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Upward Planar Drawings — Motivation

B What may the direction of edges in a directed graph represent?

B We aim for drawings where the general direction is preserved.
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Upward Planar Drawings — Detinition

A directed graph (digraph) is upward planar when it admits a drawing that is
B planar and

B where each edge Is drawn as an upward y-monotone curve.



Upward Planarity — Necessary Conditions

B For an (embedded) digraph to be upward planar, it needs to ...
B be planar

B be acyclic

B have a bimodal embedding

B ...but these conditions are not sufficient. — Exercise

; bimodal vertex not bimodal



Upward Planarity — Characterization

‘Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988| ) [
For a digraph G the following statements are equivalent:
(1) G is upward planar.
(2) G admits an upward planar straight-line drawing.
(3) G is a spanning subgraph of a planar st-digraph.

.

— Y——

§ .
Additionally: o Crossings
Embedded such ;
that s and ¢ are on acyclic digraph with
the outer face fj. a single and single sink ¢

or:
Edge (s,1) exists.



Upward Planarity — Characterization

‘Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988] )
For a digraph G the following statements are equivalent:
(1) G is upward planar.
(2) G admits an upward planar straight-line drawing.
(3) G is a spanning subgraph of a planar st-digraph.

.

Proof.

(2) = (1) By definition. (1) < (3) For the proof idea, see the example.
(3) = (2) Triangulate & construct drawing:

Claim. Case 1: ! Case 2: !
Can be drawn  chord no chord
in pre-specified

triangle.

Induction on the
number of vertices n.




Upward Planarity — Complexity

(Theorem. [Garg & Tamassia, 1995]N
Given a planar acyclic digraph G,

it is NP-hard to decide whether G is upward planar.
\.

Theorem. [Bertolazzi et al., 1994]

Given a combinatorially embedded planar digraph G,
it can be tested in O(n?) time whether G is upward planar.

rCorollary.

Given a triconnected planar digraph G,

it can be tested in O(n?) time whether G is upward planar.
.

‘Theorem. Hutton & Lubiw, 1996])
Given an acyclic single-source digraph G,

it can be tested in O(n) time whether G is upward planar.
\. J




The Problem

Fixed Embedding Upward Planarity Testing.
Let G be a plane digraph, let F' be the set of faces of G,

and let fy be the outer face of G.
Test whether G is upward planar (w.r.t. to F' and fy). |

Plan.
B Find a property that any upward planar drawing of G satisfies.

B Formalize this property.
B Specify an algorithm to test this property.



Angles, Local Sources & Sinks

Definitions.

A vertex v is a local source w.r.t. to a face f
if v has two outgoing edges on @f.~ boundary of f

A vertex v is a local sink w.r.t. to a face f
if v has two incoming edges on Of.

An angle « at a local source/sink is large
if a > 7 and small otherwise.

L(v) = # large angles at v
L(f) = # large angles in f

) =
) =
S(v) = # small angles at v
) =
) =

S(f # small angles at f [Il-;??)rj-aSl(f) = 2A(f)
A(f

# local sources w.r.t. to f

= # local sinks w.r.t. to f

- 27



Assignment Problem

B Vertex v is a global source at faces f; and f5.

B Does v have a large angle in f; or f»?
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Angle Relations

 Lemma 2. | Proof by induction on L(f).
. . _27 f # fO . o
L(f) = S(f) = {H, o " () =0 @ =5 =2
mL(f) =1

Split f with edge from a large angle at a “low” sink u to...

B sink v with small/large angle:

L(f) = 5(f)
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Angle Relations

 Lemma 2. | Proof by induction on L(f).
. . _27 f # fO . o
L(f) = S(f) = {H, o " () =0 @ =5 =2
mL(f) =1

Split f with edge from a large angle at a “low” sink u to...

B source v withsmratt/large angle:

------
L d
L 4

.
.’ . U
L4 |
.
N 1
’
]
|
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Angle Relations

 Lemma 2. | Proof by induction on L(f).
. . _27 f # fO . o
L(f) = S(f) = {H, o " () =0 @ =5 =2
mL(f) =1

Split f with edge from a large angle at a “low” sink u to...

B source v withsmratt/large angle:
—2 —2

L(f) = S(f) =L(f1) +'L(f2) + 2

— (S(f1) +5(f2))
— 9
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Angle Relations

 Lemma 2. | Proof by induction on L(f).
. . _27 f # fO . o
L(f) = S(f) = {H, o " () =0 @ =5 =2
mL(f) =1

Split f with edge from a large angle at a “low” sink u to...

B vertex v that is neither source nor sink:

—2 —2

L(f) = 5(f) =L(fr) +L(f2) + 1
- (5(f1) + 5(12) - 1)
= —2
B Otherwise “high” source 1 exists. — symmetric

B Similar argumentation for the outer face f
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Number of Large Angles

Proof. Lemma 1: L(f)+ S(f) =2A([)
Lemma 2: L(f) — S(f) = £2.

= 2L(f) =2A(f) £ 2.

/N N



Assignment of Large Angles to Faces

Let S be the set of ~and let 7" be the set of sinks.

Definition.
A consistent assignment &: SUT — F'is a mapping where

®: v — incident face, where v forms large angle

such that

—1 if [ # fo,

<l>1(f)|—L(f)—{ A,

12 -
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Example of Angle to Face Assignment

o global & sinks
# local /sinks of f

L(f) # large angles of f

assignment

™ b: SUT — F




Result Characterization

~

‘Theorem 3.
Let G be an acyclic plane digraph with embedding given by F' and f,.

Then G is upward planar (respecting F' and fj)
< G is bimodal and there exists a consistent assignment .

Proof.
=: As constructed before.

<: |ldea:
B Construct planar st-digraph that is supergraph of G.

B Apply equivalence from Theorem 1.

A

GG is upward planar. < G is a spanning subgraph of a planar st-digraph.

14 -



Refinement Algorithm: ©, F, fy — st-digraph

Let f be a face.
Consider the clockwise angle sequence o of L / S on local

B Goal: Add edges to break large angles ( and sinks).
B For f # fo with |o¢| > 2 containing (L, S, S) at vertices

m = insert edge (2, x)

and sinks of f.

15 -
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Refinement Algorithm: ©, F, fy — st-digraph

Let f be a face.
Consider the clockwise angle sequence o of L / S on local and sinks of f.

B Goal: Add edges to break large angles ( and sinks).
B For f # fo with |o¢| > 2 containing (L, S, S) at vertices

m = insert edge (2, x)

B x sink = insert edge (z, 2).
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Refinement Algorithm: ©, F, fy — st-digraph

Let f be a face.

Consider the clockwise angle sequence o of L / S on local and sinks of f.
B Goal: Add edges to break large angles ( and sinks).
B For f # fo with |o¢| > 2 containing (L, S, S) at vertices
m = insert edge (2, x)
B x sink = insert edge (z, 2).
B Refine outer face fy similarly. p
— Exercise S

B Refine all faces. = G is contained in a planar st-digraph.

B Planarity, acyclicity, bimodality are invariants under construction.



Refinement Example




Refinement Example










Result Upward Planarity Test

‘Theorem 2. [Bertolazzi et al., 1994] |
Given a combinatorially embedded planar digraph G,
we can test in O(n?) time whether G is upward planar.

\. J

Proof.
B Test for bimodality.

Test for a consistent assignment ® (via flow network).
f G bimodal and ¢ exists, refine G to plane st-digraph H.

[]
[]
B Draw H upward planar.
[]

Deleted edges added in refinement step.

17 -
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Finding a Consistent Assignment

Idea.
Flow (v, f) = 1 from global source / sink v to the incident
face f its large angle gets assigned to.

Flow network. Example.
Nr 1, (G) = (W, E'); b; 4; u)
BW={velV|v source or smk} JF
<

mE ={(v,f)|v |nC|dent to f} —
B /e)=0VeeF
B ule)=1Vee F

1 YVweWVNnV
B bw) = { —(A(0) = 1) Ve P\ {fo)

“(A(0) 1) w=f
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Series-Parallel Graphs

A graph G is series-parallel if
B it contains a single (directed) edge (s,t), or
B it consists of two series-parallel graphs ¢, G5

with sources s1, s> and sinks 1, > that are
combined using one of the following rules:

Series composition
(7

S1 S2

t
Convince yourself
that series-parallel
S graphs are planar!

Parallel composition

t1 =1

20 -



Series-Parallel Graphs — Decomposition Tree

A decomposition tree of (G is a binary tree 1" with nodes of three types: S, P and Q.

B A Q-node represents a single edge.

B An S-node represents a series composition;
its children 77 and 75 represent and G>.

B A P-node represents a parallel composition;
Its children and 75 represent and (5

@ A@\

21 -



Series-Parallel Graphs — Decomposition Example



Series-Parallel Graphs — Applications

Flowcharts PERT-Diagrams

(Program Evaluation and Review Technique)

Computational complexity:
Series-parallel graphs often admit linear-time algorithms for NP-hard problems,

e.g., minimum maximal matching, maximum independent set, Hamiltonian completion.

23 -



Series-Parallel Graphs — Drawing Style

Drawing conventions
m Planarity

B Straight-line edges
m Upward

Drawing aesthetics to optimize
B Area

B Symmetry

24 -



Series-Parallel Graphs — Straight-Line Drawings

Divide & conquer algorithm using the decomposition tree t

B Invariant: draw G inside a right-angled isosceles bounding triangle A(G) A(G)
with s at the bottom and ¢ at the top

Base case: Q-nodes Divide: Draw GG; and G5 first S

Conquer:

B S-nodes: series compositions QA(Gl) A(Go)

B P-nodes: parallel compositions ,

A(G2)

Do you see any problem?

25 - 14



Series-Parallel Graphs — Straight-Line Drawings

Divide & conquer algorithm using the decomposition tree t

B Invariant: draw G inside a right-angled isosceles bounding triangle A(G) A(G)
with s at the bottom and ¢ at the top

Base case: Q-nodes Divide: Draw GG; and G5 first S

Conquer:

B S-nodes: series compositions <IA(G1) A(Go)

B P-nodes: parallel compositions

25-19
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Series-Parallel Graphs — Straight-Line Drawings

B What makes parallel composition possible without creating crossings?

Assume the following holds:
the only vertex in angle(v) is s

B This condition is preserved during the induction step.

Lemma.
The drawing produced by the algorithm is planar.




Series-Parallel Graphs — Result

‘Theorem.
Let G be a series-parallel graph. Then G (with variable
embedding) admits a drawing [ that

W is upward planar and
B a straight-line drawing
® with an area in O(n?).

B Isomorphic components of G have congruent drawings
up to translation.

[ can be computed in O(n) time.

\. J

27 -
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Series-Parallel Graphs — Fixed Embedding

‘Theorem. [Bertolazzi et al. 94]

For any n > 1, there exists a 2n-vertex series-parallel graph G,
in an embedding such that any upward planar straight-line drawing
of G,, that respects the given embedding requires 2(4™) area.

. J

B 2 Area(G,) < Area(I)
B 2-Area(ll) < Area(Gpi1)
= 4 - Area(G,,) < Area(Gp41)
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Discussion

There exist fixed-parameter (FPT) algorithms to test upward planarity of general digraphs
with the parameter being the number of triconnected components.

[Healy, Lynch 2005, Didimo et al. 2009]

Finding assighment in Theorem 2 can be sped up to O(n + r1-®), where r = #
[Abbasi, Healy, Rextin 2010]

Many related concepts have been studied:

upward drawings of mixed graphs, upward drawings with layers for the vertices,
upward planarity on cylinder/torus, ...



30

| iterature

B See [GD Ch. 6] for detailed explanation on upward planarity.
B See [GD Ch. 3] for divide and conquer methods of series-parallel graphs

Orginal papers referenced:
B [Kelly '87] Fundamentals of Planar Ordered Sets

B Di Battista & Tamassia '88| Algorithms for Plane Representations of Acyclic Digraphs

B [Garg &Tamassia '95]
On the Computational Complexity of Upward and Rectilinear Planarity Testing

B [Hutton & Lubiw '96] Upward Planar Drawing of Single-Source Acyclic Digraphs

B [Bertolazzi, Di Battista, Mannino, Tamassia '94|
Upward Drawings of Triconnected Digraphs

B [Healy & Lynch '05] Building Blocks of Upward Planar Digraphs
B Didimo, Giardano, Liotta '09] Upward Spirality and Upward Planarity Testing

B [Abbasi, Healy, Rextin '10]
mproving the running time of embedded upward planarity testing
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