
1

Advanced Algorithms

Coloring and Scheduling Problems
Approximation Algorithms

Johannes Zink · WS23/24

1

6
3 2

4
5

2 - 1

Dealing with NP-Hard Optimization Problems

Heuristic

NP-hard

Exponential FPT

Approximation

� Optimal solutions
� Exact exponential-time algorithms
� Fine-grained analysis – parameterized algorithms

� Sacrifice optimality for speed
� Heuristics
� Approximation algorithms

What should we do?

2 - 2

Dealing with NP-Hard Optimization Problems

Heuristic

NP-hard

Exponential FPT

Approximation

� Optimal solutions
� Exact exponential-time algorithms
� Fine-grained analysis – parameterized algorithms

� Sacrifice optimality for speed
� Heuristics
� Approximation algorithms

What should we do?

this lecture

3 - 1

Approximation Algorithms

Problem.
� For NP-hard optimization problems, we cannot compute the

optimal solution of every instance efficiently (unless P = NP).

� Heuristics offer no guarantee on the quality of their solutions.

3 - 2

Approximation Algorithms

Problem.
� For NP-hard optimization problems, we cannot compute the

optimal solution of every instance efficiently (unless P = NP).

� Heuristics offer no guarantee on the quality of their solutions.

Goal.
� Design approximation algorithms:

� run in polynomial time and
� compute solutions of guaranteed quality.

� Study techniques for the design and analysis of
approximation algorithms.

3 - 3

Approximation Algorithms

Problem.
� For NP-hard optimization problems, we cannot compute the

optimal solution of every instance efficiently (unless P = NP).

� Heuristics offer no guarantee on the quality of their solutions.

Goal.
� Design approximation algorithms:

� run in polynomial time and
� compute solutions of guaranteed quality.

� Study techniques for the design and analysis of
approximation algorithms.

Overview.
� Approximation algorithms that compute solutions

� with additive guarantee, � with relative guarantee, � that are “arbitrarily good”.

3 - 4

Approximation Algorithms

Problem.
� For NP-hard optimization problems, we cannot compute the

optimal solution of every instance efficiently (unless P = NP).

� Heuristics offer no guarantee on the quality of their solutions.

Goal.
� Design approximation algorithms:

� run in polynomial time and
� compute solutions of guaranteed quality.

� Study techniques for the design and analysis of
approximation algorithms.

Overview.
� Approximation algorithms that compute solutions

� with additive guarantee, � with relative guarantee, � that are “arbitrarily good”.

PTAS
(polynomial-time
approximation

scheme)

4 - 1

Approximation with Additive Guarantee

Definition.
Let Π be an optimization problem,
let A be a polynomial-time algorithm for Π,
let I be an instance of Π, and
let ALG(I) be the value of the objective function of
the solution that A computes given I.

Then A is called an approximation algorithm with
additive guarantee δ (which can depend on I) if

|OPT(I)− ALG(I)| ≤ δ

for every instance I of Π.

4 - 2

Approximation with Additive Guarantee

� Most problems that we know do not admit an
approximation algorithm with additive guarantee.

Definition.
Let Π be an optimization problem,
let A be a polynomial-time algorithm for Π,
let I be an instance of Π, and
let ALG(I) be the value of the objective function of
the solution that A computes given I.

Then A is called an approximation algorithm with
additive guarantee δ (which can depend on I) if

|OPT(I)− ALG(I)| ≤ δ

for every instance I of Π.

5 - 1

Minimum Vertex Coloring

A graph G = (V, E). Let ∆ be the maximum degree of G.Input.

5 - 2

Minimum Vertex Coloring

A graph G = (V, E). Let ∆ be the maximum degree of G.Input.

A minimum vertex coloring, that is, an assignment of the
vertices of G to colors such that no two adjacent vertices
get the same color and the number of colors is minimum.

Output.

5 - 3

Minimum Vertex Coloring

A graph G = (V, E). Let ∆ be the maximum degree of G.Input.

A minimum vertex coloring, that is, an assignment of the
vertices of G to colors such that no two adjacent vertices
get the same color and the number of colors is minimum.

Output.

� Minimum Vertex Coloring is NP-hard.

� Even Vertex 3-Coloring is NP-complete.

5 - 4

Minimum Vertex Coloring

A graph G = (V, E). Let ∆ be the maximum degree of G.Input.

A minimum vertex coloring, that is, an assignment of the
vertices of G to colors such that no two adjacent vertices
get the same color and the number of colors is minimum.

Output.

� Minimum Vertex Coloring is NP-hard.

� Even Vertex 3-Coloring is NP-complete.

GreedyVertexColoring(connected graph G)
Color vertices in some order with the lowest feasible color.

. . .

1

6
3 2

4
5

5 - 5

Minimum Vertex Coloring

A graph G = (V, E). Let ∆ be the maximum degree of G.Input.

A minimum vertex coloring, that is, an assignment of the
vertices of G to colors such that no two adjacent vertices
get the same color and the number of colors is minimum.

Output.

� Minimum Vertex Coloring is NP-hard.

� Even Vertex 3-Coloring is NP-complete.

GreedyVertexColoring(connected graph G)
Color vertices in some order with the lowest feasible color.

. . .

1

6
3 2

4
5

5 - 6

Minimum Vertex Coloring

A graph G = (V, E). Let ∆ be the maximum degree of G.Input.

A minimum vertex coloring, that is, an assignment of the
vertices of G to colors such that no two adjacent vertices
get the same color and the number of colors is minimum.

Output.

� Minimum Vertex Coloring is NP-hard.

� Even Vertex 3-Coloring is NP-complete.

GreedyVertexColoring(connected graph G)
Color vertices in some order with the lowest feasible color.

. . .

1

6
3 2

4
5

5 - 7

Minimum Vertex Coloring

A graph G = (V, E). Let ∆ be the maximum degree of G.Input.

A minimum vertex coloring, that is, an assignment of the
vertices of G to colors such that no two adjacent vertices
get the same color and the number of colors is minimum.

Output.

� Minimum Vertex Coloring is NP-hard.

� Even Vertex 3-Coloring is NP-complete.

GreedyVertexColoring(connected graph G)
Color vertices in some order with the lowest feasible color.

. . .

1

6
3 2

4
5

5 - 8

Minimum Vertex Coloring

A graph G = (V, E). Let ∆ be the maximum degree of G.Input.

A minimum vertex coloring, that is, an assignment of the
vertices of G to colors such that no two adjacent vertices
get the same color and the number of colors is minimum.

Output.

� Minimum Vertex Coloring is NP-hard.

� Even Vertex 3-Coloring is NP-complete.

GreedyVertexColoring(connected graph G)
Color vertices in some order with the lowest feasible color.

. . .

1

6
3 2

4
5

5 - 9

Minimum Vertex Coloring

A graph G = (V, E). Let ∆ be the maximum degree of G.Input.

A minimum vertex coloring, that is, an assignment of the
vertices of G to colors such that no two adjacent vertices
get the same color and the number of colors is minimum.

Output.

� Minimum Vertex Coloring is NP-hard.

� Even Vertex 3-Coloring is NP-complete.

GreedyVertexColoring(connected graph G)
Color vertices in some order with the lowest feasible color.

. . .

1

6
3 2

4
5

5 - 10

Minimum Vertex Coloring

A graph G = (V, E). Let ∆ be the maximum degree of G.Input.

A minimum vertex coloring, that is, an assignment of the
vertices of G to colors such that no two adjacent vertices
get the same color and the number of colors is minimum.

Output.

� Minimum Vertex Coloring is NP-hard.

� Even Vertex 3-Coloring is NP-complete.

GreedyVertexColoring(connected graph G)
Color vertices in some order with the lowest feasible color.

. . .

1

6
3 2

4
5

5 - 11

Minimum Vertex Coloring

A graph G = (V, E). Let ∆ be the maximum degree of G.Input.

A minimum vertex coloring, that is, an assignment of the
vertices of G to colors such that no two adjacent vertices
get the same color and the number of colors is minimum.

Output.

� Minimum Vertex Coloring is NP-hard.

� Even Vertex 3-Coloring is NP-complete.

GreedyVertexColoring(connected graph G)
Color vertices in some order with the lowest feasible color.

. . .

1

6
3 2

4
5

Theorem 1.
The algorithm GreedyVertexColoring computes a vertex
coloring with at most ∆ + 1 colors in O(V + E) time.
Hence, it has an additive approximation gurantee of ∆− 1.

5 - 12

Minimum Vertex Coloring

A graph G = (V, E). Let ∆ be the maximum degree of G.Input.

A minimum vertex coloring, that is, an assignment of the
vertices of G to colors such that no two adjacent vertices
get the same color and the number of colors is minimum.

Output.

� Minimum Vertex Coloring is NP-hard.

� Even Vertex 3-Coloring is NP-complete.

GreedyVertexColoring(connected graph G)
Color vertices in some order with the lowest feasible color.

. . .

1

6
3 2

4
5

Theorem 1.
The algorithm GreedyVertexColoring computes a vertex
coloring with at most ∆ + 1 colors in O(V + E) time.
Hence, it has an additive approximation gurantee of ∆− 1.

5 - 13

Minimum Vertex Coloring

A graph G = (V, E). Let ∆ be the maximum degree of G.Input.

A minimum vertex coloring, that is, an assignment of the
vertices of G to colors such that no two adjacent vertices
get the same color and the number of colors is minimum.

Output.

� Minimum Vertex Coloring is NP-hard.

� Even Vertex 3-Coloring is NP-complete.

GreedyVertexColoring(connected graph G)
Color vertices in some order with the lowest feasible color.

. . .

1

6
3 2

4
5

Theorem 1.
The algorithm GreedyVertexColoring computes a vertex
coloring with at most ∆ + 1 colors in O(V + E) time.
Hence, it has an additive approximation gurantee of ∆− 1.

5 - 14

Minimum Vertex Coloring

A graph G = (V, E). Let ∆ be the maximum degree of G.Input.

A minimum vertex coloring, that is, an assignment of the
vertices of G to colors such that no two adjacent vertices
get the same color and the number of colors is minimum.

Output.

� Minimum Vertex Coloring is NP-hard.

� Even Vertex 3-Coloring is NP-complete.

GreedyVertexColoring(connected graph G)
Color vertices in some order with the lowest feasible color.

. . .

1

6
3 2

4
5

Theorem 1.
The algorithm GreedyVertexColoring computes a vertex
coloring with at most ∆ + 1 colors in O(V + E) time.
Hence, it has an additive approximation gurantee of ∆− 1.

We can even get ∆− 2
if we return a 2-coloring
whenever G is bipartite.

6 - 1

Minimum Edge Coloring

A graph G = (V, E). Let ∆ be the maximum degree of G.Input.

6 - 2

Minimum Edge Coloring

A graph G = (V, E). Let ∆ be the maximum degree of G.Input.

A minimum edge coloring, that is, an assignment of
colors to the edges of G such that no two adjacent edges
get the same color and the number of colors is minimum.

Output.

6 - 3

Minimum Edge Coloring

A graph G = (V, E). Let ∆ be the maximum degree of G.Input.

A minimum edge coloring, that is, an assignment of
colors to the edges of G such that no two adjacent edges
get the same color and the number of colors is minimum.

Output.

� Minimum Edge Coloring is NP-hard.

� Even Edge 3-Coloring is NP-complete.

6 - 4

Minimum Edge Coloring

A graph G = (V, E). Let ∆ be the maximum degree of G.Input.

A minimum edge coloring, that is, an assignment of
colors to the edges of G such that no two adjacent edges
get the same color and the number of colors is minimum.

Output.

� Minimum Edge Coloring is NP-hard.

� Even Edge 3-Coloring is NP-complete.

� The minimum number of colors needed for an edge coloring of G
is called the chromatic index χ′(G).

� χ′(G) is lowerbounded by ∆.

6 - 5

Minimum Edge Coloring

A graph G = (V, E). Let ∆ be the maximum degree of G.Input.

A minimum edge coloring, that is, an assignment of
colors to the edges of G such that no two adjacent edges
get the same color and the number of colors is minimum.

Output.

� Minimum Edge Coloring is NP-hard.

� Even Edge 3-Coloring is NP-complete.

� The minimum number of colors needed for an edge coloring of G
is called the chromatic index χ′(G).

� χ′(G) is lowerbounded by ∆.

6 - 6

Minimum Edge Coloring

A graph G = (V, E). Let ∆ be the maximum degree of G.Input.

A minimum edge coloring, that is, an assignment of
colors to the edges of G such that no two adjacent edges
get the same color and the number of colors is minimum.

Output.

� Minimum Edge Coloring is NP-hard.

� Even Edge 3-Coloring is NP-complete.

� The minimum number of colors needed for an edge coloring of G
is called the chromatic index χ′(G).

� χ′(G) is lowerbounded by ∆.

� We show that χ′(G) ≤ ∆ + 1.

7 - 1

Minimum Edge Coloring – Upper Bound

Vizing’s Theorem.
For every graph G = (V, E) with maximum degree ∆,
it holds that ∆ ≤ χ′(G) ≤ ∆ + 1.

Vadim G. Vizing

(Kiew 1937 – 2017 Odessa)

7 - 2

Minimum Edge Coloring – Upper Bound

Proof by induction on m = |E|.
� Base case m = 1 is trivial.

Vizing’s Theorem.
For every graph G = (V, E) with maximum degree ∆,
it holds that ∆ ≤ χ′(G) ≤ ∆ + 1.

Vadim G. Vizing

(Kiew 1937 – 2017 Odessa)

7 - 3

Minimum Edge Coloring – Upper Bound

Proof by induction on m = |E|.
� Base case m = 1 is trivial.

Let G be a graph on m edges, and let e = uv be an edge of G.

� By induction, G− e has a (∆(G− e) + 1)-edge coloring.

� If ∆(G) > ∆(G− e), color e with color ∆(G) + 1.

� If ∆(G) = ∆(G− e), change the coloring such that u and v
miss the same color α.

� Then color e with α.

e

Vizing’s Theorem.
For every graph G = (V, E) with maximum degree ∆,
it holds that ∆ ≤ χ′(G) ≤ ∆ + 1.

Vadim G. Vizing

(Kiew 1937 – 2017 Odessa)

7 - 4

Minimum Edge Coloring – Upper Bound

Proof by induction on m = |E|.
� Base case m = 1 is trivial.

Let G be a graph on m edges, and let e = uv be an edge of G.

� By induction, G− e has a (∆(G− e) + 1)-edge coloring.

� If ∆(G) > ∆(G− e), color e with color ∆(G) + 1.

� If ∆(G) = ∆(G− e), change the coloring such that u and v
miss the same color α.

� Then color e with α.

e

Vizing’s Theorem.
For every graph G = (V, E) with maximum degree ∆,
it holds that ∆ ≤ χ′(G) ≤ ∆ + 1.

Vadim G. Vizing

(Kiew 1937 – 2017 Odessa)

7 - 5

Minimum Edge Coloring – Upper Bound

Proof by induction on m = |E|.
� Base case m = 1 is trivial.

Let G be a graph on m edges, and let e = uv be an edge of G.

� By induction, G− e has a (∆(G− e) + 1)-edge coloring.

� If ∆(G) > ∆(G− e), color e with color ∆(G) + 1.

� If ∆(G) = ∆(G− e), change the coloring such that u and v
miss the same color α.

� Then color e with α.

e

u v u v

Lemma 2

e

Vizing’s Theorem.
For every graph G = (V, E) with maximum degree ∆,
it holds that ∆ ≤ χ′(G) ≤ ∆ + 1.

Vadim G. Vizing

(Kiew 1937 – 2017 Odessa)

(next slide)

7 - 6

Minimum Edge Coloring – Upper Bound

Proof by induction on m = |E|.
� Base case m = 1 is trivial.

Let G be a graph on m edges, and let e = uv be an edge of G.

� By induction, G− e has a (∆(G− e) + 1)-edge coloring.

� If ∆(G) > ∆(G− e), color e with color ∆(G) + 1.

� If ∆(G) = ∆(G− e), change the coloring such that u and v
miss the same color α.

� Then color e with α.

e

u v u v

Lemma 2

e

Vizing’s Theorem.
For every graph G = (V, E) with maximum degree ∆,
it holds that ∆ ≤ χ′(G) ≤ ∆ + 1.

Vadim G. Vizing

(Kiew 1937 – 2017 Odessa)

(next slide)

8 - 1

Minimum Edge Coloring – Recoloring

Lemma 2.
Let G be a graph with a (∆ + 1)-edge coloring c,
let u, v be non-adjacent vertices with deg(u), deg(v)<∆.
Then c can be changed s.t. u and v miss the same color.

8 - 2

Minimum Edge Coloring – Recoloring

Proof. Note that every vertex is missing a color.

Lemma 2.
Let G be a graph with a (∆ + 1)-edge coloring c,
let u, v be non-adjacent vertices with deg(u), deg(v)<∆.
Then c can be changed s.t. u and v miss the same color.

8 - 3

Minimum Edge Coloring – Recoloring

Proof. Note that every vertex is missing a color. u v¬β ¬α1Let u miss β and v miss α1; apply the following algorithm:

Lemma 2.
Let G be a graph with a (∆ + 1)-edge coloring c,
let u, v be non-adjacent vertices with deg(u), deg(v)<∆.
Then c can be changed s.t. u and v miss the same color.

8 - 4

Minimum Edge Coloring – Recoloring

VizingRecoloring(G, c, u, α1)

i← 1
while ∃w ∈ N(u) : c(uw) = αi ∧ w 6∈ {v1, . . . , vi−1} do

vi ← w
αi+1 ← min color missing at w
i← i + 1

return v1, . . . , vi; α1, . . . , αi+1

Proof. Note that every vertex is missing a color. u v¬β ¬α1Let u miss β and v miss α1; apply the following algorithm:

Lemma 2.
Let G be a graph with a (∆ + 1)-edge coloring c,
let u, v be non-adjacent vertices with deg(u), deg(v)<∆.
Then c can be changed s.t. u and v miss the same color.

8 - 5

Minimum Edge Coloring – Recoloring

VizingRecoloring(G, c, u, α1)

i← 1
while ∃w ∈ N(u) : c(uw) = αi ∧ w 6∈ {v1, . . . , vi−1} do

vi ← w
αi+1 ← min color missing at w
i← i + 1

return v1, . . . , vi; α1, . . . , αi+1

Proof. Note that every vertex is missing a color. u v¬β ¬α1

v1

α1

¬α2

Let u miss β and v miss α1; apply the following algorithm:

Lemma 2.
Let G be a graph with a (∆ + 1)-edge coloring c,
let u, v be non-adjacent vertices with deg(u), deg(v)<∆.
Then c can be changed s.t. u and v miss the same color.

8 - 6

Minimum Edge Coloring – Recoloring

VizingRecoloring(G, c, u, α1)

i← 1
while ∃w ∈ N(u) : c(uw) = αi ∧ w 6∈ {v1, . . . , vi−1} do

vi ← w
αi+1 ← min color missing at w
i← i + 1

return v1, . . . , vi; α1, . . . , αi+1

Proof. Note that every vertex is missing a color. u v¬β ¬α1

v1

α1

¬α2
v2

¬α3

Let u miss β and v miss α1; apply the following algorithm:

α2

Lemma 2.
Let G be a graph with a (∆ + 1)-edge coloring c,
let u, v be non-adjacent vertices with deg(u), deg(v)<∆.
Then c can be changed s.t. u and v miss the same color.

8 - 7

Minimum Edge Coloring – Recoloring

VizingRecoloring(G, c, u, α1)

i← 1
while ∃w ∈ N(u) : c(uw) = αi ∧ w 6∈ {v1, . . . , vi−1} do

vi ← w
αi+1 ← min color missing at w
i← i + 1

return v1, . . . , vi; α1, . . . , αi+1

Proof. Note that every vertex is missing a color. u v¬β ¬α1

v1

α1

¬α2
v2

¬α3

Let u miss β and v miss α1; apply the following algorithm:

v3

¬α4

α2α3

Lemma 2.
Let G be a graph with a (∆ + 1)-edge coloring c,
let u, v be non-adjacent vertices with deg(u), deg(v)<∆.
Then c can be changed s.t. u and v miss the same color.

8 - 8

Minimum Edge Coloring – Recoloring

VizingRecoloring(G, c, u, α1)

i← 1
while ∃w ∈ N(u) : c(uw) = αi ∧ w 6∈ {v1, . . . , vi−1} do

vi ← w
αi+1 ← min color missing at w
i← i + 1

return v1, . . . , vi; α1, . . . , αi+1

Proof. Note that every vertex is missing a color. u v¬β ¬α1

v1

α1

¬α2
v2

¬α3

Let u miss β and v miss α1; apply the following algorithm:

v3

¬α4

αhvh

α2α3

¬αh+1

Lemma 2.
Let G be a graph with a (∆ + 1)-edge coloring c,
let u, v be non-adjacent vertices with deg(u), deg(v)<∆.
Then c can be changed s.t. u and v miss the same color.

8 - 9

Minimum Edge Coloring – Recoloring

VizingRecoloring(G, c, u, α1)

i← 1
while ∃w ∈ N(u) : c(uw) = αi ∧ w 6∈ {v1, . . . , vi−1} do

vi ← w
αi+1 ← min color missing at w
i← i + 1

return v1, . . . , vi; α1, . . . , αi+1

Proof. Note that every vertex is missing a color. u v¬β ¬α1

v1

α1

¬α2
v2

¬α3

Let u miss β and v miss α1; apply the following algorithm:

v3

¬α4

αhvh

α2α3

¬αh+1

Case 1: u misses αh+1.

Lemma 2.
Let G be a graph with a (∆ + 1)-edge coloring c,
let u, v be non-adjacent vertices with deg(u), deg(v)<∆.
Then c can be changed s.t. u and v miss the same color.

8 - 10

Minimum Edge Coloring – Recoloring

VizingRecoloring(G, c, u, α1)

i← 1
while ∃w ∈ N(u) : c(uw) = αi ∧ w 6∈ {v1, . . . , vi−1} do

vi ← w
αi+1 ← min color missing at w
i← i + 1

return v1, . . . , vi; α1, . . . , αi+1

Proof. Note that every vertex is missing a color. u v¬β ¬α1

v1

α1

¬α2
v2

¬α3

Let u miss β and v miss α1; apply the following algorithm:

v3

¬α4

αhvh

α2α3

¬αh+1

Case 1: u misses αh+1.

u v¬β,¬α1 ¬α1

v1

¬α2
v2

¬α3v3

¬α4

vh

¬αh+1

Lemma 2.
Let G be a graph with a (∆ + 1)-edge coloring c,
let u, v be non-adjacent vertices with deg(u), deg(v)<∆.
Then c can be changed s.t. u and v miss the same color.

8 - 11

Minimum Edge Coloring – Recoloring

VizingRecoloring(G, c, u, α1)

i← 1
while ∃w ∈ N(u) : c(uw) = αi ∧ w 6∈ {v1, . . . , vi−1} do

vi ← w
αi+1 ← min color missing at w
i← i + 1

return v1, . . . , vi; α1, . . . , αi+1

Proof. Note that every vertex is missing a color. u v¬β ¬α1

v1

α1

¬α2
v2

¬α3

Let u miss β and v miss α1; apply the following algorithm:

v3

¬α4

αhvh

α2α3

¬αh+1

Case 1: u misses αh+1.

u v¬β,¬α1 ¬α1

v1

α2

¬α2
v2

¬α3v3

¬α4

vh

¬αh+1

Lemma 2.
Let G be a graph with a (∆ + 1)-edge coloring c,
let u, v be non-adjacent vertices with deg(u), deg(v)<∆.
Then c can be changed s.t. u and v miss the same color.

8 - 12

Minimum Edge Coloring – Recoloring

VizingRecoloring(G, c, u, α1)

i← 1
while ∃w ∈ N(u) : c(uw) = αi ∧ w 6∈ {v1, . . . , vi−1} do

vi ← w
αi+1 ← min color missing at w
i← i + 1

return v1, . . . , vi; α1, . . . , αi+1

Proof. Note that every vertex is missing a color. u v¬β ¬α1

v1

α1

¬α2
v2

¬α3

Let u miss β and v miss α1; apply the following algorithm:

v3

¬α4

αhvh

α2α3

¬αh+1

Case 1: u misses αh+1.

u v¬β,¬α1 ¬α1

v1

α2

¬α2
v2

¬α3v3

¬α4

vh

α3

¬αh+1

Lemma 2.
Let G be a graph with a (∆ + 1)-edge coloring c,
let u, v be non-adjacent vertices with deg(u), deg(v)<∆.
Then c can be changed s.t. u and v miss the same color.

8 - 13

Minimum Edge Coloring – Recoloring

VizingRecoloring(G, c, u, α1)

i← 1
while ∃w ∈ N(u) : c(uw) = αi ∧ w 6∈ {v1, . . . , vi−1} do

vi ← w
αi+1 ← min color missing at w
i← i + 1

return v1, . . . , vi; α1, . . . , αi+1

Proof. Note that every vertex is missing a color. u v¬β ¬α1

v1

α1

¬α2
v2

¬α3

Let u miss β and v miss α1; apply the following algorithm:

v3

¬α4

αhvh

α2α3

¬αh+1

Case 1: u misses αh+1.

u v¬β,¬α1 ¬α1

v1

α2

¬α2
v2

¬α3v3

¬α4

vh

α3α4

¬αh+1

Lemma 2.
Let G be a graph with a (∆ + 1)-edge coloring c,
let u, v be non-adjacent vertices with deg(u), deg(v)<∆.
Then c can be changed s.t. u and v miss the same color.

8 - 14

Minimum Edge Coloring – Recoloring

VizingRecoloring(G, c, u, α1)

i← 1
while ∃w ∈ N(u) : c(uw) = αi ∧ w 6∈ {v1, . . . , vi−1} do

vi ← w
αi+1 ← min color missing at w
i← i + 1

return v1, . . . , vi; α1, . . . , αi+1

Proof. Note that every vertex is missing a color. u v¬β ¬α1

v1

α1

¬α2
v2

¬α3

Let u miss β and v miss α1; apply the following algorithm:

v3

¬α4

αhvh

α2α3

¬αh+1

Case 1: u misses αh+1.

u v¬β,¬α1 ¬α1

v1

α2

¬α2
v2

¬α3v3

¬α4

αh+1vh

α3α4

¬αh+1

Lemma 2.
Let G be a graph with a (∆ + 1)-edge coloring c,
let u, v be non-adjacent vertices with deg(u), deg(v)<∆.
Then c can be changed s.t. u and v miss the same color.

8 - 15

Minimum Edge Coloring – Recoloring

VizingRecoloring(G, c, u, α1)

i← 1
while ∃w ∈ N(u) : c(uw) = αi ∧ w 6∈ {v1, . . . , vi−1} do

vi ← w
αi+1 ← min color missing at w
i← i + 1

return v1, . . . , vi; α1, . . . , αi+1

Proof. Note that every vertex is missing a color. u v¬β ¬α1

v1

α1

¬α2
v2

¬α3

Let u miss β and v miss α1; apply the following algorithm:

v3

¬α4

αhvh

α2α3

¬αh+1

Case 1: u misses αh+1.

u v¬β,¬α1 ¬α1

v1

α2

¬α2
v2

¬α3v3

¬α4

αh+1vh

α3α4

¬αh+1

Lemma 2.
Let G be a graph with a (∆ + 1)-edge coloring c,
let u, v be non-adjacent vertices with deg(u), deg(v)<∆.
Then c can be changed s.t. u and v miss the same color.

8 - 16

Minimum Edge Coloring – Recoloring

VizingRecoloring(G, c, u, α1)

i← 1
while ∃w ∈ N(u) : c(uw) = αi ∧ w 6∈ {v1, . . . , vi−1} do

vi ← w
αi+1 ← min color missing at w
i← i + 1

return v1, . . . , vi; α1, . . . , αi+1

Proof. Note that every vertex is missing a color. u v¬β ¬α1

v1

α1

¬α2
v2

¬α3

Let u miss β and v miss α1; apply the following algorithm:

v3

¬α4

αhvh

α2α3

¬αh+1

Case 2: αh+1 = αj, j < h.

Lemma 2.
Let G be a graph with a (∆ + 1)-edge coloring c,
let u, v be non-adjacent vertices with deg(u), deg(v)<∆.
Then c can be changed s.t. u and v miss the same color.

8 - 17

Minimum Edge Coloring – Recoloring

VizingRecoloring(G, c, u, α1)

i← 1
while ∃w ∈ N(u) : c(uw) = αi ∧ w 6∈ {v1, . . . , vi−1} do

vi ← w
αi+1 ← min color missing at w
i← i + 1

return v1, . . . , vi; α1, . . . , αi+1

Proof. Note that every vertex is missing a color. u v¬β ¬α1

v1

α1

¬α2
v2

¬α3

Let u miss β and v miss α1; apply the following algorithm:

v3

¬α4

αhvh

α2α3

¬αh+1

Case 2: αh+1 = αj, j < h.

u v ¬α1

v1

¬α2

vj−1

¬αj

vj

¬αj+1

vh

¬αh+1

¬αj+2

¬β,¬α1

vj+1

Lemma 2.
Let G be a graph with a (∆ + 1)-edge coloring c,
let u, v be non-adjacent vertices with deg(u), deg(v)<∆.
Then c can be changed s.t. u and v miss the same color.

8 - 18

Minimum Edge Coloring – Recoloring

VizingRecoloring(G, c, u, α1)

i← 1
while ∃w ∈ N(u) : c(uw) = αi ∧ w 6∈ {v1, . . . , vi−1} do

vi ← w
αi+1 ← min color missing at w
i← i + 1

return v1, . . . , vi; α1, . . . , αi+1

Proof. Note that every vertex is missing a color. u v¬β ¬α1

v1

α1

¬α2
v2

¬α3

Let u miss β and v miss α1; apply the following algorithm:

v3

¬α4

αhvh

α2α3

¬αh+1

Case 2: αh+1 = αj, j < h.

u v ¬α1

v1

α2

¬α2

vj−1

¬αj

vj

¬αj+1

vh

¬αh+1

¬αj+2

¬β,¬α1

vj+1

Lemma 2.
Let G be a graph with a (∆ + 1)-edge coloring c,
let u, v be non-adjacent vertices with deg(u), deg(v)<∆.
Then c can be changed s.t. u and v miss the same color.

8 - 19

Minimum Edge Coloring – Recoloring

VizingRecoloring(G, c, u, α1)

i← 1
while ∃w ∈ N(u) : c(uw) = αi ∧ w 6∈ {v1, . . . , vi−1} do

vi ← w
αi+1 ← min color missing at w
i← i + 1

return v1, . . . , vi; α1, . . . , αi+1

Proof. Note that every vertex is missing a color. u v¬β ¬α1

v1

α1

¬α2
v2

¬α3

Let u miss β and v miss α1; apply the following algorithm:

v3

¬α4

αhvh

α2α3

¬αh+1

Case 2: αh+1 = αj, j < h.

u v ¬α1

v1

α2

¬α2

vj−1

¬αj

vj

¬αj+1

vh

αj

¬αh+1

¬αj+2

¬β,¬α1

vj+1

Lemma 2.
Let G be a graph with a (∆ + 1)-edge coloring c,
let u, v be non-adjacent vertices with deg(u), deg(v)<∆.
Then c can be changed s.t. u and v miss the same color.

8 - 20

Minimum Edge Coloring – Recoloring

,¬αj

VizingRecoloring(G, c, u, α1)

i← 1
while ∃w ∈ N(u) : c(uw) = αi ∧ w 6∈ {v1, . . . , vi−1} do

vi ← w
αi+1 ← min color missing at w
i← i + 1

return v1, . . . , vi; α1, . . . , αi+1

Proof. Note that every vertex is missing a color. u v¬β ¬α1

v1

α1

¬α2
v2

¬α3

Let u miss β and v miss α1; apply the following algorithm:

v3

¬α4

αhvh

α2α3

¬αh+1

Case 2: αh+1 = αj, j < h.

u v ¬α1

v1

α2

¬α2

vj−1

¬αj

vj

¬αj+1

vh

αj

¬αh+1

¬αj+2

¬β,¬α1

?
vj+1

Lemma 2.
Let G be a graph with a (∆ + 1)-edge coloring c,
let u, v be non-adjacent vertices with deg(u), deg(v)<∆.
Then c can be changed s.t. u and v miss the same color.

8 - 21

Minimum Edge Coloring – Recoloring

,¬αj

VizingRecoloring(G, c, u, α1)

i← 1
while ∃w ∈ N(u) : c(uw) = αi ∧ w 6∈ {v1, . . . , vi−1} do

vi ← w
αi+1 ← min color missing at w
i← i + 1

return v1, . . . , vi; α1, . . . , αi+1

Proof. Note that every vertex is missing a color. u v¬β ¬α1

v1

α1

¬α2
v2

¬α3

Let u miss β and v miss α1; apply the following algorithm:

v3

¬α4

αhvh

α2α3

¬αh+1

Case 2: αh+1 = αj, j < h.

u v ¬α1

v1

α2

¬α2

vj−1

¬αj

vj

¬αj+1

vh

αj

¬αh+1

¬αj+2

¬β,¬α1

?
vj+1

Lemma 2.
Let G be a graph with a (∆ + 1)-edge coloring c,
let u, v be non-adjacent vertices with deg(u), deg(v)<∆.
Then c can be changed s.t. u and v miss the same color.

β?

8 - 22

Minimum Edge Coloring – Recoloring

,¬αj

VizingRecoloring(G, c, u, α1)

i← 1
while ∃w ∈ N(u) : c(uw) = αi ∧ w 6∈ {v1, . . . , vi−1} do

vi ← w
αi+1 ← min color missing at w
i← i + 1

return v1, . . . , vi; α1, . . . , αi+1

Proof. Note that every vertex is missing a color. u v¬β ¬α1

v1

α1

¬α2
v2

¬α3

Let u miss β and v miss α1; apply the following algorithm:

v3

¬α4

αhvh

α2α3

¬αh+1

Case 2: αh+1 = αj, j < h.

u v ¬α1

v1

α2

¬α2

vj−1

¬αj

vj

¬αj+1

vh

αj

¬αh+1

¬αj+2

¬β,¬α1

?
vj+1

Lemma 2.
Let G be a graph with a (∆ + 1)-edge coloring c,
let u, v be non-adjacent vertices with deg(u), deg(v)<∆.
Then c can be changed s.t. u and v miss the same color.

β?

αj+1

8 - 23

Minimum Edge Coloring – Recoloring

,¬αj

VizingRecoloring(G, c, u, α1)

i← 1
while ∃w ∈ N(u) : c(uw) = αi ∧ w 6∈ {v1, . . . , vi−1} do

vi ← w
αi+1 ← min color missing at w
i← i + 1

return v1, . . . , vi; α1, . . . , αi+1

Proof. Note that every vertex is missing a color. u v¬β ¬α1

v1

α1

¬α2
v2

¬α3

Let u miss β and v miss α1; apply the following algorithm:

v3

¬α4

αhvh

α2α3

¬αh+1

Case 2: αh+1 = αj, j < h.

u v ¬α1

v1

α2

¬α2

vj−1

¬αj

vj

¬αj+1

αh

vh

αj

¬αh+1

¬αj+2

¬β,¬α1

?
vj+1

Lemma 2.
Let G be a graph with a (∆ + 1)-edge coloring c,
let u, v be non-adjacent vertices with deg(u), deg(v)<∆.
Then c can be changed s.t. u and v miss the same color.

β?

αj+1

8 - 24

Minimum Edge Coloring – Recoloring

,¬αj

VizingRecoloring(G, c, u, α1)

i← 1
while ∃w ∈ N(u) : c(uw) = αi ∧ w 6∈ {v1, . . . , vi−1} do

vi ← w
αi+1 ← min color missing at w
i← i + 1

return v1, . . . , vi; α1, . . . , αi+1

Proof. Note that every vertex is missing a color. u v¬β ¬α1

v1

α1

¬α2
v2

¬α3

Let u miss β and v miss α1; apply the following algorithm:

v3

¬α4

αhvh

α2α3

¬αh+1

Case 2: αh+1 = αj, j < h.

u v ¬α1

v1

α2

¬α2

vj−1

¬αj

vj

¬αj+1

αh

vh

αj

¬αh+1

¬αj+2

¬β,¬α1

?
vj+1

Lemma 2.
Let G be a graph with a (∆ + 1)-edge coloring c,
let u, v be non-adjacent vertices with deg(u), deg(v)<∆.
Then c can be changed s.t. u and v miss the same color.

β?

αj+1

8 - 25

Minimum Edge Coloring – Recoloring

,¬αj

VizingRecoloring(G, c, u, α1)

i← 1
while ∃w ∈ N(u) : c(uw) = αi ∧ w 6∈ {v1, . . . , vi−1} do

vi ← w
αi+1 ← min color missing at w
i← i + 1

return v1, . . . , vi; α1, . . . , αi+1

Proof. Note that every vertex is missing a color. u v¬β ¬α1

v1

α1

¬α2
v2

¬α3

Let u miss β and v miss α1; apply the following algorithm:

v3

¬α4

αhvh

α2α3

¬αh+1

Case 2: αh+1 = αj, j < h.

u v ¬α1

v1

α2

¬α2

vj−1

¬αj

vj

¬αj+1

αh

vh

αj

¬αh+1

¬αj+2

Need color for edge uv j!

¬β,¬α1

?
vj+1

Lemma 2.
Let G be a graph with a (∆ + 1)-edge coloring c,
let u, v be non-adjacent vertices with deg(u), deg(v)<∆.
Then c can be changed s.t. u and v miss the same color.

β?

αj+1

8 - 26

Minimum Edge Coloring – Recoloring

,¬αj

u v ¬α1

v1

α2

¬α2

vj−1

¬αj

vj

¬αj+1

αh

vh

αj

¬αh+1

¬αj+2

¬β,¬α1

?

Proof continued for Case 2: αh+1 = αj, j < h,
and we need to find a color for edge uvj.

vj+1

β?

αj+1

8 - 27

Minimum Edge Coloring – Recoloring

β
¬β

β

,¬αj

u v ¬α1

v1

α2

¬α2

vj−1

¬αj

vj

¬αj+1

αh

vh

αj

¬αh+1

¬αj+2

¬β,¬α1

?

Proof continued for Case 2: αh+1 = αj, j < h,
and we need to find a color for edge uvj.

� Consider subgraph G′ of G induced by
the edges of colors β and αj.

αjαj ¬αj

vj+1

β?

αj+1

8 - 28

Minimum Edge Coloring – Recoloring

β
¬β

β

β

,¬αj

u v ¬α1

v1

α2

¬α2

vj−1

¬αj

vj

¬αj+1

αh

vh

αj

¬αh+1

¬αj+2

¬β,¬α1

?

Proof continued for Case 2: αh+1 = αj, j < h,
and we need to find a color for edge uvj.

� Consider subgraph G′ of G induced by
the edges of colors β and αj.

� Since ∆(G′) ≤ 2, we can recolor components.

αjαj ¬αj

αjαj
β

vj+1

β?

αj+1

8 - 29

Minimum Edge Coloring – Recoloring

β
¬β

β

β

,¬αj

u v ¬α1

v1

α2

¬α2

vj−1

¬αj

vj

¬αj+1

αh

vh

αj

¬αh+1

¬αj+2

¬β,¬α1

?

Proof continued for Case 2: αh+1 = αj, j < h,
and we need to find a color for edge uvj.

� Consider subgraph G′ of G induced by
the edges of colors β and αj.

� Since ∆(G′) ≤ 2, we can recolor components.

αjαj ¬αj

αjαj
β

¬αj ¬β

vj+1

β?

αj+1

8 - 30

Minimum Edge Coloring – Recoloring

β
¬β

β

β

,¬αj

u v ¬α1

v1

α2

¬α2

vj−1

¬αj

vj

¬αj+1

αh

vh

αj

¬αh+1

¬αj+2

¬β,¬α1

?

Proof continued for Case 2: αh+1 = αj, j < h,
and we need to find a color for edge uvj.

� Consider subgraph G′ of G induced by
the edges of colors β and αj.

� Since ∆(G′) ≤ 2, we can recolor components.

αjαj ¬αj

αjαj
β

� Nodes u, vj, vh are all leaves in G′.
⇒ They are not all in the same component of G′.

¬αj ¬β

vj+1

β?

αj+1

8 - 31

Minimum Edge Coloring – Recoloring

β
¬β

β

β

,¬αj

u v ¬α1

v1

α2

¬α2

vj−1

¬αj

vj

¬αj+1

αh

vh

αj

¬αh+1

¬αj+2

¬β,¬α1

?

Proof continued for Case 2: αh+1 = αj, j < h,
and we need to find a color for edge uvj.

� Consider subgraph G′ of G induced by
the edges of colors β and αj.

� Since ∆(G′) ≤ 2, we can recolor components.

αjαj ¬αj

αjαj
β

� Nodes u, vj, vh are all leaves in G′.
⇒ They are not all in the same component of G′.

� If u and vj are not in the same component:
� re-color component ending at vj,
� vj now misses β; color uvj with β.

¬αj ¬β

vj+1

β?

αj+1

8 - 32

Minimum Edge Coloring – Recoloring

β
¬β

β

β

,¬αj

u v ¬α1

v1

α2

¬α2

vj−1

¬αj

vj

¬αj+1

αh

vh

αj

¬αh+1

¬αj+2

¬β,¬α1

?

Proof continued for Case 2: αh+1 = αj, j < h,
and we need to find a color for edge uvj.

� Consider subgraph G′ of G induced by
the edges of colors β and αj.

� Since ∆(G′) ≤ 2, we can recolor components.

αjαj ¬αj

αjαj
β

� Nodes u, vj, vh are all leaves in G′.
⇒ They are not all in the same component of G′.

� If u and vj are not in the same component:
� re-color component ending at vj,
� vj now misses β; color uvj with β.

¬αj ¬β

vj+1

,¬β

αj+1

αj?

8 - 33

Minimum Edge Coloring – Recoloring

β
¬β

β

β

,¬αj

u v ¬α1

v1

α2

¬α2

vj−1

¬αj

vj

¬αj+1

αh

vh

αj

¬αh+1

¬αj+2

¬β,¬α1

?

Proof continued for Case 2: αh+1 = αj, j < h,
and we need to find a color for edge uvj.

� Consider subgraph G′ of G induced by
the edges of colors β and αj.

� Since ∆(G′) ≤ 2, we can recolor components.

αjαj ¬αj

αjαj
β

� Nodes u, vj, vh are all leaves in G′.
⇒ They are not all in the same component of G′.

� If u and vj are not in the same component:
� re-color component ending at vj,
� vj now misses β; color uvj with β. β

¬αj ¬β

vj+1

,¬β

αj+1

αj?

8 - 34

Minimum Edge Coloring – Recoloring

β
¬β

β

β

,¬αj

u v ¬α1

v1

α2

¬α2

vj−1

¬αj

vj

¬αj+1

αh

vh

αj

¬αh+1

¬αj+2

¬β,¬α1

?

Proof continued for Case 2: αh+1 = αj, j < h,
and we need to find a color for edge uvj.

� Consider subgraph G′ of G induced by
the edges of colors β and αj.

� Since ∆(G′) ≤ 2, we can recolor components.

αjαj ¬αj

αjαj
β

� Nodes u, vj, vh are all leaves in G′.
⇒ They are not all in the same component of G′.

� If u and vj are not in the same component:
� re-color component ending at vj,
� vj now misses β; color uvj with β.

� What if u and vj are in the same component?
� re-color component ending at vh if there is β
� color uvh with β; color uvj with αj+1 and so on

¬αj ¬β

vj+1

αj+1

8 - 35

Minimum Edge Coloring – Recoloring

β
¬β

β

β

,¬αj

u v ¬α1

v1

α2

¬α2

vj−1

¬αj

vj

¬αj+1

αh

vh

αj

¬αh+1

¬αj+2

¬β,¬α1

?

Proof continued for Case 2: αh+1 = αj, j < h,
and we need to find a color for edge uvj.

� Consider subgraph G′ of G induced by
the edges of colors β and αj.

� Since ∆(G′) ≤ 2, we can recolor components.

αjαj ¬αj

αjαj
β

� Nodes u, vj, vh are all leaves in G′.
⇒ They are not all in the same component of G′.

� If u and vj are not in the same component:
� re-color component ending at vj,
� vj now misses β; color uvj with β.

� What if u and vj are in the same component?
� re-color component ending at vh if there is β
� color uvh with β; color uvj with αj+1 and so on

¬αj ¬β

vj+1

αj+1

β?

8 - 36

Minimum Edge Coloring – Recoloring

αj?

β
¬β

β

β

,¬αj

u v ¬α1

v1

α2

¬α2

vj−1

¬αj

vj

¬αj+1

αh

vh

αj

¬αh+1

¬αj+2

¬β,¬α1

?

Proof continued for Case 2: αh+1 = αj, j < h,
and we need to find a color for edge uvj.

� Consider subgraph G′ of G induced by
the edges of colors β and αj.

� Since ∆(G′) ≤ 2, we can recolor components.

αjαj ¬αj

αjαj
β

� Nodes u, vj, vh are all leaves in G′.
⇒ They are not all in the same component of G′.

� If u and vj are not in the same component:
� re-color component ending at vj,
� vj now misses β; color uvj with β.

� What if u and vj are in the same component?
� re-color component ending at vh if there is β
� color uvh with β; color uvj with αj+1 and so on

¬αj ¬β

vj+1

αj+1

¬β

8 - 37

Minimum Edge Coloring – Recoloring

αj?

β
¬β

β

β

,¬αj

u v ¬α1

v1

α2

¬α2

vj−1

¬αj

vj

¬αj+1

vh

αj

¬αh+1

¬αj+2

¬β,¬α1

?

Proof continued for Case 2: αh+1 = αj, j < h,
and we need to find a color for edge uvj.

� Consider subgraph G′ of G induced by
the edges of colors β and αj.

� Since ∆(G′) ≤ 2, we can recolor components.

αjαj ¬αj

αjαj
β

� Nodes u, vj, vh are all leaves in G′.
⇒ They are not all in the same component of G′.

� If u and vj are not in the same component:
� re-color component ending at vj,
� vj now misses β; color uvj with β.

� What if u and vj are in the same component?
� re-color component ending at vh if there is β
� color uvh with β; color uvj with αj+1 and so on

¬αj ¬β

vj+1

αj+1

¬β
β

8 - 38

Minimum Edge Coloring – Recoloring

αj?

β
¬β

β

β

u v ¬α1

v1

α2

¬α2

vj−1

¬αj

vj

¬αj+1

vh

αj

¬αh+1

¬αj+2

¬β,¬α1

Proof continued for Case 2: αh+1 = αj, j < h,
and we need to find a color for edge uvj.

� Consider subgraph G′ of G induced by
the edges of colors β and αj.

� Since ∆(G′) ≤ 2, we can recolor components.

αjαj ¬αj

αjαj
β

� Nodes u, vj, vh are all leaves in G′.
⇒ They are not all in the same component of G′.

� If u and vj are not in the same component:
� re-color component ending at vj,
� vj now misses β; color uvj with β.

� What if u and vj are in the same component?
� re-color component ending at vh if there is β
� color uvh with β; color uvj with αj+1 and so on

¬αj ¬β

vj+1

αj+1

¬β

αj+1

β

8 - 39

Minimum Edge Coloring – Recoloring

αj?

β
¬β

β

β

u v ¬α1

v1

α2

¬α2

vj−1

¬αj

vj

¬αj+1

vh

αj

¬αh+1

¬αj+2

¬β,¬α1

Proof continued for Case 2: αh+1 = αj, j < h,
and we need to find a color for edge uvj.

� Consider subgraph G′ of G induced by
the edges of colors β and αj.

� Since ∆(G′) ≤ 2, we can recolor components.

αjαj ¬αj

αjαj
β

� Nodes u, vj, vh are all leaves in G′.
⇒ They are not all in the same component of G′.

� If u and vj are not in the same component:
� re-color component ending at vj,
� vj now misses β; color uvj with β.

� What if u and vj are in the same component?
� re-color component ending at vh if there is β
� color uvh with β; color uvj with αj+1 and so on

¬αj ¬β

vj+1

¬β

αj+1

αj+2

β

9 - 1

Minimum Edge Coloring – Algorithm

VizingEdgeColoring(graph G, coloring c ≡ 0)

if E(G) 6= ∅ then
Let e = uv be an arbitrary edge of G.
Ge ← G− e
VizingEdgeColoring(Ge, c)
if ∆(Ge) < ∆(G) then

Color e with lowest free color.

else
Recolor Ge as in Lemma 2.
Color e with color now missing at u and v.

9 - 2

Minimum Edge Coloring – Algorithm

VizingEdgeColoring(graph G, coloring c ≡ 0)

if E(G) 6= ∅ then
Let e = uv be an arbitrary edge of G.
Ge ← G− e
VizingEdgeColoring(Ge, c)
if ∆(Ge) < ∆(G) then

Color e with lowest free color.

else
Recolor Ge as in Lemma 2.
Color e with color now missing at u and v.

Theorem 4.
VizingEdgeColoring is an
approximation algorithm with
additive approximation guarantee
ALG(G)−OPT(G) ≤ 1.

10 - 1

Approximation with Relative Factor

� An additive approximation guarantee can rarely be achieved;
but sometimes, there is a multiplicative approximation!

10 - 2

Approximation with Relative Factor

Definition.
Let Π be a minimization problem, and let α ∈ Q+.
A factor-α approximation algorithm for Π is a
polynomial-time algorithm A that computes, for every
instance I of Π, a solution of value ALG(I) such that

ALG(I)
OPT(I)

≤ α.

We call α the approximation factor of A.

� An additive approximation guarantee can rarely be achieved;
but sometimes, there is a multiplicative approximation!

10 - 3

Approximation with Relative Factor

Definition.
Let Π be a minimization problem, and let α ∈ Q+.
A factor-α approximation algorithm for Π is a
polynomial-time algorithm A that computes, for every
instance I of Π, a solution of value ALG(I) such that

ALG(I)
OPT(I)

≤ α.

We call α the approximation factor of A.

� An additive approximation guarantee can rarely be achieved;
but sometimes, there is a multiplicative approximation!

maximization

≥

11 - 1

2-Approximation for Metric TSP (from AGT)

u

w

v
Complete graph G = (V, E) and a distance function
d : E→ R≥0 that satisfies the triangle inequality,
i.e., ∀u, v, w ∈ V : d(u, w) ≤ d(u, v) + d(v, w).

Input.

11 - 2

2-Approximation for Metric TSP (from AGT)

u

w

v
Complete graph G = (V, E) and a distance function
d : E→ R≥0 that satisfies the triangle inequality,
i.e., ∀u, v, w ∈ V : d(u, w) ≤ d(u, v) + d(v, w).

Input.

A shortest Hamiltonian cycle in G.Output.

11 - 3

2-Approximation for Metric TSP (from AGT)

u

w

v
Complete graph G = (V, E) and a distance function
d : E→ R≥0 that satisfies the triangle inequality,
i.e., ∀u, v, w ∈ V : d(u, w) ≤ d(u, v) + d(v, w).

Input.

A shortest Hamiltonian cycle in G.Output.

Algorithm.
� Compute MST.

� Double edges.
⇒ Eulerian cycle

� Walk along Eulerian cycle,

� skipping visited vertices

� and adding shortcuts.

11 - 4

2-Approximation for Metric TSP (from AGT)

u

w

v
Complete graph G = (V, E) and a distance function
d : E→ R≥0 that satisfies the triangle inequality,
i.e., ∀u, v, w ∈ V : d(u, w) ≤ d(u, v) + d(v, w).

Input.

A shortest Hamiltonian cycle in G.Output.

Algorithm.
� Compute MST.

� Double edges.
⇒ Eulerian cycle

� Walk along Eulerian cycle,

� skipping visited vertices

� and adding shortcuts.

11 - 5

2-Approximation for Metric TSP (from AGT)

u

w

v
Complete graph G = (V, E) and a distance function
d : E→ R≥0 that satisfies the triangle inequality,
i.e., ∀u, v, w ∈ V : d(u, w) ≤ d(u, v) + d(v, w).

Input.

A shortest Hamiltonian cycle in G.Output.

Algorithm.
� Compute MST.

� Double edges.
⇒ Eulerian cycle

� Walk along Eulerian cycle,

� skipping visited vertices

� and adding shortcuts.

11 - 6

2-Approximation for Metric TSP (from AGT)

u

w

v
Complete graph G = (V, E) and a distance function
d : E→ R≥0 that satisfies the triangle inequality,
i.e., ∀u, v, w ∈ V : d(u, w) ≤ d(u, v) + d(v, w).

Input.

A shortest Hamiltonian cycle in G.Output.

Algorithm.
� Compute MST.

� Double edges.
⇒ Eulerian cycle

� Walk along Eulerian cycle,

� skipping visited vertices

� and adding shortcuts.

11 - 7

2-Approximation for Metric TSP (from AGT)

u

w

v
Complete graph G = (V, E) and a distance function
d : E→ R≥0 that satisfies the triangle inequality,
i.e., ∀u, v, w ∈ V : d(u, w) ≤ d(u, v) + d(v, w).

Input.

A shortest Hamiltonian cycle in G.Output.

Algorithm.
� Compute MST.

� Double edges.
⇒ Eulerian cycle

� Walk along Eulerian cycle,

� skipping visited vertices

� and adding shortcuts.

11 - 8

2-Approximation for Metric TSP (from AGT)

u

w

v
Complete graph G = (V, E) and a distance function
d : E→ R≥0 that satisfies the triangle inequality,
i.e., ∀u, v, w ∈ V : d(u, w) ≤ d(u, v) + d(v, w).

Input.

A shortest Hamiltonian cycle in G.Output.

Algorithm.
� Compute MST.

� Double edges.
⇒ Eulerian cycle

� Walk along Eulerian cycle,

� skipping visited vertices

� and adding shortcuts.

11 - 9

2-Approximation for Metric TSP (from AGT)

u

w

v
Complete graph G = (V, E) and a distance function
d : E→ R≥0 that satisfies the triangle inequality,
i.e., ∀u, v, w ∈ V : d(u, w) ≤ d(u, v) + d(v, w).

Input.

A shortest Hamiltonian cycle in G.Output.

Algorithm.
� Compute MST.

� Double edges.
⇒ Eulerian cycle

� Walk along Eulerian cycle,

� skipping visited vertices

� and adding shortcuts.

11 - 10

2-Approximation for Metric TSP (from AGT)

u

w

v
Complete graph G = (V, E) and a distance function
d : E→ R≥0 that satisfies the triangle inequality,
i.e., ∀u, v, w ∈ V : d(u, w) ≤ d(u, v) + d(v, w).

Input.

A shortest Hamiltonian cycle in G.Output.

Algorithm.
� Compute MST.

� Double edges.
⇒ Eulerian cycle

� Walk along Eulerian cycle,

� skipping visited vertices

� and adding shortcuts.

11 - 11

2-Approximation for Metric TSP (from AGT)

u

w

v
Complete graph G = (V, E) and a distance function
d : E→ R≥0 that satisfies the triangle inequality,
i.e., ∀u, v, w ∈ V : d(u, w) ≤ d(u, v) + d(v, w).

Input.

A shortest Hamiltonian cycle in G.Output.

Algorithm.
� Compute MST.

� Double edges.
⇒ Eulerian cycle

� Walk along Eulerian cycle,

� skipping visited vertices

� and adding shortcuts.

11 - 12

2-Approximation for Metric TSP (from AGT)

u

w

v
Complete graph G = (V, E) and a distance function
d : E→ R≥0 that satisfies the triangle inequality,
i.e., ∀u, v, w ∈ V : d(u, w) ≤ d(u, v) + d(v, w).

Input.

A shortest Hamiltonian cycle in G.Output.

Algorithm.
� Compute MST.

� Double edges.
⇒ Eulerian cycle

� Walk along Eulerian cycle,

� skipping visited vertices

� and adding shortcuts.

11 - 13

2-Approximation for Metric TSP (from AGT)

u

w

v
Complete graph G = (V, E) and a distance function
d : E→ R≥0 that satisfies the triangle inequality,
i.e., ∀u, v, w ∈ V : d(u, w) ≤ d(u, v) + d(v, w).

Input.

A shortest Hamiltonian cycle in G.Output.

Algorithm.
� Compute MST.

� Double edges.
⇒ Eulerian cycle

� Walk along Eulerian cycle,

� skipping visited vertices

� and adding shortcuts.

11 - 14

2-Approximation for Metric TSP (from AGT)

u

w

v
Complete graph G = (V, E) and a distance function
d : E→ R≥0 that satisfies the triangle inequality,
i.e., ∀u, v, w ∈ V : d(u, w) ≤ d(u, v) + d(v, w).

Input.

A shortest Hamiltonian cycle in G.Output.

Algorithm.
� Compute MST.

� Double edges.
⇒ Eulerian cycle

� Walk along Eulerian cycle,

� skipping visited vertices

� and adding shortcuts.

11 - 15

2-Approximation for Metric TSP (from AGT)

u

w

v
Complete graph G = (V, E) and a distance function
d : E→ R≥0 that satisfies the triangle inequality,
i.e., ∀u, v, w ∈ V : d(u, w) ≤ d(u, v) + d(v, w).

Input.

A shortest Hamiltonian cycle in G.Output.

Algorithm.
� Compute MST.

� Double edges.
⇒ Eulerian cycle

� Walk along Eulerian cycle,

� skipping visited vertices

� and adding shortcuts.

11 - 16

2-Approximation for Metric TSP (from AGT)

u

w

v
Complete graph G = (V, E) and a distance function
d : E→ R≥0 that satisfies the triangle inequality,
i.e., ∀u, v, w ∈ V : d(u, w) ≤ d(u, v) + d(v, w).

Input.

A shortest Hamiltonian cycle in G.Output.

Algorithm.
� Compute MST.

� Double edges.
⇒ Eulerian cycle

� Walk along Eulerian cycle,

� skipping visited vertices

� and adding shortcuts.

11 - 17

2-Approximation for Metric TSP (from AGT)

u

w

v
Complete graph G = (V, E) and a distance function
d : E→ R≥0 that satisfies the triangle inequality,
i.e., ∀u, v, w ∈ V : d(u, w) ≤ d(u, v) + d(v, w).

Input.

A shortest Hamiltonian cycle in G.Output.

Algorithm.
� Compute MST.

� Double edges.
⇒ Eulerian cycle

� Walk along Eulerian cycle,

� skipping visited vertices

� and adding shortcuts.

11 - 18

2-Approximation for Metric TSP (from AGT)

u

w

v
Complete graph G = (V, E) and a distance function
d : E→ R≥0 that satisfies the triangle inequality,
i.e., ∀u, v, w ∈ V : d(u, w) ≤ d(u, v) + d(v, w).

Input.

A shortest Hamiltonian cycle in G.Output.

Algorithm.
� Compute MST.

� Double edges.
⇒ Eulerian cycle

� Walk along Eulerian cycle,

� skipping visited vertices

� and adding shortcuts.

11 - 19

2-Approximation for Metric TSP (from AGT)

u

w

v
Complete graph G = (V, E) and a distance function
d : E→ R≥0 that satisfies the triangle inequality,
i.e., ∀u, v, w ∈ V : d(u, w) ≤ d(u, v) + d(v, w).

Input.

A shortest Hamiltonian cycle in G.Output.

Algorithm.
� Compute MST.

� Double edges.
⇒ Eulerian cycle

� Walk along Eulerian cycle,

� skipping visited vertices

� and adding shortcuts.

11 - 20

2-Approximation for Metric TSP (from AGT)

u

w

v
Complete graph G = (V, E) and a distance function
d : E→ R≥0 that satisfies the triangle inequality,
i.e., ∀u, v, w ∈ V : d(u, w) ≤ d(u, v) + d(v, w).

Input.

A shortest Hamiltonian cycle in G.Output.

Algorithm.
� Compute MST.

� Double edges.
⇒ Eulerian cycle

� Walk along Eulerian cycle,

� skipping visited vertices

� and adding shortcuts.

Theorem 5.
The MST edge doubling algorithm
is a 2-approximation algorithm for
metric TSP.

11 - 21

2-Approximation for Metric TSP (from AGT)

u

w

v
Complete graph G = (V, E) and a distance function
d : E→ R≥0 that satisfies the triangle inequality,
i.e., ∀u, v, w ∈ V : d(u, w) ≤ d(u, v) + d(v, w).

Input.

A shortest Hamiltonian cycle in G.Output.

Algorithm.
� Compute MST.

� Double edges.
⇒ Eulerian cycle

� Walk along Eulerian cycle,

� skipping visited vertices

� and adding shortcuts.

Proof.
ALG ≤ d(cycle) = 2d(MST) ≤ 2OPT.

Theorem 5.
The MST edge doubling algorithm
is a 2-approximation algorithm for
metric TSP.

12 - 1

Nearest Addition Algorithm for Metric TSP

NearestAdditionAlgorithm(G = (V, E), d)

Find closest pair, say i and k.
Set tour T to go from i to k to i (clockwise).
while T (V do

Find pair (i, j) ∈ T × (V \ T) minimizing d(i, j).
Let k be vertex after i in T.
Add j between i and k.

12 - 2

Nearest Addition Algorithm for Metric TSP

NearestAdditionAlgorithm(G = (V, E), d)

Find closest pair, say i and k.
Set tour T to go from i to k to i (clockwise).
while T (V do

Find pair (i, j) ∈ T × (V \ T) minimizing d(i, j).
Let k be vertex after i in T.
Add j between i and k.

ki

12 - 3

Nearest Addition Algorithm for Metric TSP

NearestAdditionAlgorithm(G = (V, E), d)

Find closest pair, say i and k.
Set tour T to go from i to k to i (clockwise).
while T (V do

Find pair (i, j) ∈ T × (V \ T) minimizing d(i, j).
Let k be vertex after i in T.
Add j between i and k.

ki

12 - 4

Nearest Addition Algorithm for Metric TSP

NearestAdditionAlgorithm(G = (V, E), d)

Find closest pair, say i and k.
Set tour T to go from i to k to i (clockwise).
while T (V do

Find pair (i, j) ∈ T × (V \ T) minimizing d(i, j).
Let k be vertex after i in T.
Add j between i and k.

j

ki

12 - 5

Nearest Addition Algorithm for Metric TSP

NearestAdditionAlgorithm(G = (V, E), d)

Find closest pair, say i and k.
Set tour T to go from i to k to i (clockwise).
while T (V do

Find pair (i, j) ∈ T × (V \ T) minimizing d(i, j).
Let k be vertex after i in T.
Add j between i and k.

j

ki

12 - 6

Nearest Addition Algorithm for Metric TSP

NearestAdditionAlgorithm(G = (V, E), d)

Find closest pair, say i and k.
Set tour T to go from i to k to i (clockwise).
while T (V do

Find pair (i, j) ∈ T × (V \ T) minimizing d(i, j).
Let k be vertex after i in T.
Add j between i and k.

k

ji

12 - 7

Nearest Addition Algorithm for Metric TSP

NearestAdditionAlgorithm(G = (V, E), d)

Find closest pair, say i and k.
Set tour T to go from i to k to i (clockwise).
while T (V do

Find pair (i, j) ∈ T × (V \ T) minimizing d(i, j).
Let k be vertex after i in T.
Add j between i and k.

k

j

i

12 - 8

Nearest Addition Algorithm for Metric TSP

k

j i

NearestAdditionAlgorithm(G = (V, E), d)

Find closest pair, say i and k.
Set tour T to go from i to k to i (clockwise).
while T (V do

Find pair (i, j) ∈ T × (V \ T) minimizing d(i, j).
Let k be vertex after i in T.
Add j between i and k.

12 - 9

Nearest Addition Algorithm for Metric TSP

NearestAdditionAlgorithm(G = (V, E), d)

Find closest pair, say i and k.
Set tour T to go from i to k to i (clockwise).
while T (V do

Find pair (i, j) ∈ T × (V \ T) minimizing d(i, j).
Let k be vertex after i in T.
Add j between i and k.

k

ji

12 - 10

Nearest Addition Algorithm for Metric TSP

NearestAdditionAlgorithm(G = (V, E), d)

Find closest pair, say i and k.
Set tour T to go from i to k to i (clockwise).
while T (V do

Find pair (i, j) ∈ T × (V \ T) minimizing d(i, j).
Let k be vertex after i in T.
Add j between i and k.

k

ji

12 - 11

Nearest Addition Algorithm for Metric TSP

NearestAdditionAlgorithm(G = (V, E), d)

Find closest pair, say i and k.
Set tour T to go from i to k to i (clockwise).
while T (V do

Find pair (i, j) ∈ T × (V \ T) minimizing d(i, j).
Let k be vertex after i in T.
Add j between i and k.

k

ji

Theorem 6.
NearestAdditionAlgorithm is a
2-approximation algorithm for metric TSP.

12 - 12

Nearest Addition Algorithm for Metric TSP

NearestAdditionAlgorithm(G = (V, E), d)

Find closest pair, say i and k.
Set tour T to go from i to k to i (clockwise).
while T (V do

Find pair (i, j) ∈ T × (V \ T) minimizing d(i, j).
Let k be vertex after i in T.
Add j between i and k.

Proof.

� Exercise.

� Hints: MST and Prim’s algorithm.

k

ji

Theorem 6.
NearestAdditionAlgorithm is a
2-approximation algorithm for metric TSP.

13 - 1

Approximation Schemes

� In some cases, we can get arbitrarily good approximations.

13 - 2

Approximation Schemes

� In some cases, we can get arbitrarily good approximations.

Definition.
Let Π be a minimization problem. An algorithm A is called
a polynomial-time approximation scheme (PTAS) if A
computes, for every input (I, ε) (consisting of an instance I
of Π and a real ε > 0), a value ALG(I) such that:

� ALG(I) ≤ (1 + ε) ·OPT(I), and
� the runtime of A is polynomial in |I| for every ε > 0.

13 - 3

Approximation Schemes

� In some cases, we can get arbitrarily good approximations.

Definition.
Let Π be a minimization problem. An algorithm A is called
a polynomial-time approximation scheme (PTAS) if A
computes, for every input (I, ε) (consisting of an instance I
of Π and a real ε > 0), a value ALG(I) such that:

� ALG(I) ≤ (1 + ε) ·OPT(I), and
� the runtime of A is polynomial in |I| for every ε > 0.

maximization

≥ (1− ε)

13 - 4

Approximation Schemes

� In some cases, we can get arbitrarily good approximations.

Definition.
Let Π be a minimization problem. An algorithm A is called
a polynomial-time approximation scheme (PTAS) if A
computes, for every input (I, ε) (consisting of an instance I
of Π and a real ε > 0), a value ALG(I) such that:

A is called a fully polynomial-time approximation scheme
(FPTAS) if it runs in time polynomial in |I| and 1/ε.

� ALG(I) ≤ (1 + ε) ·OPT(I), and
� the runtime of A is polynomial in |I| for every ε > 0.

maximization

≥ (1− ε)

13 - 5

Approximation Schemes

Examples.

� O
(
2

n
ε

)
⇒ no PTAS

� O
(

n2 + n
1
ε

)
⇒ PTAS but no FPTAS

� O
(

n2 · 3 1
ε

)
⇒ PTAS but no FPTAS

� O
(

n4 ·
(

1
ε

)2
)
⇒ FPTAS

� In some cases, we can get arbitrarily good approximations.

Definition.
Let Π be a minimization problem. An algorithm A is called
a polynomial-time approximation scheme (PTAS) if A
computes, for every input (I, ε) (consisting of an instance I
of Π and a real ε > 0), a value ALG(I) such that:

A is called a fully polynomial-time approximation scheme
(FPTAS) if it runs in time polynomial in |I| and 1/ε.

� ALG(I) ≤ (1 + ε) ·OPT(I), and
� the runtime of A is polynomial in |I| for every ε > 0.

maximization

≥ (1− ε)

13 - 6

Approximation Schemes

Examples.

� O
(
2

n
ε

)
⇒ no PTAS

� O
(

n2 + n
1
ε

)
⇒ PTAS but no FPTAS

� O
(

n2 · 3 1
ε

)
⇒ PTAS but no FPTAS

� O
(

n4 ·
(

1
ε

)2
)
⇒ FPTAS

� In some cases, we can get arbitrarily good approximations.

Definition.
Let Π be a minimization problem. An algorithm A is called
a polynomial-time approximation scheme (PTAS) if A
computes, for every input (I, ε) (consisting of an instance I
of Π and a real ε > 0), a value ALG(I) such that:

A is called a fully polynomial-time approximation scheme
(FPTAS) if it runs in time polynomial in |I| and 1/ε.

� ALG(I) ≤ (1 + ε) ·OPT(I), and
� the runtime of A is polynomial in |I| for every ε > 0.

maximization

≥ (1− ε)

13 - 7

Approximation Schemes

Examples.

� O
(
2

n
ε

)
⇒ no PTAS

� O
(

n2 + n
1
ε

)
⇒ PTAS but no FPTAS

� O
(

n2 · 3 1
ε

)
⇒ PTAS but no FPTAS

� O
(

n4 ·
(

1
ε

)2
)
⇒ FPTAS

� In some cases, we can get arbitrarily good approximations.

Definition.
Let Π be a minimization problem. An algorithm A is called
a polynomial-time approximation scheme (PTAS) if A
computes, for every input (I, ε) (consisting of an instance I
of Π and a real ε > 0), a value ALG(I) such that:

A is called a fully polynomial-time approximation scheme
(FPTAS) if it runs in time polynomial in |I| and 1/ε.

� ALG(I) ≤ (1 + ε) ·OPT(I), and
� the runtime of A is polynomial in |I| for every ε > 0.

maximization

≥ (1− ε)

13 - 8

Approximation Schemes

Examples.

� O
(
2

n
ε

)
⇒ no PTAS

� O
(

n2 + n
1
ε

)
⇒ PTAS but no FPTAS

� O
(

n2 · 3 1
ε

)
⇒ PTAS but no FPTAS

� O
(

n4 ·
(

1
ε

)2
)
⇒ FPTAS

� In some cases, we can get arbitrarily good approximations.

Definition.
Let Π be a minimization problem. An algorithm A is called
a polynomial-time approximation scheme (PTAS) if A
computes, for every input (I, ε) (consisting of an instance I
of Π and a real ε > 0), a value ALG(I) such that:

A is called a fully polynomial-time approximation scheme
(FPTAS) if it runs in time polynomial in |I| and 1/ε.

� ALG(I) ≤ (1 + ε) ·OPT(I), and
� the runtime of A is polynomial in |I| for every ε > 0.

maximization

≥ (1− ε)

13 - 9

Approximation Schemes

Examples.

� O
(
2

n
ε

)
⇒ no PTAS

� O
(

n2 + n
1
ε

)
⇒ PTAS but no FPTAS

� O
(

n2 · 3 1
ε

)
⇒ PTAS but no FPTAS

� O
(

n4 ·
(

1
ε

)2
)
⇒ FPTAS

� In some cases, we can get arbitrarily good approximations.

Definition.
Let Π be a minimization problem. An algorithm A is called
a polynomial-time approximation scheme (PTAS) if A
computes, for every input (I, ε) (consisting of an instance I
of Π and a real ε > 0), a value ALG(I) such that:

A is called a fully polynomial-time approximation scheme
(FPTAS) if it runs in time polynomial in |I| and 1/ε.

� ALG(I) ≤ (1 + ε) ·OPT(I), and
� the runtime of A is polynomial in |I| for every ε > 0.

maximization

≥ (1− ε)

14 - 1

Multiprocessor Scheduling

� n jobs J1, . . . , Jn with
durations p1, . . . , pn.

J1

p1

J2

p2

J3

p3
J4

p4

J5

p5

J6

p6

J7

p7

Input. � m identical machines (m < n)

14 - 2

Multiprocessor Scheduling

� n jobs J1, . . . , Jn with
durations p1, . . . , pn.

J1

p1

J2

p2

J3

p3
J4

p4

J5

p5

J6

p6

J7

p7

Input. � m identical machines (m < n)

Output. Assignment of jobs to machines such that the time when all
jobs have been processed is minimum.
This is called the makespan of the assignment.

14 - 3

Multiprocessor Scheduling

� n jobs J1, . . . , Jn with
durations p1, . . . , pn.

J1

p1

J2

p2

J3

p3
J4

p4

J5

p5

J6

p6

J7

p7

makespan

Input. � m identical machines (m < n)

Output. Assignment of jobs to machines such that the time when all
jobs have been processed is minimum.
This is called the makespan of the assignment.

p5

p7

p1

p4

p6

p3

p2

14 - 4

Multiprocessor Scheduling

� n jobs J1, . . . , Jn with
durations p1, . . . , pn.

J1

p1

J2

p2

J3

p3
J4

p4

J5

p5

J6

p6

J7

p7

Input. � m identical machines (m < n)

Output. Assignment of jobs to machines such that the time when all
jobs have been processed is minimum.
This is called the makespan of the assignment.

makespan

p5

p7

p4

p3

p1

p2

p6

14 - 5

Multiprocessor Scheduling

� n jobs J1, . . . , Jn with
durations p1, . . . , pn.

J1

p1

J2

p2

J3

p3
J4

p4

J5

p5

J6

p6

J7

p7

Input. � m identical machines (m < n)

Output. Assignment of jobs to machines such that the time when all
jobs have been processed is minimum.
This is called the makespan of the assignment.

� Multiprocessor scheduling is NP-hard.

makespan

p5

p7

p4

p3

p1

p2

p6

15 - 1

Multiprocessor Scheduling – List Scheduling

ListScheduling(J1, . . . , Jn, m)

Put the first m jobs on the m machines.
Put the next job on the first free machine.

J1

p1

J2

p2

J3

p3
J4

p4

J5

p5

J6

p6

J7

p7

Example.

15 - 2

Multiprocessor Scheduling – List Scheduling

ListScheduling(J1, . . . , Jn, m)

Put the first m jobs on the m machines.
Put the next job on the first free machine.

J1

p1

J2

p2

J3

p3
J4

p4

J5

p5

J6

p6

J7

p7

Example.

p1 p2 p3

p4

15 - 3

Multiprocessor Scheduling – List Scheduling

ListScheduling(J1, . . . , Jn, m)

Put the first m jobs on the m machines.
Put the next job on the first free machine.

J1

p1

J2

p2

J3

p3
J4

p4

J5

p5

J6

p6

J7

p7

Example.

p1 p2 p3

p5 p4

15 - 4

Multiprocessor Scheduling – List Scheduling

ListScheduling(J1, . . . , Jn, m)

Put the first m jobs on the m machines.
Put the next job on the first free machine.

J1

p1

J2

p2

J3

p3
J4

p4

J5

p5

J6

p6

J7

p7

Example.

p1 p2 p3

p5p6
p4

15 - 5

Multiprocessor Scheduling – List Scheduling

ListScheduling(J1, . . . , Jn, m)

Put the first m jobs on the m machines.
Put the next job on the first free machine.

J1

p1

J2

p2

J3

p3
J4

p4

J5

p5

J6

p6

J7

p7

Example.

p1 p2 p3

p5p6
p7

p4

15 - 6

Multiprocessor Scheduling – List Scheduling

ListScheduling(J1, . . . , Jn, m)

Put the first m jobs on the m machines.
Put the next job on the first free machine.

J1

p1

J2

p2

J3

p3
J4

p4

J5

p5

J6

p6

J7

p7

Example.

p1 p2 p3

p5p6
p7

� ListScheduling runs in O(n log m) time.

p4

15 - 7

Multiprocessor Scheduling – List Scheduling

ListScheduling(J1, . . . , Jn, m)

Put the first m jobs on the m machines.
Put the next job on the first free machine.

J1

p1

J2

p2

J3

p3
J4

p4

J5

p5

J6

p6

J7

p7

Example.

p1 p2 p3

p5p6
p7

� ListScheduling runs in O(n log m) time.

p4

15 - 8

Multiprocessor Scheduling – List Scheduling

ListScheduling(J1, . . . , Jn, m)

Put the first m jobs on the m machines.
Put the next job on the first free machine.

J1

p1

J2

p2

J3

p3
J4

p4

J5

p5

J6

p6

J7

p7

Example.

p1 p2 p3

p5p6
p7

� ListScheduling runs in O(n log m) time.

p4

Iterate over n jobs while maintaining a priority queue
for the machines where each machine has its current
completion time as its priority.

15 - 9

Multiprocessor Scheduling – List Scheduling

ListScheduling(J1, . . . , Jn, m)

Put the first m jobs on the m machines.
Put the next job on the first free machine.

J1

p1

J2

p2

J3

p3
J4

p4

J5

p5

J6

p6

J7

p7

Example.

p1 p2 p3

p5p6
p7

� ListScheduling runs in O(n log m) time.

Theorem 7.
ListScheduling is a factor-(

2− 1
m

)
approximation algorithm.

p4

Iterate over n jobs while maintaining a priority queue
for the machines where each machine has its current
completion time as its priority.

15 - 10

Multiprocessor Scheduling – List Scheduling

ListScheduling(J1, . . . , Jn, m)

Put the first m jobs on the m machines.
Put the next job on the first free machine.

J1

p1

J2

p2

J3

p3
J4

p4

J5

p5

J6

p6

J7

p7

Example.

p1 p2 p3

p5p6
p7

� ListScheduling runs in O(n log m) time.

Theorem 7.
ListScheduling is a factor-(

2− 1
m

)
approximation algorithm.

p4

Iterate over n jobs while maintaining a priority queue
for the machines where each machine has its current
completion time as its priority.

16 - 1

Multiprocessor Scheduling – List Scheduling (Proof)

Proof. Let Jk = (Sk, Tk) be the last job, that is, Tk determines the makespan.

M1

M2

M3

M4

Sk Tk = Makespan

ListScheduling(J1, . . . , Jn, m)

Put the first m jobs on the m machines.
Put the next job on the first free machine.

Jk

Theorem 7.
ListScheduling is a

(
2− 1

m
)
-approximation alg.

16 - 2

Multiprocessor Scheduling – List Scheduling (Proof)

Proof. Let Jk = (Sk, Tk) be the last job, that is, Tk determines the makespan.

� No machine idles at time Sk.

M1

M2

M3

M4

Sk Tk = Makespan

Sk ≤
1

m ∑
i 6=k

pi weight of all jobs but Jk
evenly distributed on m machines

ListScheduling(J1, . . . , Jn, m)

Put the first m jobs on the m machines.
Put the next job on the first free machine.

Jk

Theorem 7.
ListScheduling is a

(
2− 1

m
)
-approximation alg.

16 - 3

Multiprocessor Scheduling – List Scheduling (Proof)

Proof. Let Jk = (Sk, Tk) be the last job, that is, Tk determines the makespan.

� No machine idles at time Sk.

M1

M2

M3

M4

Sk Tk = Makespan

� For the optimal makespan TOPT, we have:

Sk ≤
1

m ∑
i 6=k

pi weight of all jobs but Jk
evenly distributed on m machines

ListScheduling(J1, . . . , Jn, m)

Put the first m jobs on the m machines.
Put the next job on the first free machine.

� TOPT ≥ pk

Jk

Theorem 7.
ListScheduling is a

(
2− 1

m
)
-approximation alg.

16 - 4

Multiprocessor Scheduling – List Scheduling (Proof)

Proof. Let Jk = (Sk, Tk) be the last job, that is, Tk determines the makespan.

� No machine idles at time Sk.

M1

M2

M3

M4

Sk Tk = Makespan

� For the optimal makespan TOPT, we have:

Sk ≤
1

m ∑
i 6=k

pi weight of all jobs but Jk
evenly distributed on m machines

ListScheduling(J1, . . . , Jn, m)

Put the first m jobs on the m machines.
Put the next job on the first free machine.

� TOPT ≥ pk � TOPT ≥ 1
m

n
∑

i=1
pi weight of all jobs

evenly distributed

Jk

Theorem 7.
ListScheduling is a

(
2− 1

m
)
-approximation alg.

16 - 5

Multiprocessor Scheduling – List Scheduling (Proof)

Proof. Let Jk = (Sk, Tk) be the last job, that is, Tk determines the makespan.

� No machine idles at time Sk.

M1

M2

M3

M4

Sk Tk = Makespan

� For the optimal makespan TOPT, we have:

Sk ≤
1

m ∑
i 6=k

pi weight of all jobs but Jk
evenly distributed on m machines

Tk = Sk + pk

≤ 1

m
·∑

i 6=k
pi + pk

=
1

m
·

n

∑
i=1

pi +

(
1− 1

m

)
· pk

≤ TOPT +

(
1− 1

m

)
· TOPT

=

(
2− 1

m

)
· TOPT

ListScheduling(J1, . . . , Jn, m)

Put the first m jobs on the m machines.
Put the next job on the first free machine.

� TOPT ≥ pk � TOPT ≥ 1
m

n
∑

i=1
pi weight of all jobs

evenly distributed

� Hence:

Jk

Theorem 7.
ListScheduling is a

(
2− 1

m
)
-approximation alg.

16 - 6

Multiprocessor Scheduling – List Scheduling (Proof)

Proof. Let Jk = (Sk, Tk) be the last job, that is, Tk determines the makespan.

� No machine idles at time Sk.

M1

M2

M3

M4

Sk Tk = Makespan

� For the optimal makespan TOPT, we have:

Sk ≤
1

m ∑
i 6=k

pi weight of all jobs but Jk
evenly distributed on m machines

Tk = Sk + pk

≤ 1

m
·∑

i 6=k
pi + pk

=
1

m
·

n

∑
i=1

pi +

(
1− 1

m

)
· pk

≤ TOPT +

(
1− 1

m

)
· TOPT

=

(
2− 1

m

)
· TOPT

ListScheduling(J1, . . . , Jn, m)

Put the first m jobs on the m machines.
Put the next job on the first free machine.

� TOPT ≥ pk � TOPT ≥ 1
m

n
∑

i=1
pi weight of all jobs

evenly distributed

� Hence:

Jk

Theorem 7.
ListScheduling is a

(
2− 1

m
)
-approximation alg.

16 - 7

Multiprocessor Scheduling – List Scheduling (Proof)

Proof. Let Jk = (Sk, Tk) be the last job, that is, Tk determines the makespan.

� No machine idles at time Sk.

M1

M2

M3

M4

Sk Tk = Makespan

� For the optimal makespan TOPT, we have:

Sk ≤
1

m ∑
i 6=k

pi weight of all jobs but Jk
evenly distributed on m machines

Tk = Sk + pk

≤ 1

m
·∑

i 6=k
pi + pk

=
1

m
·

n

∑
i=1

pi +

(
1− 1

m

)
· pk

≤ TOPT +

(
1− 1

m

)
· TOPT

=

(
2− 1

m

)
· TOPT

ListScheduling(J1, . . . , Jn, m)

Put the first m jobs on the m machines.
Put the next job on the first free machine.

� TOPT ≥ pk � TOPT ≥ 1
m

n
∑

i=1
pi weight of all jobs

evenly distributed

� Hence:

Jk

Theorem 7.
ListScheduling is a

(
2− 1

m
)
-approximation alg.

�

16 - 8

Multiprocessor Scheduling – List Scheduling (Proof)

Proof. Let Jk = (Sk, Tk) be the last job, that is, Tk determines the makespan.

� No machine idles at time Sk.

M1

M2

M3

M4

Sk Tk = Makespan

� For the optimal makespan TOPT, we have:

Sk ≤
1

m ∑
i 6=k

pi weight of all jobs but Jk
evenly distributed on m machines

Tk = Sk + pk

≤ 1

m
·∑

i 6=k
pi + pk

=
1

m
·

n

∑
i=1

pi +

(
1− 1

m

)
· pk

≤ TOPT +

(
1− 1

m

)
· TOPT

=

(
2− 1

m

)
· TOPT

ListScheduling(J1, . . . , Jn, m)

Put the first m jobs on the m machines.
Put the next job on the first free machine.

� TOPT ≥ pk � TOPT ≥ 1
m

n
∑

i=1
pi weight of all jobs

evenly distributed

� Hence:

Jk

Theorem 7.
ListScheduling is a

(
2− 1

m
)
-approximation alg.

16 - 9

Multiprocessor Scheduling – List Scheduling (Proof)

Proof. Let Jk = (Sk, Tk) be the last job, that is, Tk determines the makespan.

� No machine idles at time Sk.

M1

M2

M3

M4

Sk Tk = Makespan

� For the optimal makespan TOPT, we have:

Sk ≤
1

m ∑
i 6=k

pi weight of all jobs but Jk
evenly distributed on m machines

Tk = Sk + pk

≤ 1

m
·∑

i 6=k
pi + pk

=
1

m
·

n

∑
i=1

pi +

(
1− 1

m

)
· pk

≤ TOPT +

(
1− 1

m

)
· TOPT

=

(
2− 1

m

)
· TOPT

ListScheduling(J1, . . . , Jn, m)

Put the first m jobs on the m machines.
Put the next job on the first free machine.

� TOPT ≥ pk � TOPT ≥ 1
m

n
∑

i=1
pi weight of all jobs

evenly distributed

� Hence:

Jk

Theorem 7.
ListScheduling is a

(
2− 1

m
)
-approximation alg.

�

17 - 1

Multiprocessor Scheduling – PTAS

For a constant ` (1 ≤ ` ≤ n) define the algorithm A` as follows.
A`(J1, . . . , Jn, m)

Sort jobs in descending order of runtime.
Schedule the ` longest jobs J1, . . . , J` optimally.
Use ListScheduling for the remaining jobs J`+1, . . . , Jn.

17 - 2

Multiprocessor Scheduling – PTAS

For a constant ` (1 ≤ ` ≤ n) define the algorithm A` as follows.
A`(J1, . . . , Jn, m)

Sort jobs in descending order of runtime.
Schedule the ` longest jobs J1, . . . , J` optimally.
Use ListScheduling for the remaining jobs J`+1, . . . , Jn.

Example.
` = 6

jobs

17 - 3

Multiprocessor Scheduling – PTAS

For a constant ` (1 ≤ ` ≤ n) define the algorithm A` as follows.
A`(J1, . . . , Jn, m)

Sort jobs in descending order of runtime.
Schedule the ` longest jobs J1, . . . , J` optimally.
Use ListScheduling for the remaining jobs J`+1, . . . , Jn.

Example.
` = 6

sorted jobs

17 - 4

Multiprocessor Scheduling – PTAS

For a constant ` (1 ≤ ` ≤ n) define the algorithm A` as follows.
A`(J1, . . . , Jn, m)

Sort jobs in descending order of runtime.
Schedule the ` longest jobs J1, . . . , J` optimally.
Use ListScheduling for the remaining jobs J`+1, . . . , Jn.

Example.
` = 6

J1
J2
J3

J5
J6

J4sorted jobs

M1

M2

M3

M4 J1
J2
J3

J5

J6J4

17 - 5

Multiprocessor Scheduling – PTAS

For a constant ` (1 ≤ ` ≤ n) define the algorithm A` as follows.
A`(J1, . . . , Jn, m)

Sort jobs in descending order of runtime.
Schedule the ` longest jobs J1, . . . , J` optimally.
Use ListScheduling for the remaining jobs J`+1, . . . , Jn.

Example.
` = 6

J1
J2
J3

J5
J6

J4sorted jobs

M1

M2

M3

M4 J1
J2
J3

J5

J6J4

17 - 6

Multiprocessor Scheduling – PTAS

For a constant ` (1 ≤ ` ≤ n) define the algorithm A` as follows.
A`(J1, . . . , Jn, m)

Sort jobs in descending order of runtime.
Schedule the ` longest jobs J1, . . . , J` optimally.
Use ListScheduling for the remaining jobs J`+1, . . . , Jn.

Example.
` = 6

J1
J2
J3

J5
J6

J4sorted jobs

M1

M2

M3

M4 J1
J2
J3

J5

J6J4

17 - 7

Multiprocessor Scheduling – PTAS

For a constant ` (1 ≤ ` ≤ n) define the algorithm A` as follows.
A`(J1, . . . , Jn, m)

Sort jobs in descending order of runtime.
Schedule the ` longest jobs J1, . . . , J` optimally.
Use ListScheduling for the remaining jobs J`+1, . . . , Jn.

Example.
` = 6

J1
J2
J3

J5
J6

J4sorted jobs

M1

M2

M3

M4 J1
J2
J3

J5

J6J4

17 - 8

Multiprocessor Scheduling – PTAS

For a constant ` (1 ≤ ` ≤ n) define the algorithm A` as follows.
A`(J1, . . . , Jn, m)

Sort jobs in descending order of runtime.
Schedule the ` longest jobs J1, . . . , J` optimally.
Use ListScheduling for the remaining jobs J`+1, . . . , Jn.

Example.
` = 6

J1
J2
J3

J5
J6

J4sorted jobs

M1

M2

M3

M4 J1
J2
J3

J5

J6J4

17 - 9

Multiprocessor Scheduling – PTAS

For a constant ` (1 ≤ ` ≤ n) define the algorithm A` as follows.
A`(J1, . . . , Jn, m)

Sort jobs in descending order of runtime.
Schedule the ` longest jobs J1, . . . , J` optimally.
Use ListScheduling for the remaining jobs J`+1, . . . , Jn.

Example.
` = 6

J1
J2
J3

J5
J6

J4sorted jobs

M1

M2

M3

M4 J1
J2
J3

J5

J6J4

17 - 10

Multiprocessor Scheduling – PTAS

For a constant ` (1 ≤ ` ≤ n) define the algorithm A` as follows.
A`(J1, . . . , Jn, m)

Sort jobs in descending order of runtime.
Schedule the ` longest jobs J1, . . . , J` optimally.
Use ListScheduling for the remaining jobs J`+1, . . . , Jn.

Example.
` = 6

J1
J2
J3

J5
J6

J4sorted jobs

M1

M2

M3

M4 J1
J2
J3

J5

J6J4

17 - 11

Multiprocessor Scheduling – PTAS

For a constant ` (1 ≤ ` ≤ n) define the algorithm A` as follows.
A`(J1, . . . , Jn, m)

Sort jobs in descending order of runtime.
Schedule the ` longest jobs J1, . . . , J` optimally.
Use ListScheduling for the remaining jobs J`+1, . . . , Jn.

Example.
` = 6

J1
J2
J3

J5
J6

J4sorted jobs

M1

M2

M3

M4 J1
J2
J3

J5

J6J4

17 - 12

Multiprocessor Scheduling – PTAS

For a constant ` (1 ≤ ` ≤ n) define the algorithm A` as follows.
A`(J1, . . . , Jn, m)

Sort jobs in descending order of runtime.
Schedule the ` longest jobs J1, . . . , J` optimally.
Use ListScheduling for the remaining jobs J`+1, . . . , Jn.

O(n log n)
O(m`)

Example.
` = 6

J1
J2
J3

J5
J6

J4sorted jobs

M1

M2

M3

M4 J1
J2
J3

J5

J6J4

� Polynomial time for
constant `:
O(m` + n log n)

O(n log m)

17 - 13

Multiprocessor Scheduling – PTAS

For a constant ` (1 ≤ ` ≤ n) define the algorithm A` as follows.
A`(J1, . . . , Jn, m)

Sort jobs in descending order of runtime.
Schedule the ` longest jobs J1, . . . , J` optimally.
Use ListScheduling for the remaining jobs J`+1, . . . , Jn.

O(n log n)
O(m`)

� Polynomial time for
constant `:
O(m` + n log n)

Theorem 8.
For constant ` ∈ {1, . . . , n}, algorithm A`

is a 1 +
1− 1

m
1+b `

m c
-approximation algorithm.

O(n log m)

17 - 14

Multiprocessor Scheduling – PTAS

For a constant ` (1 ≤ ` ≤ n) define the algorithm A` as follows.
A`(J1, . . . , Jn, m)

Sort jobs in descending order of runtime.
Schedule the ` longest jobs J1, . . . , J` optimally.
Use ListScheduling for the remaining jobs J`+1, . . . , Jn.

O(n log n)
O(m`)

� For ε > 0, choose ` such that Aε = A`(ε)

is a (1 + ε)-approximation algorithm.

� Polynomial time for
constant `:
O(m` + n log n)

Theorem 8.
For constant ` ∈ {1, . . . , n}, algorithm A`

is a 1 +
1− 1

m
1+b `

m c
-approximation algorithm.

O(n log m)

Corollary 9.
For a constant number of machines,
{Aε | ε > 0} is a PTAS.

17 - 15

Multiprocessor Scheduling – PTAS

For a constant ` (1 ≤ ` ≤ n) define the algorithm A` as follows.
A`(J1, . . . , Jn, m)

Sort jobs in descending order of runtime.
Schedule the ` longest jobs J1, . . . , J` optimally.
Use ListScheduling for the remaining jobs J`+1, . . . , Jn.

O(n log n)
O(m`)

� For ε > 0, choose ` such that Aε = A`(ε)

is a (1 + ε)-approximation algorithm.

� {Aε | ε > 0} is not an FPTAS since the
running time is not polynomial in 1

ε .

� Polynomial time for
constant `:
O(m` + n log n)

Theorem 8.
For constant ` ∈ {1, . . . , n}, algorithm A`

is a 1 +
1− 1

m
1+b `

m c
-approximation algorithm.

O(n log m)

Corollary 9.
For a constant number of machines,
{Aε | ε > 0} is a PTAS.

18 - 1

Multiprocessor Scheduling – PTAS (Proof)

Theorem 8.
For constant 1 ≤ ` ≤ n, the algorithm A` is a

1 +
1− 1

m
1+b `

m c
-approximation algorithm.

A`(J1, . . . , Jn, m)

Sort jobs in descending order of runtime.
Schedule the ` longest jobs J1, . . . , J` optimally.
Use ListScheduling for the remaining jobs J`+1, . . . , Jn.

Proof. Let Jk = (Sk, Tk) be the last job, that is, Tk determines the makespan.

18 - 2

Multiprocessor Scheduling – PTAS (Proof)

Theorem 8.
For constant 1 ≤ ` ≤ n, the algorithm A` is a

1 +
1− 1

m
1+b `

m c
-approximation algorithm.

A`(J1, . . . , Jn, m)

Sort jobs in descending order of runtime.
Schedule the ` longest jobs J1, . . . , J` optimally.
Use ListScheduling for the remaining jobs J`+1, . . . , Jn.

Case 1. Jk is one of the longest ` jobs J1, . . . , J`.

Sk Tk = MakespanA`

M1

M2

M3

M4 J1
J2
J3

J5 = Jk

J6J4

Proof. Let Jk = (Sk, Tk) be the last job, that is, Tk determines the makespan.

18 - 3

Multiprocessor Scheduling – PTAS (Proof)

Theorem 8.
For constant 1 ≤ ` ≤ n, the algorithm A` is a

1 +
1− 1

m
1+b `

m c
-approximation algorithm.

A`(J1, . . . , Jn, m)

Sort jobs in descending order of runtime.
Schedule the ` longest jobs J1, . . . , J` optimally.
Use ListScheduling for the remaining jobs J`+1, . . . , Jn.

Case 1. Jk is one of the longest ` jobs J1, . . . , J`.

Sk Tk = MakespanA`

M1

M2

M3

M4 J1
J2
J3

J5 = Jk

J6J4
� Solution is optimal for J1, . . . , Jk

� Hence, solution is optimal for J1, . . . , Jn

Proof. Let Jk = (Sk, Tk) be the last job, that is, Tk determines the makespan.

18 - 4

Multiprocessor Scheduling – PTAS (Proof)

Theorem 8.
For constant 1 ≤ ` ≤ n, the algorithm A` is a

1 +
1− 1

m
1+b `

m c
-approximation algorithm.

A`(J1, . . . , Jn, m)

Sort jobs in descending order of runtime.
Schedule the ` longest jobs J1, . . . , J` optimally.
Use ListScheduling for the remaining jobs J`+1, . . . , Jn.

Case 1. Jk is one of the longest ` jobs J1, . . . , J`.

Sk Tk = MakespanA`

M1

M2

M3

M4 J1
J2
J3

J5 = Jk

J6J4
� Solution is optimal for J1, . . . , Jk

� Hence, solution is optimal for J1, . . . , Jn

Case 2. Jk is not one of the longest ` jobs J1, . . . , J`.
M1

M2

M3

M4 J1
J2
J3

J6J4

J5

Sk Tk = MakespanA`

Jk

Proof. Let Jk = (Sk, Tk) be the last job, that is, Tk determines the makespan.

18 - 5

Multiprocessor Scheduling – PTAS (Proof)

Theorem 8.
For constant 1 ≤ ` ≤ n, the algorithm A` is a

1 +
1− 1

m
1+b `

m c
-approximation algorithm.

A`(J1, . . . , Jn, m)

Sort jobs in descending order of runtime.
Schedule the ` longest jobs J1, . . . , J` optimally.
Use ListScheduling for the remaining jobs J`+1, . . . , Jn.

Case 1. Jk is one of the longest ` jobs J1, . . . , J`.

Sk Tk = MakespanA`

M1

M2

M3

M4 J1
J2
J3

J5 = Jk

J6J4
� Solution is optimal for J1, . . . , Jk

� Hence, solution is optimal for J1, . . . , Jn

Case 2. Jk is not one of the longest ` jobs J1, . . . , J`.
M1

M2

M3

M4 J1
J2
J3

J6J4

J5

Sk Tk = MakespanA`

Jk� Similar analysis to ListScheduling

� Use that there are ` + 1 jobs that are at least as
long as Jk (including Jk).

Proof. Let Jk = (Sk, Tk) be the last job, that is, Tk determines the makespan.

18 - 6

Multiprocessor Scheduling – PTAS (Proof)

Theorem 8.
For constant 1 ≤ ` ≤ n, the algorithm A` is a

1 +
1− 1

m
1+b `

m c
-approximation algorithm.

A`(J1, . . . , Jn, m)

Sort jobs in descending order of runtime.
Schedule the ` longest jobs J1, . . . , J` optimally.
Use ListScheduling for the remaining jobs J`+1, . . . , Jn.

Proof of Case 2.

� Sk ≤ 1
m ∑i 6=k pi

� TOPT ≥ pk

� TOPT ≥ 1
m

n
∑

i=1
pi Tk = Sk + pk

≤ 1

m
·∑

i 6=k
pi + pk

=
1

m
·

m

∑
i=1

pi +

(
1− 1

m

)
· pk

≤ TOPT +

(
1− 1

m

)
· TOPT

18 - 7

Multiprocessor Scheduling – PTAS (Proof)

Theorem 8.
For constant 1 ≤ ` ≤ n, the algorithm A` is a

1 +
1− 1

m
1+b `

m c
-approximation algorithm.

A`(J1, . . . , Jn, m)

Sort jobs in descending order of runtime.
Schedule the ` longest jobs J1, . . . , J` optimally.
Use ListScheduling for the remaining jobs J`+1, . . . , Jn.

Proof of Case 2.

� Sk ≤ 1
m ∑i 6=k pi

� TOPT ≥ pk

� TOPT ≥ 1
m

n
∑

i=1
pi Tk = Sk + pk

≤ 1

m
·∑

i 6=k
pi + pk

=
1

m
·

m

∑
i=1

pi +

(
1− 1

m

)
· pk

≤ TOPT +

(
1− 1

m

)
· TOPT

18 - 8

Multiprocessor Scheduling – PTAS (Proof)

Theorem 8.
For constant 1 ≤ ` ≤ n, the algorithm A` is a

1 +
1− 1

m
1+b `

m c
-approximation algorithm.

A`(J1, . . . , Jn, m)

Sort jobs in descending order of runtime.
Schedule the ` longest jobs J1, . . . , J` optimally.
Use ListScheduling for the remaining jobs J`+1, . . . , Jn.

Proof of Case 2.

� Sk ≤ 1
m ∑i 6=k pi

� TOPT ≥ pk

� TOPT ≥ 1
m

n
∑

i=1
pi Tk = Sk + pk

≤ 1

m
·∑

i 6=k
pi + pk

=
1

m
·

m

∑
i=1

pi +

(
1− 1

m

)
· pk

≤ TOPT +

(
1− 1

m

)
· TOPT

18 - 9

Multiprocessor Scheduling – PTAS (Proof)

Theorem 8.
For constant 1 ≤ ` ≤ n, the algorithm A` is a

1 +
1− 1

m
1+b `

m c
-approximation algorithm.

A`(J1, . . . , Jn, m)

Sort jobs in descending order of runtime.
Schedule the ` longest jobs J1, . . . , J` optimally.
Use ListScheduling for the remaining jobs J`+1, . . . , Jn.

Proof of Case 2.

� Sk ≤ 1
m ∑i 6=k pi

� TOPT ≥ pk

� TOPT ≥ 1
m

n
∑

i=1
pi Tk = Sk + pk

≤ 1

m
·∑

i 6=k
pi + pk

=
1

m
·

m

∑
i=1

pi +

(
1− 1

m

)
· pk

≤ TOPT +

(
1− 1

m

)
· TOPT

18 - 10

Multiprocessor Scheduling – PTAS (Proof)

Theorem 8.
For constant 1 ≤ ` ≤ n, the algorithm A` is a

1 +
1− 1

m
1+b `

m c
-approximation algorithm.

A`(J1, . . . , Jn, m)

Sort jobs in descending order of runtime.
Schedule the ` longest jobs J1, . . . , J` optimally.
Use ListScheduling for the remaining jobs J`+1, . . . , Jn.

Proof of Case 2.

� Sk ≤ 1
m ∑i 6=k pi

� TOPT ≥ pk

� TOPT ≥ 1
m

n
∑

i=1
pi Tk = Sk + pk

≤ 1

m
·∑

i 6=k
pi + pk

=
1

m
·

m

∑
i=1

pi +

(
1− 1

m

)
· pk

≤ TOPT +

(
1− 1

m

)
· TOPT

can we do
better?

18 - 11

Multiprocessor Scheduling – PTAS (Proof)

Theorem 8.
For constant 1 ≤ ` ≤ n, the algorithm A` is a

1 +
1− 1

m
1+b `

m c
-approximation algorithm.

A`(J1, . . . , Jn, m)

Sort jobs in descending order of runtime.
Schedule the ` longest jobs J1, . . . , J` optimally.
Use ListScheduling for the remaining jobs J`+1, . . . , Jn.

Proof of Case 2.

� Sk ≤ 1
m ∑i 6=k pi � TOPT ≥ 1

m

n
∑

i=1
pi Tk = Sk + pk

≤ 1

m
·∑

i 6=k
pi + pk

=
1

m
·

m

∑
i=1

pi +

(
1− 1

m

)
· pk

≤ TOPT +

(
1− 1

m

)
· TOPT

can we do
better?

TOPT ≥ pk ·
(
1+

⌊
`
m

⌋)

M1

M2

M3

M4
J2
J3

J6J4

J5

Sk Tk = MakespanA`

Jk

� Consider only J1, . . . , J`, Jk:

J1

18 - 12

Multiprocessor Scheduling – PTAS (Proof)

Theorem 8.
For constant 1 ≤ ` ≤ n, the algorithm A` is a

1 +
1− 1

m
1+b `

m c
-approximation algorithm.

A`(J1, . . . , Jn, m)

Sort jobs in descending order of runtime.
Schedule the ` longest jobs J1, . . . , J` optimally.
Use ListScheduling for the remaining jobs J`+1, . . . , Jn.

Proof of Case 2.

� Sk ≤ 1
m ∑i 6=k pi � TOPT ≥ 1

m

n
∑

i=1
pi Tk = Sk + pk

≤ 1

m
·∑

i 6=k
pi + pk

=
1

m
·

m

∑
i=1

pi +

(
1− 1

m

)
· pk

≤ TOPT +

(
1− 1

m

)
· TOPT

can we do
better?

TOPT ≥ pk ·
(
1+

⌊
`
m

⌋)

M1

M2

M3

M4
J2
J3

J6J4

J5

Sk Tk = MakespanA`

Jk

� Consider only J1, . . . , J`, Jk:

J1

18 - 13

Multiprocessor Scheduling – PTAS (Proof)

Theorem 8.
For constant 1 ≤ ` ≤ n, the algorithm A` is a

1 +
1− 1

m
1+b `

m c
-approximation algorithm.

A`(J1, . . . , Jn, m)

Sort jobs in descending order of runtime.
Schedule the ` longest jobs J1, . . . , J` optimally.
Use ListScheduling for the remaining jobs J`+1, . . . , Jn.

Proof of Case 2.

� Sk ≤ 1
m ∑i 6=k pi � TOPT ≥ 1

m

n
∑

i=1
pi Tk = Sk + pk

≤ 1

m
·∑

i 6=k
pi + pk

=
1

m
·

m

∑
i=1

pi +

(
1− 1

m

)
· pk

≤ TOPT +

(
1− 1

m

)
· TOPT

can we do
better?

TOPT ≥ pk ·
(
1+

⌊
`
m

⌋)

M1

M2

M3

M4
J2
J3

J6J4

J5

Sk Tk = MakespanA`

Jk

� Consider only J1, . . . , J`, Jk:

one machine has
this many jobs?

J1

18 - 14

Multiprocessor Scheduling – PTAS (Proof)

Theorem 8.
For constant 1 ≤ ` ≤ n, the algorithm A` is a

1 +
1− 1

m
1+b `

m c
-approximation algorithm.

A`(J1, . . . , Jn, m)

Sort jobs in descending order of runtime.
Schedule the ` longest jobs J1, . . . , J` optimally.
Use ListScheduling for the remaining jobs J`+1, . . . , Jn.

Proof of Case 2.

� Sk ≤ 1
m ∑i 6=k pi � TOPT ≥ 1

m

n
∑

i=1
pi Tk = Sk + pk

≤ 1

m
·∑

i 6=k
pi + pk

=
1

m
·

m

∑
i=1

pi +

(
1− 1

m

)
· pk

≤ TOPT +

(
1− 1

m

)
· TOPT

can we do
better?

TOPT ≥ pk ·
(
1+

⌊
`
m

⌋)

M1

M2

M3

M4
J2
J3

J6J4

J5

Sk Tk = MakespanA`

Jk

� Consider only J1, . . . , J`, Jk:

one machine has
this many jobs?

� ? on average, each machine has more than `
m of the `+ 1 jobs

� at least one machine achieves the average

J1

18 - 15

Multiprocessor Scheduling – PTAS (Proof)

Theorem 8.
For constant 1 ≤ ` ≤ n, the algorithm A` is a

1 +
1− 1

m
1+b `

m c
-approximation algorithm.

A`(J1, . . . , Jn, m)

Sort jobs in descending order of runtime.
Schedule the ` longest jobs J1, . . . , J` optimally.
Use ListScheduling for the remaining jobs J`+1, . . . , Jn.

Proof of Case 2.

� Sk ≤ 1
m ∑i 6=k pi � TOPT ≥ 1

m

n
∑

i=1
pi Tk = Sk + pk

≤ 1

m
·∑

i 6=k
pi + pk

=
1

m
·

m

∑
i=1

pi +

(
1− 1

m

)
· pk

≤ TOPT +

(
1− 1

m

)
· TOPT

can we do
better?

TOPT ≥ pk ·
(
1+

⌊
`
m

⌋)

M1

M2

M3

M4
J2
J3

J6J4

J5

Sk Tk = MakespanA`

Jk

� Consider only J1, . . . , J`, Jk:

each has length ≥ pk

one machine has
this many jobs?

� ? on average, each machine has more than `
m of the `+ 1 jobs

� at least one machine achieves the average

J1

18 - 16

Multiprocessor Scheduling – PTAS (Proof)

Theorem 8.
For constant 1 ≤ ` ≤ n, the algorithm A` is a

1 +
1− 1

m
1+b `

m c
-approximation algorithm.

A`(J1, . . . , Jn, m)

Sort jobs in descending order of runtime.
Schedule the ` longest jobs J1, . . . , J` optimally.
Use ListScheduling for the remaining jobs J`+1, . . . , Jn.

Proof of Case 2.

� Sk ≤ 1
m ∑i 6=k pi � TOPT ≥ 1

m

n
∑

i=1
pi Tk = Sk + pk

≤ 1

m
·∑

i 6=k
pi + pk

=
1

m
·

m

∑
i=1

pi +

(
1− 1

m

)
· pk

≤ TOPT +

(
1− 1

m

)
· TOPT

can we do
better?

TOPT ≥ pk ·
(
1+

⌊
`
m

⌋)

M1

M2

M3

M4
J2
J3

J6J4

J5

Sk Tk = MakespanA`

Jk

� Consider only J1, . . . , J`, Jk:

each has length ≥ pk

one machine has
this many jobs?

� ? on average, each machine has more than `
m of the `+ 1 jobs

� at least one machine achieves the average

J1

18 - 17

Multiprocessor Scheduling – PTAS (Proof)

Theorem 8.
For constant 1 ≤ ` ≤ n, the algorithm A` is a

1 +
1− 1

m
1+b `

m c
-approximation algorithm.

A`(J1, . . . , Jn, m)

Sort jobs in descending order of runtime.
Schedule the ` longest jobs J1, . . . , J` optimally.
Use ListScheduling for the remaining jobs J`+1, . . . , Jn.

Proof of Case 2.

� Sk ≤ 1
m ∑i 6=k pi � TOPT ≥ 1

m

n
∑

i=1
pi

TOPT ≥ pk ·
(
1+

⌊
`
m

⌋)

M1

M2

M3

M4
J2
J3

J6J4

J5

Sk Tk = MakespanA`

Jk

� Consider only J1, . . . , J`, Jk:

each has length ≥ pk

one machine has
this many jobs?

� ? on average, each machine has more than `
m of the `+ 1 jobs

� at least one machine achieves the average

Tk = Sk + pk

≤ 1

m
·∑

i 6=k
pi + pk

=
1

m
·

m

∑
i=1

pi +

(
1− 1

m

)
· pk

≤ TOPT +
1− 1

m

1+
⌊

`
m

⌋ · TOPT
J1

19 - 1

Discussion

� Only “easy” NP-hard problems admit FPTAS (PTAS).

� Some problems cannot be approximated very well (e.g., Maximum Clique).

� Study of approximability of NP-hard problems yields more fine-grained classifications.

19 - 2

Discussion

� Only “easy” NP-hard problems admit FPTAS (PTAS).

� Some problems cannot be approximated very well (e.g., Maximum Clique).

� Study of approximability of NP-hard problems yields more fine-grained classifications.

� Approximation algorithms exist also for non-NP-hard problems.

� Approximation algorithms can be of various types:
greedy, local search, geometric, DP, . . .

� One important technique is LP-relaxation (more later in this lecture).

19 - 3

Discussion

� Only “easy” NP-hard problems admit FPTAS (PTAS).

� Some problems cannot be approximated very well (e.g., Maximum Clique).

� Study of approximability of NP-hard problems yields more fine-grained classifications.

� Approximation algorithms exist also for non-NP-hard problems.

� Approximation algorithms can be of various types:
greedy, local search, geometric, DP, . . .

� One important technique is LP-relaxation (more later in this lecture).

� Minimum Vertex Coloring on planar graphs can be approximated with an additive
approximation guarantee of 2.

� Christofides’ approximation algorithm for Metric TSP has approximation factor 1.5.

19 - 4

Discussion

� Only “easy” NP-hard problems admit FPTAS (PTAS).

� Some problems cannot be approximated very well (e.g., Maximum Clique).

� Study of approximability of NP-hard problems yields more fine-grained classifications.

� Approximation algorithms exist also for non-NP-hard problems.

� Approximation algorithms can be of various types:
greedy, local search, geometric, DP, . . .

� One important technique is LP-relaxation (more later in this lecture).

� Minimum Vertex Coloring on planar graphs can be approximated with an additive
approximation guarantee of 2.

� Christofides’ approximation algorithm for Metric TSP has approximation factor 1.5.

� There is a whole lecture on approximation algorithms this semester!
https://wuecampus.uni-wuerzburg.de/moodle/course/view.php?id=62943

20

Literature

Main references

� [Jansen & Margraf, 2008: Ch3]
“Approximative Algorithmen und
Nichtapproximierbarkeit”

� [Williamson & Shmoys, 2011: Ch3]
“The Design of Approximation Algorithms”

Another book recommendation:

� [Vazirani, 2013] “Approximation Algorithms”

	Title page
	Dealing with NP-Hard Optimization Problems
	Dealing with NP-Hard Optimization Problems

	Approximation Algorithms
	Approximation with Additive Guarantee
	Minimum Vertex Coloring
	Minimum Vertex Coloring

	Minimum Edge Coloring
	Minimum Edge Coloring

	Minimum Edge Coloring -- Upper Bound
	Minimum Edge Coloring -- Upper Bound

	Minimum Edge Coloring -- Recoloring
	Minimum Edge Coloring -- Recoloring

	Minimum Edge Coloring -- Algorithm
	Minimum Edge Coloring -- Algorithm

	Approximation with Relative Factor
	2-Approximation for Metric TSP (from AGT)
	2-Approximation for Metric TSP (from AGT)

	Nearest Addition Algorithm for Metric TSP
	Nearest Addition Algorithm for Metric TSP

	Approximation Schemes
	Multiprocessor Scheduling

	Multiprocessor Scheduling -- List Scheduling
	Multiprocessor Scheduling -- List Scheduling
	Multiprocessor Scheduling -- List Scheduling (Proof)
	Multiprocessor Scheduling -- PTAS
	Multiprocessor Scheduling -- PTAS (Proof)

	Discussion
	Literature

