

Visualization of Graphs

Lecture 11:

Beyond Planarity

Drawing Graphs with Crossings

Johannes Zink

Planar Graphs

Planar graphs admit drawings in the plane without crossings.

Plane graph is a planar graph with a plane embedding = rotation system.

Planarity is recognizable in linear time.

Different drawing styles...

straight-line drawing

orthogonal drawing

grid drawing with bends & 3 slopes

circular-arc drawing

And Non-Planar Graphs?

We have seen a few drawing styles:

force-directed drawing

hierarchical drawing

orthogonal layouts (via planarization)

Maybe not all crossings are equally bad?

Which crossings feel worse?

[Eades, Hong & Huang 2008]

Eye-Tracking Experiment

Input: A graph drawing and designated path.

Task: Trace path and count number of edges.

no crossings **Results:**

large crossing angles

small crossing angles

eye movements smooth and fast

eye movements smooth but slightly slower

eye movements no longer smooth and very slow

(back-and-forth movements at crossing points)

Some Beyond-Planar Graph Classes

We define **aesthetics** for edge crossings and avoid/minimize "bad" crossing configurations.

Some Beyond-Planar Graph Classes

We define **aesthetics** for edge crossings and avoid/minimize "bad" crossing configurations.

k-planar (k = 1)

k-quasi-planar (k = 3)

fan-planar

There are many more beyond-planar graph classes...

IC (independent crossing)

fan-crossing-free

skewness-k (k = 2)

combinations, ...

Drawing Styles for Crossings

block / bundled crossings circular layout: 28 invididual vs. 12 bundle crossings

cased crossings

symmetric partial edge drawing

1/4-SHPED

symmetric homogenous partial edge drawing

Geometric Representations

Every 1-planar graph admits a B1VR. [Brandenburg 2014; Evans et al. 2014; Angelini et al. 2018]

rectangle visibility representation

- lacksquare G has at most 6n-20 edges. [Bose et al. 1997]
- Recognition is NP-complete. [Shermer 1996]
- Recognition becomes polynomial-time solvable if embedding is fixed. [Biedl et al. 2018]

GD Beyond Planarity: a Taxonomy

[&]quot;Graph Drawing Beyond Planarity: Some Results and Open Problems", Jul. 2017

Theorem.

[Ringel 1965, Pach & Tóth 1997]

A 1-planar graph with n vertices has at most 4n-8 edges, which is a tight bound.

Proof sketch.

- Let the red edges be those that do not cross.
- Each blue edge crosses a green edge.
- This yields a red-blue plane graph G_{rb} with $m_{rb} < 3n 6$
- lacksquare and a green plane graph G_g with

$$m_g \leq 3n - 6$$
 $\Rightarrow m \leq m_{rb} + m_g \leq 6n - 12$

lacktriangle Observe that each green edge joins two faces in G_{rb} .

$$m_g \le f_{rb}/2 \le (2n-4)/2 = n-2$$

 $\Rightarrow m = m_{rb} + m_g \le 3n-6+n-2 = 4n-8$

Planar structure:

2n-4 edges

n-2 faces

Edges per face: 2 edges

Total: 4n - 8 edges

Theorem.

[Ringel 1965, Pach & Tóth 1997]

A 1-planar graph with n vertices has at most 4n-8 edges, which is a tight bound.

A 1-planar graph with n vertices is called **optimal** if it has exactly 4n-8 edges.

A 1-planar graph is called **maximal** if adding any edge would result in a non-1-planar graph.

Theorem.

[Brandenburg et al. 2013]

There are maximal 1-planar graphs with n vertices and 45/17n - O(1) edges.

Theorem.

[Didimo 2013]

A 1-planar graph with n vertices that admits a straight-line drawing has at most 4n-9 edges.

Idea: in a drawing of an optimal 1-planar graph, we cannot realize the crossing on the outer face with two straight-line edges.

Theorem.

A k-planar graph with n vertices has at most:

k number of edges

3(n-2)

4(n-2)

5(n-2)

Euler's formula

[Ringel 1965]

[Pach and Tóth 1997]

$$n - m + f = 2$$

$$m = c \cdot f ?$$

$$m = \frac{5}{2}f$$

optimal 2-planar

Planar structure:

$$\frac{5}{3}(n-2)$$
 edges $\frac{2}{3}(n-2)$ faces

Edges per face: 5 edges

Total: 5(n-2) edges

Theorem.

A k-planar graph with n vertices has at most:

k number of edges

0 3(n-2)

4(n-2)

5(n-2)

5.5(n-2)

Euler's formula

[Ringel 1965]

[Pach and Tóth 1997]

[Pach et al. 2006]

optimal 3-planar

Theorem.

A k-planar graph with n vertices has at most:

knumber of edges

3(n-2)0

4(n-2)

5(n-2)

5.5(n-2)3

Euler's formula

[Ringel 1965]

[Pach and Toth 1997]

[Pach et al. 2006]

Planar structure:

$$\frac{3}{2}(n-2)$$
 edges $\frac{1}{2}(n-2)$ faces

Edges per face: 8 edges

Total: 5.5(n-2) edges

Theorem.

A k-planar graph with n vertices has at most:

knumber of edges

3(n-2)Euler's formula 0

4(n-2)[Ringel 1965]

5(n-2)[Pach and Tóth 1997]

5.5(n-2)[Pach et al. 2006]

6(n-2)[Ackerman 2015]

 $4.108\sqrt{k}n$ [Pach and Tóth 1997]

optimal 2-planar

GD Beyond Planarity: a Hierarchy

Crossing Numbers

The k-planar crossing number $\operatorname{cr}_{k-pl}(G)$ of a k-planar graph G is the number of crossings required in any k-planar drawing of G.

- $\operatorname{cr}_{1\text{-pl}}(G) \leq n-2$ (there are at most n-2 green edges in the coloring of Theorem 1)
- $\operatorname{cr}(G) = 1 \Rightarrow \operatorname{cr}_{1\text{-pl}}(G) = 1$

Theorem.

[Chimani, Kindermann, Montecchiani & Valtr 2019]

For every $\ell \geq 7$, there is a 1-planar graph G with $n = 11\ell + 2$ vertices such that cr(G) = 2 and $cr_{1-pl}(G) = n - 2$.

Crossing ratio

$$\rho_{1\text{-pl}}(n) = (n-2)/2$$

$$\operatorname{cr}_{1\text{-pl}}(G) = n-2$$

$$\operatorname{cr}(G) = 2$$

Table from "Crossing Numbers of Beyond-Planar Graphs Revisited" [van Beusekom, Parada & Speckmann 2021]

Crossing Ratios

Family	Forbidden Configurations			Lower	Upper
k-planar	An edge crossed more than k times	$\sum_{k=2}^{\infty} k = 2$		$\Omega(m{n}/m{k})$	$O(k\sqrt{k}n)$
k-quasi-planar	k pairwise crossing edges		k = 3	$\Omega(n/k^3)$	$f(k)n^2\log^2 n$
Fan-planar	Two independent edges crossing a third or two adjacent edges crossing another edge from different "side"	₽\$°		$\Omega(n)$	$O(n^2)$
(k,l)-grid-free	Set of k edges such that each edge crosses each edge from a set of ℓ edges.		k, l = 2	$\Omega\left(\frac{n}{kl(k+l)}\right)$	$g(k,l)n^2$
k-gap-planar	More than k crossings mapped to an edge in an optimal mapping	k = 1		$\Omega(n/k^3)$	$O(k\sqrt{k}n)$
Skewness- k	Set of crossings not covered by at most k edges		k = 1	$\Omega(m{n}/m{k})$	$oxed{O(kn+k^2)}$
k-apex	igg Set of crossings not covered by at most k vertices	0 k = 1		$\Omega(n/k)$	$O(k^2n^2 + k^4)$
Planarly connected	Two crossing edges that do not have two of their endpoint connected by a crossing-free edge		X	$\Omega(n^2)$	$O(n^2)$
k-fan-crossing-free	An edge that crosses k adjacent edges	k = 2		$\Omega(n^2/k^3)$	$O(k^2n^2)$
Straight-line RAC	Two edges crossing at an angle $< \frac{\pi}{2}$		X	$\Omega(n^2)$	$O(n^2)$

GD Beyond Planarity: a Taxonomy

[&]quot;Graph Drawing Beyond Planarity: Some Results and Open Problems", Jul. 2017

Minors of 1-Planar Graphs

Theorem.

G planar \Leftrightarrow neither K_5 nor $K_{3,3}$ minor of G

[Kuratowski 1930]

For every graph there is a 1-planar subdivision.

Theorem.

[Chen & Kouno 2005]

The class of 1-planar graphs is not closed under edge contraction.

Theorem.

[Korzhik & Mohar 2013]

For any n, there exist $\Omega(2^n)$ distinct graphs that are not 1-planar but all their proper subgraphs are 1-planar.

Recognition of 1-Planar Graphs

Theorem.

[Grigoriev & Bodlaender 2007, Korzhik & Mohar 2013]

Testing 1-planarity is NP-complete.

Proof Idea.

Reduction from 3-Partition.

$$A = \{1, 3, 2, 4, 1, 1\}$$

Given a multiset $A = \{a_1, a_2, \dots, a_{3t}\}$ of 3t numbers, partition the numbers into t triplets such that the sum of every triplet is the same.

Only 1-planar embedding of K_6

(cannot be crossed)

Recognition of 1-Planar Graphs

Theorem.

[Grigoriev & Bodlaender 2007, Korzhik & Mohar 2013]

Testing 1-planarity is NP-complete.

Theorem.

[Cabello & Mohar 2013]

Testing 1-planarity is NP-complete – even for almost planar graphs, i.e., planar graphs plus one edge.

Theorem.

[Bannister, Cabello & Eppstein 2018]

Testing 1-planarity is NP-complete – even for graphs of bounded bandwidth (pathwidth, treewidth).

Theorem.

[Auer, Brandenburg, Gleißner & Reislhuber 2015]

Testing 1-planarity is NP-complete – even for 3-connected graphs with a fixed rotation system.

Recognition of IC-Planar Graphs

Theorem. [Brandenburg, Didimo, Evans, Kindermann, Liotta & Montecchiani 2015]

Testing IC-planarity is NP-complete.

Proof.

Reduction from 1-planarity testing.

Recognition of IC-Planar Graphs

Theorem. [Brandenburg, Didimo, Evans, Kindermann, Liotta & Montecchiani 2015]

Testing IC-planarity is NP-complete.

Proof.

Reduction from 1-planarity testing.

Recognition of IC-Planar Graphs

Theorem. [Brandenburg, Didimo, Evans, Kindermann, Liotta & Montecchiani 2015]

Testing IC-planarity is NP-complete.

Proof.

Reduction from 1-planarity testing.

Theorem. [Brandenburg, Didimo, Evans, Kindermann, Liotta & Montecchiani 2015]

Testing IC-planarity is NP-complete, even if the rotation system is given.

GD Beyond Planarity: a Taxonomy

Area of Straight-Line RAC Drawings

Theorem. [Brandenburg, Didimo, Evans, Kindermann, Liotta & Montecchiani 2015]

Some IC-planar straight-line RAC drawings require exponential area.

Theorem. [Brandenburg, Didimo, Evans, Kindermann, Liotta & Montecchiani 2015]

Every IC-planar graph has an IC-planar straight-line RAC drawing, and such a drawing can be found in polynomial time.

In constrast:
not every 1-planar graph
admits a straight-line
RAC drawing

RAC Drawings With Enough Bends

Every graph admits a RAC drawing . . .

... if we use enough bends.

How many do we need at most in total or per edge?

3-Bend RAC Drawings

Theorem.

[Didimo, Eades & Liotta 2017]

Every graph admits a 3-bend RAC drawing, that is, a RAC drawing where every edge has at most 3 bends.

Kite Triangulations

This is a **kite**: u and v are **opposite** w.r.t. $\{z,w\}$

Let G' be a plane triangulation.

connecting opposite vertices.

The resulting graph G is a **kite-triangulation**.

Note: optimal 1-planar graphs \subseteq kite-triangulations.

Theorem.

[Angelini et al. '11]

Every kite-triangulation G on n vertices admits a 1-planar 1-bend RAC drawing, which can be constructed in $\mathcal{O}(n)$ time.

Proof.

Let G' be the underlying plane triangulation of G. Let G'' = G' - S. Construct straight-line drawing of G''. Fill faces as follows:

otherwise

1-Planar 1-Bend RAC Drawings

Theorem. [Bekos, Didimo, Liotta, Mehrabi & Montecchiani 2017]

Every 1-planar graph G admits a 1-planar 1-bend RAC drawing. If a 1-planar embedding of G is given as part of the input, such a drawing can be computed in linear time.

Observation.

In a triangulated 1-plane graph (not necessarily simple), each pair of crossing edges of G forms an empty kite, except for at most one pair if their crossing point is on the outer face of G.

Theorem.

[Chiba, Yamanouchi & Nishizeki 1984]

For every 2-connected plane graph G with outer face C_k and every convex k-gon P, there is a strictly convex planar straight-line drawing of G whose outer face coincides with P. Such a drawing can be computed in linear time.

Algorithm Outline

Algorithm Step 1: Augmentation

G: simple 1-plane graph

Algorithm Step 1: Augmentation

- 1. For each pair of crossing edges add an enclosing 4-cycle.
- 2. Remove those multiple edges that belong to G.
- 3. Remove one (multiple) edge from each face of degree two (if any).
- 4. Triangulate faces of degree > 3 by inserting a star inside them.

G: simple 1-plane graph \longrightarrow G^+ : triangulated 1-plane (multi-edges)

Algorithm Outline

Algoritm Step 2: Hierarchical Contractions

 G^+ triangulated 1-plane (multi-edges)

- triangular faces
- multiple edges never crossed
- only empty kites

structure of each separation pair

 G^+ triangulated 1-plane (multi-edges)

- triangular faces
- multiple edges never crossed
- only empty kites

structure of each separation pair

Contract all inner components of each separation pair into a thick edge.

 G^+ triangulated 1-plane (multi-edges)

- triangular faces
- multiple edges never crossed
- only empty kites

structure of each separation pair

Contract all inner components of each separation pair into a thick edge.

 G^+ triangulated 1-plane (multi-edges)

- triangular faces
- multiple edges never crossed
- only empty kites

structure of each separation pair

Contract all inner components of each separation pair into a thick edge.

Algorithm Outline

apply Chiba et al.

 Γ^+ : 1-bend 1-planar RAC drawing of G^+

Algorithm Outline

Algorithm Step 4: Removal of Dummy Vertices

Algorithm Step 4: Removal of Dummy Vertices

G: simple 1-plane graph

 Γ : 1-bend 1-planar RAC drawing of G

(embedding may differ)

Remark.

With some slight modifications, we can even preserve the given input embedding. [Chaplick, Lipp, Wolff, Zink 2019]

GD Beyond Planarity: a Taxonomy

Literature

Books and surveys:

- [Didimo, Liotta & Montecchiani 2019] A Survey on Graph Drawing Beyond Planarity
- [Kobourov, Liotta & Montecchiani '17] An Annotated Bibliography on 1-Planarity
- [Hong and Tokuyama, editors '20] Beyond Planar Graphs

Some references for proofs:

- [Eades, Huang, Hong '08] Effects of Crossing Angles
- [Brandenburg et al. '13] On the density of maximal 1-planar graphs
- [Chimani, Kindermann, Montecchani, Valtr '19] Crossing Numbers of Beyond-Planar Graphs
- [Grigoriev and Bodlaender '07] Algorithms for graphs embeddable with few crossings per edge
- [Angelini et al. '11] On the Perspectives Opened by Right Angle Crossing Drawings
- [Didimo, Eades, Liotta '17] Drawing graphs with right angle crossings
- [Bekos et al. '17] On RAC drawings of 1-planar graphs