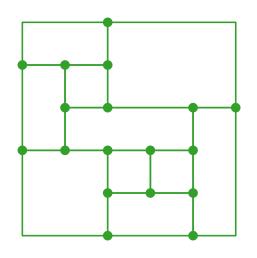
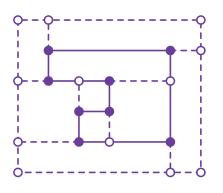
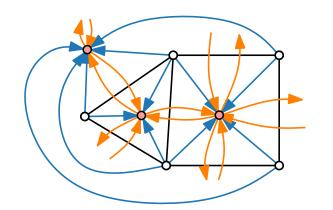


# Visualization of Graphs



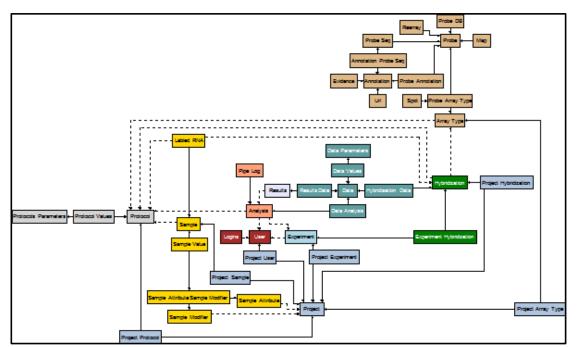
Lecture 6: Orthogonal Layouts



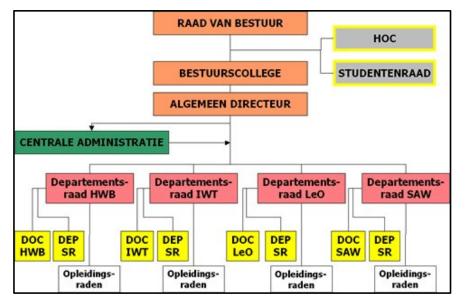


Johannes Zink

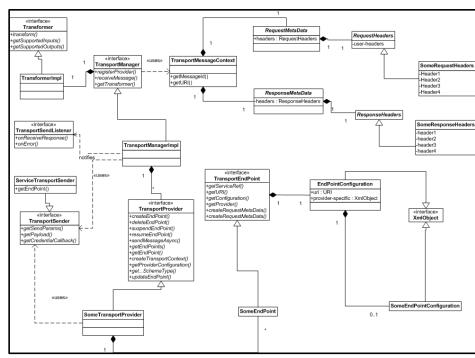
## Orthogonal Layout – Applications



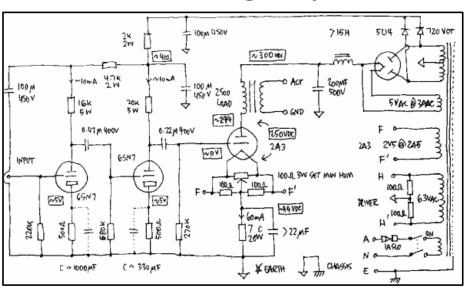
ER diagram in OGDF



Organigram of HS Limburg

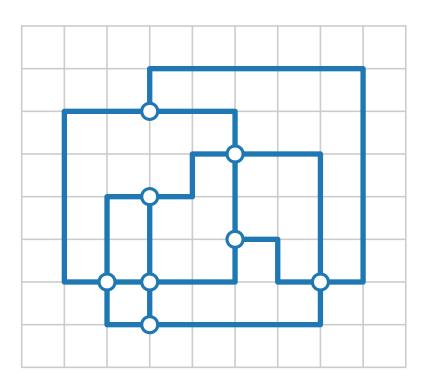


UML diagram by Oracle



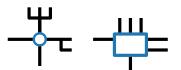
Circuit diagram by Jeff Atwood

## Orthogonal Layout – Definition



### Observations.

- Edges lie on a grid ⇒
  bends lie on grid points
- Max. degree of each vertex is at most 4
- Otherwise



### Definition.

A drawing  $\Gamma$  of a graph G = (V, E) is called **orthogonal** if

- vertices are drawn as points on a grid,
- each edge is represented as a sequence of alternating horizontal and vertical line segments of the grid, and
- pairs of edges are disjoint or cross orthogonally.

### Planarization.

- Fix embedding
- Crossings become vertices



### Aesthetic criteria to optimize.

- Number of bends
- Length of edges
- Width, height, area
- Monotonicity of edges
- ..

## Topology – Shape – Metrics

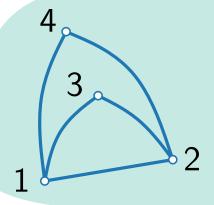
### Three-step approach:

 $V = \{v_1, v_2, v_3, v_4\}$  $E = \{v_1v_2, v_1v_3, v_1v_4, v_2v_3, v_2v_4\}$ 

TOPOLOGY

reduce crossings

combinatorial embedding/planarization



bend minimization

[Tamassia 1987]

orthogonal representation



3 planar orthogonal area minidrawing mization

METRICS

## Orthogonal Representation

### Idea.

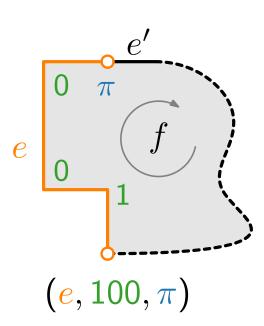
Describe orthogonal drawing combinatorially.

### Definitions.

Let G = (V, E) be a plane graph with faces F and outer face  $f_0$ .

- Let e be an edge with the face f to the right. An edge description of e w.r.t. f is a triple  $(e, \delta, \alpha)$  where
  - $\delta \in \{0,1\}^*$  (where 0 = right bend, 1 = left bend)
  - lacktriangle  $\alpha$  is angle  $\in \{\frac{\pi}{2}, \pi, \frac{3\pi}{2}, 2\pi\}$  between e and next edge e'
- A face representation H(f) of a face f is a clockwise ordered sequence  $(e_1, \delta_1, \alpha_1), (e_2, \delta_2, \alpha_2), \ldots, (e_{\deg(f)}, \delta_{\deg(f)}, \alpha_{\deg(f)})$  of edge descriptions w.r.t. f.
- lacktriangle An orthogonal representation H(G) of G is defined as

$$H(G) = \{ H(f) \mid f \in F \}.$$

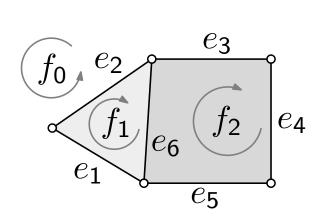


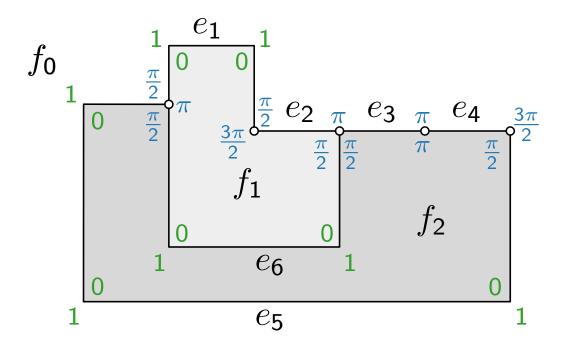
### Orthogonal Representation – Example

$$H(f_0) = ((e_1, 11, \frac{\pi}{2}), (e_5, 111, \frac{3\pi}{2}), (e_4, \emptyset, \pi), (e_3, \emptyset, \pi), (e_2, \emptyset, \frac{\pi}{2}))$$

$$H(f_1) = ((e_1, 00, \frac{3\pi}{2}), (e_2, \emptyset, \frac{\pi}{2}), (e_6, 00, \pi))$$

$$H(f_2) = ((e_5, 000, \frac{\pi}{2}), (e_6, 11, \frac{\pi}{2}), (e_3, \emptyset, \pi), (e_4, \emptyset, \frac{\pi}{2}))$$





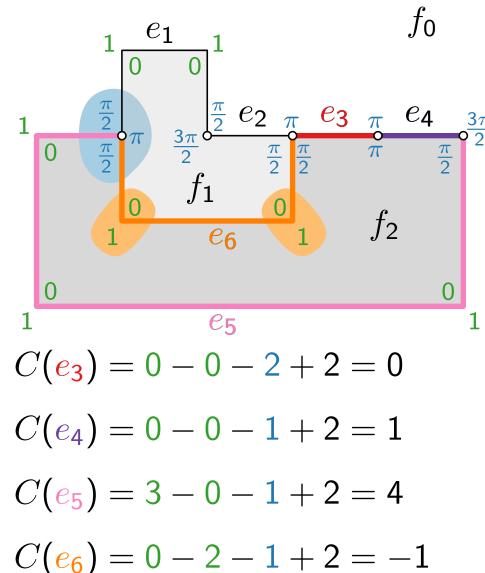
Concrete coordinates are not fixed yet!

## Correctness of an Orthogonal Representation

- (H1) H(G) corresponds to F,  $f_0$ .
- (H2) For each **edge**  $\{u, v\}$  shared by faces f and g with  $((u, v), \delta_1, \alpha_1) \in H(f)$  and  $((v, u), \delta_2, \alpha_2) \in H(g)$ , the sequence  $\delta_1$  is like  $\delta_2$ , but reversed and inverted.
- (H3) Let  $|\delta|_0$  (resp.  $|\delta|_1$ ) be the number of zeros (resp. ones) in  $\delta$ , and let  $r=(e,\delta,\alpha)$ . Let  $C(r):=|\delta|_0-|\delta|_1-\alpha/\frac{\pi}{2}+2$ . For each **face** f, it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$

(H4) For each **vertex** v, the sum of incident angles is  $2\pi$ .



### Reminder: s-t-Flow Networks

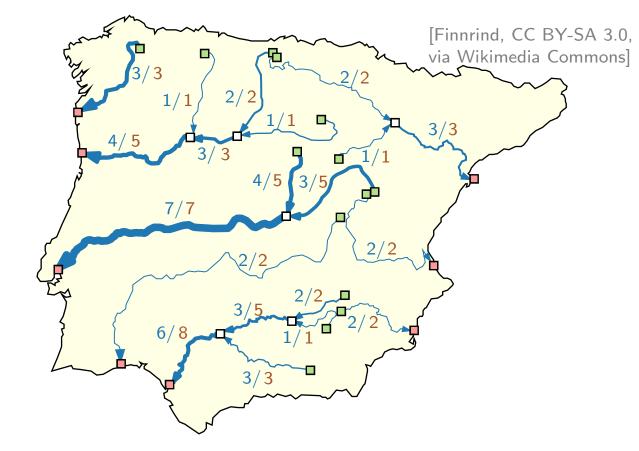
### Flow network (G = (V, E); S, T; u) with

- lacksquare directed graph G = (V, E)
- lacksquare sources  $S\subseteq V$ , sinks  $T\subseteq V$
- edge *capacity*  $u: E \to \mathbb{R}_0^+ \cup \{\infty\}$

A function  $X: E \to \mathbb{R}_0^+$  is called S-T flow if:

$$0 \le X(i,j) \le u(i,j) \qquad orall (i,j) \in E$$
  $\sum_{(i,j) \in E} X(i,j) - \sum_{(j,i) \in E} X(j,i) = 0 \qquad orall i \in V \setminus (S \cup T)$ 

A maximum S-T flow is an S-T flow where  $\sum_{(i,j)\in E, i\in S} X(i,j)$  is maximized.



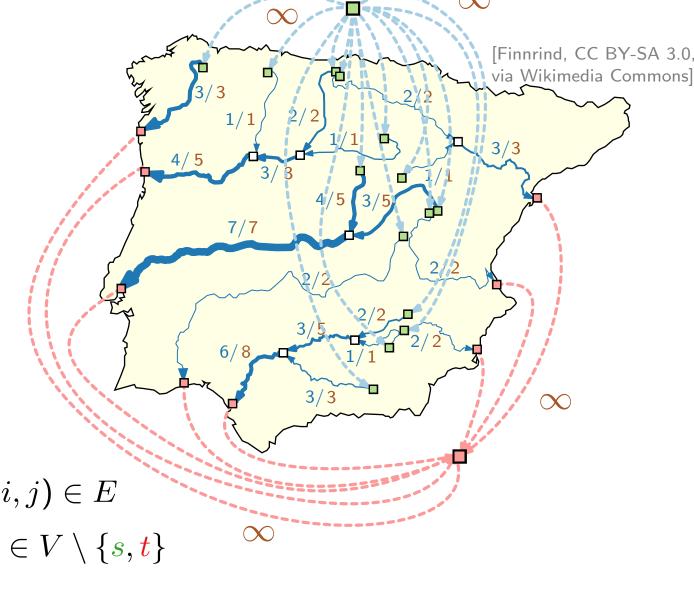
Reminder: s-t-Flow Networks

Flow network (G = (V, E); s, t; u) with

- lacksquare directed graph G = (V, E)
- lacksquare source  $s \in V$ , sink  $t \in V$
- edge capacity  $u: E \to \mathbb{R}_0^+ \cup \{\infty\}$

A function  $X: E \to \mathbb{R}_0^+$  is called s–t flow if:

$$0 \leq X(i,j) \leq u(i,j) \qquad orall (i,j) \in E$$
  $\sum_{(i,j) \in E} X(i,j) - \sum_{(j,i) \in E} X(j,i) = 0 \qquad orall i \in V \setminus \{s,t\}$ 



A maximum s-t flow is an s-t flow where  $\sum_{(s,j)\in E} X(s,j)$  is maximized.

### General Flow Network

Flow network  $(G = (V, E); S, T; \ell; u)$  with

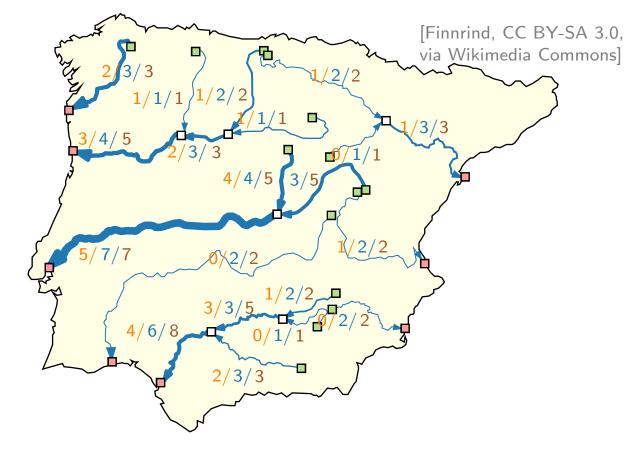
- lacksquare directed graph G = (V, E)
- $\blacksquare$  sources  $S \subseteq V$ , sinks  $T \subseteq V$
- $\blacksquare$  edge *lower bound*  $\ell \colon E \to \mathbb{R}_0^+$
- edge capacity  $u: E \to \mathbb{R}_0^+ \cup \{\infty\}$

A function  $X: E \to \mathbb{R}_0^+$  is called S-T flow if:

$$\ell(i,j) \leq X(i,j) \leq u(i,j) \qquad \forall (i,j) \in E$$

$$\sum_{(i,j) \in E} X(i,j) - \sum_{(j,i) \in E} X(j,i) = 0 \qquad \forall i \in V \setminus (S \cup T)$$

A maximum S-T flow is an S-T flow where  $\sum_{(i,j)\in E, i\in S} X(i,j)$  is maximized.



### General Flow Network

Flow network  $(G = (V, E); b; \ell; u)$  with

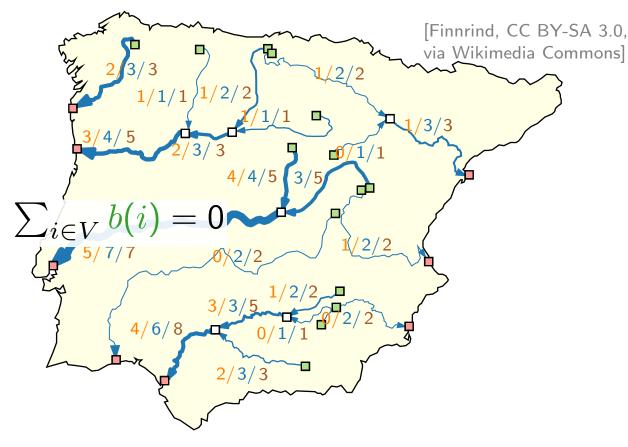
- lacksquare directed graph G = (V, E)
- lacksquare node production/consumption  $b\colon V o\mathbb{R}$  with  $\sum_{i\in V}b(i)=0$
- edge *lower bound*  $\ell \colon E \to \mathbb{R}_0^+$
- edge capacity  $u: E \to \mathbb{R}_0^+ \cup \{\infty\}$

A function  $X: E \to \mathbb{R}_0^+$  is called **valid flow**, if:

$$\ell(i,j) \le X(i,j) \le u(i,j) \qquad \forall (i,j) \in E$$

$$\sum_{(i,j)\in E} X(i,j) - \sum_{(j,i)\in E} X(j,i) = b(i) \quad \forall i \in V$$

A maximum S-T flow is an S-T flow where  $\sum_{(i,j)\in E, i\in S} X(i,j)$  is maximized.



### General Flow Network

Flow network  $(G = (V, E); b; \ell; u)$  with

- lacksquare directed graph G = (V, E)
- node production/consumption  $b: V \to \mathbb{R}$  with  $\sum_{i \in V} b(i) = 0$
- $\blacksquare$  edge *lower bound*  $\ell \colon E \to \mathbb{R}_0^+$
- edge capacity  $u: E \to \mathbb{R}_0^+ \cup \{\infty\}$

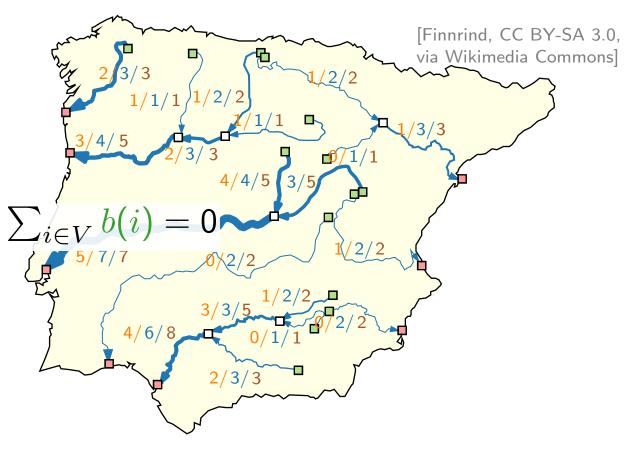
A function  $X: E \to \mathbb{R}_0^+$  is called **valid flow**, if:

$$\ell(i,j) \le X(i,j) \le u(i,j) \qquad \forall (i,j) \in E$$

$$\sum_{(i,j)\in E} X(i,j) - \sum_{(j,i)\in E} X(j,i) = b(i) \quad \forall i \in V$$

• Cost function cost:  $E \to \mathbb{R}_0^+$  and  $\operatorname{cost}(X) := \sum_{(i,j) \in E} \operatorname{cost}(i,j) \cdot X(i,j)$ 

A minimum cost flow is a valid flow where cost(X) is minimized.



## General Flow Network – Algorithms

| P | olynomial Algorithms              |      |                               |
|---|-----------------------------------|------|-------------------------------|
| # | Due to                            | Year | Running Time                  |
| 1 | Edmonds and Karp                  | 1972 | O((n + m') log U S(n, m, nC)) |
| 2 | Rock                              | 1980 | O((n + m') log U S(n, m, nC)) |
| 3 | Rock                              | 1980 | O(n log C M(n, m, U))         |
| 4 | Bland and Jensen                  | 1985 | O(m log C M(n, m, U))         |
| 5 | Goldberg and Tarjan               | 1987 | $O(nm log (n^2/m) log (nC))$  |
| 6 | Goldberg and Tarjan               | 1988 | O(nm log n log (nC))          |
| 7 | Ahuja, Goldberg, Orlin and Tarjan | 1988 | O(nm log log U log (nC))      |
|   |                                   |      |                               |

#### Strongly Polynomial Algorithms

|   | #   | Due to                            | Year | Running Time                    |
|---|-----|-----------------------------------|------|---------------------------------|
|   | 1   | Tardos                            | 1985 | O(m <sup>4</sup> )              |
|   | 2   | Orlin                             | 1984 | $O((n + m')^2 \log n S(n, m))$  |
|   | 3   | Fujishige                         | 1986 | $O((n + m')^2 \log n S(n, m))$  |
|   | 4   | Galil and Tardos                  | 1986 | O(n <sup>2</sup> log n S(n, m)) |
|   | 5   | Goldberg and Tarjan               | 1987 | $O(nm^2 \log n \log(n^2/m))$    |
|   | 6   | Goldberg and Tarjan               | 1988 | $O(nm^2 log^2 n)$               |
|   | 7   | Orlin (this paper)                | 1988 | $O((n + m') \log n S(n, m))$    |
|   |     |                                   |      |                                 |
|   |     |                                   |      |                                 |
| 1 | Six | $\sim m$ ) $\sim O(m + n \log n)$ | Free | lman and Tarian [1984]          |

 $S(n, m) = O(m + n \log n)$  Fredman and Tarjan [1984]  $S(n, m, C) = O(Min (m + n\sqrt{\log C}),$  Ahuja, Mehlhorn, Orlin and Tarjan [1990] Van Emde Boas, Kaas and Zijlstra[1977]  $M(n, m) = O(min (nm + n^{2+\epsilon}, nm \log n)$   $Where \epsilon is any fixed constant.$   $M(n, m, U) = O(nm \log (\frac{n}{m}\sqrt{\log U} + 2))$  Ahuja, Orlin and Tarjan [1989]

### Theorem.

[Orlin 1991]

The minimum cost flow problem can be solved in  $O(n^2 \log^2 n + m^2 \log n)$  time.

### Theorem.

[Cornelsen & Karrenbauer 2011]

The minimum cost flow problem for planar graphs with bounded costs and face sizes can be solved in  $O(n^{3/2})$  time.

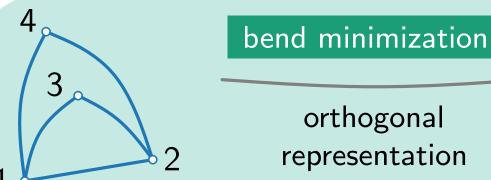
## Topology – Shape – Metrics

### Three-step approach:

 $V = \{v_1, v_2, v_3, v_4\}$  $E = \{v_1v_2, v_1v_3, v_1v_4, v_2v_3, v_2v_4\}$ 

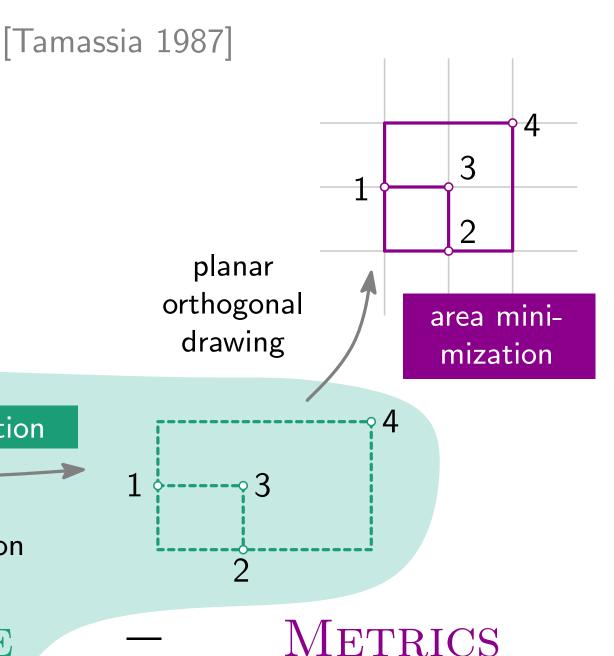
reduce crossings

combinatorial embedding/planarization



Topology

SHAPE



## Bend Minimization with Given Embedding

### Geometric orthogonal bend minimization.

Given:  $\blacksquare$  Plane graph G = (V, E) with maximum degree 4

lacksquare Combinatorial embedding F and outer face  $f_0$ 

Find: Orthogonal drawing with minimum number of bends that

preserves the embedding.

Compare with the following variation.

### Combinatorial orthogonal bend minimization.

Given:  $\blacksquare$  Plane graph G = (V, E) with maximum degree 4

 $\blacksquare$  Combinatorial embedding F and outer face  $f_0$ 

Find: Orthogonal representation H(G) with minimum number of bends that preserves the embedding.

### Combinatorial Bend Minimization

### Combinatorial orthogonal bend minimization.

Given:  $\blacksquare$  Plane graph G = (V, E) with maximum degree 4

 $\blacksquare$  Combinatorial embedding F and outer face  $f_0$ 

Find: Orthogonal representation H(G) with minimum

number of bends that preserves the embedding

### Idea.

Formulate as a network-flow problem:

 $\blacksquare$  a unit of flow  $= \angle \frac{\pi}{2}$ 

• vertices  $\stackrel{\measuredangle}{\longrightarrow}$  faces (#  $\measuredangle \frac{\pi}{2}$  per face)

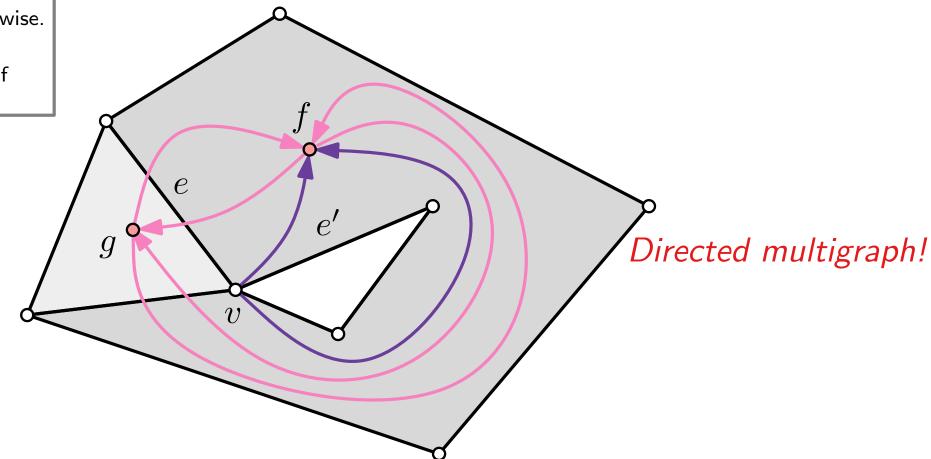
■ faces  $\xrightarrow{\angle}$  neighbouring faces (# bends toward the neighbour)

### Flow Network for Bend Minimization

- (H1) H(G) corresponds to F,  $f_0$ .
- (H2) For each **edge**  $\{u, v\}$  shared by faces f and g, sequence  $\delta_1$  is reversed and inverted  $\delta_2$ .
- (H3) For each **face** f it holds that:  $\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$
- (H4) For each **vertex** v the sum of incident angles is  $2\pi$ .

Define flow network  $N(G) = ((V \cup F, E'); b; \ell; u; cost)$ :

■  $E' = \{(v, f)_{ee'} \in V \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup \{(f, g)_e \in F \times F \mid f, g \text{ have common edge } e\}$ 



### Flow Network for Bend Minimization

- (H1) H(G) corresponds to F,  $f_0$ .
- For each edge  $\{u, v\}$  shared by faces f and g, sequence  $\delta_1$  is reversed and inverted  $\delta_2$ .
- (H3) For each **face** f it holds that:

$$\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$$

For each **vertex** v the sum of incident angles is  $2\pi$ .

Define flow network  $N(G) = ((V \cup F, E'); b; \ell; u; cost)$ :

- $E' = \{(v, f)_{ee'} \in V \times F \mid v \text{ between edges } e, e' \text{ of } \partial f\} \cup V$  $\{(f,g)_e \in F \times F \mid f,g \text{ have common edge } e\}$
- $b(v) = 4 \quad \forall v \in V$

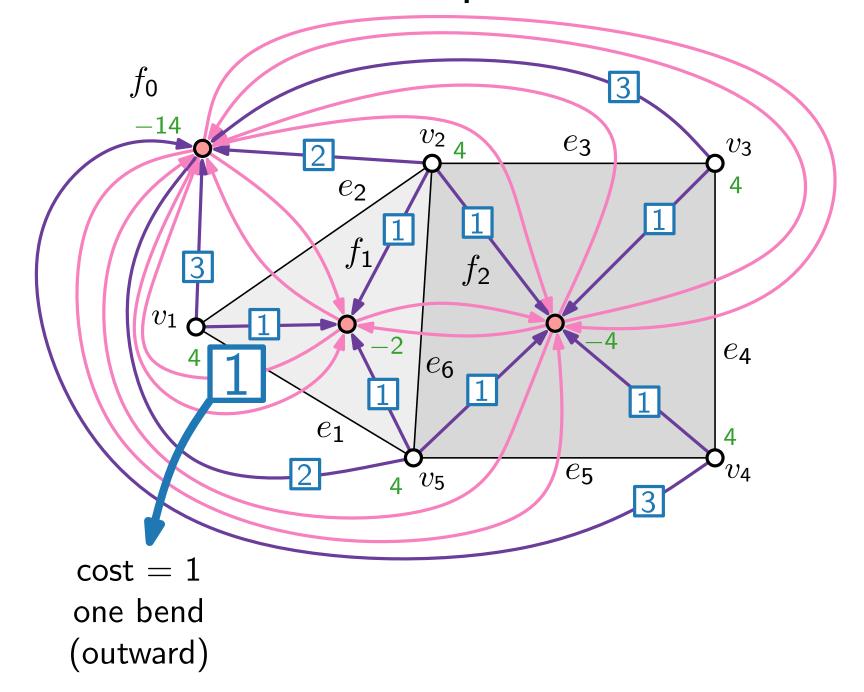
$$\Rightarrow \sum_{w} b(w) = 0$$
 (Euler)

$$\forall (v, f) \in E', v \in V, f \in F$$

$$\forall (f, g) \in E', f, g \in F$$

$$\ell(v,f) := 1 \le X(v,f) \le 4 =: u(v,f)$$
 $\cot(v,f) = 0$ 
 $\ell(f,g) := 0 \le X(f,g) \le \infty =: u(f,g)$ 
 $\cot(f,g) = 1$ 
 $\cot(f,g)$ 

## Flow Network Example

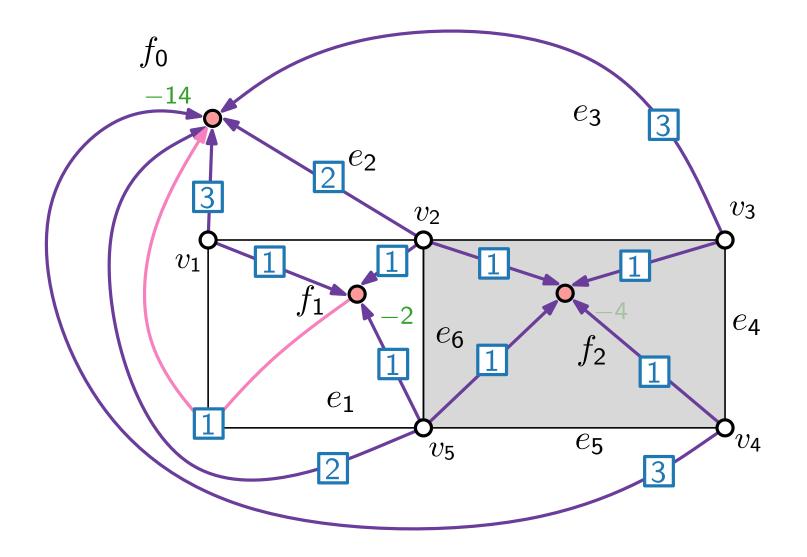


### Legend

3 flow

$$V$$
 O  $F$  O  $\ell/u/\mathrm{cost}$   $V \times F \supseteq \frac{1/4/0}{2}$  F  $V \times F \supseteq \frac{0/\infty/1}{2}$   $V \times F \supseteq 0$ 

## Flow Network Example



### Legend

3 flow

$$V$$
 O  $F$  •  $\ell/u/\mathrm{cost}$   $V \times F \supseteq \frac{1/4/0}{2}$  •  $F \times F \supseteq \frac{0/\infty/1}{2}$  •  $4 = b$  -value

### Bend Minimization – Result

### Theorem.

[Tamassia '87]

A plane graph  $(G, F, f_0)$  has a valid orthogonal representation H(G) with k bends.  $\Leftrightarrow$ 

The flow network N(G) has a valid flow X with cost k.

### Proof.

- $\Leftarrow$  Given valid flow X in N(G) with cost k. Construct orthogonal representation H(G) with k bends.
  - Transform from flow to orthogonal description.
- Show properties (H1)–(H4).
  - (H1) H(G) matches  $F, f_0$



- (H3) Angle sum of  $f = \pm 4$
- (H4) Total angle at each vertex =  $2\pi$

- (H1) H(G) corresponds to F,  $f_0$ .
- (H2) For each **edge**  $\{u, v\}$  shared by faces f and g, sequence  $\delta_1$  is reversed and inverted  $\delta_2$ .
- (H3) For each **face** f it holds that:  $\sum_{r \in H(f)} C(r) = \begin{cases} -4 & \text{if } f = f_0 \\ +4 & \text{otherwise.} \end{cases}$
- (H4) For each **vertex** v the sum of incident angles is  $2\pi$ .

 $\checkmark \rightarrow \textit{Exercise}.$ 

### Bend Minimization – Result

### Theorem.

[Tamassia '87]

A plane graph  $(G, F, f_0)$  has a valid orthogonal representation H(G) with k bends.  $\Leftrightarrow$ 

The flow network N(G) has a valid flow X with cost k.

## $b(v) = 4 \quad \forall v \in V$

$$b(f) = -2 \deg_G(f) + \begin{cases} -4 & \text{if } f = f_0, \\ +4 & \text{otherwise} \end{cases}$$

$$\begin{array}{c} \blacksquare & \ell(v,f) := 1 \leq X(v,f) \leq 4 =: u(v,f) \\ & \cot(v,f) = 0 \\ & \ell(f,g) := 0 \leq X(f,g) \leq \infty =: u(f,g) \\ & \cot(f,g) = 1 \end{array}$$

### Proof.

- $\Rightarrow$  Given an orthogonal representation H(G) with k bends. Construct valid flow X in N(G) with cost k.
  - Define flow  $X : E' \to \mathbb{R}_0^+$ .
- $\blacksquare$  Show that X is a valid flow and has cost k.

(N1) 
$$X(vf) = 1/2/3/4$$



(N2)  $X((fg)_e) = |\delta|_0$ , where  $(e, \delta, x)$  describes edge e in H(f)

**\** 

(N3) capacities, deficit/demand coverage

$$(N4) \cos t = k$$

### Bend Minimization – Remarks

■ The theorem implies that the combinatorial orthogonal bend minimization problem for plane graphs can be solved using an algorithm for min-cost flow.

### Theorem.

[Garg & Tamassia 1996]

The min-cost flow problem for planar graphs with bounded costs and vertex degrees can be solved in  $O(n^{7/4}\sqrt{\log n})$  time.

### Theorem.

[Cornelsen & Karrenbauer 2011]

The min-cost flow problem for planar graphs with bounded costs and face sizes can be solved in  $O(n^{3/2})$  time.

#### Theorem.

[Garg & Tamassia 2001]

Bend minimization without given combinatorial embedding is NP-hard.

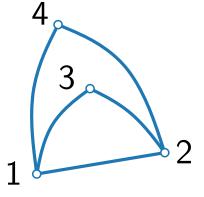
## Topology – Shape – Metrics

### Three-step approach:

 $V = \{v_1, v_2, v_3, v_4\}$  $E = \{v_1v_2, v_1v_3, v_1v_4, v_2v_3, v_2v_4\}$ 

reduce crossings

combinatorial embedding/planarization

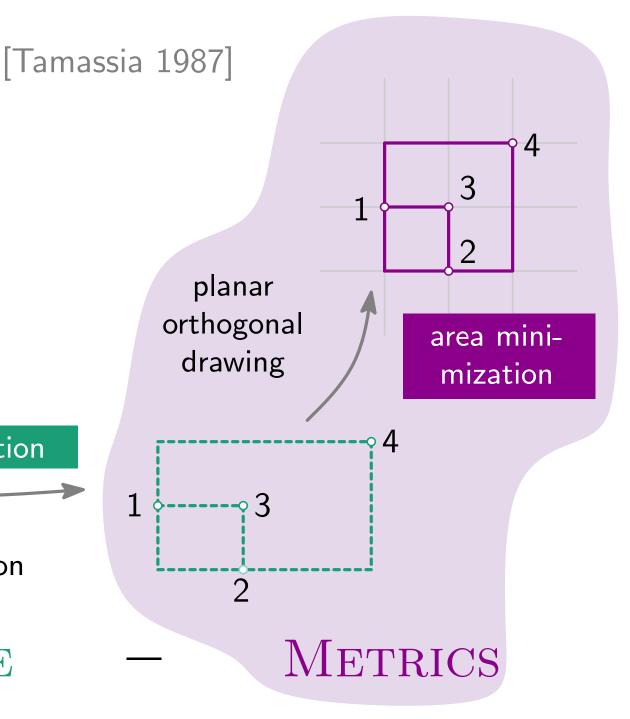


orthogonal

bend minimization

representation

Topology - Shap



## Compaction

### Compaction problem.

Given:  $\blacksquare$  Plane graph G = (V, E) with maximum degree 4

lacksquare Orthogonal representation H(G)

Find: Compact orthogonal layout of G that realizes H(G)

### Special case.

All faces are rectangles.

→ guarantees ■ minimum total edge length

minimum area

### Properties.

- bends only on the outer face
- opposite sides of a face have the same length

### Idea.

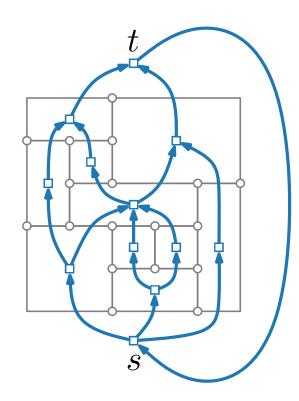
■ Formulate flow network for horizontal/vertical compaction

## Flow Network for Edge-Length Assignment

### Definition.

Flow Network  $N_{\mathsf{hor}} = ((W_{\mathsf{hor}}, E_{\mathsf{hor}}); b; \ell; u; \mathsf{cost})$ 

- $E_{hor} = \{(f,g) \mid f,g \text{ share a } horizontal \text{ segment and } f \text{ lies } below g\} \cup \{(t,s)\}$
- $\bullet$   $\ell(a) = 1 \quad \forall a \in E_{\mathsf{hor}}$
- $u(a) = \infty \quad \forall a \in E_{\mathsf{hor}}$
- $b(f) = 0 \quad \forall f \in W_{\mathsf{hor}}$



## Flow Network for Edge-Length Assignment

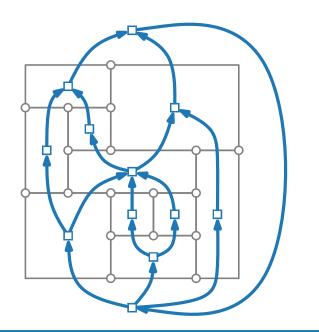
### Definition.

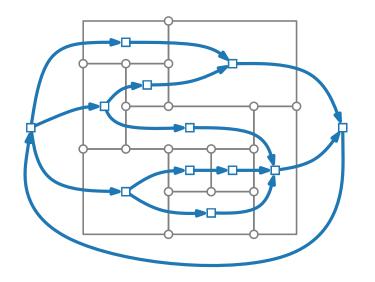
Flow Network  $N_{\text{ver}} = ((W_{\text{ver}}, E_{\text{ver}}); b; \ell; u; \text{cost})$ 

- $E_{\text{ver}} = \{(f,g) \mid f,g \text{ share a } \textit{vertical} \text{ segment and } f \text{ lies to the } \textit{left} \text{ of } g\} \cup \{(t,s)\}$
- $\bullet$   $\ell(a) = 1 \quad \forall a \in E_{\text{ver}}$
- $u(a) = \infty \quad \forall a \in E_{\text{ver}}$
- $b(f) = 0 \quad \forall f \in W_{\text{ver}}$



### Compaction – Result





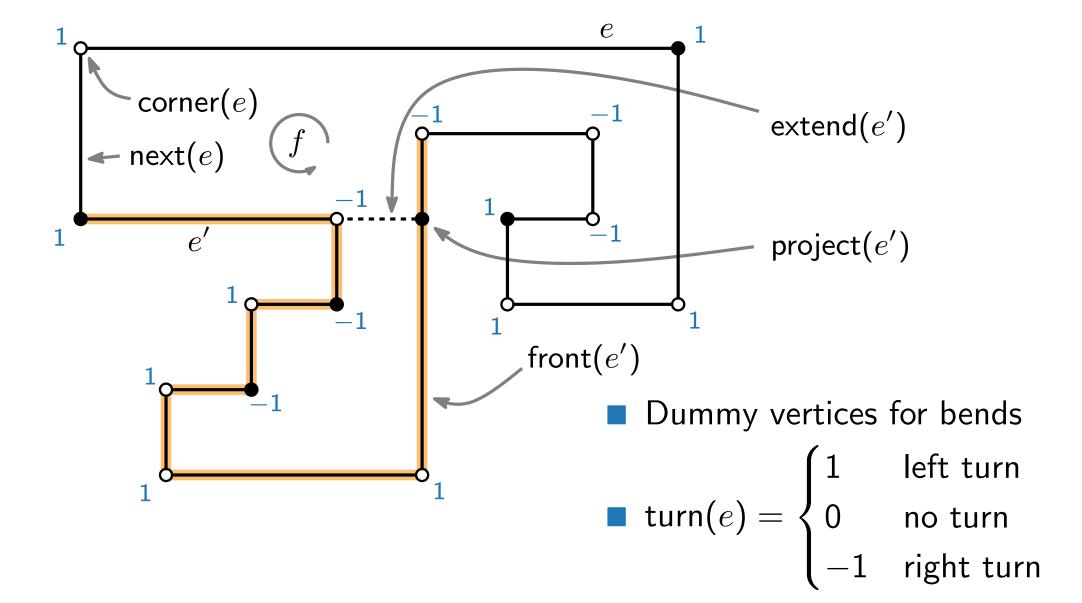
What if not all faces are rectangular?

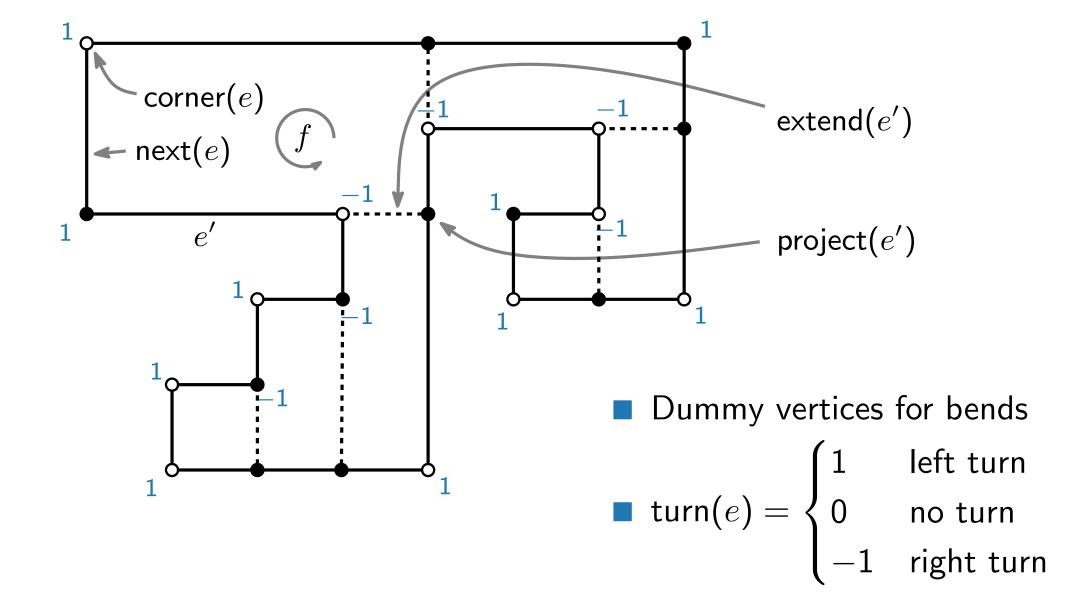
### Theorem.

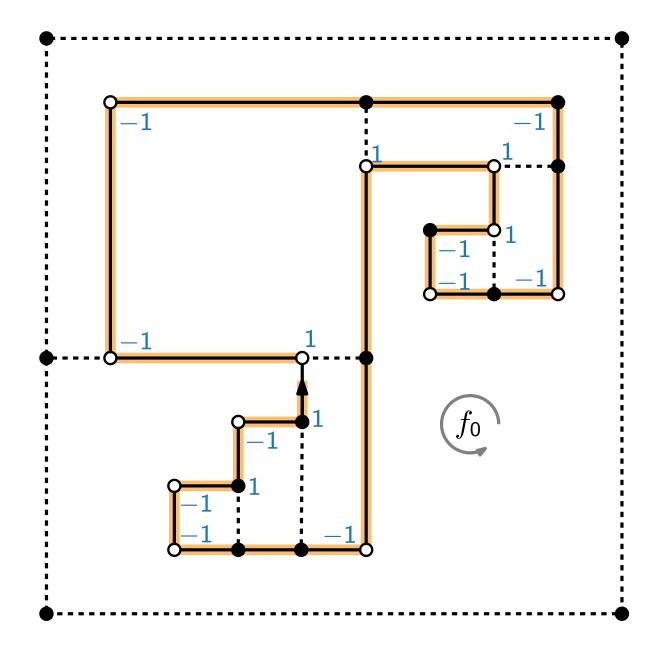
A valid flow for  $N_{\text{hor}}$  and  $N_{\text{ver}}$  exists  $\Leftrightarrow$  corresponding edge lengths induce an orthogonal drawing.

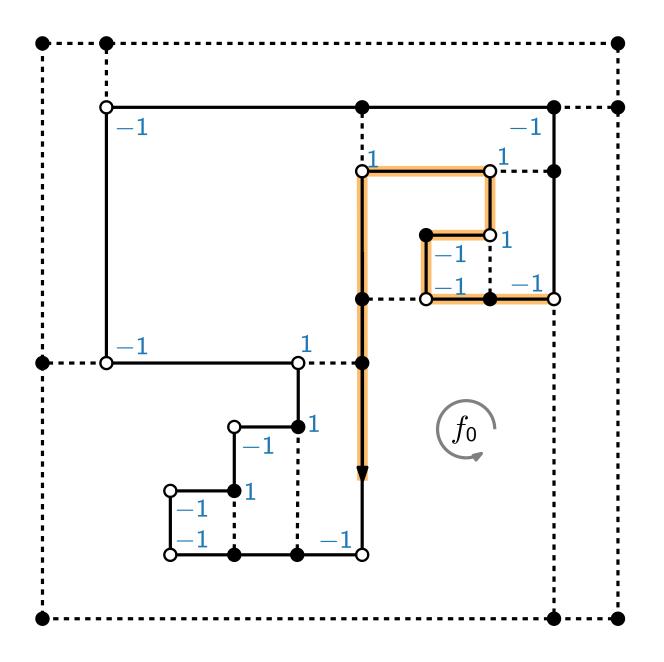
What values of the drawing do the following quantities represent?

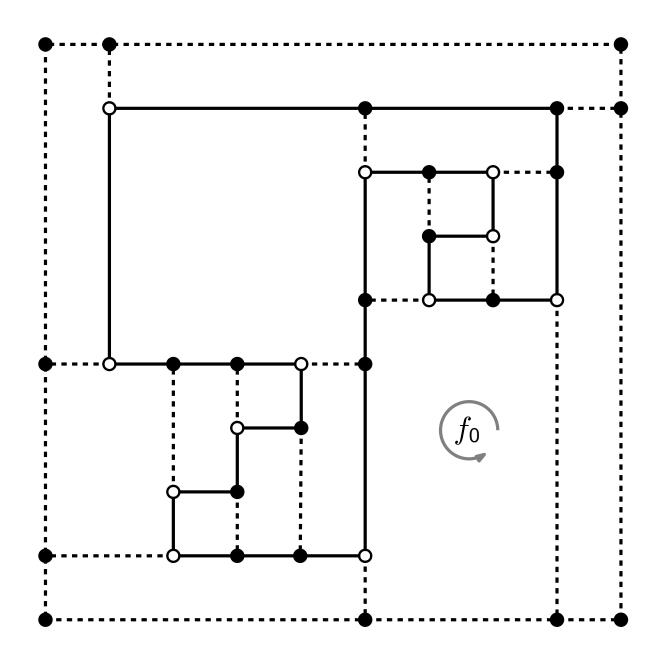
- $\blacksquare |X_{hor}(t,s)|$  and  $|X_{ver}(t,s)|$ ? width and height of the drawing
- lacksquare  $\sum_{e \in E_{\text{hor}}} X_{\text{hor}}(e) + \sum_{e \in E_{\text{ver}}} X_{\text{ver}}(e)$  total edge length

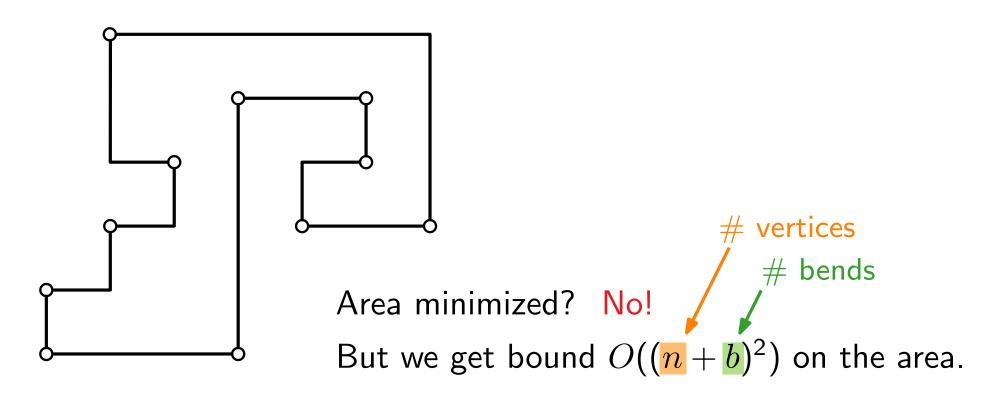












### Theorem.

[Patrignani 2001]

Compaction for a given orthogonal representation is NP-hard in general.

### Theorem.

[EFKSSW 2022]

Compaction is NP-hard even for orthogonal representations of *cycles*.

### Compaction is NP-hard

Polynomial-time reduction from the NP-complete satisfiability problem (SAT).

In an instance of the SAT problem we have:

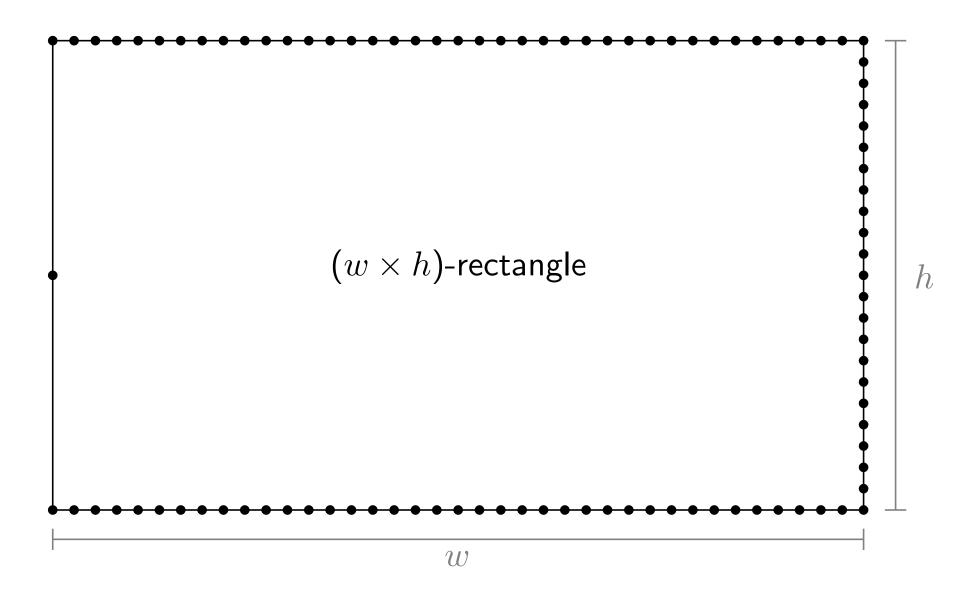
- $\blacksquare$  set of n Boolean variables  $X = \{x_1, x_2, \dots, x_n\}$
- m clauses  $C_1, C_2, \ldots, C_m$ , where each clause is a disjunction of literals from X, e.g.,  $C_1 = x_1 \vee \neg x_2 \vee x_3$
- Boolean formula  $\Phi = C_1 \wedge C_2 \wedge \cdots \wedge C_m$

Question: Is there an assignment of truth values to the variables in X such that  $\Phi$  is true?

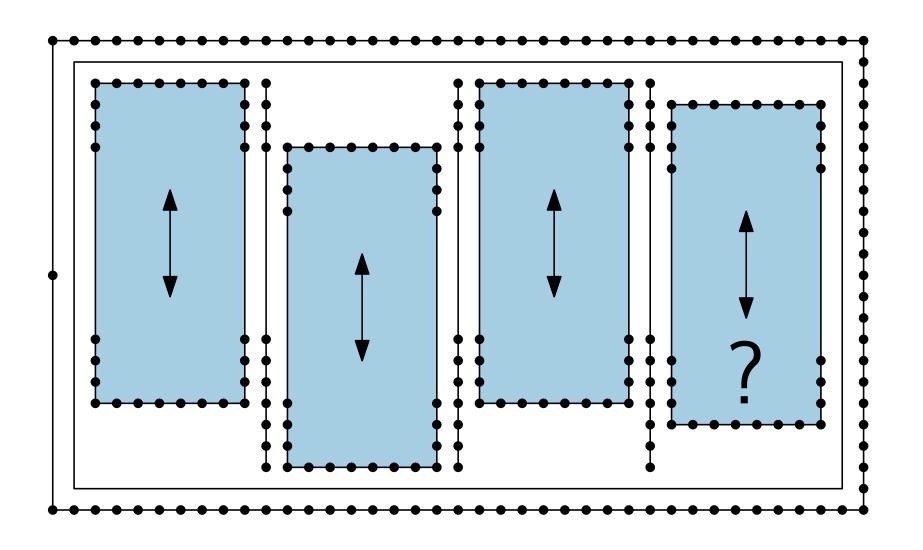
Idea of the reduction:

- lacksquare Given SAT instance  $\Phi\Rightarrow$  construct a plane graph G and a orthogonal description H(G)
- lacksquare lacksquare is satisfiable  $\Leftrightarrow G$  can be drawn w.r.t. H(G) in area K for some specific number K

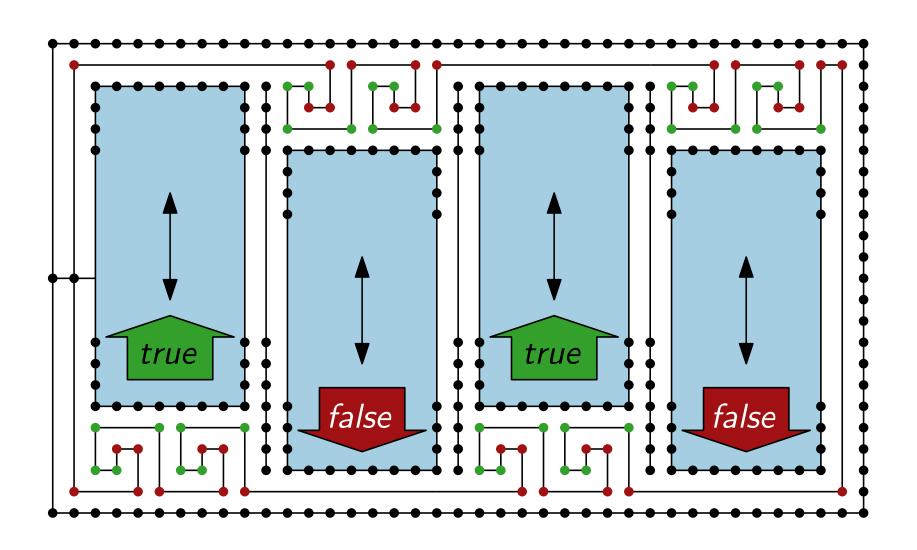
## Boundary, Belt, and "Piston" Gadget



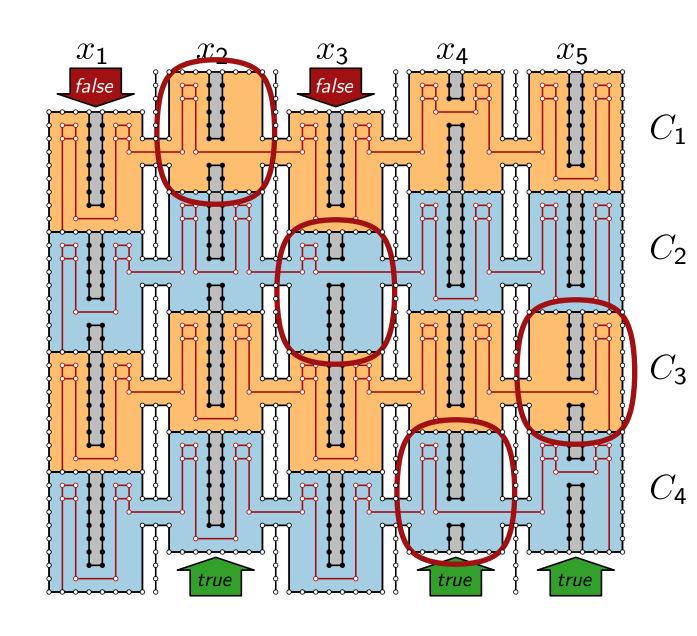
## Boundary, Belt, and "Piston" Gadget



## Boundary, Belt, and "Piston" Gadget



### Clause Gadgets



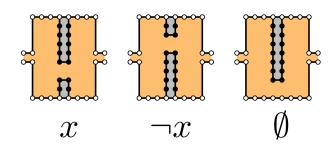
### Example:

$$C_1 = x_2 \lor \neg x_4$$

$$C_2 = x_1 \lor x_2 \lor \neg x_3$$

$$C_3 = x_5$$

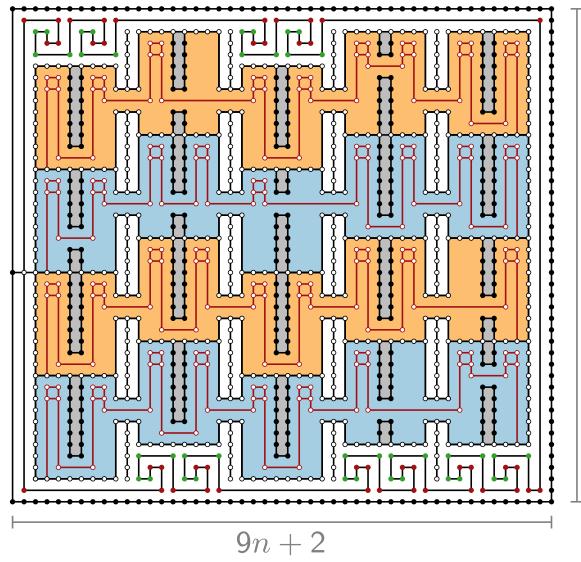
$$C_4 = x_4 \lor \neg x_5$$



insert (2n-1)-chain through each clause

ightarrow for every clause, there needs to be  $\geq 1$  "gap of a literal" to be on the same height as the "tunnel" to the next literal

## Complete Reduction



Pick 
$$K = (9n + 2) \times (9m + 7)$$

$$9m + 7$$

Then:

G under H(G) has an orthogonal drawing in area K

### Literature

- [GD Ch. 5] for detailed explanation
- [Tamassia 1987] "On embedding a graph in the grid with the minmum number of bends" Original paper on flow for bend minimization.
- [Patrignani 2001] "On the complexity of orthogonal compaction" NP-hardness proof for orthogonal representation of planar max-degree-4 graphs.
- [Evans, Fleszar, Kindermann, Saeedi, Shin, Wolff 2022] "Minimum rectilinear polygons for given angle sequences" NP-hardness proof for compaction of cycles.