

Advanced Algorithms

Approximation Algorithms Coloring and Scheduling Problems

Johannes Zink · WS23/24

Dealing with NP-Hard Optimization Problems

What should we do?

- Sacrifice optimality for speed
 - Heuristics
 - Approximation algorithms
- Optimal solutions
 - Exact exponential-time algorithms
 - Fine-grained analysis parameterized algorithms

Dealing with NP-Hard Optimization Problems

What should we do?

- Sacrifice optimality for speed
 - Heuristics

— this lecture

- Approximation algorithms
- Optimal solutions
 - Exact exponential-time algorithms
 - Fine-grained analysis parameterized algorithms

Problem.

- For NP-hard optimization problems, we cannot compute the optimal solution of every instance efficiently (unless P = NP).
- Heuristics offer no guarantee on the quality of their solutions.

Problem.

- For NP-hard optimization problems, we cannot compute the optimal solution of every instance efficiently (unless P = NP).
- Heuristics offer no guarantee on the quality of their solutions.

Goal.

- Design approximation algorithms:
 - run in polynomial time and
 - compute solutions of guaranteed quality.
- Study techniques for the design and analysis of approximation algorithms.

Problem.

- For NP-hard optimization problems, we cannot compute the optimal solution of every instance efficiently (unless P = NP).
- Heuristics offer no guarantee on the quality of their solutions.

Goal.

- Design approximation algorithms:
 - run in polynomial time and
 - compute solutions of guaranteed quality.
- Study techniques for the design and analysis of approximation algorithms.

Overview.

- Approximation algorithms that compute solutions
 - with additive guarantee, with relative guarantee, that are "arbitrarily good".

Problem.

- For NP-hard optimization problems, we cannot compute the optimal solution of every instance efficiently (unless P = NP).
- Heuristics offer no guarantee on the quality of their solutions.

Goal.

- Design approximation algorithms:
 - run in polynomial time and
 - compute solutions of guaranteed quality.
- Study techniques for the design and analysis of approximation algorithms.

Overview.

Approximation algorithms that compute solutions
 with additive guarantee, with relative guarantee, that are "arbitrarily good".

PTAS (polynomial-time approximation scheme)

Approximation with Additive Guarantee

Definition.

Let Π be an optimization problem, let \mathcal{A} be a polynomial-time algorithm for Π , let I be an instance of Π , and let ALG(I) be the value of the objective function of the solution that \mathcal{A} computes given I.

Then \mathcal{A} is called an **approximation algorithm with** additive guarantee δ (which can depend on I) if

 $|\mathsf{OPT}(I) - \mathsf{ALG}(I)| \le \delta$

for every instance I of Π .

Approximation with Additive Guarantee

Definition.

Let Π be an optimization problem, let \mathcal{A} be a polynomial-time algorithm for Π , let I be an instance of Π , and let ALG(I) be the value of the objective function of the solution that \mathcal{A} computes given I.

Then \mathcal{A} is called an **approximation algorithm with** additive guarantee δ (which can depend on I) if

 $|\mathsf{OPT}(I) - \mathsf{ALG}(I)| \le \delta$

for every instance I of Π .

Most problems that we know do not admit an approximation algorithm with additive guarantee.

Input. A graph G = (V, E). Let Δ be the maximum degree of G.

Output. A minimum vertex coloring, that is, an assignment of the vertices of G to colors such that no two adjacent vertices get the same color and the number of colors is minimum.

- **Output.** A minimum vertex coloring, that is, an assignment of the vertices of G to colors such that no two adjacent vertices get the same color and the number of colors is minimum.
- Minimum Vertex Coloring is NP-hard.
- Even Vertex 3-Coloring is NP-complete.

Input. A graph G = (V, E). Let Δ be the maximum degree of G.

- **Output.** A minimum vertex coloring, that is, an assignment of the vertices of G to colors such that no two adjacent vertices get the same color and the number of colors is minimum.
 - Minimum Vertex Coloring is NP-hard.
 - Even Vertex 3-Coloring is NP-complete.

Input. A graph G = (V, E). Let Δ be the maximum degree of G.

- **Output.** A minimum vertex coloring, that is, an assignment of the vertices of G to colors such that no two adjacent vertices get the same color and the number of colors is minimum.
 - Minimum Vertex Coloring is NP-hard.
 - Even Vertex 3-Coloring is NP-complete.

Input. A graph G = (V, E). Let Δ be the maximum degree of G.

- **Output.** A minimum vertex coloring, that is, an assignment of the vertices of G to colors such that no two adjacent vertices get the same color and the number of colors is minimum.
 - Minimum Vertex Coloring is NP-hard.
 - Even Vertex 3-Coloring is NP-complete.

Input. A graph G = (V, E). Let Δ be the maximum degree of G.

- **Output.** A minimum vertex coloring, that is, an assignment of the vertices of G to colors such that no two adjacent vertices get the same color and the number of colors is minimum.
 - Minimum Vertex Coloring is NP-hard.
 - Even Vertex 3-Coloring is NP-complete.

Input. A graph G = (V, E). Let Δ be the maximum degree of G.

- **Output.** A minimum vertex coloring, that is, an assignment of the vertices of G to colors such that no two adjacent vertices get the same color and the number of colors is minimum.
 - Minimum Vertex Coloring is NP-hard.
 - Even Vertex 3-Coloring is NP-complete.

Input. A graph G = (V, E). Let Δ be the maximum degree of G.

- **Output.** A minimum vertex coloring, that is, an assignment of the vertices of G to colors such that no two adjacent vertices get the same color and the number of colors is minimum.
 - Minimum Vertex Coloring is NP-hard.
 - Even Vertex 3-Coloring is NP-complete.

Input. A graph G = (V, E). Let Δ be the maximum degree of G.

- **Output.** A minimum vertex coloring, that is, an assignment of the vertices of G to colors such that no two adjacent vertices get the same color and the number of colors is minimum.
 - Minimum Vertex Coloring is NP-hard.
 - Even Vertex 3-Coloring is NP-complete.

Input. A graph G = (V, E). Let Δ be the maximum degree of G.

- **Output.** A minimum vertex coloring, that is, an assignment of the vertices of G to colors such that no two adjacent vertices get the same color and the number of colors is minimum.
- Minimum Vertex Coloring is NP-hard.
- Even Vertex 3-Coloring is NP-complete.

GreedyVertexColoring(connected graph G) Color vertices in some order with the lowest feasible color.

Theorem 1.

The algorithm GreedyVertexColoring computes a vertex coloring with at most colors in $\mathcal{O}(V+E)$ time. Hence, it has an additive approximation gurantee of

Input. A graph G = (V, E). Let Δ be the maximum degree of G.

- **Output.** A minimum vertex coloring, that is, an assignment of the vertices of G to colors such that no two adjacent vertices get the same color and the number of colors is minimum.
- Minimum Vertex Coloring is NP-hard.
- Even Vertex 3-Coloring is NP-complete.

GreedyVertexColoring(connected graph G) Color vertices in some order with the lowest feasible color.

Theorem 1.

The algorithm GreedyVertexColoring computes a vertex coloring with at most $\Delta+1$ colors in $\mathcal{O}(V+E)$ time. Hence, it has an additive approximation gurantee of

Input. A graph G = (V, E). Let Δ be the maximum degree of G.

- **Output.** A minimum vertex coloring, that is, an assignment of the vertices of G to colors such that no two adjacent vertices get the same color and the number of colors is minimum.
- Minimum Vertex Coloring is NP-hard.
- Even Vertex 3-Coloring is NP-complete.

GreedyVertexColoring(connected graph G) Color vertices in some order with the lowest feasible color.

Theorem 1.

The algorithm GreedyVertexColoring computes a vertex coloring with at most $\Delta + 1$ colors in $\mathcal{O}(V + E)$ time. Hence, it has an additive approximation gurantee of $\Delta - 1$.

Input. A graph G = (V, E). Let Δ be the maximum degree of G.

- **Output.** A minimum vertex coloring, that is, an assignment of the vertices of G to colors such that no two adjacent vertices get the same color and the number of colors is minimum.
 - Minimum Vertex Coloring is NP-hard.
 - Even Vertex 3-Coloring is NP-complete.

GreedyVertexColoring(connected graph G) Color vertices in some order with the lowest feasible color.

Theorem 1.

The algorithm GreedyVertexColoring computes a vertex coloring with at most $\Delta + 1$ colors in $\mathcal{O}(V + E)$ time. Hence, it has an additive approximation gurantee of $\Delta - 1$.

 $\begin{array}{c} \bullet \bullet \bullet \bullet \\ 5 \\ 1 \\ \bullet \bullet \\ 3 \\ \bullet \bullet \\ 6 \end{array} \begin{array}{c} 5 \\ \bullet \\ 4 \\ 2 \\ 6 \end{array}$

We can even get $\Delta - 2$ if we return a 2-coloring whenever G is bipartite.

Input. A graph G = (V, E). Let Δ be the maximum degree of G.

Output. A minimum edge coloring, that is, an assignment of colors to the edges of *G* such that no two adjacent edges get the same color and the number of colors is minimum.

- **Output.** A minimum edge coloring, that is, an assignment of colors to the edges of G such that no two adjacent edges get the same color and the number of colors is minimum.
 - Minimum Edge Coloring is NP-hard.
 - Even Edge 3-Coloring is NP-complete.

- **Output.** A minimum edge coloring, that is, an assignment of colors to the edges of *G* such that no two adjacent edges get the same color and the number of colors is minimum.
 - Minimum Edge Coloring is NP-hard.
 - Even Edge 3-Coloring is NP-complete.
 - The minimum number of colors needed for an edge coloring of G is called the chromatic index $\chi'(G)$.
- $\chi'(G)$ is lowerbounded by

- **Output.** A minimum edge coloring, that is, an assignment of colors to the edges of *G* such that no two adjacent edges get the same color and the number of colors is minimum.
 - Minimum Edge Coloring is NP-hard.
 - Even Edge 3-Coloring is NP-complete.
 - The minimum number of colors needed for an edge coloring of G is called the chromatic index $\chi'(G)$.
- $\chi'(G)$ is lowerbounded by Δ .

- **Output.** A minimum edge coloring, that is, an assignment of colors to the edges of *G* such that no two adjacent edges get the same color and the number of colors is minimum.
 - Minimum Edge Coloring is NP-hard.
 - Even Edge 3-Coloring is NP-complete.
- The minimum number of colors needed for an edge coloring of G is called the chromatic index $\chi'(G)$.
- $\chi'(G)$ is lowerbounded by Δ .
- We show that $\chi'(G) \leq \Delta + 1$.

Vizing's Theorem.

For every graph G = (V, E) with maximum degree Δ , it holds that $\Delta \leq \chi'(G) \leq \Delta + 1$.

Vadim G. Vizing (Kiew 1937 – 2017 Odessa)

Vizing's Theorem. For every graph G = (V, E) with maximum degree Δ , it holds that $\Delta \leq \chi'(G) \leq \Delta + 1$.

Proof by induction on m = |E|.

Base case m = 1 is trivial.

Vadim G. Vizing (Kiew 1937 – 2017 Odessa)

Vizing's Theorem. For every graph G = (V, E) with maximum degree Δ , it holds that $\Delta \leq \chi'(G) \leq \Delta + 1$.

Proof by induction on m = |E|.

Base case m = 1 is trivial.

Let G be a graph on m edges, and let e = uv be an edge of G.

By induction, G - e has a $(\Delta(G - e) + 1)$ -edge coloring.

Vadim G. Vizing (Kiew 1937 – 2017 Odessa)

Vizing's Theorem. For every graph G = (V, E) with maximum degree Δ , it holds that $\Delta \leq \chi'(G) \leq \Delta + 1$.

Proof by induction on m = |E|.

Base case m = 1 is trivial.

Let G be a graph on m edges, and let e = uv be an edge of G.

- By induction, G e has a $(\Delta(G e) + 1)$ -edge coloring.
- If $\Delta(G) > \Delta(G e)$, color e with color $\Delta(G) + 1$.

Vadim G. Vizing (Kiew 1937 – 2017 Odessa)

Vizing's Theorem. For every graph G = (V, E) with maximum degree Δ , it holds that $\Delta \leq \chi'(G) \leq \Delta + 1$.

Proof by induction on m = |E|.

Base case m = 1 is trivial.

Let G be a graph on m edges, and let e = uv be an edge of G.

- By induction, G e has a $(\Delta(G e) + 1)$ -edge coloring.
- If $\Delta(G) > \Delta(G e)$, color e with color $\Delta(G) + 1$.
- If $\Delta(G) = \Delta(G e)$, change the coloring such that u and v miss the same color α .

Vadim G. Vizing (Kiew 1937 – 2017 Odessa)

(next slide)

Vizing's Theorem. For every graph G = (V, E) with maximum degree Δ , it holds that $\Delta \leq \chi'(G) \leq \Delta + 1$.

Proof by induction on m = |E|.

Base case m = 1 is trivial.

Let G be a graph on m edges, and let e = uv be an edge of G.

- By induction, G e has a $(\Delta(G e) + 1)$ -edge coloring.
- If $\Delta(G) > \Delta(G e)$, color e with color $\Delta(G) + 1$.
- If $\Delta(G) = \Delta(G e)$, change the coloring such that u and vmiss the same color α .
- Then color e with α .

Vadim G. Vizing (Kiew 1937 – 2017 Odessa)

(next slide)

Minimum Edge Coloring – Recoloring

Lemma 2.

Let G be a graph with a $(\Delta + 1)$ -edge coloring c, let u, v be non-adjacent vertices with deg(u), deg $(v) < \Delta$. Then c can be changed s.t. u and v miss the same color.

Lemma 2.

Let G be a graph with a $(\Delta + 1)$ -edge coloring c, let u, v be non-adjacent vertices with deg(u), deg $(v) < \Delta$. Then c can be changed s.t. u and v miss the same color.

Proof. Note that every vertex is **missing** a color.

Lemma 2.

Let G be a graph with a $(\Delta + 1)$ -edge coloring c, let u, v be non-adjacent vertices with deg(u), deg $(v) < \Delta$. Then c can be changed s.t. u and v miss the same color.

Lemma 2.

Let G be a graph with a $(\Delta + 1)$ -edge coloring c, let u, v be non-adjacent vertices with deg(u), deg $(v) < \Delta$. Then c can be changed s.t. u and v miss the same color.

```
VizingRecoloring(G, c, u, \alpha_1)

i \leftarrow 1

while \exists w \in N(u) : c(uw) = \alpha_i \land w \notin \{v_1, \dots, v_{i-1}\} do

\begin{bmatrix} v_i \leftarrow w \\ \alpha_{i+1} \leftarrow \text{min color missing at } w \\ i \leftarrow i+1 \end{bmatrix}

return v_1, \dots, v_i; \alpha_1, \dots, \alpha_{i+1}
```


Lemma 2.

Let G be a graph with a $(\Delta + 1)$ -edge coloring c, let u, v be non-adjacent vertices with deg(u), deg $(v) < \Delta$. Then c can be changed s.t. u and v miss the same color.

```
VizingRecoloring(G, c, u, \alpha_1)

i \leftarrow 1

while \exists w \in N(u) : c(uw) = \alpha_i \land w \notin \{v_1, \dots, v_{i-1}\} do

v_i \leftarrow w

\alpha_{i+1} \leftarrow \text{min color missing at } w

i \leftarrow i+1

return v_1, \dots, v_i; \alpha_1, \dots, \alpha_{i+1}
```


Lemma 2.

Let G be a graph with a $(\Delta + 1)$ -edge coloring c, let u, v be non-adjacent vertices with deg(u), deg $(v) < \Delta$. Then c can be changed s.t. u and v miss the same color.

```
VizingRecoloring(G, c, u, \alpha_1)

i \leftarrow 1

while \exists w \in N(u) : c(uw) = \alpha_i \land w \notin \{v_1, \dots, v_{i-1}\} do

v_i \leftarrow w

\alpha_{i+1} \leftarrow \text{min color missing at } w

i \leftarrow i+1

return v_1, \dots, v_i; \alpha_1, \dots, \alpha_{i+1}
```


Lemma 2.

Let G be a graph with a $(\Delta + 1)$ -edge coloring c, let u, v be non-adjacent vertices with deg(u), deg $(v) < \Delta$. Then c can be changed s.t. u and v miss the same color.

```
VizingRecoloring(G, c, u, \alpha_1)

i \leftarrow 1

while \exists w \in N(u) : c(uw) = \alpha_i \land w \notin \{v_1, \dots, v_{i-1}\} do

v_i \leftarrow w

\alpha_{i+1} \leftarrow \text{min color missing at } w

i \leftarrow i+1

return v_1, \dots, v_i; \alpha_1, \dots, \alpha_{i+1}
```


Lemma 2.

Let G be a graph with a $(\Delta + 1)$ -edge coloring c, let u, v be non-adjacent vertices with deg(u), deg $(v) < \Delta$. Then c can be changed s.t. u and v miss the same color.

```
VizingRecoloring(G, c, u, \alpha_1)

i \leftarrow 1

while \exists w \in N(u) : c(uw) = \alpha_i \land w \notin \{v_1, \dots, v_{i-1}\} do

\begin{bmatrix} v_i \leftarrow w \\ \alpha_{i+1} \leftarrow \text{min color missing at } w \\ i \leftarrow i+1 \end{bmatrix}

return v_1, \dots, v_i; \alpha_1, \dots, \alpha_{i+1}
```


Let G be a graph with a $(\Delta + 1)$ -edge coloring C,

Lemma 2.

Proof. Note that every vertex is **missing** a color. Let u miss β and v miss α_1 ; apply the following algorithm: VizingRecoloring(G, c, u, α_1) $i \leftarrow 1$ while $\exists w \in N(u)$: $c(uw) = \alpha_i \land w \notin \{v_1, \ldots, v_{i-1}\}$ do $v_i \leftarrow w$ $\alpha_{i+1} \leftarrow \min \text{ color missing at } w$ $i \leftarrow i + 1$ return $v_1, \ldots, v_i; \alpha_1, \ldots, \alpha_{i+1}$

Case 1: u misses α_{h+1} .

Lemma 2.

Let G be a graph with a $(\Delta + 1)$ -edge coloring c, let u, v be non-adjacent vertices with deg(u), deg(v) < Δ . Then c can be changed s.t. u and v miss the same color. **Proof.** Note that every vertex is **missing** a color. Let u miss β and v miss α_1 ; apply the following algorithm: VizingRecoloring(G, c, u, α_1) $i \leftarrow 1$ while $\exists w \in N(u) : c(uw) = \alpha_i \land w \notin \{v_1, \dots, v_{i-1}\}$ do $v_i \leftarrow w$ $\alpha_{i+1} \leftarrow \min \text{ color missing at } w$ $i \leftarrow i + 1$ return $v_1, \ldots, v_i; \alpha_1, \ldots, \alpha_{i+1}$

Case 2:
$$\alpha_{h+1} = \alpha_j$$
, $j < h$.

Proof continued for Case 2: $\alpha_{h+1} = \alpha_j$, j < h, and we need to find a color for edge uv_j .

- **Proof** continued for Case 2: $\alpha_{h+1} = \alpha_j$, j < h, and we need to find a color for edge uv_j .
- Consider subgraph G' of G induced by the edges of colors β and α_j .

- **Proof** continued for Case 2: $\alpha_{h+1} = \alpha_j$, j < h, and we need to find a color for edge uv_j .
- Consider subgraph G' of G induced by the edges of colors β and α_j .
- Since $\Delta(G') \leq 2$, we can recolor components.

- **Proof** continued for Case 2: $\alpha_{h+1} = \alpha_j$, j < h, and we need to find a color for edge uv_j .
- Consider subgraph G' of G induced by the edges of colors β and α_j .
- Since $\Delta(G') \leq 2$, we can recolor components.

- **Proof** continued for Case 2: $\alpha_{h+1} = \alpha_j$, j < h, and we need to find a color for edge uv_j .
- Consider subgraph G' of G induced by the edges of colors β and α_j .
- Since $\Delta(G') \leq 2$, we can recolor components.
- Nodes u, v_j , v_h are all leaves in G'. \Rightarrow They are not all in the same component of G'.

- **Proof** continued for Case 2: $\alpha_{h+1} = \alpha_j$, j < h, and we need to find a color for edge uv_j .
- Consider subgraph G' of G induced by the edges of colors β and α_j .
- Since $\Delta(G') \leq 2$, we can recolor components.
- Nodes u, v_j , v_h are all leaves in G'. ⇒ They are not all in the same component of G'.
- If u and v_j are not in the same component:

- **Proof** continued for Case 2: $\alpha_{h+1} = \alpha_j$, j < h, and we need to find a color for edge uv_j .
- Consider subgraph G' of G induced by the edges of colors β and α_j .
- Since $\Delta(G') \leq 2$, we can recolor components.
- Nodes u, v_j , v_h are all leaves in G'. \Rightarrow They are not all in the same component of G'.
- If u and v_j are not in the same component:
 re-color component ending at v_j,

- **Proof** continued for Case 2: $\alpha_{h+1} = \alpha_j$, j < h, and we need to find a color for edge uv_j .
- Consider subgraph G' of G induced by the edges of colors β and α_j .
- Since $\Delta(G') \leq 2$, we can recolor components.
- Nodes u, v_j , v_h are all leaves in G'. ⇒ They are not all in the same component of G'.
- If u and v_j are not in the same component:
 re-color component ending at v_j,
 v_j now misses β; color uv_j with β.

- **Proof** continued for Case 2: $\alpha_{h+1} = \alpha_j$, j < h, and we need to find a color for edge uv_j .
- Consider subgraph G' of G induced by the edges of colors β and α_j .
- Since $\Delta(G') \leq 2$, we can recolor components.
- Nodes u, v_j , v_h are all leaves in G'. \Rightarrow They are not all in the same component of G'.
- If u and v_j are not in the same component:
 re-color component ending at v_j,
 v_j now misses β; color uv_j with β.
- What if u and v_j are in the same component?

- **Proof** continued for Case 2: $\alpha_{h+1} = \alpha_j$, j < h, and we need to find a color for edge uv_j .
- Consider subgraph G' of G induced by the edges of colors β and α_j .
- Since $\Delta(G') \leq 2$, we can recolor components.
- Nodes u, v_j , v_h are all leaves in G'. \Rightarrow They are not all in the same component of G'.
- If u and v_j are not in the same component:
 re-color component ending at v_j,
 v_j now misses β; color uv_j with β.
- What if u and v_j are in the same component?
 re-color component ending at v_h if there is β

- **Proof** continued for Case 2: $\alpha_{h+1} = \alpha_j$, j < h, and we need to find a color for edge uv_j .
- Consider subgraph G' of G induced by the edges of colors β and α_j .
- Since $\Delta(G') \leq 2$, we can recolor components.
- Nodes u, v_j, v_h are all leaves in G'. \Rightarrow They are not all in the same component of G'.
- If u and v_j are not in the same component:
 re-color component ending at v_j,
 v_j now misses β; color uv_j with β.
- What if u and v_j are in the same component?
 re-color component ending at v_h if there is β

- **Proof** continued for Case 2: $\alpha_{h+1} = \alpha_j$, j < h, and we need to find a color for edge uv_j .
- Consider subgraph G' of G induced by the edges of colors β and α_j .
- Since $\Delta(G') \leq 2$, we can recolor components.
- Nodes u, v_j , v_h are all leaves in G'. \Rightarrow They are not all in the same component of G'.
- If u and v_j are not in the same component:
 re-color component ending at v_j,
 v_j now misses β; color uv_j with β.
- What if u and v_j are in the same component?
 re-color component ending at v_h if there is β
 color uv_h with β;

Minimum Edge Coloring – Recoloring

- **Proof** continued for Case 2: $\alpha_{h+1} = \alpha_j$, j < h, and we need to find a color for edge uv_j .
- Consider subgraph G' of G induced by the edges of colors β and α_j .
- Since $\Delta(G') \leq 2$, we can recolor components.
- Nodes u, v_j, v_h are all leaves in G'. \Rightarrow They are not all in the same component of G'.
- If u and v_j are not in the same component:
 re-color component ending at v_j,
 v_j now misses β; color uv_j with β.
- What if u and v_j are in the same component?
 re-color component ending at v_h if there is β c
 color uv_h with β; color uv_j with α_{j+1} and so on

Minimum Edge Coloring – Recoloring

- **Proof** continued for Case 2: $\alpha_{h+1} = \alpha_j$, j < h, and we need to find a color for edge uv_j .
- Consider subgraph G' of G induced by the edges of colors β and α_j .
- Since $\Delta(G') \leq 2$, we can recolor components.
- Nodes u, v_j, v_h are all leaves in G'. \Rightarrow They are not all in the same component of G'.
- If u and v_j are not in the same component:
 re-color component ending at v_j,
 v_j now misses β; color uv_j with β.
- What if u and v_j are in the same component?
 re-color component ending at v_h if there is β
 color uv_h with β; color uv_j with α_{j+1} and so on

Minimum Edge Coloring – Algorithm

```
VizingEdgeColoring(graph G, coloring c \equiv 0)
 if E(G) \neq \emptyset then
      Let e = uv be an arbitrary edge of G.
      G_{e} \leftarrow G - e
     VizingEdgeColoring(G_e, c)
     if \Delta(G_e) < \Delta(G) then
         Color e with lowest free color.
      else
          Recolor G_e as in Lemma 2.
          Color e with color now missing at u and v.
```

Minimum Edge Coloring – Algorithm

```
VizingEdgeColoring(graph G, coloring c \equiv 0)
 if E(G) \neq \emptyset then
      Let e = uv be an arbitrary edge of G.
      G_{e} \leftarrow G - e
     VizingEdgeColoring(G_e, c)
      if \Delta(G_e) < \Delta(G) then
         Color e with lowest free color.
      else
          Recolor G_e as in Lemma 2.
          Color e with color now missing at u and v.
```

Theorem 4.

VIZINGEDGECOLORING is an approximation algorithm with additive approximation guarantee $ALG(G) - OPT(G) \leq 1.$

Approximation with Relative Factor

An additive approximation guarantee can rarely be achieved; but sometimes, there is a multiplicative approximation!

Approximation with Relative Factor

An additive approximation guarantee can rarely be achieved; but sometimes, there is a multiplicative approximation!

Definition.

Let Π be a minimization problem, and let $\alpha \in \mathbb{Q}^+$. A factor- α approximation algorithm for Π is a polynomial-time algorithm \mathcal{A} that computes, for every instance I of Π , a solution of value ALG(I) such that

$$\frac{\mathsf{ALG}(I)}{\mathsf{OPT}(I)} \le \alpha$$

We call α the approximation factor of \mathcal{A} .

Approximation with Relative Factor

An additive approximation guarantee can rarely be achieved; but sometimes, there is a multiplicative approximation!

> **Definition.** Let Π be a minimization problem, and let $\alpha \in \mathbb{Q}^+$. A factor- α approximation algorithm for Π is a polynomial-time algorithm \mathcal{A} that computes, for every instance I of Π , a solution of value ALG(I) such that

$$\frac{\mathsf{ALG}(I)}{\mathsf{OPT}(I)} \stackrel{\geq}{\leq} \alpha$$

We call α the approximation factor of \mathcal{A} .

Input. Complete graph G = (V, E) and a distance function $d: E \to \mathbb{R}_{\geq 0}$ that satisfies the triangle inequality, i.e., $\forall u, v, w \in V: d(u, w) \leq d(u, v) + d(v, w)$.

Input. Complete graph G = (V, E) and a distance function $d: E \to \mathbb{R}_{\geq 0}$ that satisfies the triangle inequality, i.e., $\forall u, v, w \in V: d(u, w) \leq d(u, v) + d(v, w)$.

Output. A shortest Hamiltonian cycle in G.

Input. Complete graph G = (V, E) and a distance function $d: E \to \mathbb{R}_{\geq 0}$ that satisfies the triangle inequality, i.e., $\forall u, v, w \in V: d(u, w) \leq d(u, v) + d(v, w)$.

Output. A shortest Hamiltonian cycle in G.

Input. Complete graph G = (V, E) and a distance function $d: E \to \mathbb{R}_{\geq 0}$ that satisfies the triangle inequality, i.e., $\forall u, v, w \in V: d(u, w) \leq d(u, v) + d(v, w)$.

Output. A shortest Hamiltonian cycle in G.

Input. Complete graph G = (V, E) and a distance function $d: E \to \mathbb{R}_{\geq 0}$ that satisfies the triangle inequality, i.e., $\forall u, v, w \in V: d(u, w) \leq d(u, v) + d(v, w)$.

Output. A shortest Hamiltonian cycle in G.

Algorithm.

Compute MST.

11 - 6

Input. Complete graph G = (V, E) and a distance function $d: E \to \mathbb{R}_{\geq 0}$ that satisfies the triangle inequality, i.e., $\forall u, v, w \in V: d(u, w) \leq d(u, v) + d(v, w)$.

Output. A shortest Hamiltonian cycle in G.

Algorithm. ■ Compute MST.

Input. Complete graph G = (V, E) and a distance function $d: E \to \mathbb{R}_{\geq 0}$ that satisfies the triangle inequality, i.e., $\forall u, v, w \in V: d(u, w) \leq d(u, v) + d(v, w)$.

Output. A shortest Hamiltonian cycle in G.

- Compute MST.
- Double edges. $\Rightarrow \text{Eulerian cycle}$

Input. Complete graph G = (V, E) and a distance function $d: E \to \mathbb{R}_{\geq 0}$ that satisfies the triangle inequality, i.e., $\forall u, v, w \in V: d(u, w) \leq d(u, v) + d(v, w)$.

Output. A shortest Hamiltonian cycle in G.

Algorithm. Compute MST. Double edges. ⇒ Eulerian cycle Walk along Eulerian cycle,

Input. Complete graph G = (V, E) and a distance function $d: E \to \mathbb{R}_{>0}$ that satisfies the triangle inequality, i.e., $\forall u, v, w \in V : d(u, w) \leq d(u, v) + d(v, w)$.

Output. A shortest Hamiltonian cycle in G.

Algorithm. Compute MST. Double edges. \Rightarrow Eulerian cycle Walk along Eulerian cycle,

Input. Complete graph G = (V, E) and a distance function $d: E \to \mathbb{R}_{\geq 0}$ that satisfies the triangle inequality, i.e., $\forall u, v, w \in V: d(u, w) \leq d(u, v) + d(v, w)$.

Output. A shortest Hamiltonian cycle in G.

Algorithm. Compute MST. Double edges. ⇒ Eulerian cycle Walk along Eulerian cycle,

Input. Complete graph G = (V, E) and a distance function $d: E \to \mathbb{R}_{\geq 0}$ that satisfies the triangle inequality, i.e., $\forall u, v, w \in V: d(u, w) \leq d(u, v) + d(v, w)$.

Output. A shortest Hamiltonian cycle in G.

Algorithm. Compute MST. Double edges. ⇒ Eulerian cycle Walk along Eulerian cycle,

Input. Complete graph G = (V, E) and a distance function $d: E \to \mathbb{R}_{>0}$ that satisfies the triangle inequality, i.e., $\forall u, v, w \in V : d(u, w) \leq d(u, v) + d(v, w)$.

Output. A shortest Hamiltonian cycle in G.

Algorithm. Compute MST. Double edges. \Rightarrow Eulerian cycle Walk along Eulerian cycle,

skipping visited vertices

Input. Complete graph G = (V, E) and a distance function $d: E \to \mathbb{R}_{\geq 0}$ that satisfies the triangle inequality, i.e., $\forall u, v, w \in V: d(u, w) \leq d(u, v) + d(v, w)$.

Output. A shortest Hamiltonian cycle in G.

Algorithm. ■ Compute MST.

- Double edges. $\Rightarrow Eulerian cycle$
- Walk along Eulerian cycle,
- skipping visited vertices

Input. Complete graph G = (V, E) and a distance function $d: E \to \mathbb{R}_{\geq 0}$ that satisfies the triangle inequality, i.e., $\forall u, v, w \in V: d(u, w) \leq d(u, v) + d(v, w)$.

Output. A shortest Hamiltonian cycle in G.

- Compute MST.
- Double edges. $\Rightarrow \text{Eulerian cycle}$
- Walk along Eulerian cycle,
- skipping visited vertices
- and adding shortcuts.

Input. Complete graph G = (V, E) and a distance function $d: E \to \mathbb{R}_{\geq 0}$ that satisfies the triangle inequality, i.e., $\forall u, v, w \in V: d(u, w) \leq d(u, v) + d(v, w)$.

Output. A shortest Hamiltonian cycle in G.

- Compute MST.
- Double edges. $\Rightarrow Eulerian cycle$
- Walk along Eulerian cycle,
- skipping visited vertices
- and adding shortcuts.

Input. Complete graph G = (V, E) and a distance function $d: E \to \mathbb{R}_{\geq 0}$ that satisfies the triangle inequality, i.e., $\forall u, v, w \in V: d(u, w) \leq d(u, v) + d(v, w)$.

Output. A shortest Hamiltonian cycle in G.

- Compute MST.
- Double edges. $\Rightarrow Eulerian cycle$
- Walk along Eulerian cycle,
- skipping visited vertices
- and adding shortcuts.

Input. Complete graph G = (V, E) and a distance function $d: E \to \mathbb{R}_{\geq 0}$ that satisfies the triangle inequality, i.e., $\forall u, v, w \in V: d(u, w) \leq d(u, v) + d(v, w)$.

Output. A shortest Hamiltonian cycle in G.

Algorithm. Compute MST. Double edges. ⇒ Eulerian cycle Walk along Eulerian cycle, skipping visited vertices

and adding shortcuts.

Input. Complete graph G = (V, E) and a distance function $d: E \to \mathbb{R}_{\geq 0}$ that satisfies the triangle inequality, i.e., $\forall u, v, w \in V: d(u, w) \leq d(u, v) + d(v, w)$.

Output. A shortest Hamiltonian cycle in G.

Algorithm. Compute MST. Double edges. ⇒ Eulerian cycle Walk along Eulerian cycle,

- skipping visited vertices
- and adding shortcuts.

Input. Complete graph G = (V, E) and a distance function $d: E \to \mathbb{R}_{\geq 0}$ that satisfies the triangle inequality, i.e., $\forall u, v, w \in V: d(u, w) \leq d(u, v) + d(v, w)$.

Output. A shortest Hamiltonian cycle in G.

- Compute MST.
- Double edges. $\Rightarrow \text{Eulerian cycle}$
- Walk along Eulerian cycle,
- skipping visited vertices
- and adding shortcuts.

Input. Complete graph G = (V, E) and a distance function $d: E \to \mathbb{R}_{\geq 0}$ that satisfies the triangle inequality, i.e., $\forall u, v, w \in V: d(u, w) \leq d(u, v) + d(v, w)$.

Output. A shortest Hamiltonian cycle in G.

Algorithm.

- Compute MST.
- Double edges. $\Rightarrow \text{Eulerian cycle}$
- Walk along Eulerian cycle,
- skipping visited vertices
- and adding shortcuts.

Theorem 5.

The MST edge doubling algorithm is a 2-approximation algorithm for metric TSP.

Input. Complete graph G = (V, E) and a distance function $d: E \to \mathbb{R}_{\geq 0}$ that satisfies the triangle inequality, i.e., $\forall u, v, w \in V: d(u, w) \leq d(u, v) + d(v, w)$.

Output. A shortest Hamiltonian cycle in G.

Algorithm.

- Compute MST.
- Double edges. $\Rightarrow \text{Eulerian cycle}$
- Walk along Eulerian cycle,
- skipping visited vertices
- and adding shortcuts.

Theorem 5.

The MST edge doubling algorithm is a 2-approximation algorithm for metric TSP.

Proof. ALG $\leq d(cycle) = 2d(MST) \leq 20PT.$


```
NearestAdditionAlgorithm(G = (V, E), d)

Find closest pair, say i and k.

Set tour T to go from i to k to i (clockwise).

while T \subsetneq V do

Find pair (i, j) \in T \times (V \setminus T) minimizing d(i, j).

Let k be vertex after i in T.

Add j between i and k.
```



```
NearestAdditionAlgorithm(G = (V, E), d)

Find closest pair, say i and k.

Set tour T to go from i to k to i (clockwise).

while T \subsetneq V do

Find pair (i, j) \in T \times (V \setminus T) minimizing d(i, j).

Let k be vertex after i in T.

Add j between i and k.
```



```
NearestAdditionAlgorithm(G = (V, E), d)

Find closest pair, say i and k.

Set tour T to go from i to k to i (clockwise).

while T \subsetneq V do

Find pair (i, j) \in T \times (V \setminus T) minimizing d(i, j).

Let k be vertex after i in T.

Add j between i and k.
```



```
NearestAdditionAlgorithm(G = (V, E), d)

Find closest pair, say i and k.

Set tour T to go from i to k to i (clockwise).

while T \subsetneq V do

Find pair (i, j) \in T \times (V \setminus T) minimizing d(i, j).

Let k be vertex after i in T.

Add j between i and k.
```



```
NearestAdditionAlgorithm(G = (V, E), d)

Find closest pair, say i and k.

Set tour T to go from i to k to i (clockwise).

while T \subsetneq V do

Find pair (i, j) \in T \times (V \setminus T) minimizing d(i, j).

Let k be vertex after i in T.

Add j between i and k.
```



```
NearestAdditionAlgorithm(G = (V, E), d)

Find closest pair, say i and k.

Set tour T to go from i to k to i (clockwise).

while T \subsetneq V do

Find pair (i, j) \in T \times (V \setminus T) minimizing d(i, j).

Let k be vertex after i in T.

Add j between i and k.
```



```
NearestAdditionAlgorithm(G = (V, E), d)

Find closest pair, say i and k.

Set tour T to go from i to k to i (clockwise).

while T \subsetneq V do

Find pair (i, j) \in T \times (V \setminus T) minimizing d(i, j).

Let k be vertex after i in T.

Add j between i and k.
```



```
NearestAdditionAlgorithm(G = (V, E), d)

Find closest pair, say i and k.

Set tour T to go from i to k to i (clockwise).

while T \subsetneq V do

Find pair (i, j) \in T \times (V \setminus T) minimizing d(i, j).

Let k be vertex after i in T.

Add j between i and k.
```



```
NearestAdditionAlgorithm(G = (V, E), d)

Find closest pair, say i and k.

Set tour T to go from i to k to i (clockwise).

while T \subsetneq V do

Find pair (i, j) \in T \times (V \setminus T) minimizing d(i, j).

Let k be vertex after i in T.

Add j between i and k.
```



```
NearestAdditionAlgorithm(G = (V, E), d)

Find closest pair, say i and k.

Set tour T to go from i to k to i (clockwise).

while T \subsetneq V do

Find pair (i, j) \in T \times (V \setminus T) minimizing d(i, j).

Let k be vertex after i in T.

Add j between i and k.
```



```
NearestAdditionAlgorithm(G = (V, E), d)

Find closest pair, say i and k.

Set tour T to go from i to k to i (clockwise).

while T \subsetneq V do

Find pair (i, j) \in T \times (V \setminus T) minimizing d(i, j).

Let k be vertex after i in T.

Add j between i and k.
```

Theorem 6.

NearestAdditionAlgorithm is a 2-approximation algorithm for metric TSP.


```
NearestAdditionAlgorithm(G = (V, E), d)

Find closest pair, say i and k.

Set tour T to go from i to k to i (clockwise).

while T \subsetneq V do

Find pair (i, j) \in T \times (V \setminus T) minimizing d(i, j).

Let k be vertex after i in T.

Add j between i and k.
```

Theorem 6. NearestAdditionAlgorithm is a 2-approximation algorithm for metric TSP.

Exercise.

Hints: MST and Prim's algorithm.

In some cases, we can get arbitrarily good approximations.

In some cases, we can get arbitrarily good approximations.

Definition.

Let Π be a minimization problem. An algorithm \mathcal{A} is called a **polynomial-time approximation scheme (PTAS)** if \mathcal{A} computes, for every input (I, ε) (consisting of an instance Iof Π and a real $\varepsilon > 0$), a value ALG(I) such that:

■ $ALG(I) \le (1 + \varepsilon) \cdot OPT(I)$, and ■ the runtime of \mathcal{A} is polynomial in |I| for every $\varepsilon > 0$.

In some cases, we can get arbitrarily good approximations.

Definition. Let Π be a minimization problem. An algorithm \mathcal{A} is called a **polynomial-time approximation scheme (PTAS)** if \mathcal{A} computes, for every input (I, ε) (consisting of an instance Iof Π and a real $\varepsilon > 0$), a value ALG(I) such that: $\geq (1 - \varepsilon)$ $= ALG(I) \leq (1 + \varepsilon) \cdot OPT(I)$, and = the runtime of \mathcal{A} is polynomial in |I| for every $\varepsilon > 0$.

In some cases, we can get arbitrarily good approximations.

maximization Let Π be a minimization problem. An algorithm \mathcal{A} is called a polynomial-time approximation scheme (PTAS) if \mathcal{A} computes, for every input (I, ε) (consisting of an instance I of Π and a real $\varepsilon > 0$), a value ALG(I) such that: $\geq (1-\varepsilon)$ ■ ALG(I) $\leq (1 + \varepsilon) \cdot OPT(I)$, and • the runtime of \mathcal{A} is polynomial in |I| for every $\varepsilon > 0$. \mathcal{A} is called a fully polynomial-time approximation scheme (FPTAS) if it runs in time polynomial in |I| and $1/\varepsilon$.

In some cases, we can get arbitrarily good approximations.

maximization Let Π be a minimization problem. An algorithm \mathcal{A} is called a polynomial-time approximation scheme (PTAS) if \mathcal{A} computes, for every input (I, ε) (consisting of an instance I of Π and a real $\varepsilon > 0$), a value ALG(I) such that: $\geq (1-\varepsilon)$ ■ ALG(I) $\leq (1 + \varepsilon) \cdot OPT(I)$, and • the runtime of \mathcal{A} is polynomial in |I| for every $\varepsilon > 0$. \mathcal{A} is called a fully polynomial-time approximation scheme (FPTAS) if it runs in time polynomial in |I| and $1/\varepsilon$.

$$\mathcal{O}\left(2^{\frac{n}{\varepsilon}}\right) \Rightarrow$$
$$\mathcal{O}\left(n^2 + n^{\frac{1}{\varepsilon}}\right) \Rightarrow$$

$$\mathcal{O}\left(n^2 \cdot 3^{\frac{1}{\varepsilon}}\right) \Rightarrow$$
$$\mathcal{O}\left(n^4 \cdot \left(\frac{1}{\varepsilon}\right)^2\right) \Rightarrow$$

In some cases, we can get arbitrarily good approximations.

maximization Let Π be a minimization problem. An algorithm \mathcal{A} is called a polynomial-time approximation scheme (PTAS) if \mathcal{A} computes, for every input (I, ε) (consisting of an instance I of Π and a real $\varepsilon > 0$), a value ALG(I) such that: $\geq (1 - \varepsilon)$ $\mathsf{ALG}(I) \leq (1 + \varepsilon) \cdot \mathsf{OPT}(I), \text{ and }$ • the runtime of \mathcal{A} is polynomial in |I| for every $\varepsilon > 0$. \mathcal{A} is called a fully polynomial-time approximation scheme (FPTAS) if it runs in time polynomial in |I| and $1/\varepsilon$. $\square \mathcal{O}\left(n^2 \cdot 3^{\frac{1}{\varepsilon}}\right) \Rightarrow$ $\square \mathcal{O}\left(n^2 + n^{\frac{1}{\varepsilon}}\right) \Rightarrow$ $\square \mathcal{O}\left(n^4 \cdot \left(\frac{1}{\varepsilon}\right)^2\right) \Rightarrow$

In some cases, we can get arbitrarily good approximations.

maximization Let Π be a minimization problem. An algorithm \mathcal{A} is called a polynomial-time approximation scheme (PTAS) if \mathcal{A} computes, for every input (I, ε) (consisting of an instance I of Π and a real $\varepsilon > 0$), a value ALG(I) such that: $\geq (1 - \varepsilon)$ $\mathsf{ALG}(I) \leq (1 + \varepsilon) \cdot \mathsf{OPT}(I), \text{ and }$ • the runtime of \mathcal{A} is polynomial in |I| for every $\varepsilon > 0$. \mathcal{A} is called a fully polynomial-time approximation scheme (FPTAS) if it runs in time polynomial in |I| and $1/\varepsilon$. Examples. $\square \mathcal{O}\left(n^2 \cdot 3^{\frac{1}{\varepsilon}}\right) \Rightarrow$ $\square \mathcal{O}\left(n^4 \cdot \left(\frac{1}{\varepsilon}\right)^2\right) \Rightarrow$

In some cases, we can get arbitrarily good approximations.

maximization Let Π be a minimization problem. An algorithm \mathcal{A} is called a polynomial-time approximation scheme (PTAS) if \mathcal{A} computes, for every input (I, ε) (consisting of an instance I of Π and a real $\varepsilon > 0$), a value ALG(I) such that: $\geq (1 - \varepsilon)$ $\mathsf{ALG}(I) \leq (1 + \varepsilon) \cdot \mathsf{OPT}(I), \text{ and }$ • the runtime of \mathcal{A} is polynomial in |I| for every $\varepsilon > 0$. \mathcal{A} is called a fully polynomial-time approximation scheme (FPTAS) if it runs in time polynomial in |I| and $1/\varepsilon$. Examples. $\square \mathcal{O}\left(n^4 \cdot \left(\frac{1}{\varepsilon}\right)^2\right) \Rightarrow$

13 - 8

In some cases, we can get arbitrarily good approximations.

maximization Let Π be a minimization problem. An algorithm \mathcal{A} is called a polynomial-time approximation scheme (PTAS) if \mathcal{A} computes, for every input (I, ε) (consisting of an instance I of Π and a real $\varepsilon > 0$), a value ALG(I) such that: $\geq (1 - \varepsilon)$ $\mathsf{ALG}(I) \leq (1 + \varepsilon) \cdot \mathsf{OPT}(I), \text{ and }$ • the runtime of \mathcal{A} is polynomial in |I| for every $\varepsilon > 0$. \mathcal{A} is called a fully polynomial-time approximation scheme (FPTAS) if it runs in time polynomial in |I| and $1/\varepsilon$. Examples. $\square \mathcal{O}\left(n^4 \cdot \left(\frac{1}{\varepsilon}\right)^2\right) \Rightarrow \mathsf{FPTAS}$

Input.

n jobs J_1, \ldots, J_n with durations p_1, \ldots, p_n .

 \blacksquare *m* identical machines (*m* < *n*)

Input.

n jobs J_1, \ldots, J_n with durations p_1, \ldots, p_n .

 \blacksquare *m* identical machines (*m* < *n*)

Output. Assignment of jobs to machines such that the time when all jobs have been processed is minimum. This is called the **makespan** of the assignment.

Input.

n jobs J_1, \ldots, J_n with durations p_1, \ldots, p_n .

*p*₄

 \blacksquare *m* identical machines (*m* < *n*)

Assignment of jobs to machines such that the time when all Output. jobs have been processed is minimum.

This is called the **makespan** of the assignment.

makespan

Input.

n jobs J_1, \ldots, J_n with durations p_1, \ldots, p_n .

m identical machines (m < n)

Output. Assignment of jobs to machines such that the time when all jobs have been processed is minimum. This is called the **makespan** of the assignment.

Input.

• *n* jobs J_1, \ldots, J_n with durations p_1, \ldots, p_n .

m identical machines (m < n)

Output. Assignment of jobs to machines such that the time when all jobs have been processed is minimum. This is called the **makespan** of the assignment.

Multiprocessor scheduling is NP-hard.

LISTSCHEDULING (J_1, \ldots, J_n, m)

Put the first *m* jobs on the *m* machines. Put the next job on the first free machine.

LISTSCHEDULING (J_1, \ldots, J_n, m)

Put the first *m* jobs on the *m* machines. Put the next job on the first free machine.

LISTSCHEDULING (J_1, \ldots, J_n, m)

Put the first *m* jobs on the *m* machines. Put the next job on the first free machine.

LISTSCHEDULING (J_1, \ldots, J_n, m)

Put the first *m* jobs on the *m* machines. Put the next job on the first free machine.

LISTSCHEDULING (J_1, \ldots, J_n, m)

Put the first *m* jobs on the *m* machines. Put the next job on the first free machine.

LISTSCHEDULING (J_1, \ldots, J_n, m)

Put the first *m* jobs on the *m* machines. Put the next job on the first free machine.

Example.

LISTSCHEDULING runs in

time.

LISTSCHEDULING (J_1, \ldots, J_n, m)

Put the first *m* jobs on the *m* machines. Put the next job on the first free machine.

Example.

• LISTSCHEDULING runs in $\mathcal{O}(n \log m)$ time.

LISTSCHEDULING (J_1, \ldots, J_n, m)

Put the first *m* jobs on the *m* machines. Put the next job on the first free machine.

Example.

LISTSCHEDULING runs in $\mathcal{O}(n \log m)$ time.

Iterate over n jobs while maintaining a priority queue for the machines where each machine has its current completion time as its priority.

LISTSCHEDULING (J_1, \ldots, J_n, m)

Put the first m jobs on the m machines. Put the next job on the first free machine.

Theorem 7.

LISTSCHEDULING is a factorapproximation algorithm.

Example.

LISTSCHEDULING runs in $\mathcal{O}(n \log m)$ time.

Iterate over n jobs while maintaining a priority queue for the machines where each machine has its current completion time as its priority.

LISTSCHEDULING (J_1, \ldots, J_n, m)

Put the first *m* jobs on the *m* machines. Put the next job on the first free machine.

Theorem 7.

LISTSCHEDULING is a factor- $\left(2-\frac{1}{m}\right)$ approximation algorithm.

Example.

LISTSCHEDULING runs in $\mathcal{O}(n \log m)$ time.

Iterate over n jobs while maintaining a priority queue for the machines where each machine has its current completion time as its priority.

LISTSCHEDULING (J_1, \ldots, J_n, m)

Put the first m jobs on the m machines. Put the next job on the first free machine. **Theorem 7.** LISTSCHEDULING is a $(2 - \frac{1}{m})$ -approximation alg.

Proof. Let $J_k = (S_k, T_k)$ be the last job, that is, T_k determines the makespan.

LISTSCHEDULING (J_1, \ldots, J_n, m)

Put the first m jobs on the m machines. Put the next job on the first free machine. **Theorem 7.** LISTSCHEDULING is a $(2 - \frac{1}{m})$ -approximation alg.

Proof. Let $J_k = (S_k, T_k)$ be the last job, that is, T_k determines the makespan.

No machine idles at time S_k .

 $S_k \leq \frac{1}{m} \sum_{i \neq k} p_i$ weight of all jobs but J_k evenly distributed on m machines

LISTSCHEDULING (J_1, \ldots, J_n, m)

Put the first m jobs on the m machines. Put the next job on the first free machine. **Theorem 7.** LISTSCHEDULING is a $(2 - \frac{1}{m})$ -approximation alg.

Proof. Let $J_k = (S_k, T_k)$ be the last job, that is, T_k determines the makespan.

No machine idles at time S_k .

 $S_k \leq \frac{1}{m} \sum_{i \neq k} p_i$ weight of all jobs but J_k evenly distributed on m machines

For the optimal makespan T_{OPT} , we have:

$T_{OPT} \ge p_k$

LISTSCHEDULING (J_1, \ldots, J_n, m)

Put the first m jobs on the m machines. Put the next job on the first free machine. **Theorem 7.** LISTSCHEDULING is a $(2 - \frac{1}{m})$ -approximation alg.

Proof. Let $J_k = (S_k, T_k)$ be the last job, that is, T_k determines the makespan.

No machine idles at time S_k .

 $S_k \leq \frac{1}{m} \sum_{i \neq k} p_i$ weight of all jobs but J_k evenly distributed on m machines

For the optimal makespan T_{OPT} , we have:

$$\blacksquare T_{\mathsf{OPT}} \ge p_k$$

$$T_{\text{OPT}} \ge \frac{1}{m} \sum_{i=1}^{n} \frac{p_i}{p_i}$$
 weight of all jobs evenly distributed

LISTSCHEDULING (J_1, \ldots, J_n, m)

Put the first m jobs on the m machines. Put the next job on the first free machine. **Theorem 7.** LISTSCHEDULING is a $(2 - \frac{1}{m})$ -approximation alg.

Proof. Let $J_k = (S_k, T_k)$ be the last job, that is, T_k determines the makespan.

No machine idles at time S_k .

For the optimal makespan T_{OPT} , we have:

$$T_{\text{OPT}} \geq \frac{1}{m} \sum_{i=1}^{n} p_i$$
 weight of all jobs evenly distributed

Hence:

 $T_k = S_k + p_k$

LISTSCHEDULING (J_1, \ldots, J_n, m)

Put the first m jobs on the m machines. Put the next job on the first free machine. **Theorem 7.** LISTSCHEDULING is a $(2 - \frac{1}{m})$ -approximation alg.

Proof. Let $J_k = (S_k, T_k)$ be the last job, that is, T_k determines the makespan.

For the optimal makespan T_{OPT} , we have:

$$T_{\text{OPT}} \ge \frac{1}{m} \sum_{i=1}^{n} p_i$$
 weight of all jobs evenly distributed

Hence:

LISTSCHEDULING (J_1, \ldots, J_n, m)

Put the first m jobs on the m machines. Put the next job on the first free machine. **Theorem 7.** LISTSCHEDULING is a $(2 - \frac{1}{m})$ -approximation alg.

Proof. Let $J_k = (S_k, T_k)$ be the last job, that is, T_k determines the makespan.

For the optimal makespan T_{OPT} , we have:

$$T_{\text{OPT}} \ge \frac{1}{m} \sum_{i=1}^{n} p_i$$
 weight of all jobs evenly distributed

Hence:

 $T_k = S_k + p_k$

$$\leq \frac{1}{m} \cdot \sum_{i \neq k} p_i + p_k$$
$$= \frac{1}{m} \cdot \sum_{i=1}^n p_i + \left(1 - \frac{1}{m}\right) \cdot p_k$$

LISTSCHEDULING (J_1, \ldots, J_n, m)

Put the first m jobs on the m machines. Put the next job on the first free machine. **Theorem 7.** LISTSCHEDULING is a $(2 - \frac{1}{m})$ -approximation alg.

Proof. Let $J_k = (S_k, T_k)$ be the last job, that is, T_k determines the makespan.

For the optimal makespan T_{OPT} , we have:

$$T_{\text{OPT}} \ge \frac{1}{m} \sum_{i=1}^{n} p_i$$
 weight of all jobs evenly distributed

Hence:

 $T_k = S_k + p_k$ $\leq \frac{1}{m} \cdot \sum_{i \neq k} p_i + p_k$

Multiprocessor Scheduling – List Scheduling (Proof)

LISTSCHEDULING(J_1, \ldots, J_n, m)

Put the first m jobs on the m machines. Put the next job on the first free machine.

Theorem 7. LISTSCHEDULING is a $\left(2-\frac{1}{m}\right)$ -approximation alg.

Proof. Let $J_k = (S_k, T_k)$ be the last job, that is, T_k determines the makespan.

No machine idles at time S_k .

 $S_k \leq \frac{1}{m} \sum_{i \neq k} p_i$ weight of all jobs but J_k evenly distributed on m machines

For the optimal makespan T_{OPT} , we have:

Hence:

 $T_k = S_k + p_k$ $\leq \frac{1}{m} \cdot \sum_{i \neq k} p_i + p_k$ $=\frac{1}{m}\cdot\sum_{i=1}^{n}p_{i}+\left(1-\frac{1}{m}\right)\cdot p_{k}$ $\leq T_{\text{OPT}} + \left(1 - \frac{1}{m}\right) \cdot T_{\text{OPT}}$ $=\left(2-\frac{1}{m}\right)\cdot T_{\text{OPT}}$

For a constant ℓ $(1 \leq \ell \leq n)$ define the algorithm \mathcal{A}_{ℓ} as follows.

 $\mathcal{A}_{\ell}(J_1, \ldots, J_n, m)$ Sort jobs in descending order of runtime.
Schedule the ℓ longest jobs J_1, \ldots, J_{ℓ} optimally.
Use LISTSCHEDULING for the remaining jobs $J_{\ell+1}, \ldots, J_n$.

For a constant ℓ $(1 \leq \ell \leq n)$ define the algorithm \mathcal{A}_{ℓ} as follows.

 $\mathcal{A}_{\ell}(J_1, \ldots, J_n, m)$ Sort jobs in descending order of runtime. Schedule the ℓ longest jobs J_1, \ldots, J_{ℓ} optimally. Use LISTSCHEDULING for the remaining jobs $J_{\ell+1}, \ldots, J_n$.

Example.

 $\ell = 6$

For a constant ℓ $(1 \leq \ell \leq n)$ define the algorithm \mathcal{A}_{ℓ} as follows.

 $\mathcal{A}_{\ell}(J_1, \dots, J_n, m)$ $\text{Sort jobs in descending order of runtime.} \\ \text{Schedule the } \ell \text{ longest jobs } J_1, \dots, J_{\ell} \text{ optimally.} \\ \text{Use LISTSCHEDULING for the remaining jobs } J_{\ell+1}, \dots, J_n.$

Example	

•	
$\ell = 6$	
sorted jobs	

For a constant ℓ $(1 \leq \ell \leq n)$ define the algorithm \mathcal{A}_{ℓ} as follows.

 $\mathcal{A}_{\ell}(J_1, \dots, J_n, m)$ Sort jobs in descending order of runtime.
Schedule the ℓ longest jobs J_1, \dots, J_{ℓ} optimally.
Use LISTSCHEDULING for the remaining jobs $J_{\ell+1}, \dots, J_n$.

Example.

 $\ell = 6$ sorted jobs

For a constant ℓ $(1 \leq \ell \leq n)$ define the algorithm \mathcal{A}_{ℓ} as follows.

 $\mathcal{A}_{\ell}(J_1, \ldots, J_n, m)$ Sort jobs in descending order of runtime. Schedule the ℓ longest jobs J_1, \ldots, J_{ℓ} optimally. Use LISTSCHEDULING for the remaining jobs $J_{\ell+1}, \ldots, J_n$.

For a constant ℓ $(1 \leq \ell \leq n)$ define the algorithm \mathcal{A}_{ℓ} as follows.

 $\mathcal{A}_{\ell}(J_1, \ldots, J_n, m)$ Sort jobs in descending order of runtime. Schedule the ℓ longest jobs J_1, \ldots, J_{ℓ} optimally. Use LISTSCHEDULING for the remaining jobs $J_{\ell+1}, \ldots, J_n$.

For a constant ℓ $(1 \leq \ell \leq n)$ define the algorithm \mathcal{A}_{ℓ} as follows.

 $\mathcal{A}_{\ell}(J_1, \ldots, J_n, m)$ Sort jobs in descending order of runtime. Schedule the ℓ longest jobs J_1, \ldots, J_{ℓ} optimally. Use LISTSCHEDULING for the remaining jobs $J_{\ell+1}, \ldots, J_n$.

For a constant ℓ $(1 \leq \ell \leq n)$ define the algorithm \mathcal{A}_{ℓ} as follows.

 $\mathcal{A}_{\ell}(J_1, \ldots, J_n, m)$ Sort jobs in descending order of runtime. Schedule the ℓ longest jobs J_1, \ldots, J_{ℓ} optimally. Use LISTSCHEDULING for the remaining jobs $J_{\ell+1}, \ldots, J_n$.

For a constant ℓ $(1 \leq \ell \leq n)$ define the algorithm \mathcal{A}_{ℓ} as follows.

 $\mathcal{A}_{\ell}(J_1, \ldots, J_n, m)$ Sort jobs in descending order of runtime. Schedule the ℓ longest jobs J_1, \ldots, J_{ℓ} optimally. Use LISTSCHEDULING for the remaining jobs $J_{\ell+1}, \ldots, J_n$.

For a constant ℓ $(1 \leq \ell \leq n)$ define the algorithm \mathcal{A}_{ℓ} as follows.

 $\mathcal{A}_{\ell}(J_1, \ldots, J_n, m)$ Sort jobs in descending order of runtime. Schedule the ℓ longest jobs J_1, \ldots, J_{ℓ} optimally. Use LISTSCHEDULING for the remaining jobs $J_{\ell+1}, \ldots, J_n$.

For a constant ℓ $(1 \le \ell \le n)$ define the algorithm \mathcal{A}_{ℓ} as follows.

 $\mathcal{A}_{\ell}(J_1, \ldots, J_n, m)$ Sort jobs in descending order of runtime.
Schedule the ℓ longest jobs J_1, \ldots, J_{ℓ} optimally.
Use LISTSCHEDULING for the remaining jobs $J_{\ell+1}, \ldots, J_n$.

Example.

•	<u> </u>
$\ell = 6$	J ₂
sorted jobs	J ₃ J ₄
	J ₅
	<u> </u>

I1

For a constant ℓ $(1 \leq \ell \leq n)$ define the algorithm \mathcal{A}_{ℓ} as follows.

 $\begin{array}{ll} \mathcal{A}_{\ell}(J_{1},\ldots,J_{n},m) \\ \text{Sort jobs in descending order of runtime.} & \mathcal{O}(n\log n) \\ \text{Schedule the } \ell \text{ longest jobs } J_{1},\ldots,J_{\ell} \text{ optimally.} & \mathcal{O}(m^{\ell}) \\ \text{Use LISTSCHEDULING for the remaining jobs } J_{\ell+1},\ldots,J_{n}. & \mathcal{O}(n\log m) \end{array}$

 $\begin{array}{c} \bullet & \mathsf{Polynomial time for} \\ n \log n \\ \mathcal{O}(m^{\ell}) \\ \end{array} \begin{array}{c} \bullet & \mathcal{O}(m^{\ell} + n \log n) \\ \end{array} \end{array}$

Example.

 $\ell = 6$

sorted jobs

For a constant ℓ $(1 \leq \ell \leq n)$ define the algorithm \mathcal{A}_{ℓ} as follows.

 $\begin{array}{l} \mathcal{A}_{\ell}(J_{1},\ldots,J_{n},m) \\ \text{Sort jobs in descending order of runtime.} & \mathcal{O}(n\log n) \\ \text{Schedule the } \ell \text{ longest jobs } J_{1},\ldots,J_{\ell} \text{ optimally.} & \mathcal{O}(m^{\ell}) \\ \text{Use LISTSCHEDULING for the remaining jobs } J_{\ell+1},\ldots,J_{n}. & \mathcal{O}(n\log m) \end{array}$

 $\begin{array}{c} \bullet & \mathsf{Polynomial time for} \\ n \log n \\ \mathcal{O}(m^{\ell}) \end{array} & \begin{array}{c} \bullet & \mathsf{Constant} \ \ell: \\ \mathcal{O}(m^{\ell} + n \log n) \end{array}$

Theorem 8. For constant $\ell \in \{1, ..., n\}$, algorithm \mathcal{A}_{ℓ} is a $1 + \frac{1 - \frac{1}{m}}{1 + \lfloor \frac{\ell}{m} \rfloor}$ -approximation algorithm. 17 - 13

For a constant ℓ $(1 \leq \ell \leq n)$ define the algorithm \mathcal{A}_{ℓ} as follows.

 $\begin{array}{l} \mathcal{A}_{\ell}(J_{1},\ldots,J_{n},m) \\ \text{Sort jobs in descending order of runtime.} \\ \text{Schedule the } \ell \text{ longest jobs } J_{1},\ldots,J_{\ell} \text{ optimally.} \\ \text{Use LISTSCHEDULING for the remaining jobs } J_{\ell+1},\ldots,J_{n}. \end{array} \begin{array}{l} \mathcal{O}(n\log n) \\ \mathcal{O}(n\ell) \\ \mathcal{O}(n\log m) \end{array}$

 $\begin{array}{c} \bullet & \mathsf{Polynomial time for} \\ n \log n) \\ \mathcal{O}(m^{\ell}) \\ \end{array} \begin{array}{c} \bullet & \mathcal{O}(m^{\ell} + n \log n) \\ \end{array} \end{array}$

Theorem 8. For constant $\ell \in \{1, ..., n\}$, algorithm \mathcal{A}_{ℓ} is a $1 + \frac{1 - \frac{1}{m}}{1 + \lfloor \frac{\ell}{m} \rfloor}$ -approximation algorithm.

For $\varepsilon > 0$, choose ℓ such that $\mathcal{A}_{\varepsilon} = \mathcal{A}_{\ell(\varepsilon)}$ is a $(1 + \varepsilon)$ -approximation algorithm.

Corollary 9.

For a constant number of machines, $\{A_{\varepsilon} \mid \varepsilon > 0\}$ is a PTAS.

For a constant ℓ $(1 \leq \ell \leq n)$ define the algorithm \mathcal{A}_{ℓ} as follows.

```
\mathcal{A}_{\ell}(J_1, \ldots, J_n, m)Sort jobs in descending order of runtime.\mathcal{O}(n \log n)Schedule the \ell longest jobs J_1, \ldots, J_{\ell} optimally.\mathcal{O}(m \log n)Use LISTSCHEDULING for the remaining jobs J_{\ell+1}, \ldots, J_n.\mathcal{O}(n \log m)Theorem 8.
```

 $\begin{array}{c} \bullet & \mathsf{Polynomial time for} \\ n \log n \\ \mathcal{O}(m^{\ell}) \\ \end{array} \begin{array}{c} \bullet & \mathcal{O}(m^{\ell} + n \log n) \\ \end{array} \end{array}$

Theorem 8. For constant $\ell \in \{1, ..., n\}$, algorithm \mathcal{A}_{ℓ} is a $1 + \frac{1 - \frac{1}{m}}{1 + \lfloor \frac{\ell}{m} \rfloor}$ -approximation algorithm.

For $\varepsilon > 0$, choose ℓ such that $\mathcal{A}_{\varepsilon} = \mathcal{A}_{\ell(\varepsilon)}$ is a $(1 + \varepsilon)$ -approximation algorithm.

• $\{\mathcal{A}_{\varepsilon} \mid \varepsilon > 0\}$ is not an FPTAS since the running time is not polynomial in $\frac{1}{\varepsilon}$.

Corollary 9.

For a constant number of machines, $\{A_{\varepsilon} \mid \varepsilon > 0\}$ is a PTAS.

Theorem 8. For constant $1 \le \ell \le n$, the algorithm \mathcal{A}_{ℓ} is a $1 + \frac{1 - \frac{1}{m}}{1 + \lfloor \frac{\ell}{m} \rfloor}$ -approximation algorithm.

 $\mathcal{A}_{\ell}(J_1,\ldots,J_n,m)$

Sort jobs in descending order of runtime. Schedule the ℓ longest jobs J_1, \ldots, J_ℓ optimally. Use LISTSCHEDULING for the remaining jobs $J_{\ell+1}, \ldots, J_n$.

Proof. Let $J_k = (S_k, T_k)$ be the last job, that is, T_k determines the makespan.

Theorem 8. For constant $1 \le \ell \le n$, the algorithm \mathcal{A}_{ℓ} is a $1 + \frac{1 - \frac{1}{m}}{1 + \lfloor \frac{\ell}{m} \rfloor}$ -approximation algorithm.

 $\mathcal{A}_{\ell}(J_1,\ldots,J_n,m)$

Sort jobs in descending order of runtime. Schedule the ℓ longest jobs J_1, \ldots, J_ℓ optimally. Use LISTSCHEDULING for the remaining jobs $J_{\ell+1}, \ldots, J_n$.

Proof. Let $J_k = (S_k, T_k)$ be the last job, that is, T_k determines the makespan.

Case 1. J_k is one of the longest ℓ jobs J_1, \ldots, J_ℓ .

Theorem 8. For constant $1 \le \ell \le n$, the algorithm \mathcal{A}_{ℓ} is a $1 + \frac{1 - \frac{1}{m}}{1 + \lfloor \frac{\ell}{m} \rfloor}$ -approximation algorithm.

 $\mathcal{A}_{\ell}(J_1,\ldots,J_n,m)$

Sort jobs in descending order of runtime. Schedule the ℓ longest jobs J_1, \ldots, J_ℓ optimally. Use LISTSCHEDULING for the remaining jobs $J_{\ell+1}, \ldots, J_n$.

Proof. Let $J_k = (S_k, T_k)$ be the last job, that is, T_k determines the makespan.

Case 1. J_k is one of the longest ℓ jobs J_1, \ldots, J_ℓ .

- Solution is optimal for J_1, \ldots, J_k
- Hence, solution is optimal for J_1, \ldots, J_n

Theorem 8. For constant $1 \le \ell \le n$, the algorithm \mathcal{A}_{ℓ} is a $1 + \frac{1 - \frac{1}{m}}{1 + \lfloor \frac{\ell}{m} \rfloor}$ -approximation algorithm.

 $\mathcal{A}_{\ell}(J_1,\ldots,J_n,m)$

Sort jobs in descending order of runtime. Schedule the ℓ longest jobs J_1, \ldots, J_ℓ optimally. Use LISTSCHEDULING for the remaining jobs $J_{\ell+1}, \ldots, J_n$.

Proof. Let $J_k = (S_k, T_k)$ be the last job, that is, T_k determines the makespan.

Case 1. J_k is one of the longest ℓ jobs J_1, \ldots, J_ℓ .

Solution is optimal for J_1, \ldots, J_k

Hence, solution is optimal for J_1, \ldots, J_n

Case 2. J_k is not one of the longest ℓ jobs J_1, \ldots, J_ℓ .

Theorem 8. For constant $1 \le \ell \le n$, the algorithm \mathcal{A}_{ℓ} is a $1 + \frac{1 - \frac{1}{m}}{1 + \lfloor \frac{\ell}{m} \rfloor}$ -approximation algorithm.

 $\mathcal{A}_{\ell}(J_1,\ldots,J_n,m)$

Sort jobs in descending order of runtime. Schedule the ℓ longest jobs J_1, \ldots, J_ℓ optimally. Use LISTSCHEDULING for the remaining jobs $J_{\ell+1}, \ldots, J_n$.

Proof. Let $J_k = (S_k, T_k)$ be the last job, that is, T_k determines the makespan.

Case 1. J_k is one of the longest ℓ jobs J_1, \ldots, J_ℓ .

Solution is optimal for J_1, \ldots, J_k

Hence, solution is optimal for J_1, \ldots, J_n

Case 2. J_k is not one of the longest ℓ jobs J_1, \ldots, J_ℓ .

Similar analysis to LISTSCHEDULING

Use that there are $\ell + 1$ jobs that are at least as long as J_k (including J_k).

Theorem 8. For constant $1 \le \ell \le n$, the algorithm \mathcal{A}_{ℓ} is a $1 + \frac{1 - \frac{1}{m}}{1 + \lfloor \frac{\ell}{m} \rfloor}$ -approximation algorithm.

Proof of Case 2.

 \blacksquare $T_{OPT} \ge p_k$

$$S_k \leq \frac{1}{m} \sum_{i \neq k} p_i T_{\mathsf{OPT}} \geq \frac{1}{m} \sum_{i=1}^n p_i$$

 $\mathcal{A}_{\ell}(J_1,\ldots,J_n,m)$

Sort jobs in descending order of runtime. Schedule the ℓ longest jobs J_1, \ldots, J_ℓ optimally. Use LISTSCHEDULING for the remaining jobs $J_{\ell+1}, \ldots, J_n$.

 $T_k = S_k + p_k$

Theorem 8. For constant $1 \le \ell \le n$, the algorithm \mathcal{A}_{ℓ} is a $1 + \frac{1 - \frac{1}{m}}{1 + \lfloor \frac{\ell}{m} \rfloor}$ -approximation algorithm.

Proof of Case 2.

$$\blacksquare S_k \leq \frac{1}{m} \sum_{i \neq k} p_i \qquad \blacksquare T_{\mathsf{OPT}} \geq \frac{1}{m} \sum_{i=1}^n p_i$$

 $\mathcal{A}_{\ell}(J_1,\ldots,J_n,m)$

Sort jobs in descending order of runtime. Schedule the ℓ longest jobs J_1, \ldots, J_ℓ optimally. Use LISTSCHEDULING for the remaining jobs $J_{\ell+1}, \ldots, J_n$.

 $\blacksquare T_{\mathsf{OPT}} \ge p_k$

Theorem 8. For constant $1 \le \ell \le n$, the algorithm \mathcal{A}_{ℓ} is a $1 + \frac{1 - \frac{1}{m}}{1 + \lfloor \frac{\ell}{m} \rfloor}$ -approximation algorithm.

Proof of Case 2.

 $S_k \leq \frac{1}{m} \sum_{i \neq k} p_i$

$$\square T_{\text{OPT}} \geq \frac{1}{m} \sum_{i=1}^{n} p_i$$

 $\blacksquare T_{\mathsf{OPT}} \ge p_k$

$\mathcal{A}_{\ell}(J_1,\ldots,J_n,m)$

Sort jobs in descending order of runtime. Schedule the ℓ longest jobs J_1, \ldots, J_ℓ optimally. Use LISTSCHEDULING for the remaining jobs $J_{\ell+1}, \ldots, J_n$.

$$T_{k} = S_{k} + p_{k}$$

$$\leq \frac{1}{m} \cdot \sum_{i \neq k} p_{i} + p_{k}$$

$$= \frac{1}{m} \cdot \sum_{i=1}^{m} p_{i} + \left(1 - \frac{1}{m}\right) \cdot p_{k}$$

Theorem 8. For constant $1 \le \ell \le n$, the algorithm \mathcal{A}_{ℓ} is a $1 + \frac{1 - \frac{1}{m}}{1 + \lfloor \frac{\ell}{m} \rfloor}$ -approximation algorithm.

Proof of Case 2.

 $T_{\text{OPT}} \ge p_k$

$$S_k \leq \frac{1}{m} \sum_{i \neq k} p_i$$

$$\square T_{\mathsf{OPT}} \ge \frac{1}{m} \sum_{i=1}^{m} p_i$$

 $\mathcal{A}_{\ell}(J_1,\ldots,J_n,m)$

Sort jobs in descending order of runtime. Schedule the ℓ longest jobs J_1, \ldots, J_ℓ optimally. Use LISTSCHEDULING for the remaining jobs $J_{\ell+1}, \ldots, J_n$.

$$T_{k} = S_{k} + p_{k}$$

$$\leq \frac{1}{m} \cdot \sum_{i \neq k} p_{i} + p_{k}$$

$$= \frac{1}{m} \cdot \sum_{i=1}^{m} p_{i} + \left(1 - \frac{1}{m}\right) \cdot p_{k}$$

$$\leq T_{\text{OPT}} + \left(1 - \frac{1}{m}\right) \cdot T_{\text{OPT}}$$

Theorem 8. For constant $1 \le \ell \le n$, the algorithm \mathcal{A}_{ℓ} is a $1 + \frac{1 - \frac{1}{m}}{1 + \lfloor \frac{\ell}{m} \rfloor}$ -approximation algorithm.

Proof of Case 2.

$$S_k \leq \frac{1}{m} \sum_{i \neq k} p_i$$

 $T_{\text{OPT}} \ge p_k$

$$\square T_{\mathsf{OPT}} \ge \frac{1}{m} \sum_{i=1}^{n} p_i$$

 $\mathcal{A}_{\ell}(J_1,\ldots,J_n,m)$

Sort jobs in descending order of runtime. Schedule the ℓ longest jobs J_1, \ldots, J_ℓ optimally. Use LISTSCHEDULING for the remaining jobs $J_{\ell+1}, \ldots, J_n$.

$$\begin{aligned} T_k &= S_k + p_k \\ &\leq \frac{1}{m} \cdot \sum_{i \neq k} p_i + p_k \\ &= \frac{1}{m} \cdot \sum_{i=1}^m p_i + \left(1 - \frac{1}{m}\right) \cdot p_k \\ &\leq T_{\mathsf{OPT}} + \left(1 - \frac{1}{m}\right) \cdot T_{\mathsf{OPT}} \end{aligned}$$

Theorem 8. For constant $1 \le \ell \le n$, the algorithm \mathcal{A}_{ℓ} is a $1 + \frac{1 - \frac{1}{m}}{1 + \lfloor \frac{\ell}{m} \rfloor}$ -approximation algorithm.

Proof of Case 2.

$$S_k \leq \frac{1}{m} \sum_{i \neq k} p_i$$

$$T_{\text{OPT}} \ge \frac{1}{m} \sum_{i=1}^{n} p_i$$

Consider only J_1, \ldots, J_ℓ, J_k :

 $T_{\mathsf{OPT}} \geq p_k \cdot$

 $\mathcal{A}_{\ell}(J_1,\ldots,J_n, m)$

Sort jobs in descending order of runtime. Schedule the ℓ longest jobs J_1, \ldots, J_ℓ optimally. Use LISTSCHEDULING for the remaining jobs $J_{\ell+1}, \ldots, J_n$.

Theorem 8. For constant $1 \le \ell \le n$, the algorithm \mathcal{A}_{ℓ} is a $1 + \frac{1 - \frac{1}{m}}{1 + \lfloor \frac{\ell}{m} \rfloor}$ -approximation algorithm.

Proof of Case 2.

$$S_k \leq \frac{1}{m} \sum_{i \neq k} p_i$$

$$T_{\text{OPT}} \ge \frac{1}{m} \sum_{i=1}^{n} p_i$$

Consider only J_1, \ldots, J_ℓ, J_k :

 $T_{\mathsf{OPT}} \ge p_k \cdot \left(\mathbf{1} + \left\lfloor \frac{\ell}{m} \right\rfloor \right)$

 $\mathcal{A}_{\ell}(J_1,\ldots,J_n, m)$

Sort jobs in descending order of runtime. Schedule the ℓ longest jobs J_1, \ldots, J_ℓ optimally. Use LISTSCHEDULING for the remaining jobs $J_{\ell+1}, \ldots, J_n$.

Theorem 8. For constant $1 \le \ell \le n$, the algorithm \mathcal{A}_{ℓ} is a $1 + \frac{1 - \frac{1}{m}}{1 + \lfloor \frac{\ell}{m} \rfloor}$ -approximation algorithm.

Proof of Case 2.

$$S_k \leq \frac{1}{m} \sum_{i \neq k} p_i$$

$$T_{\text{OPT}} \ge \frac{1}{m} \sum_{i=1}^{n} p_i$$

Consider only J_1, \ldots, J_ℓ, J_k :

$T_{OPT} \ge p_k \cdot$	$\left(1 + \left\lfloor \frac{\ell}{m} \right\rfloor\right)$	one machine has this many jobs*
--------------------------	--	------------------------------------

 $\mathcal{A}_{\ell}(J_1,\ldots,J_n,m)$

Sort jobs in descending order of runtime. Schedule the ℓ longest jobs J_1, \ldots, J_ℓ optimally. Use LISTSCHEDULING for the remaining jobs $J_{\ell+1}, \ldots, J_n$.

Theorem 8. For constant $1 \le \ell \le n$, the algorithm \mathcal{A}_{ℓ} is a $1 + \frac{1 - \frac{1}{m}}{1 + \lfloor \frac{\ell}{m} \rfloor}$ -approximation algorithm.

Proof of Case 2.

Consider only J_1, \ldots, J_ℓ, J_k :

 $T_{\mathsf{OPT}} \ge p_k \cdot \left(1 + \left\lfloor \frac{\ell}{m} \right\rfloor \right)$ one machine has this many jobs^{*}

* on average, each machine has more than \$\frac{\ell}{m}\$ of the \$\ell + 1\$ jobs
 at least one machine achieves the average

 $\mathcal{A}_{\ell}(J_1,\ldots,J_n, m)$

Sort jobs in descending order of runtime. Schedule the ℓ longest jobs J_1, \ldots, J_ℓ optimally. Use LISTSCHEDULING for the remaining jobs $J_{\ell+1}, \ldots, J_n$.

Theorem 8. For constant $1 \le \ell \le n$, the algorithm \mathcal{A}_{ℓ} is a $1 + \frac{1 - \frac{1}{m}}{1 + \lfloor \frac{\ell}{m} \rfloor}$ -approximation algorithm.

Proof of Case 2.

$$S_k \leq \frac{1}{m} \sum_{i \neq k} p_i T_{\text{OPT}} \geq \frac{1}{m} \sum_{i=1}^n$$

Consider only
$$J_1, \ldots, J_\ell, J_k$$
:

$T_{OPT} \geq$	p_k ·	$\left(1+\left\lfloor \frac{\ell}{m} ight floor ight)$ one machine has this many jobs [*]	
		each has length $\geq j$	

* on average, each machine has more than $\frac{\ell}{m}$ of the $\ell + 1$ jobs
 at least one machine achieves the average

 $\mathcal{A}_{\ell}(J_1,\ldots,J_n, m)$

Sort jobs in descending order of runtime. Schedule the ℓ longest jobs J_1, \ldots, J_ℓ optimally. Use LISTSCHEDULING for the remaining jobs $J_{\ell+1}, \ldots, J_n$.

Theorem 8. For constant $1 \le \ell \le n$, the algorithm \mathcal{A}_{ℓ} is a $1 + \frac{1 - \frac{1}{m}}{1 + \lfloor \frac{\ell}{m} \rfloor}$ -approximation algorithm.

Proof of Case 2.

Consider only
$$J_1, \ldots, J_\ell, J_k$$
:

$$T_{OPT} \ge p_k \cdot \left(1 + \left\lfloor \frac{\ell}{m} \right\rfloor\right) \text{ one machine has has many jobs*} \text{ each has length } \ge p_k$$

* on average, each machine has more than \$\frac{\ell}{m}\$ of the \$\ell + 1\$ jobs
 at least one machine achieves the average

 $\mathcal{A}_{\ell}(J_1,\ldots,J_n, m)$

Sort jobs in descending order of runtime. Schedule the ℓ longest jobs J_1, \ldots, J_ℓ optimally. Use LISTSCHEDULING for the remaining jobs $J_{\ell+1}, \ldots, J_n$.

Theorem 8. For constant $1 \le \ell \le n$, the algorithm \mathcal{A}_{ℓ} is a $1 + \frac{1 - \frac{1}{m}}{1 + \lfloor \frac{\ell}{m} \rfloor}$ -approximation algorithm.

Proof of Case 2.

Consider only
$$J_1, \ldots, J_\ell, J_k$$
:

$$T_{OPT} \ge p_k \cdot \left(1 + \left\lfloor \frac{\ell}{m} \right\rfloor\right) \text{ one machine has has many jobs*} \text{ each has length } \ge p_k$$

* on average, each machine has more than \$\frac{\ell}{m}\$ of the \$\ell + 1\$ jobs
 at least one machine achieves the average

 $\mathcal{A}_{\ell}(J_1,\ldots,J_n, m)$

Sort jobs in descending order of runtime. Schedule the ℓ longest jobs J_1, \ldots, J_ℓ optimally. Use LISTSCHEDULING for the remaining jobs $J_{\ell+1}, \ldots, J_n$.

- Only "easy" NP-hard problems admit FPTAS (PTAS).
- Some problems cannot be approximated very well (e.g., Maximum Clique).
- Study of approximability of NP-hard problems yields more fine-grained classifications.

- Only "easy" NP-hard problems admit FPTAS (PTAS).
- Some problems cannot be approximated very well (e.g., Maximum Clique).
- Study of approximability of NP-hard problems yields more fine-grained classifications.
- Approximation algorithms exist also for non-NP-hard problems.
- Approximation algorithms can be of various types: greedy, local search, geometric, DP, ...
- One important technique is LP-relaxation (more later in this lecture).

- Only "easy" NP-hard problems admit FPTAS (PTAS).
- Some problems cannot be approximated very well (e.g., Maximum Clique).
- Study of approximability of NP-hard problems yields more fine-grained classifications.
- Approximation algorithms exist also for non-NP-hard problems.
- Approximation algorithms can be of various types: greedy, local search, geometric, DP, ...
- One important technique is LP-relaxation (more later in this lecture).
- Minimum Vertex Coloring on planar graphs can be approximated with an additive approximation guarantee of 2.
- Christofides' approximation algorithm for Metric TSP has approximation factor 1.5.

- Only "easy" NP-hard problems admit FPTAS (PTAS).
- Some problems cannot be approximated very well (e.g., Maximum Clique).
- Study of approximability of NP-hard problems yields more fine-grained classifications.
- Approximation algorithms exist also for non-NP-hard problems.
- Approximation algorithms can be of various types: greedy, local search, geometric, DP, ...
- One important technique is LP-relaxation (more later in this lecture).
- Minimum Vertex Coloring on planar graphs can be approximated with an additive approximation guarantee of 2.
- Christofides' approximation algorithm for Metric TSP has approximation factor 1.5.
 There is a whole lecture on approximation algorithms this semester! https://wuecampus.uni-wuerzburg.de/moodle/course/view.php?id=62943

Literature

Main references

- [Jansen & Margraf, 2008: Ch3] "Approximative Algorithmen und Nichtapproximierbarkeit"
- [Williamson & Shmoys, 2011: Ch3] "The Design of Approximation Algorithms"
- Another book recommendation:
- [Vazirani, 2013] "Approximation Algorithms"

