Advanced Algorithms

Approximation Algorithms

Coloring and Scheduling Problems

Dealing with NP-Hard Optimization Problems

What should we do?

- Sacrifice optimality for speed

■ Heuristics

- Approximation algorithms

■ Optimal solutions

- Exact exponential-time algorithms
- Fine-grained analysis - parameterized algorithms

Dealing with NP-Hard Optimization Problems

What should we do?

- Sacrifice optimality for speed
- Heuristics
- Approximation algorithms

■ Optimal solutions

- Exact exponential-time algorithms
- Fine-grained analysis - parameterized algorithms

Approximation Algorithms

Problem.

■ For NP-hard optimization problems, we cannot compute the optimal solution of every instance efficiently (unless $\mathrm{P}=\mathrm{NP}$).
■ Heuristics offer no guarantee on the quality of their solutions.

Approximation Algorithms

Problem.

- For NP-hard optimization problems, we cannot compute the optimal solution of every instance efficiently (unless $\mathrm{P}=\mathrm{NP}$).
- Heuristics offer no guarantee on the quality of their solutions.

Goal.

■ Design approximation algorithms:
■ run in polynomial time and

- compute solutions of guaranteed quality.
- Study techniques for the design and analysis of approximation algorithms.

Approximation Algorithms

Problem.

■ For NP-hard optimization problems, we cannot compute the optimal solution of every instance efficiently (unless $\mathrm{P}=\mathrm{NP}$).

- Heuristics offer no guarantee on the quality of their solutions.

Goal.

■ Design approximation algorithms:
■ run in polynomial time and
■ compute solutions of guaranteed quality.

- Study techniques for the design and analysis of approximation algorithms.

Overview.

- Approximation algorithms that compute solutions
\square with additive guarantee, \quad with relative guarantee, \quad that are "arbitrarily good"

Approximation Algorithms

Problem.

■ For NP-hard optimization problems, we cannot compute the optimal solution of every instance efficiently (unless $P=N P$).

- Heuristics offer no guarantee on the quality of their solutions.

Goal.

■ Design approximation algorithms:
■ run in polynomial time and

- compute solutions of guaranteed quality.
- Study techniques for the design and analysis of approximation algorithms.

Overview.

- Approximation algorithms that compute solutions

■ with additive guarantee, ■ with relative guarantee, ■ that are "arbitrarily good"

Approximation with Additive Guarantee

Definition.

Let Π be an optimization problem, let \mathcal{A} be a polynomial-time algorithm for Π, let I be an instance of Π, and let $\mathrm{ALG}(I)$ be the value of the objective function of the solution that \mathcal{A} computes given I.

Then \mathcal{A} is called an approximation algorithm with additive guarantee δ (which can depend on I) if

$$
|\mathrm{OPT}(I)-\operatorname{ALG}(I)| \leq \delta
$$

for every instance I of Π.

Approximation with Additive Guarantee

Definition.

Let Π be an optimization problem, let \mathcal{A} be a polynomial-time algorithm for Π, let I be an instance of Π, and let $\mathrm{ALG}(I)$ be the value of the objective function of the solution that \mathcal{A} computes given I.

Then \mathcal{A} is called an approximation algorithm with additive guarantee δ (which can depend on I) if

$$
|\mathrm{OPT}(I)-\operatorname{ALG}(I)| \leq \delta
$$

for every instance I of Π.

- Most problems that we know do not admit an approximation algorithm with additive guarantee.

Minimum Vertex Coloring

Input. A graph $G=(V, E)$. Let Δ be the maximum degree of G.

Minimum Vertex Coloring

Input. A graph $G=(V, E)$. Let Δ be the maximum degree of G.
Output. A minimum vertex coloring, that is, an assignment of the vertices of G to colors such that no two adjacent vertices get the same color and the number of colors is minimum.

Minimum Vertex Coloring

Input. A graph $G=(V, E)$. Let Δ be the maximum degree of G.
Output. A minimum vertex coloring, that is, an assignment of the vertices of G to colors such that no two adjacent vertices get the same color and the number of colors is minimum.

- Minimum Vertex Coloring is NP-hard.
- Even Vertex 3-Coloring is NP-complete.

Minimum Vertex Coloring

Input. A graph $G=(V, E)$. Let Δ be the maximum degree of G.
Output. A minimum vertex coloring, that is, an assignment of the vertices of G to colors such that no two adjacent vertices get the same color and the number of colors is minimum.

■ Minimum Vertex Coloring is NP-hard.

- Even Vertex 3-Coloring is NP-complete.

GreedyVertexColoring(connected graph G)
Color vertices in some order with the lowest feasible color.

Minimum Vertex Coloring

Input. A graph $G=(V, E)$. Let Δ be the maximum degree of G.
Output. A minimum vertex coloring, that is, an assignment of the vertices of G to colors such that no two adjacent vertices get the same color and the number of colors is minimum.

■ Minimum Vertex Coloring is NP-hard.

- Even Vertex 3-Coloring is NP-complete.

GreedyVertexColoring(connected graph G)
Color vertices in some order with the lowest feasible color.

Minimum Vertex Coloring

Input. A graph $G=(V, E)$. Let Δ be the maximum degree of G.
Output. A minimum vertex coloring, that is, an assignment of the vertices of G to colors such that no two adjacent vertices get the same color and the number of colors is minimum.

■ Minimum Vertex Coloring is NP-hard.

- Even Vertex 3-Coloring is NP-complete.

GreedyVertexColoring(connected graph G)
Color vertices in some order with the lowest feasible color.

Minimum Vertex Coloring

Input. A graph $G=(V, E)$. Let Δ be the maximum degree of G.
Output. A minimum vertex coloring, that is, an assignment of the vertices of G to colors such that no two adjacent vertices get the same color and the number of colors is minimum.

■ Minimum Vertex Coloring is NP-hard.

- Even Vertex 3-Coloring is NP-complete.

GreedyVertexColoring(connected graph G)
Color vertices in some order with the lowest feasible color.

Minimum Vertex Coloring

Input. A graph $G=(V, E)$. Let Δ be the maximum degree of G.
Output. A minimum vertex coloring, that is, an assignment of the vertices of G to colors such that no two adjacent vertices get the same color and the number of colors is minimum.

■ Minimum Vertex Coloring is NP-hard.

- Even Vertex 3-Coloring is NP-complete.

GreedyVertexColoring(connected graph G)
Color vertices in some order with the lowest feasible color.

Minimum Vertex Coloring

Input. A graph $G=(V, E)$. Let Δ be the maximum degree of G.
Output. A minimum vertex coloring, that is, an assignment of the vertices of G to colors such that no two adjacent vertices get the same color and the number of colors is minimum.

■ Minimum Vertex Coloring is NP-hard.

- Even Vertex 3-Coloring is NP-complete.

GreedyVertexColoring(connected graph G)
Color vertices in some order with the lowest feasible color.

Minimum Vertex Coloring

Input. A graph $G=(V, E)$. Let Δ be the maximum degree of G.
Output. A minimum vertex coloring, that is, an assignment of the vertices of G to colors such that no two adjacent vertices get the same color and the number of colors is minimum.

■ Minimum Vertex Coloring is NP-hard.

- Even Vertex 3-Coloring is NP-complete.

GreedyVertexColoring(connected graph G)
Color vertices in some order with the lowest feasible color.

Minimum Vertex Coloring

Input. A graph $G=(V, E)$. Let Δ be the maximum degree of G.
Output. A minimum vertex coloring, that is, an assignment of the vertices of G to colors such that no two adjacent vertices get the same color and the number of colors is minimum.

- Minimum Vertex Coloring is NP-hard.
- Even Vertex 3-Coloring is NP-complete.

GreedyVertexColoring(connected graph G)
Color vertices in some order with the lowest feasible color.

Theorem 1.

$0000 \cdots$

The algorithm GreedyVertexColoring computes a vertex coloring with at most colors in $\mathcal{O}(V+E)$ time.
Hence, it has an additive approximation gurantee of

Minimum Vertex Coloring

Input. A graph $G=(V, E)$. Let Δ be the maximum degree of G.
Output. A minimum vertex coloring, that is, an assignment of the vertices of G to colors such that no two adjacent vertices get the same color and the number of colors is minimum.

- Minimum Vertex Coloring is NP-hard.
- Even Vertex 3-Coloring is NP-complete.

GreedyVertexColoring(connected graph G)
Color vertices in some order with the lowest feasible color.

Theorem 1.

$0000 \cdots$

The algorithm GreedyVertexColoring computes a vertex coloring with at most $\Delta+1$ colors in $\mathcal{O}(V+E)$ time. Hence, it has an additive approximation gurantee of

Minimum Vertex Coloring

Input. A graph $G=(V, E)$. Let Δ be the maximum degree of G.
Output. A minimum vertex coloring, that is, an assignment of the vertices of G to colors such that no two adjacent vertices get the same color and the number of colors is minimum.

- Minimum Vertex Coloring is NP-hard.
- Even Vertex 3-Coloring is NP-complete.

GreedyVertexColoring(connected graph G)
Color vertices in some order with the lowest feasible color.

Theorem 1.

$0000 \cdots$

The algorithm GreedyVertexColoring computes a vertex coloring with at most $\Delta+1$ colors in $\mathcal{O}(V+E)$ time. Hence, it has an additive approximation gurantee of $\Delta-1$.

Minimum Vertex Coloring

Input. A graph $G=(V, E)$. Let Δ be the maximum degree of G.
Output. A minimum vertex coloring, that is, an assignment of the vertices of G to colors such that no two adjacent vertices get the same color and the number of colors is minimum.

- Minimum Vertex Coloring is NP-hard.
- Even Vertex 3-Coloring is NP-complete.

GreedyVertexColoring(connected graph G)
Color vertices in some order with the lowest feasible color.

Theorem 1.

The algorithm GreedyVertexColoring computes a vertex coloring with at most $\Delta+1$ colors in $\mathcal{O}(V+E)$ time. Hence, it has an additive approximation gurantee of $\Delta-1$.

○○○○…

We can even get $\Delta-2$ if we return a 2 -coloring whenever G is bipartite.

Minimum Edge Coloring

Input. A graph $G=(V, E)$. Let Δ be the maximum degree of G.

Minimum Edge Coloring

Input. A graph $G=(V, E)$. Let Δ be the maximum degree of G.
Output. A minimum edge coloring, that is, an assignment of colors to the edges of G such that no two adjacent edges get the same color and the number of colors is minimum.

Minimum Edge Coloring

Input. A graph $G=(V, E)$. Let Δ be the maximum degree of G.
Output. A minimum edge coloring, that is, an assignment of colors to the edges of G such that no two adjacent edges get the same color and the number of colors is minimum.

■ Minimum Edge Coloring is NP-hard.
■ Even Edge 3-Coloring is NP-complete.

Minimum Edge Coloring

Input. A graph $G=(V, E)$. Let Δ be the maximum degree of G.
Output. A minimum edge coloring, that is, an assignment of colors to the edges of G such that no two adjacent edges get the same color and the number of colors is minimum.

■ Minimum Edge Coloring is NP-hard.

- Even Edge 3-Coloring is NP-complete.
- The minimum number of colors needed for an edge coloring of G is called the chromatic index $\chi^{\prime}(G)$.
- $\chi^{\prime}(G)$ is lowerbounded by

Minimum Edge Coloring

Input. A graph $G=(V, E)$. Let Δ be the maximum degree of G.
Output. A minimum edge coloring, that is, an assignment of colors to the edges of G such that no two adjacent edges get the same color and the number of colors is minimum.

- Minimum Edge Coloring is NP-hard.
- Even Edge 3-Coloring is NP-complete.
- The minimum number of colors needed for an edge coloring of G is called the chromatic index $\chi^{\prime}(G)$.
- $\chi^{\prime}(G)$ is lowerbounded by Δ.

Minimum Edge Coloring

Input. A graph $G=(V, E)$. Let Δ be the maximum degree of G.
Output. A minimum edge coloring, that is, an assignment of colors to the edges of G such that no two adjacent edges get the same color and the number of colors is minimum.

- Minimum Edge Coloring is NP-hard.
- Even Edge 3-Coloring is NP-complete.
- The minimum number of colors needed for an edge coloring of G is called the chromatic index $\chi^{\prime}(G)$.
- $\chi^{\prime}(G)$ is lowerbounded by Δ.
- We show that $\chi^{\prime}(G) \leq \Delta+1$.

Minimum Edge Coloring - Upper Bound

```
Vizing's Theorem.
For every graph G=(V,E) with maximum degree }\Delta\mathrm{ , it holds that \(\Delta \leq \chi^{\prime}(G) \leq \Delta+1\).
```


Vadim G. Vizing

Minimum Edge Coloring - Upper Bound

Vizing's Theorem.

For every graph $G=(V, E)$ with maximum degree Δ, it holds that $\Delta \leq \chi^{\prime}(G) \leq \Delta+1$.

Proof by induction on $m=|E|$.
\square Base case $m=1$ is trivial.

Vadim G. Vizing (Kiew 1937-2017 Odessa)

Minimum Edge Coloring - Upper Bound

Vizing's Theorem.

For every graph $G=(V, E)$ with maximum degree Δ, it holds that $\Delta \leq \chi^{\prime}(G) \leq \Delta+1$.

Proof by induction on $m=|E|$.

- Base case $m=1$ is trivial.

Let G be a graph on m edges, and let $e=u v$ be an edge of G.
\square By induction, $G-e$ has a $(\Delta(G-e)+1)$-edge coloring.

Vadim G. Vizing (Kiew 1937-2017 Odessa)

Minimum Edge Coloring - Upper Bound

Vizing's Theorem.

For every graph $G=(V, E)$ with maximum degree Δ, it holds that $\Delta \leq \chi^{\prime}(G) \leq \Delta+1$.

Proof by induction on $m=|E|$.

- Base case $m=1$ is trivial.

Let G be a graph on m edges, and let $e=u v$ be an edge of G.

- By induction, $G-e$ has a $(\Delta(G-e)+1)$-edge coloring.

■ If $\Delta(G)>\Delta(G-e)$, color e with color $\Delta(G)+1$.

Vadim G. Vizing (Kiew 1937-2017 Odessa)

Minimum Edge Coloring - Upper Bound

Vizing's Theorem.

For every graph $G=(V, E)$ with maximum degree Δ, it holds that $\Delta \leq \chi^{\prime}(G) \leq \Delta+1$.

Proof by induction on $m=|E|$.

- Base case $m=1$ is trivial.

Let G be a graph on m edges, and let $e=u v$ be an edge of G.
\square By induction, $G-e$ has a $(\Delta(G-e)+1)$-edge coloring.

- If $\Delta(G)>\Delta(G-e)$, color e with color $\Delta(G)+1$.
\square If $\Delta(G)=\Delta(G-e)$, change the coloring such that u and v miss the same color α.

Minimum Edge Coloring - Upper Bound

Vizing's Theorem.

For every graph $G=(V, E)$ with maximum degree Δ, it holds that $\Delta \leq \chi^{\prime}(G) \leq \Delta+1$.

Proof by induction on $m=|E|$.

- Base case $m=1$ is trivial.

Let G be a graph on m edges, and let $e=u v$ be an edge of G.
\square By induction, $G-e$ has a $(\Delta(G-e)+1)$-edge coloring.

- If $\Delta(G)>\Delta(G-e)$, color e with color $\Delta(G)+1$.

\square If $\Delta(G)=\Delta(G-e)$, change the coloring such that u and v miss the same color α.
- Then color e with α.

Minimum Edge Coloring - Recoloring

Lemma 2.
Let G be a graph with a $(\Delta+1)$-edge coloring c, let u, v be non-adjacent vertices with $\operatorname{deg}(u), \operatorname{deg}(v)<\Delta$. Then c can be changed s.t. u and v miss the same color.

Minimum Edge Coloring - Recoloring

Lemma 2.
Let G be a graph with a $(\Delta+1)$-edge coloring c, let u, v be non-adjacent vertices with $\operatorname{deg}(u), \operatorname{deg}(v)<\Delta$. Then c can be changed s.t. u and v miss the same color.
Proof. Note that every vertex is missing a color.

Minimum Edge Coloring - Recoloring

Lemma 2.
Let G be a graph with a $(\Delta+1)$-edge coloring c, let u, v be non-adjacent vertices with $\operatorname{deg}(u), \operatorname{deg}(v)<\Delta$. Then c can be changed s.t. u and v miss the same color.
Proof. Note that every vertex is missing a color.
Let u miss β and v miss α_{1}; apply the following algorithm:

Minimum Edge Coloring - Recoloring

Lemma 2.

Let G be a graph with a $(\Delta+1)$-edge coloring c, let u, v be non-adjacent vertices with $\operatorname{deg}(u), \operatorname{deg}(v)<\Delta$. Then c can be changed s.t. u and v miss the same color.
Proof. Note that every vertex is missing a color.
Let u miss β and v miss α_{1}; apply the following algorithm:
VizingRecoloring(G, c, u, α_{1})
$i \leftarrow 1$
while $\exists w \in N(u): c(u w)=\alpha_{i} \wedge w \notin\left\{v_{1}, \ldots, v_{i-1}\right\}$ do $v_{i} \leftarrow w$
$\alpha_{i+1} \leftarrow \min$ color missing at w $i \leftarrow i+1$
return $v_{1}, \ldots, v_{i} ; \alpha_{1}, \ldots, \alpha_{i+1}$

Minimum Edge Coloring - Recoloring

Lemma 2.

Let G be a graph with a $(\Delta+1)$-edge coloring c, let u, v be non-adjacent vertices with $\operatorname{deg}(u), \operatorname{deg}(v)<\Delta$. Then c can be changed s.t. u and v miss the same color.
Proof. Note that every vertex is missing a color.
Let u miss β and v miss α_{1}; apply the following algorithm:

VizingRecoloring(G, c, u, α_{1})
$i \leftarrow 1$
while $\exists w \in N(u): c(u w)=\alpha_{i} \wedge w \notin\left\{v_{1}, \ldots, v_{i-1}\right\}$ do $v_{i} \leftarrow w$
$\alpha_{i+1} \leftarrow \min$ color missing at w $i \leftarrow i+1$
return $v_{1}, \ldots, v_{i} ; \alpha_{1}, \ldots, \alpha_{i+1}$

Minimum Edge Coloring - Recoloring

Lemma 2.

Let G be a graph with a $(\Delta+1)$-edge coloring c, let u, v be non-adjacent vertices with $\operatorname{deg}(u), \operatorname{deg}(v)<\Delta$. Then c can be changed s.t. u and v miss the same color.
Proof. Note that every vertex is missing a color.
Let u miss β and v miss α_{1}; apply the following algorithm:

VizingRecoloring(G, c, u, α_{1})
$i \leftarrow 1$
while $\exists w \in N(u): c(u w)=\alpha_{i} \wedge w \notin\left\{v_{1}, \ldots, v_{i-1}\right\}$ do $v_{i} \leftarrow w$
$\alpha_{i+1} \leftarrow \min$ color missing at w $i \leftarrow i+1$
return $v_{1}, \ldots, v_{i} ; \alpha_{1}, \ldots, \alpha_{i+1}$

Minimum Edge Coloring - Recoloring

Lemma 2.

Let G be a graph with a $(\Delta+1)$-edge coloring c, let u, v be non-adjacent vertices with $\operatorname{deg}(u), \operatorname{deg}(v)<\Delta$. Then c can be changed s.t. u and v miss the same color.
Proof. Note that every vertex is missing a color.
Let u miss β and v miss α_{1}; apply the following algorithm:
VizingRecoloring(G, c, u, α_{1})
$i \leftarrow 1$
while $\exists w \in N(u): c(u w)=\alpha_{i} \wedge w \notin\left\{v_{1}, \ldots, v_{i-1}\right\}$ do $v_{i} \leftarrow w$
$\alpha_{i+1} \leftarrow \min$ color missing at w $i \leftarrow i+1$
return $v_{1}, \ldots, v_{i} ; \alpha_{1}, \ldots, \alpha_{i+1}$

Minimum Edge Coloring - Recoloring

Lemma 2.

Let G be a graph with a $(\Delta+1)$-edge coloring c, let u, v be non-adjacent vertices with $\operatorname{deg}(u), \operatorname{deg}(v)<\Delta$. Then c can be changed s.t. u and v miss the same color.
Proof. Note that every vertex is missing a color. Let u miss β and v miss α_{1}; apply the following algorithm:

VizingRecoloring(G, c, u, α_{1})
$i \leftarrow 1$
while $\exists w \in N(u): c(u w)=\alpha_{i} \wedge w \notin\left\{v_{1}, \ldots, v_{i-1}\right\}$ do $v_{i} \leftarrow w$
$\alpha_{i+1} \leftarrow \min$ color missing at w $i \leftarrow i+1$
return $v_{1}, \ldots, v_{i} ; \alpha_{1}, \ldots, \alpha_{i+1}$

Minimum Edge Coloring - Recoloring

Lemma 2.

Let G be a graph with a $(\Delta+1)$-edge coloring c, let u, v be non-adjacent vertices with $\operatorname{deg}(u), \operatorname{deg}(v)<\Delta$. Then c can be changed s.t. u and v miss the same color.
Proof. Note that every vertex is missing a color. Let u miss β and v miss α_{1}; apply the following algorithm:
VizingRecoloring(G, c, u, α_{1})
$i \leftarrow 1$
while $\exists w \in N(u): c(u w)=\alpha_{i} \wedge w \notin\left\{v_{1}, \ldots, v_{i-1}\right\}$ do $v_{i} \leftarrow w$
$\alpha_{i+1} \leftarrow$ min color missing at w $i \leftarrow i+1$
return $v_{1}, \ldots, v_{i} ; \alpha_{1}, \ldots, \alpha_{i+1}$

Minimum Edge Coloring - Recoloring

Lemma 2.

Let G be a graph with a $(\Delta+1)$-edge coloring c, let u, v be non-adjacent vertices with $\operatorname{deg}(u), \operatorname{deg}(v)<\Delta$. Then c can be changed s.t. u and v miss the same color.
Proof. Note that every vertex is missing a color.
Let u miss β and v miss α_{1}; apply the following algorithm:

VizingRecoloring(G, c, u, α_{1})
$i \leftarrow 1$
while $\exists w \in N(u): c(u w)=\alpha_{i} \wedge w \notin\left\{v_{1}, \ldots, v_{i-1}\right\}$ do $v_{i} \leftarrow w$
$\alpha_{i+1} \leftarrow \min$ color missing at w $i \leftarrow i+1$
return $v_{1}, \ldots, v_{i} ; \alpha_{1}, \ldots, \alpha_{i+1}$

Case 1: u misses α_{h+1}.

Minimum Edge Coloring - Recoloring

Lemma 2.

Let G be a graph with a $(\Delta+1)$-edge coloring c, let u, v be non-adjacent vertices with $\operatorname{deg}(u), \operatorname{deg}(v)<\Delta$. Then c can be changed s.t. u and v miss the same color.
Proof. Note that every vertex is missing a color.
Let u miss β and v miss α_{1}; apply the following algorithm:

VizingRecoloring(G, c, u, α_{1})
$i \leftarrow 1$
while $\exists w \in N(u): c(u w)=\alpha_{i} \wedge w \notin\left\{v_{1}, \ldots, v_{i-1}\right\}$ do $v_{i} \leftarrow w$
$\alpha_{i+1} \leftarrow \min$ color missing at w $i \leftarrow i+1$
return $v_{1}, \ldots, v_{i} ; \alpha_{1}, \ldots, \alpha_{i+1}$

Case 1: u misses α_{h+1}.

Minimum Edge Coloring - Recoloring

Lemma 2.

Let G be a graph with a $(\Delta+1)$-edge coloring c, let u, v be non-adjacent vertices with $\operatorname{deg}(u), \operatorname{deg}(v)<\Delta$. Then c can be changed s.t. u and v miss the same color.
Proof. Note that every vertex is missing a color.
Let u miss β and v miss α_{1}; apply the following algorithm:

VizingRecoloring(G, c, u, α_{1})
$i \leftarrow 1$
while $\exists w \in N(u): c(u w)=\alpha_{i} \wedge w \notin\left\{v_{1}, \ldots, v_{i-1}\right\}$ do $v_{i} \leftarrow w$
$\alpha_{i+1} \leftarrow \min$ color missing at w $i \leftarrow i+1$
return $v_{1}, \ldots, v_{i} ; \alpha_{1}, \ldots, \alpha_{i+1}$

Case 1: u misses α_{h+1}.

Minimum Edge Coloring - Recoloring

Lemma 2.

Let G be a graph with a $(\Delta+1)$-edge coloring c, let u, v be non-adjacent vertices with $\operatorname{deg}(u), \operatorname{deg}(v)<\Delta$. Then c can be changed s.t. u and v miss the same color.
Proof. Note that every vertex is missing a color.
Let u miss β and v miss α_{1}; apply the following algorithm:

VizingRecoloring(G, c, u, α_{1})
$i \leftarrow 1$
while $\exists w \in N(u): c(u w)=\alpha_{i} \wedge w \notin\left\{v_{1}, \ldots, v_{i-1}\right\}$ do $v_{i} \leftarrow w$
$\alpha_{i+1} \leftarrow \min$ color missing at w $i \leftarrow i+1$
return $v_{1}, \ldots, v_{i} ; \alpha_{1}, \ldots, \alpha_{i+1}$

Case 1: u misses α_{h+1}.

Minimum Edge Coloring - Recoloring

Lemma 2.

Let G be a graph with a $(\Delta+1)$-edge coloring c, let u, v be non-adjacent vertices with $\operatorname{deg}(u), \operatorname{deg}(v)<\Delta$. Then c can be changed s.t. u and v miss the same color.
Proof. Note that every vertex is missing a color.
Let u miss β and v miss α_{1}; apply the following algorithm:

VizingRecoloring(G, c, u, α_{1})
$i \leftarrow 1$
while $\exists w \in N(u): c(u w)=\alpha_{i} \wedge w \notin\left\{v_{1}, \ldots, v_{i-1}\right\}$ do $v_{i} \leftarrow w$
$\alpha_{i+1} \leftarrow \min$ color missing at w $i \leftarrow i+1$
return $v_{1}, \ldots, v_{i} ; \alpha_{1}, \ldots, \alpha_{i+1}$

Case 1: u misses α_{h+1}.

Minimum Edge Coloring - Recoloring

Lemma 2.

Let G be a graph with a $(\Delta+1)$-edge coloring c, let u, v be non-adjacent vertices with $\operatorname{deg}(u), \operatorname{deg}(v)<\Delta$. Then c can be changed s.t. u and v miss the same color.
Proof. Note that every vertex is missing a color.
Let u miss β and v miss α_{1}; apply the following algorithm:

VizingRecoloring(G, c, u, α_{1})
$i \leftarrow 1$
while $\exists w \in N(u): c(u w)=\alpha_{i} \wedge w \notin\left\{v_{1}, \ldots, v_{i-1}\right\}$ do $v_{i} \leftarrow w$
$\alpha_{i+1} \leftarrow \min$ color missing at w $i \leftarrow i+1$
return $v_{1}, \ldots, v_{i} ; \alpha_{1}, \ldots, \alpha_{i+1}$

Case 1: u misses α_{h+1}.

Minimum Edge Coloring - Recoloring

Lemma 2.

Let G be a graph with a $(\Delta+1)$-edge coloring c, let u, v be non-adjacent vertices with $\operatorname{deg}(u), \operatorname{deg}(v)<\Delta$. Then c can be changed s.t. u and v miss the same color.
Proof. Note that every vertex is missing a color.
Let u miss β and v miss α_{1}; apply the following algorithm:
VizingRecoloring(G, c, u, α_{1})
$i \leftarrow 1$
while $\exists w \in N(u): c(u w)=\alpha_{i} \wedge w \notin\left\{v_{1}, \ldots, v_{i-1}\right\}$ do $v_{i} \leftarrow w$
$\alpha_{i+1} \leftarrow \min$ color missing at w $i \leftarrow i+1$
return $v_{1}, \ldots, v_{i} ; \alpha_{1}, \ldots, \alpha_{i+1}$

Minimum Edge Coloring - Recoloring

Lemma 2.

Let G be a graph with a $(\Delta+1)$-edge coloring c, let u, v be non-adjacent vertices with $\operatorname{deg}(u), \operatorname{deg}(v)<\Delta$. Then c can be changed s.t. u and v miss the same color.
Proof. Note that every vertex is missing a color.
Let u miss β and v miss α_{1}; apply the following algorithm:
VizingRecoloring(G, c, u, α_{1})
$i \leftarrow 1$
while $\exists w \in N(u): c(u w)=\alpha_{i} \wedge w \notin\left\{v_{1}, \ldots, v_{i-1}\right\}$ do $v_{i} \leftarrow w$
$\alpha_{i+1} \leftarrow \min$ color missing at w $i \leftarrow i+1$
return $v_{1}, \ldots, v_{i} ; \alpha_{1}, \ldots, \alpha_{i+1}$

Minimum Edge Coloring - Recoloring

Lemma 2.

Let G be a graph with a $(\Delta+1)$-edge coloring c, let u, v be non-adjacent vertices with $\operatorname{deg}(u), \operatorname{deg}(v)<\Delta$. Then c can be changed s.t. u and v miss the same color.
Proof. Note that every vertex is missing a color.
Let u miss β and v miss α_{1}; apply the following algorithm:
VizingRecoloring(G, c, u, α_{1})
$i \leftarrow 1$
while $\exists w \in N(u): c(u w)=\alpha_{i} \wedge w \notin\left\{v_{1}, \ldots, v_{i-1}\right\}$ do $v_{i} \leftarrow w$
$\alpha_{i+1} \leftarrow \min$ color missing at w $i \leftarrow i+1$
return $v_{1}, \ldots, v_{i} ; \alpha_{1}, \ldots, \alpha_{i+1}$

Minimum Edge Coloring - Recoloring

Lemma 2.

Let G be a graph with a $(\Delta+1)$-edge coloring c, let u, v be non-adjacent vertices with $\operatorname{deg}(u), \operatorname{deg}(v)<\Delta$. Then c can be changed s.t. u and v miss the same color.
Proof. Note that every vertex is missing a color.
Let u miss β and v miss α_{1}; apply the following algorithm:
while $\exists w \in N(u): c(u w)=\alpha_{i} \wedge w \notin\left\{v_{1}, \ldots, v_{i-1}\right\}$ do

VizingRecoloring(G, c, u, α_{1})
$i \leftarrow 1$
while $\exists w \in N(u): c(u w)=\alpha_{i} \wedge w$

$$
\begin{array}{l}v_{i} \leftarrow w \\ \alpha_{i+1} \leftarrow \text { min color missing at } w\end{array}
$$

while $\exists w \in N(u): c(u w)=\alpha_{i} \wedge w$

$$
\begin{array}{l}v_{i} \leftarrow w \\ \alpha_{i+1} \leftarrow \text { min color missing at } w\end{array}
$$ $i \leftarrow i+1$

return $v_{1}, \ldots, v_{i} ; \alpha_{1}, \ldots, \alpha_{i+1}$

Case 2: $\alpha_{h+1}=\alpha_{j}, j<h$.

$$
\neg \alpha_{j+i} \quad \quad \neg \alpha_{j}
$$

$$
\vartheta_{j+1}
$$

Minimum Edge Coloring - Recoloring

Lemma 2.

Let G be a graph with a $(\Delta+1)$-edge coloring c, let u, v be non-adjacent vertices with $\operatorname{deg}(u), \operatorname{deg}(v)<\Delta$. Then c can be changed s.t. u and v miss the same color.
Proof. Note that every vertex is missing a color.
Let u miss β and v miss α_{1}; apply the following algorithm:

VizingRecoloring(G, c, u, α_{1})
$i \leftarrow 1$
while $\exists w \in N(u): c(u w)=\alpha_{i} \wedge w \notin\left\{v_{1}, \ldots, v_{i-1}\right\}$ do $v_{i} \leftarrow w$
$\alpha_{i+1} \leftarrow \min$ color missing at w $i \leftarrow i+1$
return $v_{1}, \ldots, v_{i} ; \alpha_{1}, \ldots, \alpha_{i+1}$

Minimum Edge Coloring - Recoloring

Lemma 2.

Let G be a graph with a $(\Delta+1)$-edge coloring c, let u, v be non-adjacent vertices with $\operatorname{deg}(u), \operatorname{deg}(v)<\Delta$. Then c can be changed s.t. u and v miss the same color.
Proof. Note that every vertex is missing a color.
Let u miss β and v miss α_{1}; apply the following algorithm:
VizingRecoloring(G, c, u, α_{1})
$i \leftarrow 1$
while $\exists w \in N(u): c(u w)=\alpha_{i} \wedge w \notin\left\{v_{1}, \ldots, v_{i-1}\right\}$ do $v_{i} \leftarrow w$
$\alpha_{i+1} \leftarrow \min$ color missing at w $i \leftarrow i+1$
return $v_{1}, \ldots, v_{i} ; \alpha_{1}, \ldots, \alpha_{i+1}$

Case 2: $\alpha_{h+1}=\alpha_{j}, j<h$.

$$
\neg \alpha_{j+1}, \neg \alpha_{j} \beta ? \neg \alpha_{j}
$$

Minimum Edge Coloring - Recoloring

Lemma 2.

Let G be a graph with a $(\Delta+1)$-edge coloring c, let u, v be non-adjacent vertices with $\operatorname{deg}(u), \operatorname{deg}(v)<\Delta$. Then c can be changed s.t. u and v miss the same color.
Proof. Note that every vertex is missing a color.
Let u miss β and v miss α_{1}; apply the following algorithm:
VizingRecoloring(G, c, u, α_{1})
$i \leftarrow 1$
while $\exists w \in N(u): c(u w)=\alpha_{i} \wedge w \notin\left\{v_{1}, \ldots, v_{i-1}\right\}$ do

[^0]

Minimum Edge Coloring - Recoloring

Lemma 2.

Let G be a graph with a $(\Delta+1)$-edge coloring c, let u, v be non-adjacent vertices with $\operatorname{deg}(u), \operatorname{deg}(v)<\Delta$. Then c can be changed s.t. u and v miss the same color.
Proof. Note that every vertex is missing a color.
Let u miss β and v miss α_{1}; apply the following algorithm:
VizingRecoloring(G, c, u, α_{1})
$i \leftarrow 1$
while $\exists w \in N(u): c(u w)=\alpha_{i} \wedge w \notin\left\{v_{1}, \ldots, v_{i-1}\right\}$ do
$\left\lvert\, \begin{aligned} & v_{i} \leftarrow w \\ & \alpha_{i+1} \leftarrow \min \text { color missing at } w\end{aligned}\right.$
$\left\lvert\, \begin{aligned} & v_{i} \leftarrow w \\ & \alpha_{i+1} \leftarrow \min \text { color missing at } w\end{aligned}\right.$ $i \leftarrow i+1$
return $v_{1}, \ldots, v_{i} ; \alpha_{1}, \ldots, \alpha_{i+1}$

Minimum Edge Coloring - Recoloring

Lemma 2.

Let G be a graph with a $(\Delta+1)$-edge coloring c, let u, v be non-adjacent vertices with $\operatorname{deg}(u), \operatorname{deg}(v)<\Delta$. Then c can be changed s.t. u and v miss the same color.
Proof. Note that every vertex is missing a color.
Let u miss β and v miss α_{1}; apply the following algorithm:
VizingRecoloring(G, c, u, α_{1})
$i \leftarrow 1$
while $\exists w \in N(u): c(u w)=\alpha_{i} \wedge w \notin\left\{v_{1}, \ldots, v_{i-1}\right\}$ do
$\left\lvert\, \begin{aligned} & v_{i} \leftarrow w \\ & \alpha_{i+1} \leftarrow \min \text { color missing at } w\end{aligned}\right.$
$\left\lvert\, \begin{aligned} & v_{i} \leftarrow w \\ & \alpha_{i+1} \leftarrow \min \text { color missing at } w\end{aligned}\right.$ $i \leftarrow i+1$
return $v_{1}, \ldots, v_{i} ; \alpha_{1}, \ldots, \alpha_{i+1}$

Minimum Edge Coloring - Recoloring

Lemma 2.

Let G be a graph with a $(\Delta+1)$-edge coloring c, let u, v be non-adjacent vertices with $\operatorname{deg}(u), \operatorname{deg}(v)<\Delta$. Then c can be changed s.t. u and v miss the same color.
Proof. Note that every vertex is missing a color.
Let u miss β and v miss α_{1}; apply the following algorithm:
VizingRecoloring(G, c, u, α_{1})
$i \leftarrow 1$
while $\exists w \in N(u): c(u w)=\alpha_{i} \wedge w \notin\left\{v_{1}, \ldots, v_{i-1}\right\}$ do
return $v_{1}, \ldots, v_{i} ; \alpha_{1}, \ldots, \alpha_{i+1}$
Need color for edge $u v_{j}$!

$$
\begin{aligned}
& v_{i} \leftarrow w \\
& \alpha_{i+1} \leftarrow \text { min color missing at } w \\
& i \leftarrow i+1
\end{aligned}
$$

Case 2: $\alpha_{h+1}=\alpha_{j}, j<h$.

Minimum Edge Coloring - Recoloring

Proof continued for Case 2: $\alpha_{h+1}=\alpha_{j}, j<h$, and we need to find a color for edge $u v_{j}$.

Minimum Edge Coloring - Recoloring

Proof continued for Case 2: $\alpha_{h+1}=\alpha_{j}, j<h$, and we need to find a color for edge $u v_{j}$.

■ Consider subgraph G^{\prime} of G induced by the edges of colors β and α_{j}.

Minimum Edge Coloring - Recoloring

Proof continued for Case 2: $\alpha_{h+1}=\alpha_{j}, j<h$, and we need to find a color for edge $u v_{j}$.

■ Consider subgraph G^{\prime} of G induced by the edges of colors β and α_{j}.
\square Since $\Delta\left(G^{\prime}\right) \leq 2$, we can recolor components.

Minimum Edge Coloring - Recoloring

Proof continued for Case 2: $\alpha_{h+1}=\alpha_{j}, j<h$, and we need to find a color for edge $u v_{j}$.

- Consider subgraph G^{\prime} of G induced by the edges of colors β and α_{j}.
- Since $\Delta\left(G^{\prime}\right) \leq 2$, we can recolor components.

Minimum Edge Coloring - Recoloring

Proof continued for Case 2: $\alpha_{h+1}=\alpha_{j}, j<h$, and we need to find a color for edge $u v_{j}$.
■ Consider subgraph G^{\prime} of G induced by the edges of colors β and α_{j}.

- Since $\Delta\left(G^{\prime}\right) \leq 2$, we can recolor components.

\square Nodes u, v_{j}, v_{h} are all leaves in G^{\prime}.
\Rightarrow They are not all in the same component of G^{\prime}.

Minimum Edge Coloring - Recoloring

Proof continued for Case 2: $\alpha_{h+1}=\alpha_{j}, j<h$, and we need to find a color for edge $u v_{j}$.

■ Consider subgraph G^{\prime} of G induced by the edges of colors β and α_{j}.
\square Since $\Delta\left(G^{\prime}\right) \leq 2$, we can recolor components.

\square Nodes u, v_{j}, v_{h} are all leaves in G^{\prime}. \Rightarrow They are not all in the same component of G^{\prime}.

- If u and v_{j} are not in the same component:

Minimum Edge Coloring - Recoloring

Proof continued for Case 2: $\alpha_{h+1}=\alpha_{j}, j<h$, and we need to find a color for edge $u v_{j}$.

- Consider subgraph G^{\prime} of G induced by the edges of colors β and α_{j}.
\square Since $\Delta\left(G^{\prime}\right) \leq 2$, we can recolor components.

\square Nodes u, v_{j}, v_{h} are all leaves in G^{\prime}. \Rightarrow They are not all in the same component of G^{\prime}.
- If u and v_{j} are not in the same component:

■ re-color component ending at v_{j},

Minimum Edge Coloring - Recoloring

Proof continued for Case 2: $\alpha_{h+1}=\alpha_{j}, j<h$, and we need to find a color for edge $u v_{j}$.

- Consider subgraph G^{\prime} of G induced by the edges of colors β and α_{j}.
\square Since $\Delta\left(G^{\prime}\right) \leq 2$, we can recolor components.

\square Nodes u, v_{j}, v_{h} are all leaves in G^{\prime}. \Rightarrow They are not all in the same component of G^{\prime}.
■ If u and v_{j} are not in the same component:
- re-color component ending at v_{j},
$\square v_{j}$ now misses β; color $u v_{j}$ with β.

Minimum Edge Coloring - Recoloring

Proof continued for Case 2: $\alpha_{h+1}=\alpha_{j}, j<h$, and we need to find a color for edge $u v_{j}$.

- Consider subgraph G^{\prime} of G induced by the edges of colors β and α_{j}.
\square Since $\Delta\left(G^{\prime}\right) \leq 2$, we can recolor components.

$$
\neg \beta \cdot \alpha_{j} \underbrace{\beta} \alpha_{j} \beta_{0}^{\beta} \alpha_{j}
$$

- Nodes u, v_{j}, v_{h} are all leaves in G^{\prime}. \Rightarrow They are not all in the same component of G^{\prime}.
- If u and v_{j} are not in the same component:
- re-color component ending at v_{j},
- v_{j} now misses β; color $u v_{j}$ with β.
\square What if u and v_{j} are in the same component?

Minimum Edge Coloring - Recoloring

Proof continued for Case 2: $\alpha_{h+1}=\alpha_{j}, j<h$, and we need to find a color for edge $u v_{j}$.

- Consider subgraph G^{\prime} of G induced by the edges of colors β and α_{j}.
\square Since $\Delta\left(G^{\prime}\right) \leq 2$, we can recolor components.
$\neg \dot{\beta}^{\circ} \alpha_{j} \underbrace{\beta} \alpha_{j}^{\beta}{ }_{0}^{\beta} \alpha_{j}$
- Nodes u, v_{j}, v_{h} are all leaves in G^{\prime}. \Rightarrow They are not all in the same component of G^{\prime}.
- If u and v_{j} are not in the same component:
- re-color component ending at v_{j},
$\square v_{j}$ now misses β; color $u v_{j}$ with β.
\square What if u and v_{j} are in the same component?
\square re-color component ending at v_{h} if there is $\beta \quad \beta$?

Minimum Edge Coloring - Recoloring

Proof continued for Case 2: $\alpha_{h+1}=\alpha_{j}, j<h$,
and we need to find a color for edge $u v_{j}$.

- Consider subgraph G^{\prime} of G induced by the edges of colors β and α_{j}.
\square Since $\Delta\left(G^{\prime}\right) \leq 2$, we can recolor components.
$\neg \dot{\beta}^{\circ} \alpha_{j} \underbrace{\beta} \alpha_{j}^{\beta}{ }_{0}^{\beta} \alpha_{j}$
- Nodes u, v_{j}, v_{h} are all leaves in G^{\prime}. \Rightarrow They are not all in the same component of G^{\prime}.
- If u and v_{j} are not in the same component:
- re-color component ending at v_{j},
$\square v_{j}$ now misses β; color $u v_{j}$ with β.
\square What if u and v_{j} are in the same component?
\square re-color component ending at v_{h} if there is β

Minimum Edge Coloring - Recoloring

Proof continued for Case 2: $\alpha_{h+1}=\alpha_{j}, j<h$, and we need to find a color for edge $u v_{j}$.

- Consider subgraph G^{\prime} of G induced by the edges of colors β and α_{j}.
\square Since $\Delta\left(G^{\prime}\right) \leq 2$, we can recolor components.
$\neg \dot{\beta} \cdot \alpha_{j} \underbrace{\beta} \alpha_{j}^{\beta}{ }_{0}^{\beta} \alpha_{j}$
- Nodes u, v_{j}, v_{h} are all leaves in G^{\prime}. \Rightarrow They are not all in the same component of G^{\prime}.
- If u and v_{j} are not in the same component:
- re-color component ending at v_{j},
$\square v_{j}$ now misses β; color $u v_{j}$ with β.
\square What if u and v_{j} are in the same component?
\square re-color component ending at v_{h} if there is β
■ color $u v_{h}$ with β;

Minimum Edge Coloring - Recoloring

Proof continued for Case 2: $\alpha_{h+1}=\alpha_{j}, j<h$,
and we need to find a color for edge $u v_{j}$.

- Consider subgraph G^{\prime} of G induced by the edges of colors β and α_{j}.
- Since $\Delta\left(G^{\prime}\right) \leq 2$, we can recolor components.
$\neg \tilde{\beta} \cdot \alpha_{j} \underbrace{\beta}_{\alpha_{j}}{ }_{0}^{\beta} \alpha_{j}$
- Nodes u, v_{j}, v_{h} are all leaves in G^{\prime}. \Rightarrow They are not all in the same component of G^{\prime}.
- If u and v_{j} are not in the same component:
- re-color component ending at v_{j},
$\square v_{j}$ now misses β; color $u v_{j}$ with β.
\square What if u and v_{j} are in the same component?
\square re-color component ending at v_{h} if there is β
\square color $u v_{h}$ with β; color $u v_{j}$ with α_{j+1} and so on

Minimum Edge Coloring - Recoloring

Proof continued for Case 2: $\alpha_{h+1}=\alpha_{j}, j<h$,
and we need to find a color for edge $u v_{j}$.

- Consider subgraph G^{\prime} of G induced by the edges of colors β and α_{j}.
\square Since $\Delta\left(G^{\prime}\right) \leq 2$, we can recolor components.
$\neg \tilde{\beta} \cdot \alpha_{j} \underbrace{\beta}_{\alpha_{j}}{ }_{0}^{\beta} \alpha_{j}$
- Nodes u, v_{j}, v_{h} are all leaves in G^{\prime}. \Rightarrow They are not all in the same component of G^{\prime}.
- If u and v_{j} are not in the same component:
- re-color component ending at v_{j},
$\square v_{j}$ now misses β; color $u v_{j}$ with β.
\square What if u and v_{j} are in the same component?
\square re-color component ending at v_{h} if there is β
\square color $u v_{h}$ with β; color $u v_{j}$ with α_{j+1} and so on

Minimum Edge Coloring - Algorithm

VizingEdgeColoring(graph G, coloring $c \equiv 0$)
if $E(G) \neq \varnothing$ then
Let $e=u v$ be an arbitrary edge of G.
$G_{e} \leftarrow G-e$
VizingEdgeColoring $\left(G_{e}, c\right)$ if $\Delta\left(G_{e}\right)<\Delta(G)$ then

Color e with lowest free color.
else
Recolor G_{e} as in Lemma 2.
Color e with color now missing at u and v.

Minimum Edge Coloring - Algorithm

VizingEdgeColoring(graph G, coloring $c \equiv 0$)

if $E(G) \neq \varnothing$ then

Let $e=u v$ be an arbitrary edge of G. $G_{e} \leftarrow G-e$ VizingEdgeColoring $\left(G_{e}, c\right)$ if $\Delta\left(G_{e}\right)<\Delta(G)$ then

Color e with lowest free color. else

Recolor G_{e} as in Lemma 2. Color e with color now missing at u and v.

Theorem 4.

VizingEdgeColoring is an approximation algorithm with additive approximation guarantee $\operatorname{ALG}(G)-\operatorname{OPT}(G) \leq 1$.

Approximation with Relative Factor

- An additive approximation guarantee can rarely be achieved; but sometimes, there is a multiplicative approximation!

Approximation with Relative Factor

- An additive approximation guarantee can rarely be achieved; but sometimes, there is a multiplicative approximation!

Definition.

Let Π be a minimization problem, and let $\alpha \in \mathbb{Q}^{+}$.
A factor- α approximation algorithm for Π is a polynomial-time algorithm \mathcal{A} that computes, for every instance I of Π, a solution of value $\operatorname{ALG}(I)$ such that

$$
\frac{\operatorname{ALG}(I)}{\mathrm{OPT}(I)} \leq \alpha
$$

We call α the approximation factor of \mathcal{A}.

Approximation with Relative Factor

- An additive approximation guarantee can rarely be achieved; but sometimes, there is a multiplicative approximation!

Definition.
Let Π be a minimization problem, and let $\alpha \in \mathbb{Q}^{+}$.
A factor- α approximation algorithm for Π is a polynomial-time algorithm \mathcal{A} that computes, for every instance I of Π, a solution of value $\operatorname{ALG}(I)$ such that

$$
\frac{\operatorname{ALG}(I)}{\mathrm{OPT}(I)} \geq \alpha
$$

We call α the approximation factor of \mathcal{A}.

2-Approximation for Metric TSP (from AGT)

Input. Complete graph $G=(V, E)$ and a distance function $d: E \rightarrow \mathbb{R}_{\geq 0}$ that satisfies the triangle inequality, i.e., $\forall u, v, w \in V: d(u, w) \leq d(u, v)+d(v, w)$.

2-Approximation for Metric TSP (from AGT)

Input. Complete graph $G=(V, E)$ and a distance function $d: E \rightarrow \mathbb{R}_{\geq 0}$ that satisfies the triangle inequality, i.e., $\forall u, v, z \in V: d(u, w) \leq d(u, v)+d(v, w)$.

Output. A shortest Hamiltonian cycle in G.

2-Approximation for Metric TSP (from AGT)

Input. Complete graph $G=(V, E)$ and a distance function $d: E \rightarrow \mathbb{R}_{\geq 0}$ that satisfies the triangle inequality, i.e., $\forall u, v, z \in V: d(u, w) \leq d(u, v)+d(v, w)$.

Output. A shortest Hamiltonian cycle in G.
Algorithm.

2-Approximation for Metric TSP (from AGT)

Input. Complete graph $G=(V, E)$ and a distance function $d: E \rightarrow \mathbb{R}_{\geq 0}$ that satisfies the triangle inequality, i.e., $\forall u, v, z \in V: d(u, w) \leq d(u, v)+d(v, w)$.

Output. A shortest Hamiltonian cycle in G.
Algorithm.

2-Approximation for Metric TSP (from AGT)

Input. Complete graph $G=(V, E)$ and a distance function $d: E \rightarrow \mathbb{R}_{\geq 0}$ that satisfies the triangle inequality, i.e., $\forall u, v, z \in V: d(u, w) \leq d(u, v)+d(v, w)$.

Output. A shortest Hamiltonian cycle in G.
Algorithm.
■ Compute MST.

2-Approximation for Metric TSP (from AGT)

Input. Complete graph $G=(V, E)$ and a distance function $d: E \rightarrow \mathbb{R}_{\geq 0}$ that satisfies the triangle inequality, i.e., $\forall u, v, z \in V: d(u, w) \leq d(u, v)+d(v, w)$.

Output. A shortest Hamiltonian cycle in G.

Algorithm.

■ Compute MST.

2-Approximation for Metric TSP (from AGT)

Input. Complete graph $G=(V, E)$ and a distance function $d: E \rightarrow \mathbb{R}_{\geq 0}$ that satisfies the triangle inequality, i.e., $\forall u, v, z \in V: d(u, w) \leq d(u, v)+d(v, w)$.

Output. A shortest Hamiltonian cycle in G.
Algorithm.

- Compute MST.
- Double edges. \Rightarrow Eulerian cycle

2-Approximation for Metric TSP (from AGT)

Input. Complete graph $G=(V, E)$ and a distance function $d: E \rightarrow \mathbb{R}_{\geq 0}$ that satisfies the triangle inequality, i.e., $\forall u, v, z \in V: d(u, w) \leq d(u, v)+d(v, w)$.

Output. A shortest Hamiltonian cycle in G.

Algorithm.

- Compute MST.
\square Double edges.
\Rightarrow Eulerian cycle
■ Walk along Eulerian cycle,

2-Approximation for Metric TSP (from AGT)

Input. Complete graph $G=(V, E)$ and a distance function $d: E \rightarrow \mathbb{R}_{\geq 0}$ that satisfies the triangle inequality, i.e., $\forall u, v, z \in V: d(u, w) \leq d(u, v)+d(v, w)$.

Output. A shortest Hamiltonian cycle in G.

Algorithm.

- Compute MST.
- Double edges.
\Rightarrow Eulerian cycle
■ Walk along Eulerian cycle,

2-Approximation for Metric TSP (from AGT)

Input. Complete graph $G=(V, E)$ and a distance function $d: E \rightarrow \mathbb{R}_{\geq 0}$ that satisfies the triangle inequality, i.e., $\forall u, v, z \in V: d(u, w) \leq d(u, v)+d(v, w)$.

Output. A shortest Hamiltonian cycle in G.

Algorithm.

- Compute MST.
- Double edges.
\Rightarrow Eulerian cycle
■ Walk along Eulerian cycle,

2-Approximation for Metric TSP (from AGT)

Input. Complete graph $G=(V, E)$ and a distance function $d: E \rightarrow \mathbb{R}_{\geq 0}$ that satisfies the triangle inequality, i.e., $\forall u, v, z \in V: d(u, w) \leq d(u, v)+d(v, w)$.

Output. A shortest Hamiltonian cycle in G.

Algorithm.

- Compute MST.
- Double edges.
\Rightarrow Eulerian cycle
■ Walk along Eulerian cycle,

2-Approximation for Metric TSP (from AGT)

Input. Complete graph $G=(V, E)$ and a distance function $d: E \rightarrow \mathbb{R}_{\geq 0}$ that satisfies the triangle inequality, i.e., $\forall u, v, z \in V: d(u, w) \leq d(u, v)+d(v, w)$.

Output. A shortest Hamiltonian cycle in G.
Algorithm.

- Compute MST.
- Double edges.
\Rightarrow Eulerian cycle
■ Walk along Eulerian cycle,
■ skipping visited vertices

2-Approximation for Metric TSP (from AGT)

Input. Complete graph $G=(V, E)$ and a distance function $d: E \rightarrow \mathbb{R}_{\geq 0}$ that satisfies the triangle inequality, i.e., $\forall u, v, z \in V: d(u, w) \leq d(u, v)+d(v, w)$.

Output. A shortest Hamiltonian cycle in G.
Algorithm.

- Compute MST.
- Double edges.
\Rightarrow Eulerian cycle
■ Walk along Eulerian cycle,
■ skipping visited vertices

2-Approximation for Metric TSP (from AGT)

Input. Complete graph $G=(V, E)$ and a distance function $d: E \rightarrow \mathbb{R}_{\geq 0}$ that satisfies the triangle inequality, i.e., $\forall u, v, z \in V: d(u, w) \leq d(u, v)+d(v, w)$.

Output. A shortest Hamiltonian cycle in G.
Algorithm.

- Compute MST.
- Double edges. \Rightarrow Eulerian cycle
■ Walk along Eulerian cycle,
■ skipping visited vertices
■ and adding shortcuts.

2-Approximation for Metric TSP (from AGT)

Input. Complete graph $G=(V, E)$ and a distance function $d: E \rightarrow \mathbb{R}_{\geq 0}$ that satisfies the triangle inequality, i.e., $\forall u, v, z \in V: d(u, w) \leq d(u, v)+d(v, w)$.

Output. A shortest Hamiltonian cycle in G.
Algorithm.

- Compute MST.
- Double edges. \Rightarrow Eulerian cycle
■ Walk along Eulerian cycle,
■ skipping visited vertices
■ and adding shortcuts.

2-Approximation for Metric TSP (from AGT)

Input. Complete graph $G=(V, E)$ and a distance function $d: E \rightarrow \mathbb{R}_{\geq 0}$ that satisfies the triangle inequality, i.e., $\forall u, v, z \in V: d(u, w) \leq d(u, v)+d(v, w)$.

Output. A shortest Hamiltonian cycle in G.
Algorithm.

- Compute MST.
- Double edges.
\Rightarrow Eulerian cycle
■ Walk along Eulerian cycle,
■ skipping visited vertices
■ and adding shortcuts.

2-Approximation for Metric TSP (from AGT)

Input. Complete graph $G=(V, E)$ and a distance function $d: E \rightarrow \mathbb{R}_{\geq 0}$ that satisfies the triangle inequality, i.e., $\forall u, v, z \in V: d(u, w) \leq d(u, v)+d(v, w)$.

Output. A shortest Hamiltonian cycle in G.
Algorithm.

- Compute MST.
- Double edges. \Rightarrow Eulerian cycle
■ Walk along Eulerian cycle,
■ skipping visited vertices
■ and adding shortcuts.

2-Approximation for Metric TSP (from AGT)

Input. Complete graph $G=(V, E)$ and a distance function $d: E \rightarrow \mathbb{R}_{\geq 0}$ that satisfies the triangle inequality, i.e., $\forall u, v, z \in V: d(u, w) \leq d(u, v)+d(v, w)$.

Output. A shortest Hamiltonian cycle in G.

Algorithm.

- Compute MST.
- Double edges. \Rightarrow Eulerian cycle
■ Walk along Eulerian cycle,
■ skipping visited vertices
■ and adding shortcuts.

2-Approximation for Metric TSP (from AGT)

Input. Complete graph $G=(V, E)$ and a distance function $d: E \rightarrow \mathbb{R}_{\geq 0}$ that satisfies the triangle inequality, i.e., $\forall u, v, z \in V: d(u, w) \leq d(u, v)+d(v, w)$.

\sim_{w}^{u}

Output. A shortest Hamiltonian cycle in G.

Algorithm.

- Compute MST.
- Double edges. \Rightarrow Eulerian cycle
■ Walk along Eulerian cycle,
■ skipping visited vertices
■ and adding shortcuts.

2-Approximation for Metric TSP (from AGT)

Input. Complete graph $G=(V, E)$ and a distance function $d: E \rightarrow \mathbb{R}_{\geq 0}$ that satisfies the triangle inequality, i.e., $\forall u, v, w \in V: d(u, w) \leq d(u, v)+d(v, w)$.

Output. A shortest Hamiltonian cycle in G.

Algorithm.

- Compute MST.
- Double edges. \Rightarrow Eulerian cycle
■ Walk along Eulerian cycle,
■ skipping visited vertices
■ and adding shortcuts.

Theorem 5.

The MST edge doubling algorithm is a 2 -approximation algorithm for metric TSP.

2-Approximation for Metric TSP (from AGT)

Input. Complete graph $G=(V, E)$ and a distance function $d: E \rightarrow \mathbb{R}_{\geq 0}$ that satisfies the triangle inequality, i.e., $\forall u, v, w \in V: d(u, w) \leq d(u, v)+d(v, w)$.

Output. A shortest Hamiltonian cycle in G.

Algorithm.

- Compute MST.
- Double edges. \Rightarrow Eulerian cycle
■ Walk along Eulerian cycle,
■ skipping visited vertices
■ and adding shortcuts.

Theorem 5.

The MST edge doubling algorithm is a 2 -approximation algorithm for metric TSP.
Proof.
$\mathrm{ALG} \leq d($ cycle $)=2 d(\mathrm{MST}) \leq 2 \mathrm{OPT}$.

Nearest Addition Algorithm for Metric TSP

NearestAdditionAlgorithm $(G=(V, E), d)$
Find closest pair, say i and k.
Set tour T to go from i to k to i (clockwise). while $T \subsetneq V$ do

Find pair $(i, j) \in T \times(V \backslash T)$ minimizing $d(i, j)$.
Let k be vertex after i in T.
Add j between i and k.

Nearest Addition Algorithm for Metric TSP

NearestAdditionAlgorithm $(G=(V, E), d)$
Find closest pair, say i and k.
Set tour T to go from i to k to i (clockwise). while $T \subsetneq V$ do

Find pair $(i, j) \in T \times(V \backslash T)$ minimizing $d(i, j)$.
Let k be vertex after i in T.
Add j between i and k.

Nearest Addition Algorithm for Metric TSP

NearestAdditionAlgorithm $(G=(V, E), d)$
Find closest pair, say i and k. Set tour T to go from i to k to i (clockwise). while $T \subsetneq V$ do

Find pair $(i, j) \in T \times(V \backslash T)$ minimizing $d(i, j)$. Let k be vertex after i in T.
Add j between i and k.

Nearest Addition Algorithm for Metric TSP

NearestAdditionAlgorithm $(G=(V, E), d)$
Find closest pair, say i and k.
Set tour T to go from i to k to i (clockwise). while $T \subsetneq V$ do

Find pair $(i, j) \in T \times(V \backslash T)$ minimizing $d(i, j)$. Let k be vertex after i in T.
Add j between i and k.

Nearest Addition Algorithm for Metric TSP

NearestAdditionAlgorithm $(G=(V, E), d)$
Find closest pair, say i and k.
Set tour T to go from i to k to i (clockwise). while $T \subsetneq V$ do

Find pair $(i, j) \in T \times(V \backslash T)$ minimizing $d(i, j)$.
 Let k be vertex after i in T.
Add j between i and k.

Nearest Addition Algorithm for Metric TSP

NearestAdditionAlgorithm $(G=(V, E), d)$
Find closest pair, say i and k.
Set tour T to go from i to k to i (clockwise). while $T \subsetneq V$ do

Find pair $(i, j) \in T \times(V \backslash T)$ minimizing $d(i, j)$. Let k be vertex after i in T.
Add j between i and k.

Nearest Addition Algorithm for Metric TSP

NearestAdditionAlgorithm $(G=(V, E), d)$
Find closest pair, say i and k.
Set tour T to go from i to k to i (clockwise). while $T \subsetneq V$ do

Find pair $(i, j) \in T \times(V \backslash T)$ minimizing $d(i, j)$. Let k be vertex after i in T.
Add j between i and k.

Nearest Addition Algorithm for Metric TSP

NearestAdditionAlgorithm $(G=(V, E), d)$
Find closest pair, say i and k.
Set tour T to go from i to k to i (clockwise). while $T \subsetneq V$ do

Find pair $(i, j) \in T \times(V \backslash T)$ minimizing $d(i, j)$.
 Let k be vertex after i in T.
Add j between i and k.

Nearest Addition Algorithm for Metric TSP

NearestAdditionAlgorithm $(G=(V, E), d)$
Find closest pair, say i and k.
Set tour T to go from i to k to i (clockwise). while $T \subsetneq V$ do

Find pair $(i, j) \in T \times(V \backslash T)$ minimizing $d(i, j)$. Let k be vertex after i in T.

Add j between i and k.

Nearest Addition Algorithm for Metric TSP

NearestAdditionAlgorithm $(G=(V, E), d)$
Find closest pair, say i and k.
Set tour T to go from i to k to i (clockwise). while $T \subsetneq V$ do

Find pair $(i, j) \in T \times(V \backslash T)$ minimizing $d(i, j)$.
Let k be vertex after i in T.

Add j between i and k.

Nearest Addition Algorithm for Metric TSP

NearestAdditionAlgorithm $(G=(V, E), d)$
Find closest pair, say i and k.
Set tour T to go from i to k to i (clockwise). while $T \subsetneq V$ do

Find pair $(i, j) \in T \times(V \backslash T)$ minimizing $d(i, j)$. Let k be vertex after i in T. Add j between i and k.

Theorem 6.

NearestAdditionAlgorithm is a 2-approximation algorithm for metric TSP.

Nearest Addition Algorithm for Metric TSP

NearestAdditionAlgorithm $(G=(V, E), d)$
Find closest pair, say i and k.
Set tour T to go from i to k to i (clockwise). while $T \subsetneq V$ do

Find pair $(i, j) \in T \times(V \backslash T)$ minimizing $d(i, j)$. Let k be vertex after i in T.
 Add j between i and k.

Theorem 6.
 NearestAdditionAlgorithm is a 2-approximation algorithm for metric TSP.

Proof.

- Exercise.
- Hints: MST and Prim's algorithm.

Approximation Schemes

■ In some cases, we can get arbitrarily good approximations.

Approximation Schemes

■ In some cases, we can get arbitrarily good approximations.

Definition.

Let Π be a minimization problem. An algorithm \mathcal{A} is called a polynomial-time approximation scheme (PTAS) if \mathcal{A} computes, for every input (I, ε) (consisting of an instance I of Π and a real $\varepsilon>0$), a value $\operatorname{ALG}(I)$ such that:

■ $\operatorname{ALG}(I) \leq(1+\varepsilon) \cdot \operatorname{OPT}(I)$, and

- the runtime of \mathcal{A} is polynomial in $|I|$ for every $\varepsilon>0$.

Approximation Schemes

■ In some cases, we can get arbitrarily good approximations.

Definition.

Let Π be a minimization problem. An algorithm \mathcal{A} is called a polynomial-time approximation scheme (PTAS) if \mathcal{A} computes, for every input (I, ε) (consisting of an instance I of Π and a real $\varepsilon>0$), a value $\operatorname{ALG}(I)$ such that:
$\geq(1-\varepsilon)$
■ $\operatorname{ALG}(I) \leq(1+\varepsilon) \cdot \operatorname{OPT}(I)$, and

- the runtime of \mathcal{A} is polynomial in $|I|$ for every $\varepsilon>0$.

Approximation Schemes

■ In some cases, we can get arbitrarily good approximations.

Definition.

Let Π be a minimization problem. An algorithm \mathcal{A} is called a polynomial-time approximation scheme (PTAS) if \mathcal{A} computes, for every input (I, ε) (consisting of an instance I of Π and a real $\varepsilon>0$), a value $\operatorname{ALG}(I)$ such that:
$\geq(1-\varepsilon)$

- $\operatorname{ALG}(I) \leq(1+\varepsilon) \cdot \mathrm{OPT}(I)$, and
- the runtime of \mathcal{A} is polynomial in $|I|$ for every $\varepsilon>0$.
\mathcal{A} is called a fully polynomial-time approximation scheme (FPTAS) if it runs in time polynomial in $|I|$ and $1 / \varepsilon$.

Approximation Schemes

■ In some cases, we can get arbitrarily good approximations.

Definition.

Let Π be a minimization problem. An algorithm \mathcal{A} is called a polynomial-time approximation scheme (PTAS) if \mathcal{A} computes, for every input (I, ε) (consisting of an instance I of Π and a real $\varepsilon>0$), a value $\operatorname{ALG}(I)$ such that:
$\geq(1-\varepsilon)$

- $\operatorname{ALG}(I) \leq(1+\varepsilon) \cdot \mathrm{OPT}(I)$, and

■ the runtime of \mathcal{A} is polynomial in $|I|$ for every $\varepsilon>0$.

Examples.
\mathcal{A} is called a fully polynomial-time approximation scheme - $\mathcal{O}\left(2^{\frac{n}{\varepsilon}}\right) \Rightarrow$

- $\mathcal{O}\left(n^{2} \cdot 3^{\frac{1}{\varepsilon}}\right) \Rightarrow$
$■ \mathcal{O}\left(n^{2}+n^{\frac{1}{\varepsilon}}\right) \Rightarrow$
■ $\mathcal{O}\left(n^{4} \cdot\left(\frac{1}{\varepsilon}\right)^{2}\right) \Rightarrow$

Approximation Schemes

■ In some cases, we can get arbitrarily good approximations.

Definition.

Let Π be a minimization problem. An algorithm \mathcal{A} is called a polynomial-time approximation scheme (PTAS) if \mathcal{A} computes, for every input (I, ε) (consisting of an instance I of Π and a real $\varepsilon>0$), a value $\operatorname{ALG}(I)$ such that:
$\geq(1-\varepsilon)$

- $\operatorname{ALG}(I) \leq(1+\varepsilon) \cdot \mathrm{OPT}(I)$, and
- the runtime of \mathcal{A} is polynomial in $|I|$ for every $\varepsilon>0$.
\mathcal{A} is called a fully polynomial-time approximation scheme
Examples. (FPTAS) if it runs in time polynomial in $|I|$ and $1 / \varepsilon$.
- $\mathcal{O}\left(2^{\frac{n}{\varepsilon}}\right) \Rightarrow$ no PTAS
- $\mathcal{O}\left(n^{2} \cdot 3^{\frac{1}{\varepsilon}}\right) \Rightarrow$

■ $\mathcal{O}\left(n^{2}+n^{\frac{1}{\varepsilon}}\right) \Rightarrow$
■ $\mathcal{O}\left(n^{4} \cdot\left(\frac{1}{\varepsilon}\right)^{2}\right) \Rightarrow$

Approximation Schemes

■ In some cases, we can get arbitrarily good approximations.

Definition.

Let Π be a minimization problem. An algorithm \mathcal{A} is called a polynomial-time approximation scheme (PTAS) if \mathcal{A} computes, for every input (I, ε) (consisting of an instance I of Π and a real $\varepsilon>0$), a value $\operatorname{ALG}(I)$ such that:
$\geq(1-\varepsilon)$

- $\operatorname{ALG}(I) \leq(1+\varepsilon) \cdot \operatorname{OPT}(I)$, and
- the runtime of \mathcal{A} is polynomial in $|I|$ for every $\varepsilon>0$.
\mathcal{A} is called a fully polynomial-time approximation scheme
Examples. (FPTAS) if it runs in time polynomial in $|I|$ and $1 / \varepsilon$.
- $\mathcal{O}\left(2^{\frac{n}{\varepsilon}}\right) \Rightarrow$ no PTAS
- $\mathcal{O}\left(n^{2} \cdot 3^{\frac{1}{\varepsilon}}\right) \Rightarrow$

■ $\mathcal{O}\left(n^{2}+n^{\frac{1}{\varepsilon}}\right) \Rightarrow$ PTAS but no FPTAS
■ $\mathcal{O}\left(n^{4} \cdot\left(\frac{1}{\varepsilon}\right)^{2}\right) \Rightarrow$

Approximation Schemes

■ In some cases, we can get arbitrarily good approximations.

Definition.

Let Π be a minimization problem. An algorithm \mathcal{A} is called a polynomial-time approximation scheme (PTAS) if \mathcal{A} computes, for every input (I, ε) (consisting of an instance I of Π and a real $\varepsilon>0$), a value $\operatorname{ALG}(I)$ such that:
$\geq(1-\varepsilon)$
■ $\operatorname{ALG}(I) \leq(1+\varepsilon) \cdot \operatorname{OPT}(I)$, and

- the runtime of \mathcal{A} is polynomial in $|I|$ for every $\varepsilon>0$.

Examples.
\mathcal{A} is called a fully polynomial-time approximation scheme

- $\mathcal{O}\left(2^{\frac{n}{\varepsilon}}\right) \Rightarrow$ no PTAS
- $\mathcal{O}\left(n^{2} \cdot 3^{\frac{1}{\varepsilon}}\right) \Rightarrow$ PTAS but no FPTAS

■ $\mathcal{O}\left(n^{2}+n^{\frac{1}{\varepsilon}}\right) \Rightarrow$ PTAS but no FPTAS
■ $\mathcal{O}\left(n^{4} \cdot\left(\frac{1}{\varepsilon}\right)^{2}\right) \Rightarrow$

Approximation Schemes

■ In some cases, we can get arbitrarily good approximations.

Definition.

Let Π be a minimization problem. An algorithm \mathcal{A} is called a polynomial-time approximation scheme (PTAS) if \mathcal{A} computes, for every input (I, ε) (consisting of an instance I of Π and a real $\varepsilon>0$), a value $\operatorname{ALG}(I)$ such that:
$\geq(1-\varepsilon)$
■ $\operatorname{ALG}(I) \leq(1+\varepsilon) \cdot \operatorname{OPT}(I)$, and
■ the runtime of \mathcal{A} is polynomial in $|I|$ for every $\varepsilon>0$.

Examples.
\mathcal{A} is called a fully polynomial-time approximation scheme

- $\mathcal{O}\left(2^{\frac{n}{\varepsilon}}\right) \Rightarrow$ no PTAS
- $\mathcal{O}\left(n^{2} \cdot 3^{\frac{1}{\varepsilon}}\right) \Rightarrow$ PTAS but no FPTAS
$■ \mathcal{O}\left(n^{2}+n^{\frac{1}{\varepsilon}}\right) \Rightarrow$ PTAS but no FPTAS
- $\mathcal{O}\left(n^{4} \cdot\left(\frac{1}{\varepsilon}\right)^{2}\right) \Rightarrow$ FPTAS

Multiprocessor Scheduling

Input. $\square n$ jobs J_{1}, \ldots, J_{n} with durations p_{1}, \ldots, p_{n}.

- m identical machines $(m<n)$

Multiprocessor Scheduling

Input. $\square n$ jobs J_{1}, \ldots, J_{n} with durations p_{1}, \ldots, p_{n}.

■ m identical machines $(m<n)$

Output. Assignment of jobs to machines such that the time when all jobs have been processed is minimum.
This is called the makespan of the assignment.

Multiprocessor Scheduling

Input. $\square n$ jobs J_{1}, \ldots, J_{n} with durations p_{1}, \ldots, p_{n}.

- m identical machines $(m<n)$

Output. Assignment of jobs to machines such that the time when all jobs have been processed is minimum.
This is called the makespan of the assignment.

Multiprocessor Scheduling

Input. $\square n$ jobs J_{1}, \ldots, J_{n} with

- m identical machines $(m<n)$ durations p_{1}, \ldots, p_{n}.

Output. Assignment of jobs to machines such that the time when all jobs have been processed is minimum.
This is called the makespan of the assignment.

Multiprocessor Scheduling

Input.
$\square n$ jobs J_{1}, \ldots, J_{n} with durations p_{1}, \ldots, p_{n}.

■ m identical machines $(m<n)$

Output. Assignment of jobs to machines such that the time when all jobs have been processed is minimum.
This is called the makespan of the assignment.
■ Multiprocessor scheduling is NP-hard.

Multiprocessor Scheduling - List Scheduling

$\operatorname{ListScheduling}\left(J_{1}, \ldots, J_{n}, m\right)$
Put the first m jobs on the m machines.
Put the next job on the first free machine.

Example.

Multiprocessor Scheduling - List Scheduling

$\operatorname{ListScheduling}\left(J_{1}, \ldots, J_{n}, m\right)$
Put the first m jobs on the m machines.
Put the next job on the first free machine.

Example.

Multiprocessor Scheduling - List Scheduling

$\operatorname{ListScheduling}\left(J_{1}, \ldots, J_{n}, m\right)$
Put the first m jobs on the m machines.
Put the next job on the first free machine.

Example.

Multiprocessor Scheduling - List Scheduling

$\operatorname{ListScheduling}\left(J_{1}, \ldots, J_{n}, m\right)$
Put the first m jobs on the m machines.
Put the next job on the first free machine.

Example.

Multiprocessor Scheduling - List Scheduling

$\operatorname{ListScheduling}\left(J_{1}, \ldots, J_{n}, m\right)$
Put the first m jobs on the m machines.
Put the next job on the first free machine.

Example.

Multiprocessor Scheduling - List Scheduling

$\operatorname{ListScheduling}\left(J_{1}, \ldots, J_{n}, m\right)$
Put the first m jobs on the m machines.
Put the next job on the first free machine.

Example.

- ListScheduling runs in
time.

Multiprocessor Scheduling - List Scheduling

$\operatorname{ListScheduling}\left(J_{1}, \ldots, J_{n}, m\right)$
Put the first m jobs on the m machines.
Put the next job on the first free machine.

Example.

\square ListScheduling runs in $\mathcal{O}(n \log m)$ time.

Multiprocessor Scheduling - List Scheduling

$\operatorname{ListScheduling}\left(J_{1}, \ldots, J_{n}, m\right)$
Put the first m jobs on the m machines.
Put the next job on the first free machine.

Example.

- ListScheduling runs in $\mathcal{O}(n \log m)$ time.

Iterate over n jobs while maintaining a priority queue for the machines where each machine has its current completion time as its priority.

Multiprocessor Scheduling - List Scheduling

$\operatorname{ListScheduling}\left(J_{1}, \ldots, J_{n}, m\right)$
Put the first m jobs on the m machines.
Put the next job on the first free machine.

Example.

- ListScheduling runs in $\mathcal{O}(n \log m)$ time.

Iterate over n jobs while maintaining a priority queue for the machines where each machine has its current completion time as its priority.

Multiprocessor Scheduling - List Scheduling

$\operatorname{ListScheduling}\left(J_{1}, \ldots, J_{n}, m\right)$
Put the first m jobs on the m machines.
Put the next job on the first free machine.

Example.

- ListScheduling runs in $\mathcal{O}(n \log m)$ time.

Iterate over n jobs while maintaining a priority queue for the machines where each machine has its current completion time as its priority.

Multiprocessor Scheduling - List Scheduling (Proof)

$\operatorname{ListSChEDULING}\left(J_{1}, \ldots, J_{n}, m\right)$

Put the first m jobs on the m machines.
Put the next job on the first free machine.

Theorem 7.
ListScheduling is a $\left(2-\frac{1}{m}\right)$-approximation alg.

Proof. Let $J_{k}=\left(S_{k}, T_{k}\right)$ be the last job, that is, T_{k} determines the makespan.

Multiprocessor Scheduling - List Scheduling (Proof)

$\operatorname{ListSChEDULING}\left(J_{1}, \ldots, J_{n}, m\right)$
Put the first m jobs on the m machines.
Put the next job on the first free machine.

Theorem 7.
ListScheduling is a $\left(2-\frac{1}{m}\right)$-approximation alg.

Proof. Let $J_{k}=\left(S_{k}, T_{k}\right)$ be the last job, that is, T_{k} determines the makespan.
■ No machine idles at time S_{k}.

$$
S_{k} \leq \frac{1}{m} \sum_{i \neq k} p_{i} \begin{aligned}
& \text { weight of all jobs but } J_{k} \\
& \text { evenly distributed on } m \text { machines }
\end{aligned}
$$

Multiprocessor Scheduling - List Scheduling (Proof)

$\operatorname{ListSChedULING}\left(J_{1}, \ldots, J_{n}, m\right)$
Put the first m jobs on the m machines.
Put the next job on the first free machine.

Theorem 7.
ListScheduling is a $\left(2-\frac{1}{m}\right)$-approximation alg.

Proof. Let $J_{k}=\left(S_{k}, T_{k}\right)$ be the last job, that is, T_{k} determines the makespan.

- No machine idles at time S_{k}.

$$
S_{k} \leq \frac{1}{m} \sum_{i \neq k} p_{i} \quad \begin{aligned}
& \text { weight of all jobs but } J_{k} \\
& \text { evenly distributed on } m \text { machines }
\end{aligned}
$$

- For the optimal makespan T_{OPT}, we have:
- $T_{\mathrm{OPT}} \geq p_{k}$

Multiprocessor Scheduling - List Scheduling (Proof)

ListScheduling $\left(J_{1}, \ldots, J_{n}, m\right)$
Put the first m jobs on the m machines.
Put the next job on the first free machine.

Theorem 7.
ListScheduling is a $\left(2-\frac{1}{m}\right)$-approximation alg.

Proof. Let $J_{k}=\left(S_{k}, T_{k}\right)$ be the last job, that is, T_{k} determines the makespan.

- No machine idles at time S_{k}.

$$
S_{k} \leq \frac{1}{m} \sum_{i \neq k} p_{i} \begin{aligned}
& \text { weight of all jobs but } J_{k} \\
& \text { evenly distributed on } m \text { machines }
\end{aligned}
$$

- For the optimal makespan $T_{\text {OPT }}$, we have:
- $T_{\mathrm{OPT}} \geq p_{k}$

■ $T_{\mathrm{OPT}} \geq \frac{1}{m} \sum_{i=1}^{n} p_{i} \begin{aligned} & \text { weight of all jobs } \\ & \text { evenly distributed }\end{aligned}$

Multiprocessor Scheduling - List Scheduling (Proof)

$\operatorname{ListSChedULING}\left(J_{1}, \ldots, J_{n}, m\right)$
Put the first m jobs on the m machines.
Put the next job on the first free machine.

Theorem 7.
ListScheduling is a $\left(2-\frac{1}{m}\right)$-approximation alg.

Proof. Let $J_{k}=\left(S_{k}, T_{k}\right)$ be the last job, that is, T_{k} determines the makespan.

- No machine idles at time S_{k}.

$$
S_{k} \leq \frac{1}{m} \sum_{i \neq k} p_{i} \begin{aligned}
& \text { weight of all jobs but } J_{k} \\
& \text { evenly distributed on } m \text { machines }
\end{aligned}
$$

- Hence:

$$
T_{k}=S_{k}+p_{k}
$$

- For the optimal makespan $T_{\text {OPT }}$, we have:
- $T_{\text {OPT }} \geq p_{k}$

■ $T_{\mathrm{OPT}} \geq \frac{1}{m} \sum_{i=1}^{n} p_{i} \begin{aligned} & \text { weight of all jobs } \\ & \text { evenly distributed }\end{aligned}$

Multiprocessor Scheduling - List Scheduling (Proof)

$\operatorname{ListSChedULING}\left(J_{1}, \ldots, J_{n}, m\right)$
Put the first m jobs on the m machines.
Put the next job on the first free machine.

Theorem 7.
ListScheduling is a $\left(2-\frac{1}{m}\right)$-approximation alg.

Proof. Let $J_{k}=\left(S_{k}, T_{k}\right)$ be the last job, that is, T_{k} determines the makespan.

- No machine idles at time S_{k}.

$$
S_{k} \leq \frac{1}{m} \sum_{i \neq k} p_{i} \begin{aligned}
& \text { weight of all jobs but } J_{k} \\
& \text { evenly distributed on } m \text { machines }
\end{aligned}
$$

- For the optimal makespan $T_{\text {OPT }}$, we have:
- Hence:

$$
\begin{aligned}
T_{k} & =S_{k}+p_{k} \\
& \leq \frac{1}{m} \cdot \sum_{i \neq k} p_{i}+p_{k}
\end{aligned}
$$

- $T_{\mathrm{OPT}} \geq p_{k}$

■ $T_{\mathrm{OPT}} \geq \frac{1}{m} \sum_{i=1}^{n} p_{i} \begin{aligned} & \text { weight of all jobs } \\ & \text { evenly distributed }\end{aligned}$

Multiprocessor Scheduling - List Scheduling (Proof)

$\operatorname{ListSChedULING}\left(J_{1}, \ldots, J_{n}, m\right)$
Put the first m jobs on the m machines.
Put the next job on the first free machine.

Theorem 7.
ListScheduling is a $\left(2-\frac{1}{m}\right)$-approximation alg.

Proof. Let $J_{k}=\left(S_{k}, T_{k}\right)$ be the last job, that is, T_{k} determines the makespan.

- No machine idles at time S_{k}.

$$
S_{k} \leq \frac{1}{m} \sum_{i \neq k} p_{i} \quad \begin{aligned}
& \text { weight of all jobs but } J_{k} \\
& \text { evenly distributed on } m \text { machines }
\end{aligned}
$$

- For the optimal makespan T_{OPT}, we have:
- $T_{\mathrm{OPT}} \geq p_{k}$

■ $T_{\mathrm{OPT}} \geq \frac{1}{m} \sum_{i=1}^{n} p_{i} \begin{array}{r}\text { weight of all jobs } \\ \text { evenly distributed }\end{array}$

- Hence:

$$
\begin{aligned}
T_{k} & =S_{k}+p_{k} \\
& \leq \frac{1}{m} \cdot \sum_{i \neq k} p_{i}+p_{k} \\
& =\frac{1}{m} \cdot \sum_{i=1}^{n} p_{i}+\left(1-\frac{1}{m}\right) \cdot p_{k}
\end{aligned}
$$

Multiprocessor Scheduling - List Scheduling (Proof)

$\operatorname{ListSChEDULING}\left(J_{1}, \ldots, J_{n}, m\right)$
Put the first m jobs on the m machines.
Put the next job on the first free machine.

Theorem 7.
ListScheduling is a $\left(2-\frac{1}{m}\right)$-approximation alg.

Proof. Let $J_{k}=\left(S_{k}, T_{k}\right)$ be the last job, that is, T_{k} determines the makespan.

- No machine idles at time S_{k}.

$$
S_{k} \leq \frac{1}{m} \sum_{i \neq k} p_{i} \quad \begin{aligned}
& \text { weight of all jobs but } J_{k} \\
& \text { evenly distributed on } m \text { machines }
\end{aligned}
$$

- For the optimal makespan $T_{\text {OPT }}$, we have:
$\square T_{\mathrm{OPT}} \geq p_{k} \quad \square T_{\mathrm{OPT}} \geq \frac{1}{m} \sum_{i=1}^{n} p_{i} \begin{aligned} & \text { weight of all jobs } \\ & \text { evenly distributed }\end{aligned}$

$$
T_{k}=\operatorname{MAKESPAN}
$$

$$
\begin{aligned}
T_{k} & =S_{k}+p_{k} \\
& \leq \frac{1}{m} \cdot \sum_{i \neq k} p_{i}+p_{k}
\end{aligned}
$$

- Hence:

$$
\begin{aligned}
& =\frac{1}{m} \cdot \sum_{i=1}^{n} p_{i}+\left(1-\frac{1}{m}\right) \cdot p_{k} \\
& \leq T_{\mathrm{OPT}}+\left(1-\frac{1}{m}\right) \cdot T_{\mathrm{OPT}}
\end{aligned}
$$

Multiprocessor Scheduling - List Scheduling (Proof)

$\operatorname{ListSChedULING}\left(J_{1}, \ldots, J_{n}, m\right)$
Put the first m jobs on the m machines.
Put the next job on the first free machine.

Theorem 7.
ListScheduling is a $\left(2-\frac{1}{m}\right)$-approximation alg.

Proof. Let $J_{k}=\left(S_{k}, T_{k}\right)$ be the last job, that is, T_{k} determines the makespan.

- No machine idles at time S_{k}.

$$
S_{k} \leq \frac{1}{m} \sum_{i \neq k} p_{i} \quad \begin{aligned}
& \text { weight of all jobs but } J_{k} \\
& \text { evenly distributed on } m \text { machines }
\end{aligned}
$$

- For the optimal makespan T_{OPT}, we have:
$\square T_{\mathrm{OPT}} \geq p_{k} \quad \square T_{\mathrm{OPT}} \geq \frac{1}{m} \sum_{i=1}^{n} p_{i} \begin{aligned} & \text { weight of all jobs } \\ & \text { evenly distributed }\end{aligned}$

- Hence:

$$
\begin{aligned}
T_{k} & =S_{k}+p_{k} \\
& \leq \frac{1}{m} \cdot \sum_{i \neq k} p_{i}+p_{k}
\end{aligned}
$$

$$
=\frac{1}{m} \cdot \sum_{i=1}^{n} p_{i}+\left(1-\frac{1}{m}\right) \cdot p_{k}
$$

$$
\leq T_{\mathrm{OPT}}+\left(1-\frac{1}{m}\right) \cdot T_{\mathrm{OPT}}
$$

$$
=\left(2-\frac{1}{m}\right) \cdot T_{\mathrm{OPT}}
$$

Multiprocessor Scheduling - PTAS

For a constant $\ell(1 \leq \ell \leq n)$ define the algorithm \mathcal{A}_{ℓ} as follows. $\mathcal{A}_{\ell}\left(J_{1}, \ldots, J_{n}, m\right)$
Sort jobs in descending order of runtime.
Schedule the ℓ longest jobs J_{1}, \ldots, J_{ℓ} optimally.
Use ListScheduling for the remaining jobs $J_{\ell+1}, \ldots, J_{n}$.

Multiprocessor Scheduling - PTAS

For a constant $\ell(1 \leq \ell \leq n)$ define the algorithm \mathcal{A}_{ℓ} as follows. $\mathcal{A}_{\ell}\left(J_{1}, \ldots, J_{n}, m\right)$

Sort jobs in descending order of runtime.
Schedule the ℓ longest jobs J_{1}, \ldots, J_{ℓ} optimally.
Use ListScheduling for the remaining jobs $J_{\ell+1}, \ldots, J_{n}$.
Example.
$\ell=6$

Multiprocessor Scheduling - PTAS

For a constant $\ell(1 \leq \ell \leq n)$ define the algorithm \mathcal{A}_{ℓ} as follows. $\mathcal{A}_{\ell}\left(J_{1}, \ldots, J_{n}, m\right)$

Sort jobs in descending order of runtime.
Schedule the ℓ longest jobs J_{1}, \ldots, J_{ℓ} optimally.
Use ListScheduling for the remaining jobs $J_{\ell+1}, \ldots, J_{n}$.
Example.
$\ell=6$
sorted jobs

Multiprocessor Scheduling - PTAS

For a constant $\ell(1 \leq \ell \leq n)$ define the algorithm \mathcal{A}_{ℓ} as follows. $\mathcal{A}_{\ell}\left(J_{1}, \ldots, J_{n}, m\right)$

Sort jobs in descending order of runtime.
Schedule the ℓ longest jobs J_{1}, \ldots, J_{ℓ} optimally.
Use ListScheduling for the remaining jobs $J_{\ell+1}, \ldots, J_{n}$.
Example.
$\ell=6$
sorted jobs

Multiprocessor Scheduling - PTAS

For a constant $\ell(1 \leq \ell \leq n)$ define the algorithm \mathcal{A}_{ℓ} as follows. $\mathcal{A}_{\ell}\left(J_{1}, \ldots, J_{n}, m\right)$

Sort jobs in descending order of runtime.
Schedule the ℓ longest jobs J_{1}, \ldots, J_{ℓ} optimally.
Use ListScheduling for the remaining jobs $J_{\ell+1}, \ldots, J_{n}$.
Example.
$\ell=6$
sorted jobs

Multiprocessor Scheduling - PTAS

For a constant $\ell(1 \leq \ell \leq n)$ define the algorithm \mathcal{A}_{ℓ} as follows. $\mathcal{A}_{\ell}\left(J_{1}, \ldots, J_{n}, m\right)$

Sort jobs in descending order of runtime.
Schedule the ℓ longest jobs J_{1}, \ldots, J_{ℓ} optimally.
Use ListScheduling for the remaining jobs $J_{\ell+1}, \ldots, J_{n}$.
Example.
$\ell=6$
sorted jobs

Multiprocessor Scheduling - PTAS

For a constant $\ell(1 \leq \ell \leq n)$ define the algorithm \mathcal{A}_{ℓ} as follows. $\mathcal{A}_{\ell}\left(J_{1}, \ldots, J_{n}, m\right)$

Sort jobs in descending order of runtime.
Schedule the ℓ longest jobs J_{1}, \ldots, J_{ℓ} optimally.
Use ListScheduling for the remaining jobs $J_{\ell+1}, \ldots, J_{n}$.
Example.
$\ell=6$
sorted jobs

Multiprocessor Scheduling - PTAS

For a constant $\ell(1 \leq \ell \leq n)$ define the algorithm \mathcal{A}_{ℓ} as follows. $\mathcal{A}_{\ell}\left(J_{1}, \ldots, J_{n}, m\right)$

Sort jobs in descending order of runtime.
Schedule the ℓ longest jobs J_{1}, \ldots, J_{ℓ} optimally.
Use ListScheduling for the remaining jobs $J_{\ell+1}, \ldots, J_{n}$.
Example.
$\ell=6$
sorted jobs

Multiprocessor Scheduling - PTAS

For a constant $\ell(1 \leq \ell \leq n)$ define the algorithm \mathcal{A}_{ℓ} as follows. $\mathcal{A}_{\ell}\left(J_{1}, \ldots, J_{n}, m\right)$

Sort jobs in descending order of runtime.
Schedule the ℓ longest jobs J_{1}, \ldots, J_{ℓ} optimally.
Use ListScheduling for the remaining jobs $J_{\ell+1}, \ldots, J_{n}$.
Example.
$\ell=6$
sorted jobs

Multiprocessor Scheduling - PTAS

For a constant $\ell(1 \leq \ell \leq n)$ define the algorithm \mathcal{A}_{ℓ} as follows. $\mathcal{A}_{\ell}\left(J_{1}, \ldots, J_{n}, m\right)$

Sort jobs in descending order of runtime.
Schedule the ℓ longest jobs J_{1}, \ldots, J_{ℓ} optimally.
Use ListScheduling for the remaining jobs $J_{\ell+1}, \ldots, J_{n}$.
Example.
$\ell=6$
sorted jobs

Multiprocessor Scheduling - PTAS

For a constant $\ell(1 \leq \ell \leq n)$ define the algorithm \mathcal{A}_{ℓ} as follows. $\mathcal{A}_{\ell}\left(J_{1}, \ldots, J_{n}, m\right)$

Sort jobs in descending order of runtime.
Schedule the ℓ longest jobs J_{1}, \ldots, J_{ℓ} optimally.
Use ListScheduling for the remaining jobs $J_{\ell+1}, \ldots, J_{n}$.
Example.
$\ell=6$
sorted jobs

Multiprocessor Scheduling - PTAS

For a constant $\ell(1 \leq \ell \leq n)$ define the algorithm \mathcal{A}_{ℓ} as follows. $\mathcal{A}_{\ell}\left(J_{1}, \ldots, J_{n}, m\right)$

Sort jobs in descending order of runtime.
Schedule the ℓ longest jobs J_{1}, \ldots, J_{ℓ} optimally.
$\mathcal{O}(n \log n)$
$\mathcal{O}\left(m^{\ell}\right)$
Use ListScheduling for the remaining jobs $J_{\ell+1}, \ldots, J_{n} . \mathcal{O}(n \log m)$

- Polynomial time for constant ℓ : $\mathcal{O}\left(m^{\ell}+n \log n\right)$

Example.
$\ell=6$
sorted jobs

Multiprocessor Scheduling - PTAS

For a constant $\ell(1 \leq \ell \leq n)$ define the algorithm \mathcal{A}_{ℓ} as follows. $\mathcal{A}_{\ell}\left(J_{1}, \ldots, J_{n}, m\right)$

Sort jobs in descending order of runtime.
Schedule the ℓ longest jobs J_{1}, \ldots, J_{ℓ} optimally.
$\mathcal{O}(n \log n)$
$\mathcal{O}\left(m^{\ell}\right)$
Use ListScheduling for the remaining jobs $J_{\ell+1}, \ldots, J_{n} . \mathcal{O}(n \log m)$

- Polynomial time for constant ℓ : $\mathcal{O}\left(m^{\ell}+n \log n\right)$

Theorem 8.

For constant $\ell \in\{1, \ldots, n\}$, algorithm \mathcal{A}_{ℓ} is a $1+\frac{1-\frac{1}{m}}{1+\left\lfloor\frac{\ell}{m}\right\rfloor}$-approximation algorithm.

Multiprocessor Scheduling - PTAS

For a constant $\ell(1 \leq \ell \leq n)$ define the algorithm \mathcal{A}_{ℓ} as follows. $\mathcal{A}_{\ell}\left(J_{1}, \ldots, J_{n}, m\right)$

Sort jobs in descending order of runtime.
Schedule the ℓ longest jobs J_{1}, \ldots, J_{ℓ} optimally.
Use ListScheduling for the remaining jobs $J_{\ell+1}, \ldots, J_{n} . \mathcal{O}(n \log m)$

- Polynomial time for constant ℓ : $\mathcal{O}\left(m^{\ell}+n \log n\right)$

Theorem 8.

For constant $\ell \in\{1, \ldots, n\}$, algorithm \mathcal{A}_{ℓ} is a $1+\frac{1-\frac{1}{m}}{1+\left\lfloor\frac{\ell}{m}\right\rfloor}$-approximation algorithm.

■ For $\varepsilon>0$, choose ℓ such that $\mathcal{A}_{\varepsilon}=\mathcal{A}_{\ell(\varepsilon)}$ is a (1+ $)$-approximation algorithm.

Corollary 9.
For a constant number of machines, $\left\{\mathcal{A}_{\varepsilon} \mid \varepsilon>0\right\}$ is a PTAS.

Multiprocessor Scheduling - PTAS

For a constant $\ell(1 \leq \ell \leq n)$ define the algorithm \mathcal{A}_{ℓ} as follows. $\mathcal{A}_{\ell}\left(J_{1}, \ldots, J_{n}, m\right)$

Sort jobs in descending order of runtime.
Schedule the ℓ longest jobs J_{1}, \ldots, J_{ℓ} optimally.
Use ListScheduling for the remaining jobs $J_{\ell+1}, \ldots, J_{n} . \mathcal{O}(n \log m)$

- Polynomial time for constant ℓ : $\mathcal{O}\left(m^{\ell}+n \log n\right)$

Theorem 8.

For constant $\ell \in\{1, \ldots, n\}$, algorithm \mathcal{A}_{ℓ} is a $1+\frac{1-\frac{1}{m}}{1+\left\lfloor\frac{\ell}{m}\right\rfloor}$-approximation algorithm.

- For $\varepsilon>0$, choose ℓ such that $\mathcal{A}_{\varepsilon}=\mathcal{A}_{\ell(\varepsilon)}$ is a $(1+\varepsilon)$-approximation algorithm.
$\square\left\{\mathcal{A}_{\varepsilon} \mid \varepsilon>0\right\}$ is not an FPTAS since the running time is not polynomial in $\frac{1}{\varepsilon}$.

Corollary 9.
For a constant number of machines, $\left\{\mathcal{A}_{\varepsilon} \mid \varepsilon>0\right\}$ is a PTAS.

Multiprocessor Scheduling - PTAS (Proof)

Theorem 8.

For constant $1 \leq \ell \leq n$, the algorithm \mathcal{A}_{ℓ} is a $1+\frac{1-\frac{1}{m}}{1+\left\lfloor\frac{\ell}{m}\right\rfloor}$-approximation algorithm.
$\mathcal{A}_{\ell}\left(J_{1}, \ldots, J_{n}, m\right)$
Sort jobs in descending order of runtime. Schedule the ℓ longest jobs J_{1}, \ldots, J_{ℓ} optimally.
Use ListScheduling for the remaining jobs $J_{\ell+1}, \ldots, J_{n}$.

Proof. Let $J_{k}=\left(S_{k}, T_{k}\right)$ be the last job, that is, T_{k} determines the makespan.

Multiprocessor Scheduling - PTAS (Proof)

Theorem 8.

For constant $1 \leq \ell \leq n$, the algorithm \mathcal{A}_{ℓ} is a $1+\frac{1-\frac{1}{m}}{1+\left\lfloor\frac{l}{m}\right\rfloor}$-approximation algorithm.
$\mathcal{A}_{\ell}\left(J_{1}, \ldots, J_{n}, m\right)$
Sort jobs in descending order of runtime. Schedule the ℓ longest jobs J_{1}, \ldots, J_{ℓ} optimally.
Use ListScheduling for the remaining jobs $J_{\ell+1}, \ldots, J_{n}$.

Proof. Let $J_{k}=\left(S_{k}, T_{k}\right)$ be the last job, that is, T_{k} determines the makespan.
Case 1. J_{k} is one of the longest ℓ jobs J_{1}, \ldots, J_{ℓ}.

Multiprocessor Scheduling - PTAS (Proof)

Theorem 8.

For constant $1 \leq \ell \leq n$, the algorithm \mathcal{A}_{ℓ} is a $1+\frac{1-\frac{1}{m}}{1+\left\lfloor\frac{\ell}{m}\right\rfloor}$-approximation algorithm.
$\mathcal{A}_{\ell}\left(J_{1}, \ldots, J_{n}, m\right)$
Sort jobs in descending order of runtime. Schedule the ℓ longest jobs J_{1}, \ldots, J_{ℓ} optimally.
Use ListScheduling for the remaining jobs $J_{\ell+1}, \ldots, J_{n}$

Proof. Let $J_{k}=\left(S_{k}, T_{k}\right)$ be the last job, that is, T_{k} determines the makespan.
Case 1. J_{k} is one of the longest ℓ jobs J_{1}, \ldots, J_{ℓ}.
■ Solution is optimal for J_{1}, \ldots, J_{k}

- Hence, solution is optimal for J_{1}, \ldots, J_{n}

Multiprocessor Scheduling - PTAS (Proof)

Theorem 8.

For constant $1 \leq \ell \leq n$, the algorithm \mathcal{A}_{ℓ} is a $1+\frac{1-\frac{1}{m}}{1+\left\lfloor\frac{\ell}{m}\right\rfloor}$-approximation algorithm.
$\mathcal{A}_{\ell}\left(J_{1}, \ldots, J_{n}, m\right)$
Sort jobs in descending order of runtime.
Schedule the ℓ longest jobs J_{1}, \ldots, J_{ℓ} optimally.
Use ListScheduling for the remaining jobs $J_{\ell+1}, \ldots, J_{n}$.

Proof. Let $J_{k}=\left(S_{k}, T_{k}\right)$ be the last job, that is, T_{k} determines the makespan.
Case 1. J_{k} is one of the longest ℓ jobs J_{1}, \ldots, J_{ℓ}.

- Solution is optimal for J_{1}, \ldots, J_{k}
- Hence, solution is optimal for J_{1}, \ldots, J_{n}

Case 2. J_{k} is not one of the longest ℓ jobs J_{1}, \ldots, J_{ℓ}.

Multiprocessor Scheduling - PTAS (Proof)

Theorem 8.

For constant $1 \leq \ell \leq n$, the algorithm \mathcal{A}_{ℓ} is a $1+\frac{1-\frac{1}{m}}{1+\left\lfloor\frac{\ell}{m}\right\rfloor}$-approximation algorithm.
$\mathcal{A}_{\ell}\left(J_{1}, \ldots, J_{n}, m\right)$
Sort jobs in descending order of runtime.
Schedule the ℓ longest jobs J_{1}, \ldots, J_{ℓ} optimally.
Use ListScheduling for the remaining jobs $J_{\ell+1}, \ldots, J_{n}$.

Proof. Let $J_{k}=\left(S_{k}, T_{k}\right)$ be the last job, that is, T_{k} determines the makespan.
Case 1. J_{k} is one of the longest ℓ jobs J_{1}, \ldots, J_{ℓ}.

- Solution is optimal for J_{1}, \ldots, J_{k}
- Hence, solution is optimal for J_{1}, \ldots, J_{n}

Case 2. J_{k} is not one of the longest ℓ jobs J_{1}, \ldots, J_{ℓ}.

- Similar analysis to ListSCHEDULING
\square Use that there are $\ell+1$ jobs that are at least as
 long as J_{k} (including J_{k}).

Multiprocessor Scheduling - PTAS (Proof)

Theorem 8.

For constant $1 \leq \ell \leq n$, the algorithm \mathcal{A}_{ℓ} is a $1+\frac{1-\frac{1}{m}}{1+\left\lfloor\frac{l}{m}\right\rfloor}$-approximation algorithm.

Proof of Case 2.

- $S_{k} \leq \frac{1}{m} \sum_{i \neq k} p_{i} \quad T_{\text {OPT }} \geq \frac{1}{m} \sum_{i=1}^{n} p_{i}$
- $T_{\text {OPT }} \geq p_{k}$
$\mathcal{A}_{\ell}\left(J_{1}, \ldots, J_{n}, m\right)$
Sort jobs in descending order of runtime. Schedule the ℓ longest jobs J_{1}, \ldots, J_{ℓ} optimally. Use ListScheduling for the remaining jobs $J_{\ell+1}, \ldots, J_{n}$.

Multiprocessor Scheduling - PTAS (Proof)

Theorem 8.

For constant $1 \leq \ell \leq n$, the algorithm \mathcal{A}_{ℓ} is a $1+\frac{1-\frac{1}{m}}{1+\left\lfloor\frac{l}{m}\right\rfloor}$-approximation algorithm.

Proof of Case 2.

- $S_{k} \leq \frac{1}{m} \sum_{i \neq k} p_{i}$
- $T_{\mathrm{OPT}} \geq \frac{1}{m} \sum_{i=1}^{n} p_{i}$
- $T_{\text {OPT }} \geq p_{k}$
$\mathcal{A}_{\ell}\left(J_{1}, \ldots, J_{n}, m\right)$
Sort jobs in descending order of runtime. Schedule the ℓ longest jobs J_{1}, \ldots, J_{ℓ} optimally. Use ListScheduling for the remaining jobs $J_{\ell+1}, \ldots, J_{n}$.

Multiprocessor Scheduling - PTAS (Proof)

Theorem 8.

For constant $1 \leq \ell \leq n$, the algorithm \mathcal{A}_{ℓ} is a $1+\frac{1-\frac{1}{m}}{1+\left\lfloor\frac{l}{m}\right\rfloor}$-approximation algorithm.

Proof of Case 2.

- $S_{k} \leq \frac{1}{m} \sum_{i \neq k} p_{i}$
- $T_{\text {OPT }} \geq \frac{1}{m} \sum_{i=1}^{n} p_{i}$
- $T_{\mathrm{OPT}} \geq p_{k}$
$\mathcal{A}_{\ell}\left(J_{1}, \ldots, J_{n}, m\right)$
Sort jobs in descending order of runtime. Schedule the ℓ longest jobs J_{1}, \ldots, J_{ℓ} optimally. Use ListScheduling for the remaining jobs $J_{\ell+1}, \ldots, J_{n}$.

$$
\begin{aligned}
T_{k} & =S_{k}+p_{k} \\
& \leq \frac{1}{m} \cdot \sum_{i \neq k} p_{i}+p_{k} \\
& =\frac{1}{m} \cdot \sum_{i=1}^{m} p_{i}+\left(1-\frac{1}{m}\right) \cdot p_{k}
\end{aligned}
$$

Multiprocessor Scheduling - PTAS (Proof)

Theorem 8.

For constant $1 \leq \ell \leq n$, the algorithm \mathcal{A}_{ℓ} is a $1+\frac{1-\frac{1}{m}}{1+\left\lfloor\frac{\ell}{m}\right\rfloor}$-approximation algorithm.

Proof of Case 2.
■ $S_{k} \leq \frac{1}{m} \sum_{i \neq k} p_{i}$

- $T_{\mathrm{OPT}} \geq \frac{1}{m} \sum_{i=1}^{n} p_{i}$
- $T_{\mathrm{OPT}} \geq p_{k}$
$\mathcal{A}_{\ell}\left(J_{1}, \ldots, J_{n}, m\right)$
Sort jobs in descending order of runtime. Schedule the ℓ longest jobs J_{1}, \ldots, J_{ℓ} optimally. Use ListScheduling for the remaining jobs $J_{\ell+1}, \ldots, J_{n}$.

$$
\begin{aligned}
T_{k} & =S_{k}+p_{k} \\
& \leq \frac{1}{m} \cdot \sum_{i \neq k} p_{i}+p_{k}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{m} \cdot \sum_{i=1}^{m} p_{i}+\left(1-\frac{1}{m}\right) \cdot p_{k} \\
& \leq T_{\mathrm{OPT}}+\left(1-\frac{1}{m}\right) \cdot T_{\mathrm{OPT}}
\end{aligned}
$$

Multiprocessor Scheduling - PTAS (Proof)

Theorem 8.

For constant $1 \leq \ell \leq n$, the algorithm \mathcal{A}_{ℓ} is a $1+\frac{1-\frac{1}{m}}{1+\left\lfloor\frac{\ell}{m}\right\rfloor}$-approximation algorithm.

Proof of Case 2.
■ $S_{k} \leq \frac{1}{m} \sum_{i \neq k} p_{i}$

- $T_{\mathrm{OPT}} \geq \frac{1}{m} \sum_{i=1}^{n} p_{i}$
- $T_{\mathrm{OPT}} \geq p_{k}$
$\mathcal{A}_{\ell}\left(J_{1}, \ldots, J_{n}, m\right)$
Sort jobs in descending order of runtime. Schedule the ℓ longest jobs J_{1}, \ldots, J_{ℓ} optimally. Use ListScheduling for the remaining jobs $J_{\ell+1}, \ldots, J_{n}$.

$$
\begin{aligned}
T_{k} & =S_{k}+p_{k} \\
& \leq \frac{1}{m} \cdot \sum_{i \neq k} p_{i}+p_{k} \\
& =\frac{1}{m} \cdot \sum_{i=1}^{m} p_{i}+\left(1-\frac{1}{m}\right) \cdot p_{k} \\
& \leq T_{\mathrm{OPT}}+\left(1-\frac{1}{m}\right) \cdot T_{\mathrm{OPT}}
\end{aligned}
$$

Multiprocessor Scheduling - PTAS (Proof)

Theorem 8.

For constant $1 \leq \ell \leq n$, the algorithm \mathcal{A}_{ℓ} is a $1+\frac{1-\frac{1}{m}}{1+\left\lfloor\frac{\ell}{m}\right\rfloor}$-approximation algorithm.

Proof of Case 2.

- $S_{k} \leq \frac{1}{m} \sum_{i \neq k} p_{i}$ ■ $T_{\mathrm{OPT}} \geq \frac{1}{m} \sum_{i=1}^{n} p_{i}$
■ Consider only $J_{1}, \ldots, J_{\ell}, J_{k}$:
$T_{\mathrm{OPT}} \geq p_{k}$.

$\mathcal{A}_{\ell}\left(J_{1}, \ldots, J_{n}, m\right)$
Sort jobs in descending order of runtime. Schedule the ℓ longest jobs J_{1}, \ldots, J_{ℓ} optimally.
Use ListScheduling for the remaining jobs $J_{\ell+1}, \ldots, J_{n}$.

Multiprocessor Scheduling - PTAS (Proof)

Theorem 8.

For constant $1 \leq \ell \leq n$, the algorithm \mathcal{A}_{ℓ} is a $1+\frac{1-\frac{1}{m}}{1+\left\lfloor\frac{\ell}{m}\right\rfloor}$-approximation algorithm.

Proof of Case 2.

- $S_{k} \leq \frac{1}{m} \sum_{i \neq k} p_{i}$ ■ $T_{\mathrm{OPT}} \geq \frac{1}{m} \sum_{i=1}^{n} p_{i}$
■ Consider only $J_{1}, \ldots, J_{\ell}, J_{k}$:

$$
T_{\mathrm{OPT}} \geq p_{k} \cdot\left(1+\left\lfloor\frac{\ell}{m}\right\rfloor\right)
$$

$\mathcal{A}_{\ell}\left(J_{1}, \ldots, J_{n}, m\right)$
Sort jobs in descending order of runtime. Schedule the ℓ longest jobs J_{1}, \ldots, J_{ℓ} optimally.
Use ListScheduling for the remaining jobs $J_{\ell+1}, \ldots, J_{n}$.

$$
T_{k}=S_{k}+p_{k}
$$

$$
\leq \frac{1}{m} \cdot \sum_{i \neq k} p_{i}+p_{k}
$$

$$
\begin{aligned}
& =\frac{1}{m} \cdot \sum_{i=1}^{m} p_{i}+\left(1-\frac{1}{m}\right) \cdot p_{k} \\
& \leq T_{\mathrm{OPT}}+\left(1-\frac{1}{m}\right) \cdot T_{\mathrm{OPT}}
\end{aligned}
$$

Multiprocessor Scheduling - PTAS (Proof)

Theorem 8.
 Theorem 8.

For constant $1 \leq \ell \leq n$, the algorithm \mathcal{A}_{ℓ} is a $1+\frac{1-\frac{1}{m}}{1+\left\lfloor\frac{l}{m}\right\rfloor}$-approximation algorithm.

Proof of Case 2.
$\square S_{k} \leq \frac{1}{m} \sum_{i \neq k} p_{i}$

$$
T_{\mathrm{OPT}} \geq \frac{1}{m} \sum_{i=1}^{n} p_{i}
$$

- Consider only $J_{1}, \ldots, J_{\ell}, J_{k}$:

$$
T_{\mathrm{OPT}} \geq p_{k} \cdot\left(1+\left\lfloor\frac{\ell}{m}\right\rfloor\right) \begin{aligned}
& \text { one machine has } \\
& \text { this many jobs }
\end{aligned}
$$

$\mathcal{A}_{\ell}\left(J_{1}, \ldots, J_{n}, m\right)$
Sort jobs in descending order of runtime.
Schedule the ℓ longest jobs J_{1}, \ldots, J_{ℓ} optimally.
Use ListScheduling for the remaining jobs $J_{\ell+1}, \ldots, J_{n}$.

$$
T_{k}=S_{k}+p_{k}
$$

$$
\leq \frac{1}{m} \cdot \sum_{i \neq k} p_{i}+p_{k}
$$

$$
=\frac{1}{m} \cdot \sum_{i=1}^{m} p_{i}+\left(1-\frac{1}{m}\right) \cdot p_{k}
$$

$$
\leq T_{\mathrm{OPT}}+\left(1-\frac{1}{m}\right) \cdot T_{\mathrm{OPT}}
$$

Multiprocessor Scheduling - PTAS (Proof)

Theorem 8.

For constant $1 \leq \ell \leq n$, the algorithm \mathcal{A}_{ℓ} is a $1+\frac{1-\frac{1}{m}}{1+\left\lfloor\frac{l}{m}\right\rfloor}$-approximation algorithm.

$\mathcal{A}_{\ell}\left(J_{1}, \ldots, J_{n}, m\right)$

Sort jobs in descending order of runtime.
Schedule the ℓ longest jobs J_{1}, \ldots, J_{ℓ} optimally.
Use ListScheduling for the remaining jobs $J_{\ell+1}, \ldots, J_{n}$.

Proof of Case 2.

- $S_{k} \leq \frac{1}{m} \sum_{i \neq k} p_{i}$
$\square T_{\mathrm{OPT}} \geq \frac{1}{m} \sum_{i=1}^{n} p_{i}$
- Consider only $J_{1}, \ldots, J_{\ell}, J_{k}$:

$$
T_{\mathrm{OPT}} \geq p_{k} \cdot\left(1+\left\lfloor\frac{\ell}{m}\right\rfloor\right) \begin{aligned}
& \text { one machine has } \\
& \text { this many jobs }
\end{aligned}
$$

■ * on average, each machine has more than $\frac{\ell}{m}$ of the $\ell+1$ jobs - at least one machine achieves the average

$$
T_{k}=S_{k}+p_{k}
$$

$$
\leq \frac{1}{m} \cdot \sum_{i \neq k} p_{i}+p_{k}
$$

$$
\begin{aligned}
& =\frac{1}{m} \cdot \sum_{i=1}^{m} p_{i}+\left(1-\frac{1}{m}\right) \cdot p_{k} \\
& \leq T_{\mathrm{OPT}}+\left(1-\frac{1}{m}\right) \cdot T_{\mathrm{OPT}}
\end{aligned}
$$

Multiprocessor Scheduling - PTAS (Proof)

Theorem 8.

For constant $1 \leq \ell \leq n$, the algorithm \mathcal{A}_{ℓ} is a $1+\frac{1-\frac{1}{m}}{1+\left\lfloor\frac{l}{m}\right\rfloor}$-approximation algorithm.

$\mathcal{A}_{\ell}\left(J_{1}, \ldots, J_{n}, m\right)$

Sort jobs in descending order of runtime.
Schedule the ℓ longest jobs J_{1}, \ldots, J_{ℓ} optimally.
Use ListScheduling for the remaining jobs $J_{\ell+1}, \ldots, J_{n}$.

Proof of Case 2.

- $S_{k} \leq \frac{1}{m} \sum_{i \neq k} p_{i}$
$\square T_{\mathrm{OPT}} \geq \frac{1}{m} \sum_{i=1}^{n} p_{i}$
- Consider only $J_{1}, \ldots, J_{\ell}, J_{k}$:

$$
T_{\mathrm{OPT}} \geq p_{k} \cdot\left(1+\left\lfloor\frac{\ell}{m}\right\rfloor\right) \begin{aligned}
& \text { one machine has } \\
& \text { this many jobs } \\
& \text { each has length } \geq p_{k}
\end{aligned}
$$

■ * on average, each machine has more than $\frac{\ell}{m}$ of the $\ell+1$ jobs - at least one machine achieves the average

$$
T_{k}=S_{k}+p_{k}
$$

$$
\leq \frac{1}{m} \cdot \sum_{i \neq k} p_{i}+p_{k}
$$

$$
\begin{aligned}
& =\frac{1}{m} \cdot \sum_{i=1}^{m} p_{i}+\left(1-\frac{1}{m}\right) \cdot p_{k} \\
& \leq T_{\mathrm{OPT}}+\left(1-\frac{1}{m}\right) \cdot T_{\mathrm{OPT}}
\end{aligned}
$$

Multiprocessor Scheduling - PTAS (Proof)

Theorem 8.

For constant $1 \leq \ell \leq n$, the algorithm \mathcal{A}_{ℓ} is a $1+\frac{1-\frac{1}{m}}{1+\left\lfloor\frac{l}{m}\right\rfloor}$-approximation algorithm.

$$
\mathcal{A}_{\ell}\left(J_{1}, \ldots, J_{n}, m\right)
$$

Sort jobs in descending order of runtime. Schedule the ℓ longest jobs J_{1}, \ldots, J_{ℓ} optimally.
Use ListScheduling for the remaining jobs $J_{\ell+1}, \ldots, J_{n}$.

Proof of Case 2.

■ $S_{k} \leq \frac{1}{m} \sum_{i \neq k} p_{i}$

$$
T_{\mathrm{OPT}} \geq \frac{1}{m} \sum_{i=1}^{n} p_{i}
$$

■ Consider only $J_{1}, \ldots, J_{\ell}, J_{k}$:

$$
T_{\mathrm{OPT}} \geq p_{k} \cdot\left(1+\left\lfloor\frac{\ell}{m}\right\rfloor\right) \begin{aligned}
& \text { one machine has } \\
& \text { this many jobs^} \\
& \text { each has length } \geq p_{k}
\end{aligned}
$$

■ * on average, each machine has more than $\frac{\ell}{m}$ of the $\ell+1$ jobs ■ at least one machine achieves the average

$$
T_{k}=S_{k}+p_{k}
$$

$$
\leq \frac{1}{m} \cdot \sum_{i \neq k} p_{i}+p_{k}
$$

$$
\begin{aligned}
& =\frac{1}{m} \cdot \sum_{i=1}^{m} p_{i}+\left(1-\frac{1}{m}\right) \cdot p_{k} \\
& \leq T_{\mathrm{OPT}}+\left(1-\frac{1}{m}\right) \cdot T_{\mathrm{OPT}}
\end{aligned}
$$

Multiprocessor Scheduling - PTAS (Proof)

Theorem 8.

For constant $1 \leq \ell \leq n$, the algorithm \mathcal{A}_{ℓ} is a $1+\frac{1-\frac{1}{m}}{1+\left\lfloor\frac{l}{m}\right\rfloor}$-approximation algorithm.

$$
\mathcal{A}_{\ell}\left(J_{1}, \ldots, J_{n}, m\right)
$$

Sort jobs in descending order of runtime. Schedule the ℓ longest jobs J_{1}, \ldots, J_{ℓ} optimally.
Use ListScheduling for the remaining jobs $J_{\ell+1}, \ldots, J_{n}$.

Proof of Case 2.

- $S_{k} \leq \frac{1}{m} \sum_{i \neq k} p_{i}$
$\mathrm{T}_{\mathrm{OPT}} \geq \frac{1}{m} \sum_{i=1}^{n} p_{i}$
■ Consider only $J_{1}, \ldots, J_{\ell}, J_{k}$:

$$
\mathrm{T}_{\mathrm{OPT}} \geq p_{k} \cdot\left(1+\left\lfloor\frac{\ell}{m}\right\rfloor\right) \begin{aligned}
& \text { one machine has } \\
& \text { this many jobs^ } \\
& \text { each has length } \geq p_{k}
\end{aligned}
$$

■ * on average, each machine has more than $\frac{\ell}{m}$ of the $\ell+1$ jobs ■ at least one machine achieves the average

$$
T_{k}=S_{k}+p_{k}
$$

$$
\leq \frac{1}{m} \cdot \sum_{i \neq k} p_{i}+p_{k}
$$

$$
\begin{aligned}
& =\frac{1}{m} \cdot \sum_{i=1}^{m} p_{i}+\left(1-\frac{1}{m}\right) \cdot p_{k} \\
& \leq T_{\mathrm{OPT}}+\frac{1-\frac{1}{m}}{1+\left\lfloor\frac{\ell}{m}\right\rfloor} \cdot T_{\mathrm{OPT}}
\end{aligned}
$$

Discussion

■ Only "easy" NP-hard problems admit FPTAS (PTAS).

- Some problems cannot be approximated very well (e.g., Maximum Clique).

■ Study of approximability of NP-hard problems yields more fine-grained classifications.

Discussion

■ Only "easy" NP-hard problems admit FPTAS (PTAS).
■ Some problems cannot be approximated very well (e.g., Maximum Clique).
■ Study of approximability of NP-hard problems yields more fine-grained classifications.

- Approximation algorithms exist also for non-NP-hard problems.
- Approximation algorithms can be of various types: greedy, local search, geometric, DP, ...
\square One important technique is LP-relaxation (more later in this lecture).

■ Only "easy" NP-hard problems admit FPTAS (PTAS).
■ Some problems cannot be approximated very well (e.g., Maximum Clique).

- Study of approximability of NP-hard problems yields more fine-grained classifications.
- Approximation algorithms exist also for non-NP-hard problems.
- Approximation algorithms can be of various types: greedy, local search, geometric, DP, ...
\square One important technique is LP-relaxation (more later in this lecture).
■ Minimum Vertex Coloring on planar graphs can be approximated with an additive approximation guarantee of 2 .

■ Christofides' approximation algorithm for Metric TSP has approximation factor 1.5.

■ Only "easy" NP-hard problems admit FPTAS (PTAS).
■ Some problems cannot be approximated very well (e.g., Maximum Clique).

- Study of approximability of NP-hard problems yields more fine-grained classifications.
- Approximation algorithms exist also for non-NP-hard problems.

■ Approximation algorithms can be of various types: greedy, local search, geometric, DP, ...
■ One important technique is LP-relaxation (more later in this lecture).
■ Minimum Vertex Coloring on planar graphs can be approximated with an additive approximation guarantee of 2 .
■ Christofides' approximation algorithm for Metric TSP has approximation factor 1.5.
■ There is a whole lecture on approximation algorithms this semester! https://wuecampus.uni-wuerzburg.de/moodle/course/view.php?id=62943

Literature

Main references
■ [Jansen \& Margraf, 2008: Ch3]
"Approximative Algorithmen und Nichtapproximierbarkeit"
■ [Williamson \& Shmoys, 2011: Ch3] "The Design of Approximation Algorithms"

Klaus Jansen
Marian Margraf
Approximative Algorithmen und Nichtapproximierbarkeit

The DESIGN of APPROXIMATION ALGORITHMS
Another book recommendation:
■ [Vazirani, 2013] "Approximation Algorithms"

[^0]: $v_{i} \leftarrow w$
 $v_{i} \leftarrow w$
 $\alpha_{i+1} \leftarrow \min$ color missing at w $i \leftarrow i+1$
 return $v_{1}, \ldots, v_{i} ; \alpha_{1}, \ldots, \alpha_{i+1}$

