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� Optimal Solutions
� Exact exponential-time algorithms
� Fine-grained analysis – parameterized algorithms

� Sacrifice optimality for speed
� Heuristics
� Approximation Algorithms
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2 - 2

Dealing with NP-Hard Problems

Heuristic

NP-hard

Exponential FPT

Approximation

� Optimal Solutions
� Exact exponential-time algorithms
� Fine-grained analysis – parameterized algorithms

� Sacrifice optimality for speed
� Heuristics
� Approximation Algorithms

What should we do?

this lecture



3 - 1

Parameterized Algorithms

Classical complexity theory:

Running time is expressed as a function in the input size.

Parameterized algorithmics:

Running time is expressed as a function in the input size, as well as one or more
additional parameter(s).



3 - 2

Parameterized Algorithms

Classical complexity theory:

Running time is expressed as a function in the input size.

Parameterized algorithmics:

Running time is expressed as a function in the input size, as well as one or more
additional parameter(s).

Example: (recall from AGT)

k-Vertex Cover

Graph G = (V, E), k ∈NInput

Question Is there a set C ⊆ V with |C| ≤ k
s.t. ∀{u, v} ∈ E : {u, v} ∩ C 6= ∅?



3 - 3

Parameterized Algorithms

Classical complexity theory:

Running time is expressed as a function in the input size.

Parameterized algorithmics:

Running time is expressed as a function in the input size, as well as one or more
additional parameter(s).

Example: (recall from AGT)

k-Vertex Cover

Graph G = (V, E), k ∈NInput

Question Is there a set C ⊆ V with |C| ≤ k
s.t. ∀{u, v} ∈ E : {u, v} ∩ C 6= ∅?

� NP-complete,

� but there is an algorithm with
runtime O(2k · k · (|V|+ |E|)).



3 - 4

Parameterized Algorithms

Classical complexity theory:

Running time is expressed as a function in the input size.

Parameterized algorithmics:

Running time is expressed as a function in the input size, as well as one or more
additional parameter(s).

Example: (recall from AGT)

k-Vertex Cover

Graph G = (V, E), k ∈NInput

Question Is there a set C ⊆ V with |C| ≤ k
s.t. ∀{u, v} ∈ E : {u, v} ∩ C 6= ∅?

� NP-complete,

� but there is an algorithm with
runtime O(2k · k · (|V|+ |E|)).

Idea: If k ∈ O(1), then O(2k · k · (|V|+ |E|)) ⊆ O(|V|+ |E|), in other words,
if we assume the parameter k to be fixed, k-Vertex Cover becomes tractable.



3 - 5

Parameterized Algorithms

Classical complexity theory:

Running time is expressed as a function in the input size.

Parameterized algorithmics:

Running time is expressed as a function in the input size, as well as one or more
additional parameter(s).

Example: (recall from AGT)

k-Vertex Cover

Graph G = (V, E), k ∈NInput

Question Is there a set C ⊆ V with |C| ≤ k
s.t. ∀{u, v} ∈ E : {u, v} ∩ C 6= ∅?

� NP-complete,

� but there is an algorithm with
runtime O(2k · k · (|V|+ |E|)).

Idea: If k ∈ O(1), then O(2k · k · (|V|+ |E|)) ⊆ O(|V|+ |E|), in other words,
if we assume the parameter k to be fixed, k-Vertex Cover becomes tractable.



4 - 1

Parameterized Complexity Classes

Let Π be a decision problem. If there is
� an algorithm A and
� a computable function f

such that, given an instance I of Π and a parameter k ∈N,
the algorithm A provides the correct answer to I in time f (k) · |I|O(1),
then A (and Π) are called fixed-parameter tractable (FPT) with respect to k.

Definition.



4 - 2

Parameterized Complexity Classes

Let Π be a decision problem. If there is
� an algorithm A and
� a computable function f

such that, given an instance I of Π and a parameter k ∈N,
the algorithm A provides the correct answer to I in time f (k) · |I|O(1),
then A (and Π) are called fixed-parameter tractable (FPT) with respect to k.

Definition.

If A provides the correct answer to I in time |I| f (k), then A (and Π) are called
slice-wise polynomial (XP) with respect to k. (Note that FPT ( XP.)



4 - 3

Parameterized Complexity Classes

Let Π be a decision problem. If there is
� an algorithm A and
� a computable function f

such that, given an instance I of Π and a parameter k ∈N,
the algorithm A provides the correct answer to I in time f (k) · |I|O(1),
then A (and Π) are called fixed-parameter tractable (FPT) with respect to k.

Definition.

Example. k-Vertex Cover can be solved in time O(2k · k · (|V|+ |E|)).

If A provides the correct answer to I in time |I| f (k), then A (and Π) are called
slice-wise polynomial (XP) with respect to k. (Note that FPT ( XP.)



4 - 4

Parameterized Complexity Classes

Let Π be a decision problem. If there is
� an algorithm A and
� a computable function f

such that, given an instance I of Π and a parameter k ∈N,
the algorithm A provides the correct answer to I in time f (k) · |I|O(1),
then A (and Π) are called fixed-parameter tractable (FPT) with respect to k.

Definition.

Example. k-Vertex Cover can be solved in time O(2k · k · (|V|+ |E|)).{

f (k) |I|O(1)

{

If A provides the correct answer to I in time |I| f (k), then A (and Π) are called
slice-wise polynomial (XP) with respect to k. (Note that FPT ( XP.)



4 - 5

Parameterized Complexity Classes

Let Π be a decision problem. If there is
� an algorithm A and
� a computable function f

such that, given an instance I of Π and a parameter k ∈N,
the algorithm A provides the correct answer to I in time f (k) · |I|O(1),
then A (and Π) are called fixed-parameter tractable (FPT) with respect to k.

Definition.
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f (k) |I|O(1)

{

⇒ k-Vertex Cover is FPT (and therefore also XP) with respect to k.

If A provides the correct answer to I in time |I| f (k), then A (and Π) are called
slice-wise polynomial (XP) with respect to k. (Note that FPT ( XP.)



5 - 1

Examples and Counterexamples

k-Vertex Cover
� NP-complete

� but FPT with respect to k



5 - 2

Examples and Counterexamples

k-Vertex Cover
� NP-complete

� but FPT with respect to k
k-Clique

� NP-complete

� but XP with respect to k
� Under common assumptions, k-Clique is not FPT with respect to k

(namely, k-Clique is W[1]-complete with respect to k; → Section 13 in [1])

� There is an O(2∆ · ∆2 · (|V|+ |E|)) time algorithm for k-Clique, where ∆ is the
maximum degree of the input graph ⇒ k-Clique is FPT with respect to ∆.



5 - 3

Examples and Counterexamples

k-Vertex Cover
� NP-complete

� but FPT with respect to k

Vertex k-Coloring
� NP-complete for every k ≥ 3

� ⇒ neither FPT nor XP with respect to k, unless P = NP

k-Clique
� NP-complete

� but XP with respect to k
� Under common assumptions, k-Clique is not FPT with respect to k

(namely, k-Clique is W[1]-complete with respect to k; → Section 13 in [1])

� There is an O(2∆ · ∆2 · (|V|+ |E|)) time algorithm for k-Clique, where ∆ is the
maximum degree of the input graph ⇒ k-Clique is FPT with respect to ∆.



5 - 4

Examples and Counterexamples

k-Vertex Cover
� NP-complete

� but FPT with respect to k

Vertex k-Coloring
� NP-complete for every k ≥ 3

� ⇒ neither FPT nor XP with respect to k, unless P = NP

k-Clique
� NP-complete

� but XP with respect to k
� Under common assumptions, k-Clique is not FPT with respect to k

(namely, k-Clique is W[1]-complete with respect to k; → Section 13 in [1])

� There is an O(2∆ · ∆2 · (|V|+ |E|)) time algorithm for k-Clique, where ∆ is the
maximum degree of the input graph ⇒ k-Clique is FPT with respect to ∆.

In all these examples, k is the
natural parameter that comes
with the decision problem.



5 - 5

Examples and Counterexamples

k-Vertex Cover
� NP-complete

� but FPT with respect to k

Vertex k-Coloring
� NP-complete for every k ≥ 3

� ⇒ neither FPT nor XP with respect to k, unless P = NP

k-Clique
� NP-complete

� but XP with respect to k
� Under common assumptions, k-Clique is not FPT with respect to k

(namely, k-Clique is W[1]-complete with respect to k; → Section 13 in [1])

� There is an O(2∆ · ∆2 · (|V|+ |E|)) time algorithm for k-Clique, where ∆ is the
maximum degree of the input graph ⇒ k-Clique is FPT with respect to ∆.

In all these examples, k is the
natural parameter that comes
with the decision problem.

We can also study other types
of parameters!



5 - 6

Examples and Counterexamples

k-Vertex Cover
� NP-complete

� but FPT with respect to k

Vertex k-Coloring
� NP-complete for every k ≥ 3

� ⇒ neither FPT nor XP with respect to k, unless P = NP

k-Clique
� NP-complete

� but XP with respect to k
� Under common assumptions, k-Clique is not FPT with respect to k

(namely, k-Clique is W[1]-complete with respect to k; → Section 13 in [1])

� There is an O(2∆ · ∆2 · (|V|+ |E|)) time algorithm for k-Clique, where ∆ is the
maximum degree of the input graph ⇒ k-Clique is FPT with respect to ∆.

In all these examples, k is the
natural parameter that comes
with the decision problem.

We can also study other types
of parameters!



6 - 1

Pathwidth and Treewidth (Intuition)

Pathwidth describes how path-like a graph is.



6 - 2

Pathwidth and Treewidth (Intuition)

Pathwidth describes how path-like a graph is.

1



6 - 3

Pathwidth and Treewidth (Intuition)

Pathwidth describes how path-like a graph is.

1 2



6 - 4

Pathwidth and Treewidth (Intuition)

Pathwidth describes how path-like a graph is.

1 2 n− 1



6 - 5

Pathwidth and Treewidth (Intuition)

Pathwidth describes how path-like a graph is.

Treewidth describes how tree-like a graph is.

1 2 n− 1



6 - 6

Pathwidth and Treewidth (Intuition)

Pathwidth describes how path-like a graph is.

Treewidth describes how tree-like a graph is.

1 2 n− 1

1



6 - 7

Pathwidth and Treewidth (Intuition)

Pathwidth describes how path-like a graph is.

Treewidth describes how tree-like a graph is.

1 2 n− 1

1 2



6 - 8

Pathwidth and Treewidth (Intuition)

Pathwidth describes how path-like a graph is.

Treewidth describes how tree-like a graph is.

1 2 n− 1

1 2



6 - 9

Pathwidth and Treewidth (Intuition)

Pathwidth describes how path-like a graph is.

Treewidth describes how tree-like a graph is.

1 2 n− 1

1 2 3



6 - 10

Pathwidth and Treewidth (Intuition)

Pathwidth describes how path-like a graph is.

Treewidth describes how tree-like a graph is.

Path-/tree-like structure can be useful for designing dynamic programming algorithms.
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Independent Set in Trees

Choose an arbitrary root r.

Let T(v) := subtree rooted at v

Let A(v) := maximum weight of an
independent set I in T(v)

Let B(v) := maximum weight of an
independent set I in T(v) where v 6∈ I

0 and A(v) =w(v)

B(v) = ∑`
i=1 A(xi); A(v) =max{B(v), w(v) + ∑`

i=1 B(xi)}

Algorithm: Compute A(·) and B(·) bottom-up, return A(r).

r

A(r) = solution

� If v is a leaf: B(v) =
� If v has children x1, . . . , x`:
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Grid Graphs

In a k× N grid graph
� the vertex set consist of all pairs (i, j) where 1 ≤ i ≤ k and 1 ≤ j ≤ N, and
� two vertices (i1, j1) and (i2, j2) are adjacent if and only if |i1 − i2|+ |j1 − j2| = 1.
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Grid Graphs

In a k× N grid graph
� the vertex set consist of all pairs (i, j) where 1 ≤ i ≤ k and 1 ≤ j ≤ N, and
� two vertices (i1, j1) and (i2, j2) are adjacent if and only if |i1 − i2|+ |j1 − j2| = 1.

We will study Independent Set in subgraphs of k× N grid graphs.

Goal: An FPT algorithm with respect to the parameter k.

k

N
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Indenpendent Set in k× N Grid Graphs

X5

Let Xj be the j-th column, that is,
Xj = V(G) ∩ {(i, j) | 1 ≤ i ≤ k}.

k

N
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For each of these ≤ N3k choices of I, we need to test if I is independent.
each element in a column has one of three options: being in Y or I or none of them
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Let Xj be the j-th column, that is,
Xj = V(G) ∩ {(i, j) | 1 ≤ i ≤ k}.
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Let Gj be the graph induced by the
first j columns X1 ∪ X2 ∪ . . . Xj.

Let 1 ≤ j ≤ N. For each Y ⊆ Xj let

C[j, Y] := maximum weight of an independent set I in Gj such that I ∩Y = ∅

C[1, Y] = max I⊆X1\Y where I independent{w(I)}

C[j, Y] = max I⊆Xj\Y where I independent{w(I) + C[j− 1, Xj−1 ∩N(I)]}

For each j there are ≤ 2k choices of Y, and for each Y there are 2|Xj\Y| choices of I.
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G4 X4

For each of these ≤ N3k choices of I, we need to test if I is independent.
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Can We Apply This Approach to Other Graphs?

Yes!

We mainly used the fact that the graph consists of a sequence of small separators.

A similiar fact was used in the algorithm for trees.

Goal: Define a more general graph class featuring a structure that is suited for this
kind of dynamic programming approach.
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Proof. Assume there are a ∈ A and b ∈ B s.t. {a, b} ∈ E.

Let j ≤ i s.t. a ∈ Xj and let k ≥ i + 1 s.t. b ∈ Xk.
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Proof. Assume there are a ∈ A and b ∈ B s.t. {a, b} ∈ E.

Let j ≤ i s.t. a ∈ Xj and let k ≥ i + 1 s.t. b ∈ Xk.

(P2) ⇒ there is a bag X` s.t. a, b ∈ X`, w.l.o.g. let ` ≥ i + 1.

(P3) ⇒ a ∈ Xi ∩ Xi+1; contradiction to a ∈ A. �
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Graph G = (V, E), k ∈NInput.

Question. Is the pathwidth of G at most k?

� NP-complete
� FPT in k

� The algorithm constructs a path decomposition of width ≤ k.
� Its runtime depends linearly on |V|+ |E|.

When designing FPT algorithms with respect to the pathwidth,
we may assume to be given a path decomposition!

⇒



15 - 1

Nice Path Decompositions

A path decomposition is nice if |X1| = 1 and each other bag has one of two types:

a, b, c

a, b

a

b, c

c, d, e

b, c, d, e

b, c, d

a
b c

d e

f g h i



15 - 2

Nice Path Decompositions

A path decomposition is nice if |X1| = 1 and each other bag has one of two types:

Xi+1 is of type Introduce if

Xi

Xi+1 Xi v

Xi+1 = Xi ∪ {v} where v /∈ Xi

a, b, c

a, b

a

b, c

c, d, e

b, c, d, e

b, c, d

a
b c

d e

f g h i



15 - 3

Nice Path Decompositions

A path decomposition is nice if |X1| = 1 and each other bag has one of two types:

Xi+1 is of type Introduce if

Xi

Xi+1 Xi v

Xi+1 = Xi ∪ {v} where v /∈ Xi

Xi+1 is of type Forget if

Xi

Xi+1

v

Xi = Xi+1 ∪ {v} where v /∈ Xi+1

Xi+1

a, b, c

a, b

a

b, c

c, d, e

b, c, d, e

b, c, d

a
b c

d e

f g h i



15 - 4

Nice Path Decompositions

A path decomposition is nice if |X1| = 1 and each other bag has one of two types:

Xi+1 is of type Introduce if

Xi

Xi+1 Xi v

Xi+1 = Xi ∪ {v} where v /∈ Xi

Xi+1 is of type Forget if

Xi

Xi+1

v

Xi = Xi+1 ∪ {v} where v /∈ Xi+1

Xi+1

a, b, c

a, b

a

b, c

c, d, e

b, c, d, e

b, c, d

a
b c

d e

f g h i

Observation. The number of bags is r ≤ 2|V| − 1.
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A path decomposition is nice if |X1| = 1 and each other bag has one of two types:

Xi+1 is of type Introduce if

Xi

Xi+1 Xi v

Xi+1 = Xi ∪ {v} where v /∈ Xi

Xi+1 is of type Forget if

Xi

Xi+1

v

Xi = Xi+1 ∪ {v} where v /∈ Xi+1

Xi+1

a, b, c

a, b

a

b, c

c, d, e

b, c, d, e

b, c, d

a
b c

d e

f g h i

Observation. The number of bags is r ≤ 2|V| − 1.

Lemma. A path decomposition of width k can be transformed
into a nice path decomposition of width k in polynomial time.
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Xi+1 is of type Introduce if

Xi

Xi+1 Xi v

Xi+1 = Xi ∪ {v} where v /∈ Xi

Xi+1 is of type Forget if

Xi

Xi+1

v

Xi = Xi+1 ∪ {v} where v /∈ Xi+1

Xi+1

a, b, c

a, b

a

b, c

c, d, e

b, c, d, e

b, c, d

a
b c

d e

f g h i

Observation. The number of bags is r ≤ 2|V| − 1.

Lemma. A path decomposition of width k can be transformed
into a nice path decomposition of width k in polynomial time.

When designing FPT algorithms w.r.t. the pathwidth,
we may assume to be given a nice path decomposition.

⇒
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Independent Set in Graphs of Bounded Pathwidth

Assume we are given a nice path decomposition P = (X1, X2, . . . , Xr) of width k.

X1

X2

X3

Xr

Xi
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Assume we are given a nice path decomposition P = (X1, X2, . . . , Xr) of width k.

Let Gi be the graph induced by X1 ∪ X2 ∪ · · · ∪ Xi for some i ∈ {1, 2, . . . , r}.

X1

X2

X3

Xr

Gi

For each S ⊆ Xi let

D[i, S] := maximum weight of an independent set I in Gi such that I ∩ Xi = S.

Xi

(P1) ⇒ Gr = G ⇒ solution = max S⊆Xr D[r, S]



16 - 5

Independent Set in Graphs of Bounded Pathwidth

Assume we are given a nice path decomposition P = (X1, X2, . . . , Xr) of width k.

Let Gi be the graph induced by X1 ∪ X2 ∪ · · · ∪ Xi for some i ∈ {1, 2, . . . , r}.
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X2

X3
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D[i, S] := maximum weight of an independent set I in Gi such that I ∩ Xi = S.

D[1, S] =
0 , if S = ∅

w(v) , if S = {v}{

G1
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Assume we are given a nice path decomposition P = (X1, X2, . . . , Xr) of width k.

Let Gi be the graph induced by X1 ∪ X2 ∪ · · · ∪ Xi for some i ∈ {1, 2, . . . , r}.
For each S ⊆ Xi let

D[i, S] := maximum weight of an independent set I in Gi such that I ∩ Xi = S.

Assume that i > 1. If S is not independent, D[i, S] = −∞.
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Let I′ denote the independent set corresponding to

Why is I′ ∪ {v} independent?
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Gi

S

S

Assume that i > 1. If S is not independent, D[i, S] = −∞.
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Let I′ denote the independent set corresponding to

Why is I′ ∪ {v} independent? due to Lemma 1!
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in kO(1) time (→ Section 7.3.1 in [1]).
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in kO(1) time (→ Section 7.3.1 in [1]).

⇒ total running time ≤ 2k+2kO(1)|V|
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Independent Set in Graphs of Bounded Pathwidth

Assume we are given a nice path decomposition P = (X1, X2, . . . , Xr) of width k.

Let Gi be the graph induced by X1 ∪ X2 ∪ · · · ∪ Xi for some i ∈ {1, 2, . . . , r}.
For each S ⊆ Xi let

D[i, S] := maximum weight of an independent set I in Gi such that I ∩ Xi = S.

Assume that i > 1. If S is not independent, D[i, S] = −∞.

Otherwise, we distinguish between the two types of Xi.

For each of the ≤ 2|V| − 1 many bags, there are ≤ 2k+1 choices for S.

For each of these choices, we need to test if S is independent, which can be done
in kO(1) time (→ Section 7.3.1 in [1]).

⇒ total running time ≤ 2k+2kO(1)|V|
Theorem. Independent Set is FPT with respect to the pathwidth.
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Discussion

� The fixed-parameter tractability of a problem may be studied with respect to
various structural parameters.

� The assumption that the chosen parameter is small should be plausible!

� Treewidth is among the most studied parameters.

� It is defined like pathwidth, except that the bags form a tree instead of a path.

� Nice tree decomposition only have one additional bag type ...

� ... and can be constructed efficiently from a tree decomposition.

Theorem. Independent Set is FPT with respect to the treewidth.

� Our ≤ 2pw(G)pw(G)O(1)|V|-time algorithm for Independent Set can easily

be turned into an algorithm with running time ≤ 2tw(G)tw(G)O(1)|V|.
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