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Orthogonal Layout — Applications
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Orthogonal Layout — Definition

Observations.

m Edges lie on a grid =
bends lie on grid points

B Max. degree of each
vertex Is at most 4

B Otherwise _?_: L1
|

Definition.
A drawing I of a graph G = (V, E)) is called orthogonal if

B vertices are drawn as points on a grid,

B each edge is represented as a sequence of alternating
horizontal and vertical line segments of the grid, and

B pairs of edges are disjoint or cross orthogonally.

Planarization. Aesthetic criteria to optimize.
B Fix embedding B Number of bends
B Crossings become B Length of edges

vertices B Width, height, area

+ . + B Monotonicity of edges
m ..

- 20



Topology — Shape — Metrics

Three-step approach: [Tamassia 1987]

04

V = {U17/027U37U4}
E = {v1v2, 0103, V14, V203, V204 }

1 "—‘[ 3
combinatorial 1 2

embedding / planar

reduce planarization OI;Chog_onaI area mini-
' rawin ..
crossings g ization

VAN - minimization [ — 7

1

orthogonal i
2 representation = teeeoe- .é's. ...........

1
TOPOLOQY — SHAPE — METRICS




Orthogonal Representation

Idea.
Describe orthogonal drawing combinatorially.
6/
Definitions. N
Let G = (V, E) be a plane graph with faces F' and outer face fjy. @ 3
B Let ¢ be an edge with the face f to the right. 0 . {
An edge description of ¢ w.r.t. f is a triple (¢, 0, ) where \
m e {0,11* (where 0 = right bend, 1 = left bend) o=
B «isangle € {7,m, 3777,2%} between ¢ and next edge ¢’ (¢,100, )
B A face representation H(f) of a face f is a clockwise ordered sequence
(e1,01, 1), (e2,02,2),...,( , Odeg(f)s (ldeg(f)) Of edge descriptions w.r.t. f.

B An orthogonal representation H(G) of G is defined as

H(G) =1{H(f) | [ € F}.



Orthogonal Representation — Example

H(fO) — ((617 117 %)7 (657 1117 3771-)7 (647 ®7 7T)7 (637 ®7 77)7 (627 ®7 %))
H(f1) = ((e1,00, %), (e2,0, %), (es,00, 7))
H(f2) — ((657 0007 %)7 (667 117 % 7(637 @77‘-)7 (647 (Z)a %))

A
fo L0 0
1 2
0 =" 5 €2 1 €3 1 €4 3
€3 ° F 7 |z P |2
‘o) 2 |2 2
f1
ee @ €4 0 0 f2
1 €6 1
€5 ° 0 0
1 €5 1

Concrete coordinates are not fixed yet!



Correctness of an Orthogonal Representation

(H1) H(G) corresponds to F', fo.

(H2) For each edge shared by faces f and ¢ with
( 7517&1)€H(f) and ( 7627&2)61{(9)1

the sequence 0 is like 0-, but reversed and inverted.

(H3) Let |0|g (resp. |0|1) be the number of zeros
(resp. ones) in 0, and let r = (e, 0, ).
Let C(r) :=|d]o — |01 — /5 + 2.
For each face f, it holds that:

)4 it f= o
Z cr) = {+4 otherwise.

(H4) For each vertex v, the sum of incident angles is 27.

1 €1 1 fO
0 0
1 5 , 5 €2 1 €3 1 €4 3x
| ] A
o Il 6
o2
0 0
1 1
Cle3) =0-0—-242=0
0(64)20—0—1—|—2:1
C(es)=3-0—-142=4
Cleg)=0—-2—-142=-1
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Reminder: s-t-Flow Networks

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Flow network (G = (V, E); S, T; u) with
m directed graph G = (V, E)

B sources S CV, sinksT CV

B edge capacity u: E — R§ U {oo}

A function X: E — R{ is called S—T flow if:

0<X(i,5) <wuli,j)  V(,j)€E
Y X(ij)— > X(i)=0  VieV\(SuUT)

(i,7)eE (j,3)€EE

A maximum ST flow is an S—T flow where Z X (z,7) is maximized.
(i,j)EE,ieS
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Reminder: s-t-Flow Networks

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Flow network (G = (V, E); s,t; u) with
m directed graph G = (V, E)

B sourcescV,sinktecV

B edge capacity u: E — R§ U {oo}

A function X: E — R{ is called s—t flow if:

0<X(i,7) <uli,j)  V(,j)ekE
ZX@Q)— ZX(], =0 Vie V\A{s,t} -

(i,5)eE (j,3)€EE

A maximum s—t flow is an s—t flow where ZX(s,j) IS maximized.
(s,4)€EE
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General Flow Network

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Flow network (G = (V, E); S, T; (;u) with
B directed graph G = (V, E)

B sources S CV, sinksT CV

B edge lower bound (1 E — Ry

B edge capacity u: E — Ry U {oo}

A function X: E — R{ is called S—T flow if:

(o) < X(4,7) <wul,g)  V(,j) €EE
d X(ij)— Y X(ji)=0  VieV\(SUT)

(¢,J)€E (J,1)eE

A maximum ST flow is an S-T flow where Z X (7,7) is maximized.
(i,j)EE,i€S
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General Flow Network

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Flow network (G = (V, E); b; (; u) with
B directed graph G = (V, E)

B node production/consumption b: V' — R with » .., b(i) = 0

B edge lower bound (1 E — Ry . o R o

B edge capacity u: E — Ry U {oo} o

3/3 - ul
4/4/5(3/5

A function X: F — ]Rar Is called valid flow, if:

(o) < X(4,7) <wul,g)  V(,j) €EE
d o X(ij)— Y X(ji)=0b(i) VieV

(¢,5)€E (J,1)eE

A maximum ST flow is an S-T flow where Z X (7,7) is maximized.
(i,j)EE,i€S
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General Flow Network

[Finnrind, CC BY-SA 3.0,
via Wikimedia Commons]

Flow network (G = (V, E); b; /; u) with
B directed graph G = (V, E)

B node production/consumption b: V' — R with » .., b(i) = 0

B edge lower bound (1 E — Ry o R

3/3 - ul
4/4/5(3/5

¥ 1/2/2

B edge capacity u: E — Ry U {oo} o

A function X: F — ]Rar Is called valid flow, if:

(o) < X(4,7) <wul,g)  V(,j) €EE
d o X(ij)— Y X(ji)=0b(i) VieV

(¢,5)€E (J,1)eE

m Cost function cost: E — R{ and cost(X) := Z(i’j)EE cost(z,7) - X (1, 7)

A minimum cost flow is a valid flow where cost(.X) is minimized.



General Flow Network — Algorithms

Polynomial Algorithms
Due to

Edmonds and Karp
Rock

Rock

Bland and Jensen
Goldberg and Tarjan
Goldberg and Tarjan

~] o W e W B = 3

Ahuja, Goldberg, Orlin and Tarjan
Strongly Polynomial Algorithms

Due to

Tardos

Orlin

Fujishige

Galil and Tardos
Goldberg and Tarjan
Goldberg and Tarjan

=] O N sk W 2 — 3

Orlin (this paper)

Year
1972
1980
1980
1985
1987
1988
1988

Year
1985
1984
1986
1986
1987
1988
1988

S(n, m) = O(m+nlogn)
S(n,m,C) = O(Min {m + nmy/log C),
(m log log C))
Min, m) = Ofmin (nm + n?*€, nm log n)
where € is any fixed constant,
M(n, m, U) = O(nm log ( :ﬂmgm 2)

Running Time

O((n + m") log U 5(n, m, nC))
O((n + m') log U S(n, m, nC))
O(n log C M{n, m, U))

Of(m log C M(n, m, U))

O(nm log (n2 /m) log (nC))
O(nm log n log (nC)}

O(nm log log U log (nC))

Running Time

O(m4)

O((n + m"2 log n S(n, m))
O((n+ m"2 log n S(n, m))
O(n log n S(n, m))
D‘{m‘n2 log n ]Dg[ﬁzfm}}
D{nm2 ]r::g2 n)

O((n + m’) log n S(n, m}))

Fredman and Tarjan [1984]

Ahuja, Mehlhorn, Orlin and Tarjan [1990]
Van Emde Boas, Kaas and Zijlstra[1977]

King, Rao, and Tarjan [1991]

Ahuja, Orlin and Tarjan [1989)

10-3

Theorem.

The minimum cost flow problem can be solved in
O(n? log® n + m? logn) time.

(Orlin 1991]

Theorem.

O(n3/?) time.

The minimum cost flow problem for planar graphs
with bounded costs and face sizes can be solved in

[Cornelsen & Karrenbauer 2011]

[Orlin 1991]
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Topology — Shape — Metrics

Three-step approach: [Tamassia 1987]

04

V = {U17/027U37U4}
E = {v1v2, 0103, V14, V203, V204 }

1 "—‘[ 3
combinatorial 1 2

embedding/ planar

reduce planarization orthog_onal area mini-
crossings drawing mization

VAN b<nc minimization [ 7

1

orthogonal i
2 representation = teeeoe- .é's. ...........

1
TOPOLOQY — SHAPE — METRICS




Bend Minimization with Given Embedding

‘Geometric orthogonal bend minimization.
Given:  m Plane graph G = (V, E) with maximum degree 4
m Combinatorial embedding F' and outer face fj

Find:  Orthogonal drawing with minimum number of bends that

preserves the embedding.
. J

Compare with the following variation.

‘Combinatorial orthogonal bend minimization.
Given:  m Plane graph G = (V, E) with maximum degree 4
B Combinatorial embedding F' and outer face fj

Find:  Orthogonal representation H((G) with minimum

number of bends that preserves the embedding.
. J




Combinatorial Bend Minimization

‘Combinatorial orthogonal bend minimization.
Given:  m Plane graph G = (V, E) with maximum degree 4
m Combinatorial embedding F' and outer face fj

Find:  Orthogonal representation H(G) with minimum
number of bends that preserves the embedding

\.

Idea.
Formulate as a network-flow problem:

B a unit of flow = £7
B vertices —= faces (# £5 per face)

B faces -5 neighbouring faces (# bends toward the neighbour)

13 -
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Flow Network for Bend Minimization

(H1)
(H2)

(H3)

(H4)

H(Q) corresponds to F', fp.

For each edge shared by
faces f and g, sequence 01 is
reversed and inverted 0».

For each face f it holds that:
—4 if f =
Z c(r) = {+4 l)tfer 'J;
reH(f) WISE:

For each vertex v the sum of
incident angles is 2.

Define flow network N(G) = ((V U F, E’); b; [; u; cost):

B E ={(v,f)eer € V X F | v between edges e, e’ of df} U
{ € F'x F'| f, g have common edge e}

Directed multigraph!
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Flow Network for Bend Minimization

(H1)
(H2)

(H3)

(H4)

H(Q) corresponds to F', fp.

For each edge shared by
faces f and g, sequence 01 is
reversed and inverted 0».

For each face f it holds that:
4 if f =
Z c(r) = {+4 l)tier '];i
T‘EH(f) WISE.

For each vertex v the sum of
incident angles is 2.

1 (@)
aF 2\! 1]
6
01 1\)

Define flow network N(G) = ((V U F, E’); b; [; u; cost):

B E ={(v,f)eer € V X F | v between edges e, e’ of df} U
{ € F'x F'| f, g have common edge e}

mBov)=4 YoeV

o —4 i f=fo, = 2 D(w) =0
" 0J) = —2degg(f) + {—|—4 otherwise (Eulen
V(v,f)eE,veV,feF =1 <[X (v, /)< 4 =:u(v, f)
cost(v, f) =0
% cE fgeF =0 <|X ([, 9)|< 00 =u(f,9g)

COSt(f, g) =1 We model only the

number of bends.
Why is it enough?

LR
e

—» Fxercise!
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Flow Network Example

Legend

VvV @)

F O
¢/u /cost
1/4/0

VXFD——

F x F DO
4 = b-value

3| flow

cost = 1
one bend
(outward)
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Flow Network Example

Legend

VvV @)

F O
¢/u /cost
1/4/0

VXFD——

F x F DO
4 = b-value

3| flow




Bend Minimization — Result

‘Theorem.
A plane graph (G, F, fy) has a valid orthogonal
representation H(G) with k bends. <

The flow network N(G) has a valid flow X with cost k.

[Tamassia ’87]N

J

Proof.

< Given valid flow X in N(G) with cost k.
Construct orthogonal representation H(G) with k bends.

B Transform from flow to orthogonal description.

B Show properties (H1)—(H4).

(
(
(
(

ﬁ
x
ﬁ
_{

1) H(G) matches F) fy

2) Bend order inverted and reversed on opposite sides v
3) Angle sum of f = +4

4) Total angle at each vertex = 27

v

16 - 10

(H1)
(H2)

(H3)

(H4)

H(G) corresponds to F', fo.

For each edge shared by
faces f and g, sequence 01 is
reversed and inverted o-.

For each face f it holds that:
—4 if f =

DICORE

e H(f) +4 otherwise.

For each vertex v the sum of
incident angles is 2.

v — Exercise.

v



Bend Minimization — Result

A plane graph (G, F, fy) has a valid orthogonal
representation H(G) with k bends. <

The flow network N(G) has a valid flow X with cost k.
\.

‘Theorem. [Tamassia ’87]j

J

b(v) =4 VYveV
—4 Iff:f07

+4 otherwise

b(f) = —2degg(f) + {

=1< X(v, f) < 4= u(v, f)
cost(v, f) =0

=0 < X(f,9) <oo=tu(f, g)
cost(f,g) =1

Proof.

= Given an orthogonal representation H(G) with k bends.

Construct valid flow X in N(G) with cost k.
B Define flow X: E' — R{.

B Show that X is a valid flow and has cost k.

(NI) X(vf) =1/2/3/4

(N
(N3) capacities, deficit/demand coverage
(N4) cost = k

2) X( ) = |6]o, where (e, , x) describes edge e in H(f)

SNENIENIEN

16 - 17
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Bend Minimization — Remarks

B The theorem implies that the combinatorial orthogonal bend minimization problem for
plane graphs can be solved using an algorithm for min-cost flow.

(Theorem. [Garg & Tamassia 1996] |

The min-cost flow problem for planar graphs with bounded costs
:and vertex degrees can be solved in O(n"/*\/logn) time.

J

‘Theorem. [Cornelsen & Karrenbauer 2011]w

The min-cost flow problem for planar graphs with bounded costs
and face sizes can be solved in O(n3/?) time.

J

(Theorem. [Garg & Tamassia 2001]N
Bend minimization without given combinatorial embedding is
NP-hard.
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Topology — Shape — Metrics

Three-step approach: [Tamassia 1987]

04

V = {U17/027U37U4}
E = {v1v2, 0103, V14, V203, V204 } 3

1 ¢
combinatorial I 2
embedding/ ol
reduce planarization orthog.onal area mini-
crossings drawing mization

VAN < minimizztion [ 7

1

orthogonal
2 representation 0 e ]

1 2
TOPOLOQY — SHAPE — METRICS
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Compaction

(Compaction problem.

Given:  m Plane graph G = (V, E) with maximum degree 4
B Orthogonal representation H(G)

kFind: Compact orthogonal layout of GG that realizes H(G)

Special case.
All faces are rectangles.

— guarantees ®W minimum total edge length

B minimum area
Properties.

B bends only on the outer face

B opposite sides of a face have the same length

Idea.

B Formulate flow network for horizontal /vertical compaction
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Flow Network for Edge-Length Assignment

Definition.
Flow Network Nnor = ((Whor, Ehor); b; (; u; cost)

] Whor = F \ {fg} U {S,t} O

B Fhor ={(f,9) | f,g share a horizontal segment and f lies

below g} U {(t,s)}
la)=1 Va € Ene
ula) =00 Va € Epor
cost(a) =1 Va € Fho
D) =0 Vf € Wher




Flow Network for Edge-Length Assignment

Definition.
Flow Network Nyer = ((Wher, Ever); b; /; u; cost)

Wier = F\{fo} U{s,t} o
Fyer =4{(f,9) | f, g share a vertical segment and f lies to the
left of g} U{(¢,s)}

la)=1 Va & Eye
ula) =00 Va € Eye
cost(a) =1 Va € Eye
b(f) =0 Vf € Wi

21
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Compaction — Result

What if not all faces
are rectangular?

‘Theorem.
A valid flow for Nyo and N, exists <
corresponding edge lengths induce an orthogonal drawing.

J

What values of the drawing do the following quantities represent?
B | X (7, s)] and | X e (2, 5)]7 width and height of the drawing

] ZeEEhor Xhor(e) —+ ZeEE\/er Xver(e) total edge length



Refinement of G and H(G) — Inner Face

= 1

Q

-

< next(e)

corner(e)

1 —~—

“extend(e’)

__— project(e’)

O
1

front(e’)
B Dummy vertices for bends
1 left turn
B turn(e) =<0  no turn

—1 right turn

23 - 12



Refinement of G and H(G) — Inner Face

1

Q

-

< next(e)

corner(e)

1 —~—

“extend(e’)

__— project(e’)

1

B Dummy vertices for bends

S 1 left turn
B turn(e) =<0  no turn

—1 right turn

23 - 18



Refinement of G and H(G) — Outer Face

24 -



Refinement of G and H(G) — Outer Face

24 -
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Refinement of G and H(G) — Outer Face




Refinement of G and H(G) — Outer Face

O

Compaction for a given orthogonal
&representation Is NP-hard in general.

‘Theorem. [Patrignani 2001]1

O

# bends
Area minimized? No!

But we get bound O((n + b)?) on the area.

Compaction is NP-hard even for

v,

korthogonal representations of cycles.

‘Theorem. [EFKSSW 2022]N

J

24 - 19
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Compaction is NP-hard

Polynomial-time reduction from the NP-complete satisfiability problem (SAT).

In an instance of the SAT problem we have:

B set of n Boolean variables X = {z1,25,...,2,}

B m clauses C1,Cs, ..., C,,, where 0 literal is a variable z or a negated variable —x

each clause is a disjunction of literals from X,
eg., Ci =21V 2oV 3

B Boolean formula ®=C{ ACo A --- N C,,

Question: Is there an assignment of truth values to the variables in X such that ® is true?

ldea of the reduction:

B Given SAT instance ® = construct a plane graph G and a orthogonal description H(G)

B & is satisfiable << G can be drawn w.r.t. H(G) in area K for some specific number K



Boundary, Belt, and “Piston” Gadget

(w x h)-rectangle




Boundary, Belt, and “Piston” Gadget




Boundary, Belt, and “Piston” Gadget

i?@%if{ﬁﬁﬂﬂlr
|
- Nam

-




Clause Gadgets

27 -

Example:

Cl — XI? V XLy
Co=x1VxoV 23
03 — Ix

04 — X4 \Y4 —Ix

insert (2n(= 1)-chain
through each clause

— for every clause, there needs to be
> 1 “gap of a literal” to be on the same
height as the “tunnel” to the next literal



Complete Reduction

Pick
K=(M+2)x (9m+7)

Om + 7

Then:

G under H(G) has an
orthogonal drawing in area K
<~
® satisfiable
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| iterature

B [GD Ch. 5] for detailed explanation

B [Tamassia 1987] “On embedding a graph in the grid with the minmum number of bends”
Original paper on flow for bend minimization.

m [Patrignani 2001] “On the complexity of orthogonal compaction”
NP-hardness proof for orthogonal representation of planar max-degree-4 graphs.

B [Evans, Fleszar, Kindermann, Saeedi, Shin, Wolff 2022]
“Minimum rectilinear polygons for given angle sequences”
NP-hardness proof for compaction of cycles.
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