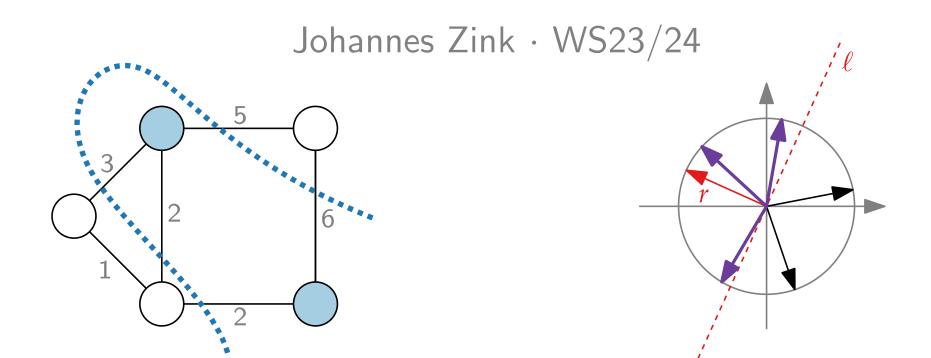


Advanced Algorithms

QP-Relaxation for MaxCut

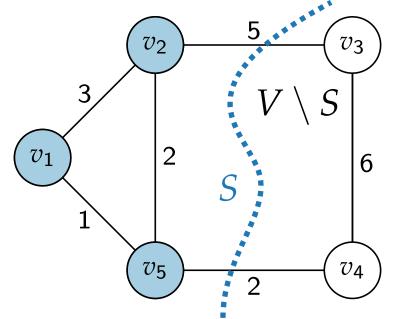


Cut

- Let G = (V, E) be a graph with edge weights $w: E \to \mathbb{N}$.
- A cut of G is a partition $(S, V \setminus S)$ of V with $\emptyset \neq S \neq V$.

The weight of a cut $(S, V \setminus S)$ is

$$w(S, V \setminus S) = \sum_{\substack{uv \in E, \\ u \in S, v \in V \setminus S}} w(uv)$$

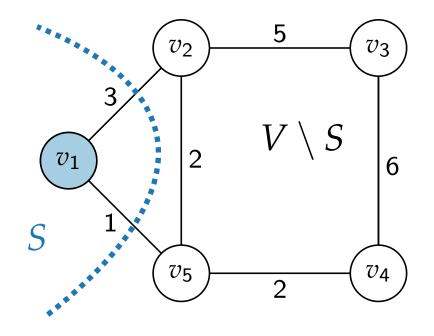


$$w(\{v_1, v_2, v_5\}, \{v_3, v_4\}) = w(v_2v_3) + w(v_4v_5) = 7$$

The **MinCut** Problem

Input. Graph G = (V, E), edge weights $w: E \to \mathbb{N}$. **Output.** Cut $(S, V \setminus S)$ of G with minimum weight.

- Has applications in flow networks (max-flow min-cut theorem), finding a bottleneck in a network, graph partition problems, clustering, ...
- Can be solved optimally in polynomial time, e.g., by the Stoer–Wagner algorithm.



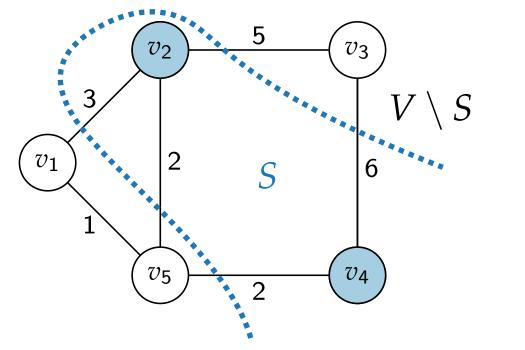
$$w(S, V \setminus S) = 4$$

The MaxCut Problem

Input. Graph G = (V, E), edge weights $w: E \to \mathbb{N}$. **Output.** Cut $(S, V \setminus S)$ of G with maximum weight.

Has applications in binary classification (vertices are features and weighted edges are distances), statistical physics (equivalent to minimizing the "Hamiltonian" of a spin glass model), and integrated circuit design for computer chips (modeling a specific assignment problem as a graph problem).

NP-complete to find a cut of maximum weight.



$$w(S,V\setminus S)=18$$

Randomized 0.5-Approximation for (Unweighted) MaxCut

Theorem 1. COINFLIPMAXCUT is a randomized 0.5-approximation algorithm for MaxCut.

Proof.

Runs in
$$O(n+m)$$
, where $n = |V|$, $m = |E|$.

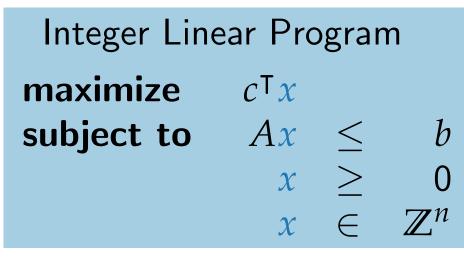
Compute expected weight of cut: $E[w(COINFLIPMAXCUT(G))] = E[|E(S, V \setminus S)|]$ $\sum D[= E[(C, V \setminus S)]$

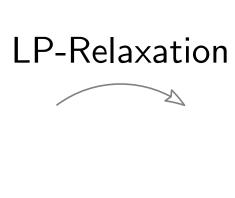
COINFLIPMAXCUT(
$$G, w: E \to 1$$
)
 $S \leftarrow \emptyset$
foreach $v \in V$ do
 \downarrow if coin flip shows HEADS then
 $\downarrow S \leftarrow S \cup \{v\}$
return $w(S, V \setminus S), S$

$$OINFLIPMAXCUT(G))] = \mathsf{E}[|E(S, V \setminus S)|]$$
$$= \sum_{e \in E} \mathsf{P}[e \in E(S, V \setminus S)]$$
$$= \sum_{e \in E} \frac{1}{2} = \frac{1}{2}|E| \ge \frac{1}{2}\mathsf{OPT}(G)$$

Can be "de-randomized". Exercise.

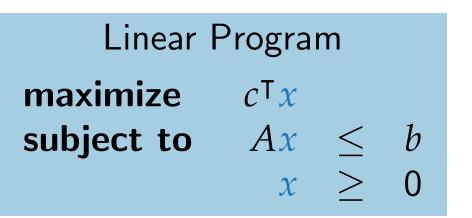
LP-Relaxation



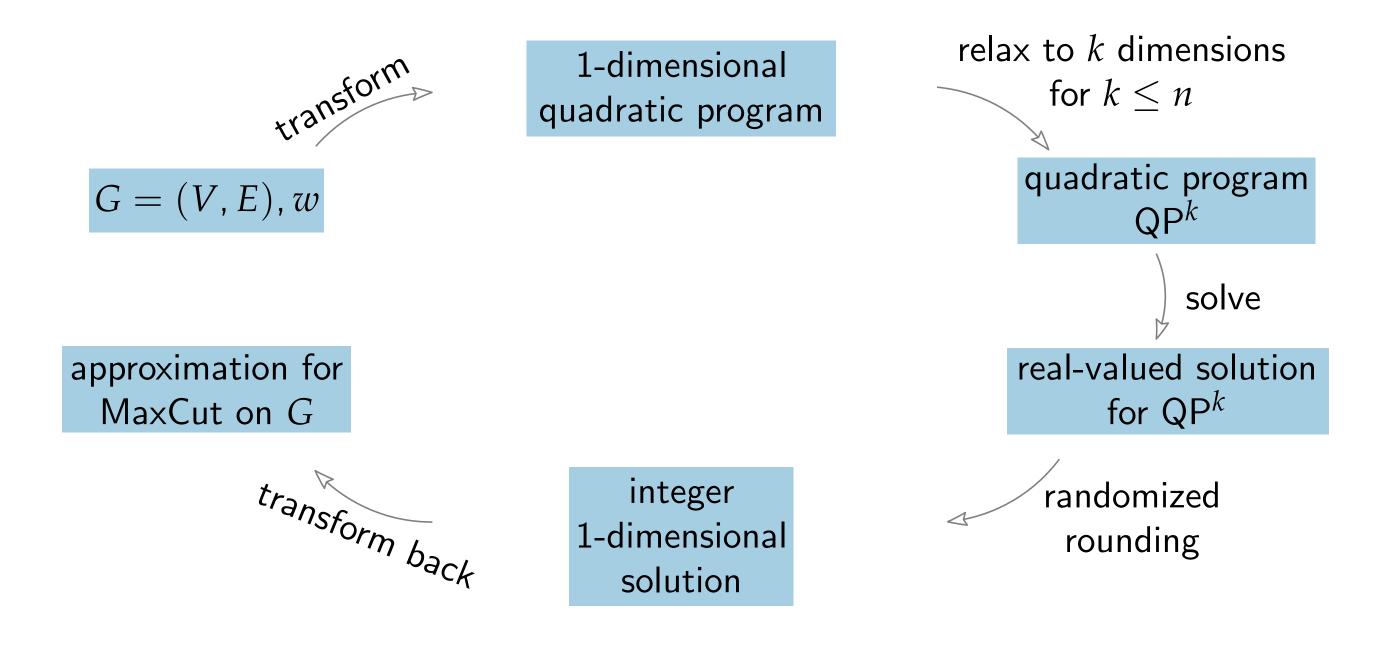


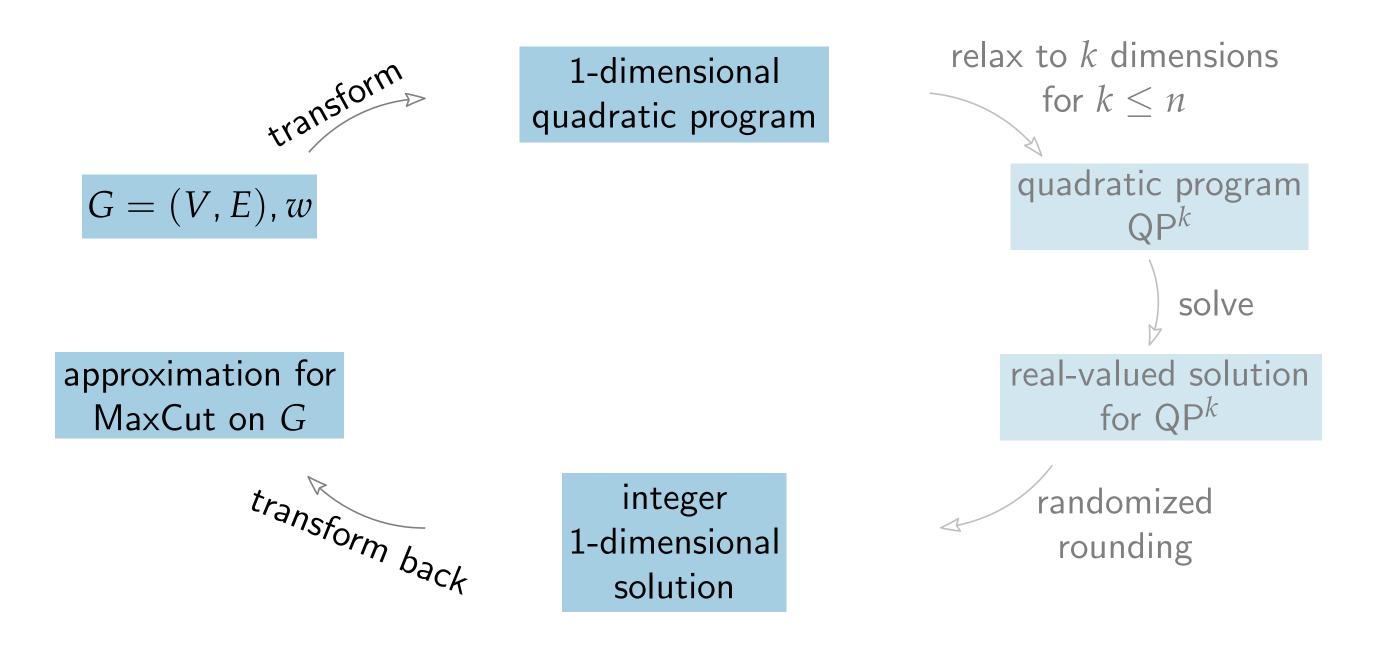
Solution,
 approximation,
 or bound

e.g. rounding



Solve in polynomial time



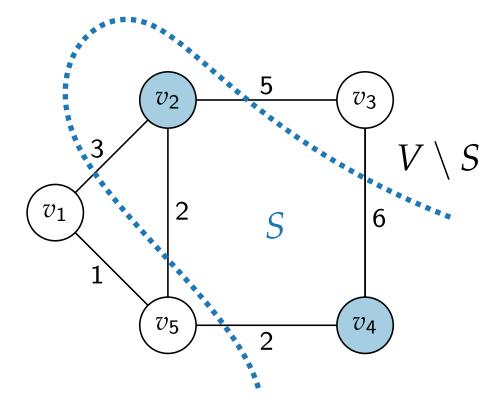


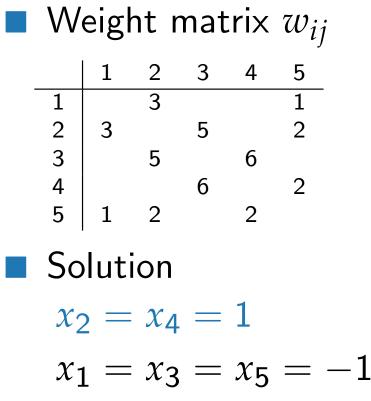
QP(G, w)

Idea.

Indicator variable for each vertex v_i : $x_i \in \{1, -1\}$

 $x_i \cdot x_j = \begin{cases} 1 & \text{if } i, j \text{ in same partition} \\ -1 & \text{otherwise} \end{cases}$





SU

Note.

- Solving QP(G, w) is NP-hard.
- Otherwise MaxCut would not be NP-hard.

$$\mathbf{QP}(G, w)$$
maximize $\frac{1}{2} \sum_{j=1}^{n} \sum_{i=1}^{j-1} w_{ij}(1 - x_i x_j)$ subject to $x_i^2 = 1$

G = (V, E), w

approximation for MaxCut on G 1-dimensional quadratic program

- Here explained for k = 2,
- but unknown if QP² can be solved optimally in polynomial time.
- **Q** P^n can be solved in poly. time.

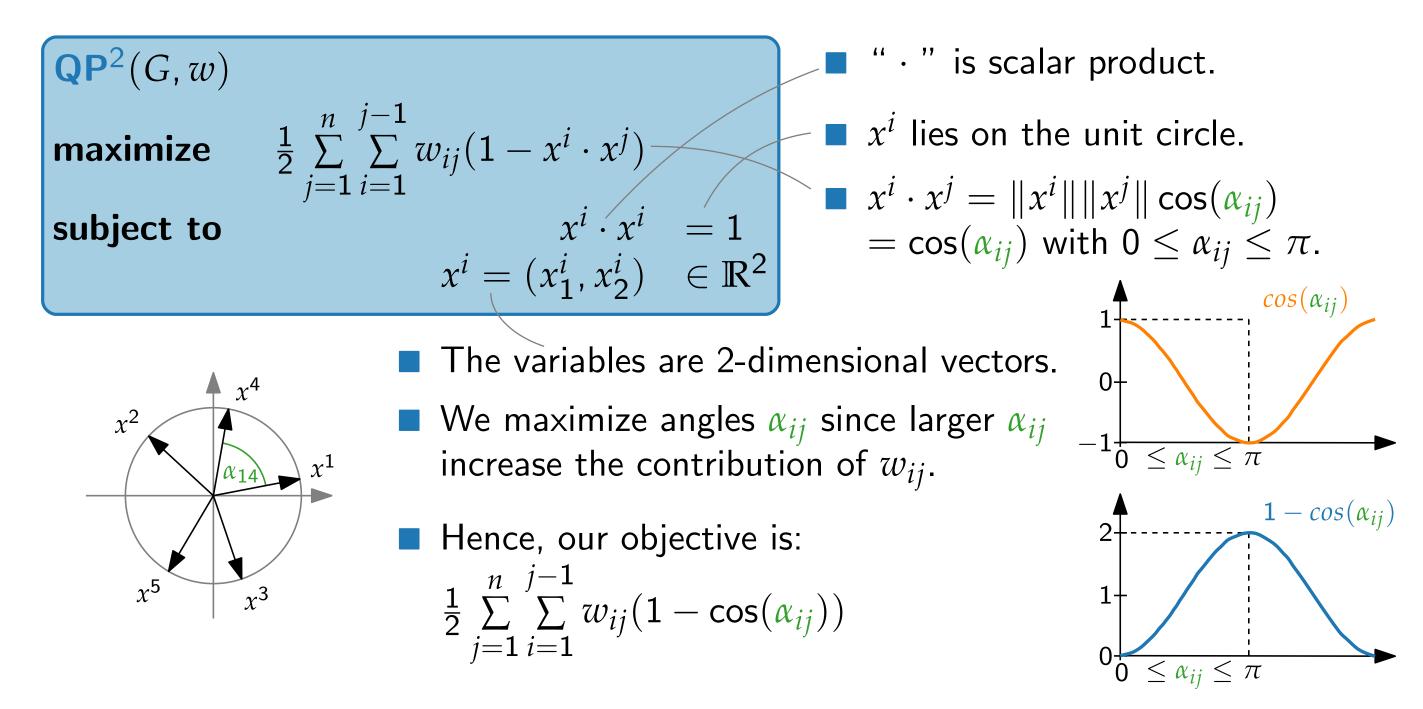
relax to k dimensions for k < nquadratic program $\mathsf{Q}\mathsf{P}^k$ solve real-valued solution for QP^k

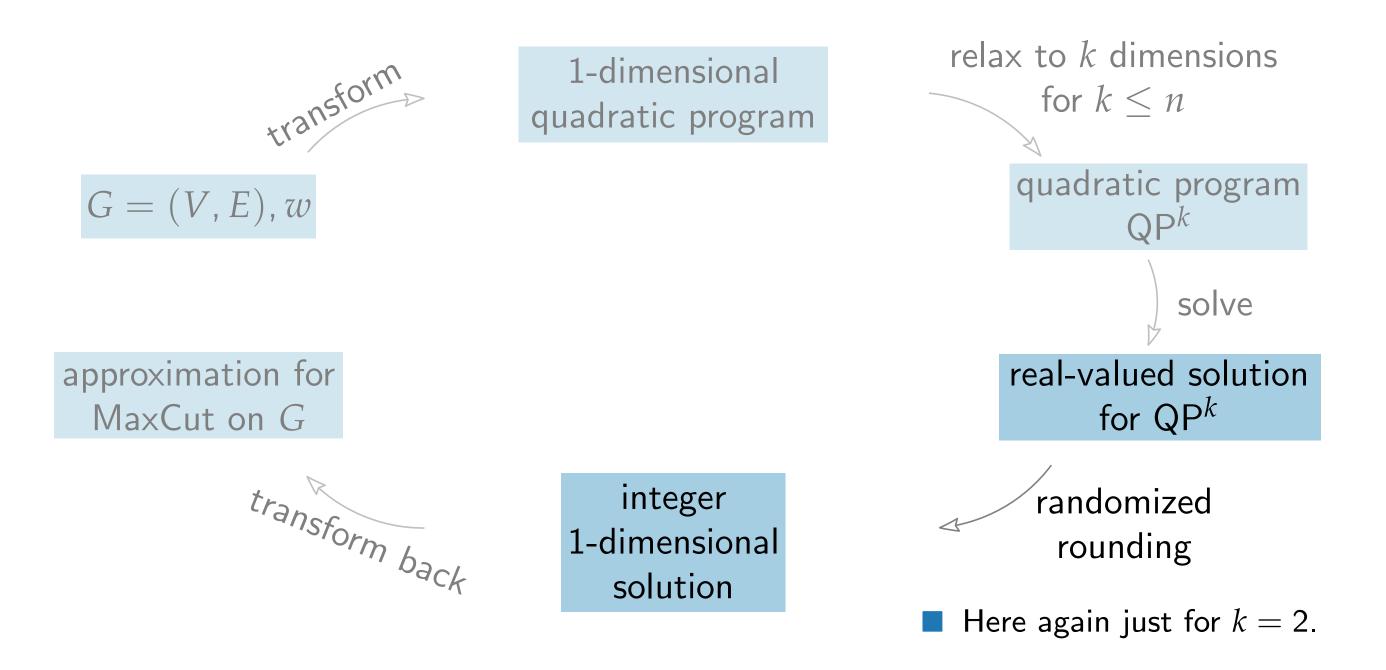
transform back

integer 1-dimensional solution

randomized rounding

Relaxation of QP(G, w)

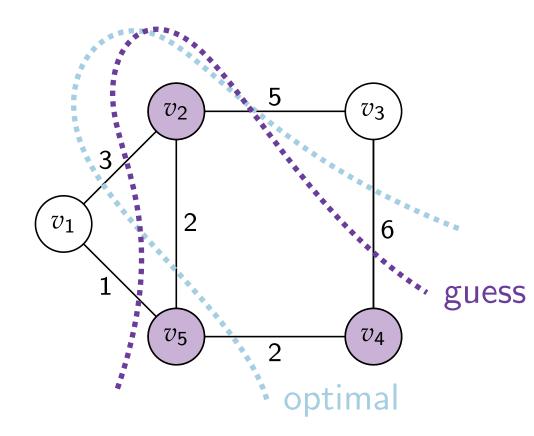


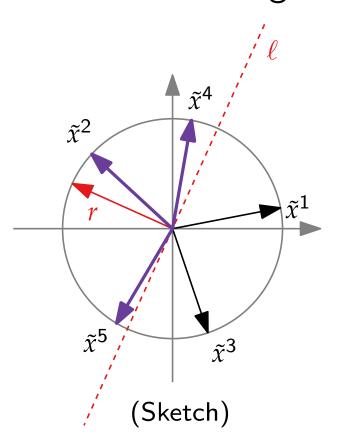


$\label{eq:algorithm} Algorithm \ Randomized MaxCut$

RANDOMIZEDMAXCUT(G, w)

Compute optimal solution $(\tilde{x}^1, ..., \tilde{x}^n)$ for $QP^2(G, w)$ Pick random vector $r \in \mathbb{R}^2$





$RandomMaxCut\ \mbox{-}$ Expected Value

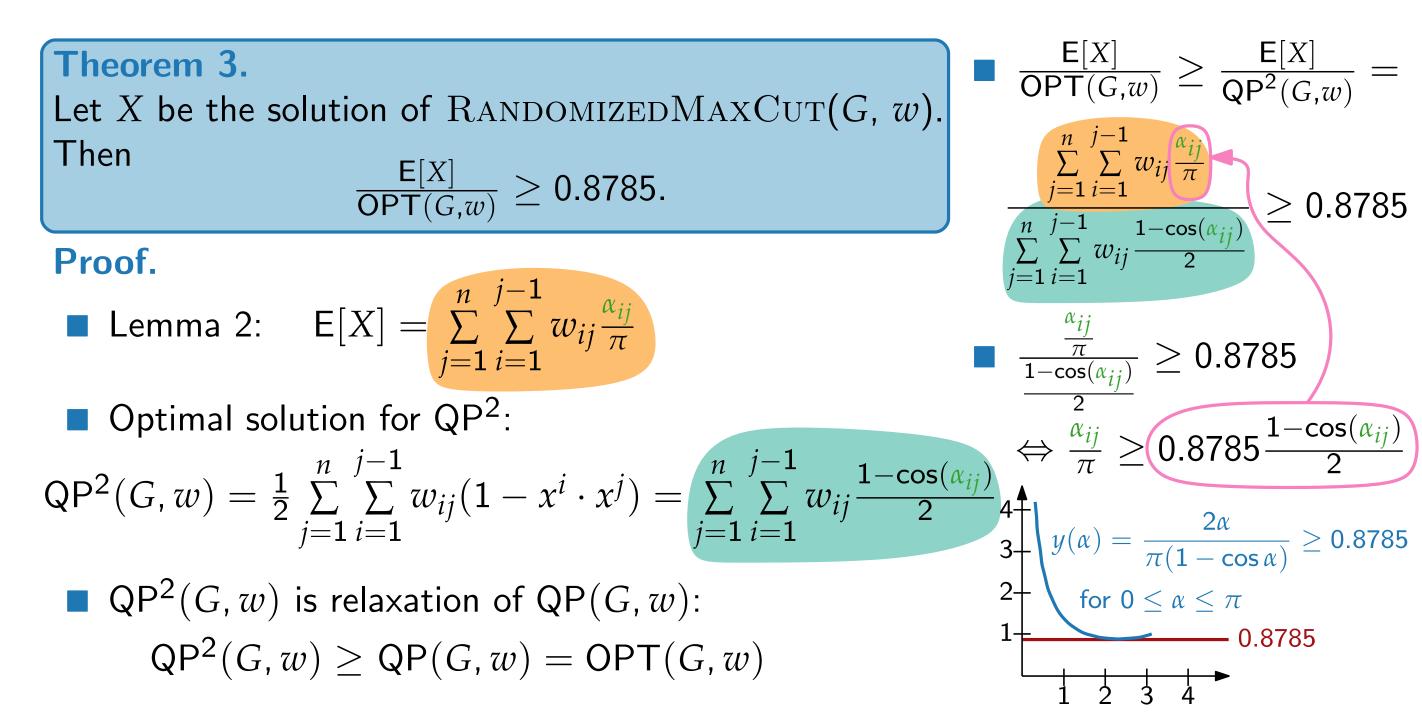
Lemma 2. Let X be the solution of RANDOMIZEDMAXCUT(G, w). If r is picked uniformally at random, then $\mathsf{E}[X] = \sum_{j=1}^{n} \sum_{i=1}^{j-1} w_{ij} \frac{\alpha_{ij}}{\pi}$. **Proof**. $\blacksquare E[X] = \sum_{j=1}^{n} \sum_{i=1}^{j-1} w_{ij} \operatorname{P}[\ell \text{ separates } \tilde{x}^{i}, \tilde{x}^{j}] = \sum_{j=1}^{n} \sum_{i=1}^{j-1} w_{ij} \frac{\alpha_{ij}}{\pi}$ • $\mathsf{P}[\ell \text{ separates } \tilde{x}^i, \tilde{x}^j] = \mathsf{P}[s \text{ or } t \text{ lies on } B_{ij}] = \frac{\alpha_{ij}}{2\pi} + \frac{\alpha_{ij}}{2\pi} = \frac{\alpha_{ij}}{\pi}$ \blacksquare B_{ij} has length α_{ij} .

If \tilde{x}^i (or \tilde{x}^j) lies $\leq \alpha_{ij}$ before s or t on the perimter of the unit disk, s or t lies on B_{ij} .

 $\tilde{\chi}^l$

 $\tilde{\chi}$

RandomMaxCut - Quality



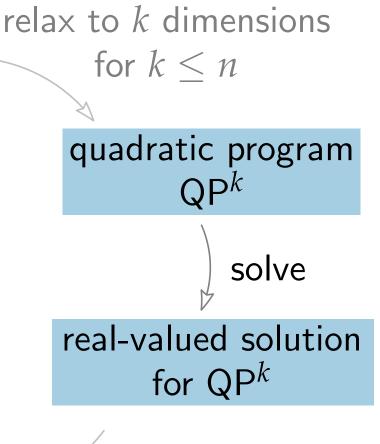
Example



$$G = (V, E), w$$

approximation for MaxCut on G 1-dimensional quadratic program

- So far, k = 2.
- QPⁿ can be solved in polynomial time.



transform back

integer 1-dimensional solution

randomized rounding

 $QP^n(G, w)$

 $\begin{aligned} \mathbf{QP}^2(G,w) \\ \text{maximize} \quad \frac{1}{2} \sum_{j=1}^n \sum_{i=1}^{j-1} w_{ij} (1 - x^i \cdot x^j) \\ \text{subject to} \quad & x^i \cdot x^i = 1 \\ x^i = (x_1^i, x_2^i) \quad \in \mathbb{R}^2 \end{aligned}$

$$\begin{aligned} \mathbf{QP}^{n}(G,w) \\ \text{maximize} \quad & \frac{1}{2} \sum_{j=1}^{n} \sum_{i=1}^{j-1} w_{ij} (1 - x^{i} \cdot x^{j}) \\ \text{subject to} \quad & x^{i} \cdot x^{i} \quad = 1 \\ & x^{i} \in \mathbb{R}^{n} \end{aligned}$$

- A matrix M is called **positive semidefinite** if for any vector $v \in \mathbb{R}^n$: $v^{\mathsf{T}} \cdot M \cdot v > 0$
- $M = (m_{ij}) = (x^i \cdot x^j)$ is positive semidefinite.
- $QP^n(G, w)$ becomes the problem SEMIDEFINITECUT(*G*, *w*).
 - Can be approximated in time polynomial in (G, w) and $1/\varepsilon$ with additive guarantee ε .
 - Note that the approximation of QP(G, w) is an extra step we have seen before. (The approximation of QP(G, w) with factor 0.8785 works for $QP^n(G, w)$, too)

Discussion

- If the Unique Games Conjecture is true, then the approximation ratio of ≈ 0.8785 achieved by SEMIDEFINITECUT (and RANDOMIZEDMAXCUT) is best possible.
- Otherwise, no approximation ratio better than $\frac{16}{17} \approx 0.941$ is possible. In particular no polynomial-time approximation scheme (PTAS) exists.
- On planar graphs, the MaxCut problem can be solved optimally in polynomial time.
- Semidefinite programming is a powerful tool to develop approximation algorithms
- Whole book on this topic:
 - [Gärtner, Matoušek] "Approximation Algorithms and Semidefinite Progamming"
- Using randomness is another tool to design approximation algorithms.
- $\rightarrow\,$ See future lectures, in particular the next lecture!

Literature

Original paper:

[GW '95] "Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming"

Source:

- [Vazirani Ch26] "Approximation Algorithms" Whole book on this topic:
- [Gärtner, Matoušek] "Approximation Algorithms and Semidefinite Progamming"

