Advanced Algorithms

 IntroductionTopics, Course Details, Organizational
Johannes Zink • WS23/24

Advanced Algorithms

> The goal of this course is to offer an overview of advanced algorithmic topics.

You have already learned a lot about algorithms, but there is much more left...
■ Types: incremental, recursive, D\&C, greedy, numerical, exact, approx., randomized, parallel, distributed,

■ Analysis: correctness, runtime, space usage, amortized, expected, optimality, benchmarking, ...
■ Problems: combinatorial, graphs, geometric, strings, biological, geographic,

- Data structures: lists, binary search trees, dictionaries, succinct, randomized, probabilistic,

| 0 | 0 | 1 | 0 | 0 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | 0

Topics I

- Better algorithms for problems you know
- Maximum flow problem

■ Ford-Folkerson algorithm: $\mathcal{O}\left(|E|\left|f^{\star}\right|\right)$
■ Edmonds-Karp algorithm: $\mathcal{O}\left(|V||E|^{2}\right)$
■ Push-Relabel algorithm: $\mathcal{O}\left(|V|^{2}|E|\right)$ (or even better)

Topics II

- How to deal with NP-hard problems

- Sacrifice quality for speed?
- Can we still compute optimal solutions?
- Example problem:

Schedule jobs to machines approximating the minimum makespan

Topics III

- Special areas

Randomized algorithms

LONGESTPATH is NP-hard	but easy on acyclic digraphs\Rightarrowrandomly turn given graph into acyclic digraph
\Rightarrow good idea?	

Also

- Online algorithms
- Computational geometry
- Working with strings

Topics IV

■ Advanced data structures

Searching for strings

Given text S, how can we efficiently find all occurrences of pattern P ?

- Suffix trees
- Invest in preprocessing to be faster than full parse

Also
■ Succinct data structures

- Splay trees

Lectures

■ Johannes Zink

■ Email: johannes.zink@uni-wuerzburg.de

- Office: Room 01.007, Building M4 (next to computer science building)
- In-person lectures Wed, 14:15-15:45, ÜR I
- With time for questions and discussions
- 12 or 13 lectures

■ Old videos from 2020 will be made available on WueCampus

Tutorials

- Oksana Firman

■ Email: oksana.firman@uni-wuerzburg.de

- Office: Room 01.005, Building M4
- In-person tutorials Mon, 16:00-17:30, HS 4, Physics building
- With time for questions and discussions

■ 11 or 12 exercise sheets

Exercise sheets.

- Weekly exercise sheets, ≈ 20 points/sheet
- Scoring 50% of the points grants a bonus of 0.3 to the final grade of the exam (if one passes)
- Released at the lecture day (Wed)

■ Submission deadline next lecture (Wed, 14:15)
■ Digital submission as pdf; recommended to use our $\angle A T_{E} X$ template

- Submission in teams of two ...

■ ... in English (preferred) or German

Exam

- Oral exam
- $\approx 20 \mathrm{~min}$

■ Bonus for points on the exercise sheets (see previous page)

- Date will be announced during the semester
- Don't forget to register in WueStudy:
"Ausgewählte Kapitel der ..."

Literature

- Sources at the end of every lecture

■ Links to further interesting stuff

Our Lectures and Seminars

Thanks

Material and slides provided in this lecture have been compiled by many different people. Special thanks to:

Jonathan Klawitter, Boris Klemz, Steven Chaplick, Thomas van Dijk, Philipp Kindermann, Joachim Spoerhase, Sabine Storandt, Dorothea Wagner, Tim Hegemann, Alexander Wolff, ...

