Visualization of Graphs

Lecture 11:
The Crossing Lemma

and Its Applications

Johannes Zink

Crossing Number and Topological Graphs

For a graph G, the crossing number $\operatorname{cr}(G)$ is the smallest number of pair-wise edge crossings in a drawing of G (in the plane).

Hanani-Tutte Theorem

Theorem.

[Hanani '43, Tutte '70]
A graph is planar if and only if it has a drawing in which all pairs of vertex-disjoint edges cross an even number of times.

Proof sketch.

Hanani showed that every drawing of K_{5} and $K_{3,3}$ must have a pair of edges that crosses an odd number of times.
Every non-planar graph has K_{5} or $K_{3,3}$ as a minor, so there are two paths that cross an odd number of times.
Hence, there must be two edges on these paths that cross an odd number of times.

Hanani-Tutte Theorem

Theorem.

[Hanani '43, Tutte '70]

A graph is planar if and only if it has a drawing in which all pairs of vertex-disjoint edges cross an even number of times.

The odd crossing number $\operatorname{ocr}(G)$ of G is the smallest number of pairs of edges that cross oddly in a drawing of G.

Corollary. $\quad \operatorname{ocr}(G)=0 \Rightarrow \operatorname{cr}(G)=0$

$$
\text { Is ocr }(G)=\operatorname{cr}(G) ? \quad \text { No! }
$$

Theorem. [Pelsmajer, Schaefer \& Štefankovič '08, Tóth '08]
There is a graph G with $\operatorname{ocr}(G)<\operatorname{cr}(G) \leq 10$

Theorem. [Pelsmajer, Schaefer \& Štefankovič '08] [Pach \& Tóth '00]

If Γ is a drawing of G and E_{0} is the set of edges with only even numbers of crossings in Γ, then G can be drawn such that no edge in E_{0} is involved in any crossings and no new pairs of edges cross.

Hanani-Tutte Theorem

Theorem.

[Hanani '43, Tutte '70]
A graph is planar if and only if it has a drawing in which all pairs of vertex-disjoint edges cross an even number of times.

The odd crossing number $\operatorname{ocr}(G)$ of G is the smallest number of pairs of edges that cross oddly in a drawing of G.

Corollary. $\quad \operatorname{ocr}(G)=0 \Rightarrow \operatorname{cr}(G)=0$
Is $\operatorname{ocr}(G)=\operatorname{cr}(G) ? \quad$ No!
Theorem. [Pelsmajer, Schaefer \& Štefankovič '08, Tóth '08]
There is a graph G with $\operatorname{ocr}(G)<\operatorname{cr}(G) \leq 10$
The pairwise crossing number $\operatorname{pcr}(G)$ of G is the smallest number of pairs of edges that cross in a drawing of G.
By definition ocr $(G) \leq \operatorname{pcr}(G) \leq \operatorname{cr}(G)$
Is $\operatorname{pcr}(G)=\operatorname{cr}(G) ? \quad$ Open!

Computing the Crossing Number

- Computing $\operatorname{cr}(G)$ is NP-hard. ... even if G is a planar graph plus one edge!
[Garey \& Johnson '83] [Cabello \& Mohar '08]

■ $\operatorname{cr}(G)$ often unknown, only conjectures exist (for K_{n} it is only known for up to ≈ 12 vertices)

- In practice, $\operatorname{cr}(G)$ is often not computed directly but rather drawings of G are optimized with
■ force-based methods,
- multidimensional scaling,

■ heuristics, ...

```
For exact computations,
check out http://crossings.uos.de!
```

- $\operatorname{cr}(G)$ is a measure of how far G is from being planar.
- For planarization, where we replace crossings with dummy vertices, also only heuristic approaches are known.

Other Crossing Numbers

- Schaefer [Schae20] gives a huge survey on different crossings numbers (and more precise definitions)
- One-sided crossing minimization (see lecture 8)
- Fixed linear crossing number

■ Book embeddings (vertices on a line, edges assigned to few "pages" where edges do not cross)

- Crossings of edge bundles

■ On other surfaces, such as donuts

- Weighted crossings

■ Crossing minimization is NP-hard for most variants.

Rectilinear Crossing Number

Definition.

For a graph G, the rectilinear (straight-line) crossing number $\overline{\operatorname{cr}}(G)$ is the smallest number of crossings in a straight-line drawing of G.

Even more ...

Lemma 1. [Bienstock, Dean '93]

For $k \geq 4$, there exists a graph G_{k} with $\operatorname{cr}\left(G_{k}\right)=4$ and $\overline{\operatorname{cr}}\left(G_{k}\right) \geq k$.

■ Each straight-line drawing of G_{1} has at least one crossing of the following types:

■ From G_{1} to G_{k} do

Separation.
$\operatorname{cr}\left(K_{8}\right)=18$, but $\overline{\operatorname{cr}}\left(K_{8}\right)=19$.

Bounds for Complete Graphs

Theorem. Conjecture. [Guy '60]
$\operatorname{cr}\left(K_{n}\right)<\frac{1}{4}\left\lceil\frac{n}{2}\right\rceil\left\lceil\frac{n-1}{2}\right\rceil\left\lceil\frac{n-2}{2}\right\rceil\left\lceil\frac{n-3}{2}\right\rceil=\frac{3}{8}\binom{n}{4}+O\left(n^{3}\right)$
Bound is tight for $n \leq 12$.
Theorem. Conjecture. [Zarankiewicz '54, Urbaník '55]
$\operatorname{cr}\left(K_{m, n}\right) \ll \frac{1}{4}\left\lceil\frac{n}{2}\right\rceil\left\lceil\frac{n-1}{2}\right\rceil\left\lceil\frac{m}{2}\right\rceil\left\lceil\frac{m-1}{2}\right\rceil$
Turán's brick factory problem (1944)

Bounds for Complete Graphs

Theorem. Conjecture.
[Guy '60]
$\operatorname{cr}\left(K_{n}\right)<\frac{1}{4}\left\lceil\frac{n}{2}\right\rceil\left\lceil\frac{n-1}{2}\right\rceil\left\lceil\frac{n-2}{2}\right\rceil\left\lceil\frac{n-3}{2}\right\rceil=\frac{3}{8}\binom{n}{4}+O\left(n^{3}\right)$
Bound is tight for $n \leq 12$.
Theorem. Conjecture. [Zarankiewicz '54, Urbaník '55]
$\operatorname{cr}\left(K_{m, n}\right) \leq \frac{1}{4}\left\lceil\frac{n}{2}\right\rceil\left\lceil\frac{n-1}{2}\right\rceil\left\lceil\frac{m}{2}\right\rceil\left\lceil\frac{m-1}{2}\right\rceil$

Theorem.

[Lovász et al. '04, Aichholzer et al. '06]
$\left(\frac{3}{8}+\varepsilon\right)\binom{n}{4}+O\left(n^{3}\right)<\overline{\operatorname{cr}}\left(K_{n}\right)<0.3807\binom{n}{4}+O\left(n^{3}\right)$
Exact numbers are known for $n \leq 27$.
Check out http://www.ist.tugraz.at/staff/aichholzer/crossings.html

First Lower Bounds on $\operatorname{cr}(G)$

Lemma 2.

For a graph G with n vertices and m edges,

$$
\operatorname{cr}(G) \geq m-3 n+6
$$

> Consider this bound for graphs with $\Theta(n)$ and $\Theta\left(n^{2}\right)$ many edges.

Proof.

- Consider a drawing of G with $\operatorname{cr}(G)$ crossings.

■ Obtain a graph H by turning crossings into dummy vertices.

- H has $n+\operatorname{cr}(G)$ vertices and $m+2 \operatorname{cr}(G)$ edges.

- H is planar, so

$$
m+2 \operatorname{cr}(G) \leq 3(n+\operatorname{cr}(G))-6
$$

First Lower Bounds on $\operatorname{cr}(G)$

Lemma 3.

For a non-planar graph G with n vertices and m edges,

$$
\operatorname{cr}(G) \geq r \cdot\binom{\lfloor m / r\rfloor}{ 2} \in \Omega\left(\frac{m^{2}}{n}\right)
$$

where $r \leq 3 n-6$ is the maximum number of edges in a planar subgraph of G.

Proof sketch.

■ Take $\lfloor m / r\rfloor$ edge-disjoint subgraphs of G with r edges.
■ In the best case, they are all planar.
■ For every $i<j$, any edge of G_{j} induces at least one crossings with G_{i}. (Otherwise, we could add an edge to G_{i} and obtain a planar subgraph of G with $r+1$ edges.)

The Crossing Lemma

- 1973 Erdős and Guy conjectured that $\operatorname{cr}(G) \in \Omega\left(m^{3} / n^{2}\right)$.

■ In 1982 Leighton and, independently, Ajtai, Chávtal, Newborn, and Szemerédi showed that

$$
\operatorname{cr}(G) \geq \frac{1}{64} \cdot \frac{m^{3}}{n^{2}} .
$$

Consider this

bound for graphs with $\Theta(n)$ and
$\Theta\left(n^{2}\right)$ many edges.

- Bound is asymptotically tight.
- Result stayed hardly known until Székely demonstrated its usefulness (in 1997).
- We go through the proof from "THE BOOK" by Chazelle, Sharir, and Welzl.
- Factor $\frac{1}{64}$ was later (with intermediate steps) improved to $\frac{1}{29}$ by Ackerman in 2013.

The Crossing Lemma

Crossing Lemma.

For a graph G with n vertices and m edges, $m \geq 4 n$,

$$
\operatorname{cr}(G) \geq \frac{1}{64} \cdot \frac{m^{3}}{n^{2}}
$$

Proof.

■ $\mathrm{E}\left(n_{p}\right)=p n$ and $\mathrm{E}\left(m_{p}\right)=p^{2} m$
\square Consider a crossing-minimal drawing of G.

- Let p be a number in $(0,1]$.

■ Keep every vertex of G independently with probability p.

■ $G_{p}=$ remaining graph (with drawing Γ_{p}).

- Let n_{p}, m_{p}, X_{p} be the random variables counting the numbers of vertices / edges / crossings of Γ_{p}, resp.
■ By Lemma 2, $\operatorname{cr}\left(G_{p}\right)-m_{p}+3 n_{p} \geq 6$.
$\Rightarrow \mathrm{E}\left(X_{p}-m_{p}+3 n_{p}\right) \geq 0$.
$\square \operatorname{cr}(G) \geq \frac{m^{3}}{16 n^{2}}-\frac{3 m^{3}}{64 n^{2}}=\frac{1}{64} \frac{m^{3}}{n^{2}}$
- $\mathrm{E}\left(X_{p}\right)=p^{4} \operatorname{cr}(G)$
$\square 0 \leq \mathrm{E}\left(X_{p}\right)-\mathrm{E}\left(m_{p}\right)+3 \mathrm{E}\left(n_{p}\right)$

$$
=p^{4} \operatorname{cr}(G)-p^{2} m+3 p n
$$

$\square \operatorname{cr}(G) \geq \frac{p^{2} m-3 p n}{p^{4}}=\frac{m}{p^{2}}-\frac{3 n}{p^{3}}$
\square Set $p=\frac{4 n}{m}$.

Application 1: Point-Line Incidences

For a set $P \subset \mathbb{R}^{2}$ of points and a set \mathcal{L} of lines, let $I(P, \mathcal{L})=$ number of point-line incidences in (P, \mathcal{L}).

Theorem 1.

[Szemerédi, Trotter '83, Székely '97]
$I(n, k) \leq c\left(n^{2 / 3} k^{2 / 3}+n+k\right)$.

Proof.
■ $\#($ points on $\ell)-1=\#($ edges on $\ell)$
$\Rightarrow I(n, k)-k=m \quad$ (sum up over \mathcal{L} in an
"optimal" instance)

- If $m \leq 4 n$, then $I(n, k)-k=m \leq 4 n$.

$$
\Rightarrow I(n, k) \leq 4 n+k \leq c\left(n+k+n^{2 / 3} k^{2 / 3}\right)
$$

- Otherwise, employ the Crossing Lemma:

$$
\begin{aligned}
& \frac{1}{64} \frac{m^{3}}{n^{2}} \leq \operatorname{cr}(G) \leq k^{2} \Rightarrow \frac{1}{64} \frac{(I(n, k)-k)^{3}}{n^{2}} \leq k^{2} \\
& \Leftrightarrow I(n, k) \leq c\left(n^{2 / 3} k^{2 / 3}+k\right) \\
& \leq c\left(n^{2 / 3} k^{2 / 3}+k+n\right)
\end{aligned}
$$

Application 2: Unit Distances

For a set $P \subset \mathbb{R}^{2}$ of points, define
■ $U(P)=$ number of pairs in P at unit distance and
■ $U(n)=\max _{|P|=n} U(P)$.

```
Theorem 2.
[Spencer, Szemerédi, Trotter '84, Székely '97]
U(n)<6.7n4/3
```


Proof Sketch.

Application 2: Unit Distances

For a set $P \subset \mathbb{R}^{2}$ of points, define
■ $U(P)=$ number of pairs in P at unit distance and
■ $U(n)=\max _{|P|=n} U(P)$.

```
Theorem 2.
[Spencer, Szemerédi, Trotter '84, Székely '97]
U(n)<6.7n}\mp@subsup{n}{}{4/3
```


Proof Sketch.

$\square U(P) \leq c^{\prime \prime} m$ number of edges in G
$\square \operatorname{cr}(G) \leq 2 n^{2}$ (circles intersecte each other at most twice)

- $c^{\prime} \frac{U(P)^{3}}{n^{2}} \leq \operatorname{cr}(G) \leq 2 n^{2}$ by the Crossing Lemma.

Application 3: Expected Number of Crossings in a Matching

Given set of n points (in general position, n even) what is the average number of crossings in a perfect matching?

Point set spans drawing Γ of K_{n}.
We will analyze the number of crossings in a random perfect matching in Γ !
Number of crossings in $\Gamma \geq \overline{\operatorname{cr}}\left(K_{n}\right)>\frac{3}{8}\binom{n}{4}$
Number of edges in $K_{n}:\binom{n}{2}$
Number of potential crossings (all pairs of edges): $\operatorname{pot}\left(K_{n}\right)=\left(\begin{array}{c}n \\ 2 \\ 2\end{array}\right) \approx 3\binom{n}{4}$
Pick two random edges e_{1} and e_{2}.

$$
\operatorname{Pr}\left[e_{1} \text { and } e_{2} \operatorname{cross}\right] \geq \overline{\operatorname{cr}}\left(K_{n}\right) / \operatorname{pot}\left(K_{n}\right)>\frac{1}{8} .
$$

Pick random perfect matching M; it has $n / 2$ edges, so $\binom{n / 2}{2}=\frac{1}{8} n(n-2)$ pairs of edges. By linearity of expectation, the expected number of crossings in M is $>\frac{1}{8}\binom{n / 2}{2}=\frac{1}{64} n(n-2) \in \Theta\left(n^{2}\right)$.

Literature

■ [Aigner, Ziegler] Proofs from THE BOOK [https://doi. org/10.1007/978-3-662-57265-8]

- [Schaefer '20] The Graph Crossing Number and its Variants: A Survey

■ Terrence Tao's blog post "The crossing number inequality" from 2007

- [Garey, Johnson '83] Crossing number is NP-complete
- [Bienstock, Dean '93] Bounds for rectilinear crossing numbers

■ [Székely '97] Crossing Numbers and Hard Erdős Problems in Discrete Geometry
■ Documentary/Biography " N Is a Number: A Portrait of Paul Erdős"
■ Exact computations of crossing numbers: http://crossings.uos.de

