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Visualization of Graphs

Johannes Zink

Lecture 7:
Contact Representations of Planar Graphs:
Triangle Contacts and Rectangular Duals
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Intersection Representation of Graphs

In an intersection representation of a graph,
– each vertex is represented by a set
– such that two sets intersect ⇔

the corresponding vertices are adjacent.

For a collection S of sets,
the intersection graph G(S) of S
has vertex set S and edge set{
{S, S′} : S, S′ ∈ S, S 6= S′, and S ∩ S′ 6= ∅

}
.
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Contact Representation of Graphs

Let G be a graph.

Represent each vertex v by a geometric object S(v)

In an S-contact representation of G, S(u) and S(v) touch iff uv ∈ E

Let S be a family of geometric objects (e.g., disks).

∈ S

disks polygons

rectangular cuboids

G is planar
[Koebe 1936]

A contact representation is an
intersection representation with
interior-disjoint sets.
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Contact Representation of Planar Graphs

Is the intersection graph of a contact representation
always planar?

� No, not even for connected object types in the plane.

Some object types are used to represent special classes
of planar graphs:

bipartite planar graphs max. triangle-free planar graphs planar triangulations
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General Approach

� Consider only inner triangulations
(or maximal bipartite graphs, etc.)

� Triangulate by adding vertices,
not by adding edges

� Describe contact representation combinatorially.

� Which objects touch each other in which way?

� Compute combinatorial description.

� Show that combinatorial description can be used to
construct drawing.

How to compute a contact representation of a given graph G?
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This Lecture

Representation with right-triangles and corner contact:

� Use Schnyder realizer to describe contacts between triangles.

� Use canonical order to compute drawing.

Representation with dissection of a rectangle, called rectangular dual:

� Find a description similar to a Schnyder realizer for rectangles.

� Construct drawing via st-digraphs, duals, and topological sorting.
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Triangle Corner Contact Representation

Main Idea.
Use canonical order and Schnyder realizer to find
coordinates for triangles.

Detailed Idea.

� Place base of triangle at height equal to
position in canonical order.

� Triangle tip is precisely at base of triangle
corresponding to cover neighbor.

� Outgoing edges in Schnyder forest indicate
corner contacts.
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Triangle Contact Representation Example
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Triangle Contact Representation Example
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Triangle Contact Representation Example
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T-shape Contact Representation
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T-shape Contact Representation
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Cartograms

worldmapper.org Bettina SpeckmannNew York Times New York Times
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Rectangular Dual

RD

Rectangular Dual R

PTP

Properly Triangulated
Planar Graph G

no separating
triangle

A rectangular dual of a graph G is a contact
representation with axis-aligned rectangles s.t.

� no four rectangles share a point, and

� the union of all rectangles is a rectangle

Theorem. [Koźmiński, Kinnen ’85]
A graph G has a rectangular dual R if and only if G is a PTP graph.

Exactly 4 vertices on outer face

vEvW

vN

vS
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Regular Edge Labeling
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Regular Edge Labeling
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Regular Edge Labeling
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Regular Edge Labeling

RD

Rectangular Dual R

PTP

Properly Triangulated
Planar Graph G

Regular Edge Labeling

PTP

REL

RD

[Kant, He ’94]: In linear time

for every
inner vertex

vEvW

vN

vS
for four

outer vertices
REL

vEvW

vN

vS

O(n) O(n)
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Refined Canonical Order

Theorem.
Let G be a PTP graph. There exists a labeling
v1 = vS , v2 = vW , v3, . . . , vn = vN of the vertices of G such that
for every 4 ≤ k ≤ n:

� The subgraph Gk−1 induced by v1, . . . , vk−1 is biconnected
and the boundary Ck−1 of Gk−1 contains the edge (vS , vW ).

� vk is in exterior face of Gk−1, and its neighbors in Gk−1 form
an (at least 2-element) subinterval of the path Ck−1 \ (vS , vW ).

� If k ≤ n− 2, then vk has at least 2 neighbors in G \Gk−1.

vk

Gk−1 Ck−1

G \Gk−1

vW vS
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Refined Canonical Order Example
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Refined Canonical Order Example
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Refined Canonical Order Example
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Refined Canonical Order Example
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Refined Canonical Order → REL

We construct a REL as follows:

� For i < j, orient (vi, vj) from vi to vj ;

� vk has incoming edges from vb1 , . . . , vbl , we say that vb1 is left
point of vk and vbl is right point of vk.

� Base edge of vk is (vba , vk), where ba ∈ {b1, . . . , bl} is minimal.

� If vt1 , . . . , vto are higher numbered neighbors of vk, we call
(vk, vt1) left edge and (vk, vto) right edge.

vk

Lemma 1.
A left edge or right edge cannot be a base edge.

Proof. Suppose left edge (vk, vt1) is base edge of vt1 .
Since G triangulated, (vb1 , vt1) ∈ E(G).
Contradiction since k > b1.

vb1 vblvba

vt1 vto
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Refined Canonical Order → REL

vk
Proof.

� Exclusive “or” follows from Lemma 1.

� Let (vba , vk) be base edge of vk.

� vba is right point of vba−1 .

� vbi has at least two higher-numbered neighbors.

� One of them is vk; the other one is vbi−1 or vbi+1 .

� For 1 ≤ i < a− 1, it is vbi−1 . Thus, vbi is right point of vbi−1 .

� Analogously, vbi is left point of vbi+1 for i ≥ a.

� Edges (vbi , vk), 1 ≤ i < a− 1, are right edges.

� Similarly, (vbi , vk), for a + 1 ≤ i ≤ l, are left edges.

vb1 vblvba

vt1 vto
Lemma 2.
An edge is either a left edge, a right edge or a base edge.
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Refined Canonical Order → REL

Coloring.

� Color right (left) edges in red (blue).

� Color a base edge (vbi , vk) red if i = 1 and
blue if i = l and otherwise arbitrarily.

Let Tr be the red edges and Tb the blue edges.

vk
right
edges

left
edges

vk

base
edge

right
edges

vk

left
edges

base
edge

base
edgeLemma 3.

{Tr, Tb} is a regular edge labeling.

Proof.

vt1 vto

vk

to ≥ 2

left edge
of vk

right edge
of vk

base edges of
vt2 , . . . , vto−1

vtd

td = max{t1, . . . , to} � t1 < t2 < . . . < td and
td > td+1 > . . . > to

� (vk, vti), 2 ≤ i ≤ d− 1 are blue

� (vk, vti), d + 1 ≤ i ≤ o− 1 are red

� (vk, vtd) is either red or blue

⇒ Circular order of outgoing edges at vk correct.



16 - 2

From REL to st-Digraphs to Coordinates

vEvW

vS
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From REL to st-Digraphs to Coordinates

WE network Ghor

vEvW

vS

vN
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From REL to st-Digraphs to Coordinates

vEvW

vS

vN
SN network Gver

dual of Gver
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From REL to st-Digraphs to Coordinates

vEvW
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SN network Gver

dual of Gver
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From REL to st-Digraphs to Coordinates
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that all directed

edges point in the
same direction
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From REL to st-Digraphs to Coordinates
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From REL to st-Digraphs to Coordinates
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From REL to st-Digraphs to Coordinates
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Rectangular Dual Algorithm

For a PTP graph G = (V,E):

� Find a REL {Tr, Tb} of G;

� Construct a SN network Gver of G (consists of Tb plus outer edges)

� Construct the dual G?
ver of Gver and compute a topological ordering

fver of G?
ver

� For each vertex v ∈ V , let g and h be the face on the left and face
on the right of v. Set x1(v) = fver(g) and x2(v) = fver(h).

� Define x1(vN ) = 0, x1(vS) = 1 and
x2(vN ) = max fver − 1, x2(vS) = max fver

� Analogously compute y1 and y2 with Ghor.

� For each v ∈ V , let R(v) = [x1(v), x2(v)]× [y1(v), y2(v)].
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Reading off Coordinates to Get Rectangular Dual
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x1(vN ) = 0, x2(vN ) = 15
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. . .
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y1(vE) = 1, y2(vE) = 10
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. . .
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Reading off Coordinates to Get Rectangular Dual
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. . .
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Correctness of Algorithm (Sketch)

� If edge (u, v) exists, then x2(u) = x1(v)

u v
g

x2(u) = fver(g) = x1(v)

� If path from u to v in red at least two edges long, then x2(u) < x1(v).

� and the vertical segments of their rectangles overlap

vu

a

b

c
d

y1(v) = fhor(a) ≤ y1(u) = fhor(b)

< y2(v) = fhor(c) ≤ y2(u) = fhor(d)

� No two boxes overlap.

� For details, see He’s paper [He ’93].
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Rectangular Dual Result

Theorem.
Every PTP graph G has a rectangular dual,
which can be computed in linear time.

Proof.

� Compute a planar embedding of G.

� Compute a refined canonical ordering of G.

� Traverse the graph and color the edges. → REL

� Construct Gver and Ghor.

� Construct their duals G?
ver and G?

hor.

� Compute a topological ordering for vertices of G?
ver and G?

hor.

� Assing coordinates to the rectangles representing vertices.
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Discussion

� A layout is area-universal if any assignment of areas to rectangles can
be realized by a combinatorially equivalent rectangular layout.

� A rectangular layout is area-universal if and only if it is one-sided.
[Eppstein et al. SIAM J. Comp. 2012]

one-sided not one-sided

� Area-universal rectlinear representation: possible for all planar graphs.

� [Alam et al. 2013]: 8 sides (matches the lower bound)

i.e., every segment
belongs to exactly

one rectangle

s
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Literature

Construction of rectangular dual based on

� [He ’93] On Finding the Rectangular Duals of Planar Triangulated Graphs

� [Kant, He ’94] Two algorithms for finding rectangular duals of planar graphs

and originally from

� [Koźmiński, Kinnen ’85] Rectangular Duals of Planar Graphs

Construction of triangle contact representations based on

� [de Fraysseix, Ossona de Mendez, Rosenstiehl ’94] On Triangle Contact Graphs
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