Julius-Maximilians-
UNIVERSITAT
WURZBURG

Advanced Algorithms
Exact Algorithms for NP-Hard Problems

TRAVELING SALESMAN PROBLEM and MAXIMAL INDEPENDENT SET

Johannes Zink - WS23/24

B
A
| |
T .

Examples of NP-Hard Problems

Many important (practical) problems are NP-hard, for example ...

Examples of NP-Hard Problems

Many important (practical) problems are NP-hard, for example ...

E se=

|
M3 |

My |

TSP MIS Bin Packing Scheduling

Examples of NP-Hard Problems

Many important (practical) problems are NP-hard, for example ...

@ Ele E3&
MIS ' ' ﬁi:
DR

TSP

Scheduling

(x1 V xo V —IX4)/\
(—lx2 V x3V —lX4)/\
(x3 V x7V —xg)A

SAT Graph Drawing

What is P, NP, and NP-Hardness?

B P is the complexity class that consists of all problems
that can be solved in polynomial time.

What is P, NP, and NP-Hardness?

B P is the complexity class that consists of all problems
that can be solved in polynomial time.

B NP is the complexity class that consists of all problems that can be solved in non-
deterministic polynomial time, i.e., a problem in NP can be solved in polynomial
time by a hypothetical machine that can duplicate itsself to try different parameters

In 1ts computation.

What is P, NP, and NP-Hardness?

B P is the complexity class that consists of all problems
that can be solved in polynomial time.

B NP is the complexity class that consists of all problems that can be solved in non-
deterministic polynomial time, i.e., a problem in NP can be solved in polynomial
time by a hypothetical machine that can duplicate itsself to try different parameters

In 1ts computation.

B There is another, more accessible equivalent definition:
A problem is in NP if the correctness of a solution can be verified in polynomial time.

What is P, NP, and NP-Hardness?

B P is the complexity class that consists of all problems Q
that can be solved in polynomial time.

B NP is the complexity class that consists of all problems that can be solved in non-
deterministic polynomial time, i.e., a problem in NP can be solved in polynomial
time by a hypothetical machine that can duplicate itsself to try different parameters

In 1ts computation.

B There is another, more accessible equivalent definition:
A problem is in NP if the correctness of a solution can be verified in polynomial time.

B It is not proven yet, but all indications suggest that P = NP.

What is P, NP, and NP-Hardness? e el

NP-intermediate

P is the complexity class that consists of all problems
that can be solved in polynomial time.

NP is the complexity class that consists of all problems that can be solved in non-
deterministic polynomial time, i.e., a problem in NP can be solved in polynomial
time by a hypothetical machine that can duplicate itsself to try different parameters

In 1ts computation.

There is another, more accessible equivalent definition:
A problem is in NP if the correctness of a solution can be verified in polynomial time.

It is not proven yet, but all indications suggest that P = NP.
The hardest problems in NP are called NP-complete.

What is P, NP, and NP-Hardness? N

NP-intermediate

P is the complexity class that consists of all problems
that can be solved in polynomial time.

NP is the complexity class that consists of all problems that can be solved in non-
deterministic polynomial time, i.e., a problem in NP can be solved in polynomial
time by a hypothetical machine that can duplicate itsself to try different parameters

In 1ts computation.

There is another, more accessible equivalent definition:
A problem is in NP if the correctness of a solution can be verified in polynomial time.

It is not proven yet, but all indications suggest that P = NP.
The hardest problems in NP are called NP-complete.

All problems that are at least as hard as any NP-complete problem are called NP-hard.
One can show NP-hardness by a polynomial-time reduction from an NP-hard problem.

What is P, NP, and NP-Hardness? N

NP-intermediate

P is the complexity class that consists of all problems
that can be solved in polynomial time.

NP is the complexity class that consists of all problems that can be solved in non-
deterministic polynomial time, i.e., a problem in NP can be solved in polynomial
time by a hypothetical machine that can duplicate itsself to try different parameters
In 1ts computation.

There is another, more accessible equivalent definition:
A problem is in NP if the correctness of a solution can be verified in polynomial time.

It is not proven yet, but all indications suggest that P = NP.
The hardest problems in NP are called NP-complete.

All problems that are at least as hard as any NP-complete problem are called NP-hard.
One can show NP-hardness by a polynomial-time reduction from an NP-hard problem.

Assuming P %= NP, NP-hard problems cannot be solved in polynomial time.

Misconceptions about NP-Hardness

Common misconceptions [Mann "17]

B If similar problems are NP-hard, then the problem at hand is also NP-hard.

Misconceptions about NP-Hardness

Common misconceptions [Mann "17]

B If similar problems are NP-hard, then the problem at hand is also NP-hard.

B Problems that are hard to solve in practice by an engineer are NP-hard.

Misconceptions about NP-Hardness

Common misconceptions [Mann "17]
B If similar problems are NP-hard, then the problem at hand is also NP-hard.
B Problems that are hard to solve in practice by an engineer are NP-hard.

B NP-hard problems cannot be solved optimally.

Misconceptions about NP-Hardness

Common misconceptions [Mann "17]

B If similar problems are NP-hard, then the problem at hand is also NP-hard.
B Problems that are hard to solve in practice by an engineer are NP-hard.

B NP-hard problems cannot be solved optimally.

B NP-hard problems cannot be solved more efficiently than by exhaustive search.

Misconceptions about NP-Hardness

Common misconceptions [Mann "17]

If similar problems are NP-hard, then the problem at hand is also NP-hard.

Problems that are hard to solve in practice by an engineer are NP-hard.

NP-hard prob
NP-hard prob

ems cannot be solved optimally.

ems cannot be solved more efficiently than by exhaustive search.

For solving N

P-hard problems, the only practical possibility is the use of heuristics.

Dealing with NP-Hard Problems

What should we do?

Dealing with NP-Hard Problems

What should we do?

B Sacrifice optimality for speed
m Heuristics
(Simulated Annealing, o
Tabu-Search) Heuristic Approximation

B Approximation Algorithms
(MST-Edge-Doubling,
Christofides-Algorithm)

NP-hard

Dealing with NP-Hard Problems

What should we do?

B Sacrifice optimality for speed
m Heuristics
(Simulated Annealing, o
Tabu-Search) Heuristic Approximation

B Approximation Algorithms
(MST-Edge-Doubling,
Christofides-Algorithm) Exponential

NP-hard

FPT
B Optimal Solutions

m Exact exponential-time algorithms
(with a better running time than
just a brute-force algorithm)

B Fine-grained analysis —
parameterized algorithms

Dealing with NP-Hard Problems

What should we do?

B Sacrifice optimality for speed
m Heuristics
(Simulated Annealing, o
Tabu-Search) Heuristic Approximation

B Approximation Algorithms
(MST-Edge-Doubling,
Christofides-Algorithm) Exponential

NP-hard

FPT
B Optimal Solutions

m Exact exponential-time algorithms
(with a better running time than
just a brute-force algorithm) \

m Fine-grained analysis — this lecture
parameterized algorithms

Motivation

:271
2500
2000
1500
1000

500 n

0
0 2 4 6 8 10 12 14

2

efficient (polynomial-time)
VS.
inefficient (super-pol.time)

Motivation

:271
2500
2000
1500
1000

500 n

0
0 2 4 6 8 10 12 14

2

efficient (polynomial-time)
VS.
inefficient (super-pol.time)

Exponential running time . ..should we just

Motivation

:271
2500
2000
1500
1000

500 n

0
0 2 4 6 8 10 12 14

2

efficient (polynomial-time)
VS.
inefficient (super-pol.time)

Exponential running time . ..should we just

B ...can be “fast” for medium-size instances:

Motivation

:271
2500
2000
1500
1000

500 n

0
0 2 4 6 8 10 12 14

2

efficient (polynomial-time)
VS.
inefficient (super-pol.time)

Exponential running time . ..should we just

B ...can be “fast” for medium-size instances:

B “hidden” constants in polynomial-time
algorithms:

21004 > 27 for 1 < 100

Motivation

:271
2500
2000
1500
1000

500 n

0
0 2 4 6 8 10 12 14

2

efficient (polynomial-time)
VS.
inefficient (super-pol.time)

Exponential running time . ..should we just

B ...can be “fast” for medium-size instances:

B “hidden” constants in polynomial-time
algorithms:

21004 > 27 for 1 < 100
Bt > 1.2" for n < 100

Motivation

:271
2500
2000
1500
1000

500 n

0
0 2 4 6 8 10 12 14

2

efficient (polynomial-time)
VS.
inefficient (super-pol.time)

Exponential running time . ..should we just

B ...can be “fast” for medium-size instances:

B “hidden” constants in polynomial-time
algorithms:

21004 > 27 for 1 < 100

m % > 1.2" for n < 100

m TSP solvable exactly for n < 2000 and
specialized instances with n < 85900

Motivation

Exponential running time ... maybe we need

Motivation

Exponential running time ... maybe we need ?

B Suppose an algorithm uses a” steps & can solve for a fixed amount of time ¢
Instances up to size ny.

Motivation

Exponential running time ... maybe we need ?

B Suppose an algorithm uses a” steps & can solve for a fixed amount of time ¢
Instances up to size ny.

B Improving hardware by a constant factor ¢ only adds a constant (relative to c)
to np:

ny n /
a0 =c-a?’ ~ ng=log,c+ ng

Motivation

Exponential running time ... maybe we need ?

B Suppose an algorithm uses a” steps & can solve for a fixed amount of time ¢
Instances up to size ny.

B Improving hardware by a constant factor ¢ only adds a constant (relative to c)
to np:

ny n /
a0 =c-a?’ ~ ng=log,c+ ng

B Reducing the base of the runtime to b < a results in a multiplicative increase:

/
b0 =a" ~» ng=ng-logya

- 10

Motivation

Exponential running time ... but can we at least find exact algorithms that are faster
than brute-force (trivial) approaches?

- 11

Motivation

Exponential running time ... but can we at least find exact algorithms that are faster
than brute-force (trivial) approaches?

B TSP: Bellman-Held-Karp algorithm has a running time in
O(2"n?) compared to an O(n!-n)-time brute-force search.

- 12

Motivation

Exponential running time ... but can we at least find exact algorithms that are faster
than brute-force (trivial) approaches?

B TSP: Bellman-Held-Karp algorithm has a running time in

4,2 1. 71)-t] _
O(2"n<) compared to an O(n! - n)-time brute-force search. 0" hides polynomial

o factors in n (see next slide)

m MIS: algorithm by Tarjan & Trojanowski runs in O*(2"*/3)
time compared to a trivial O(n2")-time approach.

Motivation

Exponential running time ... but can we at least find exact algorithms that are faster
than brute-force (trivial) approaches?

B TSP: Bellman-Held-Karp algorithm has a running time in
O(2"n?) compared to an O(n!-n)-time brute-force search.

—
m MIS: algorithm by Tarjan & Trojanowski runs in O*(2"*/3)

time compared to a trivial O(n2")-time approach.

O* hides polynomial
factors in n (see next slide)

B COLORING: Lawler gave an O(n(1+ v/3)") algorithm com-
pared to O(n"*1)-time brute-force search.

Motivation

Exponential running time ... but can we at least find exact algorithms that are faster
than brute-force (trivial) approaches?

B TSP: Bellman-Held-Karp algorithm has a running time in

O(2"n?) compared to an O(n!-n)-time brute-force search.

PR
m MIS: algorithm by Tarjan & Trojanowski runs in O*(2"*/3)

time compared to a trivial O(n2")-time approach.

O* hides polynomial
factors in n (see next slide)

B COLORING: Lawler gave an O(n(1+ v/3)") algorithm com-
pared to O(n"*1)-time brute-force search.

B SAT: No better algorithm than trivial brute-force search known.

O*-Notation

O(1.4" -n) C O(1.5" -n) C O(2")

O*-Notation

O(1.4" -n) C O(1.5" -n) C O(2")

B base of exponential part dominates ~» negligible polynomial factors

O*-Notation

O(1.4" -n) C O(1.5" -n) C O(2")

B base of exponential part dominates ~» negligible polynomial factors

f(n) € O*(g(n)) < 3 polynomial p(n) with f(n) € O(g(n)p(n))

O*-Notation

O(1.4" -n) C O(1.5" -n) C O(2")

B base of exponential part dominates ~» negligible polynomial factors

f(n) € O*(g(n)) < 3 polynomial p(n) with f(n) € O(g(n)p(n))

B typical result

Approach Runtime in O-Notation (O*-Notation
Brute-Force O(2") O*(2")
Algorithm A O(1.5" - n) O*(1.5")
Algorithm B O(1.4" - n?) O*(1.4")

Traveling Salesperson Problem (TSP)

Input. Distinct cities {v1, 0>, ..., vy } with distances d(v;, v;) € Q>o;
directed, complete graph G with edge weights d

Traveling Salesperson Problem (TSP)
Input. Distinct cities {v1,02, ..., v, } with distances d(v;, v;) € Qxo0;
directed, complete graph G with edge weights d

Output. Tour of the traveling salesperson of minimum total length
that visits all the cities and returns to the starting point;

Frankfurt
am Main

AUSTRIA

0 50 100 km
0 50 100mi

Traveling Salesperson Problem (TSP)

Input. Distinct cities {v1,02, ..., v, } with distances d(v;, v;) € Qxo0;
directed, complete graph G with edge weights d

Output. Tour of the traveling salesperson of minimum total length

that visits all the cities and returns to the starting point;
i.e., a Hamiltonian cycle (v(1y, .-+, Up(n), Un(1)) of G
of minimum weight

Z A(V (i) Vn(it1)) T A (On(n)s On(1))

Wueshan:kn* am Main

Traveling Salesperson Problem (TSP)

Input.

Distinct cities {v1, v», ..

., Un} with distances d(v;,v;) € Q>o;

directed, complete graph G with edge weights d

Output. Tour of the traveling salesperson of minimum total length
that visits all the cities and returns to the starting point;

LLIX.

Pharir
Wieshan:kn

]

5

o A

i.e., a Hamiltonian cycle (v(1y, .-+, Up(n), Un(1)) of G

= of minimum weight

Frankfurt
am Main

n—1
; A(Vr(iys Vr(it1)) T A(Or(n)s V(1))

Brute-force.
B Try all permutations and pick the one with smallest

weight.
B Runtime:

Traveling Salesperson Problem (TSP)

Input. Distinct cities {v1,02, ..., v, } with distances d(v;, v;) € Qxo0;
directed, complete graph G with edge weights d

Output. Tour of the traveling salesperson of minimum total length

that visits all the cities and returns to the starting point;
. i.e., a Hamiltonian cycle (v(1y, .-+, Up(n), Un(1)) of G
— =« of minimum weight

n—1
; A(Vr(iys Vr(it1)) T A(Or(n)s V(1))

Prarin
Wieaha\:]gn*

5

S |

Frankfurt
am Main

Brute-force.
B Try all permutations and pick the one with smallest

AUSTRIA *| Welght
Feem | m Runtime: @(n! - n) = n - 29(nlogn)

TSP — Dynamic Programming (Bellman-Held-Karp Algorithn:j

ldea.

B Dynamic programming means re-using optimal substructures
(typically stored in a “table™). We store optimal partial tour lengths.

Richard E. Bellman

TSP — Dynamic Programming (Bellman-Held-Karp Algorithnzs

ldea.

B Dynamic programming means re-using optimal substructures
(typically stored in a “table™). We store optimal partial tour lengths.

M Select a starting vertex s € V.

ne

Richard E. Bellman

TSP — Dynamic Programming (Bellman-Held-Karp Algorithnzj

ldea.

B Dynamic programming means re-using optimal substructures
(typically stored in a “table™). We store optimal partial tour lengths.

B Select a starting vertex s € V.
B Foreach SCV —sanduv €S, let:

OPT|S, v] = length of a shortest s-v-path
that visits precisely the vertices of SU {s}.

Richard E. Bellman

TSP — Dynamic Programming (Bellman-Held-Karp Algorithnzs

ldea.

B Dynamic programming means re-using optimal substructures
(typically stored in a “table™). We store optimal partial tour lengths.

B Select a starting vertex s € V.
B Foreach SCV —sanduv €S, let:

OPT|S, v] = length of a shortest s-v-path
that visits precisely the vertices of SU {s}.

S

B Use OPT[S — v, u] to compute OPT|S, v]. Richard E. Bellman

TSP — Dynamic Programming

Details.
B The base case S = {v} is easy: OPT[{v},v| =

10 -

TSP — Dynamic Programming

Details.
B The base case S = {v} is easy: OPT[{v}, v] = d(s,0).

TSP — Dynamic Programming

Details.
B The base case S = {v} is easy: OPT[{v}, v] = d(s,0).
B When |S| > 2, compute OPT|S, v] recursively:

OPT|S, 0] =

10 -

TSP — Dynamic Programming

Details.

B The base case S = {v} is easy: OPT[{v}, v] = d(s,0).

B When |S| > 2, compute O
OPT|S, v] = min{OPT

PT(S, v] recursively:

S —o,u|l+d(u,0) | ueS—v}

10 -

TSP — Dynamic Programming

Details.
B The base case S = {v} is easy: OPT[{v}, v] = d(s,0).
B When |S| > 2, compute OPT|S, v] recursively:

OPT|S,v] = min{OPT|S — v, u] +d(u,0) | u € S — v}

B After computing OPT|S,v] foreach S C V —s and each v € V — 5,
the optimal solution is easily obtained as follows:

OPT=

TSP — Dynamic Programming

Details.

B The base case S = {v} is easy: OPT[{v}, v] = d(s,0).

B When |S| > 2, compute O
OPT|S, v] = min{OPT

PT(S, v] recursively:

S —o,u|l+d(u,0) | ueS—v}

B After computing OPT|S,v] foreach S C V —s and each v € V — 5,
the optimal solution is easily obtained as follows:

OPT= min{OPT|V —5s,0|} +d(v,5) |[v eV —5s}

10 -

TSP — Dynamic Programming

Pseudocode.

Bellmann-Held-Karp (G, d):

foreach v € V —s do
| OPT[{v},v] =d(s,v)
forj=2ton—1do
foreach S C V — s with |S| =/ do
foreach v € S do
OPTI[S,v] = min{ OPT[S — v, u]
L +d(u,v) |lueS—uv}

return min{ OPT|V —s,v]4+d(v,s) |[v eV —s}

11 -

TSP — Dynamic Programming

Pseudocode.

Bellmann-Held-Karp (G, d):

foreach v € V —s do
| OPT[{v},v] =d(s,v)
forj=2ton—1do
foreach S C V — s with |S| =/ do
foreach v € S do
OPTI[S,v] = min{ OPT[S — v, u]
L +d(u,v) |lueS—uv}

return min{ OPT|V —s,v]4+d(v,s) |[v eV —s}

B A shortest tour can be found by backtracking
the DP table (as usual).

11 -

TSP — Dynamic Programming

Pseudocode.

Bellmann-Held-Karp (G, d):

foreach v € V —s do
| OPT[{v},v] =d(s,v)
forj=2ton—1do
foreach S C V — s with |S| =/ do
foreach v € S do
OPTI[S,v] = min{ OPT[S — v, u]
L +d(u,v) |lueS—uv}

return min{ OPT|V —s,v]4+d(v,s) |[v eV —s}

B A shortest tour can be found by backtracking
the DP table (as usual).

Analysis.

11 -

TSP — Dynamic Programming

Pseudocode.

Bellmann-Held-Karp (G, d):

foreach v € V — s do
| OPT[{v},v] =d(s,v)
forj=2ton—1do
foreach S C V — s with |S| =/ do
foreach v € S do
OPTIS, v] = min{ OPT[S — v, u]
L +d(u0) [ueS—v) [O)

return min{ OPT|V —s,v]4+d(v,s) |[v eV —s}

B A shortest tour can be found by backtracking
the DP table (as usual).

Analysis.

11 -

TSP — Dynamic Programming

Pseudocode.

Bellmann-Held-Karp (G, d):

foreach v € V —s do
| OPT[{v},v] =d(s,v)
forj=2ton—1do
foreach S C V — s with |S| =/ do
foreach v € S do }O0(n)
OPTIS, v] = min{ OPT[S — v, u]
L +d(u0) [ueS—v) [O)

return min{ OPT|V —s,v]4+d(v,s) |[v eV —s}

B A shortest tour can be found by backtracking
the DP table (as usual).

Analysis.

11 -

11 -

TSP — Dynamic Programming

Pseudocode. Analysis.

Bellmann-Held-Karp (G, d):

foreach v € V — s do
| OPT[{v},v] =d(s,v)

forj=2ton—1do }O(Z")
foreach S C V — s with |S| = j do
foreach v € S do +O(n)

O(n)

OPTIS, v] = min{ OPT[S — v, u]
L +d(u,v)|u€5—v}}

return min{ OPT|V —s,v]4+d(v,s) |[v eV —s}

B A shortest tour can be found by backtracking
the DP table (as usual).

11 -

TSP — Dynamic Programming

Pseudocode. Analysis.
B running time for the central

Bellmann-Held-Karp(G, d): for-loop s in

foreach v € V —s do n,,2 % (A1
" OPT[{0}, 0] — d(s, v) O(2"n%) € O*(2")
forj=2ton—1do }O(Z”)
foreach S C V — s with |S| = j do
foreach v € S do +O(n)

O(n)

OPTIS, v] = min{ OPT[S — v, u]
L +d(u,v)|u€5—v}}

return min{ OPT|V —s,v]4+d(v,s) |[v eV —s}

B A shortest tour can be found by backtracking
the DP table (as usual).

11 -

TSP — Dynamic Programming

Pseudocode. Analysis.
B running time for the central

Bellmann-Held-Karp(G, d): for-loop s in

foreach v € V — s do n..9 % (A1
" OPT[{0}, 0] — d(s, v) O(2"n%) € O*(2")
for j=2ton—1do }0(2”) B Space usage in ©(2" - n)
foreach S C V — s with |S| = j do
foreach v € S do +O(n)

O(n)

OPTIS, v] = min{ OPT[S — v, u]
L +d(u,v)|u€5—v}}

return min{ OPT|V —s,v]4+d(v,s) |[v eV —s}

B A shortest tour can be found by backtracking
the DP table (as usual).

11-9

TSP — Dynamic Programming

Pseudocode. Analysis.
B running time for the central

Bellmann-Held-Karp(G, d): for-loop s in

foreach v € V — s do 7,2 ¥ (AN

" OPT[{v}, 0] — d(s, 0) O(2"n%) € O7(2%)

for j= 2 to n— 1 do }0(2”) B Space usage in ©(2" - n)
foreach S C V —s with |S| = j do B Or actually better? What table

foreach v € S do +O(n) 5
OPT[S, o] = min{ OPT[S — v, 1] values do we need to store
+d(u,v) |lueS—uv} O(n)

return min{ OPT|V —s,v]4+d(v,s) |[v eV —s}

B A shortest tour can be found by backtracking
the DP table (as usual).

TSP — Discussion

B DP algorithm that runs in O*(2") time and O*(2"") space.

B Brute-force runs in 29("1987) time and O (#2) space.

= Sacrifice space for speedup.

12 -

TSP — Discussion

B DP algorithm that runs in O*(2") time and O*(2"") space.

B Brute-force runs in 29("1987) time and O (#2) space.

= Sacrifice space for speedup.

B Many variants of TSP: symmetric, assymetric, metric, vehicle routing problems, . ..

12 -

12 -

TSP — Discussion

B DP algorithm that runs in O*(2") time and O*(2"") space.

B Brute-force runs in 29("1987) time and O (#2) space.

= Sacrifice space for speedup.
B Many variants of TSP: symmetric, assymetric, metric, vehicle routing problems, . ..
B Metric TSP can easily be 2-approximated. (Do you remember how? — last lecture)

B Eucledian TSP is considered in the course Approxiomation Algorithms.

12 -

TSP — Discussion

B DP algorithm that runs in O*(2") time and O*(2"") space.

B Brute-force runs in 29("1987) time and O (#2) space.

= Sacrifice space for speedup.
Many variants of TSP: symmetric, assymetric, metric, vehicle routing problems, . ..
Metric TSP can easily be 2-approximated. (Do you remember how? — last lecture)

Eucledian TSP is considered in the course Approxiomation Algorithms.

In practice, one successful approach is to start with a greedily computed Hamiltonian
cycle and then use 2-OPT and 3-OPT swaps to improve it.

Maximum Independent Set (MIS)

Input. Graph G = (V, E) with n vertices.

13 -

Maximum Independent Set (MIS)

Input. Graph G = (V, E) with n vertices.

Output. Maximum size independent set, i.e., a largest set U C V
such that no pair of vertices in U is adjacent in G.

13 -

Maximum Independent Set (MIS)

Input. Graph G = (V, E) with n vertices.

Output. Maximum size independent set, i.e., a largest set U C V
such that no pair of vertices in U is adjacent in G.

Brute-force.
B Try all subets of V.
B Runtime: O(2" - n)

13 -

Maximum Independent Set (MIS)

Input. Graph G = (V, E) with n vertices.

Output. Maximum size independent set, i.e., a largest set U C V
such that no pair of vertices in U is adjacent in G.

Naive MIS branching.
B Take a vertex v or don't take it.

Brute-force.
B Try all subets of V.
B Runtime: O(2" - n)

13 -

Maximum Independent Set (MIS)

Input. Graph G = (V, E) with n vertices.

Output. Maximum size independent set, i.e., a largest set U C V
such that no pair of vertices in U is adjacent in G.

Naive MIS branching.
B Take a vertex v or don't take it.

NaiveMIS(G):
Brute-force. if V —— O then
B Try all subets of V. | return 0

. _ n
B Runtime: 0(2 n) v = arbitrary vertex in V(G)

return max{1+4+ NaiveMIS(G — N(v) — {v}),
NaiveMIS(G — {v})}

13 -

14 -1

14 - 2

14 -

14 - 10

14 - 11

14 - 12

14 - 13

fmm

3 1+ 7? 1 1+0
|

MIS — Smarter Branching

Lemma.

Let U be a maximum independent set in G. Then
for each v € V:

lL.veU=NwNU=0

2. v¢U=|N(v)nU| >1

Thus, N[v] := N(v) U{v} contains some y € U
and no other vertex of N|y| is in U.

15 -

MIS — Smarter Branching

Lemma.

Let U be a maximum independent set in G. Then
for each v € V:

l.L.velU=NONU=O

2. v¢U=|N(v)nU| >1

Thus, N[v] := N(v) U{v} contains some y € U
and no other vertex of N|y| is in U.

Smarter MIS branching.

B For some vertex v, branch on vertices in N|v|.

15 -

MIS — Smarter Branching

Lemma.

Let U be a maximum independent set in G. Then
for each v € V:

l.L.velU=NONU=O

2. v¢U=|N(v)nU| >1

Thus, N[v] := N(v) U{v} contains some y € U
and no other vertex of N|y| is in U.

Smarter MIS branching.

B For some vertex v, branch on vertices in N|v|.

SmarterMIS(G):

if V== then
L return 0

v = vertex of minimum degree in V(G)
return 1 + max{MIS(G — N|y]) | y € N|v]}

15 -

MIS — Smarter Branching

Lemma.

Let U be a maximum independent set in G. Then
for each v € V:

l.L.velU=NONU=O

2. v¢U=|N(v)nU| >1

Thus, N[v] := N(v) U{v} contains some y € U
and no other vertex of N|y| is in U.

Smarter MIS branching.

B For some vertex v, branch on vertices in N|v|.

SmarterMIS(G):

if V== then
L return 0

v = vertex of minimum degree in V(G)
return 1 + max{MIS(G — N|y]) | y € N|v]}

B Correctness follows
from the lemma.

B We prove a runtime of

O*(3"/3) = O*(1.4423").

15 -

MIS — Branching Analysis

Execution corresponds to a search tree whose vertices are
labeled with the input of the respective recursive call.

/G\

G — N|v1] G — NZ)Q

AN

o l :

%, %,

16 -

MIS — Branching Analysis

Execution corresponds to a search tree whose vertices are
labeled with the input of the respective recursive call.

B Let B(n) be the maximum num-

G
ber of leaves of a search tree for a / \

raph with 7 vertices.
Brap G — N U]_ G — N 7)2

J A

N -
N w0
-
-

16 -

MIS — Branching Analysis

Execution corresponds to a search tree whose vertices are
labeled with the input of the respective recursive call.

B Let B(n) be the maximum num-

G
ber of leaves of a search tree for a / \

raph with 7 vertices.
Brap G — N U]_ G — N 7)2

M Search-tree has height < n. / \ / \

N -
N w0
-
-

16 -

MIS — Branching Analysis

Execution corresponds to a search tree whose vertices are
labeled with the input of the respective recursive call.

B Let B(n) be the maximum num-

G
ber of leaves of a search tree for a / \

raph with 7 vertices.
Brap G — N U]_ G — N 7)2

M Search-tree has height < n.
~» The runtime of the algorithm is / \ / \

T(n) € O(nB(n)) = O*(B(n)).

N -
N w0
-
-

MIS — Branching Analysis

Execution corresponds to a search tree whose vertices are
labeled with the input of the respective recursive call.

B Let B(n) be the maximum num-

G
ber of leaves of a search tree for a / \

raph with 7 vertices.
Brap G — N U]_ G — N 7)2

M Search-tree has height < n.
~» The runtime of the algorithm is / \ / \
T(n) € OnB(n)) = O"(B(n)).

B lLet's consider an example run.

N -
N w0
-
-

16 -

17 -1

17 -2

1+7

1
+2

I
C

17 -

17 -

17 -

17 - 10

17 - 11

17 - 12

17 - 13

17 - 14

17 - 15

17 - 16

17 - 17

17 - 18

17 - 19

17 - 20

17-21

17 - 22

17 - 23

MIS — Runtime Analysis

For a worst-case n-vertex graph G (n > 1):
B(n) < Y B(n— (deg(y)+1))
yEN|v]

where v is a minimum degree vertex of G, and B(n') < B(n) for any n’ < n.

18 -

MIS — Runtime Analysis

For a worst-case n-vertex graph G (n > 1):
B(n) < Y B(n— (deg(y) +1))
yEN|v]

where v is a minimum degree vertex of G, and B(n') < B(n) for any n’ < n.

18 -

MIS — Runtime Analysis

For a worst-case n-vertex graph G (n > 1):
B(n) < %{ | B(n — (deg(y) +1)) < (deg(v) +1)-B(n— (deg(v) +1))
yeN|v

where v is a minimum degree vertex of G, and B(n') < B(n) for any n’ < n.

18 -

MIS — Runtime Analysis

For a worst-case n-vertex graph G (n > 1):

B(n) < %{]B(n — (deg(y) +1)) < (deg(v) + 1) -B(n— (deg(v)+1))
yeN|v

where v is a minimum degree vertex of G, and B(n') < B(n) for any n’ < n.

We prove by induction that B(n) < 3"/3.

18 -

MIS — Runtime Analysis

For a worst-case n-vertex graph G (n > 1):

B(n) < %{]B(n — (deg(y) +1)) < (deg(v) + 1) -B(n— (deg(v)+1))
yeN|v

where v is a minimum degree vertex of G, and B(n') < B(n) for any n’ < n.

We prove by induction that B(n) < 3"/3.
B Base case: B(0) =1<3%3 =1

18 -

MIS — Runtime Analysis

For a worst-case n-vertex graph G (n > 1):

B(n) < %{]B(n — (deg(y) +1)) < (deg(v) + 1) -B(n— (deg(v)+1))
yeN|v

where v is a minimum degree vertex of G, and B(n') < B(n) for any n’ < n.

We prove by induction that B(n) < 3"/3.

B Base case: B(0) =1<3%3 =1

B Induc. hypothesis: for all n/ < n, B(n') < 31'/3 holds.
B Induc. step: for n > 1, set s = deg(v) + 1.

18 -

MIS — Runtime Analysis

For a worst-case n-vertex graph G (n > 1):

B(n) < %{]B(n — (deg(y) +1)) < (deg(v) + 1) -B(n— (deg(v)+1))
yeN|v

where v is a minimum degree vertex of G, and B(n') < B(n) for any n’ < n.

We prove by induction that B(n) < 3"/3.

B Base case: B(0) =1<3%3 =1

B Induc. hypothesis: for all n/ < n, B(n') < 31'/3 holds.
B Induc. step: for n > 1, set s = deg(v) + 1.

B(n) <s-B(n—s)

18 -

MIS — Runtime Analysis

For a worst-case n-vertex graph G (n > 1):

B(n) < %{]B(n — (deg(y) +1)) < (deg(v) + 1) -B(n— (deg(v)+1))
yeN|v

where v is a minimum degree vertex of G, and B(n') < B(n) for any n’ < n.

We prove by induction that B(n) < 3"/3.

B Base case: B(0) =1<3%3 =1

B Induc. hypothesis: for all n/ < n, B(n') < 31'/3 holds.
B Induc. step: for n > 1, set s = deg(v) + 1.

B(n) <s-B(n—s)<s- 3(n—s)/3

18 -

MIS — Runtime Analysis

For a worst-case n-vertex graph G (n > 1):

B(n) < %{]B(n — (deg(y) +1)) < (deg(v) + 1) -B(n— (deg(v)+1))
yeN|v

where v is a minimum degree vertex of G, and B(n') < B(n) for any n’ < n.

We prove by induction that B(n) < 3"/3.

B Base case: B(0) =1<3%3 =1

B Induc. hypothesis: for all n/ < n, B(n') < 31'/3 holds.
B Induc. step: for n > 1, set s = deg(v) + 1.

B(n) <s-B(n—s) <s-30179)/3 = _5..31/3

18 -

18- 10

MIS — Runtime Analysis

For a worst-case n-vertex graph G (n > 1):

B(n) < %{]B(n — (deg(y) +1)) < (deg(v) + 1) -B(n— (deg(v)+1))
yeN|v

where v is a minimum degree vertex of G, and B(n') < B(n) for any n’ < n.

We prove by induction that B(n) < 3"/3.

B Base case: B(0) =1<3%3 =1

B Induc. hypothesis: for all n/ < n, B(n') < 31'/3 holds.
B Induc. step: for n > 1, set s = deg(v) + 1.

B(n) <s-B(n—s) <s-3n=5)/3 = 73 .3M/3 L 3n/3

18- 11

MIS — Runtime Analysis

For a worst-case n-vertex graph G (n > 1):
B(n) < Y B(n—(deg(y)+1)) < (deg(v) +1) B(n— (deg(v)+1))
YyEN|v]
where v is a minimum degree vertex of G, and B(n') < B(n) for any n’ < n.

S
L S

We prove by induction that B(n) < 3"/3.

B Base case: B(0) =1<3%3 =1

B Induc. hypothesis: for all n/ < n, B(n') < 31'/3 holds.
B Induc. step: for n > 1, set s = deg(v) + 1.

B(n) <s-B(n—s) <s-3n=5)/3 = 73 .3M/3 L 3n/3

-

1 2 3 4 5

— 0.6934 — 1 ..
— 0.9615 +— 0.9245

18 - 12

MIS — Runtime Analysis

For a worst-case n-vertex graph G (n > 1):
B(n) < Y B(n—(deg(y)+1)) < (deg(v) +1) B(n— (deg(v)+1))
YyEN|v]
where v is a minimum degree vertex of G, and B(n') < B(n) for any n’ < n.

S
L S 3

We prove by induction that B(n) < 3"/3.
B Base case: B(0) =1<3%3 =1 .
B Induc. hypothesis: for all n/ < n, B(n') < 31'/3 holds.
B Induc. step: for n > 1, set s = deg(v) + 1.

B(n) <s-B(n—s) <s-3n=5)/3 = 73 .3M/3 < 3n/3

051

-

0
k < 1 for all natural numbers

1 2 3 4 5

— 0.6934 — 1 ..
— 0.9615 +— 0.9245

18- 13

MIS — Runtime Analysis

For a worst-case n-vertex graph G (n > 1):
B(n) < Y B(n—(deg(y)+1)) < (deg(v) +1) B(n— (deg(v)+1))
YyEN|v]
where v is a minimum degree vertex of G, and B(n') < B(n) for any n’ < n.

S
L S 3

We prove by induction that B(n) < 3"/3.
B Base case: B(0) =1<3%3 =1 .
B Induc. hypothesis: for all n/ < n, B(n') < 31'/3 holds.
B Induc. step: for n > 1, set s = deg(v) + 1.

B(n) <s-B(n—s) <s-3n=5)/3 = 73 .3M/3 < 3n/3

B(Yl) & O*(%n) g O* (144225”) k < 1 for all natural numbers

051

-

0

1 2 3 4 5

— 0.6934 — 1 ..
— 0.9615 +— 0.9245

MIS — Discussion

B Smarter branching leads to an O*(1.44225™)-time algorithm.

B In comparison, brute-force runs in O*(2") time.

19 -

MIS — Discussion

B Smarter branching leads to an O*(1.44225™)-time algorithm.

B In comparison, brute-force runs in O*(2") time.

B Algorithms for MIS known that run in O*(1.2202") time and polynomial space,
B and in O*(1.2109") time and exponential space.

19 -

MIS — Discussion

Smarter branching leads to an O*(1.44225")-time algorithm.

In

Algorithms for MIS known that run in O*(1.2202") time and polynomial space,

comparison, brute-force runs in O*(2") time.

and in O*(1.2109") time and exponential space.

W
W

nat vertices are always in a MIS?

nat vertices can we savely assume are in a MIS?

Aa

vanced case analysis in [Fomin, Kratsch Ch 2.3]

leads to an O*(1.2786")-time algorithm.

3

19 -

MIS — Discussion

Smarter branching leads to an O*(1.44225")-time algorithm.

In comparison, brute-force runs in O*(2") time.

Algorithms for MIS known that run in O*(1.2202") time and polynomial space,

and in O*(1.2109") time and exponential space.
What vertices are always in a MIS?

What vertices can we savely assume are in a MIS?

Advanced case analysis in [Fomin, Kratsch Ch 2.3]
leads to an O*(1.2786")-time algorithm.

Exercise: Edge-branching for MIS

3

19 -

| iterature

Main source:
B [Fomin, Kratsch Ch1] “Exact Exponential Algorithms”
Referenced papers:

ADMYV '15] Classic Nintendo Games are (Computationally) Hard

Mann '17] The Top Eight Misconceptions about NP-Hardness

	Title page
	NP-hardness
	Examples
	Formal view
	Misconceptions
	Dealing with NP-Hard Problems

	Motivation for exact algorithms
	Give up? Better Hardware?
	O*-notation

	Traveling Salesperson Problem (TSP)
	Definition & Brute-force
	Dynamic programming idea
	Dynamic programming details
	DP pseudocode & analysis
	Discussion

	Maximum Independent Set (MIS)
	Definition & Brute-force
	Naive branching example
	Smarter branching
	Branching analysis
	Smarter branching example
	Smater branching analysis
	Discussion

	Literature

