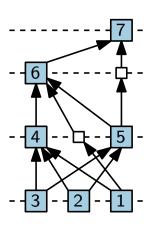
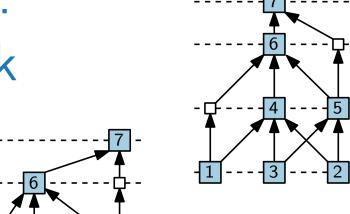


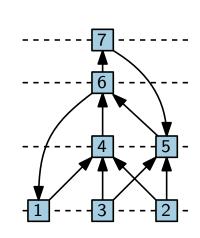
Visualization of Graphs

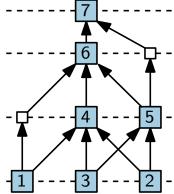
Hierarchical Layouts: Sugiyama Framework



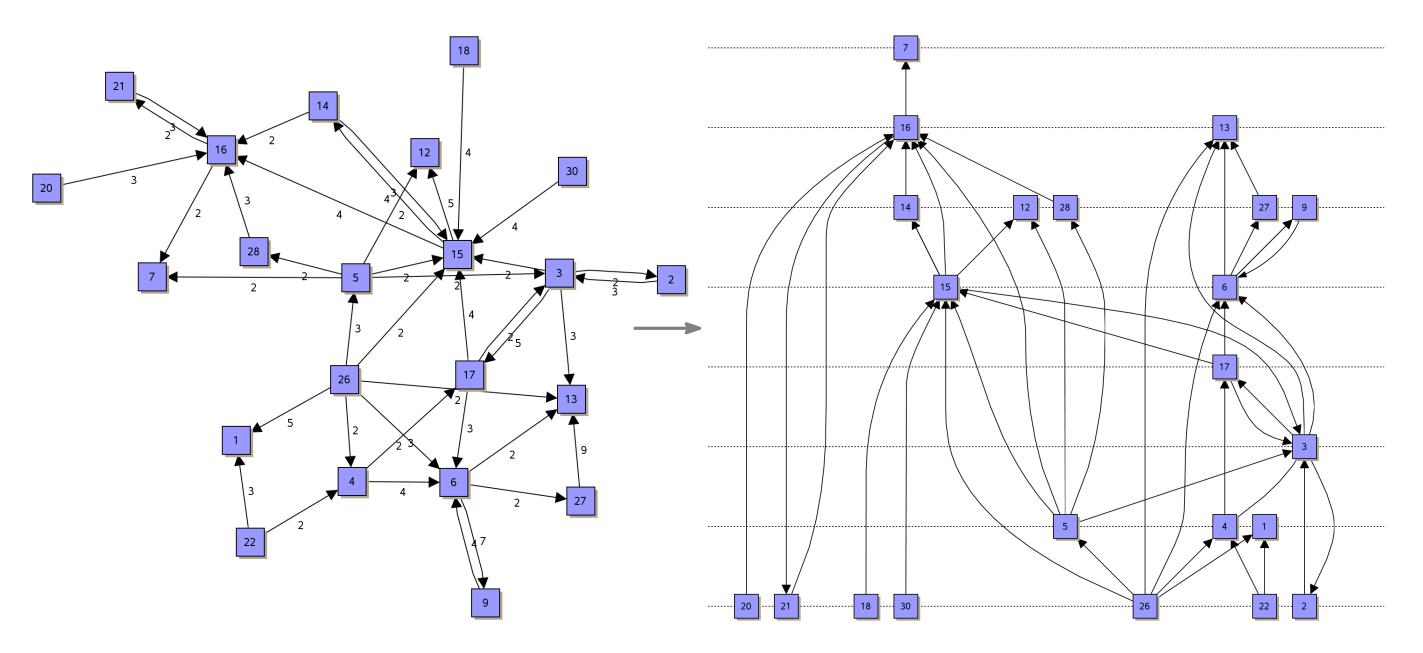
Johannes Zink







Hierarchical Drawings – Motivation



Hierarchical Drawing

Problem Statement.

Input: digraph G = (V, E)

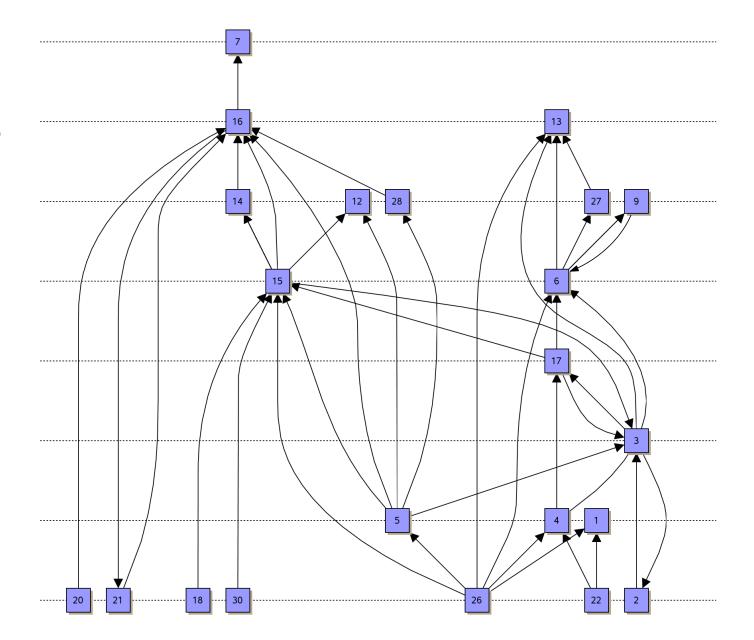
lacksquare Output: drawing of G that "closely"

reproduces the hierarchical

properties of G

Desirable Properties.

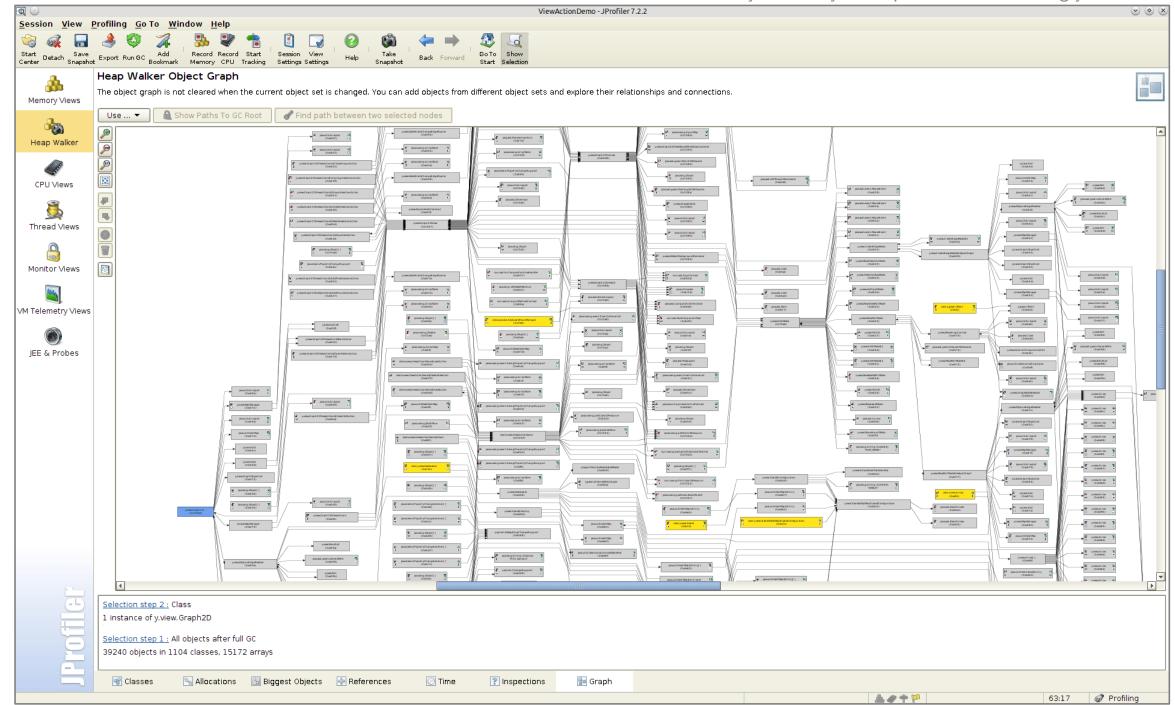
- edges directed upwards
- vertices occur on (few) horizontal lines
- edge crossings minimized
- edges as short as possible
- vertices evenly spaced



Criteria can be contradictory!

Hierarchical Drawing – Applications

yEd Gallery: Java profiler JProfiler using yFiles

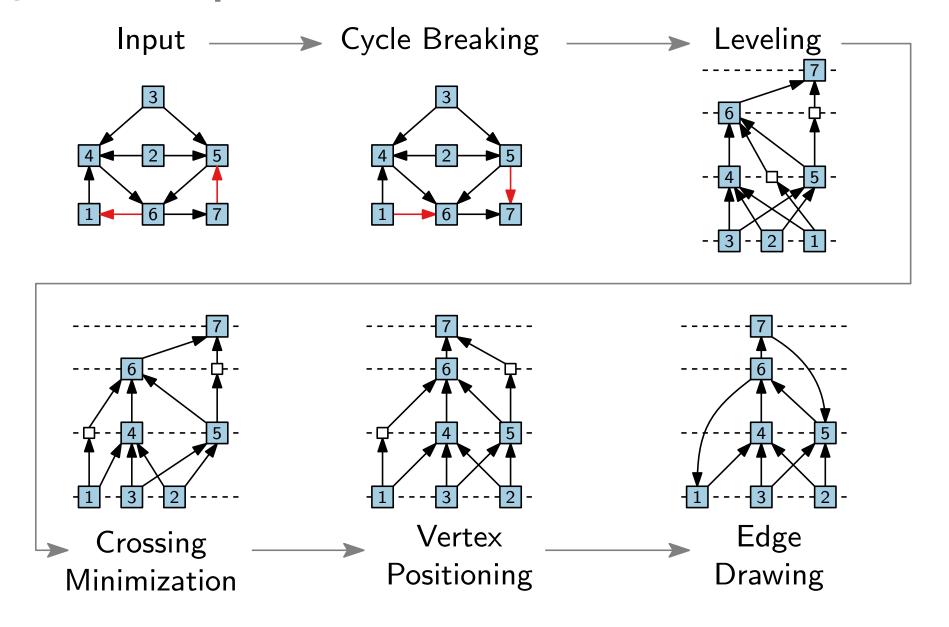


Hierarchical Drawing – Applications

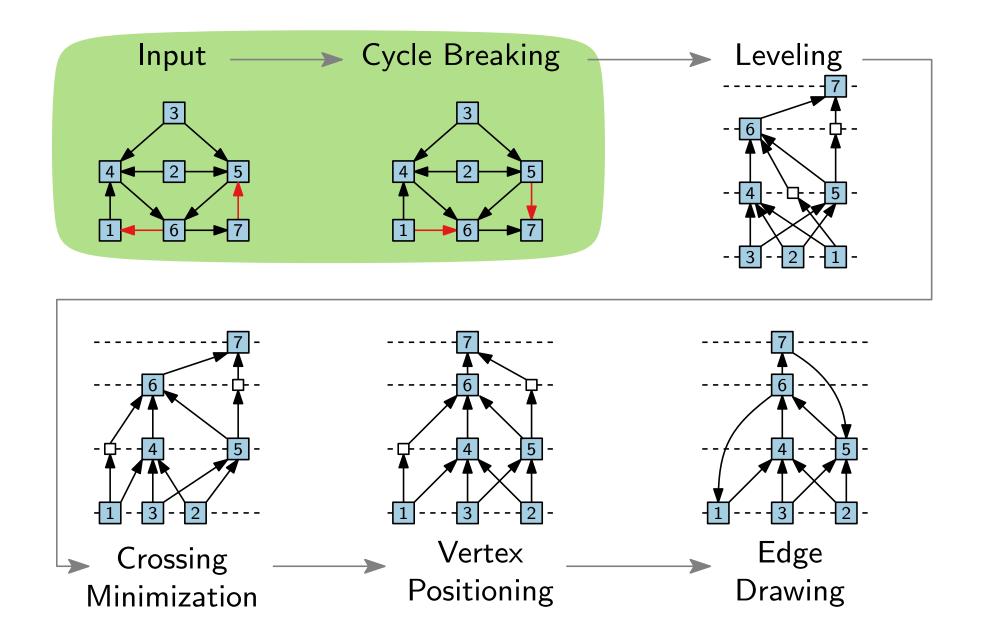
yEd Gallery: Java profiler JProfiler using yFiles MYTHOLOGICAL FIGURES (A) Star Wars (Original Trilogy) **(B)** LUKE'S ENTIRE JEDI TRAINING Source: "Design Considerations for Optimizing Storyline Visualizations" Tanahashi et al. Source: Visualization that won jects 쳵 References the Graph Drawing Contest 2016. Klawitter & Mchedlidze_

Classical Approach – Sugiyama Framework

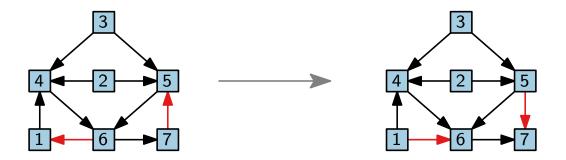
[Sugiyama, Tagawa, Toda '81]



Step 1: Cycle breaking



Step 1: Cycle breaking



Approach.

- Find minimum-size set E^* of edges that are not upward.
- \blacksquare Remove E^* and insert reversed edges.

Problem MINIMUM FEEDBACK ARC SET (FAS).

- Input: directed graph G = (V, E)
- Output: min.-size set $E^* \subseteq E$, such that $G^* = (V, E \setminus E^*)$ acyclic

edges in E^{\star} but reversed

Heuristic 1

[Berger, Shor '90]

GreedyMakeAcyclic(Digraph G = (V, E))

$$E' \leftarrow \emptyset$$

foreach $v \in V$ do

if
$$|N^{\rightarrow}(v)| \ge |N^{\leftarrow}(v)|$$
 then $|E' \leftarrow E' \cup N^{\rightarrow}(v)|$

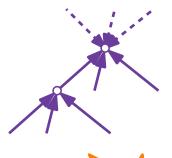
else

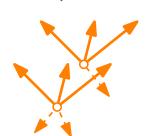
$$E' \leftarrow E' \cup N^{\leftarrow}(v)$$

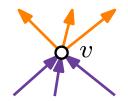
remove v and N(v) from G.

return (V, E')

 $lackbox{\blacksquare} E \setminus E'$ is a feedback set







$$N^{\rightarrow}(v)$$
 := $\{(v,u)|(v,u) \in E\}$
 $N^{\leftarrow}(v)$:= $\{(u,v)|(u,v) \in E\}$
 $N(v)$:= $N^{\rightarrow}(v) \cup N^{\leftarrow}(v)$

- Time: $\mathcal{O}(|V| + |E|)$
- Quality guarantee: $|E'| \ge |E|/2$

Heuristic 2

[Eades, Lin, Smyth '93]

$$E' \leftarrow \emptyset$$

while $V \neq \emptyset$ do

while in V exists a sink v do

$$E' \leftarrow E' \cup N^{\leftarrow}(v)$$
 remove v and $N^{\leftarrow}(v)$

Remove all isolated vertices from V

while in V exists a source v do

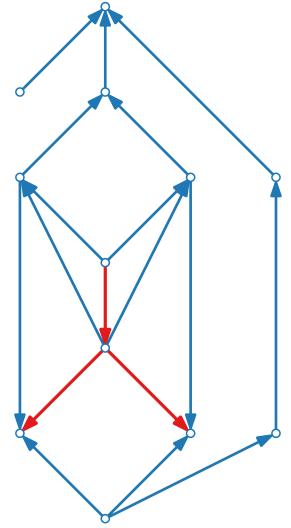
$$E' \leftarrow E' \cup N^{\rightarrow}(v)$$
 remove v and $N^{\rightarrow}(v)$

if $V \neq \emptyset$ then

let
$$v \in V$$
 such that $|N^{\rightarrow}(v)| - |N^{\leftarrow}(v)|$ maximal

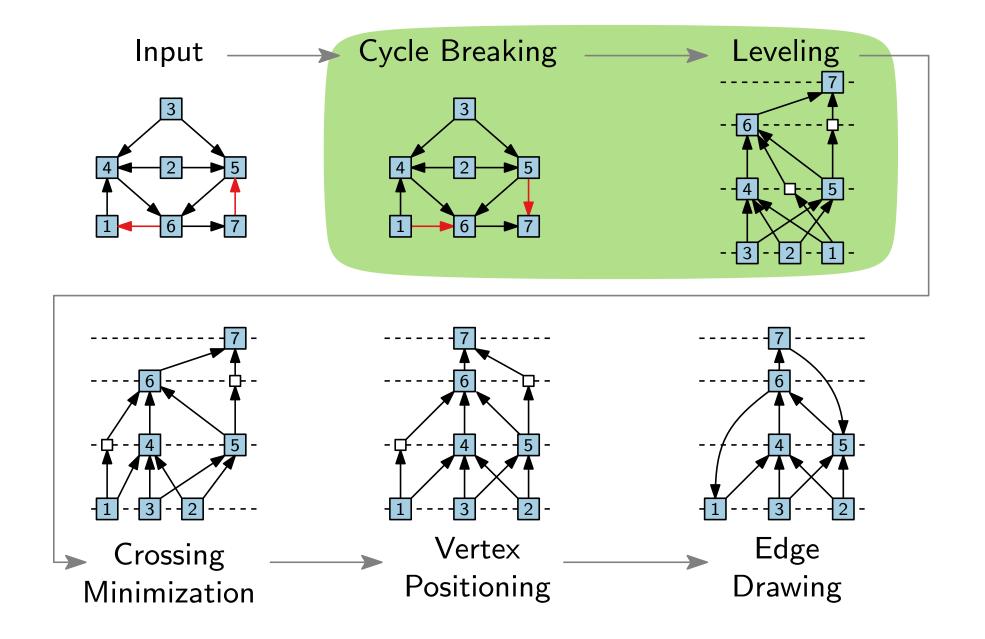
$$E' \leftarrow E' \cup N^{\rightarrow}(v)$$

remove v and N(v)

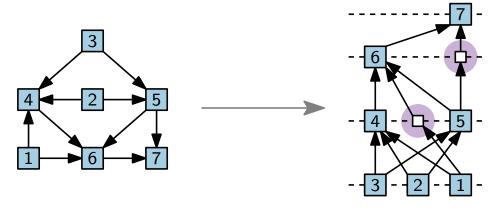


- Time: $\mathcal{O}(|V| + |E|)$ [The main idea is to use bins for the sinks, sources, and a bin for each $|N^{\rightarrow}(v)| |N^{\leftarrow}(v)|$]
- Quality guarantee: $|E'| \ge |E|/2 + |V|/6$

Step 2: Leveling



Step 2: Leveling



whenever an edge spans across a layer, we insert a dummy vertex

Problem.

Input: acyclic digraph G = (V, E)

Output: Mapping $y \colon V o \{1, \dots, n\}$,

such that for every $uv \in E$, y(u) < y(v).

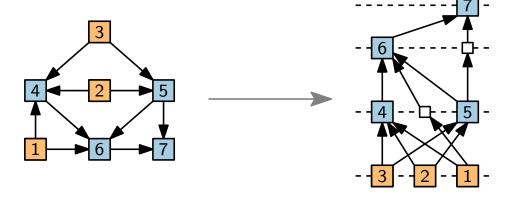
Objective is to minimize . . .

- number of layers, i.e., $\max_{v \in V} y(v)$
- length of the longest edge, i.e. $\max_{uv \in E} y(v) y(u)$
- width, i.e., $\max_{i \in \{1,...,n\}} |\{v \mid y(v) = i\}|$
- total edge length, i.e., number of dummy vertices

Minimize Number of Layers

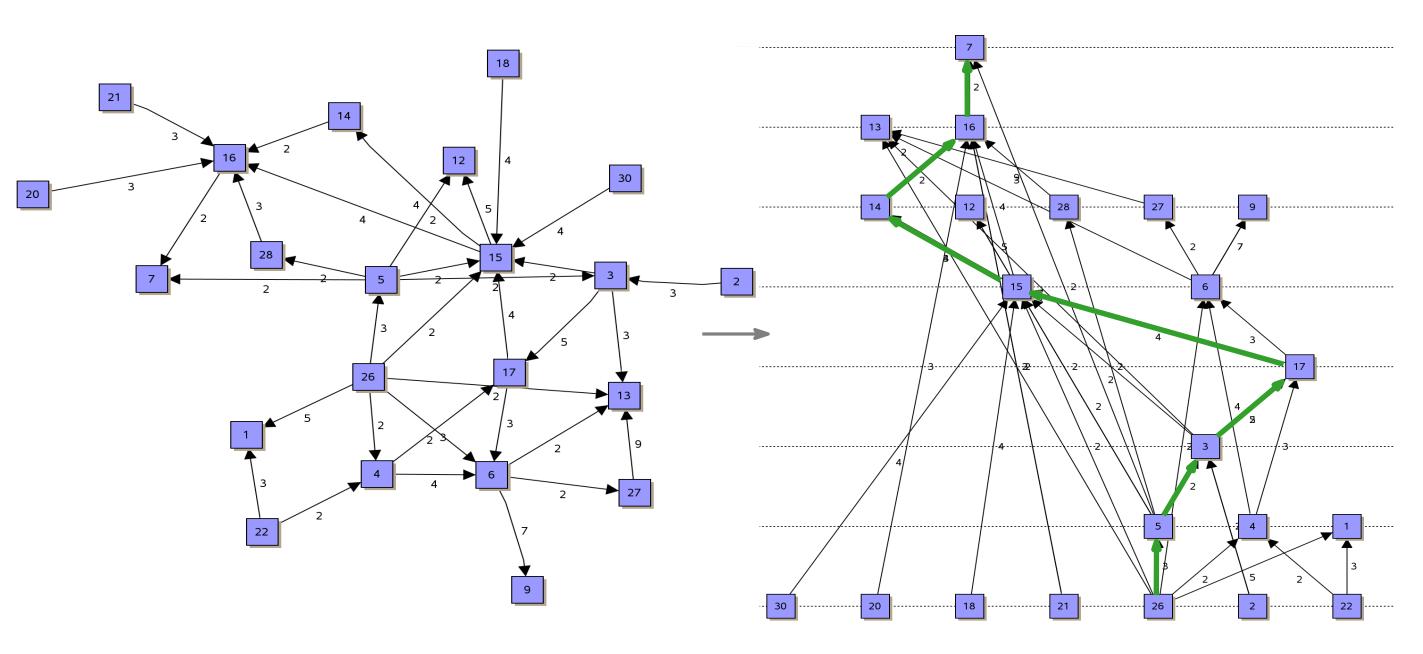
Algorithm.

- for each source q set y(q) := 1
- for each non-source v set $y(v) := \max \{y(u) \mid uv \in E\} + 1$



Observation.

- y(v) is length of the longest path from a source to v plus 1. ... which is optimal!
- Can be implemented in linear time with recursive algorithm.



Minimize Total Edge Length – ILP

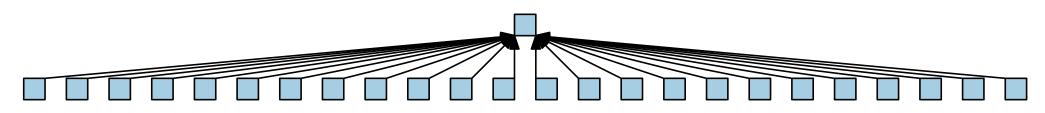
Can be formulated as an integer linear program:

$$\begin{array}{ll} \min & \sum_{(u,v)\in E}(y(v)-y(u)) \\ \text{subject to} & y(v)-y(u)\geq 1 & \forall (u,v)\in E \\ & y(v)\geq 1 & \forall v\in V \\ & y(v)\in \mathbb{Z} & \forall v\in V \end{array}$$

One can show that:

- Constraint-matrix is totally unimodular.
 - \Rightarrow Solution of the relaxed linear program is integer.
- The total edge length can be minimized in polynomial time.

Width



Drawings can be very wide.

Narrower Layer Assignment

Problem: leveling with a given maximum-width.

- Input: acyclic digraph G = (V, E), width W > 0
- lacksquare Output: assignment of the vertices in V to layers, such that
 - the assignment is a leveling,
 - each layer contains at most W elements, and
 - the number of layers is minimized

Problem: precedence-constrained multi-processor scheduling.

- Input: n jobs with unit (1) processing time, W identical
 - machines, and a partial ordering < on the jobs.
- Output: Schedule respecting < and having minimum</p>
 - completion time (known as makespan).
- NP-hard, $(2-\frac{1}{W})$ -Approx., no $(\frac{4}{3}-\varepsilon)$ -Approx. $(W \ge 3)$

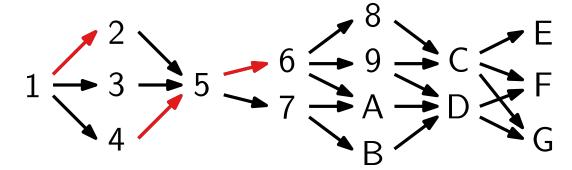
same!

Approximating PCMPS

- jobs stored in a list L (e.g., topologically sorted)
- \blacksquare a job in L is available when all its predecessors have been scheduled
- lacksquare for each time $t=1,2,\ldots$ we can schedule $\leq W$ available jobs
- as long as there are free machines and available jobs, take the first available job and assign it to a free machine

Approximating PCMPS

Input: Precedence graph (divided into layers of arbitrary width)



Number of machines is W = 2.

Output: Schedule

Question: Good approximation factor?

Approximating PCMPS - Analysis for W=2

Precedence graph
$$G_{<}$$

$$1 \xrightarrow{2} \xrightarrow{3} \xrightarrow{5} \xrightarrow{6} \xrightarrow{6} \xrightarrow{7} \xrightarrow{A} \xrightarrow{P} \xrightarrow{D} \xrightarrow{G} \xrightarrow{F} \xrightarrow{G} \xrightarrow{G} \xrightarrow{Schedule}$$

$$Schedule$$

$$\frac{M_1 | 1 | 2 | 4 | 5 | 6 | 8 | A | C | E | G}{M_2 | -3 | -7 | 9 | B | D | F | -1}$$

$$t | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10$$

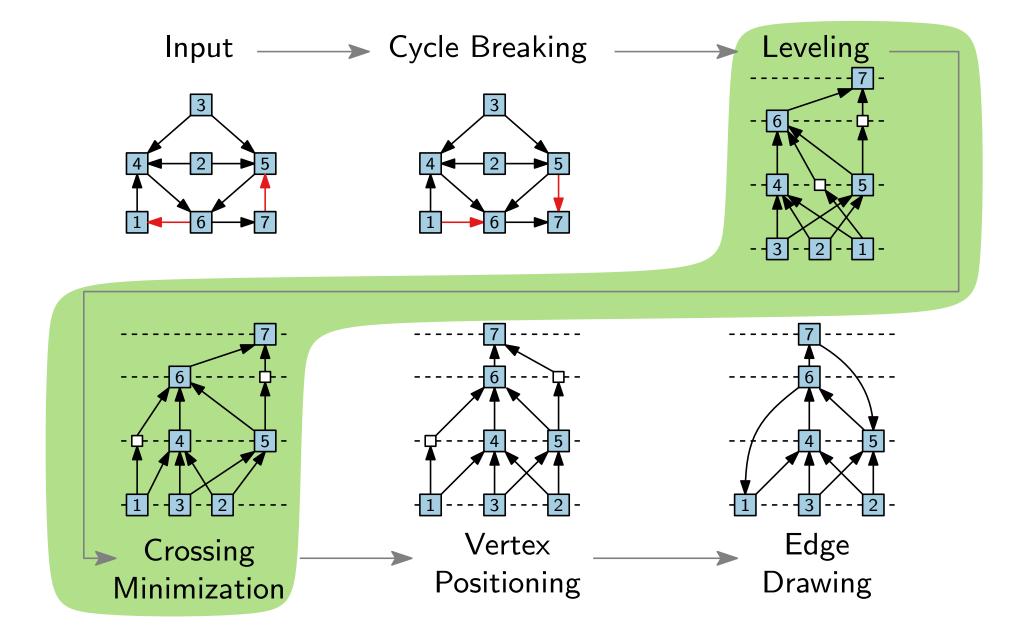
"The art of the lower bound"

$$\mathsf{OPT} \geq \lceil n/2 \rceil$$
 and $\mathsf{OPT} \geq \ell := \mathsf{Number}$ of layers of $G_<$ (= length of longest path in $G_<$)

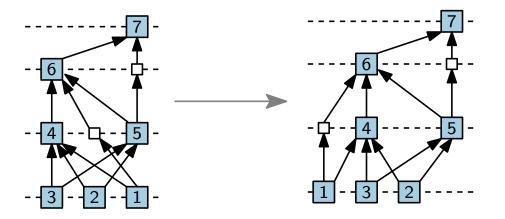
Goal: measure the quality of our algorithm using the lower bounds

$$\leq (2-1/W) \cdot \text{OPT in general case}$$
 Bound. ALG $\leq \lceil \frac{n+\ell}{2} \rceil \approx \lceil n/2 \rceil + \ell/2 \leq 3/2 \cdot \text{OPT}$ insertion of pauses (-) in the schedule (except the last) maps to layers of $G_{<}$

Step 3: Crossing Minimization



Step 3: Crossing Minimization



Problem.

- Input: Graph G, leveling $y \colon V \to \{1, \dots, n\}$
- Output: (Re-)ordering of vertices in each layer such that the number of crossings is minimized.
- NP-hard, even for 2 layers
- hardly any approaches optimize over multiple layers (<</p>

[Garey & Johnson '83]

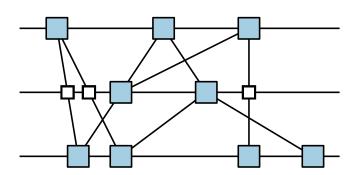
Iterative Crossing Reduction

Observation. The number of crossings only depends on permutations of adjacent layers. Idea.

- permute one layer after the other
- treat dummy-vertices like "regular" vertices

Algorithm scheme.

(1) choose a random permutation of L_1



one-sided crossing minimization

- (2) iteratively consider pairs of adjacent layers (L_i, L_{i+1})
- (3) minimize crossings by permuting L_{i+1} while keeping L_i fixed
- (4) repeat steps (2)–(3) in the reverse order (starting from topmost layer L_h)
- (5) repeat steps (2)–(4) until no further improvement is achieved
- (6) repeat steps (1)–(5) with different starting permutations on L_1

One-Sided Crossing Minimization

Problem.

bipartite graph $G = (L_1 \cup L_2, E)$, Input:

permutation π_1 on L_1

permutation π_2 of L_2 minimizing the number of Output:

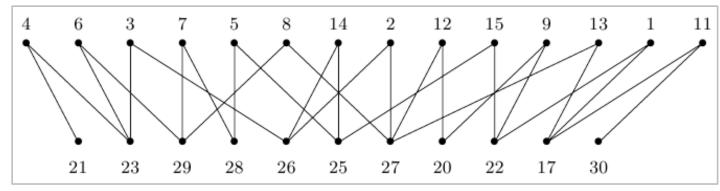
edge crossings.

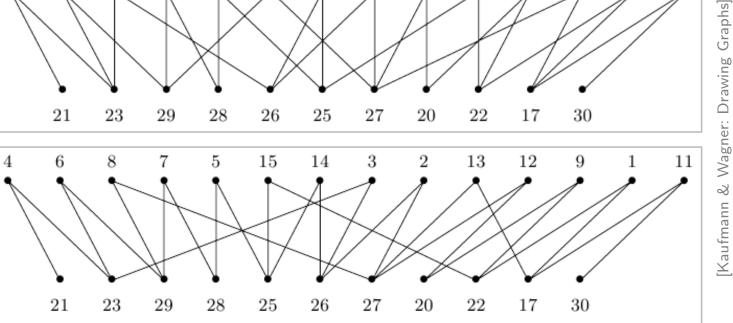
One-sided crossing minimization is NP-hard.

[Eades & Whitesides '94]

Algorithms.

- barycenter heuristic
- median heuristic
- Greedy-Switch
- **ILP**





Barycenter Heuristic

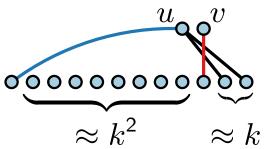
[Sugiyama et al. '81]

- Intuition: few intersections occur when vertices are close to their neighbors
- The barycenter of $u \in L_2$ is the mean rank of u's neighbors on layer L_1 .

$$\mathsf{bary}(u) := \frac{1}{\mathsf{deg}(u)} \sum_{v \in N(u)} \pi_1(v)$$

- To get π_2 , sort L_2 ascendingly using, for each $u \in L_2$, bary(u).
- vertices with the same barycenter keep their old relative ranks
- linear runtime (in the number of vertices and edges)
- relatively good results
- $O(\sqrt{n})$ -approximation factor

Worst case?



Median Heuristic

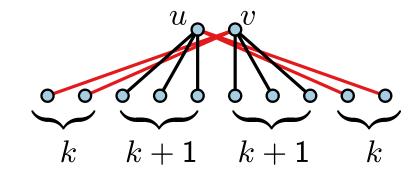
[Eades & Wormald '94]

$$v_1, \ldots, v_k$$
 := $N(u)$ with $\pi_1(v_1) < \pi_1(v_2) < \cdots < \pi_1(v_k)$

- $\mathsf{med}(u) := egin{cases} 0 & \mathsf{when} \ N(u) = \emptyset \ \pi_1(v_{\lceil k/2
 ceil}) & \mathsf{otherwise} \end{cases}$
- To get π_2 , sort L_2 ascendingly using, for each $u \in L_2$, med(u).
- for vertices with the same median, we place vertices with odd degree to the left of vertices with even degree (and keep their old relative ranks among the odd/even vertices)
- linear runtime (in the number of vertices and edges)
- relatively good results
- 3-approximation factor

Proof in [GD Ch 11]

Worst case?



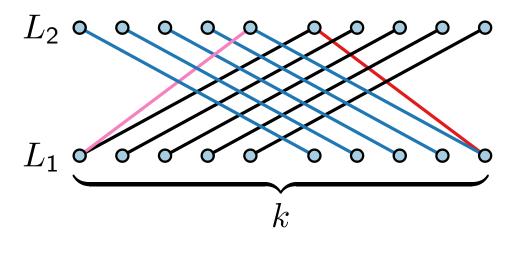
crossings:
$$2k(k+1) + k^2$$
 vs. $(k+1)^2$

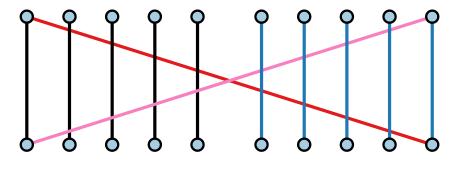
Greedy-Switch Heuristic

[Eades & Kelly '86]

- Iteratively swap pairs of neighboring vertices on L_2 as long as the number of crossings decreases.
- runtime $O(|L_2|)$ per iteration; at most $|L_2|$ iterations $\Rightarrow O(|L_2|^2)$
- suitable as post-processing for other heuristics

Worst case?





$$\approx k^2/4$$

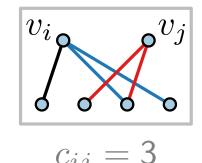
$$\approx 2k$$

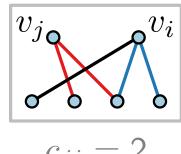
Integer Linear Program (ILP)

[Jünger & Mutzel, '97]

- lacktriangle constant $c_{ij} := \#$ crossings between edges incident to v_i and v_j when $\pi_2(v_i) < \pi_2(v_j)$
- variable x_{ij} for each $1 \le i < j \le n_2 := |L_2|$

$$x_{ij} = \left\{ egin{array}{ll} 1 & \hbox{when } \pi_2(v_i) < \pi_2(v_j) \ 0 & \hbox{otherwise} \end{array}
ight. egin{array}{ll} c \ c_{ij} = 3 \end{array}
ight.$$





$$c_{ji} = 2$$

number of crossings of a permutations π_2 :

$$\operatorname{cross}(\pi_2) = \sum_{i=1}^{n_2-1} \sum_{j=i+1}^{n_2} (c_{ij} - c_{ji}) x_{ij} + \underbrace{\sum_{i=1}^{n_2-1} \sum_{j=i+1}^{n_2} c_{ji}}_{\text{constant}}$$

Integer Linear Program (ILP)

[Jünger & Mutzel, '97]

objective (minimize the number of crossings):

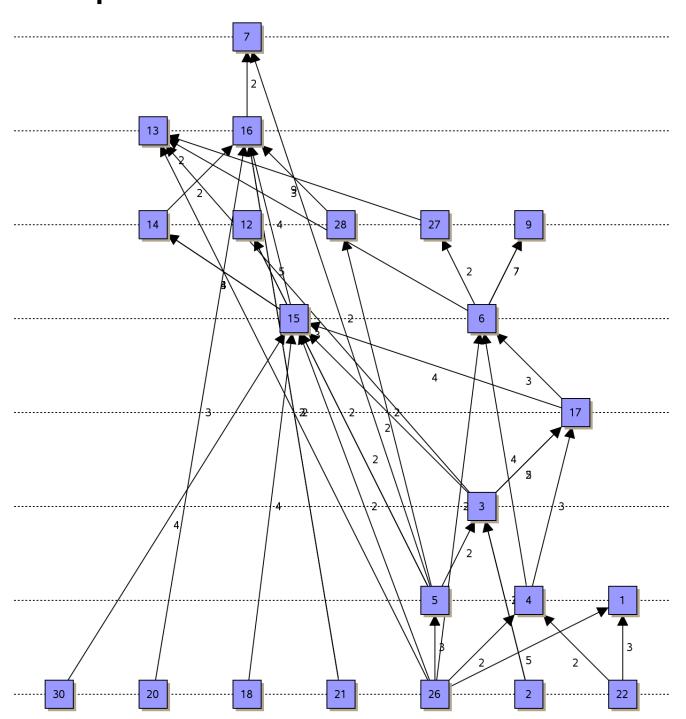
minimize
$$\sum_{i=1}^{n_2-1} \sum_{j=i+1}^{n_2} (c_{ij} - c_{ji}) x_{ij}$$

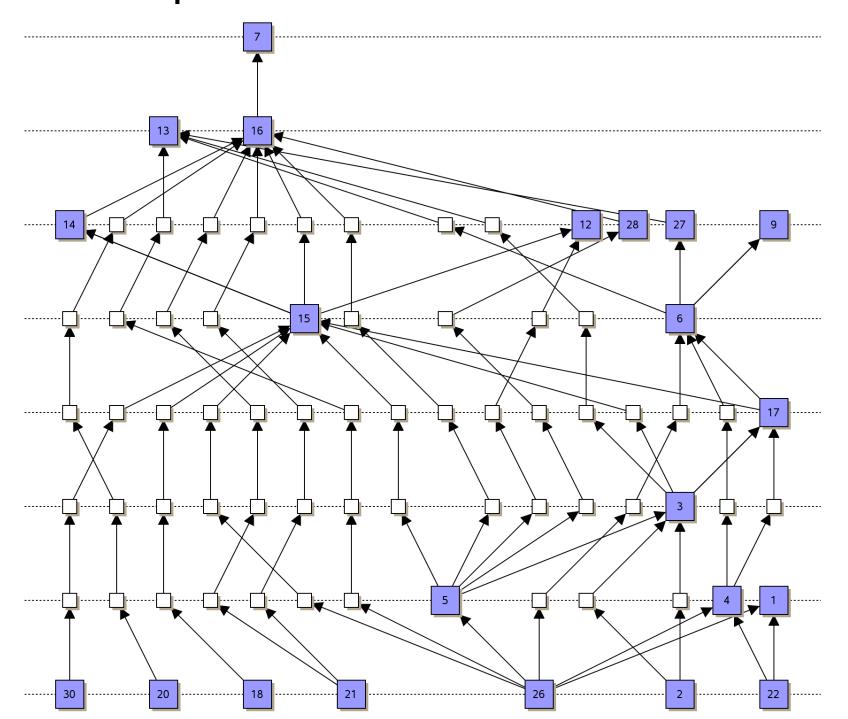
transitivity constraints:

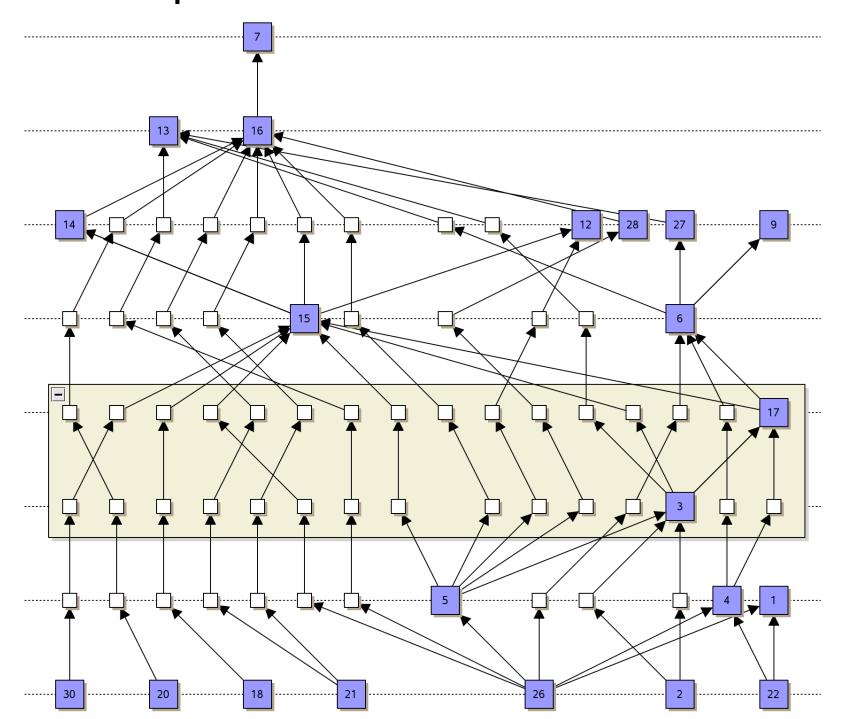
$$0 \le x_{ij} + x_{jk} - x_{ik} \le 1$$
 for $1 \le i < j < k \le n_2$ i.e., if $x_{ij} = 1$ and $x_{jk} = 1$, then $x_{ik} = 1$

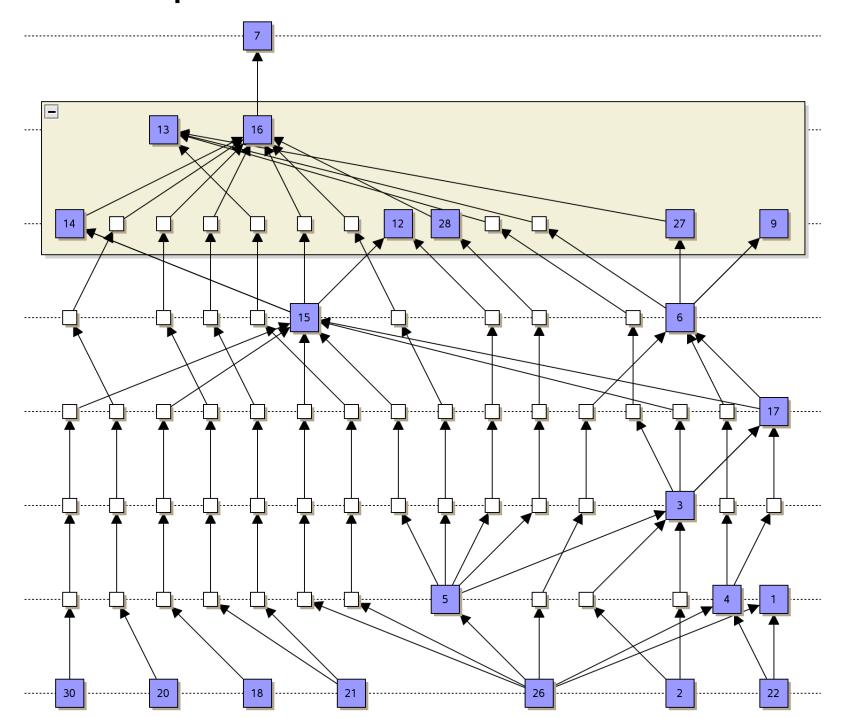
Properties.

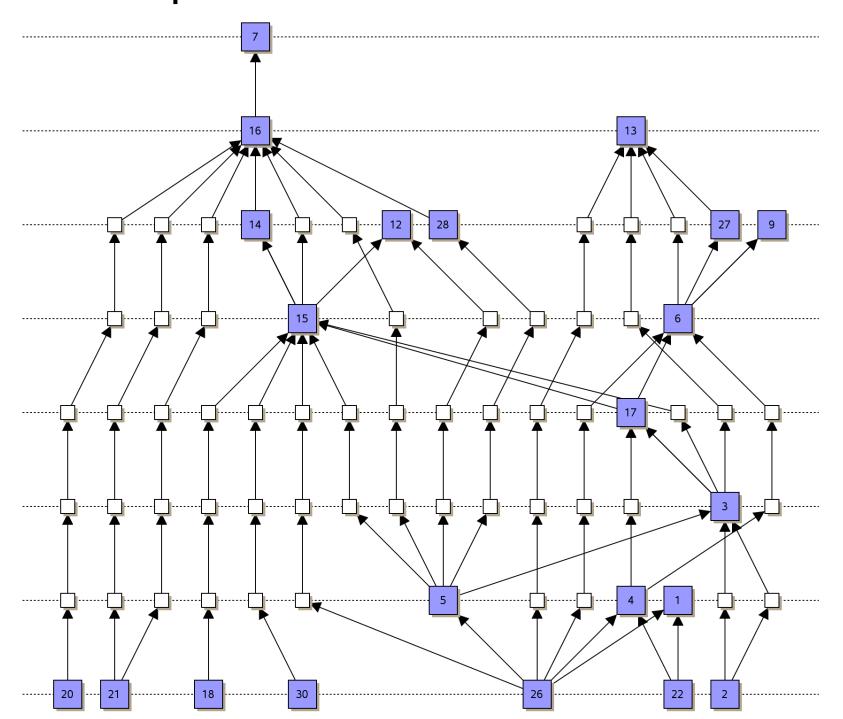
- branch-and-cut technique applicable for this ILP
- useful for graphs of small to medium size
- finds optimal solution
- solution in polynomial time is not guaranteed



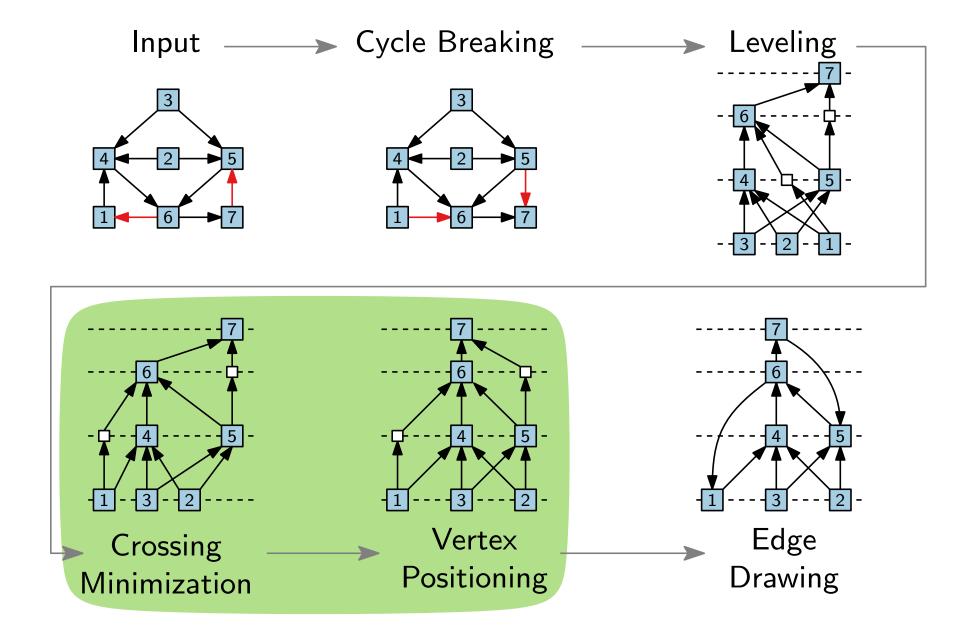








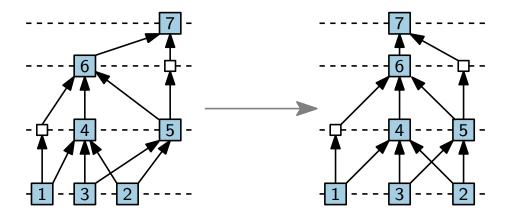
Step 4: Vertex Positioning



Step 4: Vertex Positioning

Goals.

- paths of a single edge should be (close to) straight
- vertices on a layer evenly spaced
- perfer vertical edges



- **Exact:** Quadratic Program (QP)
- **Heuristic:** Iterative approach

Quadratic Program

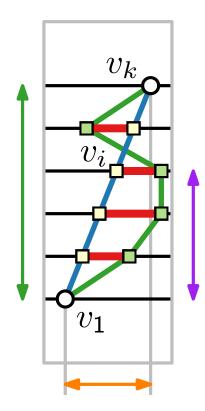
- Consider the path $p_e = (v_1, \dots, v_k)$ of an edge $e = v_1 v_k$ with dummy vertices: v_2, \dots, v_{k-1}
- x-coordinate of v_i according to the line $\overline{v_1v_k}$ (with equal spacing):

$$\overline{x(v_i)} = x(v_1) + \frac{i-1}{k-1} \left(x(v_k) - x(v_1) \right)$$

Define the deviation from the line

$$\mathsf{dev}(p_e) := \sum_{i=2}^{k-1} \left(x(v_i) - \overline{x(v_i)} \right)^2$$

- Objective function: $\min \sum_{e \in E} \operatorname{dev}(p_e)$
- Constraints for all vertices v, w in the same layer with w to the right of v: $x(w) x(v) \ge \rho$ \longrightarrow min. horizontal distance

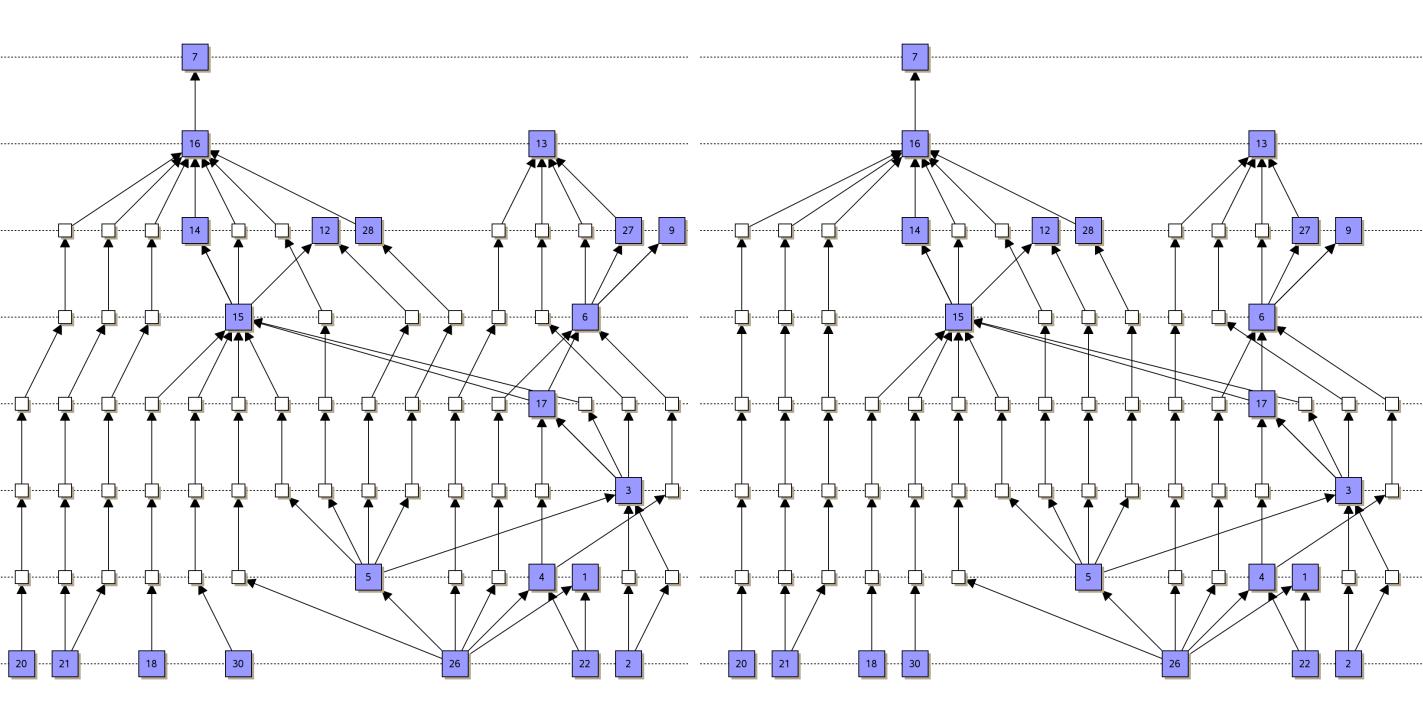


- QP is time-expensive
- width can be exponential

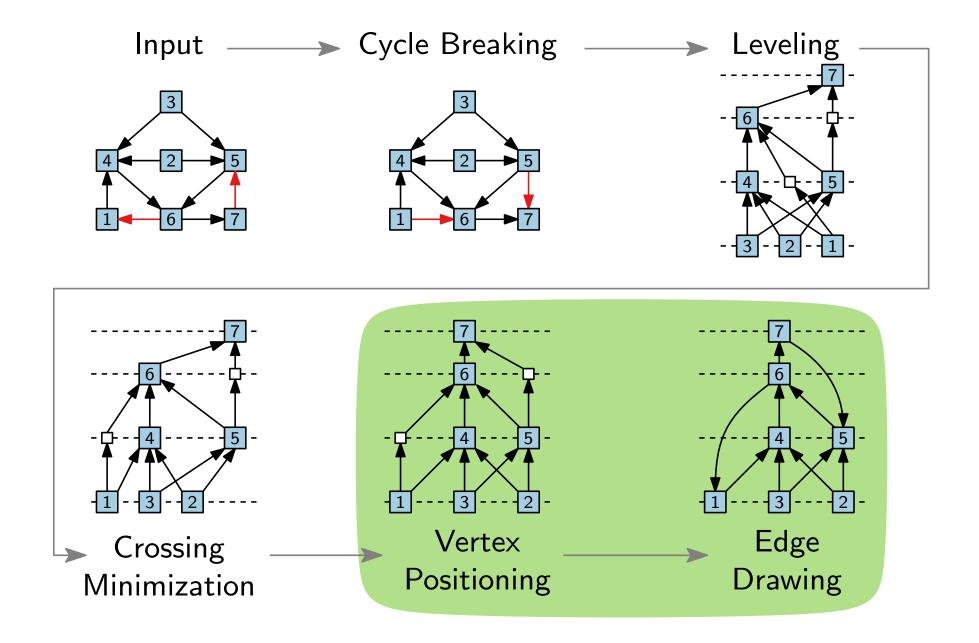
Iterative Heuristic

- Compute an initial layout
- Apply the following steps as long as improvements can be made:
 - 1. vertex positioning
 - 2. edge straightening
 - 3. compactifying the layout width

- Other algorithms include the algorithm by Brandes and Köpf '02:
 - tries to align vertices vertically
 - does horizontal compaction afterwards
 - linear running time



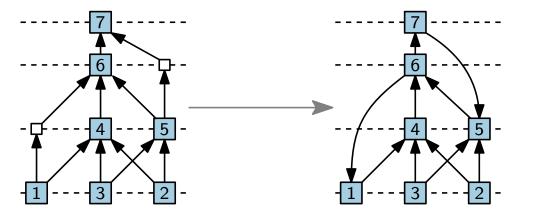
Step 5: Drawing Edges



Step 5: Drawing Edges

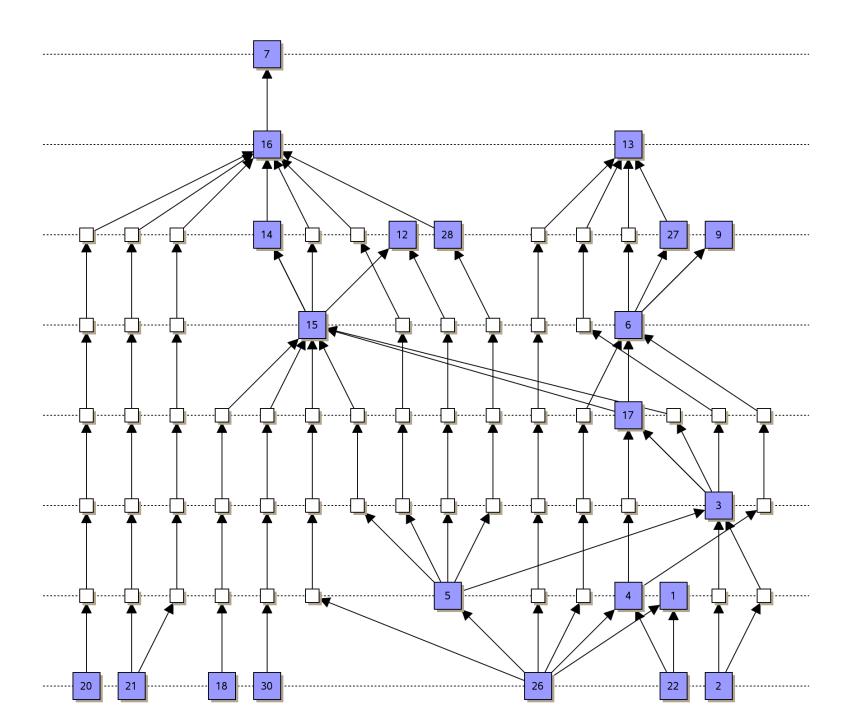
Possibility.

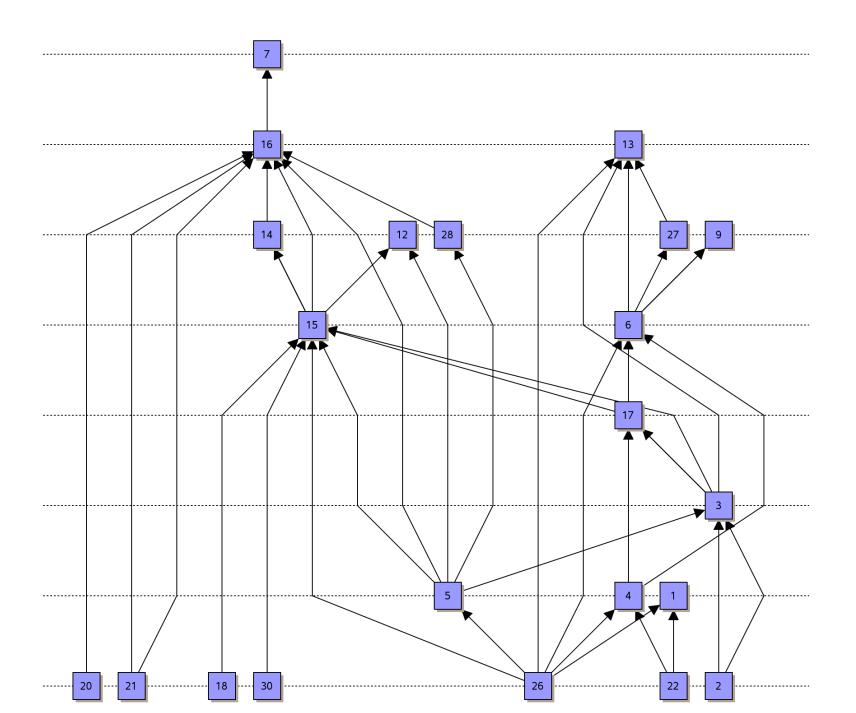
Substitute polylines by Bézier curves.

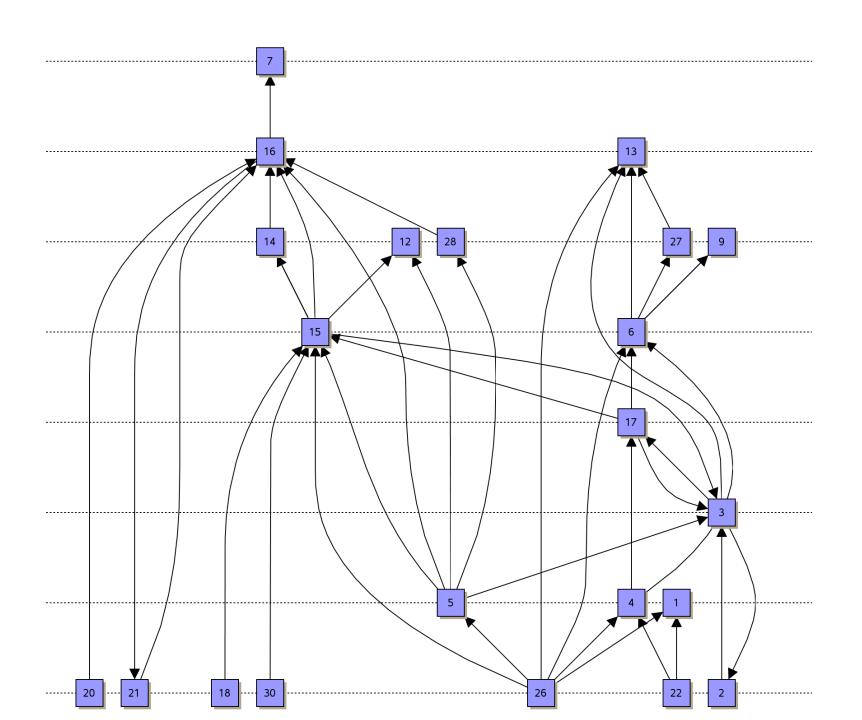


Remark.

Draw reversed edges downwards.

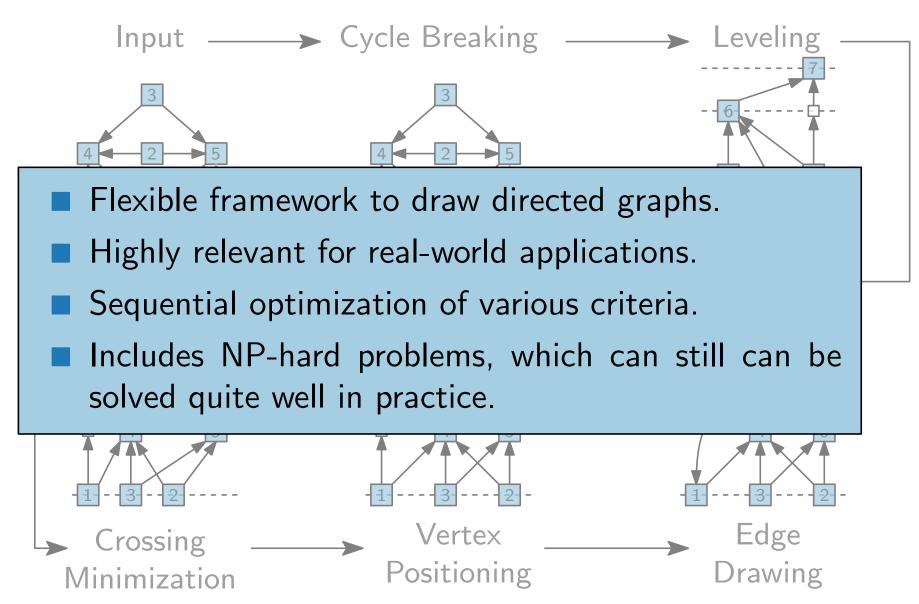






Classical Approach – Sugiyama Framework

[Sugiyama, Tagawa, Toda '81]



Literature

Detailed explanations of steps and proofs in

■ [GD Ch. 11] and [DG Ch. 5]

based on

 [Sugiyama, Tagawa, Toda '81] Methods for visual understanding of hierarchical system structures

and refined with results from

- [Berger, Shor '90] Approximation algorithms for the maximum acyclic subgraph problem
- [Eades, Lin, Smith '93] A fast and effective heuristic for the feedback arc set problem
- [Garey, Johnson '83] Crossing number is NP-complete
- [Eades, Kelly '86] Heuristics for reducing crossings in 2-layered networks.
- [Eades, Whiteside '94] Drawing graphs in two layers
- [Eades, Wormland '94] Edge crossings in drawings of bipartite graphs
- [Jünger, Mutzel '97] 2-Layer Straightline Crossing Minimization: Performance of Exact and Heuristic Algorithms