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Cut

� Let G = (V, E) be a graph with edge weights w : E→N.

� A cut of G is a partition (S, V \ S) of V with ∅ 6= S 6= V.

� The weight of a cut (S, V \ S) is

w(S, V \ S) = ∑
uv∈E,

u∈S,v∈V\S

w(uv)
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w({v1, v2, v5}, {v3, v4})
= w(v2v3) + w(v4v5) = 7
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The MinCut Problem

Input. Graph G = (V, E), edge weights w : E→N.

Output. Cut (S, V \ S) of G with minimum weight.
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V \ S w(S, V \ S) = 4

� Has applications in flow networks (max-flow min-cut theorem), finding a bottleneck
in a network, graph partition problems, clustering, . . .
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v1

� Can be solved optimally in polynomial time, e.g., by the Stoer–Wagner algorithm.
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The MaxCut Problem

Input. Graph G = (V, E), edge weights w : E→N.

Output. Cut (S, V \ S) of G with maximum weight.
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� Has applications in binary classification (vertices are features and weighted edges are distances),
statistical physics (equivalent to minimizing the “Hamiltonian” of a spin glass model), and integrated
circuit design for computer chips (modeling a specific assignment problem as a graph problem).

� NP-complete to find a cut of maximum weight.
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Randomized 0.5-Approximation for (Unweighted) MaxCut

CoinFlipMaxCut(G, w : E→ 1)

S← ∅
foreach v ∈ V do

if coin flip shows Heads then
S← S ∪ {v}

return w(S, V \ S), S

Theorem 1.
CoinFlipMaxCut is a randomized
0.5-approximation algorithm for MaxCut.

Proof.

� Runs in O(n + m), where n = |V|, m = |E|.

� Compute expected weight of cut:

E[w(CoinFlipMaxCut(G))] = E
[
|E(S, V \ S)|

]
= ∑

e∈E
P[e ∈ E(S, V \ S)]

= ∑
e∈E

1

2
=

1

2
|E| ≥ 1

2
OPT(G)

� Can be “de-randomized”. Exercise.
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LP-Relaxation

maximize cᵀx
subject to Ax ≤ b

x ≥ 0
x ∈ Zn

Integer Linear Program

maximize cᵀx
subject to Ax ≤ b

x ≥ 0

Linear Program
LP-Relaxation

Solve in
polynomial time

Solution for LP

x?

e.g. rounding

Assignment for ILP

x?

Solution,
approximation,
or bound
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Goemans-Williamson Algorithm for MaxCut

G = (V, E), w

1-dimensional
quadratic program

quadratic program
QPk

real-valued solution
for QPk

integer
1-dimensional

solution

approximation for
MaxCut on G

solve

tra
nsfo

rm
relax to k dimensions

for k ≤ n

randomized
rounding

transform back
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Goemans-Williamson Algorithm for MaxCut

G = (V, E), w

1-dimensional
quadratic program

quadratic program
QPk

real-valued solution
for QPk

integer
1-dimensional

solution

approximation for
MaxCut on G

solve

tra
nsfo

rm
relax to k dimensions

for k ≤ n

randomized
rounding

transform back
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QP(G,w)

� Indicator variable for each vertex vi:
xi ∈ {1,−1}
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maximize 1
2

n
∑

j=1

j−1

∑
i=1

wij(1− xixj)

subject to x2
i = 1

QP(G, w)

� Weight matrix wij
1 2 3 4 5

1 3 1
2 3 5 2
3 5 6
4 6 2
5 1 2 2

� xi · xj =

{
1 if i, j in same partition

−1 otherwise

Idea.

S

V \ S

� Solution

x2 = x4 = 1

x1 = x3 = x5 = −1

� Solving QP(G, w) is
NP-hard.

� Otherwise MaxCut would
not be NP-hard.

Note.
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v3v2

v5 v4
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Goemans-Williamson Algorithm for MaxCut

G = (V, E), w

1-dimensional
quadratic program

quadratic program
QPk

real-valued solution
for QPk

integer
1-dimensional

solution

approximation for
MaxCut on G

solve

tra
nsfo

rm
relax to k dimensions

for k ≤ n

randomized
rounding

transform back

� Here explained for k = 2,

� but unknown if QP2 can be solved
optimally in polynomial time.

� QPn can be solved in poly. time.
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Relaxation of QP(G,w)

maximize 1
2

n
∑

j=1

j−1

∑
i=1

wij(1− xi · xj)

subject to xi · xi = 1

xi = (xi
1, xi

2) ∈ R2

QP2(G, w)

� xi lies on the unit circle.

� “ · ” is scalar product.

� xi · xj = ‖xi‖‖xj‖ cos(αij)
= cos(αij) with 0 ≤ αij ≤ π.

x1

x5

x4

x3

x2

α14

� We maximize angles αij since larger αij
increase the contribution of wij.

� Hence, our objective is:

1
2

n
∑

j=1

j−1

∑
i=1

wij(1− cos(αij))

2

0

1− cos(αij)

1

π0 ≤ αij ≤

cos(αij)

1

0

−1

� The variables are 2-dimensional vectors.

π0 ≤ αij ≤
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Goemans-Williamson Algorithm for MaxCut

G = (V, E), w

1-dimensional
quadratic program

quadratic program
QPk

real-valued solution
for QPk

integer
1-dimensional

solution

approximation for
MaxCut on G

solve

tra
nsfo

rm
relax to k dimensions

for k ≤ n

randomized
rounding

transform back
� Here again just for k = 2.
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Algorithm RandomizedMaxCut

RandomizedMaxCut(G, w)

Compute optimal solution (x̃1, . . . , x̃n) for QP2(G, w)

Pick random vector r ∈ R2

S← {vi ∈ V : x̃i · r ≥ 0}
return c(S, V \ S)
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x̃1

x̃5

x̃4

x̃3

x̃2

r

(Sketch)

`

guess

� x̃i lies above the line ` orthogonal to r
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v3v2

v5 v4
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RandomMaxCut – Expected Value

Lemma 2.
Let X be the solution of RandomizedMaxCut(G, w).
If r is picked uniformally at random, then

E[X] =
n
∑

j=1

j−1

∑
i=1

wij
αij
π .

� E[X] =
n
∑

j=1

j−1

∑
i=1

wij P[` separates x̃i, x̃j] =
n
∑

j=1

j−1

∑
i=1

wij
αij
π

Proof.

� P[` separates x̃i, x̃j] = P[s or t lies on Bij] =
αij
2π +

αij
2π =

αij
π

r

s

t
`

x̃j

x̃i

r

s

t
`x̃j

x̃i

Bij

Bij

� Bij has length αij.

� If x̃i (or x̃j) lies ≤ αij before s or t on the perimter of the unit disk, s or t lies on Bij.
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RandomMaxCut – Quality

Theorem 3.
Let X be the solution of RandomizedMaxCut(G, w).
Then

E[X]
OPT(G,w)

≥ 0.8785.

Proof.

� Lemma 2: E[X] =
n
∑

j=1

j−1

∑
i=1

wij
αij
π

� Optimal solution for QP2:

� QP2(G, w) is relaxation of QP(G, w):

QP2(G, w) = 1
2

n
∑

j=1

j−1

∑
i=1

wij(1− xi · xj) =
n
∑

j=1

j−1

∑
i=1

wij
1−cos(αij)

2

QP2(G, w) ≥ QP(G, w) = OPT(G, w)

�
E[X]

OPT(G,w)
≥ E[X]

QP2(G,w)
=

�

αij
π

1−cos(αij)
2

≥ 0.8785

⇔ αij
π ≥ 0.8785

1−cos(αij)
2

y(α) =
2α

π(1− cos α)
≥ 0.8785

1

2

3

4

1 2 3 4

0.8785

for 0 ≤ α ≤ π

n
∑

j=1

j−1

∑
i=1

wij
αij
π

n
∑

j=1

j−1

∑
i=1

wij
1−cos(αij)

2

≥ 0.8785
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Example

x2

x4

x6

v1 v2 v3

v6v5v4

2 1

21 3 4

32

1. Step: Build QP
1 2 3 4 5 6

1 2 1
2 2 1 3
3 1 4 2
4 1 2
5 3 4 2 3
6 2 3

Weight matrix wij

`
r

x1

x3

x5

weight 14

optimal 15

Variable x1 x2 x3 x4 x5 x6

Angle 0 180 120 165 345 210

maximize 1
2

6

∑
j=1

j−1

∑
i=1

wij(1− xixj)

subject to x2
i = 1

2. Step: Relax QP to QP2

maximize 1
2

6

∑
j=1

j−1

∑
i=1

wij(1− xi · xj)

subject to xi · xi = 1
xi = (xi

1, xi
2) ∈ R2

3. Step: Solve QP2

4. Step: Guess r

5. Step: Derive S
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Goemans-Williamson Algorithm for MaxCut

G = (V, E), w

1-dimensional
quadratic program

quadratic program
QPk

real-valued solution
for QPk

integer
1-dimensional

solution

approximation for
MaxCut on G

solve

tra
nsfo

rm
relax to k dimensions

for k ≤ n

randomized
rounding

transform back

� So far, k = 2.

� QPn can be solved in
polynomial time.
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QPn(G,w)

maximize 1
2

n
∑

j=1

j−1

∑
i=1

wij(1− xi · xj)

subject to xi · xi = 1

xi = (xi
1, xi

2) ∈ R2

QP2(G, w)

maximize 1
2

n
∑

j=1

j−1

∑
i=1

wij(1− xi · xj)

subject to xi · xi = 1

xi ∈ Rn

QPn(G, w)

� A matrix M is called positive semidefinite
if for any vector v ∈ Rn:

� M = (mij) = (xi · xj) is positive semidefinite.

vᵀ ·M · v ≥ 0

� QPn(G, w) becomes the problem SemiDefiniteCut(G, w).
� Can be approximated in time polynomial in (G, w) and 1/ε

with additive guarantee ε.
� Note that the approximation of QP(G, w) is an extra step we have seen before.

(The approximation of QP(G, w) with factor 0.8785 works for QPn(G, w), too)
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Discussion

� Semidefinite programming is a powerful tool to develop approximation algorithms

� Whole book on this topic:
� [Gärtner, Matoušek] “Approximation Algorithms and Semidefinite Progamming”

� Using randomness is another tool to design approximation algorithms.

→ See future lectures, in particular the next lecture!

� If the Unique Games Conjecture is true, then the approximation ratio of ≈ 0.8785
achieved by SemiDefiniteCut (and RandomizedMaxCut) is best possible.

� Otherwise, no approximation ratio better than 16
17 ≈ 0.941 is possible.

In particular no polynomial-time approximation scheme (PTAS) exists.

� On planar graphs, the MaxCut problem can be solved optimally in polynomial time.
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Literature

Original paper:
� [GW ’95] “Improved approximation

algorithms for maximum cut and satisfiability
problems using semidefinite programming”

Source:
� [Vazirani Ch26] “Approximation Algorithms”

Whole book on this topic:
� [Gärtner, Matoušek] “Approximation

Algorithms and Semidefinite Progamming”
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