Julius-Maximilians-
UNIVERSITAT
WURZBURG

3 Visualization of Graphs

Lecture 8:
Hierarchical Layouts:
Sugiyama Framework

Johannes Zink



Hierarchical Drawings — Motivation

21
'\2\

1\%@4 |
7

A
L N




Hierarchical Drawing

Problem Statement. o D
B Input: digraph G = (V, F)

B Output: drawing of GG that “closely”
reproduces the hierarchical
properties of G

Desirable Properties.

B edges directed upwards

B vertices occur on (few) horizontal lines

B edge crossings minimized

B edges as short as possible

B vertices evenly spaced

Criteria can be contradictory!



Hierarchical Drawing — Applications

yEd Gallery: Java profiler JProfiler using yFiles

) ViewActionDemo - JProfiler 7.2.2 ) e X
Session View Profiling GoTo Window Help
G d 39 Z2 PR 0 6 @ &= 8 Y
Start Save Add ! Record Record Start d Session  iew d d Take d ! GoTo = Show
By D g ey e UGS g BT Mowmy @RU Teddw  Sohen Scies el Snapshot Back Forward o\ v NSNS
lﬁ Heap Walker Object Graph a
The object graph is not cleared when the current object set is changed. You can add objects from different object sets and explore their relationships and connections. @
Memory Views
[ Use ..~ H & show Paths To GC Root || o Find path between two selected nodes |

Heaﬁlker
&

[T I

CPU Views == & | e
=y ?
& —
Thread Views

Monitor Views

a
c

& = '|
= re =
WM Telemetry Views e R -
pre— ) e ‘
s e 2 :\\
* =\
@® N\ — = ||
_ ,

!

ipaiar =)

| ———
\E

JEE & Probes

%

e

%.%
it

o
I

LEEEEEE

I

Tomin

el

] Teaite

lg
T
H

p

|
|

ﬂ

4

Selaction step 2 : Class
E 1 instance of y.view.GraphzD

Selection step 1 : All objects after full GC
39240 objects in 1104 classes, 15172 arrays

| Classes [ Allacations Biggest Objects References [ Time Inspections Graph

Y XIll 6317 &7 Profiing




Hierarchical Drawing —

Applications

COADH OF SOTCK MY THOL GO AL FICUS:

i

el
o - L ]
~ 0 )
o . @
L
" L AR
w. mmuﬂ“’ﬁ
L. A 0@
- =—
L L e
® - B9 - Tk (% o9~
oy o s
ST e/ el 2
I h. ) m“ el T S ) ®
B @socqgo O o, =
J I | o = iy #@i
| 3 .
% ‘f hu.m ® ot ./‘ — )
-4 i L) s | ) < i [ ] ;"
fi e O 4 y nBTE %) @ T
/! A W eS| WL s S
o w=Foee 6.3 Q2= o
' R L, o g
T 2e = o~ ey e
e
[ i
s
(o
® s B
T Q‘" MQ o]
LEGEND OF THE MYTH
CaMLY MTUC MY Y ISEE MR s
7]
=1 L)
BER ey - — s
[P : e 5 o O @ o [ ] [ ]
o e e e Py o { ab { ) ® 0
e —~r 20209020
e I T
ooy y M
CRCLEIM T T —— f = A —

" K
TES MRS WL B MWy op LR

Source: Visualization that won
the Graph Drawing Contest 2016. Klawitter & Mchedlidze

yEd Gallery: Java profiler JProfiler using yFiles

ViewActionDemo - JProfiler 7.2.2

4 @ & &= 84

Take GoTo = Show
Snapshct Start |Selection

e
Settings

Help Back Formward

t set is changed. You can add objects from different object sets and explore their relationships and connections.

hd path between two selected nodes |

(G
G
(=

R YYIT)

s/ Star Wars (Original Trilogy)

+ +

B

Source: " Design Considerations for Optimizing
Storyline Visualizations” Tanahashi et al.

jects || References [ Time [Z] Inspections [34] Graph

Y Ad= 53117 & Profiling




Classical Approach — Sugiyama Framework
[Sugiyama, Tagawa, Toda '81]

Input — > Cycle Breaking » Leveling —

3

Edge
Minimization Positioning Drawing

Vertex

'» Crossing 5



Step 1: Cycle breaking

Input —» Cycle Breaking » Leveling ——

3

Edge
Minimization Positioning Drawing

5 Crossing ____,  Vertex




Step 1: Cycle breaking

>

v

|1 je—16—>7] L6 —>7]

Approach.

B Find minimum-size set £/* of edges that are not upward.

B Remove E* and insert reversed edges.

Problem MINIMUM FEEDBACK % SET (FIS).

_ edges in £ but reversed
B Input: directed graph G = (V, F)

m Output:  min.-size set £* C F, such that G* = (V. E=r17) acyclij

. NP-hard (D) (BN ET) U ES



Heuristic 1
[Berger, Shor "90]

GreedyMakeAcyclic(Digraph G = (V, E))
E' +(
foreach v € V do
if | | > [N (v)| then
| E' < E'U
else
| E' < E'UN"(v)
_ remove v and N(v) from G.
return (V, E’)

m G =(V,E") is a DAG /@\

B F\ F'is a feedback set

AN

= {(vu)l(v.u) € E)
N (v) = {(u,v)|(u,v) € E}
N(v) = UNT (v)

m Time: O(|V] + |E|)
B Quality guarantee: |E’'| > |E|/2

o

- 30



Heuristic 2
[Eades, Lin, Smyth '93]

E «— 0

while V # 0 do

L
L

while in V' exists a sink v do

E' < E'UN"(v)
remove v and N* (v)

Remove all isolated vertices from V

while in V exists a source v do

E' < E'"UN " (v)
remove v and N " (v)

if V= 0 then

let v € V such that |V " (v)| — |N" (v)] maximal

E' < E'UN "(v)
remove v and N (v)

B Time: O(|V| 4 |E|) [The main idea is to use bins for the
sinks, sources, and a bin for each |N 7 (v)| — |[N* (v)|]

B Quality guarantee: |E’'| > |E|/2+ |V|/6



Step 2: Leveling

Input — > Cycle Breaking » Leveling —

3

Edge
Minimization Positioning Drawing

5 Crossing ____,  Vertex




Step 2: Leveling

s
6]
Problem.
B Input: acyclic digraph G = (V, E)

m Output: Mappingy: V —{1,...,n},
such that for every uv € E, y(u) < y(v).

Objective is to minimize . ..

B number of layers, i.e., max,y y(v)

B length of the longest edge, i.e. max,,cx y(v) — y(u)
B width, i.e., maxie{lj_”,n}\{v | y(v) =i}

B total edge length, i.e., number of dummy vertices

whenever an
edge spans across
a layer, we insert
a dummy vertex

_14



10 -

Minimize Number of Layers

Algorithm.
B for each i
set =1 >
v 1]
B for each non-source v set G
y(v) == max{y(u) |uwv € E} +1
Observation.
B y(v) is length of the longest path from a to v plus 1.

... which is optimal!

B Can be implemented in linear time with recursive algorithm.



Example




Minimize Total Edge Length — ILP

Can be formulated as an integer linear program:

min Z(u,v)EE(y(v) — y(u))

subject to  y(v) —y(u) > 1 V(u,v) € E
y(v) > 1 YvoeV
y(v) € Z YvoeV

One can show that:
B Constraint-matrix is totally unimodular.

= Solution of the relaxed linear program is integer.

B The total edge length can be minimized in polynomial time.

12-10



Width

[T [ |

Drawings can be very wide.

] O

13



14 - 10

Narrower Layer Assignment

Problem: leveling with a given maximum-width.

B Input: acyclic digraph G = (V, E), width W > 0
B OQOutput:  assignment of the vertices in V' to layers, such that

— the assignment is a leveling, samel
— each layer contains at most W elements, and

— the number of layers is minimized

Problem: precedence-constrained multi-processor scheduling.

B Input: n jobs with unit (1) processing time, W identical
machines, and a partial ordering < on the jobs.

B Output:  Schedule respecting < and having minimum
completion time (known as makespan).

B NP-hard, (2 — %)—Approx., no (% — ¢)-Approx. (W > 3)



Approximating PCMPS

B jobs stored in a list L
(e.g., topologically sorted)

B a job in L is available when all its predecessors have been scheduled
B for eachtimet =1,2,... we can schedule < W available jobs

B as long as there are free machines and available jobs, take the first availa-
ble job and assign it to a free machine

15 -



Approximating PCMPS

Input:

Output:

Precedence graph
0N, 6L

l1—3— 5 ::
NS TR

Number of machines is W

8
9\—>
~Na
A—D
/
=

Schedule
M| 1

N
o1

»LE
X F
Y

Mo

N W N
o~ |o
o |©|oo
~N || >

C
D
8

w| |
NN
©|T|m

t |1

Question: Good approximation factor?

15-19



16 - 15

Approximating PCMPS - Analysis for W = 2

Precedence graph G~ Schedule

/4\ /\/E My|12 4568 ACEG
v 60— ->

1—>3— ‘7\A\D>(F My|= 3 = =7 9 BDF -

\4/ N7 | 12345678010

The art of the lower bound”

OPT > [n/2] and OPT > /¢ := Number of layers of G~ (= length of longest path in G.)

Goal: measure the quality of our algorithm using the lower bounds

< (2—1/W)- OPT in general case

Bound. ALG < [2H] ~ [n/2]+¢/2 < 3/2-OPT

L insertion of pauses (=) in the schedule
(except the last) maps to layers of G



Step 3: Crossing Minimization

Input — > Cycle Breaking » Leveling ——

3

Edge
Minimization Positioning Drawing

', Crossing ___,  Vertex

17 -



17 -

Step 3: Crossing Minimization

Problem.
B Input: Graph G, leveling y: V — {1,...,n}

® Output:  (Re-)ordering of vertices in each layer
such that the number of crossings is minimized.

B NP-hard, even for 2 layers [Garey & Johnson '83]
m hardly any approaches optimize over multiple layers @



lterative Crossing Reduction

Observation. The number of crossings only depends on permutations of adjacent layers.

ldea.
B permute one layer after the other — — —

B treat dummy-vertices like “regular’ vertices

Algorithm scheme.

L

(1) choose a random permutation of L one-sided crossing minimization
(2) iteratively consider pairs of adjacent layers (L;, L;11)

3) minimize crossings by permuting L; 1 while keeping L; fixed

(
(4) repeat steps (2)—(3) in the reverse order (starting from topmost layer Ly,)
(5) repeat steps (2)—(4) until no further improvement is achieved

(

6) repeat steps (1)—(5) with different starting permutations on L,

18- 11



19-10

One-Sided Crossing Minimization

Problem.
B Input: bipartite graph G = (L1 U Lo, F),
permutation m; on L4
m Output: permutation 7y of Ly minimizing the number of

edge crossings.

One-sided crossing minimization is NP-hard.
[Eades & Whitesides '94] [4 6 -

5 T 5 by 14 2 12 15 9 13 1 11
Algorithms. ~¥¢':>‘f’///
3 29 28 26 25 27 20 22 17 30

B barycenter heuristic

r: Drawing Graphs]

21 2

median heuristic

15 14 3 2 1 11

. 4 § = T 5 12 9 1

B Greedy-Switch | ‘ P 7 7 7T
N\ Sy 7
. . e . 21 23 29 28 25 T y 17 a0

-
0

& Wagne

[Kaufmann

3
26 27 2 22



Barycenter Heuristic
[Sugiyama et al. '81]

Intuition: few intersections occur when vertices are close to their neighbors

The barycenter of u € Ly is the mean rank of

u's neighbors on layer L.
Worst case?

u,. v

bary(u) := @ D veN(w) T1(V) /‘X
00000000

To get m, sort Ly ascendingly using, for each u € Ly, bary(u). h o g :;C

vertices with the same barycenter keep their old relative ranks
linear runtime (in the number of vertices and edges)

relatively good results

optimal if no crossings are required <€ Exercise!

O(+/n)-approximation factor

20 - 13



21 -15

Median Heuristic
[Eades & Wormald '94]

B {vg,...,vk} = N(u) with m(v1) < m1(v2) < -+ < 71(vk)

0 when N(u) =10

m1(vrg/21) otherwise

o med(u) = {

B To get m, sort L, ascendingly using, for each w € Ly, med(u).

B for vertices with the same median, we place vertices with odd degree to the left of vertices
with even degree (and keep their old relative ranks among the odd/even vertices)
B linear runtime (in the number of vertices and edges) Worst case?
B relatively good results LR
B optimal if no crossings are required <@ Exercise!
3 iImation fact ' ' “ '
-approximation factor Eok+t1l ka1l K

Proof in [GD Ch 11] crossings: 2k(k+1)+k? vs. (k+ 1)



Greedy-Switch Heuristic

[Eades & Kelly '86]
B lteratively swap pairs of neighboring vertices on L, as long as

the number of crossings decreases.

m runtime O(|L,|) per iteration; at most |L,| iterations = O(|L»|?)

B suitable as post-processing for other heuristics
Worst case?

Lo o\o\ 0—9Q QO O O 0 0 0 _O0
\\
T~
\\

Ly obéoo O 0 0 0 °

\

~ k?/4 ~ 2k



Integer Linear Program (ILP)

[Jinger & Mutzel, '97]

B constant ¢;; := # crossings between edges incident to v; and v; when m(v;) < m2(v;)

B variable x;; for each 1 <i < j < mp:=|Ly V; V;

{ 1 when 7'('2(?}/5) < 7T2(?Jj) MO
SIZij =

0 otherwise

Cij =3
B number of crossings of a permutations 7:
nz—]. no n2—1 no
CFOSS(T('Q) — ;J ;J (Cz'j — cji)xz-j + ;J ;J Cjq
1=1 j3=1+1 1=1 j3=1+1

NV
constant

23 -



Integer Linear Program (ILP)

[Jinger & Mutzel, '97]

B objective (minimize the number of crossings):

’n,g—]. 4%
minimize S: S: (Cij — cji)xij
i=1 j=i+1
B transitivity constraints:
OSZCij—l—CI?jk—ZIZikS]. for1§i<j<k§n2

i.e., if Lij = 1 and Ljk = ]., then Lile = 1
Properties.
B branch-and-cut technique applicable for this ILP
m useful for graphs of small to medium size
B finds optimal solution

B solution in polynomial time is not guaranteed

23 - 18



lterations on Example

.......................................................... 7 e e e e e e e e e e e mm e mmm e mmmm e em e mmmm e e m e em e mmm e m e mem e mm e ———
2
--------------------------------- 1 T
2 9
--------------------------------- 14 [N f 12 [N X] 28 [ 27 [
-------------------------------------------------------------------- ] e |
4

S YO /SR S W S W, W = O VO . Y O S 7/ [
2
2

................................................................... 4........ [, T, ..2.. R VR, TR I

4
-------- Yo Y ([SSRUURNUNS 1 T, ) (SUUURSSSI [ - S————— & () ——— T [T T — S (.1 [ —

24 -



lterations on Example

13

24 -



lterations on Example




lterations on Example

24 -



lterations on Example

24 -



Step 4: Vertex Positioning

Input — > Cycle Breaking » Leveling —

3

Edge
Minimization Positioning Drawing

', Crossing .,  Vertex

25 -



Step 4: Vertex Positioning

Goals.

B paths of a single edge should be (close to) straight
B vertices on a layer evenly spaced

B perfer vertical edges

m Exact: Quadratic Program (QP)

B Heuristic: |terative approach

25 -



26 - 21

Quadratic Program

m Consider the path p. = (v1,...,v%) of an edge e = vivg
with dummy vertices: vy, ..., Vr_1
: : : Uk
B z-coordinate of v; according to the line v1v; A
(with equal spacing): -
. : I\
— Z -
) = x(v
2(v7) = 2(v1) + — )
B Define the deviation from the line v ” v
k—1 5
dev(pe) i= 3 (o(0) — 7(00)
ev(pe) 2; x(vz) x(vz) B QP is time-expensive
1=
B Objective function:  min ) _.dev(p.) B width can be exponential

B Constraints for all vertices v, w in the same layer with w to the right of v:
z(w) —x(v) 2 p <*— min. horizontal distance



Iterative Heuristic

B Compute an initial layout
B Apply the following steps as long as improvements can be made:

1. vertex positioning
2. edge straightening
3. compactifying the layout width

B Other algorithms include the algorithm by Brandes and Kopf '02:
— tries to align vertices vertically

— does horizontal compaction afterwards

— linear running time

27 -



28

Example




Step 5: Drawing Edges

Input — > Cycle Breaking » Leveling —

3

Edge
Minimization Positioning Drawing

5. Crossing 5  Vertex

29 -



Step 5: Drawing Edges

Possibility.
Substitute polylines by Bézier curves.

Remark.
Draw reversed edges downwards.

29 -



30 -

Example










Classical Approach — Sugiyama Framework
[Sugiyama, Tagawa, Toda '81]

—

< > < >

m Flexible framework to draw directed graphs.

m Highly relevant for real-world applications.
B Sequential optimization of various criteria.

B Includes NP-hard problems, which can still can be
solved quite well in practice.

31-



32

| iterature

Detailed explanations of steps and proofs in
m [GD Ch. 11] and [DG Ch. 5]

based on

B [Sugiyama, Tagawa, Toda '81] Methods for visual understanding of hierarchical system
structures

and refined with results from
B [Berger, Shor '90] Approximation algorithms for the maximum acyclic subgraph problem

Eades, Lin, Smith '93] A fast and effective heuristic for the feedback arc set problem
(Garey, Johnson '83] Crossing number is NP-complete

Eades, Kelly '86] Heuristics for reducing crossings in 2-layered networks.

Eades, Whiteside '94] Drawing graphs in two layers

[Eades, Wormland '94] Edge crossings in drawings of bipartite graphs

Jiinger, Mutzel '97] 2-Layer Straightline Crossing Minimization: Performance of Exact
and Heuristic Algorithms



	The Framework
	Motivation
	Definition
	Applications
	Sugiyama Framework
	Heuristic 1
	Heuristic 2
	Minimize Number of Layers
	Example
	Total edge length - ILP
	Width
	Narrower Layer Assignment
	Approximating PCMPS
	Analysis for W = 2
	Algorithm
	One-Sided Crossing Minimization
	Barycenter Heuristic
	Median Heuristic
	Greedy-Switch Heuristic
	Integer Linear Program (ILP)
	Iterations on Example
	Quadratic Program
	Iterative Heuristic
	Example

	Step 5: Drawing Edges
	Example

	Conclusion
	Literature

