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Intersection Representation of Graphs

In an intersection representation of a graph,
— each vertex Is represented by a set
— such that two sets intersect &

the corresponding vertices are adjacent.

For a collection § of sets,
the intersection graph G(S) of S
has vertex set & and edge set

{{S5,5'}: 5,8 €S8,5#5, and SNS" #0}.
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Let GG be a graph. <>—0 Let S be a family of geometric objects (e.g., disks).

Represent each vertex v by a geometric object S(v) € S

€, = —ve)

In an S-contact representation of GG, S(u) and S(v) touch iff uv € E
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Let GG be a graph. <>—0 Let S be a family of geometric objects (e.g., disks).

Represent each vertex v by a geometric object S(v) € S

v —p © )

In an S-contact representation of GG, S(u) and S(v) touch iff uv € E

=K

disks polygons
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Contact Representation of Graphs

Let GG be a graph. <>—0 Let S be a family of geometric objects (e.g., disks).

Represent each vertex v by a geometric object S(v) € S

% o) %? @ \ rectangular cuboids

In an S-contact representation of GG, S(u) and S(v) touch iff uv € E

% 'A contact representation Is an )

G is planar » disks » polygons intersection representation with
[Koebe 1936] interior-disjoint sets.
U
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Contact Representation of Planar Graphs

Is the intersection graph of a contact representation
always planar?
B No, not even for connected object types in the plane.

Some object types are used to represent special classes
of planar graphs:

bipartite planar graphs max. triangle-free planar graphs

planar triangulations
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General Approach
How to compute a contact representation of a given graph G?7

m Consider only inner triangulations

(or maximal bipartite graphs, etc.)
B Triangulate by adding vertices, O —> %@

not by adding edges

B Describe contact representation combinatorially.
® Which objects touch each other in which way?

m Compute combinatorial description.

B Show that combinatorial description can be used to
construct drawing.
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This Lecture

Representation with right-triangles and corner contact:
B Use Schnyder realizer to describe contacts between triangles.

B Use canonical order to compute drawing.

Representation with dissection of a rectangle, called rectangular dual:
B Find a description similar to a Schnyder realizer for rectangles.

m Construct drawing via st-digraphs, duals, and topological sorting.
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Triangle Corner Contact Representation

Main ldea.
Use canonical order and Schnyder realizer to find
coordinates for triangles.

Detailed ldea.

B Place base of triangle at height equal to
position in canonical order.

B Triangle tip is precisely at base of triangle
corresponding to cover neighbor.

B Outgoing edges in Schnyder forest indicate
corner contacts.
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Refined Canonical Order

(Theorem. )
Let G be a PTP graph. There exists a labeling

V1 = Vg, U = Uy, U3,...,0, = Uy Of the vertices of G such that
for every 4 < k < n:

m The subgraph Gj_1 induced by v1,...,v,_1 is biconnected

and the boundary C_1 of Gx_1 contains the edge (vs, vy ).

B v Is in exterior face of Gi_1, and its neighbors in Gj_1 form
an (at least 2-element) subinterval of the path Cx_1\ (vs, vy ).

. J

O Vi
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B Forl<i<a-—1,itiswvy, ,. Thus, vy, Is right point of vy, _,.
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Rectangular Dual Algorithm

For a PTP graph G = (V, E):

Find a REL {T’.,7}} of G,
Construct a SN network GG\ of G (consists of 7} plus outer edges)

Construct the dual GG, of G, and compute a topological ordering
fver Of G\’/(er

For each vertex v € V/, let ¢ and /» be the face on the left and face
on the right of v. Set z1(v) = fier(9) and x2(v) = frer().

Define z1(vy) = 0,21(vs) = 1 and
z2(vn) = max fuer — 1, 22(vs) = max fier

B Analogously compute y1 and y> with Gy.
B Foreach v € V, let R(v) = [z1(v), x2(v)] X [y1(v), y2(v)].
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xl(’vE) — 15, CIJQ(”UE) — 16
zri(a) =1, z2(a) =3
CUl(b) = 3, aﬁz(b) =5
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Reading off Coordinates to Get Rectangular Dual

5131(?}]\]) — 0, CEQ(UN) — 15
zr1(vs) =1, x2(vs) = 16
le(vw) — O,afz(vw) =1
xl(’vE) — 15, CIJQ(”UE) — 16
zri(a) =1, z2(a) =3
CUl(b) = 3, aﬁz(b) =5
r1(c) =5, x2(c) =14

18 -



Reading off Coordinates to Get Rectangular Dual

xl(UN) — 0, CEQ(UN) — 15
zr1(vs) =1, x2(vs) = 16
le(vw) — O,afz(vw) =1
acl(vE) — 15, CIZQ(’UE) — 16
zri(a) =1, z2(a) =3
CUl(b) = 3, aﬁz(b) =5
r1(c) =5, x2(c) =14
xl(d) — 14, xz(d) = 15

18 -



18- 10

Reading off Coordinates to Get Rectangular Dual

CI?1(UN) — 0, CBQ(UN) — 15
zr1(vs) =1, x2(vs) = 16
le(vw) — O,afz(vw) =1
:El(vE) — 15, CIZQ(’UE) — 16
zri(a) =1, z2(a) =3
CUl(b) = 3, wz(b) =5
r1(c) =5, x2(c) =14
xl(d) — 14, xz(d) = 15
z1(e) = 13, x2(e) = 15




18- 11

Reading off Coordinates to Get Rectangular Dual

CI?1(UN) — 0, CBQ(UN) — 15
zr1(vs) =1, x2(vs) = 16
le(vw) — O,afz(vw) =1
:El(vE) — 15, CIZQ(’UE) — 16
zri(a) =1, z2(a) =3
CUl(b) = 3, wz(b) =5
r1(c) =5, x2(c) =14
xl(d) — 14, xz(d) = 15
z1(e) = 13, x2(e) = 15




18 - 12

Reading off Coordinates to Get Rectangular Dual

5131(?)]\]) — 0, CBQ(’UN) — 15
zr1(vs) =1, x2(vs) = 16
le(vw) — O,wz(vw) =1
xl(vE) — 15, CIZQ(’UE) — 16
zri(a) =1, z2(a) =3
CUl(b) = 3, wz(b) =5
r1(c) =5, x2(c) =14
xl(d) — 14, CIZQ(d) = 15
z1(e) = 13, x2(e) = 15

y1(vw) = 0,92(vw) = 9
y1(ve) =1, y2(ve) = 10
y1(vn) =9, y2(vn) =10
y1(vs) =0, y2(vs) =1
yl(a) — 17 y2(a) =2
y1(b) =1, 12(b) =2




18- 13

Reading off Coordinates to Get Rectangular Dual

10

. L0, . . .

15 .

wl(vN) — 0, CBQ(UN) — 15
zr1(vs) =1, x2(vs) = 16
a:l(vw) = O,aiz(vw) =1
a;l(vE) — 15, QZQ(UE) — 16
zri(a) =1, z2(a) =3
:cl(b) = 3, 2132([)) =5
r1(c) =5, x2(c) =14
xl(d) — 14, CIZQ(d) = 15
r1(e) =13, x2(e) =15

y1(vw) = 0,92(vw) = 9
y1(ve) =1, y2(ve) = 10
y1(vn) =9, y2(vn) =10
y1(vs) =0, ya2(vs) =1
yl(a) — 17 y2(a) =2
y1(b) = 1, 32(b) = 2



18- 14

Reading off Coordinates to Get Rectangular Dual

. L0, . . .

15 .

wl(vN) — 0, CBQ(UN) — 15
zr1(vs) =1, x2(vs) = 16
a:l(vw) = O,aiz(vw) =1
a;l(vE) — 15, QZQ(UE) — 16
zri(a) =1, z2(a) =3
:cl(b) = 3, CEz(b) =5
r1(c) =5, x2(c) =14
xl(d) — 14, xz(d) = 15
r1(e) =13, x2(e) =15

y1(vw) = 0,92(vw) = 9
y1(ve) =1, y2(ve) = 10
y1(vn) =9, y2(vn) =10
y1(vs) =0, ya2(vs) =1
yl(a) — 17 y2(a) =2
y1(b) = 1, 32(b) = 2



18- 15

Reading off Coordinates to Get Rectangular Dual

L0

. L0, . . .

15 .

CCl(UN) — 0, CBQ(UN) — 15
zr1(vs) =1, x2(vs) = 16
a:l(vw) = O,aiz(vw) =1
a;l(vE) — 15, QZQ(UE) — 16
zri(a) =1, z2(a) =3
:cl(b) = 3, CEz(b) =5
r1(c) =5, x2(c) =14
xl(d) — 14, CIZQ(d) = 15
r1(e) =13, x2(e) =15

y1(vw) = 0,92(vw) = 9
y1(ve) =1, y2(ve) = 10
y1(vn) =9, y2(vn) =10
y1(vs) =0, ya2(vs) =1
yl(a) — 17 y2(a) =2
y1(b) = 1, 32(b) = 2



18- 16

Reading off Coordinates to Get Rectangular Dual

L0

CCl(UN) — 0, CBQ(’UN) — 15
zr1(vs) =1, x2(vs) = 16
a:l(vw) = O,xz(vw) =1
a;l(vE) — 15, CIZQ(UE) — 16
zri(a) =1, z2(a) =3
:cl(b) = 3, CEz(b) =5
r1(c) =5, x2(c) =14
xl(d) — 14, CIZQ(d) = 15
r1(e) =13, x2(e) =15

y1(vw) = 0,92(vw) = 9
y1(ve) =1, y2(ve) = 10
y1(vn) =9, y2(vn) =10
y1(vs) =0, ya2(vs) =1
yl(a) — 17 y2(a) =2
y1(b) = 1, 32(b) = 2



18 - 17

Reading off Coordinates to Get Rectangular Dual

L0

CCl(UN) — 0, CBQ(’UN) — 15
zr1(vs) =1, x2(vs) = 16
a:l(vw) = O,:Bz(?)vv) =1
a;l(vE) — 15, CIZQ(UE) — 16
zri(a) =1, z2(a) =3
:cl(b) = 3, 5132([)) =5
r1(c) =5, x2(c) =14
xl(d) — 14, xz(d) = 15
r1(e) =13, x2(e) =15

y1(vw) = 0,92(vw) = 9
y1(ve) =1, y2(ve) = 10
y1(vn) =9, y2(vn) =10
y1(vs) =0, ya2(vs) =1
yl(a) — 17 y2(a) =2
y1(b) = 1, 32(b) = 2



18- 18

Reading off Coordinates to Get Rectangular Dual

L0

CCl(UN) — 0, CBQ(’UN) — 15
zr1(vs) =1, x2(vs) = 16
a:l(vw) = O,:Bz(?)vv) =1
a;l(vE) — 15, CIZQ(UE) — 16
zri(a) =1, z2(a) =3
:cl(b) = 3, 5132([)) =5
r1(c) =5, x2(c) =14
xl(d) — 14, xz(d) = 15
r1(e) =13, x2(e) =15

y1(vw) = 0,92(vw) = 9
y1(ve) =1, y2(ve) = 10
y1(vn) =9, y2(vn) =10
y1(vs) =0, ya2(vs) =1
yl(a) — 17 y2(a) =2
y1(b) = 1, 32(b) = 2



18- 19

Reading off Coordinates to Get Rectangular Dual

L0

CCl(UN) — 0, CBQ(’UN) — 15
zr1(vs) =1, x2(vs) = 16
a:l(vw) = O,xz(vw) =1
a;l(vE) — 15, CIZQ(UE) — 16
zri(a) =1, z2(a) =3
:cl(b) = 3, CEz(b) =5
r1(c) =5, x2(c) =14
xl(d) — 14, CIZQ(d) = 15
r1(e) =13, x2(e) =15

y1(vw) = 0,92(vw) = 9
y1(ve) =1, y2(ve) = 10
y1(vn) =9, y2(vn) =10
y1(vs) =0, ya2(vs) =1
yl(a) — 17 y2(a) =2
y1(b) = 1, 32(b) = 2



18- 20

Reading off Coordinates to Get Rectangular Dual

L0

CCl(UN) — 0, CBQ(UN) — 15
zr1(vs) =1, x2(vs) = 16
a:l(vw) = O,aiz(vw) =1
a;l(vE) — 15, QZQ(UE) — 16
zri(a) =1, z2(a) =3
:cl(b) = 3, CEz(b) =5
r1(c) =5, x2(c) =14
xl(d) — 14, CIZQ(d) = 15
r1(e) =13, x2(e) =15

y1(vw) = 0,92(vw) = 9
y1(ve) =1, y2(ve) = 10
y1(vn) =9, y2(vn) =10
y1(vs) =0, ya2(vs) =1
yl(a) — 17 y2(a) =2
y1(b) = 1, 32(b) = 2



18-21

Reading off Coordinates to Get Rectangular Dual

L0

CCl(UN) — 0, CBQ(UN) — 15
zr1(vs) =1, x2(vs) = 16
a:l(vw) = O,aiz(vw) =1
a;l(vE) — 15, QZQ(UE) — 16
zri(a) =1, z2(a) =3
:cl(b) = 3, CEz(b) =5
r1(c) =5, x2(c) =14
xl(d) — 14, CIZQ(d) = 15
r1(e) =13, x2(e) =15

y1(vw) = 0,92(vw) = 9
y1(ve) =1, y2(ve) = 10
y1(vn) =9, y2(vn) =10
y1(vs) =0, ya2(vs) =1
yl(a) — 17 y2(a) =2
y1(b) = 1, 32(b) = 2



18 - 22

Reading off Coordinates to Get Rectangular Dual

L0

CCl(UN) — 0, CBQ(UN) — 15
zr1(vs) =1, x2(vs) = 16
a:l(vw) = O,aiz(vw) =1
a;l(vE) — 15, QZQ(UE) — 16
zri(a) =1, z2(a) =3
:cl(b) = 3, CEz(b) =5
r1(c) =5, x2(c) =14
xl(d) — 14, CIZQ(d) = 15
r1(e) =13, x2(e) =15

y1(vw) = 0,92(vw) = 9
y1(ve) =1, y2(ve) = 10
y1(vn) =9, y2(vn) =10
y1(vs) =0, ya2(vs) =1
yl(a) — 17 y2(a) =2
y1(b) = 1, 32(b) = 2



18 - 23

Reading off Coordinates to Get Rectangular Dual

L0

CCl(UN) — 0, CBQ(UN) — 15
zr1(vs) =1, x2(vs) = 16
a:l(vw) = O,aiz(vw) =1
a;l(vE) — 15, QZQ(UE) — 16
zri(a) =1, z2(a) =3
:cl(b) = 3, CEz(b) =5
r1(c) =5, x2(c) =14
xl(d) — 14, CIZQ(d) = 15
r1(e) =13, x2(e) =15

y1(vw) = 0,92(vw) = 9
y1(ve) =1, y2(ve) = 10
y1(vn) =9, y2(vn) =10
y1(vs) =0, ya2(vs) =1
yl(a) — 17 y2(a) =2
y1(b) = 1, 32(b) = 2



18 - 24

Reading off Coordinates to Get Rectangular Dual

L0

wl(vN) — 0, CBQ(UN) — 15
zr1(vs) =1, x2(vs) = 16
a:l(vw) = O,aiz(vw) =1
a;l(vE) — 15, QZQ(UE) — 16
zri(a) =1, z2(a) =3
:cl(b) = 3, CEz(b) =5
r1(c) =5, x2(c) =14
xl(d) — 14, xz(d) = 15
r1(e) =13, x2(e) =15

y1(vw) = 0,92(vw) = 9
y1(ve) =1, y2(ve) = 10
y1(vn) =9, y2(vn) =10
y1(vs) =0, ya2(vs) =1
yl(a) — 17 y2(a) =2
y1(b) = 1, 32(b) = 2



18- 25

Reading off Coordinates to Get Rectangular Dual

L0

wl(vN) — 0, CBQ(UN) — 15
zr1(vs) =1, x2(vs) = 16
a:l(vw) = O,aiz(vw) =1
a;l(vE) — 15, QZQ(UE) — 16
zri(a) =1, z2(a) =3
:cl(b) = 3, 2132([)) =5
r1(c) =5, x2(c) =14
xl(d) — 14, CIZQ(d) = 15
r1(e) =13, x2(e) =15

y1(vw) = 0,92(vw) = 9
y1(ve) =1, y2(ve) = 10
y1(vn) =9, y2(vn) =10
y1(vs) =0, ya2(vs) =1
yl(a) — 17 y2(a) =2
y1(b) = 1, 32(b) = 2



18 - 26

Reading off Coordinates to Get Rectangular Dual

L0

xl(vN) — 0, CBQ(UN) — 15
zr1(vs) =1, x2(vs) = 16
xl(?}w) = O,aiz(vw) =1
a;l(vE) — 15, QZQ(UE) — 16
zri(a) =1, z2(a) =3
:cl(b) _— 3, 2132([)) =5
r1(c) =5, x2(c) =14
wl(d) — 14, CIZQ(d) = 15
r1(e) =13, x2(e) =15

y1(vw) = 0,92(vw) = 9
y1(ve) =1, y2(ve) = 10
y1(vn) =9, y2(vn) =10
y1(vs) =0, ya2(vs) =1
yl(a) — 17 y2(a) =2
y1(b) = 1, 32(b) = 2



18 - 27

Reading off Coordinates to Get Rectangular Dual

L0

xl(vN) — 0, CBQ(UN) — 15
zr1(vs) =1, x2(vs) = 16
xl(?}w) = O,aiz(vw) =1
a;l(vE) — 15, QZQ(UE) — 16
zri(a) =1, z2(a) =3
:cl(b) _— 3, 2132([)) =5
r1(c) =5, x2(c) =14
wl(d) — 14, CIZQ(d) = 15
r1(e) =13, x2(e) =15

y1(vw) = 0,92(vw) = 9
y1(ve) =1, y2(ve) = 10
y1(vn) =9, y2(vn) =10
y1(vs) =0, ya2(vs) =1
yl(a) — 17 y2(a) =2
y1(b) = 1, 32(b) = 2



18 - 28

Reading off Coordinates to Get Rectangular Dual

L0

xl(vN) — 0, CBQ(UN) — 15
zr1(vs) =1, x2(vs) = 16
xl(?}w) = O,aiz(vw) =1
a;l(vE) — 15, QZQ(UE) — 16
zri(a) =1, z2(a) =3
:cl(b) _— 3, 2132([)) =5
r1(c) =5, x2(c) =14
wl(d) — 14, CIZQ(d) = 15
r1(e) =13, x2(e) =15

y1(vw) = 0,92(vw) = 9
y1(ve) =1, y2(ve) = 10
y1(vn) =9, y2(vn) =10
y1(vs) =0, ya2(vs) =1
yl(a) — 17 y2(a) =2
y1(b) = 1, 32(b) = 2



Correctness of Algorithm (Sketch)

B If edge (u,v) exists, then xo(u) = z1(v)
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Correctness of Algorithm (Sketch)

B If edge (u,v) exists, then xo(u) = z1(v)

B and the vertical segments of their rectangles overlap
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Correctness of Algorithm (Sketch)

B If edge (u,v) exists, then xo(u) = z1(v)

yl(v) — fhor(a) S yl(u) — fhor(b)
< yz(?}) — fhor(c)

19 -



19-10

Correctness of Algorithm (Sketch)

B If edge (u,v) exists, then xo(u) = z1(v)

yl(v) — fhor(a) S yl(u) — fhor(b)
< yz(?}) — fhor(c) S y2(u) — fhor(d)




19-11

Correctness of Algorithm (Sketch)

B If edge (u,v) exists, then xo(u) = z1(v)

ZCQ(’LL) — fver(g) — $1(U)

yl(v) — fhor(a) S yl(u) — fhor(b)
< y2(v) = fror(c) < ya(u) = fror(d)

B If path from u to v in red at least two edges long, then xo(u) < x1(v).



19-12

Correctness of Algorithm (Sketch)

B If edge (u,v) exists, then xo(u) = z1(v)

ZCQ(’LL) — fver(g) — $1(U)

yl(v) — fhor(a) S yl(u) — fhor(b)
< y2(v) = fror(c) < ya(u) = fror(d)

B If path from u to v in red at least two edges long, then xo(u) < x1(v).

B No two boxes overlap.



19-13

Correctness of Algorithm (Sketch)

B If edge (u,v) exists, then xo(u) = z1(v)

ZCQ(’LL) — fver(g) — $1(U)

yl(v) — fhor(a) S yl(u) — fhor(b)
< y2(v) = fror(c) < ya(u) = fror(d)

B If path from u to v in red at least two edges long, then xo(u) < x1(v).

B No two boxes overlap.

B For details, see He's paper [He '93].



Rectangular Dual Result

‘Theorem.
Every PTP graph GG has a rectangular dual,
‘which can be computed in linear time.
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Rectangular Dual Result

N\

‘Theorem.
Every PTP graph GG has a rectangular dual,
‘which can be computed in linear time.

Proof.

B Compute a planar embedding of G.
B Compute a refined canonical ordering of G.

B Traverse the graph and color the edges. —+ REL
B Construct GG, and G-

O and G}
[]

hor "

Construct their duals G*

VEer

Compute a topological ordering for vertices of G, and G} _ .



Rectangular Dual Result

.
Theorem.

Every PTP graph GG has a rectangular dual,
‘which can be computed in linear time.

N\

Proof.

B Compute a planar embedding of G.

Construct GG, and G-
Construct their duals G*

VEer

and ¢

*
hor-

Compute a refined canonical ordering of G.

Traverse the graph and color the edges. — REL

Compute a topological ordering for vertices of ¢

*
VEer

and ¢

Assing coordinates to the rectangles representing vertices.

*
hor*

20 -



Discussion

B A layout is area-universal if any assignment of areas to rectangles can
be realized by a combinatorially equivalent rectangular layout.
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Discussion

B A layout is area-universal if any assignment of areas to rectangles can
be realized by a combinatorially equivalent rectangular layout.

B A rectangular layout is area-universal if and only if it is one-sided.
[Eppstein et al. SIAM J. Comp. 2012]

l.e., every segment
belongs to exactly
one rectangle

one-sided not one-sided

B Area-universal rectlinear representation: possible for all planar graphs.

B [Alam et al. 2013]: 8 sides (matches the lower bound)

I




| iterature

Construction of triangle contact representations based on
B [de Fraysseix, Ossona de Mendez, Rosenstiehl '94] On Triangle Contact Graphs

Construction of rectangular dual based on
B [He '93] On Finding the Rectangular Duals of Planar Triangulated Graphs

B [Kant, He '94] Two algorithms for finding rectangular duals of planar graphs

and originally from
B [Kozminski, Kinnen '85] Rectangular Duals of Planar Graphs

22
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