

Visualization of Graphs

Lecture 9:

Partial Visibility Representation Extension

Johannes Zink

Let G = (V, E) be a graph.

Let G = (V, E) be a graph.

Let
$$V' \subseteq V$$

Let G = (V, E) be a graph.

Let $V' \subseteq V$ and H = G[V']

Let G=(V,E) be a graph. Induced subgraph of G w.r.t. V': V' and all edges among V'

Let G = (V, E) be a graph.

١.

induced subgraph of G w.r.t. V': V' and all edges among V'

Let $V' \subseteq V$ and H = G[V']

Let Γ_H be a representation of H.

Let G = (V, E) be a graph.

induced subgraph of G w.r.t. V': V' and all edges among V'

Let $V' \subseteq V$ and H = G[V']

Let Γ_H be a representation of H.

Find a representation Γ_G of G that extends Γ_H

Let G = (V, E) be a graph.

induced subgraph of G w.r.t. V': V' and all edges among V'

Let $V' \subseteq V$ and H = G[V']

Let Γ_H be a representation of H.

Find a representation Γ_G of G that extends Γ_H

Let G = (V, E) be a graph.

induced subgraph of G w.r.t. V': V' and all edges among V'

Let $V' \subseteq V$ and H = G[V']

Let Γ_H be a representation of H.

Find a representation Γ_G of G that extends Γ_H

Let G = (V, E) be a graph.

induced subgraph of G w.r.t. V': V' and all edges among V'

Let $V' \subseteq V$ and H = G[V']

Let Γ_H be a representation of H.

Find a representation Γ_G of G that extends Γ_H

Polytime for:

Let G = (V, E) be a graph.

induced subgraph of G w.r.t. V': V' and all edges among V'

Let $V' \subseteq V$ and H = G[V']

Let Γ_H be a representation of H.

Find a representation Γ_G of G that extends Γ_H

Polytime for:

(unit) interval graphs

Let G = (V, E) be a graph.

Let $V' \subseteq V$ and H = G[V']

Let Γ_H be a representation of H.

Find a representation Γ_G of G that extends Γ_H

induced subgraph of G w.r.t. V': V' and all edges among V'

Polytime for:

(unit) interval graphs

permutation graphs

Let G = (V, E) be a graph.

Let $V' \subseteq V$ and H = G[V']

Let Γ_H be a representation of H.

Find a representation Γ_G of G that extends Γ_H

induced subgraph of G w.r.t. V': V' and all edges among V'

(unit) interval graphs

permutation graphs

circle graphs

Let G = (V, E) be a graph.

Let $V' \subseteq V$ and H = G[V']

induced subgraph of G w.r.t. V': V' and all edges among V'

Let Γ_H be a representation of H.

Find a representation Γ_G of G that extends Γ_H

Polytime for:

permutation graphs

circle graphs

NP-hard for:

Let G = (V, E) be a graph.

Let $V' \subseteq V$ and H = G[V']

induced subgraph of G w.r.t. V': V' and all edges among V'

Let Γ_H be a representation of H.

Find a representation Γ_G of G that extends Γ_H

Polytime for:

(unit) interval graphs

permutation graphs

circle graphs

NP-hard for:

planar straight-line drawings

Let G = (V, E) be a graph.

Let $V' \subseteq V$ and H = G[V']

induced subgraph of G w.r.t. V': V' and all edges among V'

Let Γ_H be a representation of H.

Find a representation Γ_G of G that extends Γ_H

(unit) interval graphs

permutation graphs

circle graphs

NP-hard for:

- planar straight-line drawings
- contacts of

Let G = (V, E) be a graph.

T7/1

induced subgraph of G w.r.t. V': V' and all edges among V'

Let $V' \subseteq V$ and H = G[V']

Let Γ_H be a representation of H.

Find a representation Γ_G of G that extends Γ_H

Polytime for:

permutation graphs

circle graphs

NP-hard for:

- planar straight-line drawings
- contacts of
 - disks

Let G = (V, E) be a graph.

induced subgraph of G w.r.t. V': V' and all edges among V'

Let $V' \subseteq V$ and H = G[V']

Let Γ_H be a representation of H.

Find a representation Γ_G of G that extends Γ_H

Polytime for:

permutation graphs

circle graphs

NP-hard for:

planar straight-line drawings

contacts of

disks

triangles

Let G = (V, E) be a graph.

induced subgraph of G w.r.t. V': V' and all edges among V'

Let $V' \subseteq V$ and H = G[V']

Let Γ_H be a representation of H.

Find a representation Γ_G of G that extends Γ_H

Polytime for:

permutation graphs

circle graphs

NP-hard for:

planar straight-line drawings

Vertices correspond to horizontal open line segments called bars.

- Vertices correspond to horizontal open line segments called bars.
- **Edges** correspond to unobstructed vertical lines of sight.

- Vertices correspond to horizontal open line segments called bars.
- **Edges** correspond to unobstructed vertical lines of sight.

- Vertices correspond to horizontal open line segments called bars.
- **Edges** correspond to unobstructed vertical lines of sight.

- Vertices correspond to horizontal open line segments called bars.
- **Edges** correspond to unobstructed vertical lines of sight.

- Vertices correspond to horizontal open line segments called bars.
- **Edges** correspond to unobstructed vertical lines of sight.

- Vertices correspond to horizontal open line segments called bars.
- **Edges** correspond to unobstructed vertical lines of sight.

- Vertices correspond to horizontal open line segments called bars.
- **Edges** correspond to unobstructed vertical lines of sight.

- Vertices correspond to horizontal open line segments called bars.
- **Edges** correspond to unobstructed vertical lines of sight.

- Vertices correspond to horizontal open line segments called bars.
- Edges correspond to unobstructed vertical lines of sight.
- What about unobstructed 0-width vertical lines of sight? Do all visibilities induce edges?

- Vertices correspond to horizontal open line segments called bars.
- Edges correspond to unobstructed vertical lines of sight.
- What about unobstructed 0-width vertical lines of sight? Do all visibilities induce edges?

Models.

- Vertices correspond to horizontal open line segments called bars.
- **Edges** correspond to unobstructed vertical lines of sight.
- What about unobstructed 0-width vertical lines of sight? Do all visibilities induce edges?

Models.

Strong:

Edge $uv \Leftrightarrow \text{unobstructed } \textbf{0-width} \text{ vertical lines of sight.}$

- Vertices correspond to horizontal open line segments called bars.
- **Edges** correspond to unobstructed vertical lines of sight.
- What about unobstructed 0-width vertical lines of sight? Do all visibilities induce edges?

Models.

Strong:

Edge $uv \Leftrightarrow \text{unobstructed } \textbf{0-width} \text{ vertical lines of sight.}$

Epsilon:

Edge $uv \Leftrightarrow \varepsilon$ -wide vertical lines of sight for some $\varepsilon > 0$.

- Vertices correspond to horizontal open line segments called bars.
- Edges correspond to unobstructed vertical lines of sight.
- What about unobstructed 0-width vertical lines of sight? Do all visibilities induce edges?

Models.

Strong:

Edge $uv \Leftrightarrow \text{unobstructed } \textbf{0-width} \text{ vertical lines of sight.}$

Epsilon:

Edge $uv \Leftrightarrow \varepsilon$ -wide vertical lines of sight for some $\varepsilon > 0$.

- Vertices correspond to horizontal open line segments called bars.
- **Edges** correspond to unobstructed vertical lines of sight.
- What about unobstructed 0-width vertical lines of sight? Do all visibilities induce edges?

Models.

Strong:

Edge $uv \Leftrightarrow \text{unobstructed } \textbf{0-width} \text{ vertical lines of sight.}$

Epsilon:

Edge $uv \Leftrightarrow \varepsilon$ -wide vertical lines of sight for some $\varepsilon > 0$.

- Vertices correspond to horizontal open line segments called bars.
- Edges correspond to unobstructed vertical lines of sight.
- What about unobstructed 0-width vertical lines of sight? Do all visibilities induce edges?

Models.

Strong:

Edge $uv \Leftrightarrow \text{unobstructed } \textbf{0-width} \text{ vertical lines of sight.}$

Epsilon:

Edge $uv \Leftrightarrow \varepsilon$ -wide vertical lines of sight for some $\varepsilon > 0$.

■ Weak:

Edge $uv \Rightarrow$ unobstructed vertical lines of sight exists, i.e., any subset of *visible* pairs

Bar Visibility Representation

- Vertices correspond to horizontal open line segments called bars.
- Edges correspond to unobstructed vertical lines of sight.
- What about unobstructed 0-width vertical lines of sight? Do all visibilities induce edges?

Models.

Strong:

Edge $uv \Leftrightarrow \text{unobstructed } \textbf{0-width} \text{ vertical lines of sight.}$

Epsilon:

Edge $uv \Leftrightarrow \varepsilon$ -wide vertical lines of sight for some $\varepsilon > 0$.

■ Weak:

Edge $uv \Rightarrow$ unobstructed vertical lines of sight exists, i.e., any subset of *visible* pairs

Recognition Problem.

Given a graph G, **decide** whether there exists a weak/strong/ ε bar visibility representation ψ of G.

Recognition Problem.

Given a graph G, **decide** whether there exists a weak/strong/ ε bar visibility representation ψ of G.

Construction Problem.

Given a graph G, construct a weak/strong/ ε bar visibility representation ψ of G – if one exists.

Recognition Problem.

Given a graph G, **decide** whether there exists a weak/strong/ ε bar visibility representation ψ of G.

Construction Problem.

Given a graph G, construct a weak/strong/ ε bar visibility representation ψ of G – if one exists.

Partial Representation Extension Problem.

Given a graph G and a set of bars ψ' of $V' \subseteq V(G)$, decide whether there exists a weak/strong/ ε bar visibility representation ψ of G where $\psi|_{V'} = \psi'$ (and construct ψ if a representation exists).

Weak Bar Visibility.

Weak Bar Visibility.

■ Exactly all planar graphs [Tamassia & Tollis '86; Wismath '85]

Weak Bar Visibility.

- Exactly all planar graphs [Tamassia & Tollis '86; Wismath '85]
- Linear time recognition and construction [T&T '86]

Weak Bar Visibility.

- Exactly all planar graphs [Tamassia & Tollis '86; Wismath '85]
- Linear time recognition and construction [T&T '86]
- Representation extension is NP-complete [Chaplick et al. '14]

Weak Bar Visibility.

- Exactly all planar graphs [Tamassia & Tollis '86; Wismath '85]
- Linear time recognition and construction [T&T '86]
- Representation extension is NP-complete [Chaplick et al. '14]

Strong Bar Visibility.

Weak Bar Visibility.

- Exactly all planar graphs [Tamassia & Tollis '86; Wismath '85]
- Linear time recognition and construction [T&T '86]
- Representation extension is NP-complete [Chaplick et al. '14]

Strong Bar Visibility.

NP-complete to recognize [Andreae '92]

 ε -Bar Visibility.

ε -Bar Visibility.

■ Exactly all planar graphs that can be embedded with all cut vertices on the outerface [T&T '86, Wismath '85]

ε -Bar Visibility.

- Exactly all planar graphs that can be embedded with all cut vertices on the outerface [T&T '86, Wismath '85]
- Linear-time recognition and construction [T&T '86]

ε -Bar Visibility.

- Exactly all planar graphs that can be embedded with all cut vertices on the outerface [T&T '86, Wismath '85]
- Linear-time recognition and construction [T&T '86]
- Representation extension?

ε -Bar Visibility.

- Exactly all planar graphs that can be embedded with all cut vertices on the outerface [T&T '86, Wismath '85]
- Linear-time recognition and construction [T&T '86]
- Representation extension? This Lecture!

 \blacksquare Instead of an undirected graph, we are given a directed graph G.

- Instead of an undirected graph, we are given a directed graph G.
- The task is to construct a weak/strong/ ε bar visibility representation of G such that ...

- \blacksquare Instead of an undirected graph, we are given a directed graph G.
- The task is to construct a weak/strong/ ε bar visibility representation of G such that
- \blacksquare ... for each directed edge uv, the bar representing u is below the bar representing v.

- \blacksquare Instead of an undirected graph, we are given a directed graph G.
- The task is to construct a weak/strong/ ε bar visibility representation of G such that . . .
- \blacksquare ... for each directed edge uv, the bar representing u is below the bar representing v.

Weak Bar Visibility.

- \blacksquare Instead of an undirected graph, we are given a directed graph G.
- \blacksquare The task is to construct a weak/strong/ ε bar visibility representation of G such that ...
- \blacksquare ... for each directed edge uv, the bar representing u is below the bar representing v.

Weak Bar Visibility.

NP-complete for directed (acyclic planar) graphs!

- \blacksquare Instead of an undirected graph, we are given a directed graph G.
- lacktriangleright The task is to construct a weak/strong/arepsilon bar visibility representation of G such that
- \blacksquare ... for each directed edge uv, the bar representing u is below the bar representing v.

Weak Bar Visibility.

- NP-complete for directed (acyclic planar) graphs!
- This is because upward planarity testing is NP-complete. [Garg & Tamassia '01]

- \blacksquare Instead of an undirected graph, we are given a directed graph G.
- lacktriangleright The task is to construct a weak/strong/arepsilon bar visibility representation of G such that ...
- \blacksquare ... for each directed edge uv, the bar representing u is below the bar representing v.

- NP-complete for directed (acyclic planar) graphs!
- This is because upward planarity testing is NP-complete. [Garg & Tamassia '01]

- \blacksquare Instead of an undirected graph, we are given a directed graph G.
- The task is to construct a weak/strong/ ε bar visibility representation of G such that . . .
- \blacksquare ... for each directed edge uv, the bar representing u is below the bar representing v.

Weak Bar Visibility.

- NP-complete for directed (acyclic planar) graphs!
- This is because upward planarity testing is NP-complete. [Garg & Tamassia '01]

Strong/ ε Bar Visibility.

Open for directed graphs!

- \blacksquare Instead of an undirected graph, we are given a directed graph G.
- lacktriangleright The task is to construct a weak/strong/arepsilon bar visibility representation of G such that
- \blacksquare ... for each directed edge uv, the bar representing u is below the bar representing v.

Weak Bar Visibility.

- NP-complete for directed (acyclic planar) graphs!
- This is because upward planarity testing is NP-complete. [Garg & Tamassia '01]

Strong/ ε Bar Visibility.

Open for directed graphs!

Next, we consider ε -bar visibility representations of specific directed graphs ($\rightarrow st$ -graphs)

Recall that an st-graph is a planar digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

Recall that an st-graph is a planar digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

Recall that an st-graph is a planar digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

Recall that an st-graph is a planar digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

Observation.

st-orientations correspond to ε -bar visibility representations.

Recall that an st-graph is a planar digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

Observation.

st-orientations correspond to ε -bar visibility representations.

1

Recall that an st-graph is a planar digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

Observation.

st-orientations correspond to ε -bar visibility representations.

Recall that an st-graph is a planar digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

Observation.

Recall that an st-graph is a planar digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

Observation.

Recall that an st-graph is a planar digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

Observation.

Recall that an st-graph is a planar digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

Observation.

Recall that an st-graph is a planar digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

Observation.

Recall that an st-graph is a planar digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

Observation.

Recall that an st-graph is a planar digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

Observation.

Recall that an st-graph is a planar digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

Observation.

Recall that an st-graph is a planar digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

Observation.

Recall that an st-graph is a planar digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

Observation.

Recall that an st-graph is a planar digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

Observation.

Recall that an st-graph is a planar digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

Observation.

Recall that an st-graph is a planar digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

Observation.

Recall that an st-graph is a planar digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

Observation.

st-orientations correspond to ε -bar visibility representations.

 ϵ -bar visibility testing is easily done via st-graph recognition.

Recall that an st-graph is a planar digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

 ε -bar visibility testing is easily done via st-graph recognition.

Strong bar visibility recognition...open!

Observation.

Recall that an st-graph is a planar digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

 ϵ -bar visibility testing is easily done via st-graph recognition.

Strong bar visibility recognition...open!

In a **rectangular** bar visibility representation $\psi(s)$ and $\psi(t)$ span an enclosing rectangle.

Observation.

Recall that an st-graph is a planar digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

 ε -bar visibility testing is easily done via st-graph recognition.

Strong bar visibility recognition...open!

In a **rectangular** bar visibility representation $\psi(s)$ and $\psi(t)$ span an enclosing rectangle.

Observation.

Theorem 1.

[Chaplick et al. '18]

Rectangular ε -bar visibility representation extension can be solved in $\mathcal{O}(n \log^2 n)$ time for st-graphs.

Theorem 1.

[Chaplick et al. '18]

Rectangular ε -bar visibility representation extension can be solved in $\mathcal{O}(n \log^2 n)$ time for st-graphs.

Dynamic program via SPQR-trees

Theorem 1.

[Chaplick et al. '18]

Rectangular ε -bar visibility representation extension can be solved in $\mathcal{O}(n \log^2 n)$ time for st-graphs.

- Dynamic program via SPQR-trees
- **E**asier version: $\mathcal{O}(n^2)$

Theorem 1.

[Chaplick et al. '18]

Rectangular ε -bar visibility representation extension can be solved in $\mathcal{O}(n \log^2 n)$ time for st-graphs.

- Dynamic program via SPQR-trees
- **E**asier version: $\mathcal{O}(n^2)$

Theorem 2.

[Chaplick et al. '18]

 ε -bar visibility representation extension is NP-complete.

Theorem 1.

[Chaplick et al. '18]

Rectangular ε -bar visibility representation extension can be solved in $\mathcal{O}(n \log^2 n)$ time for st-graphs.

- Dynamic program via SPQR-trees
- Easier version: $\mathcal{O}(n^2)$

Theorem 2.

[Chaplick et al. '18]

 ε -bar visibility representation extension is NP-complete.

■ Reduction from Planar Monotone 3-SAT

Theorem 1.

[Chaplick et al. '18]

Rectangular ε -bar visibility representation extension can be solved in $\mathcal{O}(n \log^2 n)$ time for st-graphs.

- Dynamic program via SPQR-trees
- **Easier version:** $\mathcal{O}(n^2)$

Theorem 2.

[Chaplick et al. '18]

 ε -bar visibility representation extension is NP-complete.

Reduction from Planar Monotone 3-SAT

Theorem 3.

[Chaplick et al. '18]

 ε -bar visibility representation extension is NP-complete for (series-parallel) st-graphs when restricted to the **integer grid** (or if any fixed $\varepsilon > 0$ is specified).

Theorem 1.

[Chaplick et al. '18]

Rectangular ε -bar visibility representation extension can be solved in $\mathcal{O}(n \log^2 n)$ time for st-graphs.

- Dynamic program via SPQR-trees
- **Easier version:** $\mathcal{O}(n^2)$

Theorem 2.

[Chaplick et al. '18]

 ε -bar visibility representation extension is NP-complete.

Reduction from Planar Monotone 3-SAT

Theorem 3.

[Chaplick et al. '18]

 ε -bar visibility representation extension is NP-complete for (series-parallel) st-graphs when restricted to the **integer grid** (or if any fixed $\varepsilon > 0$ is specified).

Reduction from 3-Partition

■ An SPQR-tree T is a decomposition of a planar graph G by separation pairs.

■ An SPQR-tree T is a decomposition of a planar graph G by separation pairs.

■ An SPQR-tree T is a decomposition of a planar graph G by separation pairs.

- An SPQR-tree T is a decomposition of a planar graph G by separation pairs.
- \blacksquare The nodes of T are of four types:

- An SPQR-tree T is a decomposition of a planar graph G by separation pairs.
- \blacksquare The nodes of T are of four types:
 - S-nodes represent a series composition

- An SPQR-tree T is a decomposition of a planar graph G by separation pairs.
- \blacksquare The nodes of T are of four types:
 - S-nodes represent a series composition
 - P-nodes represent a parallel composition

- An SPQR-tree T is a decomposition of a planar graph G by separation pairs.
- \blacksquare The nodes of T are of four types:
 - S-nodes represent a series composition
 - P-nodes represent a parallel composition
 - Q-nodes represent a single edge

- An SPQR-tree T is a decomposition of a planar graph G by separation pairs.
- \blacksquare The nodes of T are of four types:
 - S-nodes represent a series composition
 - P-nodes represent a parallel composition
 - Q-nodes represent a single edge
 - R-nodes represent 3-connected (*rigid*) subgraphs

- An SPQR-tree T is a decomposition of a planar graph G by separation pairs.
- \blacksquare The nodes of T are of four types:
 - S-nodes represent a series composition
 - P-nodes represent a parallel composition
 - Q-nodes represent a single edge
 - R-nodes represent 3-connected (*rigid*) subgraphs
- A decomposition tree of a series-parallel graph is an SPQR-tree without R-nodes.

- An SPQR-tree T is a decomposition of a planar graph G by separation pairs.
- \blacksquare The nodes of T are of four types:
 - S-nodes represent a series composition
 - P-nodes represent a parallel composition
 - Q-nodes represent a single edge
 - R-nodes represent 3-connected (*rigid*) subgraphs
- A decomposition tree of a series-parallel graph is an SPQR-tree without R-nodes.
- lacksquare T represents all planar embeddings of G.

- An SPQR-tree T is a decomposition of a planar graph G by separation pairs.
- \blacksquare The nodes of T are of four types:
 - S-nodes represent a series composition
 - P-nodes represent a parallel composition
 - Q-nodes represent a single edge
 - R-nodes represent 3-connected (*rigid*) subgraphs
- A decomposition tree of a series-parallel graph is an SPQR-tree without R-nodes.
- lacksquare T represents all planar embeddings of G.
- lacksquare T can be computed in $\mathcal{O}(n)$ time. [Gutwenger, Mutzel '01]

SPQR-Tree Example

10 - 14 SPQR-Tree Example

10 - 17 SPQR-Tree Example

10 - 18 SPQR-Tree Example

SPQR-Tree Example (6)

Theorem 1'.

Theorem 1'.

Theorem 1'.

Theorem 1'.

Theorem 1'.

Rectangular ε -bar visibility representation extension can be solved in $\mathcal{O}(n^2)$ time for st-graphs.

Simplify with assumption on y-coordinates

Theorem 1'.

- Simplify with assumption on y-coordinates
- Look at connection to SPQR-trees – tiling

Theorem 1'.

- Simplify with assumption on y-coordinates
- Look at connection to SPQR-trees – tiling
- Solve problems for S-, P-, and R-nodes

Theorem 1'.

- Simplify with assumption on y-coordinates
- Look at connection to SPQR-trees – tiling
- Solve problems for S-, P-, and R-nodes
- Dynamic program via SPQRtree

Let G = (V, E) be an st-graph, and let ψ' be a representation of $V' \subseteq V$.

- Let G = (V, E) be an st-graph, and let ψ' be a representation of $V' \subseteq V$.
- Let $y \colon V \to \mathbb{R}$ such that

- Let G = (V, E) be an st-graph, and let ψ' be a representation of $V' \subseteq V$.
- Let $y \colon V \to \mathbb{R}$ such that
 - for each $v \in V'$, y(v) = the y-coordinate of $\psi'(v)$.

- Let G = (V, E) be an st-graph, and let ψ' be a representation of $V' \subseteq V$.
- Let $y \colon V \to \mathbb{R}$ such that
 - for each $v \in V'$, y(v) = the y-coordinate of $\psi'(v)$.
 - for each edge (u, v), y(u) < y(v).

- Let G = (V, E) be an st-graph, and let ψ' be a representation of $V' \subseteq V$.
- Let $y \colon V \to \mathbb{R}$ such that
 - for each $v \in V'$, y(v) = the y-coordinate of $\psi'(v)$.
 - for each edge (u, v), y(u) < y(v).

Lemma 1.

G has a representation extending $\psi' \Leftrightarrow$ G has a representation extending ψ' where the y-coordinates of the bars are as in y.

- Let G = (V, E) be an st-graph, and let ψ' be a representation of $V' \subseteq V$.
- Let $y \colon V \to \mathbb{R}$ such that
 - for each $v \in V'$, y(v) = the y-coordinate of $\psi'(v)$.
 - for each edge (u, v), y(u) < y(v).

Lemma 1.

G has a representation extending $\psi' \Leftrightarrow$ G has a representation extending ψ' where the y-coordinates of the bars are as in y.

Proof Idea. The relative positions of **adjacent** bars must match the order given by y.

So, we can adjust the y-coordinates of any solution to be as in y by sweeping from bottom to top.

- Let G = (V, E) be an st-graph, and let ψ' be a representation of $V' \subseteq V$.
- Let $y \colon V \to \mathbb{R}$ such that
 - for each $v \in V'$, y(v) = the y-coordinate of $\psi'(v)$.
 - for each edge (u, v), y(u) < y(v).

Lemma 1.

G has a representation extending $\psi' \Leftrightarrow$ G has a representation extending ψ' where the y-coordinates of the bars are as in y.

Proof Idea. The relative positions of **adjacent** bars must match the order given by y.

So, we can adjust the y-coordinates of any solution to be as in y by sweeping from bottom to top.

We can now assume that all y-coordinates are given!

But Why Do SPQR-Trees Help?

But Why Do SPQR-Trees Help?

Lemma 2.

The SPQR-tree of an st-graph G induces a recursive tiling of any ε -bar visibility representation of G.

But Why Do SPQR-Trees Help?

Lemma 2.

The SPQR-tree of an st-graph G induces a recursive tiling of any ε -bar visibility representation of G.

Convention. Orange bars are from the partial representation

Convention. Orange bars are from the partial representation

Convention. Orange bars are from the partial representation

Observation.

The bounding box (tile) of any solution ψ contains the bounding box of the partial representation.

Convention. Orange bars are from the partial representation

Observation.

The bounding box (tile) of any solution ψ contains the bounding box of the partial representation.

How many different types of tiles are there?

- Right Fixed due to the orange bar
- Left Loose due to the orange bar

- Right Fixed due to the orange bar
- Left Loose due to the orange bar

- Left Fixed due to the orange bar
- Right Loose due to the orange bar

- Right Fixed due to the orange bar
- Left Loose due to the orange bar

- Left Fixed due to the orange bar
- Right Loose due to the orange bar

- Right Fixed due to the orange bar
- Left Loose due to the orange bar

- Left Fixed due to the orange bar
- Right Loose due to the orange bar

- Right Fixed due to the orange bar
- Left Loose due to the orange bar

- Left Fixed due to the orange bar
- Right Loose due to the orange bar

Four different types: FF, FL, LF, LL

■ Children of **P**-node with prescribed bars occur in given left-to-right order

- Children of P-node with prescribed bars occur in given left-to-right order
- But there might be some gaps...

- Children of **P**-node with prescribed bars occur in given left-to-right order
- But there might be some gaps...

Idea.

Greedily *fill* the gaps by preferring to "stretch" the children with prescribed bars.

- Children of P-node with prescribed bars occur in given left-to-right order
- But there might be some gaps...

Idea.

Greedily *fill* the gaps by preferring to "stretch" the children with prescribed bars.

Outcome.

After processing, we must know the valid types for the corresponding subgraphs.

This fixed vertex means we can only make a Fixed-Fixed representation!

This fixed vertex means we can only make a Fixed-Fixed representation!

Here we have a chance to make all (LL, FL, LF, FF) types.

This fixed vertex means we can only make a Fixed-Fixed representation!

• for each child (edge) e:

- for each child (edge) e:
 - find all types of {FF,FL,LF,LL} that admit a drawing

- \blacksquare for each child (edge) e:
 - find all types of {FF,FL,LF,LL} that admit a drawing

- \blacksquare for each child (edge) e:
 - find all types of {FF,FL,LF,LL} that admit a drawing
 - lacksquare 2 variables l_e, r_e encoding fixed/loose type of its tile

- \blacksquare for each child (edge) e:
 - find all types of {FF,FL,LF,LL} that admit a drawing
 - lacksquare 2 variables l_e, r_e encoding fixed/loose type of its tile

- \blacksquare for each child (edge) e:
 - find all types of {FF,FL,LF,LL} that admit a drawing
 - lacksquare 2 variables l_e, r_e encoding fixed/loose type of its tile

- \blacksquare for each child (edge) e:
 - find all types of {FF,FL,LF,LL} that admit a drawing
 - lacksquare 2 variables l_e, r_e encoding fixed/loose type of its tile
 - consistency clauses

- \blacksquare for each child (edge) e:
 - find all types of {FF,FL,LF,LL} that admit a drawing
 - lacksquare 2 variables l_e, r_e encoding fixed/loose type of its tile
 - consistency clauses

- \blacksquare for each child (edge) e:
 - find all types of {FF,FL,LF,LL} that admit a drawing
 - lacksquare 2 variables l_e, r_e encoding fixed/loose type of its tile
 - consistency clauses

- \blacksquare for each child (edge) e:
 - find all types of {FF,FL,LF,LL} that admit a drawing
 - lacksquare 2 variables l_e, r_e encoding fixed/loose type of its tile
 - lacktriangle consistency clauses $-O(n^2)$ many,

- \blacksquare for each child (edge) e:
 - find all types of {FF,FL,LF,LL} that admit a drawing
 - lacksquare 2 variables l_e, r_e encoding fixed/loose type of its tile
 - consistency clauses $-O(n^2)$ many, but can be reduced to $O(n \log^2 n)$

 \blacksquare for each child (edge) e:

find all types of {FF,FL,LF,LL} that admit a drawing

lacksquare 2 variables l_e, r_e encoding fixed/loose type of its tile

lacktriangle consistency clauses $-O(n^2)$ many, but can be reduced to $O(n\log^2 n)$

Finding a satisfying assingment of a 2-SAT formula can be done in linear time!

 \blacksquare for each child (edge) e:

find all types of {FF,FL,LF,LL} that admit a drawing

lacksquare 2 variables l_e, r_e encoding fixed/loose type of its tile

lacktriangle consistency clauses $-O(n^2)$ many, but can be reduced to $O(n\log^2 n)$

Finding a satisfying assingment of a 2-SAT formula can be done in linear time!

 $\Rightarrow O(n^2)$ time in total

- \blacksquare for each child (edge) e:
 - find all types of {FF,FL,LF,LL} that admit a drawing
 - lacksquare 2 variables l_e, r_e encoding fixed/loose type of its tile
 - lacktriangle consistency clauses $-O(n^2)$ many, but can be reduced to $O(n\log^2 n)$

- Finding a satisfying assingment of a 2-SAT formula can be done in linear time!
 - $\Rightarrow O(n^2)$ time in total or $O(n \log^2 n)$

Theorem 2.

 ε -Bar visibility representation extension is NP-complete.

■ Reduction from planar monotone 3-SAT

Theorem 2.

 ε -Bar visibility representation extension is NP-complete.

■ Reduction from planar monotone 3-SAT

Theorem 2.

 ε -Bar visibility representation extension is NP-complete.

■ Reduction from planar monotone 3-SAT

Theorem 2.

 ε -Bar visibility representation extension is NP-complete.

■ Reduction from planar monotone 3-SAT

NP-complete [Berg & Khosravi '10]

 \overline{x} d

 $x \lor y \lor z$

 $x \lor y \lor z$

$$x \lor y \lor z$$

■ Rectangular ε -bar visibility representation extension can be solved in $O(n \log^2 n)$ time for st-graphs.

- Rectangular ε -bar visibility representation extension can be solved in $O(n \log^2 n)$ time for st-graphs.
- \blacksquare ε -bar visibility representation extension is NP-complete.

- Rectangular ε -bar visibility representation extension can be solved in $O(n \log^2 n)$ time for st-graphs.
- \blacksquare ε -bar visibility representation extension is NP-complete.
- ε -bar visibility representation extension is NP-complete for (series-parallel) st-graphs when restricted to the *integer grid* (or if any fixed $\varepsilon > 0$ is specified).

- Rectangular ε -bar visibility representation extension can be solved in $O(n \log^2 n)$ time for st-graphs.
- \blacksquare ε -bar visibility representation extension is NP-complete.
- ε -bar visibility representation extension is NP-complete for (series-parallel) st-graphs when restricted to the *integer grid* (or if any fixed $\varepsilon > 0$ is specified).

Open Problems:

■ Can rectangular ε -bar visibility representation extension be solved in polynomial time for st-graphs?

- Rectangular ε -bar visibility representation extension can be solved in $O(n \log^2 n)$ time for st-graphs.
- \blacksquare ε -bar visibility representation extension is NP-complete.
- ε -bar visibility representation extension is NP-complete for (series-parallel) st-graphs when restricted to the *integer grid* (or if any fixed $\varepsilon > 0$ is specified).

Open Problems:

■ Can rectangular ε -bar visibility representation extension be solved in polynomial time for st-graphs? For DAGs?

- Rectangular ε -bar visibility representation extension can be solved in $O(n \log^2 n)$ time for st-graphs.
- \blacksquare ε -bar visibility representation extension is NP-complete.
- ε -bar visibility representation extension is NP-complete for (series-parallel) st-graphs when restricted to the *integer grid* (or if any fixed $\varepsilon > 0$ is specified).

Open Problems:

- Can rectangular ε -bar visibility representation extension be solved in polynomial time for st-graphs? For DAGs?
- $lacktriang{lacktriangleright}$ Can **strong** bar visibility recognition / representation extension be solved in polynomial time for st-graphs?

Literature

Main source:

■ [Chaplick, Guśpiel, Gutowski, Krawczyk, Liotta '18]
The Partial Visibility Representation Extension Problem

Referenced papers:

- [Gutwenger, Mutzel '01] A Linear Time Implementation of SPQR-Trees
- [Wismath '85] Characterizing bar line-of-sight graphs
- [Tamassia, Tollis '86] Algorithms for visibility representations of planar graphs
- [Andreae '92] Some results on visibility graphs
- [Chaplick, Dorbec, Kratchovíl, Montassier, Stacho '14]
 Contact representations of planar graphs: Extending a partial representation is hard