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What should we do?

B Sacrifice optimality for speed
®m Heuristics
m Approximation Algorithms

B Optimal Solutions
m Exact exponential-time algorithms
B Fine-grained analysis — parameterized algorithms

Heuristic Approximation

NP-hard

Exponential EPT



Dealing with NP-Hard Problems

What should we do?

B Sacrifice optimality for speed
m Heuristics
m Approximation Algorithms

B Optimal Solutions
m Exact exponential-time algorithms
B Fine-grained analysis — parameterized algorithms

Heuristic Approximation

NP-hard

Exponential EPT

this lecture



Parameterized Algorithms

Classical complexity theory:
Running time is expressed as a function in the input size.
Parameterized algorithmics:

Running time is expressed as a function in the input size, as well as one or more
additional parameter(s).



Parameterized Algorithms

Classical complexity theory:
Running time is expressed as a function in the input size.
Parameterized algorithmics:

Running time is expressed as a function in the input size, as well as one or more
additional parameter(s).

Example: (recall from AGT)

k-VERTEX COVER
Input Graph G = (V,E), ke N

Question |s there a set C C V with |[C| <k
s.t. V{u,v} € E: {u,v} NC # Q7



Parameterized Algorithms

Classical complexity theory:
Running time is expressed as a function in the input size.
Parameterized algorithmics:

Running time is expressed as a function in the input size, as well as one or more
additional parameter(s).

Example: (recall from AGT)

k-VERTEX COVER
Input Graph G = (V,E), ke N B NP-complete,

Question Is there a set C C V with \C’ < k M but there is an algorithm with
s.t. V{u,v} € E: {u,v} NC # @7 runtime O(2°-k - (|V| + |E|)).



Parameterized Algorithms

Classical complexity theory:
Running time is expressed as a function in the input size.
Parameterized algorithmics:

Running time is expressed as a function in the input size, as well as one or more
additional parameter(s).

Example: (recall from AGT)

k-VERTEX COVER
Input Graph G = (V,E), ke N B NP-complete,

Question Is there a set C C V with \C’ < k M but there is an algorithm with
s.t. V{u,v} € E: {u,v} NC # @7 runtime O(2°-k - (|V| + |E|)).

Idea: If k € O(1), then O(2% - k- (|V]| + |E])) C O(|V| + |E])



Parameterized Algorithms

Classical complexity theory:
Running time is expressed as a function in the input size.
Parameterized algorithmics:

Running time is expressed as a function in the input size, as well as one or more
additional parameter(s).

Example: (recall from AGT)

k-VERTEX COVER
Input Graph G = (V,E), ke N B NP-complete,
Question Is there a set C C V with \C] < k M but there is an algorithm with
s.t. V{u,v} € E: {u,v} NC # @7 runtime O(2" - k- (|V| + |E])).

Idea: If k € O(1), then O(2F - k- (V]| +|E])) € O(|V|+ |E|), in other words,
if we assume the parameter k to be fixed, k-VERTEX COVER becomes tractable.
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Parameterized Complexity Classes

Definition.

Let II be a decision problem. If there is

B an algorithm A and

B a computable function f

such that, given an instance I of II and a parameter k € IN,

the algorithm A provides the correct answer to I in time f(k) - [I|®(),
then A (and I1) are called fixed-parameter tractable (FPT) with respect to k.

If A provides the correct answer to I in time |I|[f(%) then A (and II) are called
slice-wise polynomial (XP) with respect to k. (Note that FPT C XP.)

Example. k-VERTEX COVER can be solved in time (9(2k k- (|V]|+|E)|)).

flk) 11
= k-VERTEX COVER is FPT (and therefore also XP) with respect to k.
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Examples and Counterexamples

k-VERTEX COVER In all these examples, k is the
B NP-complete natural parameter that comes
m but FPT with respect to k with the decision problem.

k-CLIQUE We can also study other types
B NP-complete of parameters!

m but XP with respect to k

B Under common assumptions, k-CLIQUE is not FPT with respect to k
(namely, k-CLIQUE is W|1]-complete with respect to k; — Section 13 in [1])

B Thereisan Q2% -A?- (|V|+|E|)) time algorithm for k-CLIQUE, where A is the
maximum degree of the input graph = k-CLIQUE is FPT with respect to A.

VERTEX k-COLORING
B NP-complete for every k > 3

B — neither FPT nor XP with respect to k, unless P = NP
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Pathwidth and Treewidth (Intuition)

Pathwidth describes how path-like a graph is.
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Path- /tree-like structure can be useful for designing dynamic programming algorithms.
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Input. A graph G = (V, E). Weight function w : V — IN.

Output. A set ] C V that is independent, i.e., Vu,v € [: {u,v} ¢ E,
and has maximum weight, i.e., w(I) := ) o7 w(v) is maximized.

B (Already unweighted) INDEPENDENT SET is NP-complete,
B but can be solved efficiently on tree-like graphs (also when weighted).

B On trees, (WEIGHTED) INDEPENDENT SET can be solved in linear time.
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then none of its neighbors N(v) is also in I.
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INDEPENDENT SET in Trees

Choose an arbitrary root 7.
Let T(v) := subtree rooted at v

Let A(v) := maximum weight of an
independent set [ in T(v)

Let B(v) := maximum weight of an
independent set [ in T(v) where v & |

B If visaleaf: B(v) =0 and A(v) =w(v)
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INDEPENDENT SET in Trees

Choose an arbitrary root 7.
Let T(v) := subtree rooted at v

Let A(v) := maximum weight of an
independent set [ in T(v)

Let B(v) := maximum weight of an
independent set [ in T(v) where v & |

B If visaleaf: B(v) =0 and A(v) =w(v)
B If v has children x4, ..., Xy
B(v) =
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INDEPENDENT SET in Trees

Choose an arbitrary root 7.
Let T(v) := subtree rooted at v

Let A(v) := maximum weight of an
independent set [ in T(v)

Let B(v) := maximum weight of an
independent set [ in T(v) where v & |

B If visaleaf: B(v) =0 and A(v) =w(v)
B If v has children x4, ..., Xy
B(v) = Li_g A(x:);

- 12



1

INDEPENDENT SET in Trees

Choose an arbitrary root 7.
Let T(v) := subtree rooted at v

Let A(v) := maximum weight of an
independent set [ in T(v)

Let B(v) := maximum weight of an
independent set [ in T(v) where v & |

B If visaleaf: B(v) =0 and A(v) =w(v)
B If v has children x4, ..., Xy
B(v) = Li1 A(xi); A(v) =
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INDEPENDENT SET in Trees

Choose an arbitrary root 7.
Let T(v) := subtree rooted at v

Let A(v) := maximum weight of an
independent set [ in T(v)

Let B(v) := maximum weight of an
independent set [ in T(v) where v & |

B If visaleaf: B(v) =0 and A(v) =w(v)
B If v has children x4, ..., Xy
B(v) = Li1 A(xi); A(v) = w(v)
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Choose an arbitrary root 7.
Let T(v) := subtree rooted at v

Let A(v) := maximum weight of an
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INDEPENDENT SET in Trees

Choose an arbitrary root 7.
Let T(v) := subtree rooted at v

Let A(v) := maximum weight of an
independent set [ in T(v)

Let B(v) := maximum weight of an
independent set [ in T(v) where v & |

B If visaleaf: B(v) =0 and A(v) =w(v)
B If v has children x4, ..., Xy
B(v) = Li_1 A(x:); A(v) =max{B(v), w(v) + ¥Li_q B(x;)}
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INDEPENDENT SET in Trees A(r) = solution

Choose an arbitrary root 7.
Let T(v) := subtree rooted at v

Let A(v) := maximum weight of an
independent set [ in T(v)

Let B(v) := maximum weight of an
independent set [ in T(v) where v & | O

B If visaleaf: B(v) =0 and A(v) =w(v)
B If v has children x4, ..., Xy
B(v) = Li_1 A(x:); A(v) =max{B(v), w(v) + ¥Li_q B(x;)}

Algorithm: Compute A(-) and B(-) bottom-up, return A(r).
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Grid Graphs

In a kK X N grid graph
B the vertex set consist of all pairs (i,7) where 1 <i<kand1<j<N, and
B two vertices (i1, j1) and (ip, jo) are adjacent if and only if |iy —io| + |j1 — jo| = 1.
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We will study INDEPENDENT SET in subgraphs of k X N grid graphs.
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Grid Graphs

In a kK X N grid graph
B the vertex set consist of all pairs (i,7) where 1 <i<kand1<j<N, and
B two vertices (i1, j1) and (ip, jo) are adjacent if and only if |iy —io| + |j1 — jo| = 1.

- O—0—0 I 0—O0 O
C O—O—O0—0
: I
0—O T O—O0—O0—0—0
L 0—0—0 l 0—0—0
I N I

We will study INDEPENDENT SET in subgraphs of k X N grid graphs.

Goal: An FPT algorithm with respect to the parameter k.
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Let X; be the j-th column, that is,
Xi=V(G)N{(i,j)|1<i<k}.
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We mainly used the fact that the graph consists of a sequence of small separators.

A similiar fact was used in the algorithm for trees.

Goal: Define a more general graph class featuring a structure that is suited for this
kind of dynamic programming approach.
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k-PATHWIDTH
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Question. Is the pathwidth of G at most k?

m NP-complete
m FPT ink

m The algorithm constructs a path decomposition of width < k.
® Its runtime depends linearly on |V| + |E|.
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Observation. The number of bags is r < 2|V| — 1. b

Lemma. A path decomposition of width k can be transformed
into a nice path decomposition of width k in polynomial time.

= When designing FPT algorithms w.r.t. the pathwidth,
we may assume to be given a nice path decomposition. f g n
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INDEPENDENT SET in Graphs of Bounded Pathwidth

Assume we are given a nice path decomposition P = (X1, Xo, ..., X;) of width k.
Let G; be the graph induced by X7 UXo U---UX; for somei € {1,2,..., rt.
For each 5 C X; let

D[i, S| := maximum weight of an independent set I in G; such that N X; =

(P1) = G, =G = solution = max scx, D|r, 5] G;

SIS
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Assume we are given a nice path decomposition P = (X1, Xo, ..., X;) of width k.

Let G; be the graph induced by X7 UXo U---UX; for somei € {1,2,..., rt.
For each 5 C X; let

D[i, S| := maximum weight of an independent set I in G; such that N X; =
Assume that i > 1. If S is not independent, DJi, 5| = —oo0.
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m It is defined like pathwidth, except that the bags form a tree instead of a path.

m Nice tree decomposition only have one additional bag type ...

®m ... and can be constructed efficiently from a tree decomposition.

B Our < 2PW(G)pw(G)O<1)\V\—time algorithm for INDEPENDENT SET can easily
be turned into an algorithm with running time < 2tW(G)tW(G)O(1)]V].

Theorem. INDEPENDENT SET is FPT with respect to the treewidth.
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