

Advanced Algorithms

Introduction

Topics, Course Details, Organizational

Johannes Zink · WS23/24

Advanced Algorithms

The goal of this course is to offer an overview of advanced algorithmic topics.

You have already learned a lot about algorithms, but there is much more left...

- **Types:** incremental, recursive, D&C, greedy, numerical, exact, approx., randomized, parallel, distributed, . . .
- Analysis: correctness, runtime, space usage, amortized, expected, optimality, benchmarking, . . .
- **Problems:** combinatorial, graphs, geometric, strings, biological, geographic, . . .
- Data structures: lists, binary search trees, dictionaries, succinct, randomized, probabilistic, . . .

Topics I

- Better algorithms for problems you know
- Maximum flow problem

- Ford-Folkerson algorithm: $\mathcal{O}(|E||f^*|)$
- **Edmonds**–Karp algorithm: $\mathcal{O}(|V||E|^2)$
- Push-Relabel algorithm: $O(|V|^2|E|)$ (or even better)

Topics II

■ How to deal with NP-hard problems

- Sacrifice quality for speed?
- Can we still compute optimal solutions?
- Example problem: Schedule jobs to machines approximating the minimum makespan

Topics III

Special areas

Randomized algorithms

LONGESTPATH is NP-hard

but easy on acyclic digraphs

 \Rightarrow

 \Rightarrow good idea?

randomly turn given graph into acyclic digraph

Also

- Online algorithms
- Computational geometry
- Working with strings

Topics IV

Advanced data structures

Searching for strings

Given text S, how can we efficiently find all occurrences of pattern P?

- Suffix trees
- Invest in preprocessing to be faster than full parse

Also

- Succinct data structures
- Splay trees

Lectures

Johannes Zink

- Email: johannes.zink@uni-wuerzburg.de
- Office: Room 01.007, Building M4 (next to computer science building)
- In-person lectures Wed, 14:15–15:45, ÜR I
- With time for questions and discussions
- 12 or 13 lectures
- Old videos from 2020 will be made available on WueCampus

Tutorials

Oksana Firman

- Email: oksana.firman@uni-wuerzburg.de
- Office: Room 01.005, Building M4
- In-person tutorials Mon, 16:00–17:30, HS 4, Physics building
- With time for questions and discussions
- 11 or 12 exercise sheets

Exercise sheets.

- Weekly exercise sheets, ≈ 20 points/sheet
- Scoring 50 % of the points grants a bonus of 0.3 to the final grade of the exam (if one passes)
- Released at the lecture day (Wed)
- Submission deadline next lecture (Wed, 14:15)
- Digital submission as pdf; recommended to use our LATEX template
- Submission in teams of two . . .
- ...in English (preferred) or German

Exam

- Oral exam
- $\approx 20 \mathrm{min}$
- Bonus for points on the exercise sheets (see previous page)
- Date will be announced during the semester
- Don't forget to register in WueStudy:
 - "Ausgewählte Kapitel der"

Literature

- Sources at the end of every lecture
- Links to further interesting stuff

Our Lectures and Seminars

Algorithmic Graph Theory

Algorithms and Data Structures

Thanks

Material and slides provided in this lecture have been compiled by many different people. Special thanks to:

> Jonathan Klawitter, Boris Klemz, Steven Chaplick, Thomas van Dijk, Philipp Kindermann, Joachim Spoerhase, Sabine Storandt, Dorothea Wagner, Tim Hegemann, Alexander Wolff, . . .