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Crossing Number and Topological Graphs

In a crossing-minimal drawing of G

� no edge is self-intersecting,

� edges with common endpoints do
not intersect,

� two edges intersect at most once,

Example.
cr(K3,3) = 1

� and, w.l.o.g., at most two edges
intersect at the same point.

Such a drawing is called a topological drawing of G.

For a graph G, the crossing number cr(G)
is the smallest number of pair-wise edge
crossings in a drawing of G (in the plane).

?

# crossings reduced, so terminates
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Hanani–Tutte Theorem

Theorem. [Hanani ’43, Tutte ’70]
A graph is planar if and only if it has a drawing in which all pairs of
vertex-disjoint edges cross an even number of times.

Proof sketch.
Hanani showed that every drawing of K5 and K3,3 must have a pair of
edges that crosses an odd number of times.

Every non-planar graph has K5 or K3,3 as a minor, so there are two
paths that cross an odd number of times.

Hence, there must be two edges on these paths that cross an odd
number of times.
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Hanani–Tutte Theorem

Theorem. [Hanani ’43, Tutte ’70]
A graph is planar if and only if it has a drawing in which all pairs of
vertex-disjoint edges cross an even number of times.

The odd crossing number ocr(G) of G is the smallest number of
pairs of edges that cross oddly in a drawing of G.

Is ocr(G) = cr(G)? No!

Theorem. [Pelsmajer, Schaefer & Štefankovič ’08, Tóth ’08]
There is a graph G with ocr(G) < cr(G) ≤ 10

[Pelsmajer, Schaefer & Štefankovič ’08]Theorem. [Pach & Tóth ’00]
If Γ is a drawing of G and E0 is the set of edges with only even numbers of
crossings in Γ, then G can be drawn such that no edge in E0 is involved in
any crossings and no new pairs of edges cross.

Corollary. ocr(G) = 0⇒ cr(G) = 0
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Hanani–Tutte Theorem

Theorem. [Hanani ’43, Tutte ’70]
A graph is planar if and only if it has a drawing in which all pairs of
vertex-disjoint edges cross an even number of times.

The odd crossing number ocr(G) of G is the smallest number of
pairs of edges that cross oddly in a drawing of G.

Is ocr(G) = cr(G)? No!

Theorem. [Pelsmajer, Schaefer & Štefankovič ’08, Tóth ’08]
There is a graph G with ocr(G) < cr(G) ≤ 10

The pairwise crossing number pcr(G) of G is the smallest number
of pairs of edges that cross in a drawing of G.

Is pcr(G) = cr(G)? Open!
By definition ocr(G) ≤ pcr(G) ≤ cr(G)

Corollary. ocr(G) = 0⇒ cr(G) = 0
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Computing the Crossing Number

� Computing cr(G) is NP-hard. [Garey & Johnson ’83]
... even if G is a planar graph plus one edge! [Cabello & Mohar ’08]

� In practice, cr(G) is often not computed directly but rather
drawings of G are optimized with

� force-based methods,

� multidimensional scaling,

� heuristics, . . .

� cr(G) is a measure of how far G is from being planar.

� For planarization, where we replace crossings with dummy vertices,
also only heuristic approaches are known.

� cr(G) often unknown, only conjectures exist

(for Kn it is only known for up to ≈ 12 vertices)

For exact computations,
check out http://crossings.uos.de!
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Other Crossing Numbers

� Schaefer [Schae20] gives a huge survey on different
crossings numbers (and more precise definitions)

� One-sided crossing minimization (see lecture 8)

� Fixed linear crossing number
1 2 3 4 65

� Book embeddings (vertices on a line, edges assig-
ned to few “pages” where edges do not cross)

� Crossings of edge bundles

� On other surfaces, such as donuts

� Weighted crossings

� Crossing minimization is NP-hard for most variants.
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Rectilinear Crossing Number

Separation.
cr(K8) = 18, but cr(K8) = 19.

G1

� Each straight-line drawing of G1 has at least
one crossing of the following types:

or

� From G1 to Gk do

k

Even more . . .

Lemma 1. [Bienstock, Dean ’93]
For k ≥ 4, there exists a graph Gk with
cr(Gk) = 4 and cr(Gk) ≥ k.

Definition.
For a graph G, the rectilinear (straight-line)
crossing number cr(G) is the smallest number of
crossings in a straight-line drawing of G.
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Bounds for Complete Graphs

Bound is tight for n ≤ 12.

Theorem. [Guy ’60]

cr(Kn) ≤ 1
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TruckinTim

Turán’s brick factory problem (1944)

Pál Turán
*1910 – 1976
Budapest, Hungary

Conjecture.

=

Theorem. [Zarankiewicz ’54, Urbańık ’55]
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Bounds for Complete Graphs

Bound is tight for n ≤ 12.

Theorem. [Guy ’60]

cr(Kn) ≤ 1
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Theorem. [Lovász et al. ’04, Aichholzer et al. ’06](
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Exact numbers are known for n ≤ 27.

Conjecture.

=

Theorem. [Zarankiewicz ’54, Urbańık ’55]
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Check out http://www.ist.tugraz.at/staff/aichholzer/crossings.html
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First Lower Bounds on cr(G)

Proof.

� Consider a drawing of G with cr(G) crossings.

� Obtain a graph H by turning crossings into dummy
vertices.

� H has n + cr(G) vertices and m + 2cr(G) edges.

� H is planar, so

m + 2cr(G) ≤ 3(n + cr(G))− 6.

Lemma 2.
For a graph G with n vertices and m edges,

cr(G) ≥ m− 3n + 6.

�

Consider this
bound for graphs
with Θ(n) and
Θ(n2) many edges.
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First Lower Bounds on cr(G)

Proof sketch.

� Take bm/rc edge-disjoint subgraphs of G with r edges.

� In the best case, they are all planar.

� For every i < j, any edge of Gj induces at least one crossings with Gi.
(Otherwise, we could add an edge to Gi and obtain a planar subgraph
of G with r + 1 edges.)

Consider this
bound for graphs
with Θ(n) and
Θ(n2) many edges.

Lemma 3.
For a non-planar graph G with n vertices and m edges,

cr(G) ≥ r ·
(
bm/rc

2

)
∈ Ω

(
m2

n

)
where r ≤ 3n− 6 is the maximum number of edges in
a planar subgraph of G.
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The Crossing Lemma

� 1973 Erdős and Guy conjectured that cr(G) ∈ Ω(m3/n2).

� In 1982 Leighton and, independently, Ajtai, Chávtal, Newborn, and
Szemerédi showed that

cr(G) ≥ 1

64
· m

3

n2
.

� Result stayed hardly known until Székely demonstrated its usefulness
(in 1997).

� We go through the proof from “THE BOOK” by Chazelle, Sharir,
and Welzl.

� Factor 1
64 was later (with intermediate steps) improved to 1

29 by
Ackerman in 2013.

� Bound is asymptotically tight.

Consider this
bound for graphs
with Θ(n) and
Θ(n2) many edges.
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The Crossing Lemma

Proof.

� Consider a crossing-minimal drawing of G.

� Let p be a number in (0, 1].

� Keep every vertex of G independently
with probability p.

� Gp = remaining graph (with drawing Γp).

� Let np,mp, Xp be the random variables
counting the numbers of
vertices / edges / crossings of Γp, resp.

� By Lemma 2, cr(Gp)−mp + 3np ≥ 6.

� E(np) = pn and E(mp) = p2m

� E(Xp) = p4cr(G)

� 0 ≤ E(Xp)− E(mp) + 3E(np)

� cr(G) ≥ p2m−3pn
p4 = m

p2 − 3n
p3

� Set p = 4n
m .

� cr(G) ≥ m3

16n2 − 3m3

64n2 = 1
64

m3

n2

Crossing Lemma.
For a graph G with n vertices and m edges, m ≥ 4n,

cr(G) ≥ 1
64 ·

m3

n2 .

= p4cr(G)− p2m + 3pn

�

⇒ E(Xp −mp + 3np) ≥ 0.
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Application 1: Point–Line Incidences

For a set P ⊂ R2 of points and a set L
of lines, let I(P,L) = number of
point–line incidences in (P,L).

� Define I(n, k) = max
|P |=n,|L|=k

I(P,L).

3

2

2
3

⇒ I(P,L) = 10

9

L
P

� For example: I(4, 4) =

8
9

3

Proof.
G

� #(points on `)− 1 = #(edges on `)

� Otherwise, employ the Crossing Lemma:

� cr(G) ≤ k2

� If m ≤ 4n, then I(n, k)− k = m ≤ 4n.

⇔ I(n, k) ≤ c(n2/3k2/3 + k)
≤ c(n2/3k2/3 + k + n)

Theorem 1.
[Szemerédi, Trotter ’83, Székely ’97]
I(n, k) ≤ c(n2/3k2/3 + n + k).

�

⇒ I(n, k) ≤ 4n+k ≤ c(n+k+n2/3k2/3)

1
64

m3

n2 ≤ cr(G) ≤ k2 ⇒ 1
64

(I(n,k)−k)3

n2 ≤ k2

⇒ I(n, k)− k = m (sum up over L in an
“optimal” instance)
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Application 2: Unit Distances

For a set P ⊂ R2 of points, define

� U(P ) = number of pairs in P at unit distance and

� U(n) = max|P |=n U(P ).

Proof Sketch.

P

Theorem 2.
[Spencer, Szemerédi, Trotter ’84, Székely ’97]
U(n) < 6.7n4/3
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Application 2: Unit Distances

For a set P ⊂ R2 of points, define

� U(P ) = number of pairs in P at unit distance and

� U(n) = max|P |=n U(P ).

Proof Sketch.

G
� U(P ) ≤ c′′m

P

� cr(G) ≤ 2n2 (circles intersecte each other at most twice)

� c′ U(P )3

n2 ≤ cr(G) ≤ 2n2 by the Crossing Lemma.

Theorem 2.
[Spencer, Szemerédi, Trotter ’84, Székely ’97]
U(n) < 6.7n4/3

some constant

number of edges in G
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Application 3: Expected Number of Crossings in a Matching

Given set of n points (in general position, n even) –
what is the average number of crossings in a perfect matching?

6 crossings

Point set spans drawing Γ of Kn.

Number of crossings in Γ ≥ cr(Kn) > 3
8

(
n
4

)
Number of edges in Kn:

(
n
2

)
Number of potential crossings (all pairs of edges): pot(Kn) =

((n
2)
2

)
≈ 3
(
n
4

)
Pick two random edges e1 and e2.

Pr[e1 and e2 cross] ≥ cr(Kn)/pot(Kn) > 1
8 .

Pick random perfect matching M ; it has n/2 edges, so
(
n/2

2

)
= 1

8n(n− 2) pairs of edges.

By linearity of expectation,
the expected number of crossings in M is > 1

8

(
n/2

2

)
= 1

64n(n− 2)

We will analyze the number of crossings in a random perfect matching in Γ!

�∈ Θ(n2).
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