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Cut

B Let G = (V,E) be a graph with edge weights w: E — IN.
B A cut of G is a partition (S, V\S) of Vwith@#S #V.
B The weight of a cut (S,V\S) is

w(S,V\S)= Y  w(uv)

UveE,
ueS,veV\Ss

‘\

) w({v1, 02,05} {v3,04})
g 6 = w(vov3) + w(v4vg) =7




The MinCut Problem

Input.  Graph G = (V, E), edge weights w: E — IN.
Output. Cut (S,V\ S) of G with minimum weight.

B Has applications in flow networks (max-flow min-cut theorem), finding a bottleneck
In a network, graph partition problems, clustering, ...

B Can be solved optimally in polynomial time, e.g., by the Stoer—Wagner algorithm.

w(S,V\S) =4




The MaxCut Problem

Input.  Graph G = (V, E), edge weights w: E — IN.
Output. Cut (S,V'\ S) of G with maximum weight.

B Has applications In binary classification (vertices are features and weighted edges are distances),
statistical physics (equivalent to minimizing the “Hamiltonian” of a spin glass model), and integrated

circuit design for computer chips (modeling a specific assignment problem as a graph problem).

B NP-complete to find a cut of maximum weight.




Randomized 0.5-Approximation for (Unweighted) MaxCut

(. )
Theorem 1. CoINFLIPMAXCUT(G,w: E — 1)
COINFLIPMAXCUT is a randomized S @
'0.5-approximation algorithm for MaxCut. | foreach v € V do
Proof L if coin flip shows HEADS then
' | S+ SuU{v}

B Runs in O(n+m), where n = |V, m = |E|. return w(S,V\S),S

B Compute expected weight of cut:
E[w(CoINFLIPMAXCUT(G))] = E[|E(S, V' \ S)]]

= Y Plec E(S,V\9)]

ecE

1 1 1
=) - =Z|E| > -OPT(G)
= 2 2 2
B Can be “de-randomized” . Exercise.



L P-Relaxation

Integer Linear Program

maximize cTx

subject to Ax < b
X > 0
x € Z

Solution,

approximation,

or bound

Assignment for ILP

x*

L P-Relaxation

e.g. rounding

Linear Program

maximize cTx

subjectto Ax < b
x > 0
Solve in

polynomial time

Solution for LP

x*



Goemans-Williamson Algorithm for MaxCut

1-dimensional relax to k dimensions

«©
o _
&(’&VP quadratic program \for k<n

quadratic program

G = (V, E), w QPk
g solve
approximation for real-valued solution
MaxCut on G for QP
tr, v\ integer 4/andomized
ns£, T : _
rm b 1-dimensional roundmg
ICk solution



Goemans-Williamson Algorithm for MaxCut

relax to k dimensions

go‘“\ 1-dimensional <
,&@0"/> quadratic program orie =1
quadratic program
G = (V, E), w QPk
solve
approximation for real-valued solution
MaxCut on G for QPk
t”a/g\ integer randomized
fO/-,h b 1-dimensional rounding
ICk solution



QP (G, w)

|
Idea. | | rQP(G, w)
B Indicator variable for each vertex v;: o
Xj € {]—; _1} maximize % Y, ), ZUZ']'(]. — xix]-)
( .o : =1i=1
1 if 7,7 in same partition : ]
B oX-Xxj =4 J _ P subject to xi2 =1
\—1 otherwise L )

B Weight matrix w;;

: ! g 3 4 51’ Note.

?, 3 o5 > B Solving QP(G, w) is

; L NP-hard.

>l L2 ? B Otherwise MaxCut would
B Solution not be NP-hard.
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Goemans-Williamson Algorithm for MaxCut

relax to k dimensions

%O(((\ 1-dimensional
&va“c’ quadratic program \for k<n
- quadratic program
G = (V' E)' W B Here explained for k = 2, QPk
B but unknown if QP2 can be solved |
optimally in polynomial time. SOIVE
approximation for B QP" can be solved in poly. time. real-valued solution
MaxCut on G for QP
trar, Integer randomized
Stor 1-dimensi '
m -dimensional rounding
bac :
k solution



Relaxation of QP (G, w)

10 -

( ) y =
Qp2(G, W) P is scalar product.
e Z Z (1 — i o) — W x’ lies on the unit circle.
_ _ \ . . . B
. - i /g By = HJCZHHX]H COS(O‘Z']')
subject to . wer =1 ) = cos(a;) with 0 < a;; < 71,
x'=(x},x5) €R
q \ J * 0
[ S
ey B The variables are 2-dimensional vectors. |
X
X2 B We maximize angles «;; since larger w;; . ; o
a2\ xl increase the contribution of w;;. 0 swmj=sm
g L 1 — cos(aij)
B Hence, our objective is: 2177
1
5 3 1 noj— 14+
* > Z w1]( COS(“Z’]’))
] li=1 0




Goemans-Williamson Algorithm for MaxCut

(O
(’3(\6%0
X

G=(V,E),w

approximation for
MaxCut on G

" fory, ,
ac/(

1-dimensional
quadratic program

Integer
1-dimensional
solution

relax to k dimensions
for k <mn

quadratic program

QP*
solve

real-valued solution
for QPk

/a ndomized

rounding

B Here again just for k = 2.
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Algorithm RANDOMIZEDMAXCUT

RANDOMIZEDMAXCUT(G, w)

Compute optimal solution (#%,..., &) for QP?(G, w)
Pick random vector € R?
S« {v;ecV:&.r>0}
7 \’ ~‘ L] .
return c(S, V' 5) B X' lies above the line ¢ orthogonal to

0‘ 5
PY ’03
*
% \
’0
‘0
‘Q
0"
0”’ 6
L 4 "’
. guess
o
2

(Sketch)
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RANDOMMAXCUT — Expected Value

é )
Lemma 2.
Let X be the solution of RANDOMIZEDMAXCUT(G, w). B i
If 7 is picked uniformally at random, then Z]r? .
E[X] = z:z:wz“”. L \
=1 \ /
. J 2N
Proof. 32
~i N n —]. (Xi]' [ e, /,
B EX] = Z Z wj; P|£ separates X K] = Z Z - L 4 B;
j=li= j=li=1 \ L>
W P[{ separates &', %/] = P[s or ! lies on B;j| = 2;; | g;]T = “—7;] \/x

O] Bij has length K-

B If & (or &) lies < w;j before s or t on the perimter of the unit disk, s or ¢ lies on B;;.



RANDOMMAXCUT — Quality

\

‘Theorem 3. m

Let X be the solution of RANDOMIZEDMAXCUT(G, w).

Then E[X]

Proof.
n j—1
B lemma2: E[X]= )Y Z Wij—+ ]
j=1i= =

B Optimal solution for QP2:

n j—1 n j—1 ’
QP2(G,w) = § L L wyi(L—x'-21) = B E w5
i=1i=1 j=1i=
B QP?(G,w) is relaxation of QP(G, w):

QP?(G,w) > QP(G,w) = OPT(G, w)

14 - 14

Elx] o _EX]
OPT(G,w) — QP?(G,w)

n j—1

Zzwz]
==

> 0.8785

n j—1 1—cos(«; ;)

2
2. ) Wi p)

j=1li=1

= N W b
—t—t—t>

“ij

Z__ > (.8785

1—cos((x1])

2
1—cos(u;;)

;i
& L >(0.8785——

20
— > 0.8785
| (@) (1 —cosa) —

forO<a<rm
- 0.8785

5 5 4"




Example

1. Step: Build QP

Weight matrix w;;

6 j—1
maximize 3 Y ¥ w;;(1— xx;) L o 3 4 s
j=1i=1 1 2 1
subject to xi2 —1 > | o 1 3
5 3 1 4
2. Step: Relax QP to QP L
. A o 6 2 3
maximize 5 L 2 wii(l—x'-o)
j=1i=1 |
subject to D S
X = (x,x) €R?
3. Step: Solve QP2 Variable | x!  x2 x3 A 5
. Angle | 0
: Guess 7
: Derive S
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Goemans-Williamson Algorithm for MaxCut

go‘((\ 1-dimensional
&@&\" quadratic program
G=(V,E),w

B So far, k = 2.

B QP" can be solved in

approximation for polynomial time.

MaxCut on G
t Integer
m 4 -dimensiona
ICk solution

relax to k dimensions
for k <mn

quadratic program
QP*

l solve

real-valued solution
for QPk

randomized
rounding
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QP" (G, w)

QP? (G, w) QP" (G, w)
n j—1 o n j—1 o
maximize % X wii(l—x'-x) maximize % Y wii(l—x'-x)
j=1li1=1 | | j=1li1=1 ‘
subject to xt-xt =1 subject to xt-xt =
xl = (xt,x5) €R? x! € 1R"

B A matrix M is called positive semidefinite
if for any vector v € R”":
Y ol-M-0v>0

B M= (m) = (x' - x/) is positive semidefinite.
B QP"(G,w) becomes the problem SEMIDEFINITECUT(G, w).

m Can be approximated in time polynomial in (G, w) and 1/¢

with additive guarantee ¢.
m Note that the approximation of QP(G, w) is an extra step we have seen before.

(The approximation of QP(G, w) with factor 0.8785 works for QP" (G, w), too)
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Discussion

If the Unique Games Conjecture is true, then the approximation ratio of = 0.8785
achieved by SEMIDEFINITECUT (and RANDOMIZEDMAXCUT) is best possible.

Otherwise, no approximation ratio better than %—g ~ 0.941 is possible.
In particular no polynomial-time approximation scheme (PTAS) exists.

On planar graphs, the MaxCut problem can be solved optimally in polynomial time.

Semidefinite programming is a powerful tool to develop approximation algorithms

Whole book on this topic:
m [Gartner, Matousek| “Approximation Algorithms and Semidefinite Progamming”

Using randomness is another tool to design approximation algorithms.

— See future lectures, in particular the next lecture!



| iterature

Original paper:

B [GW '95] “Improved approximation
algorithms for maximum cut and satisfiability
problems using semidefinite programming”

Source:

B [Vazirani Ch26] “Approximation Algorithms"

Whole book on this topic:

B [Géartner, Matousek] “Approximation
Algorithms and Semidefinite Progamming”
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