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Dealing with NP-Hard Optimization Problems

Heuristic

NP-hard

Exponential FPT

Approximation

� Optimal solutions
� Exact exponential-time algorithms
� Fine-grained analysis – parameterized algorithms

� Sacrifice optimality for speed
� Heuristics
� Approximation algorithms

What should we do?
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Approximation Algorithms

Problem.
� For NP-hard optimization problems, we cannot compute the

optimal solution of every instance efficiently (unless P = NP).

� Heuristics offer no guarantee on the quality of their solutions.
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Approximation with Additive Guarantee

Definition.
Let Π be an optimization problem,
let A be a polynomial-time algorithm for Π,
let I be an instance of Π, and
let ALG(I) be the value of the objective function of
the solution that A computes given I.

Then A is called an approximation algorithm with
additive guarantee δ (which can depend on I) if

|OPT(I)− ALG(I)| ≤ δ

for every instance I of Π.
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� Most problems that we know do not admit an
approximation algorithm with additive guarantee.

Definition.
Let Π be an optimization problem,
let A be a polynomial-time algorithm for Π,
let I be an instance of Π, and
let ALG(I) be the value of the objective function of
the solution that A computes given I.

Then A is called an approximation algorithm with
additive guarantee δ (which can depend on I) if

|OPT(I)− ALG(I)| ≤ δ

for every instance I of Π.
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Minimum Vertex Coloring

A graph G = (V, E). Let ∆ be the maximum degree of G.Input.
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Theorem 1.
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coloring with at most ∆ + 1 colors in O(V + E) time.
Hence, it has an additive approximation gurantee of ∆− 1.
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� We show that χ′(G) ≤ ∆ + 1.
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Minimum Edge Coloring – Upper Bound

Vizing’s Theorem.
For every graph G = (V, E) with maximum degree ∆,
it holds that ∆ ≤ χ′(G) ≤ ∆ + 1.

Vadim G. Vizing

(Kiew 1937 – 2017 Odessa)
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Minimum Edge Coloring – Recoloring

Lemma 2.
Let G be a graph with a (∆ + 1)-edge coloring c,
let u, v be non-adjacent vertices with deg(u), deg(v)<∆.
Then c can be changed s.t. u and v miss the same color.
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Let G be a graph with a (∆ + 1)-edge coloring c,
let u, v be non-adjacent vertices with deg(u), deg(v)<∆.
Then c can be changed s.t. u and v miss the same color.
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Lemma 2.
Let G be a graph with a (∆ + 1)-edge coloring c,
let u, v be non-adjacent vertices with deg(u), deg(v)<∆.
Then c can be changed s.t. u and v miss the same color.
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Let u miss β and v miss α1; apply the following algorithm:
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Lemma 2.
Let G be a graph with a (∆ + 1)-edge coloring c,
let u, v be non-adjacent vertices with deg(u), deg(v)<∆.
Then c can be changed s.t. u and v miss the same color.
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Lemma 2.
Let G be a graph with a (∆ + 1)-edge coloring c,
let u, v be non-adjacent vertices with deg(u), deg(v)<∆.
Then c can be changed s.t. u and v miss the same color.

β?

αj+1



8 - 23

Minimum Edge Coloring – Recoloring

,¬αj

VizingRecoloring(G, c, u, α1)

i← 1
while ∃w ∈ N(u) : c(uw) = αi ∧ w 6∈ {v1, . . . , vi−1} do

vi ← w
αi+1 ← min color missing at w
i← i + 1

return v1, . . . , vi; α1, . . . , αi+1

Proof. Note that every vertex is missing a color. u v¬β ¬α1

v1

α1

¬α2
v2

¬α3

Let u miss β and v miss α1; apply the following algorithm:

v3

¬α4

αhvh

α2α3

¬αh+1

Case 2: αh+1 = αj, j < h.

u v ¬α1

v1

α2

¬α2

vj−1

¬αj

vj

¬αj+1

αh

vh

αj

¬αh+1

¬αj+2

¬β,¬α1

?
vj+1

Lemma 2.
Let G be a graph with a (∆ + 1)-edge coloring c,
let u, v be non-adjacent vertices with deg(u), deg(v)<∆.
Then c can be changed s.t. u and v miss the same color.
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Lemma 2.
Let G be a graph with a (∆ + 1)-edge coloring c,
let u, v be non-adjacent vertices with deg(u), deg(v)<∆.
Then c can be changed s.t. u and v miss the same color.
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i← 1
while ∃w ∈ N(u) : c(uw) = αi ∧ w 6∈ {v1, . . . , vi−1} do

vi ← w
αi+1 ← min color missing at w
i← i + 1

return v1, . . . , vi; α1, . . . , αi+1

Proof. Note that every vertex is missing a color. u v¬β ¬α1

v1

α1

¬α2
v2

¬α3

Let u miss β and v miss α1; apply the following algorithm:

v3

¬α4

αhvh

α2α3

¬αh+1

Case 2: αh+1 = αj, j < h.

u v ¬α1

v1
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¬α2
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Need color for edge uv j!
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?
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Lemma 2.
Let G be a graph with a (∆ + 1)-edge coloring c,
let u, v be non-adjacent vertices with deg(u), deg(v)<∆.
Then c can be changed s.t. u and v miss the same color.

β?

αj+1
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u v ¬α1

v1

α2

¬α2

vj−1

¬αj

vj

¬αj+1

αh

vh

αj

¬αh+1

¬αj+2

¬β,¬α1

?

Proof continued for Case 2: αh+1 = αj, j < h,
and we need to find a color for edge uvj.

vj+1

β?

αj+1
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Proof continued for Case 2: αh+1 = αj, j < h,
and we need to find a color for edge uvj.

� Consider subgraph G′ of G induced by
the edges of colors β and αj.

αjαj ¬αj

vj+1

β?

αj+1
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Proof continued for Case 2: αh+1 = αj, j < h,
and we need to find a color for edge uvj.

� Consider subgraph G′ of G induced by
the edges of colors β and αj.

� Since ∆(G′) ≤ 2, we can recolor components.

αjαj ¬αj

αjαj
β

vj+1

β?

αj+1
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Proof continued for Case 2: αh+1 = αj, j < h,
and we need to find a color for edge uvj.

� Consider subgraph G′ of G induced by
the edges of colors β and αj.

� Since ∆(G′) ≤ 2, we can recolor components.

αjαj ¬αj

αjαj
β

¬αj ¬β

vj+1

β?
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Proof continued for Case 2: αh+1 = αj, j < h,
and we need to find a color for edge uvj.

� Consider subgraph G′ of G induced by
the edges of colors β and αj.

� Since ∆(G′) ≤ 2, we can recolor components.

αjαj ¬αj

αjαj
β

� Nodes u, vj, vh are all leaves in G′.
⇒ They are not all in the same component of G′.

¬αj ¬β

vj+1

β?

αj+1
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Proof continued for Case 2: αh+1 = αj, j < h,
and we need to find a color for edge uvj.

� Consider subgraph G′ of G induced by
the edges of colors β and αj.

� Since ∆(G′) ≤ 2, we can recolor components.

αjαj ¬αj

αjαj
β

� Nodes u, vj, vh are all leaves in G′.
⇒ They are not all in the same component of G′.

� If u and vj are not in the same component:
� re-color component ending at vj,
� vj now misses β; color uvj with β.

¬αj ¬β

vj+1

β?

αj+1



8 - 32

Minimum Edge Coloring – Recoloring

β
¬β

β

β

,¬αj

u v ¬α1

v1

α2

¬α2

vj−1

¬αj

vj

¬αj+1

αh

vh

αj

¬αh+1

¬αj+2

¬β,¬α1

?

Proof continued for Case 2: αh+1 = αj, j < h,
and we need to find a color for edge uvj.

� Consider subgraph G′ of G induced by
the edges of colors β and αj.

� Since ∆(G′) ≤ 2, we can recolor components.

αjαj ¬αj

αjαj
β

� Nodes u, vj, vh are all leaves in G′.
⇒ They are not all in the same component of G′.

� If u and vj are not in the same component:
� re-color component ending at vj,
� vj now misses β; color uvj with β.

¬αj ¬β

vj+1

,¬β

αj+1

αj?
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Proof continued for Case 2: αh+1 = αj, j < h,
and we need to find a color for edge uvj.

� Consider subgraph G′ of G induced by
the edges of colors β and αj.

� Since ∆(G′) ≤ 2, we can recolor components.

αjαj ¬αj

αjαj
β

� Nodes u, vj, vh are all leaves in G′.
⇒ They are not all in the same component of G′.

� If u and vj are not in the same component:
� re-color component ending at vj,
� vj now misses β; color uvj with β. β

¬αj ¬β

vj+1

,¬β

αj+1

αj?
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Proof continued for Case 2: αh+1 = αj, j < h,
and we need to find a color for edge uvj.

� Consider subgraph G′ of G induced by
the edges of colors β and αj.

� Since ∆(G′) ≤ 2, we can recolor components.

αjαj ¬αj

αjαj
β

� Nodes u, vj, vh are all leaves in G′.
⇒ They are not all in the same component of G′.

� If u and vj are not in the same component:
� re-color component ending at vj,
� vj now misses β; color uvj with β.

� What if u and vj are in the same component?
� re-color component ending at vh if there is β
� color uvh with β; color uvj with αj+1 and so on

¬αj ¬β

vj+1

αj+1
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Proof continued for Case 2: αh+1 = αj, j < h,
and we need to find a color for edge uvj.

� Consider subgraph G′ of G induced by
the edges of colors β and αj.

� Since ∆(G′) ≤ 2, we can recolor components.

αjαj ¬αj

αjαj
β

� Nodes u, vj, vh are all leaves in G′.
⇒ They are not all in the same component of G′.

� If u and vj are not in the same component:
� re-color component ending at vj,
� vj now misses β; color uvj with β.

� What if u and vj are in the same component?
� re-color component ending at vh if there is β
� color uvh with β; color uvj with αj+1 and so on
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Proof continued for Case 2: αh+1 = αj, j < h,
and we need to find a color for edge uvj.

� Consider subgraph G′ of G induced by
the edges of colors β and αj.

� Since ∆(G′) ≤ 2, we can recolor components.

αjαj ¬αj

αjαj
β

� Nodes u, vj, vh are all leaves in G′.
⇒ They are not all in the same component of G′.

� If u and vj are not in the same component:
� re-color component ending at vj,
� vj now misses β; color uvj with β.

� What if u and vj are in the same component?
� re-color component ending at vh if there is β
� color uvh with β; color uvj with αj+1 and so on
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Proof continued for Case 2: αh+1 = αj, j < h,
and we need to find a color for edge uvj.

� Consider subgraph G′ of G induced by
the edges of colors β and αj.

� Since ∆(G′) ≤ 2, we can recolor components.

αjαj ¬αj

αjαj
β

� Nodes u, vj, vh are all leaves in G′.
⇒ They are not all in the same component of G′.

� If u and vj are not in the same component:
� re-color component ending at vj,
� vj now misses β; color uvj with β.

� What if u and vj are in the same component?
� re-color component ending at vh if there is β
� color uvh with β; color uvj with αj+1 and so on
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Proof continued for Case 2: αh+1 = αj, j < h,
and we need to find a color for edge uvj.

� Consider subgraph G′ of G induced by
the edges of colors β and αj.

� Since ∆(G′) ≤ 2, we can recolor components.

αjαj ¬αj

αjαj
β

� Nodes u, vj, vh are all leaves in G′.
⇒ They are not all in the same component of G′.

� If u and vj are not in the same component:
� re-color component ending at vj,
� vj now misses β; color uvj with β.

� What if u and vj are in the same component?
� re-color component ending at vh if there is β
� color uvh with β; color uvj with αj+1 and so on

¬αj ¬β

vj+1

αj+1

¬β

αj+1

β
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and we need to find a color for edge uvj.

� Consider subgraph G′ of G induced by
the edges of colors β and αj.

� Since ∆(G′) ≤ 2, we can recolor components.

αjαj ¬αj

αjαj
β

� Nodes u, vj, vh are all leaves in G′.
⇒ They are not all in the same component of G′.

� If u and vj are not in the same component:
� re-color component ending at vj,
� vj now misses β; color uvj with β.

� What if u and vj are in the same component?
� re-color component ending at vh if there is β
� color uvh with β; color uvj with αj+1 and so on
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Minimum Edge Coloring – Algorithm

VizingEdgeColoring(graph G, coloring c ≡ 0)

if E(G) 6= ∅ then
Let e = uv be an arbitrary edge of G.
Ge ← G− e
VizingEdgeColoring(Ge, c)
if ∆(Ge) < ∆(G) then

Color e with lowest free color.

else
Recolor Ge as in Lemma 2.
Color e with color now missing at u and v.
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Minimum Edge Coloring – Algorithm

VizingEdgeColoring(graph G, coloring c ≡ 0)

if E(G) 6= ∅ then
Let e = uv be an arbitrary edge of G.
Ge ← G− e
VizingEdgeColoring(Ge, c)
if ∆(Ge) < ∆(G) then

Color e with lowest free color.

else
Recolor Ge as in Lemma 2.
Color e with color now missing at u and v.

Theorem 4.
VizingEdgeColoring is an
approximation algorithm with
additive approximation guarantee
ALG(G)−OPT(G) ≤ 1.
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Approximation with Relative Factor

� An additive approximation guarantee can rarely be achieved;
but sometimes, there is a multiplicative approximation!
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Approximation with Relative Factor

Definition.
Let Π be a minimization problem, and let α ∈ Q+.
A factor-α approximation algorithm for Π is a
polynomial-time algorithm A that computes, for every
instance I of Π, a solution of value ALG(I) such that

ALG(I)
OPT(I)

≤ α.

We call α the approximation factor of A.

� An additive approximation guarantee can rarely be achieved;
but sometimes, there is a multiplicative approximation!
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Let Π be a minimization problem, and let α ∈ Q+.
A factor-α approximation algorithm for Π is a
polynomial-time algorithm A that computes, for every
instance I of Π, a solution of value ALG(I) such that

ALG(I)
OPT(I)

≤ α.

We call α the approximation factor of A.

� An additive approximation guarantee can rarely be achieved;
but sometimes, there is a multiplicative approximation!
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≥
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2-Approximation for Metric TSP (from AGT)

u

w

v
Complete graph G = (V, E) and a distance function
d : E→ R≥0 that satisfies the triangle inequality,
i.e., ∀u, v, w ∈ V : d(u, w) ≤ d(u, v) + d(v, w).

Input.
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u

w

v
Complete graph G = (V, E) and a distance function
d : E→ R≥0 that satisfies the triangle inequality,
i.e., ∀u, v, w ∈ V : d(u, w) ≤ d(u, v) + d(v, w).

Input.

A shortest Hamiltonian cycle in G.Output.
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d : E→ R≥0 that satisfies the triangle inequality,
i.e., ∀u, v, w ∈ V : d(u, w) ≤ d(u, v) + d(v, w).

Input.

A shortest Hamiltonian cycle in G.Output.

Algorithm.
� Compute MST.

� Double edges.
⇒ Eulerian cycle

� Walk along Eulerian cycle,

� skipping visited vertices

� and adding shortcuts.
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Theorem 5.
The MST edge doubling algorithm
is a 2-approximation algorithm for
metric TSP.
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2-Approximation for Metric TSP (from AGT)

u

w

v
Complete graph G = (V, E) and a distance function
d : E→ R≥0 that satisfies the triangle inequality,
i.e., ∀u, v, w ∈ V : d(u, w) ≤ d(u, v) + d(v, w).

Input.

A shortest Hamiltonian cycle in G.Output.

Algorithm.
� Compute MST.

� Double edges.
⇒ Eulerian cycle

� Walk along Eulerian cycle,

� skipping visited vertices

� and adding shortcuts.

Proof.
ALG ≤ d(cycle) = 2d(MST) ≤ 2OPT.

Theorem 5.
The MST edge doubling algorithm
is a 2-approximation algorithm for
metric TSP.
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Nearest Addition Algorithm for Metric TSP

NearestAdditionAlgorithm(G = (V, E), d)

Find closest pair, say i and k.
Set tour T to go from i to k to i (clockwise).
while T ( V do

Find pair (i, j) ∈ T × (V \ T) minimizing d(i, j).
Let k be vertex after i in T.
Add j between i and k.
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Theorem 6.
NearestAdditionAlgorithm is a
2-approximation algorithm for metric TSP.
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Nearest Addition Algorithm for Metric TSP

NearestAdditionAlgorithm(G = (V, E), d)

Find closest pair, say i and k.
Set tour T to go from i to k to i (clockwise).
while T ( V do

Find pair (i, j) ∈ T × (V \ T) minimizing d(i, j).
Let k be vertex after i in T.
Add j between i and k.

Proof.

� Exercise.

� Hints: MST and Prim’s algorithm.

k

ji

Theorem 6.
NearestAdditionAlgorithm is a
2-approximation algorithm for metric TSP.
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Approximation Schemes

� In some cases, we can get arbitrarily good approximations.
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Definition.
Let Π be a minimization problem. An algorithm A is called
a polynomial-time approximation scheme (PTAS) if A
computes, for every input (I, ε) (consisting of an instance I
of Π and a real ε > 0), a value ALG(I) such that:

� ALG(I) ≤ (1 + ε) ·OPT(I), and
� the runtime of A is polynomial in |I| for every ε > 0.
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Examples.

� O
(
2

n
ε
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� O
(

n2 + n
1
ε

)
⇒ PTAS but no FPTAS
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ε
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ε
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Multiprocessor Scheduling

� n jobs J1, . . . , Jn with
durations p1, . . . , pn.
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p3
J4

p4

J5
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J6
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p7

Input. � m identical machines (m < n)
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� n jobs J1, . . . , Jn with
durations p1, . . . , pn.

J1

p1

J2

p2

J3

p3
J4

p4

J5

p5

J6

p6

J7

p7

Input. � m identical machines (m < n)

Output. Assignment of jobs to machines such that the time when all
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Sort jobs in descending order of runtime.
Schedule the ` longest jobs J1, . . . , J` optimally.
Use ListScheduling for the remaining jobs J`+1, . . . , Jn.
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� Approximation algorithms exist also for non-NP-hard problems.

� Approximation algorithms can be of various types:
greedy, local search, geometric, DP, . . .

� One important technique is LP-relaxation (more later in this lecture).

� Minimum Vertex Coloring on planar graphs can be approximated with an additive
approximation guarantee of 2.

� Christofides’ approximation algorithm for Metric TSP has approximation factor 1.5.

� There is a whole lecture on approximation algorithms this semester!
https://wuecampus.uni-wuerzburg.de/moodle/course/view.php?id=62943
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