

Advanced Algorithms

Exact Algorithms for NP-Hard Problems

Traveling Salesman Problem and Maximal Independent Set

Johannes Zink · WS23/24

Examples of NP-Hard Problems

Many important (practical) problems are NP-hard, for example . . .

Examples of NP-Hard Problems

Many important (practical) problems are NP-hard, for example . . .

Examples of NP-Hard Problems

Many important (practical) problems are NP-hard, for example . . .

TSP

MIS

$$(x_1 \lor x_2 \lor \neg x_4) \land (\neg x_2 \lor x_3 \lor \neg x_4) \land (x_3 \lor x_7 \lor \neg x_8) \land$$

SAT

Graph Drawing

Games

- P is the complexity class that consists of all problems that can be solved in polynomial time.
- NP is the complexity class that consists of all problems that can be solved in *non-deterministic polynomial time*, i.e., a problem in NP can be solved in polynomial time by a hypothetical machine that can duplicate itsself to try different parameters in its computation.

- P is the complexity class that consists of all problems that can be solved in polynomial time.
- NP is the complexity class that consists of all problems that can be solved in *non-deterministic polynomial time*, i.e., a problem in NP can be solved in polynomial time by a hypothetical machine that can duplicate itsself to try different parameters in its computation.
- There is another, more accessible equivalent definition:
 A problem is in NP if the correctness of a solution can be verified in polynomial time.

- NP is the complexity class that consists of all problems that can be solved in *non-deterministic polynomial time*, i.e., a problem in NP can be solved in polynomial time by a hypothetical machine that can duplicate itsself to try different parameters in its computation.
- There is another, more accessible equivalent definition:

 A problem is in NP if the correctness of a solution can be verified in polynomial time.
- It is not proven yet, but all indications suggest that $P \neq NP$.

- NP is the complexity class that consists of all problems that can be solved in *non-deterministic polynomial time*, i.e., a problem in NP can be solved in polynomial time by a hypothetical machine that can duplicate itsself to try different parameters in its computation.
- There is another, more accessible equivalent definition:

 A problem is in NP if the correctness of a solution can be verified in polynomial time.
- It is not proven yet, but all indications suggest that $P \neq NP$.
- The hardest problems in NP are called *NP-complete*.

- NP is the complexity class that consists of all problems that can be solved in *non-deterministic polynomial time*, i.e., a problem in NP can be solved in polynomial time by a hypothetical machine that can duplicate itsself to try different parameters in its computation.
- There is another, more accessible equivalent definition:
 A problem is in NP if the correctness of a solution can be verified in polynomial time.
- It is not proven yet, but all indications suggest that $P \neq NP$.
- The hardest problems in NP are called *NP-complete*.
- All problems that are at least as hard as any NP-complete problem are called NP-hard.
 One can show NP-hardness by a polynomial-time reduction from an NP-hard problem.

- NP is the complexity class that consists of all problems that can be solved in *non-deterministic polynomial time*, i.e., a problem in NP can be solved in polynomial time by a hypothetical machine that can duplicate itsself to try different parameters in its computation.
- There is another, more accessible equivalent definition:

 A problem is in NP if the correctness of a solution can be verified in polynomial time.
- It is not proven yet, but all indications suggest that $P \neq NP$.
- The hardest problems in NP are called *NP-complete*.
- All problems that are at least as hard as any NP-complete problem are called NP-hard.
 One can show NP-hardness by a polynomial-time reduction from an NP-hard problem.
- \blacksquare Assuming P \neq NP, NP-hard problems cannot be solved in polynomial time.

Common misconceptions [Mann '17]

■ If similar problems are NP-hard, then the problem at hand is also NP-hard.

- If similar problems are NP-hard, then the problem at hand is also NP-hard.
- Problems that are hard to solve in practice by an engineer are NP-hard.

- If similar problems are NP-hard, then the problem at hand is also NP-hard.
- Problems that are hard to solve in practice by an engineer are NP-hard.
- NP-hard problems cannot be solved optimally.

- If similar problems are NP-hard, then the problem at hand is also NP-hard.
- Problems that are hard to solve in practice by an engineer are NP-hard.
- NP-hard problems cannot be solved optimally.
- NP-hard problems cannot be solved more efficiently than by exhaustive search.

- If similar problems are NP-hard, then the problem at hand is also NP-hard.
- Problems that are hard to solve in practice by an engineer are NP-hard.
- NP-hard problems cannot be solved optimally.
- NP-hard problems cannot be solved more efficiently than by exhaustive search.
- For solving NP-hard problems, the only practical possibility is the use of heuristics.

What should we do?

What should we do?

- Sacrifice optimality for speed
 - Heuristics (Simulated Annealing, Tabu-Search)
 - Approximation Algorithms (MST-Edge-Doubling, Christofides-Algorithm)

Heuristic

Approximation

NP-hard

What should we do?

- Sacrifice optimality for speed
 - Heuristics (Simulated Annealing, Tabu-Search)
 - Approximation Algorithms (MST-Edge-Doubling, Christofides-Algorithm)
- Optimal Solutions
 - Exact exponential-time algorithms (with a better running time than just a brute-force algorithm)
 - Fine-grained analysis –parameterized algorithms

What should we do?

- Sacrifice optimality for speed
 - Heuristics (Simulated Annealing, Tabu-Search)
 - Approximation Algorithms (MST-Edge-Doubling, Christofides-Algorithm)
- Optimal Solutions
 - Exact exponential-time algorithms (with a better running time than just a brute-force algorithm)
 - Fine-grained analysis –parameterized algorithms

this lecture

efficient (polynomial-time)
vs.

inefficient (super-pol.time)

Exponential running time ... should we just give up?

efficient (polynomial-time) vs.

inefficient (super-pol.time)

efficient (polynomial-time) vs.

inefficient (super-pol.time)

Exponential running time ...should we just give up?

• ...can be *'fast''* for medium-size instances:

efficient (polynomial-time) vs.

inefficient (super-pol.time)

Exponential running time ...should we just give up?

- ...can be "fast" for medium-size instances:
 - "hidden" constants in polynomial-time algorithms:

$$2^{100}n > 2^n$$
 for $n \le 100$

efficient (polynomial-time) vs.

inefficient (super-pol.time)

Exponential running time ...should we just give up?

- ...can be "fast" for medium-size instances:
 - "hidden" constants in polynomial-time algorithms:

$$2^{100}n > 2^n$$
 for $n \le 100$

 $n^4 > 1.2^n \text{ for } n < 100$

efficient (polynomial-time) vs.

inefficient (super-pol.time)

Exponential running time ...should we just give up?

- **1...** can be "fast" for medium-size instances:
 - "hidden" constants in polynomial-time algorithms:

$$2^{100}n > 2^n$$
 for $n \le 100$

- $n^4 > 1.2^n \text{ for } n \le 100$
- TSP solvable exactly for $n \le 2000$ and specialized instances with $n \le 85900$

Exponential running time ... maybe we need better hardware?

Exponential running time ... maybe we need better hardware?

Suppose an algorithm uses a^n steps & can solve for a fixed amount of time t instances up to size n_0 .

Exponential running time ... maybe we need better hardware?

- Suppose an algorithm uses a^n steps & can solve for a fixed amount of time t instances up to size n_0 .
- Improving hardware by a constant factor c only adds a constant (relative to c) to n_0 :

$$a^{n_0'} = c \cdot a^{n_0} \iff n_0' = \log_a c + n_0$$

Exponential running time ... maybe we need better hardware?

- Suppose an algorithm uses a^n steps & can solve for a fixed amount of time t instances up to size n_0 .
- Improving hardware by a constant factor c only adds a constant (relative to c) to n_0 :

$$a^{n_0'} = c \cdot a^{n_0} \iff n_0' = \log_a c + n_0$$

lacktriangle Reducing the base of the runtime to b < a results in a *multiplicative* increase:

$$b^{n_0'} = a^{n_0} \rightsquigarrow n_0' = n_0 \cdot \log_b a$$

Exponential running time ... but can we at least find exact algorithms that are faster than brute-force (trivial) approaches?

Exponential running time ... but can we at least find exact algorithms that are faster than **brute-force** (trivial) approaches?

TSP: Bellman-Held-Karp algorithm has a running time in $\mathcal{O}(2^n n^2)$ compared to an $\mathcal{O}(n! \cdot n)$ -time brute-force search.

Exponential running time ... but can we at least find exact algorithms that are faster than **brute-force** (trivial) approaches?

- TSP: Bellman-Held-Karp algorithm has a running time in $\mathcal{O}(2^n n^2)$ compared to an $\mathcal{O}(n! \cdot n)$ -time brute-force search.
- MIS: algorithm by Tarjan & Trojanowski runs in $\mathcal{O}^*(2^{n/3})$ time compared to a trivial $\mathcal{O}(n2^n)$ -time approach.

 \mathcal{O}^* hides polynomial factors in n (see next slide)

Exponential running time ... but can we at least find exact algorithms that are faster than brute-force (trivial) approaches?

- TSP: Bellman-Held-Karp algorithm has a running time in $\mathcal{O}(2^n n^2)$ compared to an $\mathcal{O}(n! \cdot n)$ -time brute-force search.
- MIS: algorithm by Tarjan & Trojanowski runs in $\mathcal{O}^*(2^{n/3})$ time compared to a trivial $\mathcal{O}(n2^n)$ -time approach.
- COLORING: Lawler gave an $\mathcal{O}(n(1+\sqrt[3]{3})^n)$ algorithm compared to $\mathcal{O}(n^{n+1})$ -time brute-force search.

 \mathcal{O}^* hides polynomial factors in n (see next slide)

 \mathcal{O}^* hides polynomial

factors in n (see next slide)

Motivation

Exponential running time ... but can we at least find exact algorithms that are faster than **brute-force** (trivial) approaches?

- TSP: Bellman-Held-Karp algorithm has a running time in $\mathcal{O}(2^n n^2)$ compared to an $\mathcal{O}(n! \cdot n)$ -time brute-force search.
- MIS: algorithm by Tarjan & Trojanowski runs in $\mathcal{O}^*(2^{n/3})$ time compared to a trivial $\mathcal{O}(n2^n)$ -time approach.
- COLORING: Lawler gave an $\mathcal{O}(n(1+\sqrt[3]{3})^n)$ algorithm compared to $\mathcal{O}(n^{n+1})$ -time brute-force search.
- SAT: No better algorithm than trivial brute-force search known.

 \mathcal{O}^* -Notation

$$\mathcal{O}(1.4^n \cdot n^2) \subsetneq \mathcal{O}(1.5^n \cdot n) \subsetneq \mathcal{O}(2^n)$$

\mathcal{O}^* -Notation

$$\mathcal{O}(1.4^n \cdot n^2) \subsetneq \mathcal{O}(1.5^n \cdot n) \subsetneq \mathcal{O}(2^n)$$

■ base of exponential part dominates → negligible polynomial factors

\mathcal{O}^* -Notation

$$\mathcal{O}(1.4^n \cdot n^2) \subsetneq \mathcal{O}(1.5^n \cdot n) \subsetneq \mathcal{O}(2^n)$$

■ base of exponential part dominates ~> negligible polynomial factors

$$f(n) \in \mathcal{O}^*(g(n)) \Leftrightarrow \exists \text{ polynomial } p(n) \text{ with } f(n) \in \mathcal{O}(g(n)p(n))$$

\mathcal{O}^* -Notation

$$\mathcal{O}(1.4^n \cdot n^2) \subsetneq \mathcal{O}(1.5^n \cdot n) \subsetneq \mathcal{O}(2^n)$$

■ base of exponential part dominates ~> negligible polynomial factors

$$f(n) \in \mathcal{O}^*(g(n)) \Leftrightarrow \exists \text{ polynomial } p(n) \text{ with } f(n) \in \mathcal{O}(g(n)p(n))$$

typical result

Approach	Runtime in $\mathcal{O} ext{-Notation}$	\mathcal{O}^* -Notation
Brute-Force	$\mathcal{O}(2^n)$	$\mathcal{O}^*(2^n)$
Algorithm A	$\mathcal{O}(1.5^n \cdot n)$	$\mathcal{O}^*(1.5^n)$
Algorithm B	$\mathcal{O}(1.4^n \cdot n^2)$	$\mathcal{O}^*(1.4^n)$

Input. Distinct cities $\{v_1, v_2, \dots, v_n\}$ with distances $d(v_i, v_j) \in Q_{\geq 0}$; directed, complete graph G with edge weights d

Input. Distinct cities $\{v_1, v_2, \dots, v_n\}$ with distances $d(v_i, v_j) \in Q_{\geq 0}$; directed, complete graph G with edge weights d

Output. Tour of the traveling salesperson of minimum total length that visits all the cities and returns to the starting point;

Input. Distinct cities $\{v_1, v_2, \dots, v_n\}$ with distances $d(v_i, v_j) \in Q_{\geq 0}$; directed, complete graph G with edge weights d

Output. Tour of the traveling salesperson of minimum total length that visits all the cities and returns to the starting point;

i.e., a Hamiltonian cycle $(v_{\pi(1)}, \ldots, v_{\pi(n)}, v_{\pi(1)})$ of G of minimum weight

$$\sum_{i=1}^{n-1} d(v_{\pi(i)}, v_{\pi(i+1)}) + d(v_{\pi(n)}, v_{\pi(1)})$$

Input. Distinct cities $\{v_1, v_2, \dots, v_n\}$ with distances $d(v_i, v_j) \in Q_{\geq 0}$; directed, complete graph G with edge weights d

Output. Tour of the traveling salesperson of minimum total length that visits all the cities and returns to the starting point;

i.e., a Hamiltonian cycle $(v_{\pi(1)}, \ldots, v_{\pi(n)}, v_{\pi(1)})$ of G of minimum weight

$$\sum_{i=1}^{n-1} d(v_{\pi(i)}, v_{\pi(i+1)}) + d(v_{\pi(n)}, v_{\pi(1)})$$

Brute-force.

- Try all permutations and pick the one with smallest weight.
- Runtime:

Input. Distinct cities $\{v_1, v_2, \dots, v_n\}$ with distances $d(v_i, v_j) \in Q_{\geq 0}$; directed, complete graph G with edge weights d

Output. Tour of the traveling salesperson of minimum total length that visits all the cities and returns to the starting point;

i.e., a Hamiltonian cycle $(v_{\pi(1)}, \ldots, v_{\pi(n)}, v_{\pi(1)})$ of G of minimum weight

$$\sum_{i=1}^{n-1} d(v_{\pi(i)}, v_{\pi(i+1)}) + d(v_{\pi(n)}, v_{\pi(1)})$$

Brute-force.

- Try all permutations and pick the one with smallest weight.
- Runtime: $\Theta(n! \cdot n) = n \cdot 2^{\Theta(n \log n)}$

Idea.

 Dynamic programming means re-using optimal substructures (typically stored in a "table"). We store optimal partial tour lengths.

Richard M. Karp

Richard E. Bellman

Idea.

- Dynamic programming means re-using optimal substructures (typically stored in a "table"). We store optimal partial tour lengths.
- Select a starting vertex $s \in V$.

Richard M. Karp

Richard E. Bellman

Idea.

- Dynamic programming means re-using optimal substructures (typically stored in a "table"). We store optimal partial tour lengths.
- \blacksquare Select a starting vertex $s \in V$.
- For each $S \subseteq V s$ and $v \in S$, let: $\mathsf{OPT}[S, v] = \mathsf{length} \text{ of a shortest } s\text{-}v\text{-}\mathsf{path}$ that visits precisely the vertices of $S \cup \{s\}$.

Richard M. Karp

Richard E. Bellman

Idea.

- Dynamic programming means re-using optimal substructures (typically stored in a "table"). We store optimal partial tour lengths.
- \blacksquare Select a starting vertex $s \in V$.
- For each $S \subseteq V s$ and $v \in S$, let: $\mathsf{OPT}[S, v] = \mathsf{length} \ \mathsf{of} \ \mathsf{a} \ \mathsf{shortest} \ s - v - \mathsf{path}$ that visits precisely the vertices of $S \cup \{s\}$.

■ Use OPT[S - v, u] to compute OPT[S, v].

Richard M. Karp

Richard E. Bellman

Details.

■ The base case $S = \{v\}$ is easy: $OPT[\{v\}, v] = \{v\}$

Details.

■ The base case $S = \{v\}$ is easy: $OPT[\{v\}, v] = d(s, v)$.

Details.

- The base case $S = \{v\}$ is easy: $OPT[\{v\}, v] = d(s, v)$.
- When $|S| \ge 2$, compute OPT[S, v] recursively:

$$OPT[S, v] =$$

Details.

- The base case $S = \{v\}$ is easy: $OPT[\{v\}, v] = d(s, v)$.
- When $|S| \ge 2$, compute OPT[S, v] recursively:

$$\mathsf{OPT}[S, v] = \min\{\mathsf{OPT}[S - v, u] + d(u, v) \mid u \in S - v\}$$

Details.

- The base case $S = \{v\}$ is easy: $OPT[\{v\}, v] = d(s, v)$.
- When $|S| \ge 2$, compute OPT[S, v] recursively:

$$\mathsf{OPT}[S, v] = \min\{\mathsf{OPT}[S - v, u] + d(u, v) \mid u \in S - v\}$$

After computing OPT[S, v] for each $S \subseteq V - s$ and each $v \in V - s$, the optimal solution is easily obtained as follows:

Details.

- The base case $S = \{v\}$ is easy: $OPT[\{v\}, v] = d(s, v)$.
- When $|S| \ge 2$, compute OPT[S, v] recursively:

$$\mathsf{OPT}[S, v] = \min\{\mathsf{OPT}[S - v, u] + d(u, v) \mid u \in S - v\}$$

After computing OPT[S, v] for each $S \subseteq V - s$ and each $v \in V - s$, the optimal solution is easily obtained as follows:

$$\mathsf{OPT} = \mathsf{min}\{\mathsf{OPT}[V-s,v]\} + d(v,s) \mid v \in V-s\}$$

Pseudocode.

```
Bellmann-Held-Karp(G, d):
 foreach v \in V - s do
  | \mathsf{OPT}[\{v\}, v] = d(s, v)
 for j = 2 to n - 1 do
     foreach S \subseteq V - s with |S| = i do
        foreach v \in S do
        return min{ OPT[V-s,v]+d(v,s) \mid v \in V-s }
```

Pseudocode.

```
Bellmann-Held-Karp(G, d):
  foreach v \in V - s do
    | \mathsf{OPT}[\{v\}, v] = d(s, v)
  for j = 2 to n - 1 do
        foreach S \subseteq V - s with |S| = i do
             foreach v \in S do
           \begin{aligned} \mathsf{OPT}[S,v] &= \min\{\,\mathsf{OPT}[S-v,u] \\ &+ d(u,v) \mid u \in S-v\,\} \end{aligned}
  return min{ OPT[V-s,v]+d(v,s) \mid v \in V-s }
```

A shortest tour can be found by backtracking the DP table (as usual).

Pseudocode.

Bellmann-Held-Karp(G, d):

```
\begin{aligned} & \text{foreach } v \in V - s \text{ do} \\ & \quad \big \lfloor \text{ OPT}[\{v\}, v] = d(s, v) \\ & \text{for } j = 2 \text{ to } n - 1 \text{ do} \\ & \quad \big | \text{ foreach } S \subseteq V - s \text{ with } |S| = j \text{ do} \\ & \quad \big | \text{ foreach } v \in S \text{ do} \\ & \quad \big | \text{ OPT}[S, v] = \min\{\text{ OPT}[S - v, u] \\ & \quad + d(u, v) \mid u \in S - v \, \} \end{aligned}
```

A shortest tour can be found by backtracking the DP table (as usual).

return min{ $OPT[V-s,v]+d(v,s) \mid v \in V-s$ }

Analysis.

Pseudocode.

Analysis.

```
Bellmann-Held-Karp(G, d):
  foreach v \in V - s do
   | \mathsf{OPT}[\{v\}, v] = d(s, v)
  for j = 2 to n - 1 do
       foreach S \subseteq V - s with |S| = i do
            foreach v \in S do
              \mathsf{OPT}[S, v] = \min\{\mathsf{OPT}[S - v, u] \\ + d(u, v) \mid u \in S - v\} \} \mathcal{O}(n)
  return min{ OPT[V-s,v]+d(v,s) \mid v \in V-s }
```

A shortest tour can be found by backtracking the DP table (as usual).

Pseudocode.

Analysis.

```
Bellmann-Held-Karp(G, d):
  foreach v \in V - s do
    | \mathsf{OPT}[\{v\}, v] = d(s, v)
  for j = 2 to n - 1 do
       foreach S \subseteq V - s with |S| = j do
            foreach v \in S do
 | OPT[S, v] = \min\{OPT[S - v, u] + d(u, v) \mid u \in S - v\} \} \mathcal{O}(n)
  return min{ OPT[V-s,v]+d(v,s) \mid v \in V-s }
```

A shortest tour can be found by backtracking the DP table (as usual).

Pseudocode.

Analysis.

```
\begin{cases} \textbf{for } j = 2 \textbf{ to } n - 1 \textbf{ do} \\ \textbf{ for each } S \subseteq V - s \textbf{ with } |S| = j \textbf{ do} \\ \textbf{ for each } v \in S \textbf{ do} \\ \textbf{ OPT}[S, v] = \min\{ \textbf{ OPT}[S - v, u] \\ +d(u, v) \mid u \in S - v \} \end{cases} \mathcal{O}(n)
```

A shortest tour can be found by backtracking the DP table (as usual).

return min{ $OPT[V-s,v]+d(v,s) \mid v \in V-s$ }

Pseudocode.

```
Bellmann-Held-Karp(G, d):
```

$$\begin{cases} \textbf{for } j = 2 \textbf{ to } n - 1 \textbf{ do} \\ \textbf{ for each } S \subseteq V - s \textbf{ with } |S| = j \textbf{ do} \\ \textbf{ for each } v \in S \textbf{ do} \\ \textbf{ OPT}[S, v] = \min\{ \textbf{ OPT}[S - v, u] \\ +d(u, v) \mid u \in S - v \} \end{cases} \mathcal{O}(n)$$

A shortest tour can be found by backtracking the DP table (as usual).

return min{ $OPT[V-s,v]+d(v,s) \mid v \in V-s$ }

Analysis.

running time for the central for-loop is in $\mathcal{O}(2^n n^2) \subset \mathcal{O}^*(2^n)$

Pseudocode.

```
Bellmann-Held-Karp(G, d):
```

$$\begin{array}{l} \textbf{foreach} \ v \in V - s \ \textbf{do} \\ \ \, \big\lfloor \ \, \mathsf{OPT}[\{v\}, v] = d(s, v) \end{array}$$

for
$$j = 2$$
 to $n - 1$ do

foreach $S \subseteq V - s$ with $|S| = j$ do

foreach $v \in S$ do

OPT $[S, v] = \min\{ \text{OPT}[S - v, u] + d(u, v) \mid u \in S - v \}$

$$\left\{ \begin{array}{c} \mathcal{O}(2^n) \\ \mathcal{O}(n) \\ \mathcal{O}(n) \end{array} \right\}$$

A shortest tour can be found by backtracking the DP table (as usual).

return min{ $OPT[V-s,v]+d(v,s) \mid v \in V-s$ }

Analysis.

- running time for the central for-loop is in $\mathcal{O}(2^n n^2) \subseteq \mathcal{O}^*(2^n)$
- Space usage in $\Theta(2^n \cdot n)$

Pseudocode.

```
Bellmann-Held-Karp(G, d):
```

$$\begin{cases} \textbf{for } j = 2 \textbf{ to } n - 1 \textbf{ do} \\ \textbf{ for each } S \subseteq V - s \textbf{ with } |S| = j \textbf{ do} \\ \textbf{ for each } v \in S \textbf{ do} \\ \textbf{ OPT}[S, v] = \min\{ \textbf{ OPT}[S - v, u] \\ +d(u, v) \mid u \in S - v \} \end{cases} \mathcal{O}(n)$$

A shortest tour can be found by backtracking the DP table (as usual).

return min{ $OPT[V-s,v]+d(v,s) \mid v \in V-s$ }

Analysis.

- running time for the central for-loop is in $\mathcal{O}(2^n n^2) \subseteq \mathcal{O}^*(2^n)$
- Space usage in $\Theta(2^n \cdot n)$
- Or actually better? What table values do we need to store?

- DP algorithm that runs in $\mathcal{O}^*(2^n)$ time and $\mathcal{O}^*(2^n)$ space.
- Brute-force runs in $2^{\mathcal{O}(n \log n)}$ time and $\mathcal{O}(n^2)$ space.
 - \Rightarrow Sacrifice space for speedup.

- DP algorithm that runs in $\mathcal{O}^*(2^n)$ time and $\mathcal{O}^*(2^n)$ space.
- Brute-force runs in $2^{\mathcal{O}(n \log n)}$ time and $\mathcal{O}(n^2)$ space.
 - \Rightarrow Sacrifice space for speedup.
- Many variants of TSP: symmetric, assymetric, metric, vehicle routing problems, . . .

- DP algorithm that runs in $\mathcal{O}^*(2^n)$ time and $\mathcal{O}^*(2^n)$ space.
- Brute-force runs in $2^{\mathcal{O}(n \log n)}$ time and $\mathcal{O}(n^2)$ space.
 - \Rightarrow Sacrifice space for speedup.
- Many variants of TSP: symmetric, assymetric, metric, vehicle routing problems, . . .
- Metric TSP can easily be 2-approximated. (Do you remember how? \rightarrow last lecture)
- Eucledian TSP is considered in the course Approxiomation Algorithms.

- DP algorithm that runs in $\mathcal{O}^*(2^n)$ time and $\mathcal{O}^*(2^n)$ space.
- Brute-force runs in $2^{\mathcal{O}(n \log n)}$ time and $\mathcal{O}(n^2)$ space.
 - \Rightarrow Sacrifice space for speedup.
- Many variants of TSP: symmetric, assymetric, metric, vehicle routing problems, . . .
- lacktrice Metric TSP can easily be 2-approximated. (Do you remember how? ightarrow last lecture)
- Eucledian TSP is considered in the course Approxiomation Algorithms.
- In practice, one successful approach is to start with a greedily computed Hamiltonian cycle and then use 2-OPT and 3-OPT swaps to improve it.

Input. Graph G = (V, E) with n vertices.

Input. Graph G = (V, E) with n vertices.

Output. Maximum size **independent** set, i.e., a largest set $U \subseteq V$ such that no pair of vertices in U is adjacent in G.

Input. Graph G = (V, E) with n vertices.

Output. Maximum size independent set, i.e., a largest set $U \subseteq V$ such that no pair of vertices in U is adjacent in G.

Brute-force.

- \blacksquare Try all subets of V.
- Runtime: $\mathcal{O}(2^n \cdot n)$

Input. Graph G = (V, E) with n vertices.

Output. Maximum size independent set, i.e., a largest set $U \subseteq V$ such that no pair of vertices in U is adjacent in G.

Naive MIS branching.

 \blacksquare Take a vertex v or don't take it.

Brute-force.

- \blacksquare Try all subets of V.
- Runtime: $\mathcal{O}(2^n \cdot n)$

Input. Graph G = (V, E) with n vertices.

Output. Maximum size **independent** set, i.e., a largest set $U \subseteq V$ such that no pair of vertices in U is adjacent in G.

Brute-force.

- \blacksquare Try all subets of V.
- Runtime: $\mathcal{O}(2^n \cdot n)$

Naive MIS branching.

 \blacksquare Take a vertex v or don't take it.

NaiveMIS(G):

```
\begin{array}{c} \text{if } V == \varnothing \text{ then} \\ \text{return 0} \end{array}
```

```
v= arbitrary vertex in V(G) return \max\{1+\ \mathrm{NaiveMIS}(G-N(v)-\{v\}),\ \mathrm{NaiveMIS}(G-\{v\})\}
```


Lemma.

Let U be a maximum independent set in G. Then for each $v \in V$:

1.
$$v \in U \Rightarrow N(v) \cap U = \emptyset$$

2.
$$v \notin U \Rightarrow |N(v) \cap U| \geq 1$$

Thus, $N[v] := N(v) \cup \{v\}$ contains some $y \in U$ and no other vertex of N[y] is in U.

Lemma.

Let U be a maximum independent set in G. Then for each $v \in V$:

1.
$$v \in U \Rightarrow N(v) \cap U = \emptyset$$

2.
$$v \notin U \Rightarrow |N(v) \cap U| \geq 1$$

Thus, $N[v] := N(v) \cup \{v\}$ contains some $y \in U$ and no other vertex of N[y] is in U.

Smarter MIS branching.

For some vertex v, branch on vertices in N[v].

Lemma.

Let U be a maximum independent set in G. Then for each $v \in V$:

1.
$$v \in U \Rightarrow N(v) \cap U = \emptyset$$

2.
$$v \notin U \Rightarrow |N(v) \cap U| \geq 1$$

Thus, $N[v] := N(v) \cup \{v\}$ contains some $y \in U$ and no other vertex of N[y] is in U.

Smarter MIS branching.

For some vertex v, branch on vertices in N[v].

SmarterMIS(G):

if
$$V == \emptyset$$
 then return 0

v = vertex of minimum degree in V(G)return $1 + \max\{\text{MIS}(G - N[y]) \mid y \in N[v]\}$

Lemma.

Let U be a maximum independent set in G. Then for each $v \in V$:

1.
$$v \in U \Rightarrow N(v) \cap U = \emptyset$$

2.
$$v \notin U \Rightarrow |N(v) \cap U| \geq 1$$

Thus, $N[v] := N(v) \cup \{v\}$ contains some $y \in U$ and no other vertex of N[y] is in U.

Smarter MIS branching.

For some vertex v, branch on vertices in N[v]. SmarterMIS(G):

v = vertex of minimum degree in V(G)return $1 + \max\{\text{MIS}(G - N[y]) \mid y \in N[v]\}$

- Correctness follows from the lemma.
- We prove a runtime of $\mathcal{O}^*(3^{n/3}) = \mathcal{O}^*(1.4423^n)$.

Execution corresponds to a **search tree** whose vertices are labeled with the input of the respective recursive call.

Execution corresponds to a **search tree** whose vertices are labeled with the input of the respective recursive call.

Let B(n) be the maximum number of leaves of a search tree for a graph with n vertices.

Execution corresponds to a **search tree** whose vertices are labeled with the input of the respective recursive call.

- Let B(n) be the maximum number of leaves of a search tree for a graph with n vertices.
- \blacksquare Search-tree has height $\leq n$.

Execution corresponds to a **search tree** whose vertices are labeled with the input of the respective recursive call.

- Let B(n) be the maximum number of leaves of a search tree for a graph with n vertices.
- \blacksquare Search-tree has height $\leq n$.
 - The runtime of the algorithm is

$$T(n) \in \mathcal{O}(nB(n)) = \mathcal{O}^*(B(n)).$$

Execution corresponds to a **search tree** whose vertices are labeled with the input of the respective recursive call.

- Let B(n) be the maximum number of leaves of a search tree for a graph with n vertices.
- \blacksquare Search-tree has height $\leq n$.
 - The runtime of the algorithm is

$$T(n) \in \mathcal{O}(nB(n)) = \mathcal{O}^*(B(n)).$$

Let's consider an example run.

For a worst-case n-vertex graph G ($n \ge 1$):

$$B(n) \le \sum_{y \in N[v]} B(n - (\deg(y) + 1))$$

where v is a minimum degree vertex of G, and $B(n') \leq B(n)$ for any $n' \leq n$.

For a worst-case n-vertex graph G ($n \ge 1$):

$$B(n) \le \sum_{y \in N[v]} B(n - (\deg(y) + 1))$$

where v is a minimum degree vertex of G, and $B(n') \leq B(n)$ for any $n' \leq n$.

For a worst-case n-vertex graph G ($n \ge 1$):

$$B(n) \le \sum_{y \in N[v]} B(n - (\deg(y) + 1)) \le (\deg(v) + 1) \cdot B(n - (\deg(v) + 1))$$

where v is a minimum degree vertex of G, and $B(n') \leq B(n)$ for any $n' \leq n$.

For a worst-case n-vertex graph G ($n \ge 1$):

$$B(n) \le \sum_{y \in N[v]} B(n - (\deg(y) + 1)) \le (\deg(v) + 1) \cdot B(n - (\deg(v) + 1))$$

where v is a minimum degree vertex of G, and $B(n') \leq B(n)$ for any $n' \leq n$.

For a worst-case n-vertex graph G ($n \ge 1$):

$$B(n) \le \sum_{y \in N[v]} B(n - (\deg(y) + 1)) \le (\deg(v) + 1) \cdot B(n - (\deg(v) + 1))$$

where v is a minimum degree vertex of G, and $B(n') \leq B(n)$ for any $n' \leq n$.

We prove by induction that $B(n) \leq 3^{n/3}$.

■ Base case: $B(0) = 1 \le 3^{0/3} = 1$

For a worst-case n-vertex graph G ($n \ge 1$):

$$B(n) \le \sum_{y \in N[v]} B(n - (\deg(y) + 1)) \le (\deg(v) + 1) \cdot B(n - (\deg(v) + 1))$$

where v is a minimum degree vertex of G, and $B(n') \leq B(n)$ for any $n' \leq n$.

- Base case: $B(0) = 1 \le 3^{0/3} = 1$
- Induc. hypothesis: for all $n' \le n$, $B(n') \le 3^{n'/3}$ holds.
- Induc. step: for $n \ge 1$, set $s = \deg(v) + 1$.

For a worst-case n-vertex graph G ($n \ge 1$):

$$B(n) \le \sum_{y \in N[v]} B(n - (\deg(y) + 1)) \le (\deg(v) + 1) \cdot B(n - (\deg(v) + 1))$$

where v is a minimum degree vertex of G, and $B(n') \leq B(n)$ for any $n' \leq n$.

- Base case: $B(0) = 1 \le 3^{0/3} = 1$
- Induc. hypothesis: for all $n' \le n$, $B(n') \le 3^{n'/3}$ holds.
- Induc. step: for $n \ge 1$, set $s = \deg(v) + 1$.

$$B(n) \le s \cdot B(n-s)$$

For a worst-case n-vertex graph G ($n \ge 1$):

$$B(n) \le \sum_{y \in N[v]} B(n - (\deg(y) + 1)) \le (\deg(v) + 1) \cdot B(n - (\deg(v) + 1))$$

where v is a minimum degree vertex of G, and $B(n') \leq B(n)$ for any $n' \leq n$.

- Base case: $B(0) = 1 \le 3^{0/3} = 1$
- Induc. hypothesis: for all $n' \le n$, $B(n') \le 3^{n'/3}$ holds.
- Induc. step: for $n \ge 1$, set $s = \deg(v) + 1$.

$$B(n) \le s \cdot B(n-s) \le s \cdot 3^{(n-s)/3}$$

For a worst-case n-vertex graph G ($n \ge 1$):

$$B(n) \le \sum_{y \in N[v]} B(n - (\deg(y) + 1)) \le (\deg(v) + 1) \cdot B(n - (\deg(v) + 1))$$

where v is a minimum degree vertex of G, and $B(n') \leq B(n)$ for any $n' \leq n$.

- Base case: $B(0) = 1 \le 3^{0/3} = 1$
- Induc. hypothesis: for all $n' \le n$, $B(n') \le 3^{n'/3}$ holds.
- Induc. step: for $n \ge 1$, set $s = \deg(v) + 1$.

$$B(n) \le s \cdot B(n-s) \le s \cdot 3^{(n-s)/3} = \frac{s}{3^{s/3}} \cdot 3^{n/3}$$

For a worst-case n-vertex graph G ($n \ge 1$):

$$B(n) \leq \sum_{y \in N[v]} B(n - \left(\deg(y) + 1\right)) \leq \left(\deg(v) + 1\right) \cdot B(n - \left(\deg(v) + 1\right))$$

where v is a minimum degree vertex of G, and $B(n') \leq B(n)$ for any $n' \leq n$.

- Base case: $B(0) = 1 \le 3^{0/3} = 1$
- Induc. hypothesis: for all $n' \le n$, $B(n') \le 3^{n'/3}$ holds.
- Induc. step: for $n \ge 1$, set $s = \deg(v) + 1$.

$$B(n) \le s \cdot B(n-s) \le s \cdot 3^{(n-s)/3} = \frac{s}{3^{s/3}} \cdot 3^{n/3} \stackrel{?}{\le} 3^{n/3}$$

For a worst-case n-vertex graph G ($n \ge 1$):

$$B(n) \leq \sum_{y \in N[v]} B(n - \left(\deg(y) + 1\right)) \leq \left(\deg(v) + 1\right) \cdot B(n - \left(\deg(v) + 1\right))$$

where v is a minimum degree vertex of G, and $B(n') \leq B(n)$ for any $n' \leq n$.

- Base case: $B(0) = 1 \le 3^{0/3} = 1$
- Induc. hypothesis: for all $n' \le n$, $B(n') \le 3^{n'/3}$ holds.
- Induc. step: for $n \ge 1$, set $s = \deg(v) + 1$.

$$B(n) \le s \cdot B(n-s) \le s \cdot 3^{(n-s)/3} = \frac{s}{3^{s/3}} \cdot 3^{n/3} \stackrel{?}{\le} 3^{n/3}$$

For a worst-case n-vertex graph G ($n \ge 1$):

$$B(n) \leq \sum_{y \in N[v]} B(n - \left(\deg(y) + 1\right)) \leq \left(\deg(v) + 1\right) \cdot B(n - \left(\deg(v) + 1\right))$$

where v is a minimum degree vertex of G, and $B(n') \leq B(n)$ for any $n' \leq n$.

- Base case: $B(0) = 1 \le 3^{0/3} = 1$
- Induc. hypothesis: for all $n' \le n$, $B(n') \le 3^{n'/3}$ holds.
- Induc. step: for $n \ge 1$, set $s = \deg(v) + 1$.

$$B(n) \le s \cdot B(n-s) \le s \cdot 3^{(n-s)/3} = \frac{s}{3^{s/3}} \cdot 3^{n/3} \le 3^{n/3}$$

For a worst-case n-vertex graph G ($n \ge 1$):

$$B(n) \leq \sum_{y \in N[v]} B(n - \left(\deg(y) + 1\right)) \leq \left(\deg(v) + 1\right) \cdot B(n - \left(\deg(v) + 1\right))$$

where v is a minimum degree vertex of G, and $B(n') \leq B(n)$ for any $n' \leq n$.

- Base case: $B(0) = 1 \le 3^{0/3} = 1$
- Induc. hypothesis: for all $n' \le n$, $B(n') \le 3^{n'/3}$ holds.
- Induc. step: for $n \ge 1$, set $s = \deg(v) + 1$.

$$B(n) \le s \cdot B(n-s) \le s \cdot 3^{(n-s)/3} = \frac{s}{3^{s/3}} \cdot 3^{n/3} \le 3^{n/3}$$

$$B(n)\in \mathcal{O}^*(\sqrt[3]{3}^n)\subseteq \mathcal{O}^*(1.44225^n)$$
 $^{igstar}\leq$ 1 for all natural numbers

- Smarter branching leads to an $\mathcal{O}^*(1.44225^n)$ -time algorithm.
- In comparison, brute-force runs in $\mathcal{O}^*(2^n)$ time.

- Smarter branching leads to an $\mathcal{O}^*(1.44225^n)$ -time algorithm.
- In comparison, brute-force runs in $\mathcal{O}^*(2^n)$ time.
- Algorithms for MIS known that run in $\mathcal{O}^*(1.2202^n)$ time and polynomial space,
- \blacksquare and in $\mathcal{O}^*(1.2109^n)$ time and exponential space.

- Smarter branching leads to an $\mathcal{O}^*(1.44225^n)$ -time algorithm.
- In comparison, brute-force runs in $\mathcal{O}^*(2^n)$ time.
- Algorithms for MIS known that run in $\mathcal{O}^*(1.2202^n)$ time and polynomial space,
- lacksquare and in $\mathcal{O}^*(1.2109^n)$ time and exponential space.
- What vertices are always in a MIS?
- What vertices can we savely assume are in a MIS?
- Advanced case analysis in [Fomin, Kratsch Ch 2.3] leads to an $\mathcal{O}^*(1.2786^n)$ -time algorithm.

- Smarter branching leads to an $\mathcal{O}^*(1.44225^n)$ -time algorithm.
- In comparison, brute-force runs in $\mathcal{O}^*(2^n)$ time.
- Algorithms for MIS known that run in $\mathcal{O}^*(1.2202^n)$ time and polynomial space,
- lacksquare and in $\mathcal{O}^*(1.2109^n)$ time and exponential space.
- What vertices are always in a MIS?
- What vertices can we savely assume are in a MIS?
- Advanced case analysis in [Fomin, Kratsch Ch 2.3] leads to an $\mathcal{O}^*(1.2786^n)$ -time algorithm.
- **Exercise**: Edge-branching for MIS

Literature

Main source:

- [Fomin, Kratsch Ch1] "Exact Exponential Algorithms" Referenced papers:
- [ADMV '15] Classic Nintendo Games are (Computationally) Hard
- [Mann '17] The Top Eight Misconceptions about NP-Hardness