
1

3

2 54

1 6 7

3

2 54

1 6 7

3 2

54

1

6

7

3 2

54

1

6

7

3 2

54

1

6

7

3 2

54

1

6

7

Visualization of Graphs

Johannes Zink

Lecture 8:
Hierarchical Layouts:
Sugiyama Framework

2 - 2

Hierarchical Drawings – Motivation

3 - 8

Hierarchical Drawing

� Input:

� edges directed upwards

� vertices occur on (few) horizontal lines

� edge crossings minimized

� edges as short as possible

� vertices evenly spaced

Desirable Properties.

Criteria can be contradictory!

Problem Statement.

digraph G = (V,E)

drawing of G that “closely”
reproduces the hierarchical
properties of G

� Output:

4 - 1

Hierarchical Drawing – Applications
yEd Gallery: Java profiler JProfiler using yFiles

4 - 3

Hierarchical Drawing – Applications
yEd Gallery: Java profiler JProfiler using yFiles

Source: ”Design Considerations for Optimizing
Storyline Visualizations”Tanahashi et al.

Hierarchical Drawing – Applications

Source: Visualization that won
the Graph Drawing Contest 2016. Klawitter & Mchedlidze

5 - 7

Classical Approach – Sugiyama Framework
[Sugiyama, Tagawa, Toda ’81]

3

2 54

1

3

2 54

1 6 7

3 2

54

1

6

7

Input Cycle Breaking Leveling

Crossing
Minimization

Vertex
Positioning

3 2

54

1

6

7

3 2

54

1

6

7

3 2

54

1

6

7

Edge
Drawing

6 7

6 - 1

Step 1: Cycle breaking

3

2 54

1

3

2 54

1 6 7

3 2

54

1

6

7

Input Cycle Breaking Leveling

Crossing
Minimization

Vertex
Positioning

3 2

54

1

6

7

3 2

54

1

6

7

3 2

54

1

6

7

Edge
Drawing

6 7

6 - 10

Step 1: Cycle breaking

Approach.

� Find minimum-size set E? of edges that are not upward.

� Remove E? and insert reversed edges.

Problem Minimum Feedback Arc Set (FAS).

� Input:

� Output:

directed graph G = (V,E)

min.-size set E? ⊆ E, such that G? = (V,E \ E?) acyclic

. . . NP-hard
(E \ E?) ∪ E?

r

3

2 54

1 6 7

3

2 54

1 6 7

edges in E? but reversed

7 - 30

Heuristic 1

GreedyMakeAcyclic(Digraph G = (V,E))

E′ ← ∅
foreach v ∈ V do

if |N→(v)| ≥ |N←(v)| then
E′ ← E′ ∪N→(v)

else
E′ ← E′ ∪N←(v)

remove v and N(v) from G.

return (V,E′)

N→(v) := {(v, u)|(v, u) ∈ E}
N←(v) := {(u, v)|(u, v) ∈ E}
N(v) := N→(v) ∪N←(v)

� G′ = (V,E′) is a DAG

[Berger, Shor ’90]

� E \ E′ is a feedback set

� Time: O(|V |+ |E|)

� Quality guarantee: |E′| ≥ |E|/2

v

8 - 39

Heuristic 2

E′ ← ∅
while V 6= ∅ do

while in V exists a sink v do
E′ ← E′ ∪N←(v)
remove v and N←(v)

Remove all isolated vertices from V

while in V exists a source v do
E′ ← E′ ∪N→(v)
remove v and N→(v)

if V 6= ∅ then
let v ∈ V such that |N→(v)| − |N←(v)| maximal
E′ ← E′ ∪N→(v)
remove v and N(v)

[Eades, Lin, Smyth ’93]

� Time: O(|V |+ |E|) [The main idea is to use bins for the

sinks, sources, and a bin for each |N→(v)| − |N←(v)|]
� Quality guarantee: |E′| ≥ |E|/2 + |V |/6

9 - 1

Step 2: Leveling

3

2 54

1

3

2 54

1 6 7

3 2

54

1

6

7

Input Cycle Breaking Leveling

Crossing
Minimization

Vertex
Positioning

3 2

54

1

6

7

3 2

54

1

6

7

3 2

54

1

6

7

Edge
Drawing

6 7

9 - 14

Step 2: Leveling

Problem.
� Input:

� Output: Mapping y : V → {1, . . . , n},
such that for every uv ∈ E, y(u) < y(v).

acyclic digraph G = (V,E)

Objective is to minimize . . .

� number of layers, i.e., maxv∈V y(v)

� length of the longest edge, i.e. maxuv∈E y(v)− y(u)

� width, i.e., maxi∈{1,...,n}|{v | y(v) = i}|
� total edge length, i.e., number of dummy vertices

whenever an
edge spans across
a layer, we insert
a dummy vertex

3

2 54

1 6 7

3 2

54

1

6

7

10 - 9

Minimize Number of Layers

� for each source q
set y(q) := 1

Observation.

� y(v) is length of the longest path from a source to v plus 1.

� for each non-source v set
y(v) := max

{
y(u) | uv ∈ E

}
+ 1

. . . which is optimal!

Algorithm.

� Can be implemented in linear time with recursive algorithm.

54

6 7

54

6

7

1

2

3

3 2 1

11 - 2

Example

12 - 10

Minimize Total Edge Length – ILP

Can be formulated as an integer linear program:

min
∑

(u,v)∈E(y(v)− y(u))

subject to y(v)− y(u) ≥ 1 ∀(u, v) ∈ E
y(v) ≥ 1 ∀v ∈ V
y(v) ∈ Z ∀v ∈ V

One can show that:

� Constraint-matrix is totally unimodular.

� ⇒ Solution of the relaxed linear program is integer.

� The total edge length can be minimized in polynomial time.

13

Width

Drawings can be very wide.

14 - 10

Narrower Layer Assignment

Problem: leveling with a given maximum-width.

� Input:

� Output:

acyclic digraph G = (V,E), width W > 0

assignment of the vertices in V to layers, such that
– the assignment is a leveling,
– each layer contains at most W elements, and
– the number of layers is minimized

Problem: precedence-constrained multi-processor scheduling.

� Input:

� Output:

n jobs with unit (1) processing time, W identical
machines, and a partial ordering < on the jobs.

Schedule respecting < and having minimum
completion time (known as makespan).

� NP-hard, (2− 1
W)-Approx., no (4

3 − ε)-Approx. (W ≥ 3)

same!

15 - 4

Approximating PCMPS

� jobs stored in a list L
(e.g., topologically sorted)

� a job in L is available when all its predecessors have been scheduled

� for each time t = 1, 2, . . . we can schedule ≤W available jobs

� as long as there are free machines and available jobs, take the first availa-
ble job and assign it to a free machine

15 - 19

Approximating PCMPS

Input: Precedence graph (divided into layers of arbitrary width)

1

2

3

4

5
6

7

9

A

8

B

C

D
F

G

E

Number of machines is W = 2.

Output: Schedule

M1

M2

t

1
–
1

2
3
2

4
–
3

5
–
4

6
7
5

8
9
6

A
B
7

C
D
8

E
F
9

G
–

10

Question: Good approximation factor?

16 - 15

Approximating PCMPS - Analysis for W = 2

Precedence graph G<

1

2

3

4

5
6

7

9

A

8

B

C

D
F

G

E

Schedule

M1

M2

t

1
–
1

2
3
2

4
–
3

5
–
4

6
7
5

8
9
6

A
B
7

C
D
8

E
F
9

G
–

10

”
The art of the lower bound“

OPT ≥ dn/2e and OPT ≥ ` := Number of layers of G< (= length of longest path in G<)

Goal: measure the quality of our algorithm using the lower bounds

Bound. ALG ≤
⌈
n+`

2

⌉
insertion of pauses () in the schedule
(except the last) maps to layers of G<

≈ dn/2e+ `/2 ≤ 3/2 · OPT

≤ (2− 1/W) · OPT in general case

17 - 1

Step 3: Crossing Minimization

3

2 54

1

3

2 54

1 6 7

3 2

54

1

6

7

Input Cycle Breaking Leveling

Crossing
Minimization

Vertex
Positioning

3 2

54

1

6

7

3 2

54

1

6

7

3 2

54

1

6

7

Edge
Drawing

6 7

17 - 6

Step 3: Crossing Minimization

Problem.

� Input:

� Output:

Graph G, leveling y : V → {1, . . . , n}
(Re-)ordering of vertices in each layer
such that the number of crossings is minimized.

� NP-hard, even for 2 layers [Garey& Johnson ’83]

� hardly any approaches optimize over multiple layers

3 2

54

1

6

7

3 2

54

1

6

7

18 - 11

Iterative Crossing Reduction

(1) choose a random permutation of L1

(2) iteratively consider pairs of adjacent layers (Li, Li+1)

(3) minimize crossings by permuting Li+1 while keeping Li fixed

(4) repeat steps (2)–(3) in the reverse order (starting from topmost layer Lh)

(5) repeat steps (2)–(4) until no further improvement is achieved

(6) repeat steps (1)–(5) with different starting permutations on L1

one-sided crossing minimization

Observation. The number of crossings only depends on permutations of adjacent layers.

� permute one layer after the other

� treat dummy-vertices like “regular” vertices

Idea.

Algorithm scheme.

19 - 10

One-Sided Crossing Minimization

Problem.

� Input:

� Output:

bipartite graph G = (L1 ∪ L2, E),
permutation π1 on L1

permutation π2 of L2 minimizing the number of
edge crossings.

One-sided crossing minimization is NP-hard.
[Eades & Whitesides ’94]

Algorithms.

� barycenter heuristic

� median heuristic

� Greedy-Switch

� ILP

� . . .

[K
a

u
fm

a
n

n
&

W
a

g
n

er
:

D
ra

w
in

g
G

ra
p

h
s]

20 - 13

Barycenter Heuristic

� Intuition: few intersections occur when vertices are close to their neighbors

� linear runtime (in the number of vertices and edges)

� relatively good results

� optimal if no crossings are required

� O(
√
n)-approximation factor

Exercise!

� The barycenter of u ∈ L2 is the mean rank of
u’s neighbors on layer L1.

bary(u) := 1
deg(u)

∑
v∈N(u) π1(v)

� vertices with the same barycenter keep their old relative ranks
≈ k2 ≈ k

︸︷︷︸︸ ︷︷ ︸
Worst case?

u v

[Sugiyama et al. ’81]

� To get π2, sort L2 ascendingly using, for each u ∈ L2, bary(u).

21 - 15

Median Heuristic

� linear runtime (in the number of vertices and edges)

� relatively good results

� optimal if no crossings are required

� 3-approximation factor

� {v1, . . . , vk} := N(u) with π1(v1) < π1(v2) < · · · < π1(vk)

�

med(u) :=

{
0 when N(u) = ∅
π1(vdk/2e) otherwise

� To get π2, sort L2 ascendingly using, for each u ∈ L2, med(u).

Proof in [GD Ch 11]
k

︸︷︷︸
u v

k

︸︷︷︸
k + 1

︸ ︷︷ ︸
k + 1

︸ ︷︷ ︸
2k(k + 1) + k2 vs. (k + 1)2

Worst case?

�

[Eades & Wormald ’94]

� for vertices with the same median, we place vertices with odd degree to the left of vertices
with even degree (and keep their old relative ranks among the odd/even vertices)

Exercise!

crossings:

22 - 8

Greedy-Switch Heuristic

� Iteratively swap pairs of neighboring vertices on L2 as long as
the number of crossings decreases.

� runtime O(|L2|) per iteration; at most |L2| iterations ⇒ O(|L2|2)

� suitable as post-processing for other heuristics

L1

L2

Worst case?

︸ ︷︷ ︸
k

≈ k2/4 ≈ 2k

[Eades & Kelly ’86]

23 - 9

Integer Linear Program (ILP)

� constant cij := # crossings between edges incident to vi and vj when π2(vi) < π2(vj)

� variable xij for each 1 ≤ i < j ≤ n2 := |L2|

xij =

{
1 when π2(vi) < π2(vj)
0 otherwise

� number of crossings of a permutations π2:

cross(π2) =
n2−1∑
i=1

n2∑
j=i+1

(cij − cji)xij +
n2−1∑
i=1

n2∑
j=i+1

cji︸ ︷︷ ︸
constant

vi vj

[Jünger & Mutzel, ’97]

vj vi

cij = 3 cji = 2

23 - 18

Integer Linear Program (ILP)

� objective (minimize the number of crossings):

minimize
n2−1∑
i=1

n2∑
j=i+1

(cij − cji)xij

� transitivity constraints:

0 ≤ xij + xjk − xik ≤ 1 for 1 ≤ i < j < k ≤ n2

i.e., if xij = 1 and xjk = 1, then xik = 1
00 0

Properties.
� branch-and-cut technique applicable for this ILP

� useful for graphs of small to medium size

� finds optimal solution

� solution in polynomial time is not guaranteed

[Jünger & Mutzel, ’97]

24 - 1

Iterations on Example

24 - 2

Iterations on Example

24 - 4

Iterations on Example

24 - 7

Iterations on Example

24 - 9

Iterations on Example

25 - 1

Step 4: Vertex Positioning

3

2 54

1

3

2 54

1 6 7

3 2

54

1

6

7

Input Cycle Breaking Leveling

Crossing
Minimization

Vertex
Positioning

3 2

54

1

6

7

3 2

54

1

6

7

3 2

54

1

6

7

Edge
Drawing

6 7

25 - 5

Step 4: Vertex Positioning

Goals.

� Exact: Quadratic Program (QP)

� Heuristic: Iterative approach

� paths of a single edge should be (close to) straight

� vertices on a layer evenly spaced

� perfer vertical edges

3 2

54

1

6

7

3 2

54

1

6

7

26 - 21

Quadratic Program

� Consider the path pe = (v1, . . . , vk) of an edge e = v1vk
with dummy vertices: v2, . . . , vk−1

� x-coordinate of vi according to the line v1vk
(with equal spacing):

x(vi) = x(v1) +
i− 1

k − 1

(
x(vk)− x(v1)

)
� Define the deviation from the line

dev(pe) :=
k−1∑
i=2

(
x(vi)− x(vi)

)2

vk

v1

vi

� Objective function: min
∑

e∈E dev(pe)

� Constraints for all vertices v, w in the same layer with w to the right of v:
x(w)− x(v) ≥ ρ min. horizontal distance

� QP is time-expensive

� width can be exponential

27 - 6

Iterative Heuristic

� Compute an initial layout

1. vertex positioning
2. edge straightening
3. compactifying the layout width

� Apply the following steps as long as improvements can be made:

� Other algorithms include the algorithm by Brandes and Köpf ’02:

– tries to align vertices vertically

– does horizontal compaction afterwards

– linear running time

28 - 2

Example

29 - 1

Step 5: Drawing Edges

3

2 54

1

3

2 54

1 6 7

3 2

54

1

6

7

Input Cycle Breaking Leveling

Crossing
Minimization

Vertex
Positioning

3 2

54

1

6

7

3 2

54

1

6

7

3 2

54

1

6

7

Edge
Drawing

6 7

29 - 3

Step 5: Drawing Edges

Possibility.
Substitute polylines by Bézier curves.

3 2

54

1

6

7

3 2

54

1

6

7

Remark.
Draw reversed edges downwards.

30 - 1

Example

30 - 2

Example

30 - 3

Example

31 - 5

Classical Approach – Sugiyama Framework

3

2 54

1

3

2 54

1 6 7

3 2

54

1

6

7

Input Cycle Breaking Leveling

Crossing
Minimization

Vertex
Positioning

3 2

54

1

6

7

3 2

54

1

6

7

3 2

54

1

6

7

Edge
Drawing

6 7

[Sugiyama, Tagawa, Toda ’81]

� Flexible framework to draw directed graphs.

� Highly relevant for real-world applications.

� Sequential optimization of various criteria.

� Includes NP-hard problems, which can still can be
solved quite well in practice.

32

Literature
Detailed explanations of steps and proofs in

� [GD Ch. 11] and [DG Ch. 5]

based on

� [Sugiyama, Tagawa, Toda ’81] Methods for visual understanding of hierarchical system
structures

and refined with results from

� [Berger, Shor ’90] Approximation algorithms for the maximum acyclic subgraph problem

� [Eades, Lin, Smith ’93] A fast and effective heuristic for the feedback arc set problem

� [Garey, Johnson ’83] Crossing number is NP-complete

� [Eades, Kelly ’86] Heuristics for reducing crossings in 2-layered networks.

� [Eades, Whiteside ’94] Drawing graphs in two layers

� [Eades, Wormland ’94] Edge crossings in drawings of bipartite graphs

� [Jünger, Mutzel ’97] 2-Layer Straightline Crossing Minimization: Performance of Exact
and Heuristic Algorithms

	The Framework
	Motivation
	Definition
	Applications
	Sugiyama Framework
	Heuristic 1
	Heuristic 2
	Minimize Number of Layers
	Example
	Total edge length - ILP
	Width
	Narrower Layer Assignment
	Approximating PCMPS
	Analysis for W = 2
	Algorithm
	One-Sided Crossing Minimization
	Barycenter Heuristic
	Median Heuristic
	Greedy-Switch Heuristic
	Integer Linear Program (ILP)
	Iterations on Example
	Quadratic Program
	Iterative Heuristic
	Example

	Step 5: Drawing Edges
	Example

	Conclusion
	Literature

