions
a

b c

d e

f g h i

d, e, f , g

b, e, d, c

a, b, c

d, e, h

i, e, h

Let G = (V, E) be a graph.

A path decomposition of G is a sequence
P = (X1, X2, . . . , Xr) of bags, where
Xi ⊆ V, such that

(P1)
⋃r

i=1 Xi = V

(P2) ∀{u, v} ∈ E ∃i ∈ {1, 2, . . . , r} : u, v ∈ Xi

(P3) ∀v ∈ V, if v ∈ Xi ∩ Xj with i ≤ j, then v ∈ Xi ∩ Xi+1 ∩ · · · ∩ Xj

The width of P is w(P) = max1≤I≤r|Xi| − 1.

The pathwidth pw(G) of G is the minimum width of a path decomposition of G.

X1

X2

X3

X4

X5
w(P) = 3 pw(G) ≤ 3

12 - 14

Path Decompositions
a

b c

d e

f g h i

d, e, f , g

b, e, d, c

a, b, c

d, e, h

i, e, h

Let G = (V, E) be a graph.

A path decomposition of G is a sequence
P = (X1, X2, . . . , Xr) of bags, where
Xi ⊆ V, such that

(P1)
⋃r

i=1 Xi = V

(P2) ∀{u, v} ∈ E ∃i ∈ {1, 2, . . . , r} : u, v ∈ Xi

(P3) ∀v ∈ V, if v ∈ Xi ∩ Xj with i ≤ j, then v ∈ Xi ∩ Xi+1 ∩ · · · ∩ Xj

The width of P is w(P) = max1≤I≤r|Xi| − 1.

The pathwidth pw(G) of G is the minimum width of a path decomposition of G.

X1

X2

X3

X4

X5
w(P) = 3 pw(G) ≤ 3

a b c d
a, b b, c c, d pw(G) = 1

13 - 1

Okay – But Where Are the Separators?

(P1)
⋃r

i=1 Xi = V

(P2) ∀{u, v} ∈ E ∃i ∈ {1, 2, . . . , r} : u, v ∈ Xi

(P3) ∀v ∈ V, if v ∈ Xi ∩ Xj with i ≤ j, then v ∈ Xi ∩ Xi+1 ∩ · · · ∩ Xj X1

X2

Xi

Xi+1

Xr

13 - 2

Okay – But Where Are the Separators?

(P1)
⋃r

i=1 Xi = V

(P2) ∀{u, v} ∈ E ∃i ∈ {1, 2, . . . , r} : u, v ∈ Xi

(P3) ∀v ∈ V, if v ∈ Xi ∩ Xj with i ≤ j, then v ∈ Xi ∩ Xi+1 ∩ · · · ∩ Xj X1

X2

Xi

Xi+1

Xr

here

13 - 3

Okay – But Where Are the Separators?

(P1)
⋃r

i=1 Xi = V

(P2) ∀{u, v} ∈ E ∃i ∈ {1, 2, . . . , r} : u, v ∈ Xi

(P3) ∀v ∈ V, if v ∈ Xi ∩ Xj with i ≤ j, then v ∈ Xi ∩ Xi+1 ∩ · · · ∩ Xj

Lemma. Let i < r. Then there is no edge between
A = (X1 ∪ X2 ∪ · · · ∪ Xi) \ (Xi ∩ Xi+1) and
B = (Xi+1 ∪ Xi+2 ∪ · · · ∪ Xr) \ (Xi ∩ Xi+1).

X1

X2

Xi

Xi+1

Xr

13 - 4

Okay – But Where Are the Separators?

(P1)
⋃r

i=1 Xi = V

(P2) ∀{u, v} ∈ E ∃i ∈ {1, 2, . . . , r} : u, v ∈ Xi

(P3) ∀v ∈ V, if v ∈ Xi ∩ Xj with i ≤ j, then v ∈ Xi ∩ Xi+1 ∩ · · · ∩ Xj

Lemma. Let i < r. Then there is no edge between
A = (X1 ∪ X2 ∪ · · · ∪ Xi) \ (Xi ∩ Xi+1) and
B = (Xi+1 ∪ Xi+2 ∪ · · · ∪ Xr) \ (Xi ∩ Xi+1).

X1

X2

Xj

Xi

Xi+1

Xr

Xk

a

b

Proof. Assume there are a ∈ A and b ∈ B s.t. {a, b} ∈ E.

Let j ≤ i s.t. a ∈ Xj and let k ≥ i + 1 s.t. b ∈ Xk.

13 - 5

Okay – But Where Are the Separators?

(P1)
⋃r

i=1 Xi = V

(P2) ∀{u, v} ∈ E ∃i ∈ {1, 2, . . . , r} : u, v ∈ Xi

(P3) ∀v ∈ V, if v ∈ Xi ∩ Xj with i ≤ j, then v ∈ Xi ∩ Xi+1 ∩ · · · ∩ Xj

Lemma. Let i < r. Then there is no edge between
A = (X1 ∪ X2 ∪ · · · ∪ Xi) \ (Xi ∩ Xi+1) and
B = (Xi+1 ∪ Xi+2 ∪ · · · ∪ Xr) \ (Xi ∩ Xi+1).

X1

X2

Xj

Xi

Xi+1

X`

Xr

Xk

a

b

abProof. Assume there are a ∈ A and b ∈ B s.t. {a, b} ∈ E.

Let j ≤ i s.t. a ∈ Xj and let k ≥ i + 1 s.t. b ∈ Xk.

(P2) ⇒ there is a bag X` s.t. a, b ∈ X`, w.l.o.g. let ` ≥ i + 1.

13 - 6

Okay – But Where Are the Separators?

(P1)
⋃r

i=1 Xi = V

(P2) ∀{u, v} ∈ E ∃i ∈ {1, 2, . . . , r} : u, v ∈ Xi

(P3) ∀v ∈ V, if v ∈ Xi ∩ Xj with i ≤ j, then v ∈ Xi ∩ Xi+1 ∩ · · · ∩ Xj

Lemma. Let i < r. Then there is no edge between
A = (X1 ∪ X2 ∪ · · · ∪ Xi) \ (Xi ∩ Xi+1) and
B = (Xi+1 ∪ Xi+2 ∪ · · · ∪ Xr) \ (Xi ∩ Xi+1).

X1

X2

Xj

Xi

Xi+1

X`

Xr

Xk

a

b

ab

a

Proof. Assume there are a ∈ A and b ∈ B s.t. {a, b} ∈ E.

Let j ≤ i s.t. a ∈ Xj and let k ≥ i + 1 s.t. b ∈ Xk.

(P2) ⇒ there is a bag X` s.t. a, b ∈ X`, w.l.o.g. let ` ≥ i + 1.

(P3) ⇒ a ∈ Xi ∩ Xi+1; contradiction to a ∈ A. �

14 - 1

Computing Path Decompositions

k-Pathwidth

Graph G = (V, E), k ∈NInput.

Question. Is the pathwidth of G at most k?

� NP-complete
� FPT in k

� The algorithm constructs a path decomposition of width ≤ k.
� Its runtime depends linearly on |V|+ |E|.

14 - 2

Computing Path Decompositions

k-Pathwidth

Graph G = (V, E), k ∈NInput.

Question. Is the pathwidth of G at most k?

� NP-complete
� FPT in k

� The algorithm constructs a path decomposition of width ≤ k.
� Its runtime depends linearly on |V|+ |E|.

When designing FPT algorithms with respect to the pathwidth,
we may assume to be given a path decomposition!

⇒

15 - 1

Nice Path Decompositions

A path decomposition is nice if |X1| = 1 and each other bag has one of two types:

a, b, c

a, b

a

b, c

c, d, e

b, c, d, e

b, c, d

a
b c

d e

f g h i

15 - 2

Nice Path Decompositions

A path decomposition is nice if |X1| = 1 and each other bag has one of two types:

Xi+1 is of type Introduce if

Xi

Xi+1 Xi v

Xi+1 = Xi ∪ {v} where v /∈ Xi

a, b, c

a, b

a

b, c

c, d, e

b, c, d, e

b, c, d

a
b c

d e

f g h i

15 - 3

Nice Path Decompositions

A path decomposition is nice if |X1| = 1 and each other bag has one of two types:

Xi+1 is of type Introduce if

Xi

Xi+1 Xi v

Xi+1 = Xi ∪ {v} where v /∈ Xi

Xi+1 is of type Forget if

Xi

Xi+1

v

Xi = Xi+1 ∪ {v} where v /∈ Xi+1

Xi+1

a, b, c

a, b

a

b, c

c, d, e

b, c, d, e

b, c, d

a
b c

d e

f g h i

15 - 4

Nice Path Decompositions

A path decomposition is nice if |X1| = 1 and each other bag has one of two types:

Xi+1 is of type Introduce if

Xi

Xi+1 Xi v

Xi+1 = Xi ∪ {v} where v /∈ Xi

Xi+1 is of type Forget if

Xi

Xi+1

v

Xi = Xi+1 ∪ {v} where v /∈ Xi+1

Xi+1

a, b, c

a, b

a

b, c

c, d, e

b, c, d, e

b, c, d

a
b c

d e

f g h i

Observation. The number of bags is r ≤ 2|V| − 1.

15 - 5

Nice Path Decompositions

A path decomposition is nice if |X1| = 1 and each other bag has one of two types:

Xi+1 is of type Introduce if

Xi

Xi+1 Xi v

Xi+1 = Xi ∪ {v} where v /∈ Xi

Xi+1 is of type Forget if

Xi

Xi+1

v

Xi = Xi+1 ∪ {v} where v /∈ Xi+1

Xi+1

a, b, c

a, b

a

b, c

c, d, e

b, c, d, e

b, c, d

a
b c

d e

f g h i

Observation. The number of bags is r ≤ 2|V| − 1.

Lemma. A path decomposition of width k can be transformed
into a nice path decomposition of width k in polynomial time.

15 - 6

Nice Path Decompositions

A path decomposition is nice if |X1| = 1 and each other bag has one of two types:

Xi+1 is of type Introduce if

Xi

Xi+1 Xi v

Xi+1 = Xi ∪ {v} where v /∈ Xi

Xi+1 is of type Forget if

Xi

Xi+1

v

Xi = Xi+1 ∪ {v} where v /∈ Xi+1

Xi+1

a, b, c

a, b

a

b, c

c, d, e

b, c, d, e

b, c, d

a
b c

d e

f g h i

Observation. The number of bags is r ≤ 2|V| − 1.

Lemma. A path decomposition of width k can be transformed
into a nice path decomposition of width k in polynomial time.

When designing FPT algorithms w.r.t. the pathwidth,
we may assume to be given a nice path decomposition.

⇒

16 - 1

Independent Set in Graphs of Bounded Pathwidth

Assume we are given a nice path decomposition P = (X1, X2, . . . , Xr) of width k.

X1

X2

X3

Xr

Xi

16 - 2

Independent Set in Graphs of Bounded Pathwidth

Assume we are given a nice path decomposition P = (X1, X2, . . . , Xr) of width k.

Let Gi be the graph induced by X1 ∪ X2 ∪ · · · ∪ Xi for some i ∈ {1, 2, . . . , r}.

X1

X2

X3

Xr

Gi Xi

16 - 3

Independent Set in Graphs of Bounded Pathwidth

Assume we are given a nice path decomposition P = (X1, X2, . . . , Xr) of width k.

Let Gi be the graph induced by X1 ∪ X2 ∪ · · · ∪ Xi for some i ∈ {1, 2, . . . , r}.

X1

X2

X3

Xr

Gi

For each S ⊆ Xi let

D[i, S] := maximum weight of an independent set I in Gi such that I ∩ Xi = S.

Xi

16 - 4

Independent Set in Graphs of Bounded Pathwidth

Assume we are given a nice path decomposition P = (X1, X2, . . . , Xr) of width k.

Let Gi be the graph induced by X1 ∪ X2 ∪ · · · ∪ Xi for some i ∈ {1, 2, . . . , r}.

X1

X2

X3

Xr

Gi

For each S ⊆ Xi let

D[i, S] := maximum weight of an independent set I in Gi such that I ∩ Xi = S.

Xi

(P1) ⇒ Gr = G ⇒ solution = max S⊆Xr D[r, S]

16 - 5

Independent Set in Graphs of Bounded Pathwidth

Assume we are given a nice path decomposition P = (X1, X2, . . . , Xr) of width k.

Let Gi be the graph induced by X1 ∪ X2 ∪ · · · ∪ Xi for some i ∈ {1, 2, . . . , r}.

X1

X2

X3

XrFor each S ⊆ Xi let

D[i, S] := maximum weight of an independent set I in Gi such that I ∩ Xi = S.

D[1, S] =
0 , if S = ∅

w(v) , if S = {v}{

G1

16 - 6

Independent Set in Graphs of Bounded Pathwidth

Assume we are given a nice path decomposition P = (X1, X2, . . . , Xr) of width k.

Let Gi be the graph induced by X1 ∪ X2 ∪ · · · ∪ Xi for some i ∈ {1, 2, . . . , r}.
For each S ⊆ Xi let

D[i, S] := maximum weight of an independent set I in Gi such that I ∩ Xi = S.

Assume that i > 1. If S is not independent, D[i, S] = −∞.

16 - 7

Independent Set in Graphs of Bounded Pathwidth

Assume we are given a nice path decomposition P = (X1, X2, . . . , Xr) of width k.

Let Gi be the graph induced by X1 ∪ X2 ∪ · · · ∪ Xi for some i ∈ {1, 2, . . . , r}.
For each S ⊆ Xi let

D[i, S] := maximum weight of an independent set I in Gi such that I ∩ Xi = S.

Assume that i > 1. If S is not independent, D[i, S] = −∞.

Otherwise, we distinguish between the two types of Xi.

16 - 8

Independent Set in Graphs of Bounded Pathwidth

Assume we are given a nice path decomposition P = (X1, X2, . . . , Xr) of width k.

Let Gi be the graph induced by X1 ∪ X2 ∪ · · · ∪ Xi for some i ∈ {1, 2, . . . , r}.
For each S ⊆ Xi let

D[i, S] := maximum weight of an independent set I in Gi such that I ∩ Xi = S.

D[i, S] =

Xi−1

Xi
Xi−1

vIf Xi is Introduce, then

Gi

Assume that i > 1. If S is not independent, D[i, S] = −∞.

Otherwise, we distinguish between the two types of Xi.

16 - 9

Independent Set in Graphs of Bounded Pathwidth

Assume we are given a nice path decomposition P = (X1, X2, . . . , Xr) of width k.

Let Gi be the graph induced by X1 ∪ X2 ∪ · · · ∪ Xi for some i ∈ {1, 2, . . . , r}.
For each S ⊆ Xi let

D[i, S] := maximum weight of an independent set I in Gi such that I ∩ Xi = S.

D[i, S] =

Xi−1

Xi
Xi−1

vIf Xi is Introduce, then

Gi

S

S

Assume that i > 1. If S is not independent, D[i, S] = −∞.

Otherwise, we distinguish between the two types of Xi.

16 - 10

Independent Set in Graphs of Bounded Pathwidth

Assume we are given a nice path decomposition P = (X1, X2, . . . , Xr) of width k.

Let Gi be the graph induced by X1 ∪ X2 ∪ · · · ∪ Xi for some i ∈ {1, 2, . . . , r}.
For each S ⊆ Xi let

D[i, S] := maximum weight of an independent set I in Gi such that I ∩ Xi = S.

D[i, S] =

Xi−1

Xi
Xi−1

vIf Xi is Introduce, then

Gi

S

S

Assume that i > 1. If S is not independent, D[i, S] = −∞.

Otherwise, we distinguish between the two types of Xi.

16 - 11

Independent Set in Graphs of Bounded Pathwidth

Assume we are given a nice path decomposition P = (X1, X2, . . . , Xr) of width k.

Let Gi be the graph induced by X1 ∪ X2 ∪ · · · ∪ Xi for some i ∈ {1, 2, . . . , r}.
For each S ⊆ Xi let

D[i, S] := maximum weight of an independent set I in Gi such that I ∩ Xi = S.

D[i, S] = , if v /∈ S
, if v ∈ S{

Xi−1

Xi
Xi−1

vIf Xi is Introduce, then

Gi

S

S

Assume that i > 1. If S is not independent, D[i, S] = −∞.

Otherwise, we distinguish between the two types of Xi.

16 - 12

Independent Set in Graphs of Bounded Pathwidth

Assume we are given a nice path decomposition P = (X1, X2, . . . , Xr) of width k.

Let Gi be the graph induced by X1 ∪ X2 ∪ · · · ∪ Xi for some i ∈ {1, 2, . . . , r}.
For each S ⊆ Xi let

D[i, S] := maximum weight of an independent set I in Gi such that I ∩ Xi = S.

D[i, S] =
D[i− 1, S] , if v /∈ S

, if v ∈ S{
Xi−1

Xi
Xi−1

vIf Xi is Introduce, then

Gi

S

S

Assume that i > 1. If S is not independent, D[i, S] = −∞.

Otherwise, we distinguish between the two types of Xi.

16 - 13

Independent Set in Graphs of Bounded Pathwidth

Assume we are given a nice path decomposition P = (X1, X2, . . . , Xr) of width k.

Let Gi be the graph induced by X1 ∪ X2 ∪ · · · ∪ Xi for some i ∈ {1, 2, . . . , r}.
For each S ⊆ Xi let

D[i, S] := maximum weight of an independent set I in Gi such that I ∩ Xi = S.

D[i, S] =
D[i− 1, S] , if v /∈ S

, if v ∈ S{
Xi−1

Xi
Xi−1

vIf Xi is Introduce, then

Gi

S

S

Assume that i > 1. If S is not independent, D[i, S] = −∞.

Otherwise, we distinguish between the two types of Xi.

16 - 14

Independent Set in Graphs of Bounded Pathwidth

Assume we are given a nice path decomposition P = (X1, X2, . . . , Xr) of width k.

Let Gi be the graph induced by X1 ∪ X2 ∪ · · · ∪ Xi for some i ∈ {1, 2, . . . , r}.
For each S ⊆ Xi let

D[i, S] := maximum weight of an independent set I in Gi such that I ∩ Xi = S.

D[i, S] =
D[i− 1, S] , if v /∈ S
w(v) + D[i− 1, S \ {v}] , if v ∈ S{

Xi−1

Xi
Xi−1

vIf Xi is Introduce, then

Gi

S

S

Assume that i > 1. If S is not independent, D[i, S] = −∞.

Otherwise, we distinguish between the two types of Xi.

16 - 15

Independent Set in Graphs of Bounded Pathwidth

Assume we are given a nice path decomposition P = (X1, X2, . . . , Xr) of width k.

Let Gi be the graph induced by X1 ∪ X2 ∪ · · · ∪ Xi for some i ∈ {1, 2, . . . , r}.
For each S ⊆ Xi let

D[i, S] := maximum weight of an independent set I in Gi such that I ∩ Xi = S.

D[i, S] =
D[i− 1, S] , if v /∈ S
w(v) + D[i− 1, S \ {v}] , if v ∈ S{

Xi−1

Xi
Xi−1

vIf Xi is Introduce, then

Gi

S

S

Assume that i > 1. If S is not independent, D[i, S] = −∞.

Otherwise, we distinguish between the two types of Xi.

Let I′ denote the independent set corresponding to

Why is I′ ∪ {v} independent?

16 - 16

Independent Set in Graphs of Bounded Pathwidth

Assume we are given a nice path decomposition P = (X1, X2, . . . , Xr) of width k.

Let Gi be the graph induced by X1 ∪ X2 ∪ · · · ∪ Xi for some i ∈ {1, 2, . . . , r}.
For each S ⊆ Xi let

D[i, S] := maximum weight of an independent set I in Gi such that I ∩ Xi = S.

D[i, S] =
D[i− 1, S] , if v /∈ S
w(v) + D[i− 1, S \ {v}] , if v ∈ S{

Xi−1

Xi
Xi−1

vIf Xi is Introduce, then

Gi

S

S

Assume that i > 1. If S is not independent, D[i, S] = −∞.

Otherwise, we distinguish between the two types of Xi.

Let I′ denote the independent set corresponding to

Why is I′ ∪ {v} independent? due to Lemma 1!

16 - 17

Independent Set in Graphs of Bounded Pathwidth

Assume we are given a nice path decomposition P = (X1, X2, . . . , Xr) of width k.

Let Gi be the graph induced by X1 ∪ X2 ∪ · · · ∪ Xi for some i ∈ {1, 2, . . . , r}.
For each S ⊆ Xi let

D[i, S] := maximum weight of an independent set I in Gi such that I ∩ Xi = S.

Assume that i > 1. If S is not independent, D[i, S] = −∞.

Otherwise, we distinguish between the two types of Xi.

16 - 18

Independent Set in Graphs of Bounded Pathwidth

Assume we are given a nice path decomposition P = (X1, X2, . . . , Xr) of width k.

Let Gi be the graph induced by X1 ∪ X2 ∪ · · · ∪ Xi for some i ∈ {1, 2, . . . , r}.
For each S ⊆ Xi let

D[i, S] := maximum weight of an independent set I in Gi such that I ∩ Xi = S.

If Xi is Forget, then

D[i, S] = max{ D[i− 1, S] , D[i− 1, S ∪ {v}] }

SS

SS

Assume that i > 1. If S is not independent, D[i, S] = −∞.

Otherwise, we distinguish between the two types of Xi. Xi

Gi

Xi
v

Xi−1

S

S

16 - 19

Independent Set in Graphs of Bounded Pathwidth

Assume we are given a nice path decomposition P = (X1, X2, . . . , Xr) of width k.

Let Gi be the graph induced by X1 ∪ X2 ∪ · · · ∪ Xi for some i ∈ {1, 2, . . . , r}.
For each S ⊆ Xi let

D[i, S] := maximum weight of an independent set I in Gi such that I ∩ Xi = S.

If Xi is Forget, then

D[i, S] = max{ D[i− 1, S] , D[i− 1, S ∪ {v}] }

SS

SS

Assume that i > 1. If S is not independent, D[i, S] = −∞.

Otherwise, we distinguish between the two types of Xi. Xi

Gi

Xi
v

Xi−1

S

S

16 - 20

Independent Set in Graphs of Bounded Pathwidth

Gi = Gi−1

Assume we are given a nice path decomposition P = (X1, X2, . . . , Xr) of width k.

Let Gi be the graph induced by X1 ∪ X2 ∪ · · · ∪ Xi for some i ∈ {1, 2, . . . , r}.
For each S ⊆ Xi let

D[i, S] := maximum weight of an independent set I in Gi such that I ∩ Xi = S.

If Xi is Forget, then

D[i, S] = max{ D[i− 1, S] , D[i− 1, S ∪ {v}] }

Assume that i > 1. If S is not independent, D[i, S] = −∞.

Otherwise, we distinguish between the two types of Xi. Xi

Xi
v

Xi−1

S

S

16 - 21

Independent Set in Graphs of Bounded Pathwidth

Gi = Gi−1

Assume we are given a nice path decomposition P = (X1, X2, . . . , Xr) of width k.

Let Gi be the graph induced by X1 ∪ X2 ∪ · · · ∪ Xi for some i ∈ {1, 2, . . . , r}.
For each S ⊆ Xi let

D[i, S] := maximum weight of an independent set I in Gi such that I ∩ Xi = S.

If Xi is Forget, then

D[i, S] = max{ D[i− 1, S] , D[i− 1, S ∪ {v}] }

Assume that i > 1. If S is not independent, D[i, S] = −∞.

Otherwise, we distinguish between the two types of Xi. Xi

Xi
v

Xi−1

S

Sv /∈ I ⇒ I ∩ Xi−1 = S

16 - 22

Independent Set in Graphs of Bounded Pathwidth

Gi = Gi−1

Assume we are given a nice path decomposition P = (X1, X2, . . . , Xr) of width k.

Let Gi be the graph induced by X1 ∪ X2 ∪ · · · ∪ Xi for some i ∈ {1, 2, . . . , r}.
For each S ⊆ Xi let

D[i, S] := maximum weight of an independent set I in Gi such that I ∩ Xi = S.

If Xi is Forget, then

D[i, S] = max{ D[i− 1, S] , D[i− 1, S ∪ {v}] }

Assume that i > 1. If S is not independent, D[i, S] = −∞.

Otherwise, we distinguish between the two types of Xi. Xi

Xi
v

Xi−1

S

Sv /∈ I ⇒ I ∩ Xi−1 = S

16 - 23

Independent Set in Graphs of Bounded Pathwidth

Gi = Gi−1

Assume we are given a nice path decomposition P = (X1, X2, . . . , Xr) of width k.

Let Gi be the graph induced by X1 ∪ X2 ∪ · · · ∪ Xi for some i ∈ {1, 2, . . . , r}.
For each S ⊆ Xi let

D[i, S] := maximum weight of an independent set I in Gi such that I ∩ Xi = S.

If Xi is Forget, then

D[i, S] = max{ D[i− 1, S] , D[i− 1, S ∪ {v}] }

Assume that i > 1. If S is not independent, D[i, S] = −∞.

Otherwise, we distinguish between the two types of Xi. Xi

Xi
v

Xi−1

S

Sv /∈ I ⇒ I ∩ Xi−1 = S

v ∈ I ⇒ I ∩ Xi−1 = S ∪ {v}

16 - 24

Independent Set in Graphs of Bounded Pathwidth

Gi = Gi−1

Assume we are given a nice path decomposition P = (X1, X2, . . . , Xr) of width k.

Let Gi be the graph induced by X1 ∪ X2 ∪ · · · ∪ Xi for some i ∈ {1, 2, . . . , r}.
For each S ⊆ Xi let

D[i, S] := maximum weight of an independent set I in Gi such that I ∩ Xi = S.

If Xi is Forget, then

D[i, S] = max{ D[i− 1, S] , D[i− 1, S ∪ {v}] }

Assume that i > 1. If S is not independent, D[i, S] = −∞.

Otherwise, we distinguish between the two types of Xi. Xi

Xi
v

Xi−1

S

Sv /∈ I ⇒ I ∩ Xi−1 = S

v ∈ I ⇒ I ∩ Xi−1 = S ∪ {v}

16 - 25

Independent Set in Graphs of Bounded Pathwidth

Assume we are given a nice path decomposition P = (X1, X2, . . . , Xr) of width k.

Let Gi be the graph induced by X1 ∪ X2 ∪ · · · ∪ Xi for some i ∈ {1, 2, . . . , r}.
For each S ⊆ Xi let

D[i, S] := maximum weight of an independent set I in Gi such that I ∩ Xi = S.

Assume that i > 1. If S is not independent, D[i, S] = −∞.

Otherwise, we distinguish between the two types of Xi.

16 - 26

Independent Set in Graphs of Bounded Pathwidth

Assume we are given a nice path decomposition P = (X1, X2, . . . , Xr) of width k.

Let Gi be the graph induced by X1 ∪ X2 ∪ · · · ∪ Xi for some i ∈ {1, 2, . . . , r}.
For each S ⊆ Xi let

D[i, S] := maximum weight of an independent set I in Gi such that I ∩ Xi = S.

Assume that i > 1. If S is not independent, D[i, S] = −∞.

Otherwise, we distinguish between the two types of Xi.

For each of the ≤ 2|V| − 1 many bags, there are ≤ 2k+1 choices for S.

16 - 27

Independent Set in Graphs of Bounded Pathwidth

Assume we are given a nice path decomposition P = (X1, X2, . . . , Xr) of width k.

Let Gi be the graph induced by X1 ∪ X2 ∪ · · · ∪ Xi for some i ∈ {1, 2, . . . , r}.
For each S ⊆ Xi let

D[i, S] := maximum weight of an independent set I in Gi such that I ∩ Xi = S.

Assume that i > 1. If S is not independent, D[i, S] = −∞.

Otherwise, we distinguish between the two types of Xi.

For each of the ≤ 2|V| − 1 many bags, there are ≤ 2k+1 choices for S.

For each of these choices, we need to test if S is independent, which can be done
in kO(1) time (→ Section 7.3.1 in [1]).

16 - 28

Independent Set in Graphs of Bounded Pathwidth

Assume we are given a nice path decomposition P = (X1, X2, . . . , Xr) of width k.

Let Gi be the graph induced by X1 ∪ X2 ∪ · · · ∪ Xi for some i ∈ {1, 2, . . . , r}.
For each S ⊆ Xi let

D[i, S] := maximum weight of an independent set I in Gi such that I ∩ Xi = S.

Assume that i > 1. If S is not independent, D[i, S] = −∞.

Otherwise, we distinguish between the two types of Xi.

For each of the ≤ 2|V| − 1 many bags, there are ≤ 2k+1 choices for S.

For each of these choices, we need to test if S is independent, which can be done
in kO(1) time (→ Section 7.3.1 in [1]).

⇒ total running time ≤ 2k+2kO(1)|V|

16 - 29

Independent Set in Graphs of Bounded Pathwidth

Assume we are given a nice path decomposition P = (X1, X2, . . . , Xr) of width k.

Let Gi be the graph induced by X1 ∪ X2 ∪ · · · ∪ Xi for some i ∈ {1, 2, . . . , r}.
For each S ⊆ Xi let

D[i, S] := maximum weight of an independent set I in Gi such that I ∩ Xi = S.

Assume that i > 1. If S is not independent, D[i, S] = −∞.

Otherwise, we distinguish between the two types of Xi.

For each of the ≤ 2|V| − 1 many bags, there are ≤ 2k+1 choices for S.

For each of these choices, we need to test if S is independent, which can be done
in kO(1) time (→ Section 7.3.1 in [1]).

⇒ total running time ≤ 2k+2kO(1)|V|
Theorem. Independent Set is FPT with respect to the pathwidth.

17 - 1

Discussion

� The fixed-parameter tractability of a problem may be studied with respect to
various structural parameters.

� The assumption that the chosen parameter is small should be plausible!

17 - 2

Discussion

� The fixed-parameter tractability of a problem may be studied with respect to
various structural parameters.

� The assumption that the chosen parameter is small should be plausible!

� Treewidth is among the most studied parameters.

� It is defined like pathwidth, except that the bags form a tree instead of a path.

� Nice tree decomposition only have one additional bag type ...

� ... and can be constructed efficiently from a tree decomposition.

17 - 3

Discussion

� The fixed-parameter tractability of a problem may be studied with respect to
various structural parameters.

� The assumption that the chosen parameter is small should be plausible!

� Treewidth is among the most studied parameters.

� It is defined like pathwidth, except that the bags form a tree instead of a path.

� Nice tree decomposition only have one additional bag type ...

� ... and can be constructed efficiently from a tree decomposition.

Theorem. Independent Set is FPT with respect to the treewidth.

� Our ≤ 2pw(G)pw(G)O(1)|V|-time algorithm for Independent Set can easily

be turned into an algorithm with running time ≤ 2tw(G)tw(G)O(1)|V|.

18

References and Literature

Sections 1, 7.1, 7.2, 7.3

[1] Parameterized Algorithms,
M. Cygan, F. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk,
M. Pilipczuk, S. Saurabh, Springer International Publishing 2015.

	Dealing with NP-Hard Problems
	Parameterized Algorithms
	Parameterized Complexity Classes
	Examples and Counterexamples
	Pathwidth and Treewidth (Intuition)
	 \textsc{(Weighted) Independent Set}
	\textsc{Independent Set} in Trees
	Grid Graphs
	\textsc{Indenpendent Set} in $k\times N$ Grid Graphs
	Can We Apply This Approach to Other Graphs?
	Path Decompositions
	Okay -- But Where Are the Separators?
	Computing Path Decompositions
	Nice Path Decompositions
	\textsc{Independent Set} in Graphs of Bounded Pathwidth
	Discussion
	References and Literature

