Advanced Algorithms

Exact Algorithms for NP-Hard Problems

Traveling Salesman Problem and Maximal Independent Set

Johannes Zink • WS23/24

Examples of NP-Hard Problems

Many important (practical) problems are NP-hard, for example ...

$\left(x_{1} \vee x_{2} \vee \neg x_{4}\right) \wedge$
$\left(\neg x_{2} \vee x_{3} \vee \neg x_{4}\right) \wedge$
$\left(x_{3} \vee x_{7} \vee \neg x_{8}\right) \wedge$
SAT

Graph Drawing

Bin Packing

Games

What is P, NP, and NP-Hardness?

$\square P$ is the complexity class that consists of all problems that can be solved in polynomial time.

\square NP is the complexity class that consists of all problems that can be solved in nondeterministic polynomial time, i.e., a problem in NP can be solved in polynomial time by a hypothetical machine that can duplicate itsself to try different parameters in its computation.

- There is another, more accessible equivalent definition:

A problem is in NP if the correctness of a solution can be verified in polynomial time.
■ It is not proven yet, but all indications suggest that $P \neq N P$.

- The hardest problems in NP are called NP-complete.

■ All problems that are at least as hard as any NP-complete problem are called NP-hard. One can show NP-hardness by a polynomial-time reduction from an NP-hard problem.
■ Assuming $P \neq N P$, NP-hard problems cannot be solved in polynomial time.

Misconceptions about NP-Hardness

Common misconceptions [Mann '17]
■ If similar problems are NP-hard, then the problem at hand is also NP-hard.

- Problems that are hard to solve in practice by an engineer are NP-hard.

■ NP-hard problems cannot be solved optimally.

- NP-hard problems cannot be solved more efficiently than by exhaustive search.

■ For solving NP-hard problems, the only practical possibility is the use of heuristics.

Dealing with NP-Hard Problems

What should we do?

- Sacrifice optimality for speed

■ Heuristics
(Simulated Annealing, Tabu-Search)

- Approximation Algorithms (MST-Edge-Doubling, Christofides-Algorithm)

Heuristic

Approximation

- Optimal Solutions

■ Exact exponential-time algorithms (with a better running time than just a brute-force algorithm)

- Fine-grained analysis -

Motivation

Exponential running time ... should we just give up?

efficient (polynomial-time)
vs.
inefficient (super-pol.time)

■ . . . can be "fast" for medium-size instances:
■ "hidden" constants in polynomial-time algorithms:
$2^{100} n>2^{n}$ for $n \leq 100$

- $n^{4}>1.2^{n}$ for $n \leq 100$
- TSP solvable exactly for $n \leq 2000$ and specialized instances with $n \leq 85900$

Motivation

Exponential running time ... maybe we need better hardware?

- Suppose an algorithm uses a^{n} steps \& can solve for a fixed amount of time t instances up to size n_{0}.
- Improving hardware by a constant factor c only adds a constant (relative to c) to n_{0} :

$$
a^{n_{0}^{\prime}}=c \cdot a^{n_{0}} \rightsquigarrow n_{0}^{\prime}=\log _{a} c+n_{0}
$$

\square Reducing the base of the runtime to $b<a$ results in a multiplicative increase:

$$
b^{n_{0}^{\prime}}=a^{n_{0}} \rightsquigarrow n_{0}^{\prime}=n_{0} \cdot \log _{b} a
$$

Motivation

Exponential running time ... but can we at least find exact algorithms that are faster than brute-force (trivial) approaches?

- TSP: Bellman-Held-Karp algorithm has a running time in $\mathcal{O}\left(2^{n} n^{2}\right)$ compared to an $\mathcal{O}(n!\cdot n)$-time brute-force search.
- MIS: algorithm by Tarjan \& Trojanowski runs in $\mathcal{O}^{*}\left(2^{n / 3}\right)$ time compared to a trivial $\mathcal{O}\left(n 2^{n}\right)$-time approach.

■ Coloring: Lawler gave an $\mathcal{O}\left(n(1+\sqrt[3]{3})^{n}\right)$ algorithm compared to $\mathcal{O}\left(n^{n+1}\right)$-time brute-force search.

- SAT: No better algorithm than trivial brute-force search known.

\mathcal{O}^{*}-Notation

$$
\mathcal{O}\left(1.4^{n} \cdot n^{2}\right) \subsetneq \mathcal{O}\left(1.5^{n} \cdot n\right) \subsetneq \mathcal{O}\left(2^{n}\right)
$$

■ base of exponential part dominates \rightsquigarrow negligible polynomial factors

$$
f(n) \in \mathcal{O}^{*}(g(n)) \Leftrightarrow \exists \text { polynomial } p(n) \text { with } f(n) \in \mathcal{O}(g(n) p(n))
$$

- typical result

Approach	Runtime in \mathcal{O}-Notation	\mathcal{O}^{*}-Notation
Brute-Force	$\mathcal{O}\left(2^{n}\right)$	$\mathcal{O}^{*}\left(2^{n}\right)$
Algorithm A	$\mathcal{O}\left(1.5^{n} \cdot n\right)$	$\mathcal{O}^{*}\left(1.5^{n}\right)$
Algorithm B	$\mathcal{O}\left(1.4^{n} \cdot n^{2}\right)$	$\mathcal{O}^{*}\left(1.4^{n}\right)$

Traveling Salesperson Problem (TSP)

Input. Distinct cities $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ with distances $d\left(v_{i}, v_{j}\right) \in Q \geq 0$; directed, complete graph G with edge weights d
Output. Tour of the traveling salesperson of minimum total length that visits all the cities and returns to the starting point;

i.e., a Hamiltonian cycle $\left(v_{\pi(1)}, \ldots, v_{\pi(n)}, v_{\pi(1)}\right)$ of G of minimum weight

$$
\sum_{i=1}^{n-1} d\left(v_{\pi(i)}, v_{\pi(i+1)}\right)+d\left(v_{\pi(n)}, v_{\pi(1)}\right)
$$

Brute-force.

- Try all permutations and pick the one with smallest weight.
\square Runtime: $\Theta(n!\cdot n)=n \cdot 2^{\Theta(n \log n)}$

TSP - Dynamic Programming (Bellman-Held-Karp Algorithm)

Idea.

■ Dynamic programming means re-using optimal substructures (typically stored in a "table"). We store optimal partial tour lengths.

- Select a starting vertex $s \in V$.

■ For each $S \subseteq V-s$ and $v \in S$, let:
$\mathrm{OPT}[S, v]=$ length of a shortest $s-v$-path that visits precisely the vertices of $S \cup\{s\}$.

■ Use OPT $[S-v, u]$ to compute $\operatorname{OPT}[S, v]$.

TSP - Dynamic Programming

Details.

\square The base case $S=\{v\}$ is easy: $\operatorname{OPT}[\{v\}, v]=d(s, v)$.
■ When $|S| \geq 2$, compute $\operatorname{OPT}[S, v]$ recursively:

$$
\mathrm{OPT}[S, v]=\min \{\mathrm{OPT}[S-v, u]+d(u, v) \mid u \in S-v\}
$$

■ After computing $\operatorname{OPT}[S, v]$ for each $S \subseteq V-s$ and each $v \in V-s$, the optimal solution is easily obtained as follows:

$$
\mathrm{OPT}=\min \{\mathrm{OPT}[V-s, v]\}+d(v, s) \mid v \in V-s\}
$$

TSP - Dynamic Programming

Pseudocode.

Bellmann-Held-Karp (G, d):

$$
\begin{aligned}
& \text { foreach } v \in V-s \text { do } \\
& \begin{array}{l}
L \text { OPT }[\{v\}, v]=d(s, v) \\
\text { for } j=2 \text { to } n-1 \text { do } \\
\left.\qquad \begin{array}{r}
\text { foreach } S \subseteq V-s \text { with }|S|=j \text { do }
\end{array}\right\} \mathcal{O}\left(2^{n}\right) \\
\left.\begin{array}{r}
\text { foreach } v \in S \text { do } \\
\operatorname{OPT}[S, v]=\min \{\operatorname{OPT}[S-v, u] \\
+d(u, v) \mid u \in S-v\}
\end{array}\right\} \mathcal{O}(n)
\end{array}
\end{aligned}
$$

$$
\text { return } \min \{\mathrm{OPT}[V-s, v]+d(v, s) \mid v \in V-s\}
$$

- A shortest tour can be found by backtracking the DP table (as usual).

Analysis.

- running time for the central for-loop is in $\mathcal{O}\left(2^{n} n^{2}\right) \subseteq \mathcal{O}^{*}\left(2^{n}\right)$
- Space usage in $\Theta\left(2^{n} \cdot n\right)$

■ Or actually better? What table values do we need to store?

TSP - Discussion

- DP algorithm that runs in $\mathcal{O}^{*}\left(2^{n}\right)$ time and $\mathcal{O}^{*}\left(2^{n}\right)$ space.
- Brute-force runs in $2^{\mathcal{O}(n \log n)}$ time and $\mathcal{O}\left(n^{2}\right)$ space.
\Rightarrow Sacrifice space for speedup.
■ Many variants of TSP: symmetric, assymetric, metric, vehicle routing problems, ...
■ Metric TSP can easily be 2-approximated. (Do you remember how? \rightarrow last lecture)
■ Eucledian TSP is considered in the course Approxiomation Algorithms.
■ In practice, one successful approach is to start with a greedily computed Hamiltonian cycle and then use 2-OPT and 3-OPT swaps to improve it.

Maximum Independent Set (MIS)

Input. Graph $G=(V, E)$ with n vertices.
Output. Maximum size independent set, i.e., a largest set $U \subseteq V$ such that no pair of vertices in U is adjacent in G.

Naive MIS branching.

- Take a vertex v or don't take it.

Brute-force.

- Try all subets of V.

■ Runtime: $\mathcal{O}\left(2^{n} \cdot n\right)$

MIS - Smarter Branching

Lemma.

Let U be a maximum independent set in G. Then for each $v \in V$:

1. $v \in U \Rightarrow N(v) \cap U=\varnothing$
2. $v \notin U \Rightarrow|N(v) \cap U| \geq 1$

Thus, $N[v]:=N(v) \cup\{v\}$ contains some $y \in U$ and no other vertex of $N[y]$ is in U.

Smarter MIS branching.

■ For some vertex v, branch on vertices in $N[v]$. SmarterMIS(G):

if $V==\varnothing$ then
 return 0

- Correctness follows from the lemma.
- We prove a runtime of $\mathcal{O}^{*}\left(3^{n / 3}\right)=\mathcal{O}^{*}\left(1.4423^{n}\right)$.
$v=$ vertex of minimum degree in $V(G)$
return $1+\max \{\operatorname{MIS}(G-N[y]) \mid y \in N[v]\}$

MIS - Branching Analysis

Execution corresponds to a search tree whose vertices are labeled with the input of the respective recursive call.

- Let $B(n)$ be the maximum number of leaves of a search tree for a graph with n vertices.
- Search-tree has height $\leq n$.
\rightsquigarrow The runtime of the algorithm is

$$
T(n) \in \mathcal{O}(n B(n))=\mathcal{O}^{*}(B(n))
$$

- Let's consider an example run.

MIS - Runtime Analysis

For a worst-case n-vertex graph $G(n \geq 1)$:

$$
B(n) \leq \sum_{y \in N[v]} B(n-(\operatorname{deg}(y)+1)) \leq(\operatorname{deg}(v)+1) \cdot B(n-(\operatorname{deg}(v)+1))
$$

where v is a minimum degree vertex of G, and $B\left(n^{\prime}\right) \leq B(n)$ for any $n^{\prime} \leq n$.
We prove by induction that $B(n) \leq 3^{n / 3}$.
■ Base case: $B(0)=1 \leq 3^{0 / 3}=1$

- Induc. hypothesis: for all $n^{\prime} \leq n, B\left(n^{\prime}\right) \leq 3^{n^{\prime} / 3}$ holds.
\square Induc. step: for $n \geq 1$, set $s=\operatorname{deg}(v)+1$.

$$
\begin{aligned}
& B(n) \leq s \cdot B(n-s) \leq s \cdot 3^{(n-s) / 3}=\frac{s}{3^{s / 3}} \cdot 3^{n / 3} \leq 3^{n / 3} \\
& B(n) \in \mathcal{O}^{*}\left(\sqrt[3]{3}^{n}\right) \subseteq \mathcal{O}^{*}\left(1.44225^{n}\right) \quad{ }_{\leq 1 \text { for all natural num }}
\end{aligned}
$$

MIS - Discussion

■ Smarter branching leads to an $\mathcal{O}^{*}\left(1.44225^{n}\right)$-time algorithm.

- In comparison, brute-force runs in $\mathcal{O}^{*}\left(2^{n}\right)$ time.

■ Algorithms for MIS known that run in $\mathcal{O}^{*}\left(1.2202^{n}\right)$ time and polynomial space,
■ and in $\mathcal{O}^{*}\left(1.2109^{n}\right)$ time and exponential space.

- What vertices are always in a MIS?
- What vertices can we savely assume are in a MIS?

■ Advanced case analysis in [Fomin, Kratsch Ch 2.3] leads to an $\mathcal{O}^{*}\left(1.2786^{n}\right)$-time algorithm.

■ Exercise: Edge-branching for MIS

Literature

Main source:
■ [Fomin, Kratsch Ch1] "Exact Exponential Algorithms"
Referenced papers:
■ [ADMV '15] Classic Nintendo Games are (Computationally) Hard

- [Mann '17] The Top Eight Misconceptions about NP-Hardness

