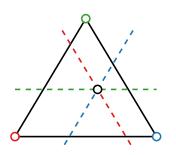


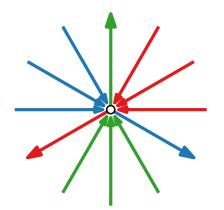
Visualization of Graphs

Lecture 4:

Straight-Line Drawings of Planar Graphs II:

Schnyder Woods





Johannes Zink

Theorem.

[De Fraysseix, Pach, Pollack '90]

Every n-vertex planar graph has a planar straight-line drawing of size $(2n-4)\times(n-2)$.

Theorem.

[Schnyder '90]

Every n-vertex planar graph has a planar straight-line drawing of size $(n-2) \times (n-2)$.

Theorem.

[De Fraysseix, Pach, Pollack '90]

Every n-vertex planar graph has a planar straight-line drawing of size $(2n-4)\times(n-2)$.

Theorem.

[Schnyder '90]

Every n-vertex planar graph has a planar straight-line drawing of size $(n-2) \times (n-2)$.

Theorem.

[De Fraysseix, Pach, Pollack '90]

Every n-vertex planar graph has a planar straight-line drawing of size $(2n-4)\times(n-2)$.

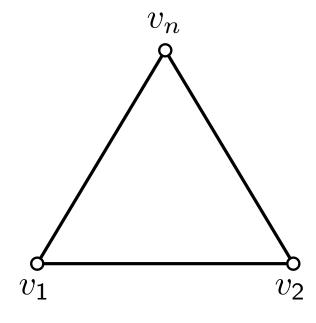
Theorem.

[Schnyder '90]

Every n-vertex planar graph has a planar straight-line drawing of size $(n-2) \times (n-2)$.

Idea.

Fix outer triangle.



Theorem.

[De Fraysseix, Pach, Pollack '90]

Every n-vertex planar graph has a planar straight-line drawing of size $(2n-4)\times(n-2)$.

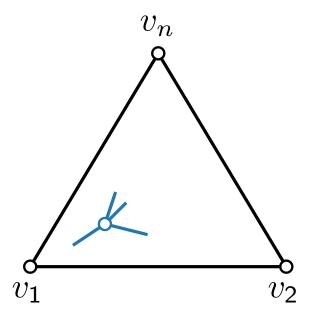
Theorem.

[Schnyder '90]

Every n-vertex planar graph has a planar straight-line drawing of size $(n-2) \times (n-2)$.

Idea.

- Fix outer triangle.
- Compute coordinates of inner vertices
 - based on outer triangle and



Theorem.

[De Fraysseix, Pach, Pollack '90]

Every n-vertex planar graph has a planar straight-line drawing of size $(2n-4)\times(n-2)$.

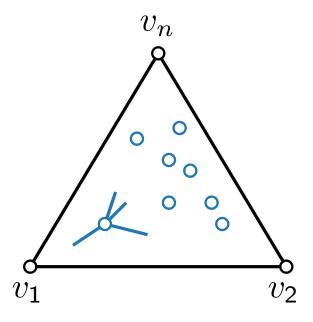
Theorem.

[Schnyder '90]

Every n-vertex planar graph has a planar straight-line drawing of size $(n-2) \times (n-2)$.

Idea.

- Fix outer triangle.
- Compute coordinates of inner vertices
 - based on outer triangle and
 - how much space there should be for other vertices



Theorem.

[De Fraysseix, Pach, Pollack '90]

Every n-vertex planar graph has a planar straight-line drawing of size $(2n-4)\times(n-2)$.

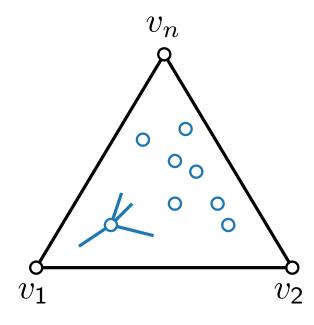
Theorem.

[Schnyder '90]

Every n-vertex planar graph has a planar straight-line drawing of size $(n-2) \times (n-2)$.

Idea.

- Fix outer triangle.
- Compute coordinates of inner vertices
 - based on outer triangle and
 - how much space there should be for other vertices
 - using weighted barycentric coordinates.



Theorem.

[De Fraysseix, Pach, Pollack '90]

Every n-vertex planar graph has a planar straight-line drawing of size $(2n-4)\times(n-2)$.

Theorem.

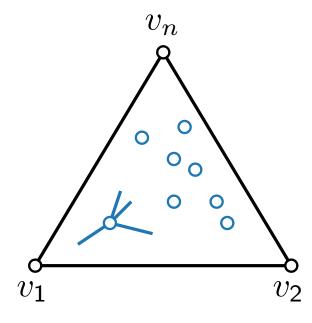
[Schnyder '90]

Every n-vertex planar graph has a planar straight-line drawing of size $(n-2)\times(n-2)$ $(2n-5)\times(2n-5)$.

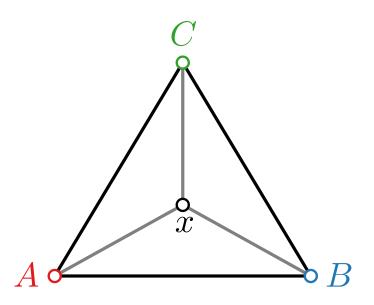
Idea.

(easier to show)

- Fix outer triangle.
- Compute coordinates of inner vertices
 - based on outer triangle and
 - how much space there should be for other vertices
 - using weighted barycentric coordinates.

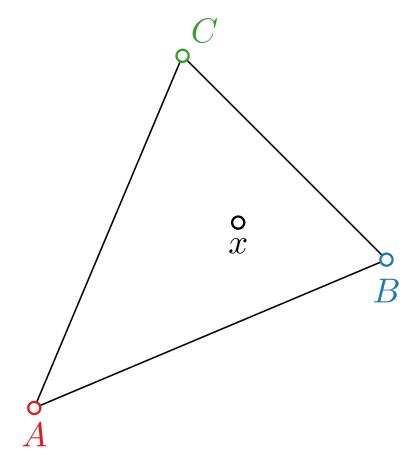


Recall: barycenter $(x_1, \ldots, x_k) = \sum_{i=1}^k x_i/k$



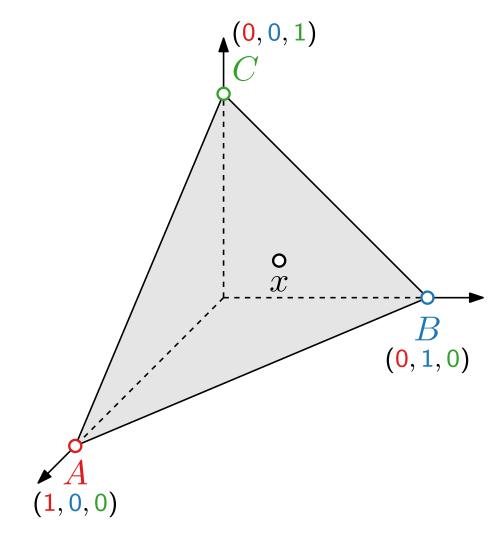
Recall: barycenter $(x_1, \ldots, x_k) = \sum_{i=1}^k x_i/k$

Let A, B, C form a triangle, and let x lie in $\triangle ABC$.



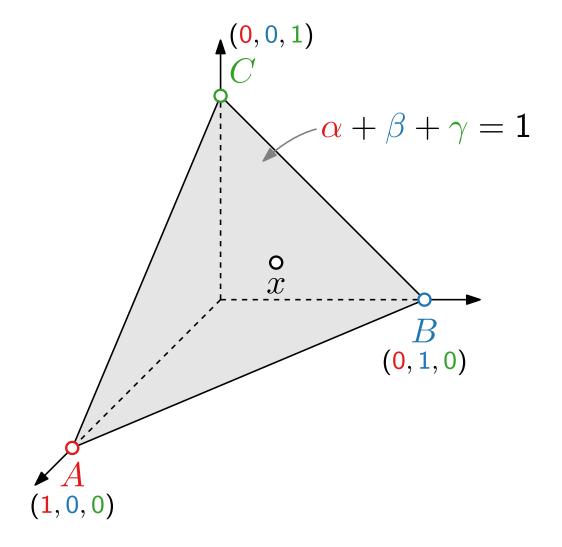
Recall: barycenter $(x_1, \ldots, x_k) = \sum_{i=1}^k x_i/k$

Let A, B, C form a triangle, and let x lie in $\triangle ABC$.



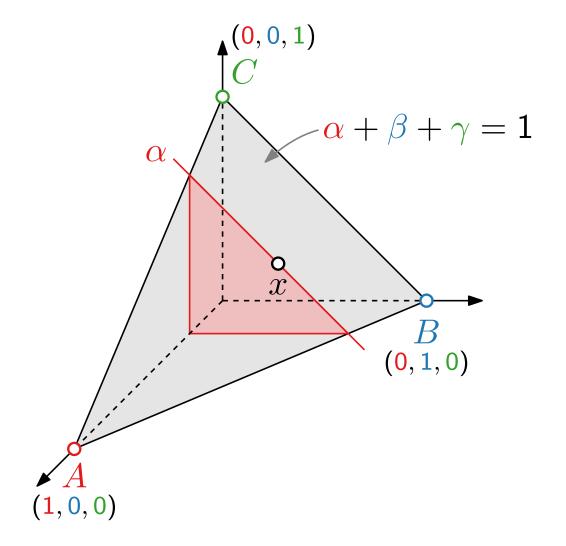
Recall: barycenter $(x_1, \ldots, x_k) = \sum_{i=1}^k x_i/k$

- $\alpha + \beta + \gamma = 1$ and



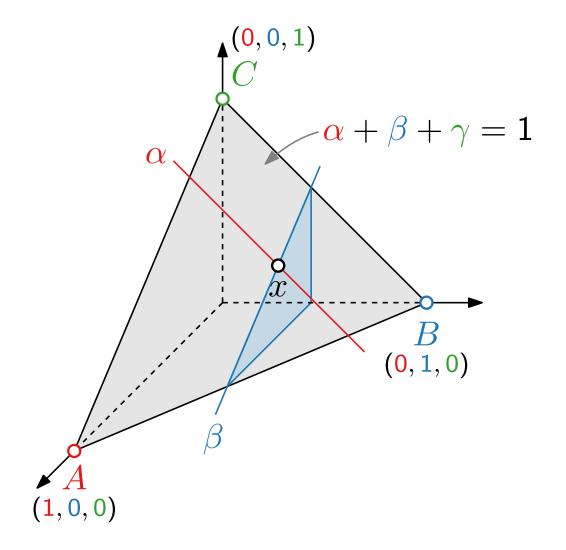
Recall: barycenter $(x_1, \ldots, x_k) = \sum_{i=1}^k x_i/k$

- $\alpha + \beta + \gamma = 1$ and



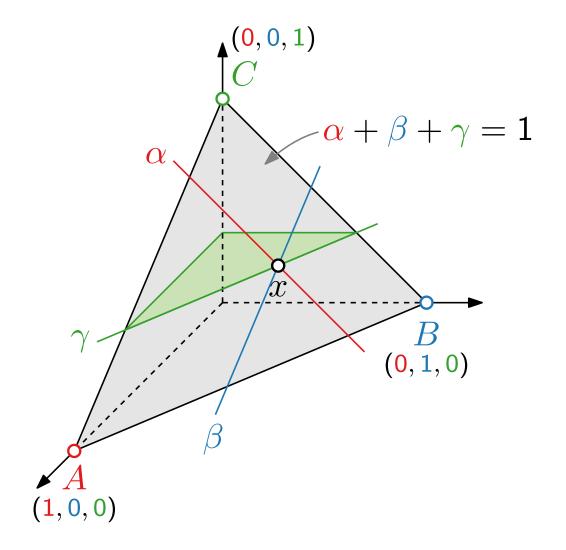
Recall: barycenter $(x_1, \ldots, x_k) = \sum_{i=1}^k x_i/k$

- $\alpha + \beta + \gamma = 1$ and



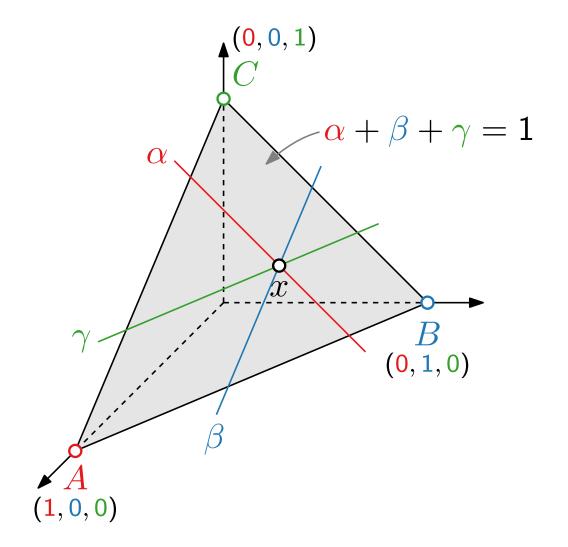
Recall: barycenter $(x_1, \ldots, x_k) = \sum_{i=1}^k x_i/k$

- $\alpha + \beta + \gamma = 1$ and



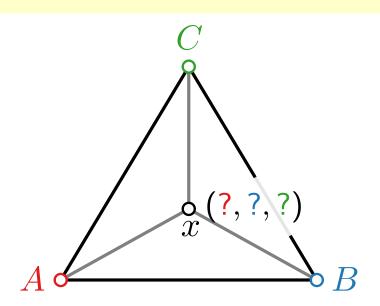
Recall: barycenter $(x_1, \ldots, x_k) = \sum_{i=1}^k x_i/k$

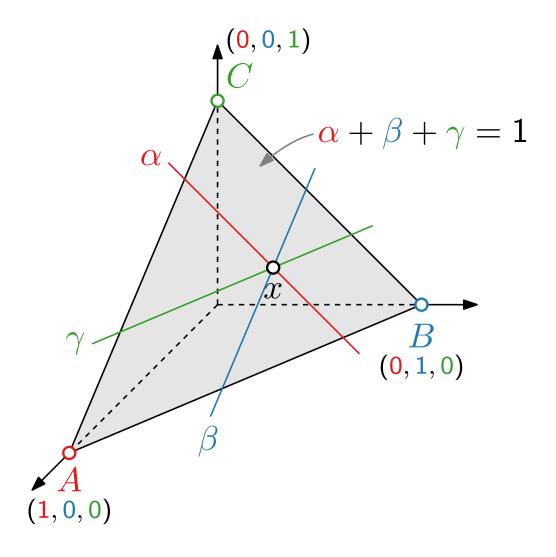
- $\alpha + \beta + \gamma = 1$ and



Recall: barycenter $(x_1, \ldots, x_k) = \sum_{i=1}^k x_i/k$

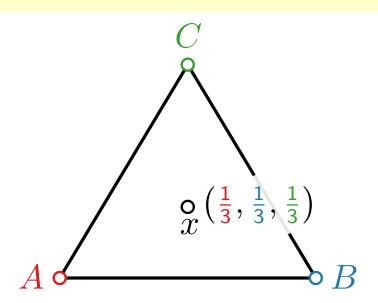
- $\alpha + \beta + \gamma = 1$ and

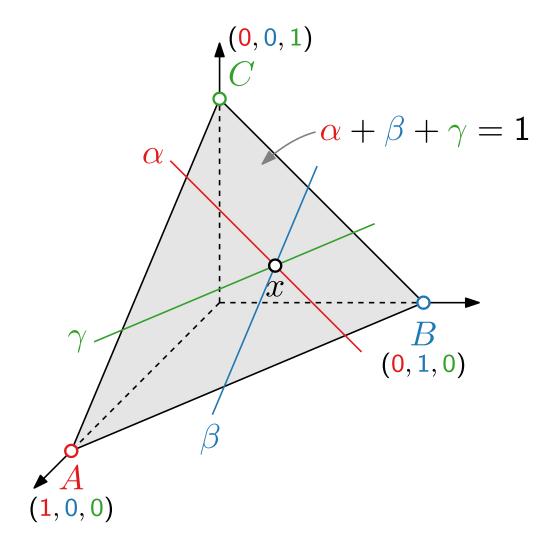




Recall: barycenter $(x_1, \ldots, x_k) = \sum_{i=1}^k x_i/k$

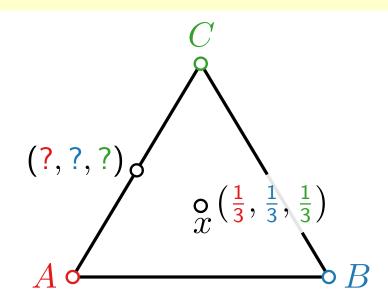
- $\alpha + \beta + \gamma = 1$ and

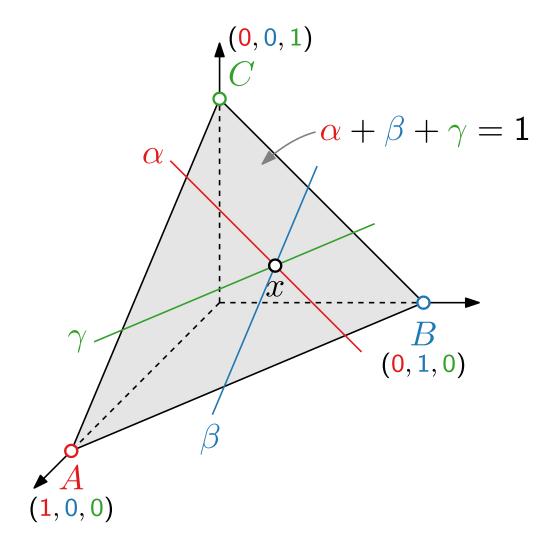




Recall: barycenter $(x_1, \ldots, x_k) = \sum_{i=1}^k x_i/k$

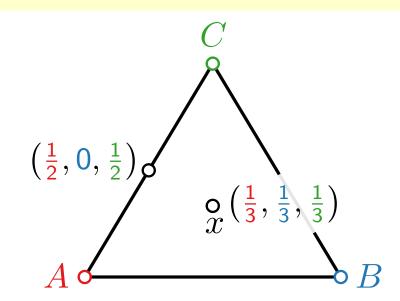
- $\alpha + \beta + \gamma = 1$ and
- $x = \alpha A + \beta B + \gamma C$.

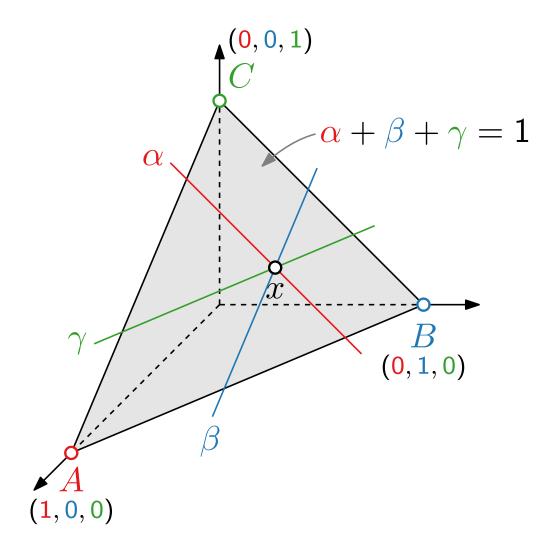




Recall: barycenter $(x_1, \ldots, x_k) = \sum_{i=1}^k x_i/k$

- $\alpha + \beta + \gamma = 1$ and
- $x = \alpha A + \beta B + \gamma C$.





A barycentric representation of a graph G = (V, E) is an assignment of barycentric coordinates to the vertices of G:

$$f \colon V \to \mathbb{R}^3_{\geq 0}, v \mapsto (v_1, v_2, v_3)$$

with the following properties:

A barycentric representation of a graph G = (V, E) is an assignment of barycentric coordinates to the vertices of G:

$$f \colon V \to \mathbb{R}^3_{\geq 0}, v \mapsto (v_1, v_2, v_3)$$

with the following properties:

(B1)
$$v_1 + v_2 + v_3 = 1$$
 for all $v \in V$,

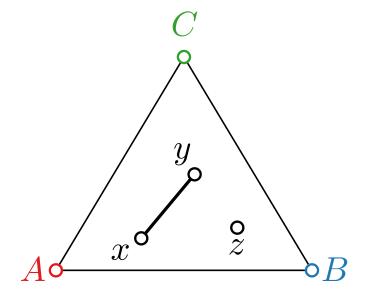
A barycentric representation of a graph G = (V, E) is an assignment of barycentric coordinates to the vertices of G:

$$f \colon V \to \mathbb{R}^3_{\geq 0}, v \mapsto (v_1, v_2, v_3)$$

with the following properties:

(B1)
$$v_1 + v_2 + v_3 = 1$$
 for all $v \in V$,

(B2) for each $\{x,y\} \in E$ and each $z \in V \setminus \{x,y\}$

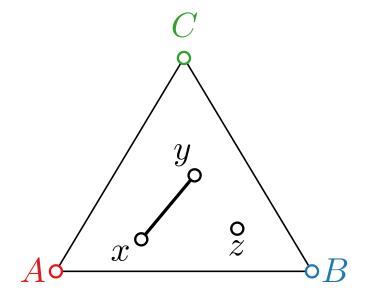


A barycentric representation of a graph G = (V, E) is an assignment of barycentric coordinates to the vertices of G:

$$f \colon V \to \mathbb{R}^3_{\geq 0}, v \mapsto (v_1, v_2, v_3)$$

with the following properties:

(B1)
$$v_1 + v_2 + v_3 = 1$$
 for all $v \in V$,

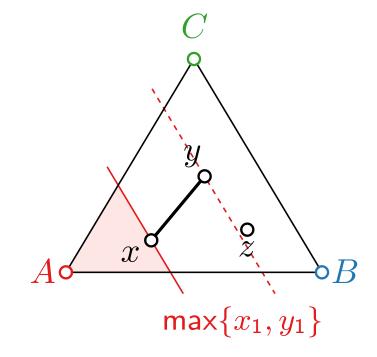


A barycentric representation of a graph G = (V, E) is an assignment of barycentric coordinates to the vertices of G:

$$f \colon V \to \mathbb{R}^3_{\geq 0}, v \mapsto (v_1, v_2, v_3)$$

with the following properties:

(B1)
$$v_1 + v_2 + v_3 = 1$$
 for all $v \in V$,

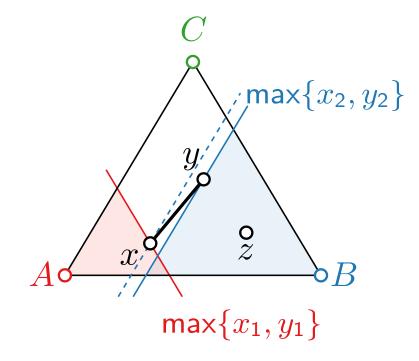


A barycentric representation of a graph G = (V, E) is an assignment of barycentric coordinates to the vertices of G:

$$f \colon V \to \mathbb{R}^3_{\geq 0}, v \mapsto (v_1, v_2, v_3)$$

with the following properties:

(B1)
$$v_1 + v_2 + v_3 = 1$$
 for all $v \in V$,

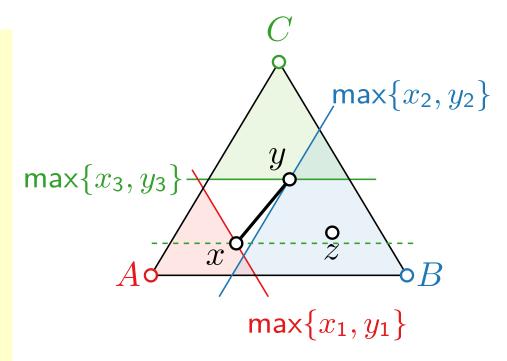


A barycentric representation of a graph G = (V, E) is an assignment of barycentric coordinates to the vertices of G:

$$f \colon V \to \mathbb{R}^3_{\geq 0}, v \mapsto (v_1, v_2, v_3)$$

with the following properties:

(B1)
$$v_1 + v_2 + v_3 = 1$$
 for all $v \in V$,

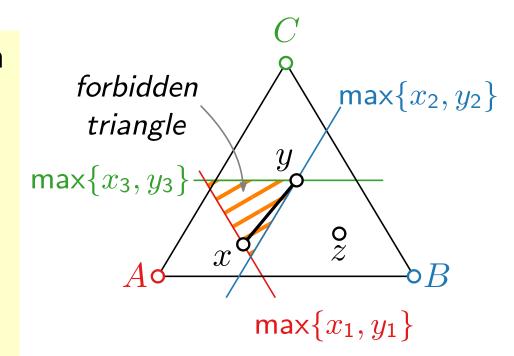


A barycentric representation of a graph G = (V, E) is an assignment of barycentric coordinates to the vertices of G:

$$f \colon V \to \mathbb{R}^3_{\geq 0}, v \mapsto (v_1, v_2, v_3)$$

with the following properties:

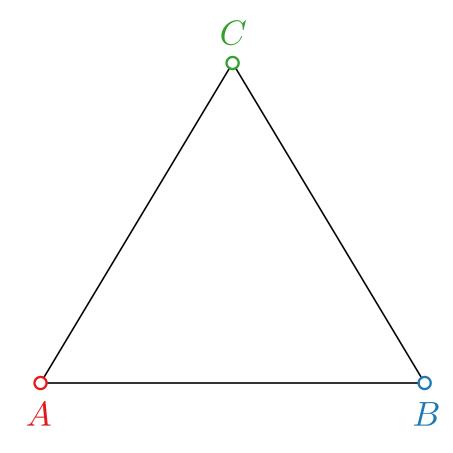
(B1)
$$v_1 + v_2 + v_3 = 1$$
 for all $v \in V$,



Lemma.

Let $f: v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph G, and let $A, B, C \in \mathbb{R}^2$ be in general position.

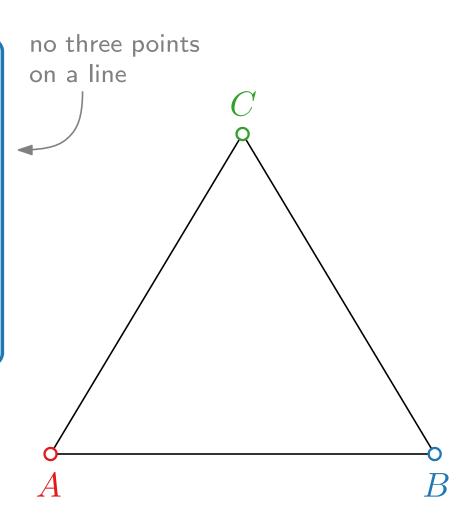
ABC.



Lemma.

Let $f: v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph G, and let $A, B, C \in \mathbb{R}^2$ be in general position.

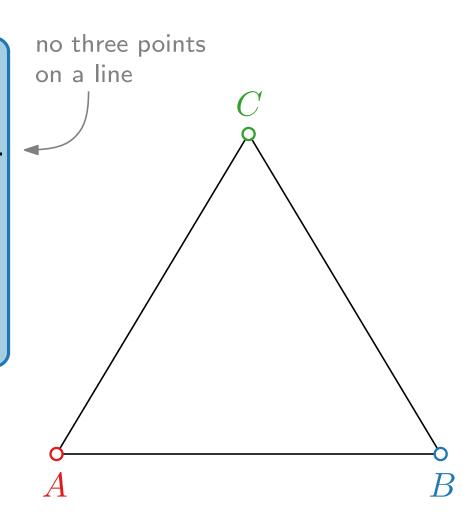
ABC.



Lemma.

Let $f: v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph G, and let $A, B, C \in \mathbb{R}^2$ be in general position. Then the mapping

$$\phi \colon v \in V \mapsto v_1 A + v_2 B + v_3 C$$



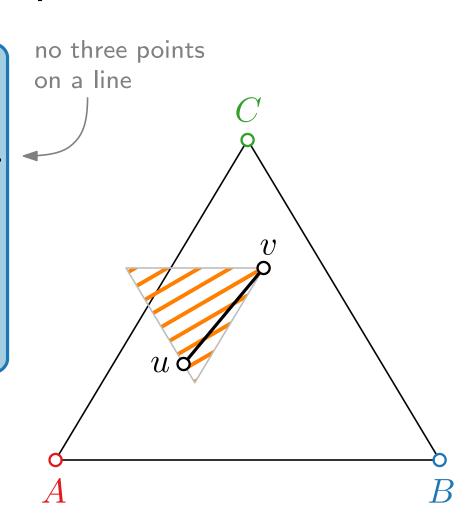
Lemma.

Let $f: v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph G, and let $A, B, C \in \mathbb{R}^2$ be in general position. Then the mapping

$$\phi \colon v \in V \mapsto v_1 A + v_2 B + v_3 C$$

yields a planar straight-line drawing of G inside $\triangle ABC$.

■ No vertex x can lie on an edge $\{u, v\}$.



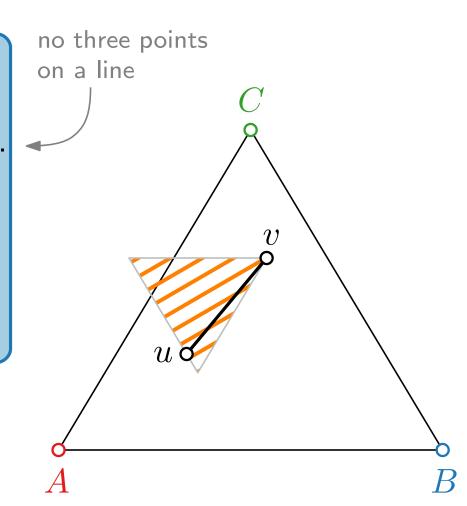
Lemma.

Let $f: v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph G, and let $A, B, C \in \mathbb{R}^2$ be in general position. Then the mapping

$$\phi \colon v \in V \mapsto v_1 A + v_2 B + v_3 C$$

yields a planar straight-line drawing of G inside $\triangle ABC$.

No vertex x can lie on an edge $\{u, v\}$. (clear by definition)

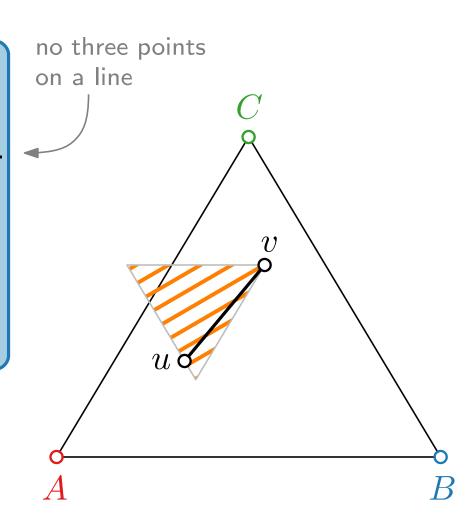


Lemma.

Let $f: v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph G, and let $A, B, C \in \mathbb{R}^2$ be in general position. Then the mapping

$$\phi \colon v \in V \mapsto v_1 A + v_2 B + v_3 C$$

- No vertex x can lie on an edge $\{u, v\}$. (clear by definition)
- No pair of edges $\{u, v\}$ and $\{u', v'\}$ crosses:

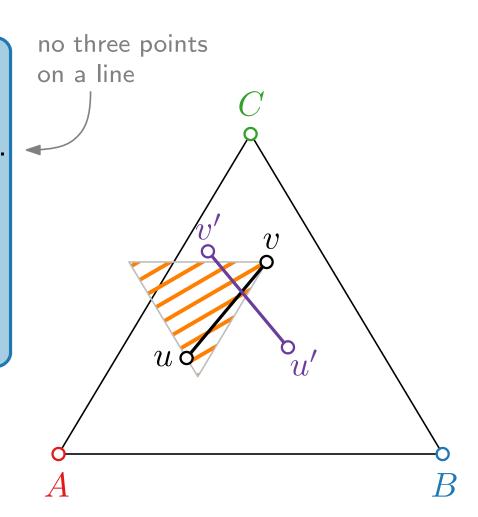


Lemma.

Let $f: v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph G, and let $A, B, C \in \mathbb{R}^2$ be in general position. Then the mapping

$$\phi \colon v \in V \mapsto v_1 A + v_2 B + v_3 C$$

- No vertex x can lie on an edge $\{u, v\}$. (clear by definition)
- No pair of edges $\{u, v\}$ and $\{u', v'\}$ crosses:

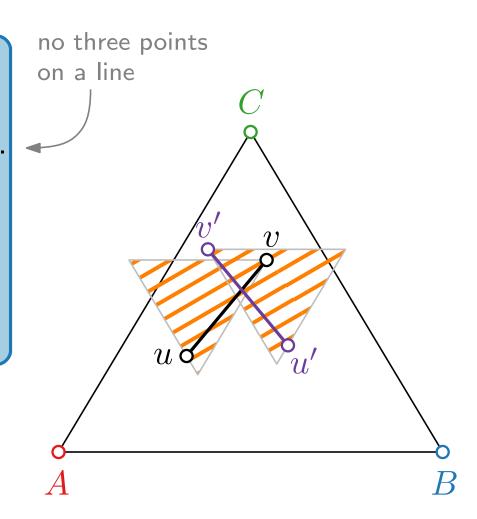


Lemma.

Let $f: v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph G, and let $A, B, C \in \mathbb{R}^2$ be in general position. Then the mapping

$$\phi \colon v \in V \mapsto v_1 A + v_2 B + v_3 C$$

- No vertex x can lie on an edge $\{u, v\}$. (clear by definition)
- No pair of edges $\{u, v\}$ and $\{u', v'\}$ crosses:



Lemma.

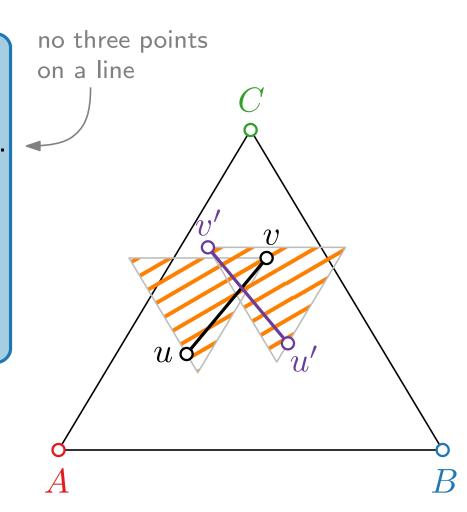
Let $f: v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph G, and let $A, B, C \in \mathbb{R}^2$ be in general position. Then the mapping

$$\phi \colon v \in V \mapsto v_1 A + v_2 B + v_3 C$$

yields a planar straight-line drawing of G inside $\triangle ABC$.

- No vertex x can lie on an edge $\{u,v\}$. (clear by definition)
- No pair of edges $\{u, v\}$ and $\{u', v'\}$ crosses:

$$u'_{i} > u_{i}, v_{i} \quad v'_{j} > u_{j}, v_{j} \quad u_{k} > u'_{k}, v'_{k} \quad v_{l} > u'_{l}, v'_{l}$$



Lemma.

Let $f: v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph G, and let $A, B, C \in \mathbb{R}^2$ be in general position. Then the mapping

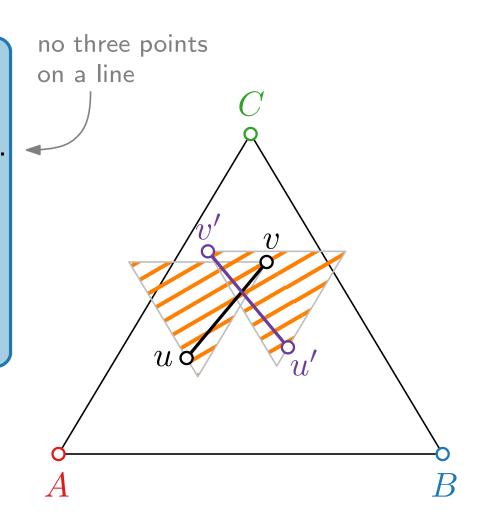
$$\phi \colon v \in V \mapsto v_1 A + v_2 B + v_3 C$$

yields a planar straight-line drawing of G inside $\triangle ABC$.

- No vertex x can lie on an edge $\{u,v\}$. (clear by definition)
- No pair of edges $\{u, v\}$ and $\{u', v'\}$ crosses:

$$u'_{i} > u_{i}, v_{i} \quad v'_{j} > u_{j}, v_{j} \quad u_{k} > u'_{k}, v'_{k} \quad v_{l} > u'_{l}, v'_{l}$$

$$\Rightarrow \{i, j\} \cap \{k, l\} = \emptyset$$



Lemma.

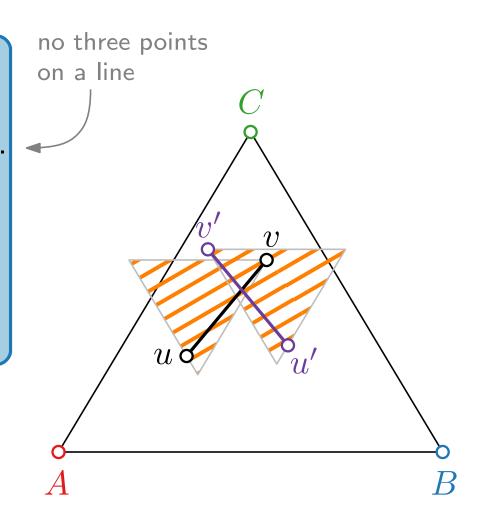
Let $f: v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph G, and let $A, B, C \in \mathbb{R}^2$ be in general position. Then the mapping

$$\phi \colon v \in V \mapsto v_1 A + v_2 B + v_3 C$$

yields a planar straight-line drawing of G inside $\triangle ABC$.

- No vertex x can lie on an edge $\{u,v\}$. (clear by definition)
- No pair of edges $\{u, v\}$ and $\{u', v'\}$ crosses:

$$\begin{aligned} u_i' > u_i, v_i & v_j' > u_j, v_j & u_k > u_k', v_k' & v_l > u_l', v_l' \\ \Rightarrow \{i, j\} \cap \{k, l\} = \emptyset \\ \text{w.l.o.g. } i = j = 2 \Rightarrow u_2', v_2' > u_2, v_2 \end{aligned}$$



Lemma.

Let $f: v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph G, and let $A, B, C \in \mathbb{R}^2$ be in general position. Then the mapping

$$\phi \colon v \in V \mapsto v_1 A + v_2 B + v_3 C$$

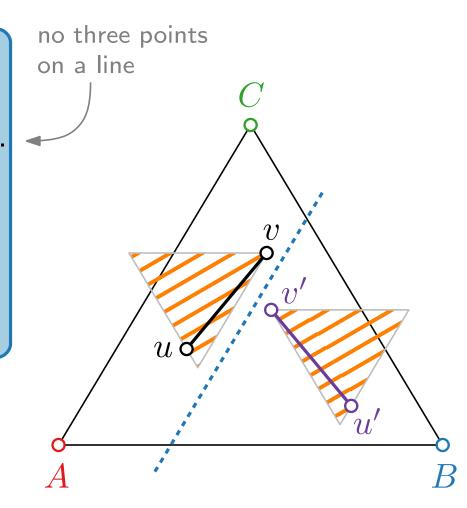
yields a planar straight-line drawing of G inside $\triangle ABC$.

- No vertex x can lie on an edge $\{u,v\}$. (clear by definition)
- No pair of edges $\{u, v\}$ and $\{u', v'\}$ crosses:

$$u'_{i} > u_{i}, v_{i} \quad v'_{j} > u_{j}, v_{j} \quad u_{k} > u'_{k}, v'_{k} \quad v_{l} > u'_{l}, v'_{l}$$

$$\Rightarrow \{i, j\} \cap \{k, l\} = \emptyset$$

w.l.o.g. $i = j = 2 \Rightarrow u'_2, v'_2 > u_2, v_2 \Rightarrow$ separated by a straight line



Lemma.

Let $f: v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph G, and let $A, B, C \in \mathbb{R}^2$ be in general position. Then the mapping

$$\phi \colon v \in V \mapsto v_1 A + v_2 B + v_3 C$$

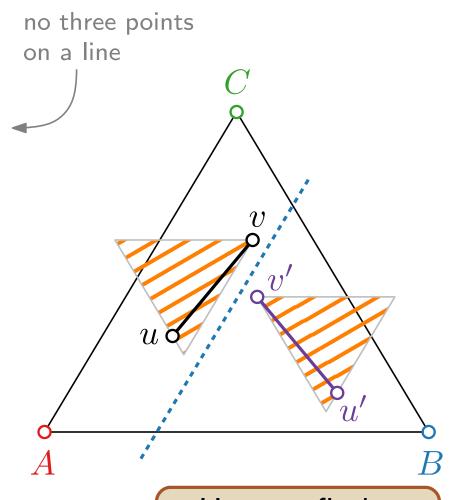
yields a planar straight-line drawing of G inside $\triangle ABC$.

- No vertex x can lie on an edge $\{u,v\}$. (clear by definition)
- No pair of edges $\{u, v\}$ and $\{u', v'\}$ crosses:

$$u'_{i} > u_{i}, v_{i} \quad v'_{j} > u_{j}, v_{j} \quad u_{k} > u'_{k}, v'_{k} \quad v_{l} > u'_{l}, v'_{l}$$

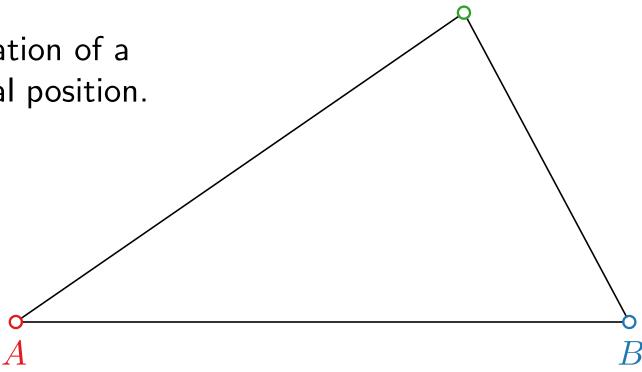
$$\Rightarrow \{i, j\} \cap \{k, l\} = \emptyset$$

w.l.o.g. $i=j=2 \Rightarrow u_2', v_2'>u_2, v_2 \Rightarrow$ separated by a straight line

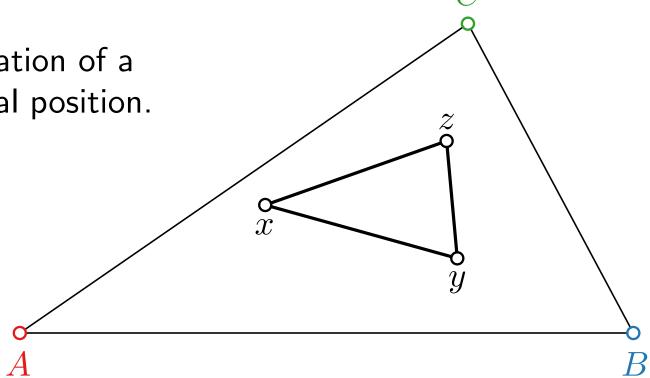


How to find a barycentric representation?

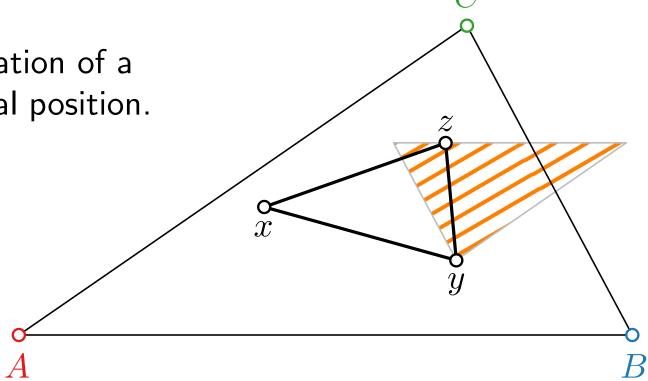
Let $\phi \colon v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph G, and let $A, B, C \in \mathbb{R}^2$ be in general position.



Let $\phi: v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph G, and let $A, B, C \in \mathbb{R}^2$ be in general position.



Let $\phi \colon v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph G, and let $A, B, C \in \mathbb{R}^2$ be in general position.

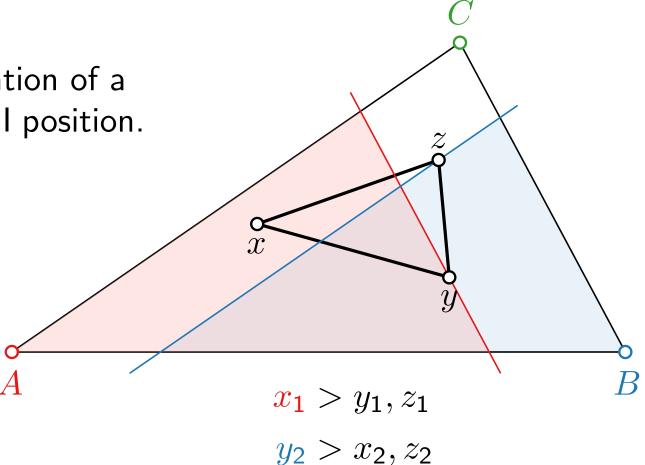


 $x_1 > y_1, z_1$

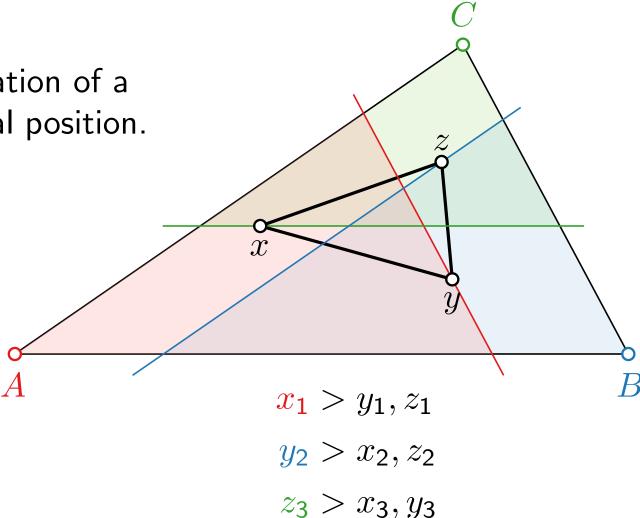
Schnyder Labeling

Let $\phi\colon v\mapsto (v_1,v_2,v_3)$ be a barycentric representation of a planar graph G, and let $A,B,C\in\mathbb{R}^2$ be in general position.

Let $\phi: v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph G, and let $A, B, C \in \mathbb{R}^2$ be in general position.

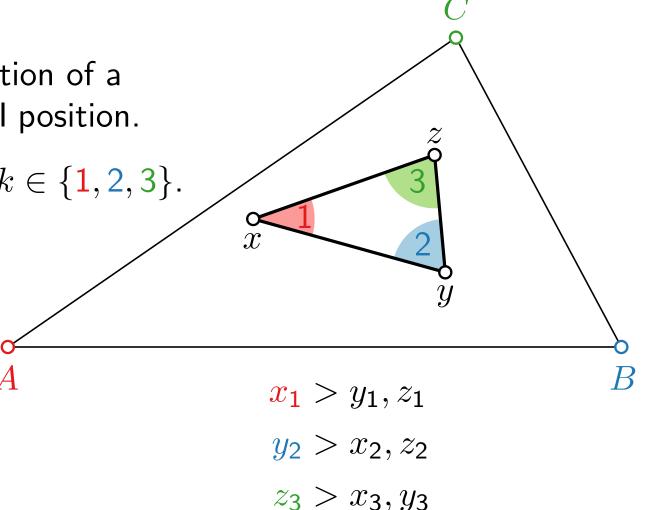


Let $\phi: v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph G, and let $A, B, C \in \mathbb{R}^2$ be in general position.



Let $\phi: v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph G, and let $A, B, C \in \mathbb{R}^2$ be in general position.

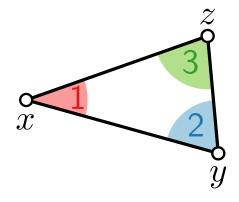
We can label each angle in $\triangle xyz$ uniquely with $k \in \{1, 2, 3\}$.



Let $\phi \colon v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph G, and let $A, B, C \in \mathbb{R}^2$ be in general position.

We can label each angle in $\triangle xyz$ uniquely with $k \in \{1, 2, 3\}$.

A **Schnyder labeling** of a plane triangulation G is a labeling of all internal angles with labels 1, 2 and 3 such that:

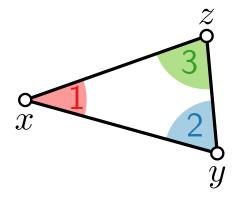


Let $\phi \colon v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph G, and let $A, B, C \in \mathbb{R}^2$ be in general position.

We can label each angle in $\triangle xyz$ uniquely with $k \in \{1, 2, 3\}$.

A **Schnyder labeling** of a plane triangulation G is a labeling of all internal angles with labels 1, 2 and 3 such that:

Faces: The three angles of an internal face are labeled 1, 2 and 3 in counterclockwise (ccw) order.

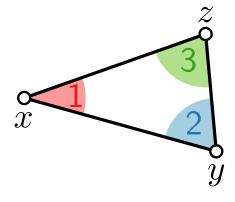


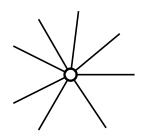
Let $\phi \colon v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph G, and let $A, B, C \in \mathbb{R}^2$ be in general position.

We can label each angle in $\triangle xyz$ uniquely with $k \in \{1, 2, 3\}$.

A **Schnyder labeling** of a plane triangulation G is a labeling of all internal angles with labels 1, 2 and 3 such that:

Faces: The three angles of an internal face are labeled 1, 2 and 3 in counterclockwise (ccw) order.





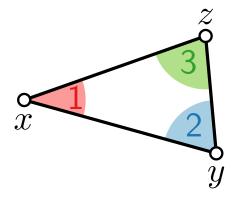
Let $\phi \colon v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph G, and let $A, B, C \in \mathbb{R}^2$ be in general position.

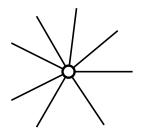
We can label each angle in $\triangle xyz$ uniquely with $k \in \{1, 2, 3\}$.

A **Schnyder labeling** of a plane triangulation G is a labeling of all internal angles with labels $\mathbf{1}$, $\mathbf{2}$ and $\mathbf{3}$ such that:

Faces: The three angles of an internal face are labeled 1, 2 and 3 in counterclockwise (ccw) order.

Vertices: The ccw order of labels around each vertex consists of





Let $\phi \colon v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph G, and let $A, B, C \in \mathbb{R}^2$ be in general position.

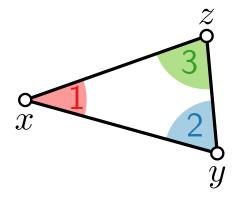
We can label each angle in $\triangle xyz$ uniquely with $k \in \{1, 2, 3\}$.

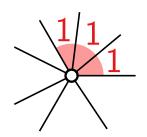
A **Schnyder labeling** of a plane triangulation G is a labeling of all internal angles with labels 1, 2 and 3 such that:

Faces: The three angles of an internal face are labeled 1, 2 and 3 in counterclockwise (ccw) order.

Vertices: The ccw order of labels around each vertex consists of

a non-empty interval of 1s





Let $\phi \colon v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph G, and let $A, B, C \in \mathbb{R}^2$ be in general position.

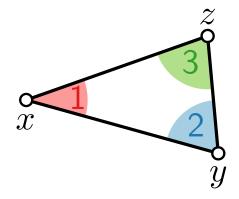
We can label each angle in $\triangle xyz$ uniquely with $k \in \{1, 2, 3\}$.

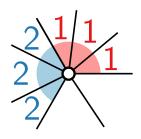
A **Schnyder labeling** of a plane triangulation G is a labeling of all internal angles with labels $\mathbf{1}$, $\mathbf{2}$ and $\mathbf{3}$ such that:

Faces: The three angles of an internal face are labeled 1, 2 and 3 in counterclockwise (ccw) order.

Vertices: The ccw order of labels around each vertex consists of

- a non-empty interval of 1s
- followed by a non-empty interval of 2s





Let $\phi \colon v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph G, and let $A, B, C \in \mathbb{R}^2$ be in general position.

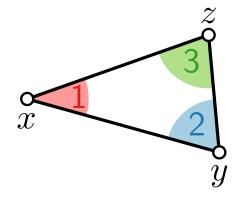
We can label each angle in $\triangle xyz$ uniquely with $k \in \{1, 2, 3\}$.

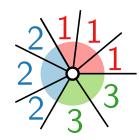
A **Schnyder labeling** of a plane triangulation G is a labeling of all internal angles with labels $\mathbf{1}$, $\mathbf{2}$ and $\mathbf{3}$ such that:

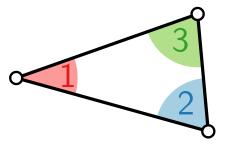
Faces: The three angles of an internal face are labeled 1, 2 and 3 in counterclockwise (ccw) order.

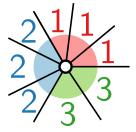
Vertices: The ccw order of labels around each vertex consists of

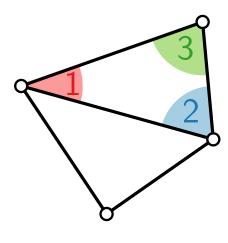
- a non-empty interval of 1s
- followed by a non-empty interval of 2s
- followed by a non-empty interval of 3s.

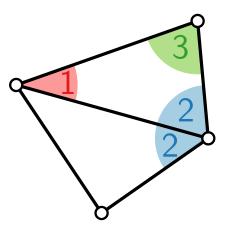


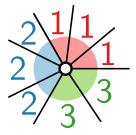


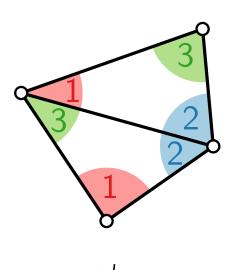


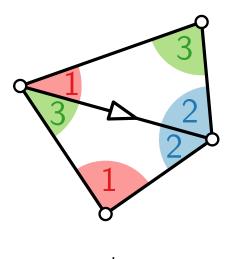


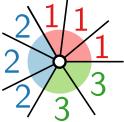


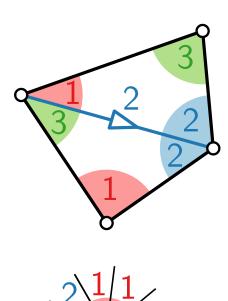




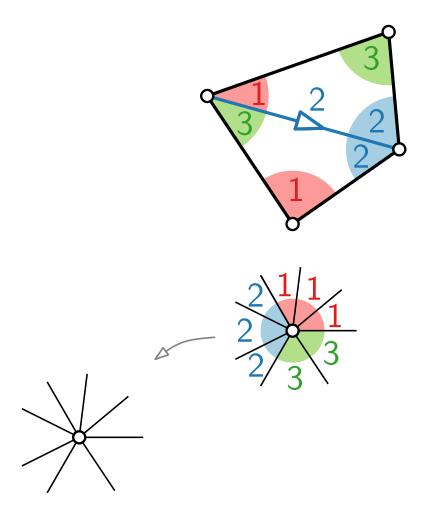








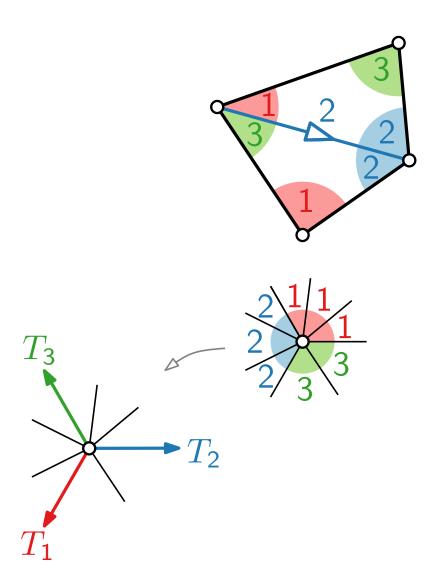
A Schnyder labeling induces an edge labeling.



A Schnyder labeling induces an edge labeling.

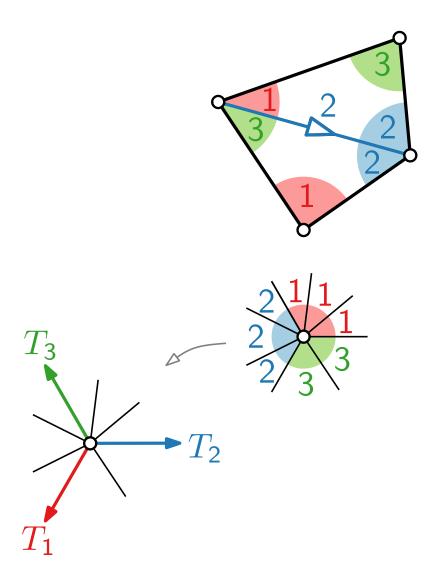
A **Schnyder wood** (or **realizer**) of a plane triangulation G = (V, E) is a partition of the inner edges of E into three sets of oriented edges T_1 , T_2 , T_3 such that, for each inner vertex $v \in V$, it holds that

■ v has one outgoing edge in each of T_1 , T_2 , and T_3 .



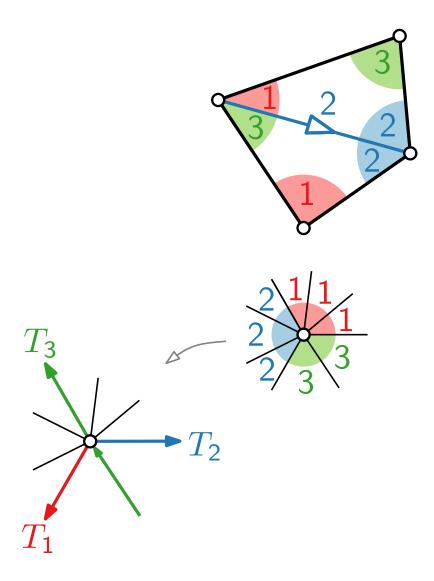
A Schnyder labeling induces an edge labeling.

- v has one outgoing edge in each of T_1 , T_2 , and T_3 .
- lacktriangle The ccw order of edges around v is:



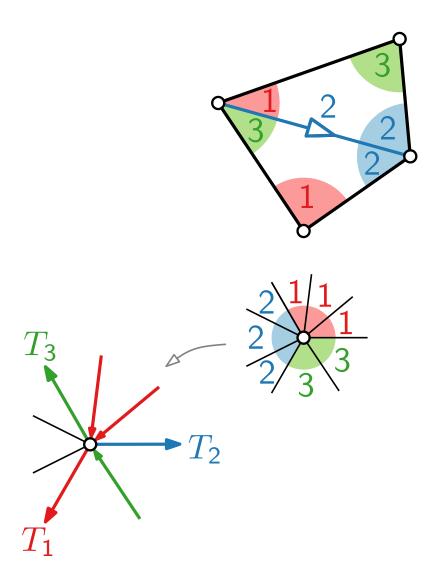
A Schnyder labeling induces an edge labeling.

- v has one outgoing edge in each of T_1 , T_2 , and T_3 .
- The ccw order of edges around v is: leaving in T_1 , entering in T_3 ,



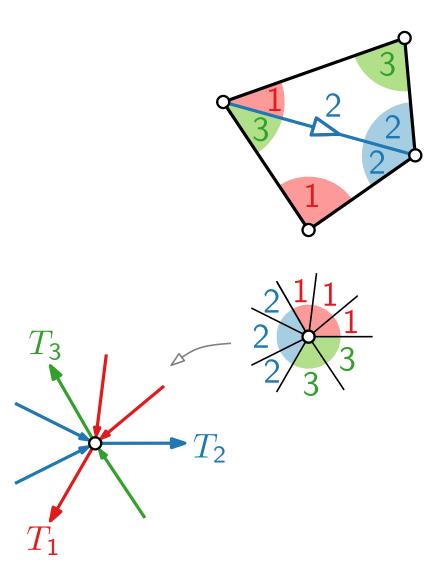
A Schnyder labeling induces an edge labeling.

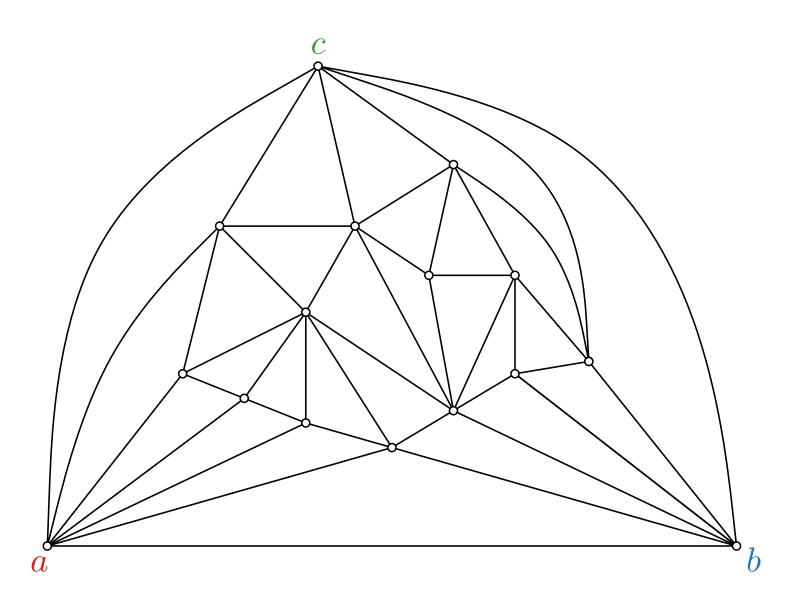
- v has one outgoing edge in each of T_1 , T_2 , and T_3 .
- The ccw order of edges around v is: leaving in T_1 , entering in T_3 , leaving in T_2 , entering in T_1 ,

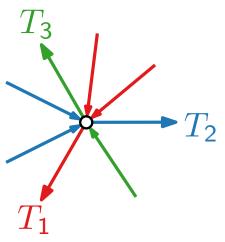


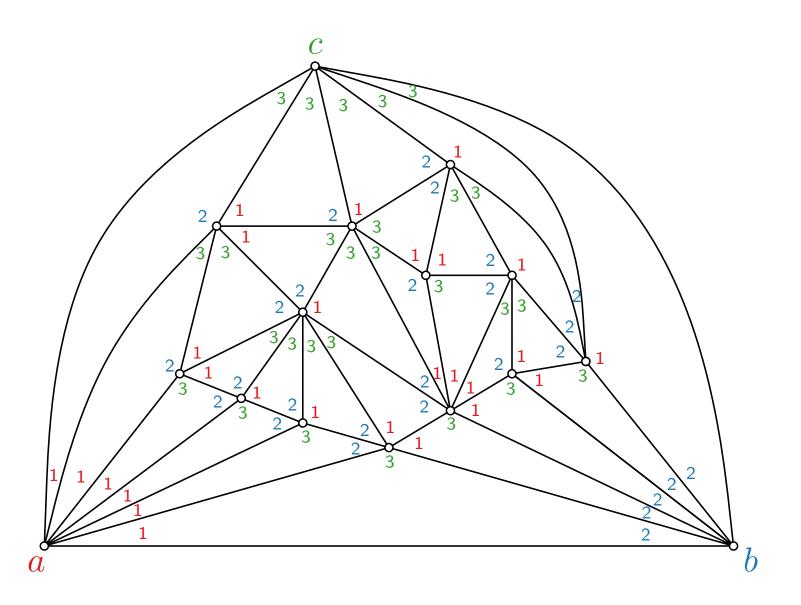
A Schnyder labeling induces an edge labeling.

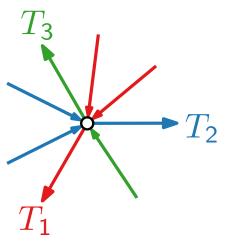
- v has one outgoing edge in each of T_1 , T_2 , and T_3 .
- The ccw order of edges around v is: leaving in T_1 , entering in T_3 , leaving in T_2 , entering in T_1 , leaving in T_3 , entering in T_2 .

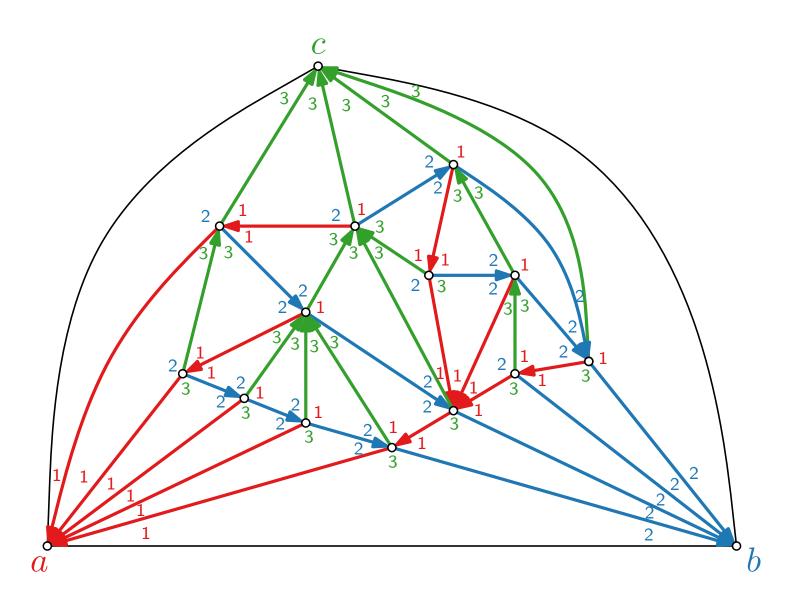


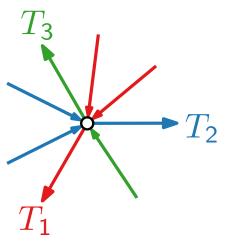


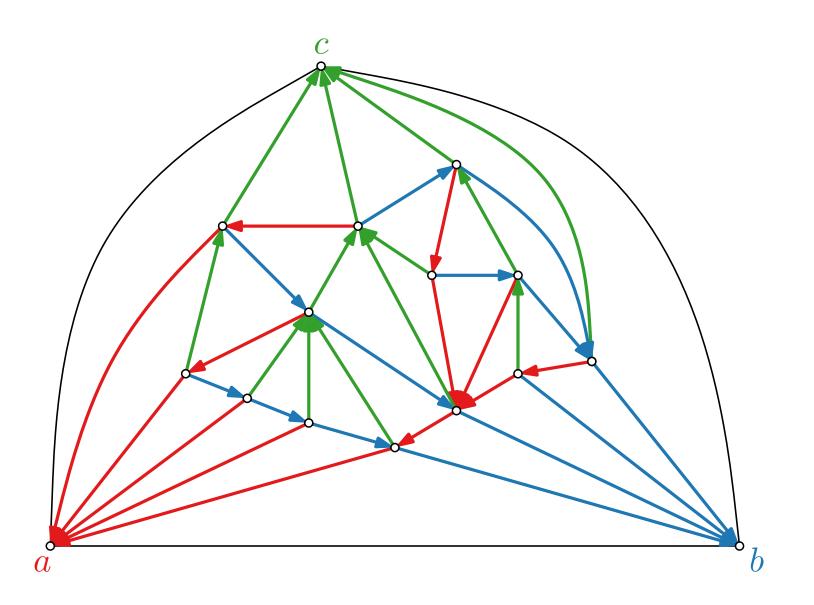


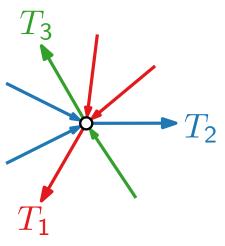


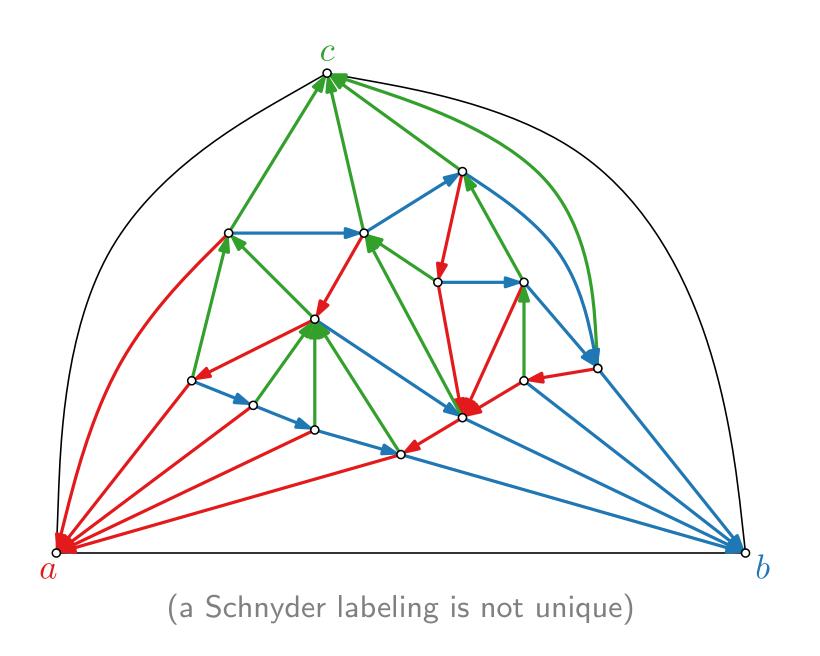


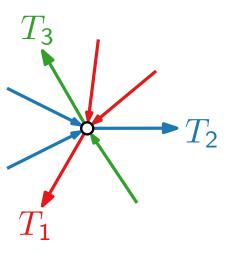




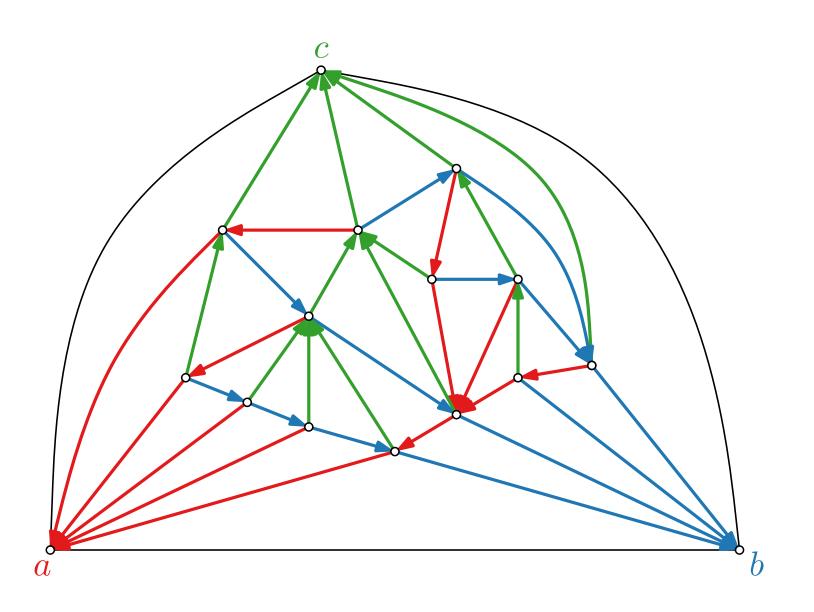


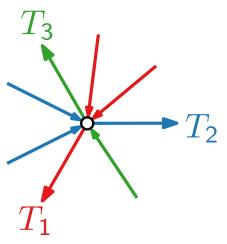




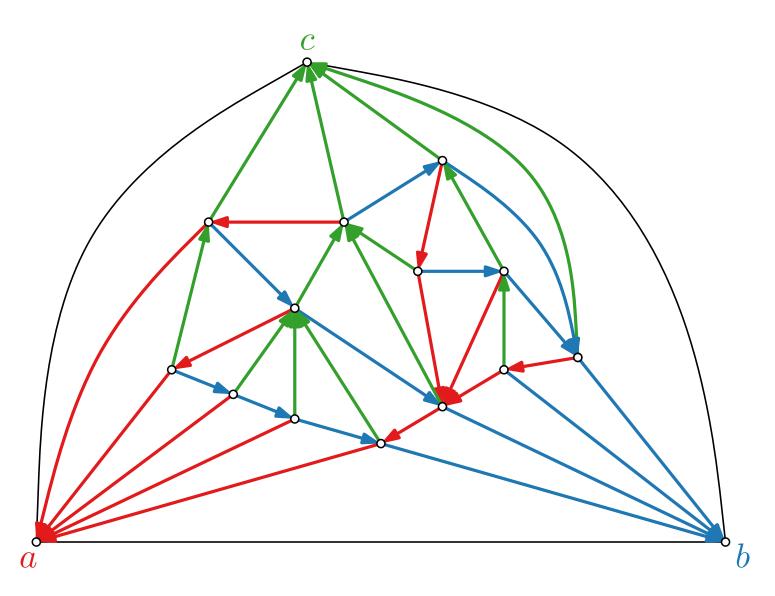


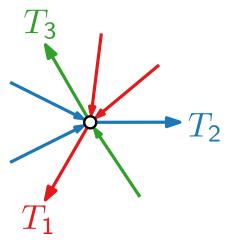
Schnyder Wood – Example and Properties





Schnyder Wood – Example and Properties

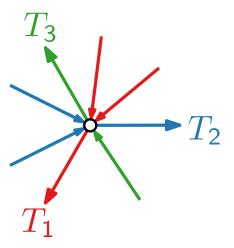




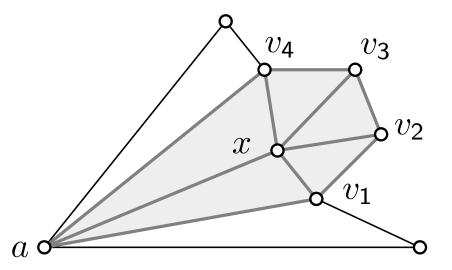
All inner edges incident to a, b, and
 c are incoming in the same color.

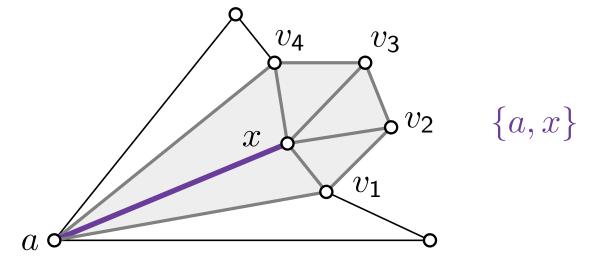
Schnyder Wood – Example and Properties



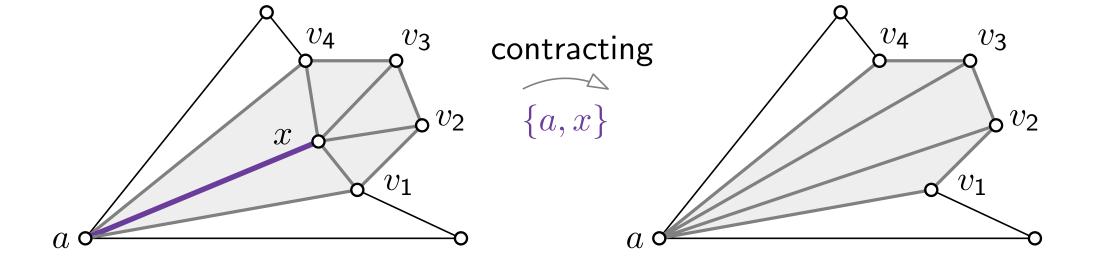


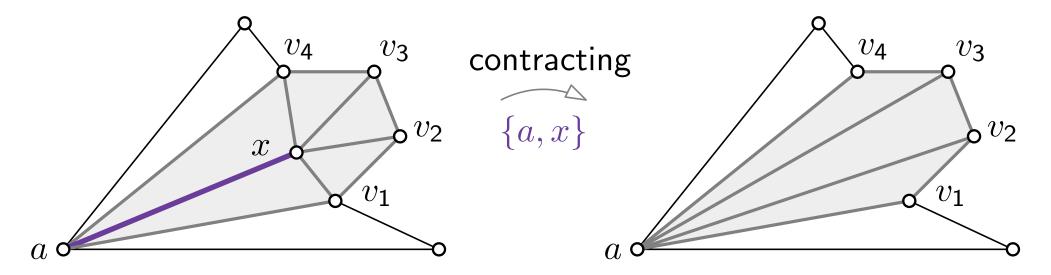
- All inner edges incident to a, b, and c are incoming in the same color.
- T_1 , T_2 , and T_3 are trees. Each spans all inner vertices and one outer vertex (its root).









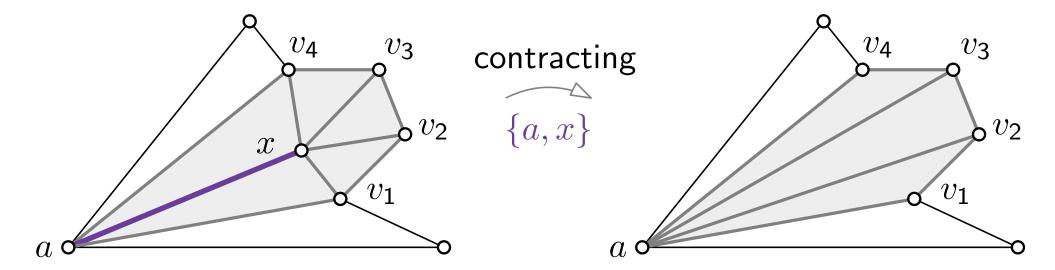


 \dots requires that a and x have exactly two common neighbors.

Lemma.

[Kampen 1976]

Let G be a plane triangulation with vertices a, b, c on the outer face. Then there exists a **contractible edge** $\{a,x\}$ in G with $x \notin \{b,c\}$.



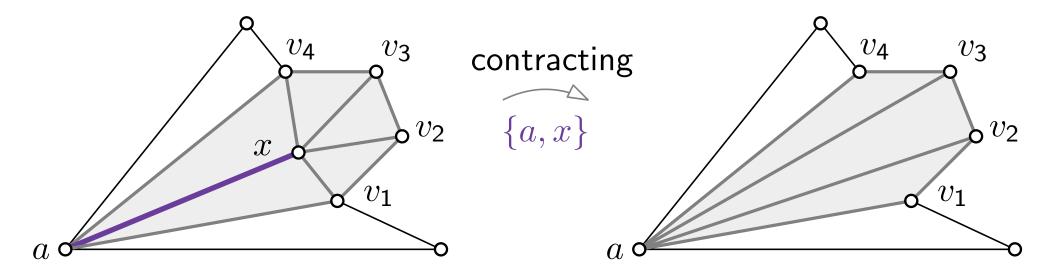
Lemma.

[Kampen 1976]

Let G be a plane triangulation with vertices a, b, c on the outer face. Then there exists a **contractible edge** $\{a,x\}$ in G with $x \notin \{b,c\}$.

Theorem.

Every plane triangulation has a Schnyder labeling and a Schnyder wood.



Lemma.

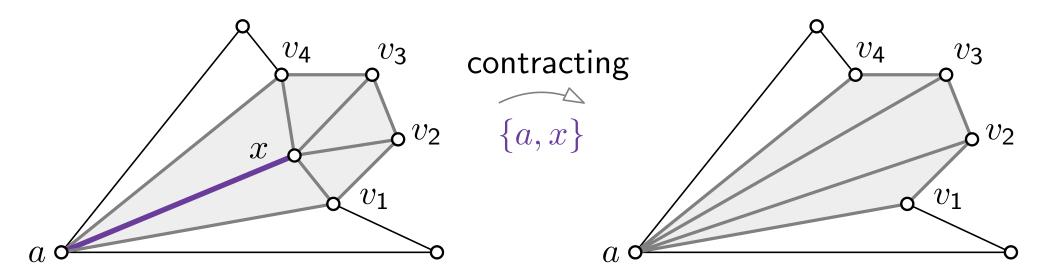
[Kampen 1976]

Let G be a plane triangulation with vertices a, b, c on the outer face. Then there exists a **contractible edge** $\{a,x\}$ in G with $x \notin \{b,c\}$.

Theorem.

Every plane triangulation has a Schnyder labeling and a Schnyder wood.

Proof by induction on # vertices via edge contractions.



Lemma.

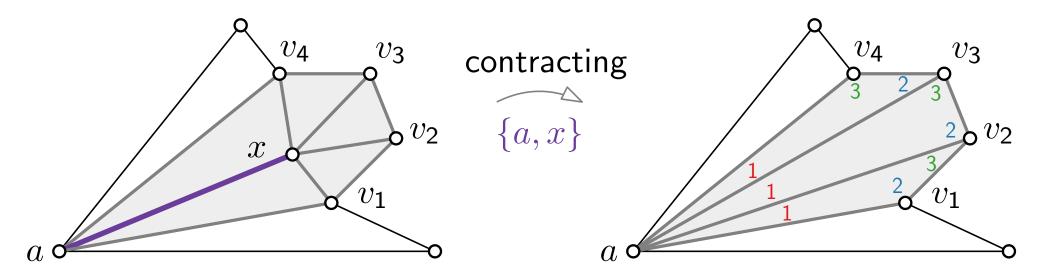
[Kampen 1976]

Let G be a plane triangulation with vertices a, b, c on the outer face. Then there exists a **contractible edge** $\{a,x\}$ in G with $x \notin \{b,c\}$.

Theorem.

Every plane triangulation has a Schnyder labeling and a Schnyder wood.

Proof by induction on # vertices via edge contractions.



Lemma.

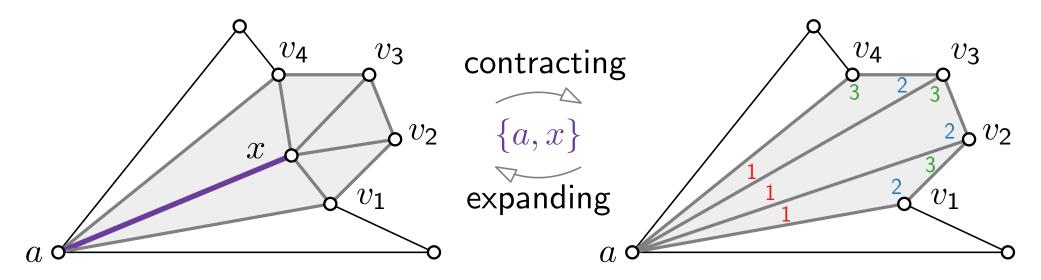
[Kampen 1976]

Let G be a plane triangulation with vertices a, b, c on the outer face. Then there exists a **contractible edge** $\{a,x\}$ in G with $x \notin \{b,c\}$.

Theorem.

Every plane triangulation has a Schnyder labeling and a Schnyder wood.

Proof by induction on # vertices via edge contractions.



Lemma.

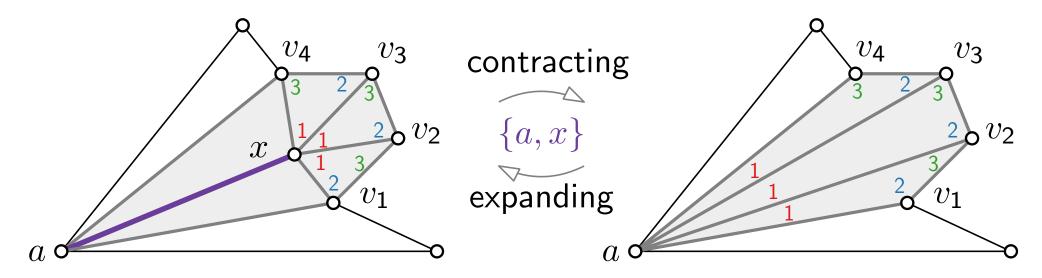
[Kampen 1976]

Let G be a plane triangulation with vertices a, b, c on the outer face. Then there exists a **contractible edge** $\{a,x\}$ in G with $x \notin \{b,c\}$.

Theorem.

Every plane triangulation has a Schnyder labeling and a Schnyder wood.

Proof by induction on # vertices via edge contractions.



Lemma.

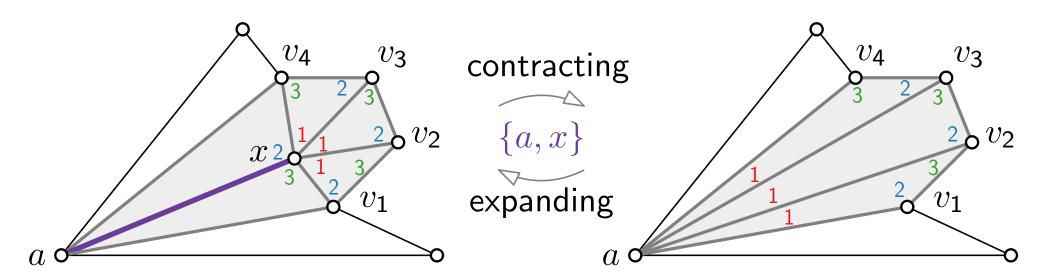
[Kampen 1976]

Let G be a plane triangulation with vertices a, b, c on the outer face. Then there exists a **contractible edge** $\{a,x\}$ in G with $x \notin \{b,c\}$.

Theorem.

Every plane triangulation has a Schnyder labeling and a Schnyder wood.

Proof by induction on # vertices via edge contractions.



Lemma.

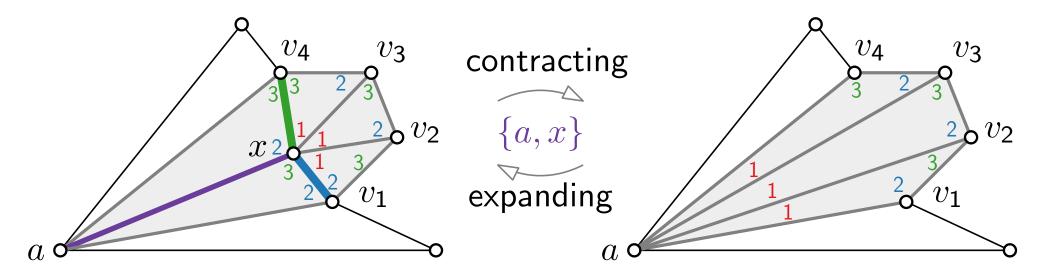
[Kampen 1976]

Let G be a plane triangulation with vertices a, b, c on the outer face. Then there exists a **contractible edge** $\{a,x\}$ in G with $x \notin \{b,c\}$.

Theorem.

Every plane triangulation has a Schnyder labeling and a Schnyder wood.

Proof by induction on # vertices via edge contractions.



Lemma.

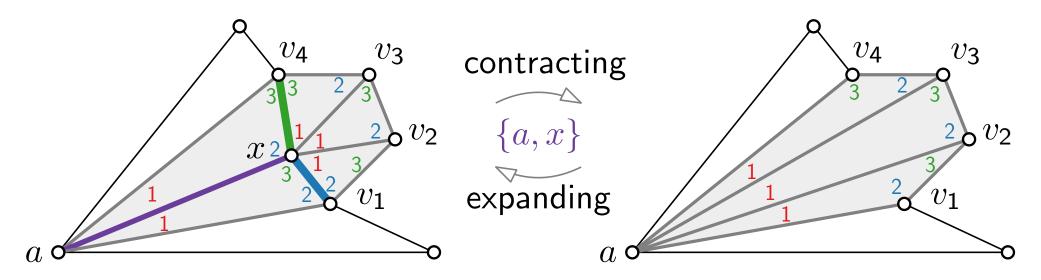
[Kampen 1976]

Let G be a plane triangulation with vertices a, b, c on the outer face. Then there exists a **contractible edge** $\{a,x\}$ in G with $x \notin \{b,c\}$.

Theorem.

Every plane triangulation has a Schnyder labeling and a Schnyder wood.

Proof by induction on # vertices via edge contractions.



Lemma.

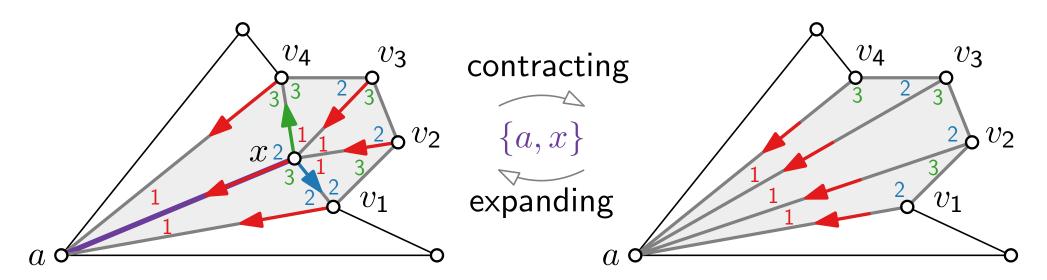
[Kampen 1976]

Let G be a plane triangulation with vertices a, b, c on the outer face. Then there exists a **contractible edge** $\{a,x\}$ in G with $x \notin \{b,c\}$.

Theorem.

Every plane triangulation has a Schnyder labeling and a Schnyder wood.

Proof by induction on # vertices via edge contractions.



Lemma.

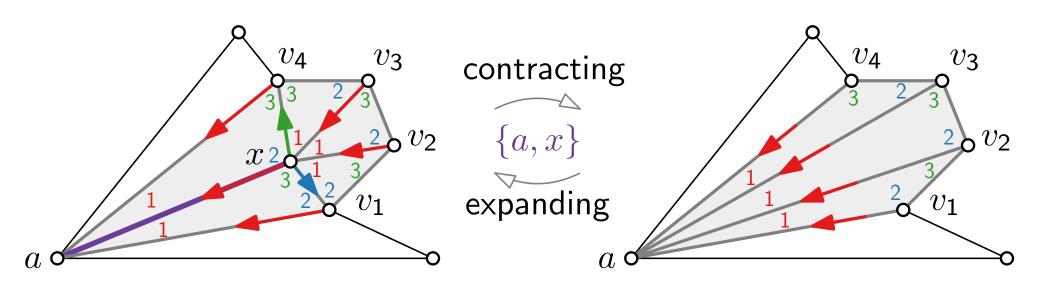
[Kampen 1976]

Let G be a plane triangulation with vertices a, b, c on the outer face. Then there exists a **contractible edge** $\{a,x\}$ in G with $x \notin \{b,c\}$.

Theorem.

Every plane triangulation has a Schnyder labeling and a Schnyder wood.

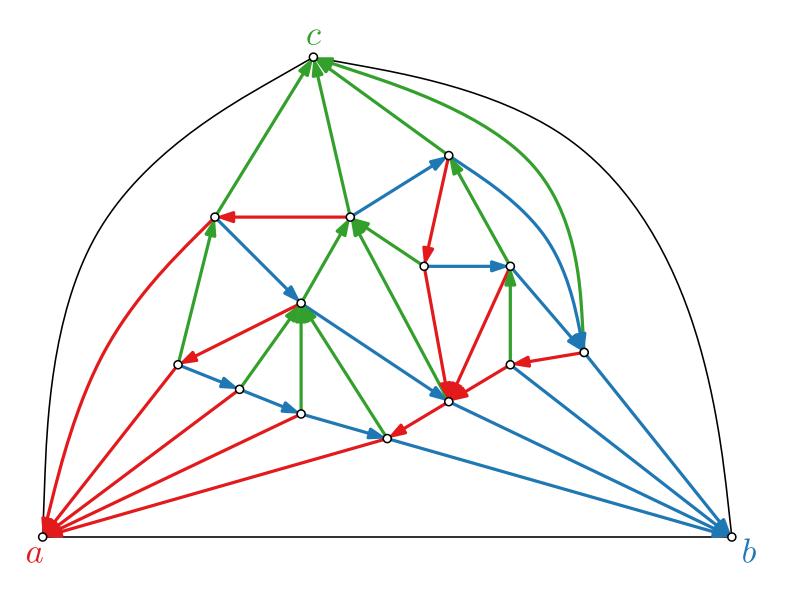
Proof by induction on # vertices via edge contractions.

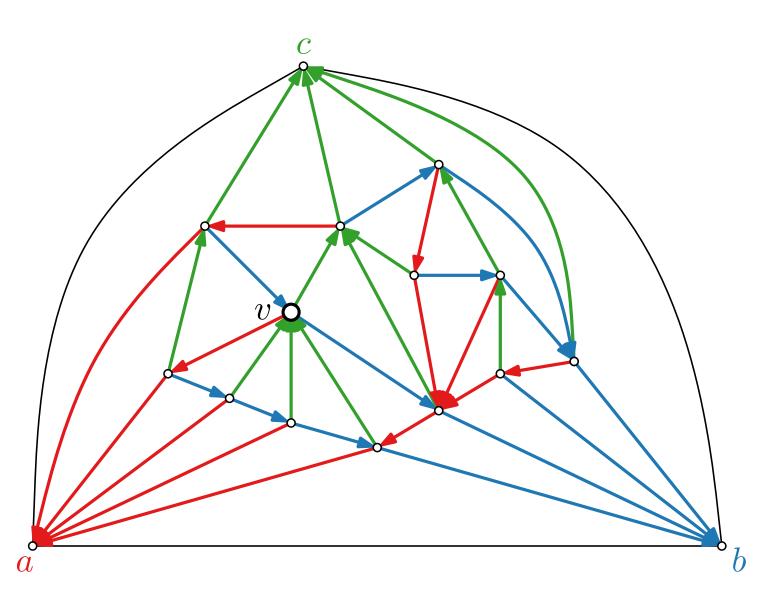


 \dots requires that a and x have exactly two common neighbors.

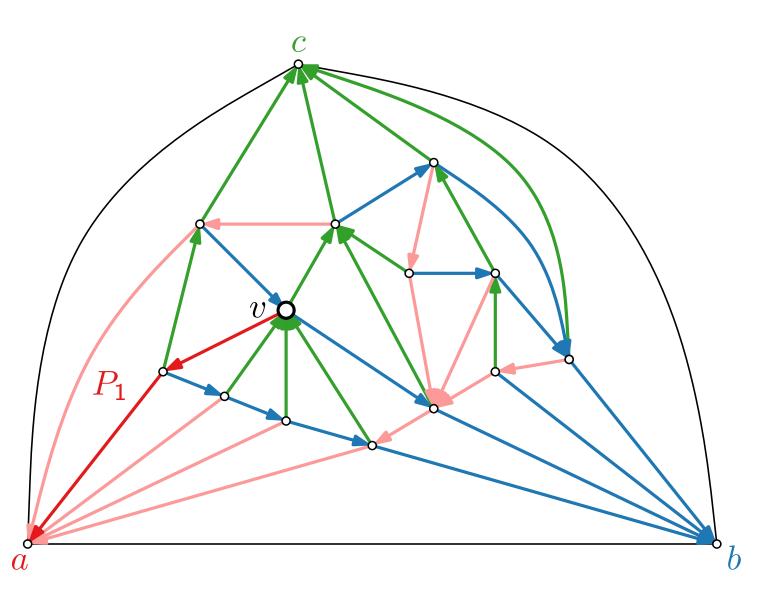
This constructive proof yields an algorithm for computing a Schnyder labeling. It can be implemented to run in $\mathcal{O}(n)$ time.

 \rightarrow Exercise (

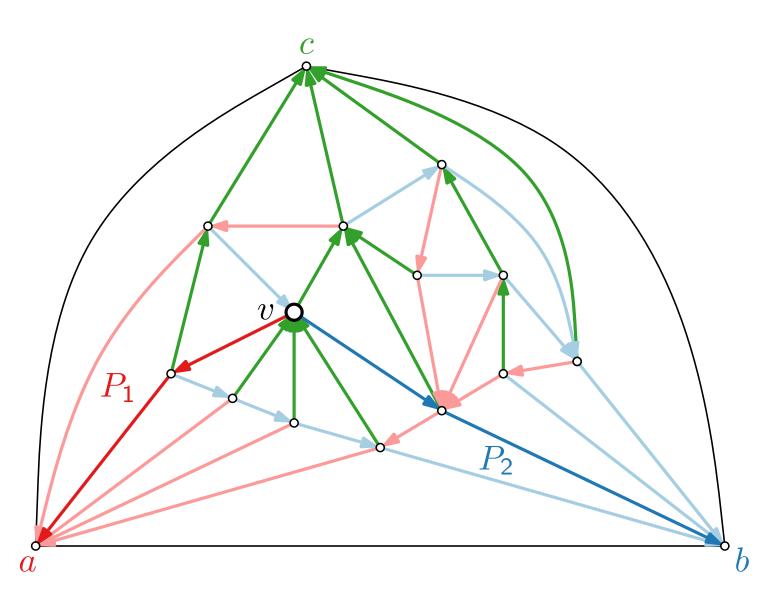




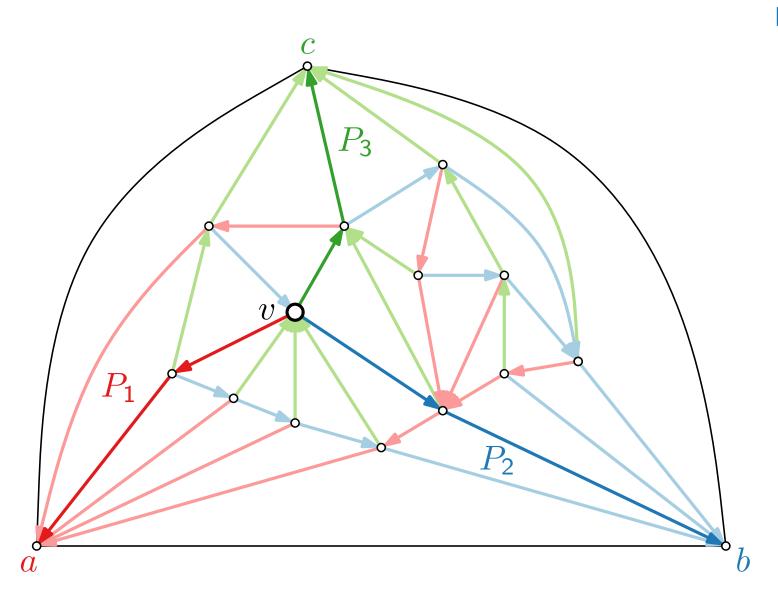
 \blacksquare From each vertex v there exists



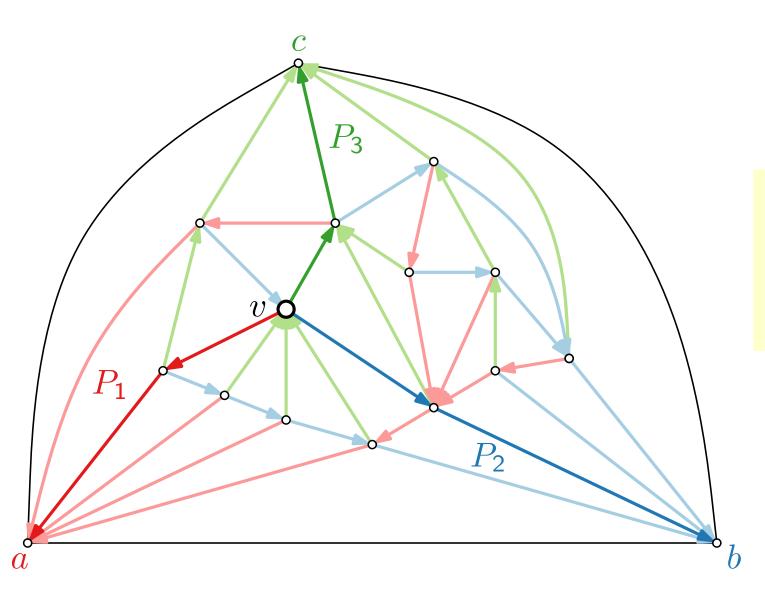
From each vertex v there exists a directed red path $P_1(v)$ to a,



From each vertex v there exists a directed red path $P_1(v)$ to a, a directed blue path $P_2(v)$ to b, and

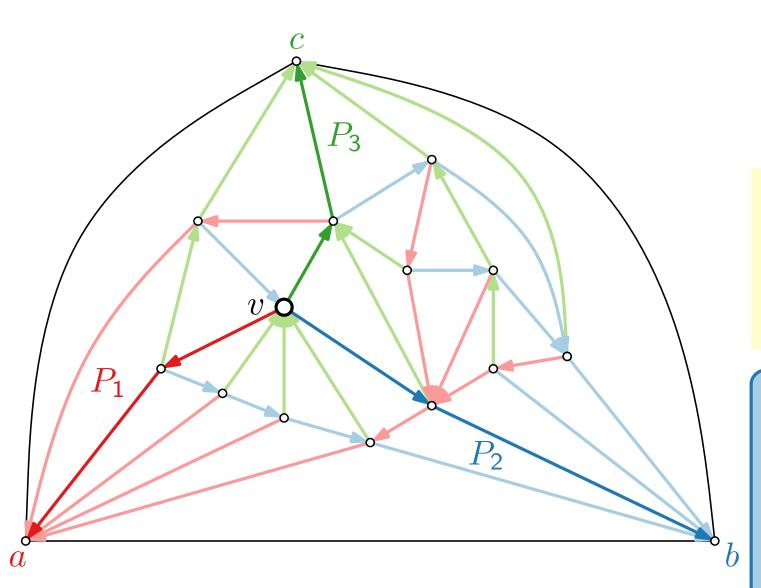


From each vertex v there exists a directed red path $P_1(v)$ to a, a directed blue path $P_2(v)$ to b, and a directed green path $P_3(v)$ to c.



From each vertex v there exists a directed red path $P_1(v)$ to a, a directed blue path $P_2(v)$ to b, and a directed green path $P_3(v)$ to c.

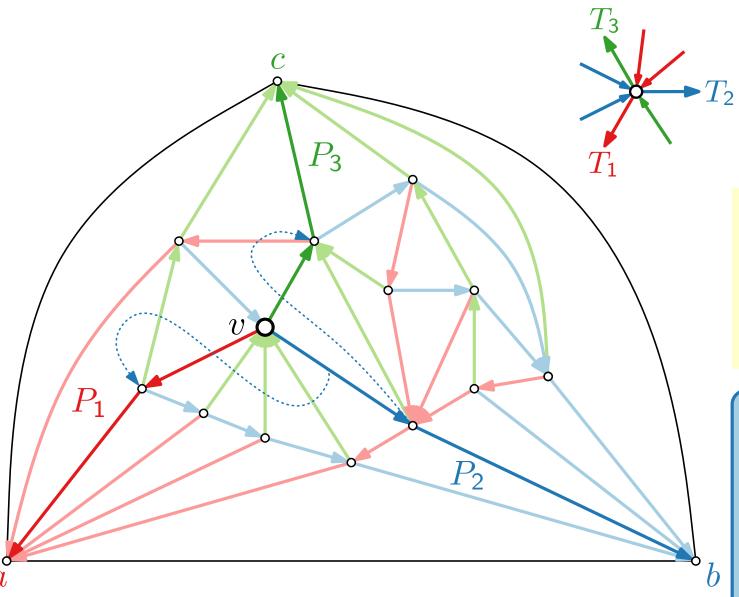
 $P_i(v)$: path from v to root of T_i .



From each vertex v there exists a directed red path $P_1(v)$ to a, a directed blue path $P_2(v)$ to b, and a directed green path $P_3(v)$ to c.

 $P_i(v)$: path from v to root of T_i .

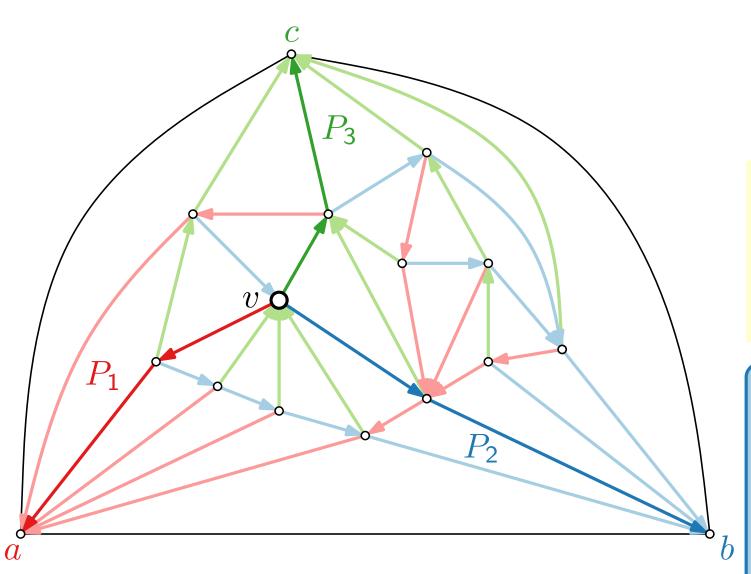
Lemma.



From each vertex v there exists a directed red path $P_1(v)$ to a, a directed blue path $P_2(v)$ to b, and a directed green path $P_3(v)$ to c.

 $P_i(v)$: path from v to root of T_i .

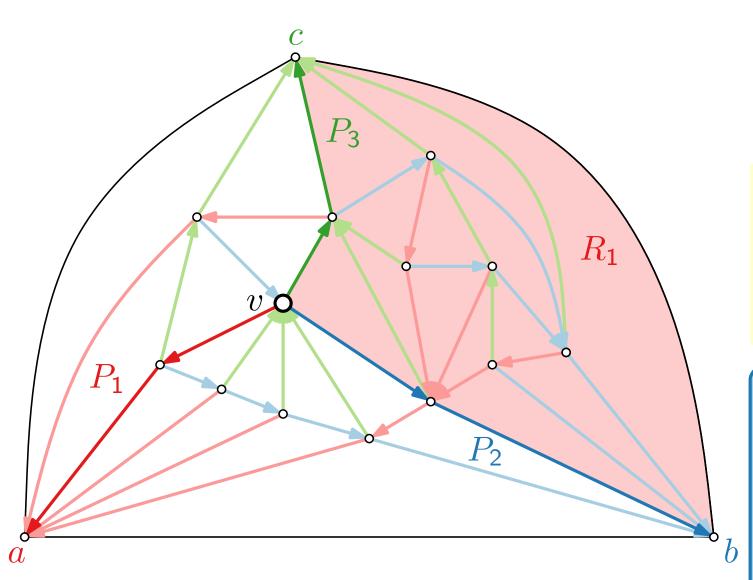
Lemma.



From each vertex v there exists a directed red path $P_1(v)$ to a, a directed blue path $P_2(v)$ to b, and a directed green path $P_3(v)$ to c.

 $P_i(v)$: path from v to root of T_i .

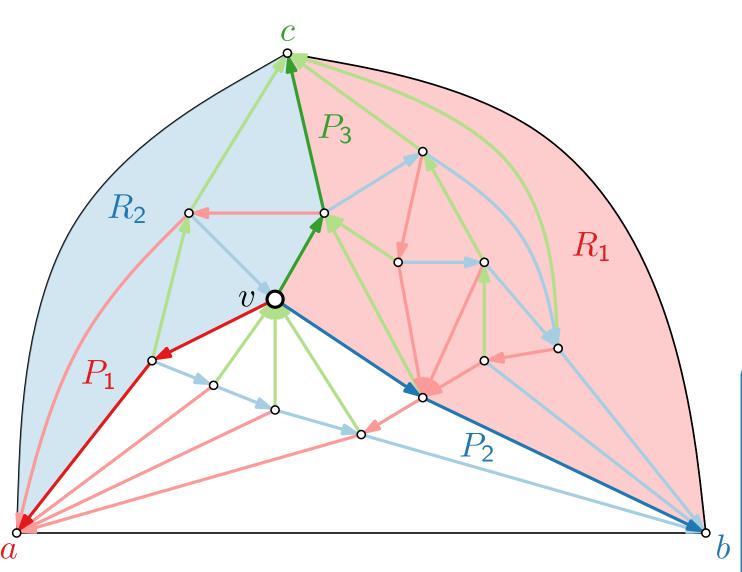
Lemma.



From each vertex v there exists a directed red path $P_1(v)$ to a, a directed blue path $P_2(v)$ to b, and a directed green path $P_3(v)$ to c.

 $P_i(v)$: path from v to root of T_i . $R_1(v)$: set of faces contained in P_2, bc, P_3 .

Lemma.



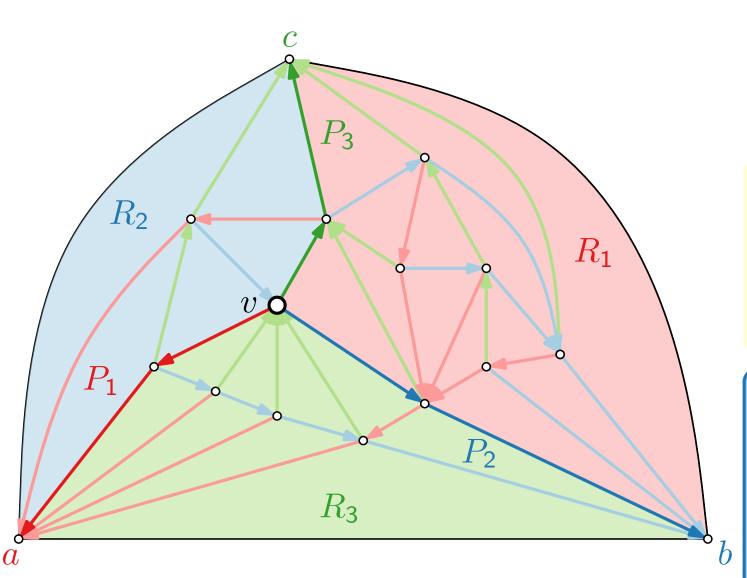
From each vertex v there exists a directed red path $P_1(v)$ to a, a directed blue path $P_2(v)$ to b, and a directed green path $P_3(v)$ to c.

```
P_i(v): path from v to root of T_i.

R_1(v): set of faces contained in P_2, bc, P_3.

R_2(v): set of faces contained in P_3, ca, P_1.
```

Lemma.



From each vertex v there exists a directed red path $P_1(v)$ to a, a directed blue path $P_2(v)$ to b, and a directed green path $P_3(v)$ to c.

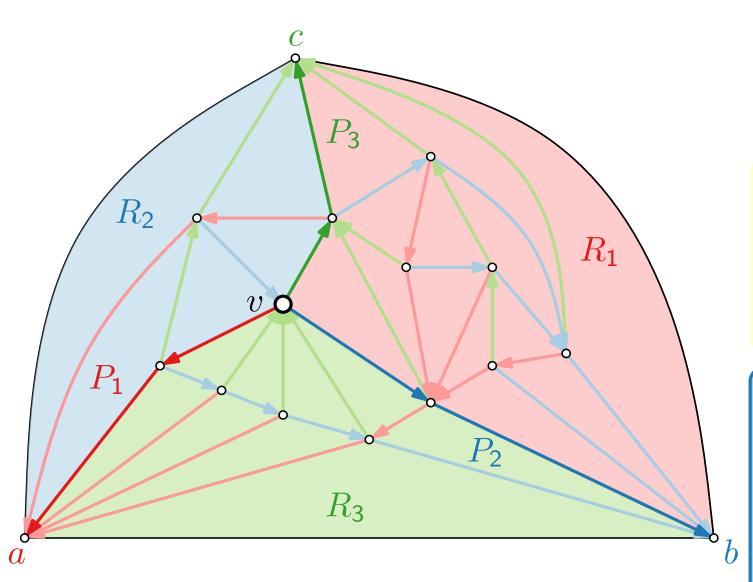
```
P_i(v): path from v to root of T_i.

R_1(v): set of faces contained in P_2, bc, P_3.

R_2(v): set of faces contained in P_3, ca, P_1.

R_3(v): set of faces contained in P_1, ab, P_2.
```

Lemma.



From each vertex v there exists a directed red path $P_1(v)$ to a, a directed blue path $P_2(v)$ to b, and a directed green path $P_3(v)$ to c.

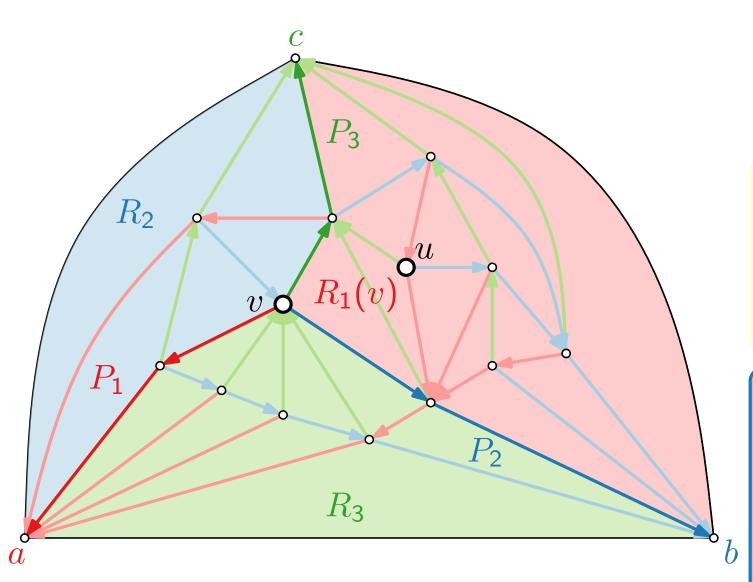
```
P_i(v): path from v to root of T_i.

R_1(v): set of faces contained in P_2, bc, P_3.

R_2(v): set of faces contained in P_3, ca, P_1.

R_3(v): set of faces contained in P_1, ab, P_2.
```

- $\blacksquare P_1(v), P_2(v), P_3(v)$ cross only at v.
- For inner vertices $u \neq v$ it holds that $u \in R_i(v) \Rightarrow R_i(u) \subsetneq R_i(v)$.



From each vertex v there exists a directed red path $P_1(v)$ to a, a directed blue path $P_2(v)$ to b, and a directed green path $P_3(v)$ to c.

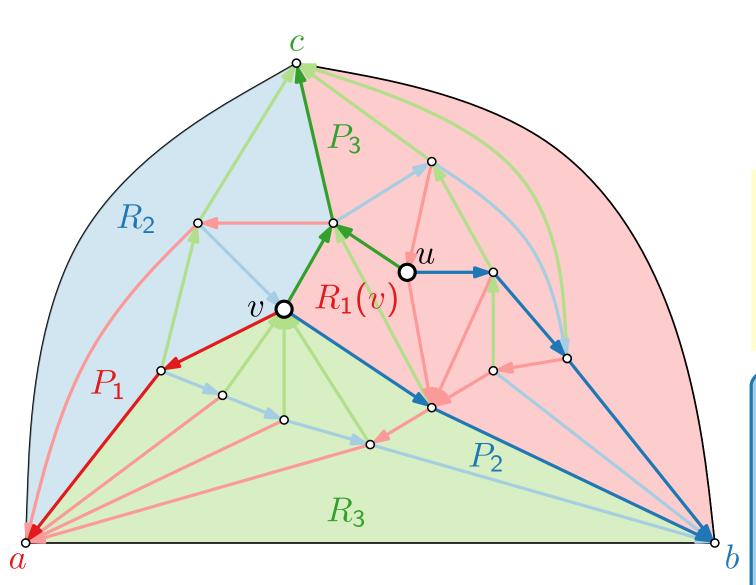
```
P_i(v): path from v to root of T_i.

R_1(v): set of faces contained in P_2, bc, P_3.

R_2(v): set of faces contained in P_3, ca, P_1.

R_3(v): set of faces contained in P_1, ab, P_2.
```

- $\blacksquare P_1(v), P_2(v), P_3(v)$ cross only at v.
- For inner vertices $u \neq v$ it holds that $u \in R_i(v) \Rightarrow R_i(u) \subsetneq R_i(v)$.



From each vertex v there exists a directed red path $P_1(v)$ to a, a directed blue path $P_2(v)$ to b, and a directed green path $P_3(v)$ to c.

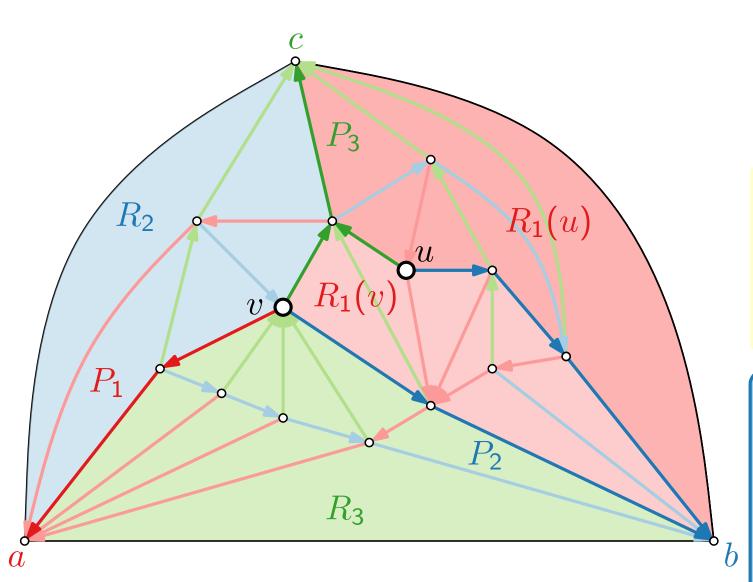
```
P_i(v): path from v to root of T_i.

R_1(v): set of faces contained in P_2, bc, P_3.

R_2(v): set of faces contained in P_3, ca, P_1.

R_3(v): set of faces contained in P_1, ab, P_2.
```

- $\blacksquare P_1(v), P_2(v), P_3(v)$ cross only at v.
- For inner vertices $u \neq v$ it holds that $u \in R_i(v) \Rightarrow R_i(u) \subsetneq R_i(v)$.



From each vertex v there exists a directed red path $P_1(v)$ to a, a directed blue path $P_2(v)$ to b, and a directed green path $P_3(v)$ to c.

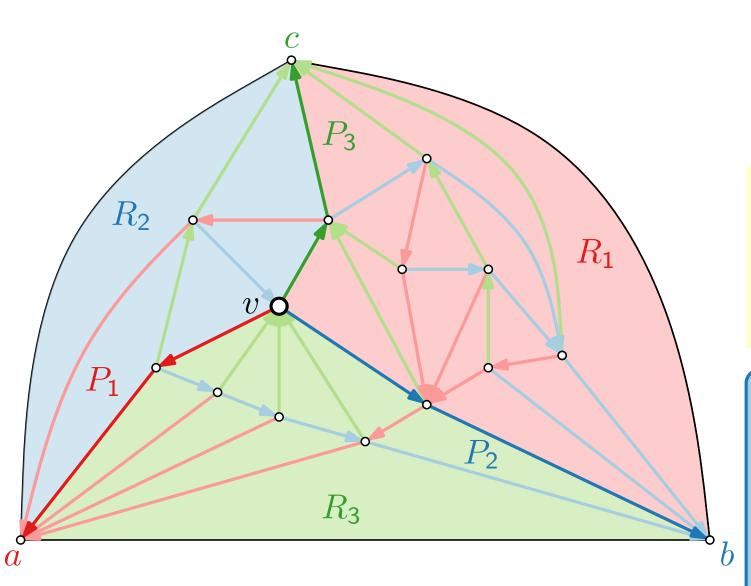
```
P_i(v): path from v to root of T_i.

R_1(v): set of faces contained in P_2, bc, P_3.

R_2(v): set of faces contained in P_3, ca, P_1.

R_3(v): set of faces contained in P_1, ab, P_2.
```

- $\blacksquare P_1(v), P_2(v), P_3(v)$ cross only at v.
- For inner vertices $u \neq v$ it holds that $u \in R_i(v) \Rightarrow R_i(u) \subsetneq R_i(v)$.



From each vertex v there exists a directed red path $P_1(v)$ to a, a directed blue path $P_2(v)$ to b, and a directed green path $P_3(v)$ to c.

```
P_i(v): path from v to root of T_i.

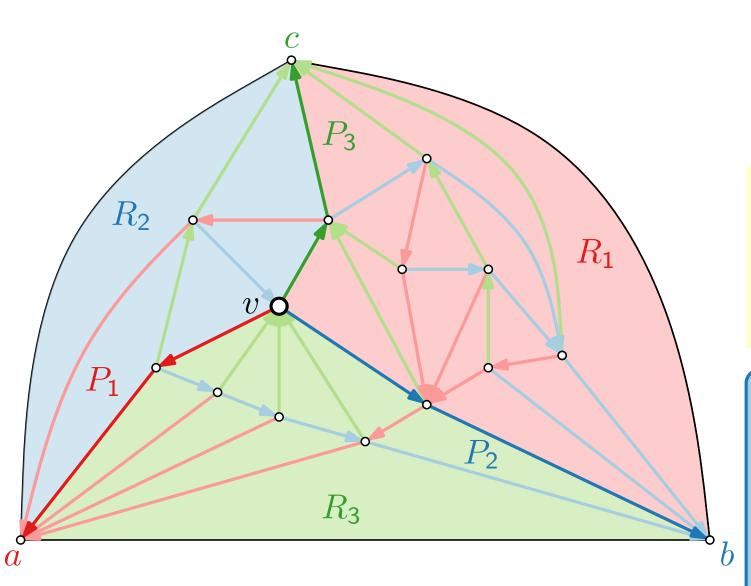
R_1(v): set of faces contained in P_2, bc, P_3.

R_2(v): set of faces contained in P_3, ca, P_1.

R_3(v): set of faces contained in P_1, ab, P_2.
```

- $\blacksquare P_1(v), P_2(v), P_3(v)$ cross only at v.
- For inner vertices $u \neq v$ it holds that $u \in R_i(v) \Rightarrow R_i(u) \subsetneq R_i(v)$.
- $|R_1(v)| + |R_2(v)| + |R_3(v)| =$

Schnyder Wood – More Properties



From each vertex v there exists a directed red path $P_1(v)$ to a, a directed blue path $P_2(v)$ to b, and a directed green path $P_3(v)$ to c.

```
P_i(v): path from v to root of T_i.

R_1(v): set of faces contained in P_2, bc, P_3.

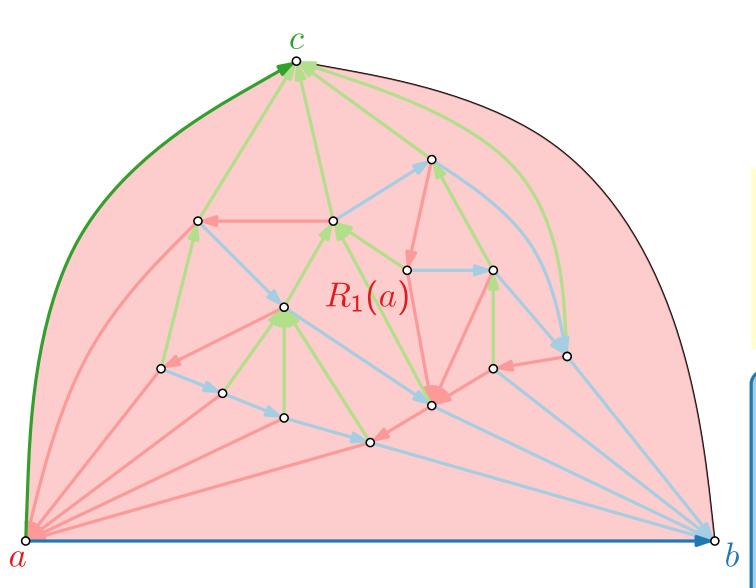
R_2(v): set of faces contained in P_3, ca, P_1.

R_3(v): set of faces contained in P_1, ab, P_2.
```

Lemma.

- \blacksquare $P_1(v)$, $P_2(v)$, $P_3(v)$ cross only at v.
- For inner vertices $u \neq v$ it holds that $u \in R_i(v) \Rightarrow R_i(u) \subsetneq R_i(v)$.
- $|R_1(v)| + |R_2(v)| + |R_3(v)| = 2n 5$

Schnyder Wood – More Properties



From each vertex v there exists a directed red path $P_1(v)$ to a, a directed blue path $P_2(v)$ to b, and a directed green path $P_3(v)$ to c.

```
P_i(v): path from v to root of T_i.

R_1(v): set of faces contained in P_2, bc, P_3.

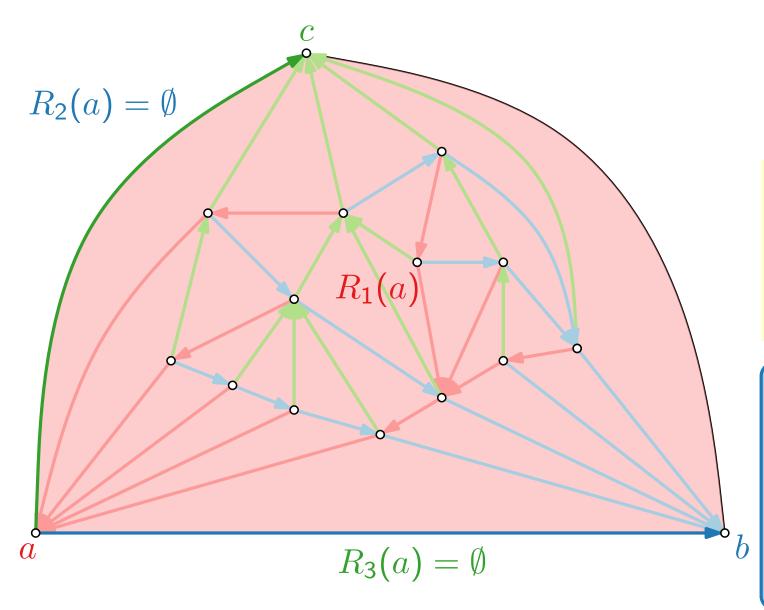
R_2(v): set of faces contained in P_3, ca, P_1.

R_3(v): set of faces contained in P_1, ab, P_2.
```

Lemma.

- $\blacksquare P_1(v), P_2(v), P_3(v)$ cross only at v.
- For inner vertices $u \neq v$ it holds that $u \in R_i(v) \Rightarrow R_i(u) \subsetneq R_i(v)$.
- $|R_1(v)| + |R_2(v)| + |R_3(v)| = 2n 5$

Schnyder Wood – More Properties



From each vertex v there exists a directed red path $P_1(v)$ to a, a directed blue path $P_2(v)$ to b, and a directed green path $P_3(v)$ to c.

 $P_i(v)$: path from v to root of T_i . $R_1(v)$: set of faces contained in P_2 , bc, P_3 . $R_2(v)$: set of faces contained in P_3 , ca, P_1 . $R_3(v)$: set of faces contained in P_1 , ab, P_2 .

Lemma.

- $\blacksquare P_1(v), P_2(v), P_3(v)$ cross only at v.
- For inner vertices $u \neq v$ it holds that $u \in R_i(v) \Rightarrow R_i(u) \subsetneq R_i(v)$.
- $|R_1(v)| + |R_2(v)| + |R_3(v)| = 2n 5$

Theorem.

[Schnyder '90]

For a plane triangulation G, the mapping

$$f: v \mapsto (v_1, v_2, v_3) = \frac{1}{2n-5}(|R_1(v)|, |R_2(v)|, |R_3(v)|)$$

Theorem.

[Schnyder '90]

For a plane triangulation G, the mapping

$$f: v \mapsto (v_1, v_2, v_3) = \frac{1}{2n-5}(|R_1(v)|, |R_2(v)|, |R_3(v)|)$$

(B1)
$$v_1 + v_2 + v_3 = 1$$
 for all $v \in V$

Theorem.

[Schnyder '90]

For a plane triangulation G, the mapping

$$f: v \mapsto (v_1, v_2, v_3) = \frac{1}{2n-5}(|R_1(v)|, |R_2(v)|, |R_3(v)|)$$

(B1)
$$v_1 + v_2 + v_3 = 1$$
 for all $v \in V$

Theorem.

[Schnyder '90]

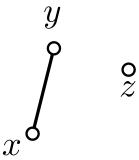
For a plane triangulation G, the mapping

$$f: v \mapsto (v_1, v_2, v_3) = \frac{1}{2n-5}(|R_1(v)|, |R_2(v)|, |R_3(v)|)$$

is a barycentric representation of ${\cal G}$ and, thus, yields a planar straight-line drawing of ${\cal G}$

(B1)
$$v_1 + v_2 + v_3 = 1$$
 for all $v \in V$

(B2) for each $\{x,y\} \in E$ and each $z \in V \setminus \{x,y\}$ there exists $k \in \{1,2,3\}$ with $x_k < z_k$ and $y_k < z_k$



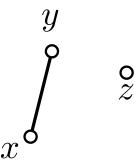
Theorem.

[Schnyder '90]

For a plane triangulation G, the mapping

$$f: v \mapsto (v_1, v_2, v_3) = \frac{1}{2n-5}(|R_1(v)|, |R_2(v)|, |R_3(v)|)$$

- (B1) $v_1 + v_2 + v_3 = 1$ for all $v \in V$
- (B2) for each $\{x,y\} \in E$ and each $z \in V \setminus \{x,y\}$ there exists $k \in \{1,2,3\}$ with $x_k < z_k$ and $y_k < z_k$
 - $\{x,y\}$ must lie in $R_i(z)$ for some $i \in \{1,2,3\}$



Theorem.

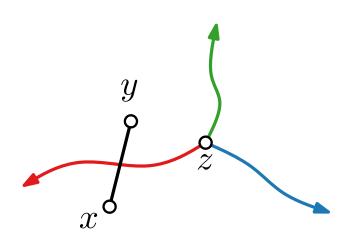
[Schnyder '90]

For a plane triangulation G, the mapping

$$f: v \mapsto (v_1, v_2, v_3) = \frac{1}{2n-5}(|R_1(v)|, |R_2(v)|, |R_3(v)|)$$

(B1)
$$v_1 + v_2 + v_3 = 1$$
 for all $v \in V$

- (B2) for each $\{x,y\} \in E$ and each $z \in V \setminus \{x,y\}$ there exists $k \in \{1,2,3\}$ with $x_k < z_k$ and $y_k < z_k$
 - $\{x,y\}$ must lie in $R_i(z)$ for some $i \in \{1,2,3\}$



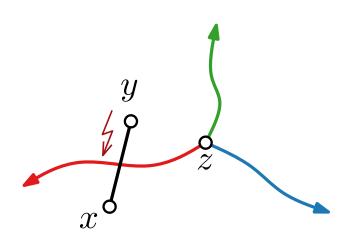
Theorem.

[Schnyder '90]

For a plane triangulation G, the mapping

$$f: v \mapsto (v_1, v_2, v_3) = \frac{1}{2n-5}(|R_1(v)|, |R_2(v)|, |R_3(v)|)$$

- (B1) $v_1 + v_2 + v_3 = 1$ for all $v \in V$
- (B2) for each $\{x,y\} \in E$ and each $z \in V \setminus \{x,y\}$ there exists $k \in \{1,2,3\}$ with $x_k < z_k$ and $y_k < z_k$
 - $\{x,y\}$ must lie in $R_i(z)$ for some $i \in \{1,2,3\}$



Theorem.

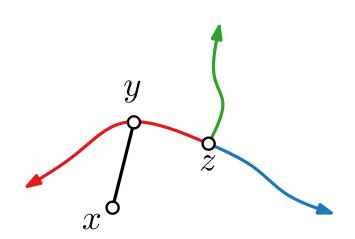
[Schnyder '90]

For a plane triangulation G, the mapping

$$f: v \mapsto (v_1, v_2, v_3) = \frac{1}{2n-5}(|R_1(v)|, |R_2(v)|, |R_3(v)|)$$

(B1)
$$v_1 + v_2 + v_3 = 1$$
 for all $v \in V$

- (B2) for each $\{x,y\} \in E$ and each $z \in V \setminus \{x,y\}$ there exists $k \in \{1,2,3\}$ with $x_k < z_k$ and $y_k < z_k$
 - $\{x,y\}$ must lie in $R_i(z)$ for some $i \in \{1,2,3\}$



Theorem.

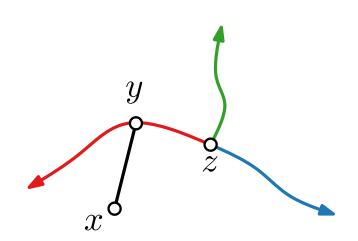
[Schnyder '90]

For a plane triangulation G, the mapping

$$f: v \mapsto (v_1, v_2, v_3) = \frac{1}{2n-5}(|R_1(v)|, |R_2(v)|, |R_3(v)|)$$

(B1)
$$v_1 + v_2 + v_3 = 1$$
 for all $v \in V$

- (B2) for each $\{x,y\} \in E$ and each $z \in V \setminus \{x,y\}$ there exists $k \in \{1,2,3\}$ with $x_k < z_k$ and $y_k < z_k$
 - $\{x,y\}$ must lie in $R_i(z)$ for some $i \in \{1,2,3\}$
 - $x, y \in R_i(z) \Rightarrow R_i(x), R_i(y) \subsetneq R_i(z)$



Theorem.

[Schnyder '90]

For a plane triangulation G, the mapping

$$f: v \mapsto (v_1, v_2, v_3) = \frac{1}{2n-5}(|R_1(v)|, |R_2(v)|, |R_3(v)|)$$

- (B1) $v_1 + v_2 + v_3 = 1$ for all $v \in V$
- (B2) for each $\{x,y\} \in E$ and each $z \in V \setminus \{x,y\}$ there exists $k \in \{1,2,3\}$ with $x_k < z_k$ and $y_k < z_k$
 - $\{x,y\}$ must lie in $R_i(z)$ for some $i \in \{1,2,3\}$
 - $x, y \in R_i(z) \Rightarrow R_i(x), R_i(y) \subsetneq R_i(z)$ $\Rightarrow |R_i(x)|, |R_i(y)| < |R_i(z)|$



Theorem.

[Schnyder '90]

For a plane triangulation G, the mapping

$$f: v \mapsto (v_1, v_2, v_3) = \frac{1}{2n-5}(|R_1(v)|, |R_2(v)|, |R_3(v)|)$$

- (B1) $v_1 + v_2 + v_3 = 1$ for all $v \in V$
- (B2) for each $\{x,y\} \in E$ and each $z \in V \setminus \{x,y\}$ there exists $k \in \{1,2,3\}$ with $x_k < z_k$ and $y_k < z_k$
 - \blacksquare $\{x,y\}$ must lie in $R_i(z)$ for some $i \in \{1,2,3\}$
 - $x, y \in R_i(z) \Rightarrow R_i(x), R_i(y) \subsetneq R_i(z)$ $\Rightarrow |R_i(x)|, |R_i(y)| < |R_i(z)|$



Set A = (0,0), B = (2n - 5,0), and C = (0,2n - 5).

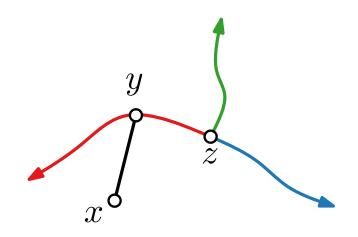
Theorem.

[Schnyder '90]

For a plane triangulation G, the mapping

$$f: v \mapsto (v_1, v_2, v_3) = \frac{1}{2n-5}(|R_1(v)|, |R_2(v)|, |R_3(v)|)$$

- (B1) $v_1 + v_2 + v_3 = 1$ for all $v \in V$
- (B2) for each $\{x,y\} \in E$ and each $z \in V \setminus \{x,y\}$ there exists $k \in \{1,2,3\}$ with $x_k < z_k$ and $y_k < z_k$
 - \blacksquare $\{x,y\}$ must lie in $R_i(z)$ for some $i \in \{1,2,3\}$
 - $x, y \in R_i(z) \Rightarrow R_i(x), R_i(y) \subsetneq R_i(z)$ $\Rightarrow |R_i(x)|, |R_i(y)| < |R_i(z)|$



Set A = (0,0), B = (2n - 5,0), and C = (0,2n - 5).

Theorem.

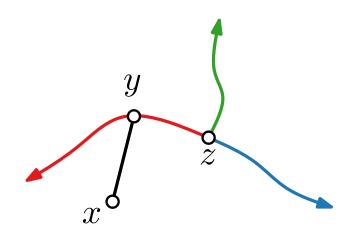
[Schnyder '90]

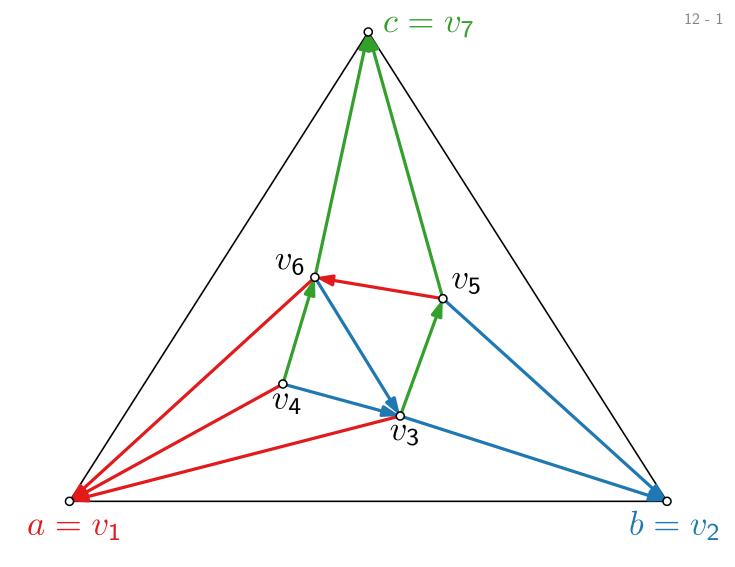
For a plane triangulation G, the mapping

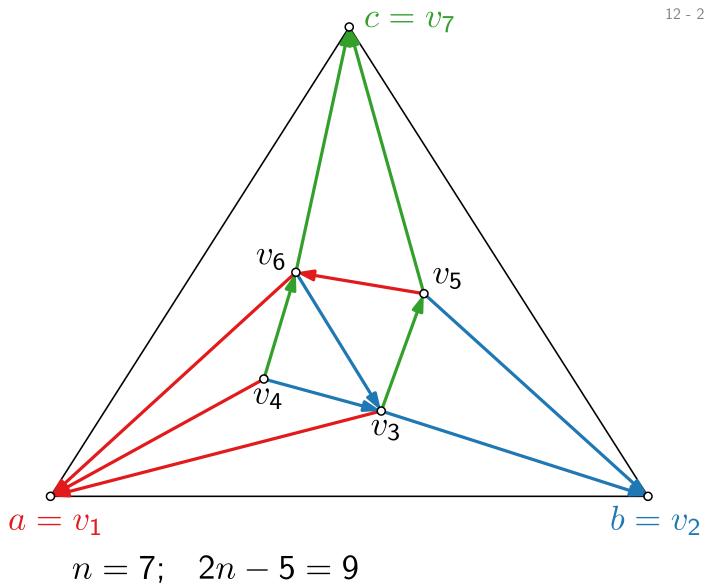
$$f: v \mapsto (v_1, v_2, v_3) = \frac{1}{2n-5}(|R_1(v)|, |R_2(v)|, |R_3(v)|)$$

is a barycentric representation of G and, thus, yields a planar straight-line drawing of G on the $(2n-5)\times(2n-5)$ grid.

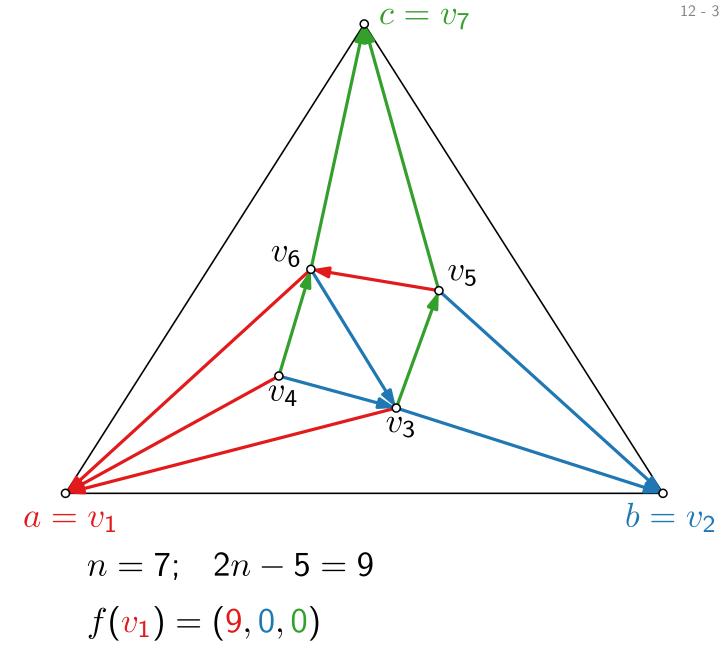
- (B1) $v_1 + v_2 + v_3 = 1$ for all $v \in V$
- (B2) for each $\{x,y\} \in E$ and each $z \in V \setminus \{x,y\}$ there exists $k \in \{1,2,3\}$ with $x_k < z_k$ and $y_k < z_k$
 - \blacksquare $\{x,y\}$ must lie in $R_i(z)$ for some $i \in \{1,2,3\}$
 - $x, y \in R_i(z) \Rightarrow R_i(x), R_i(y) \subsetneq R_i(z)$ $\Rightarrow |R_i(x)|, |R_i(y)| < |R_i(z)|$



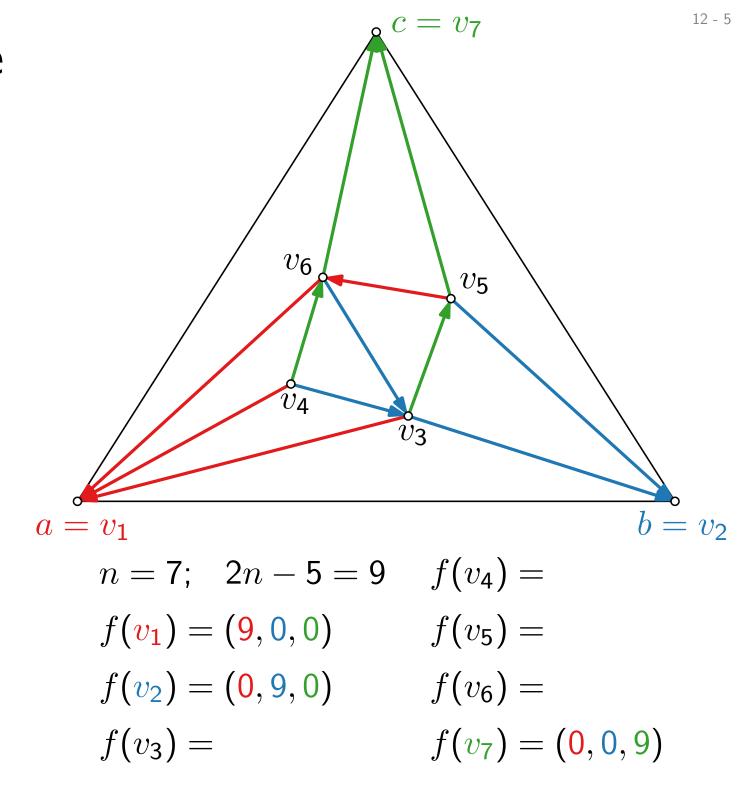


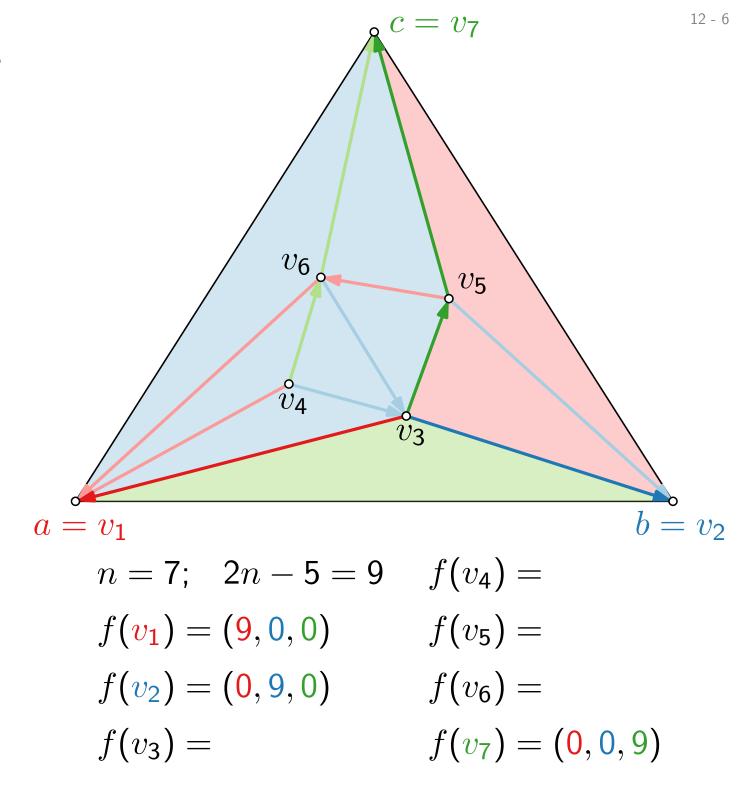


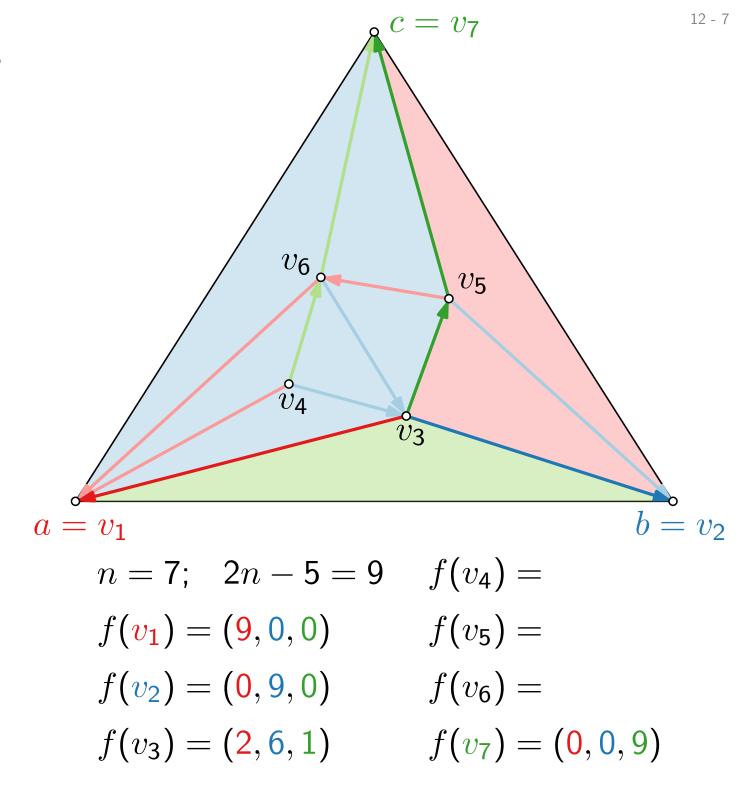
$$n = 7$$
; $2n - 5 =$

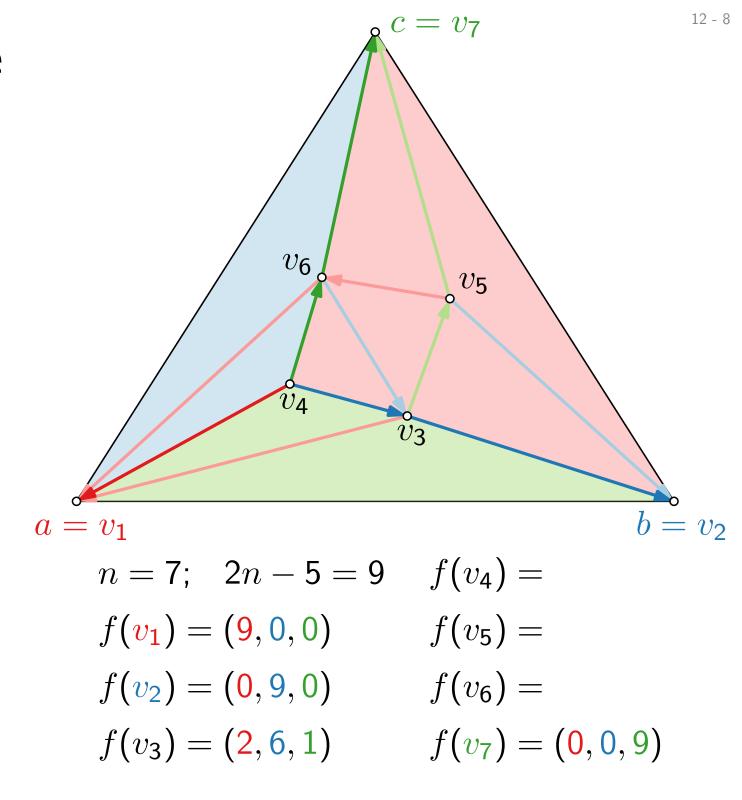


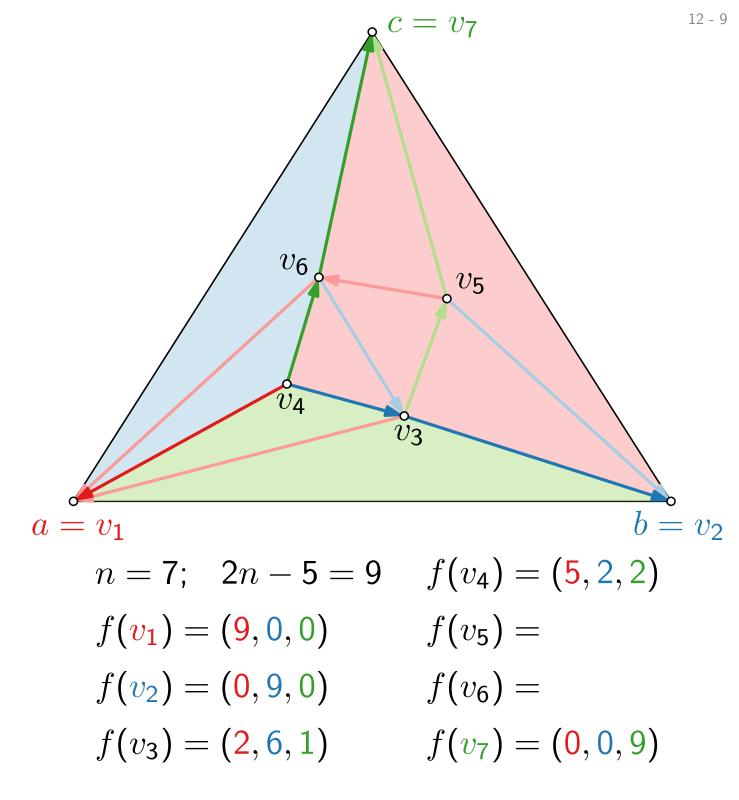
12 - 4

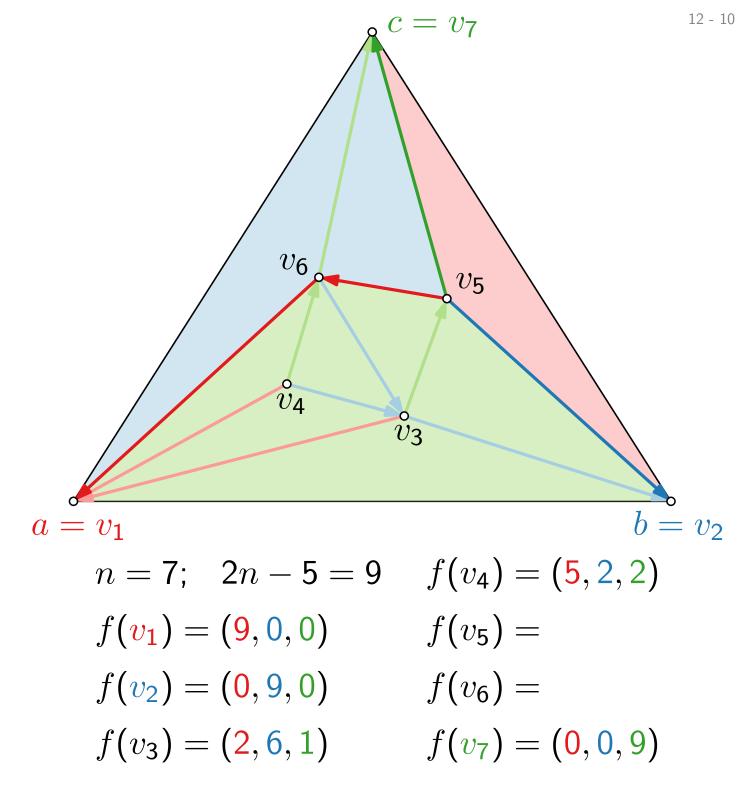


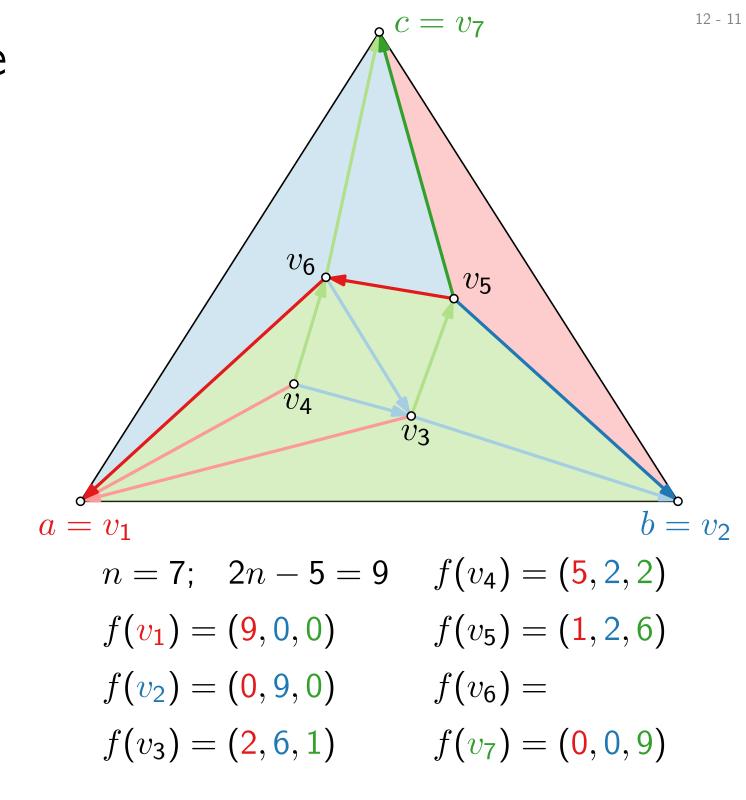


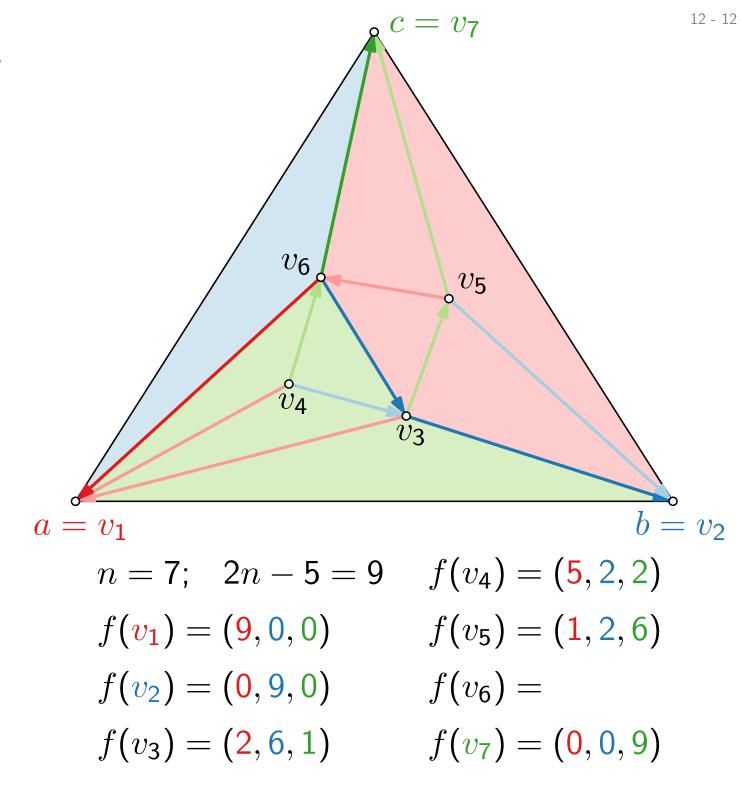




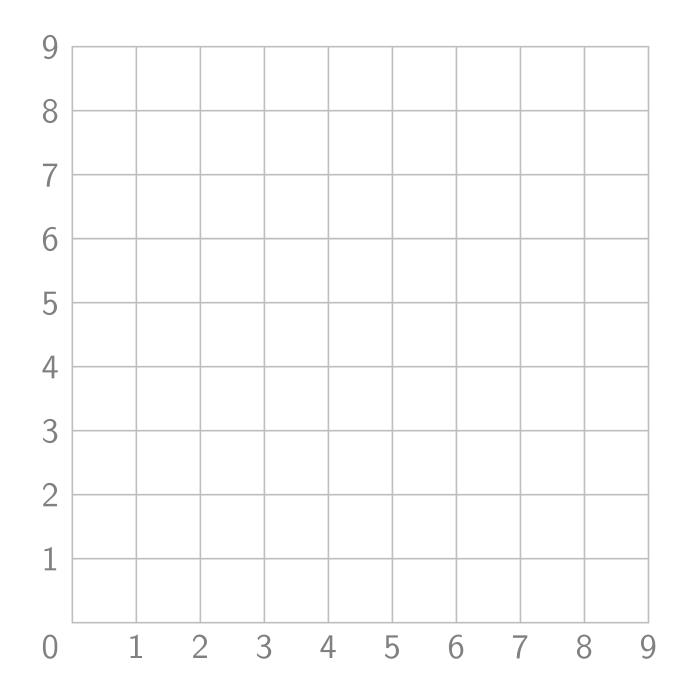


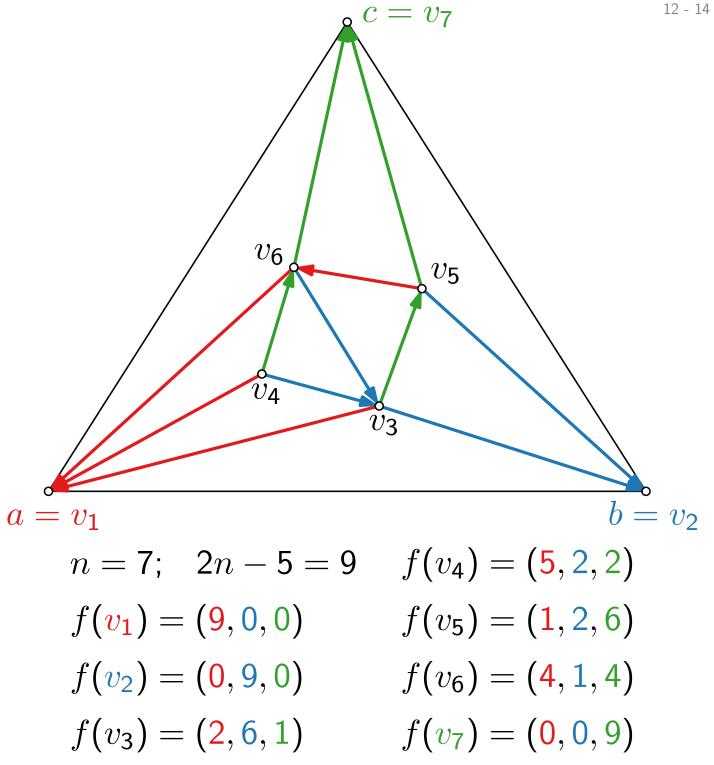


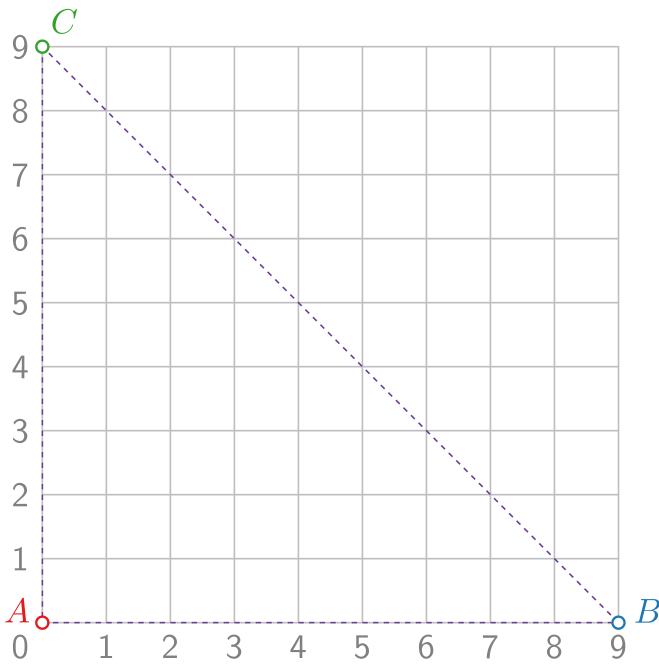


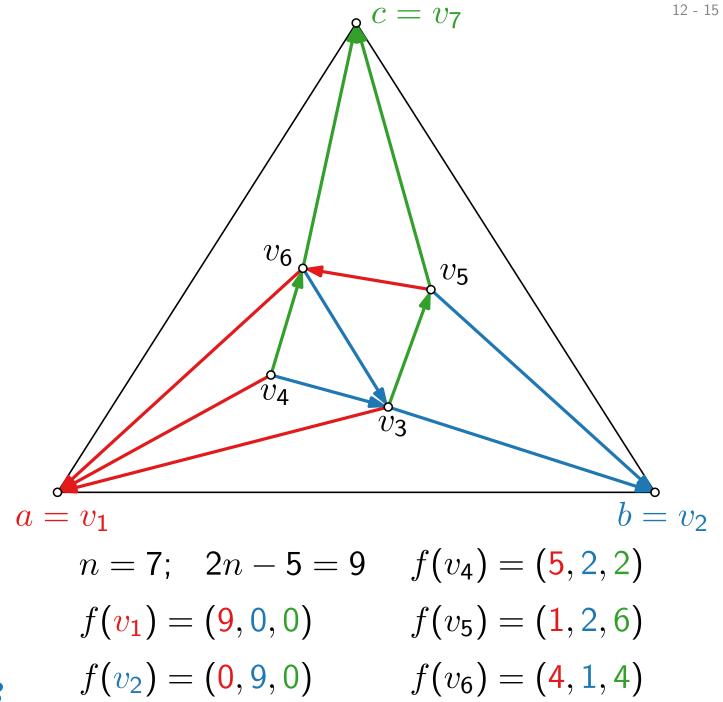




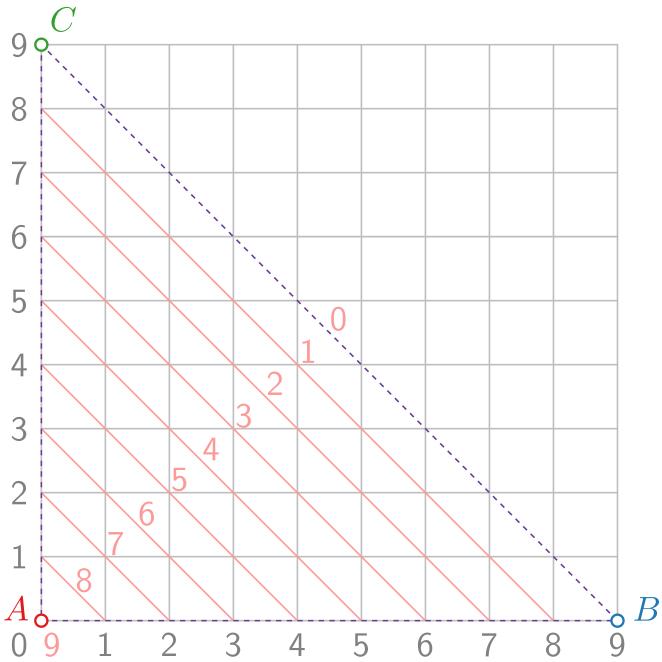


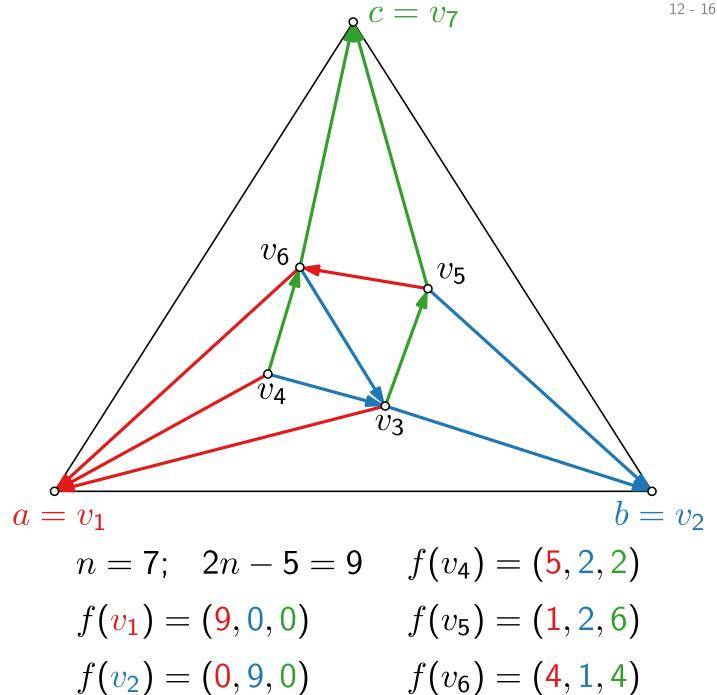




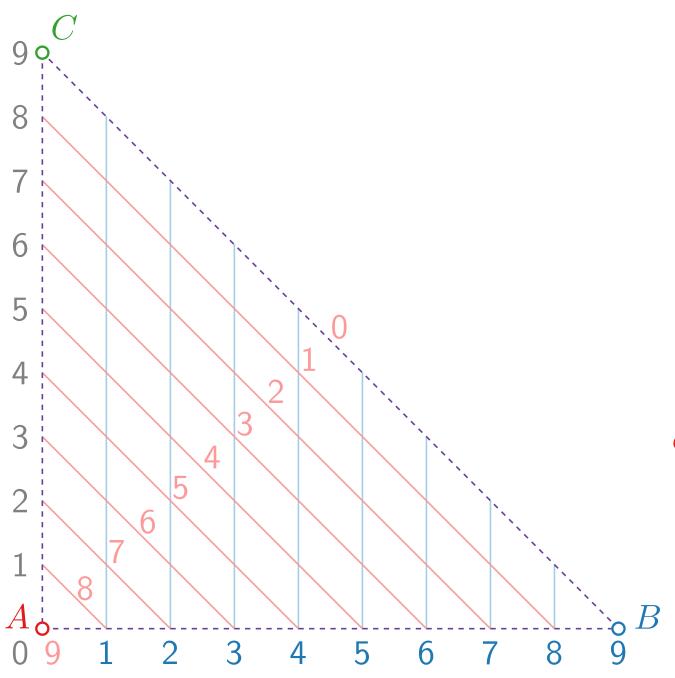


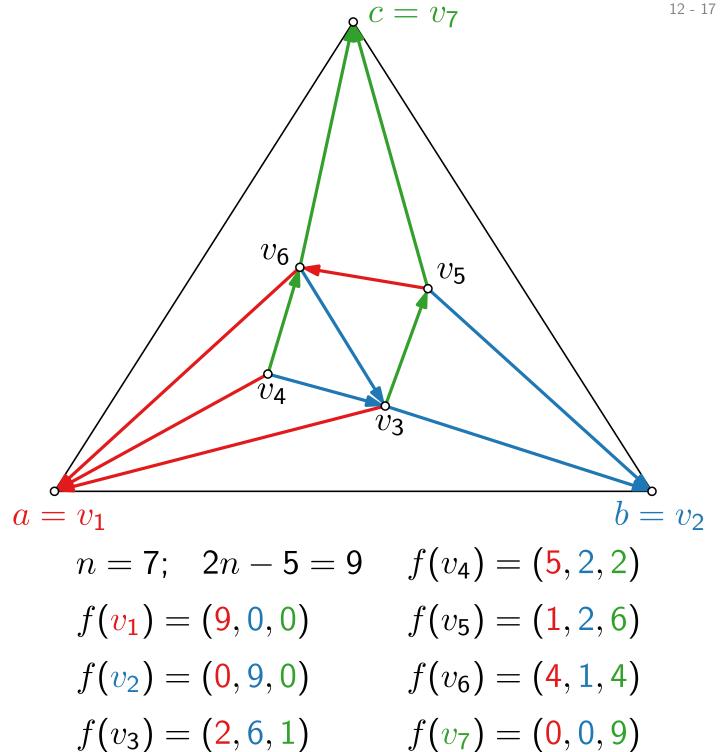
 $f(v_3) = (2, 6, 1)$ $f(v_7) = (0, 0, 9)$

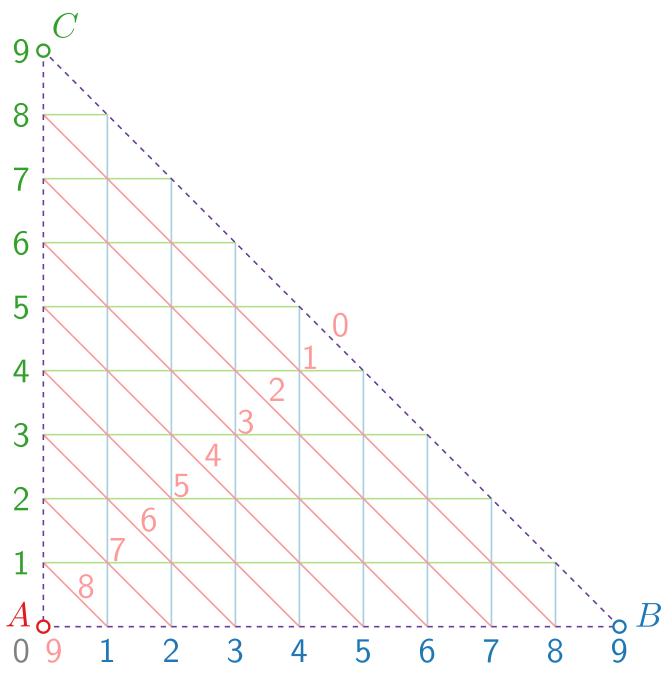


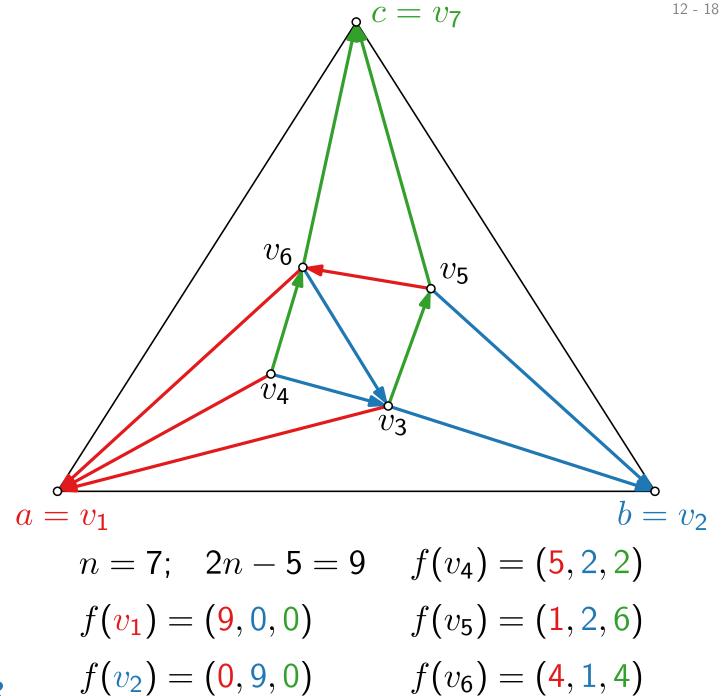


 $f(v_3) = (2, 6, 1)$ $f(v_7) = (0, 0, 9)$

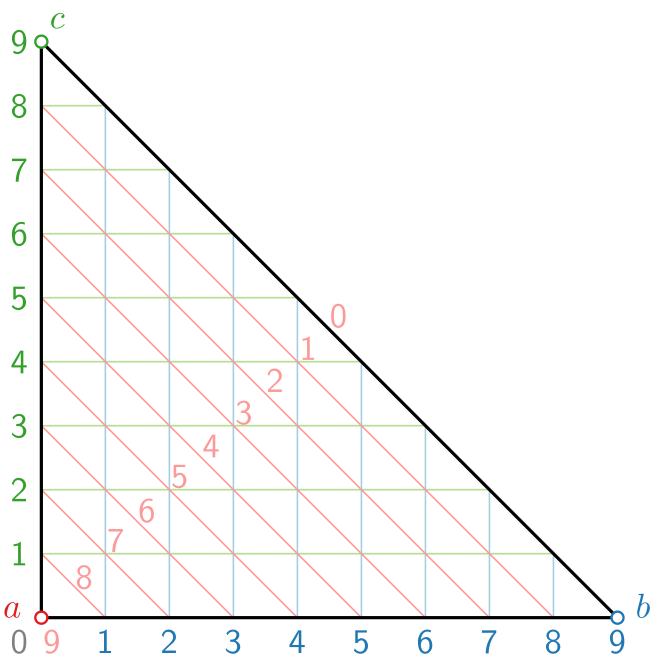


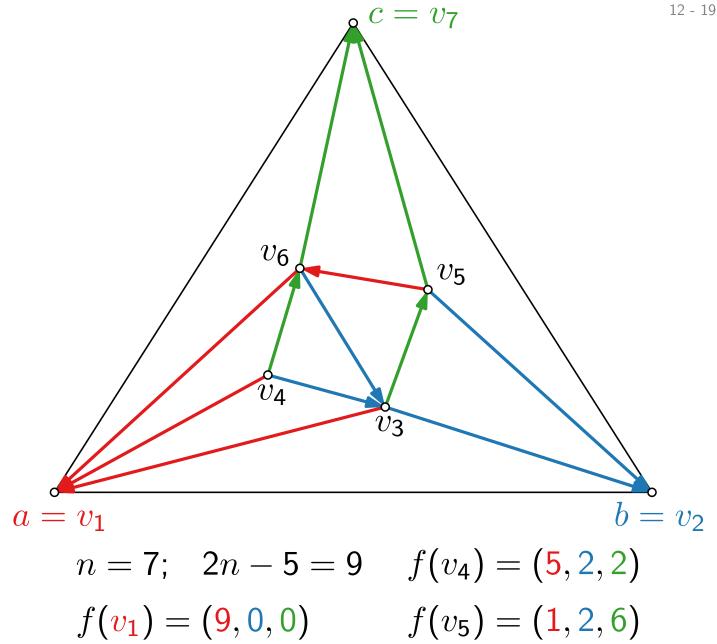






 $f(v_3) = (2, 6, 1)$ $f(v_7) = (0, 0, 9)$



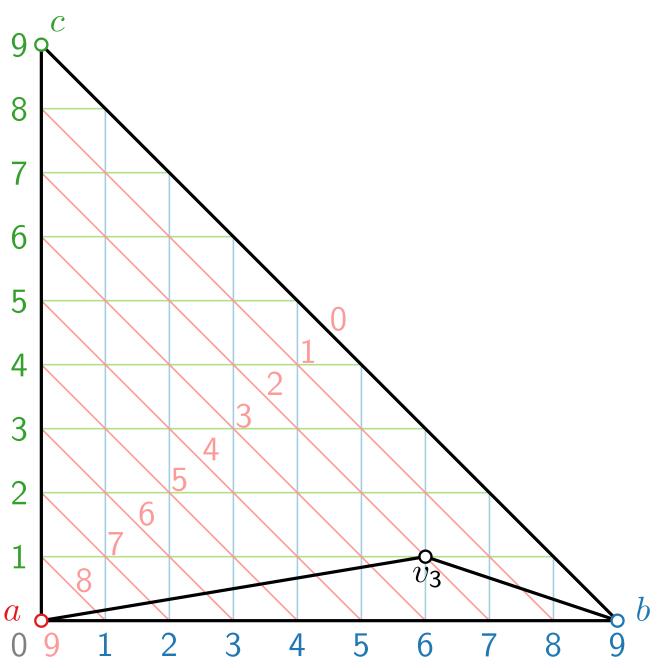


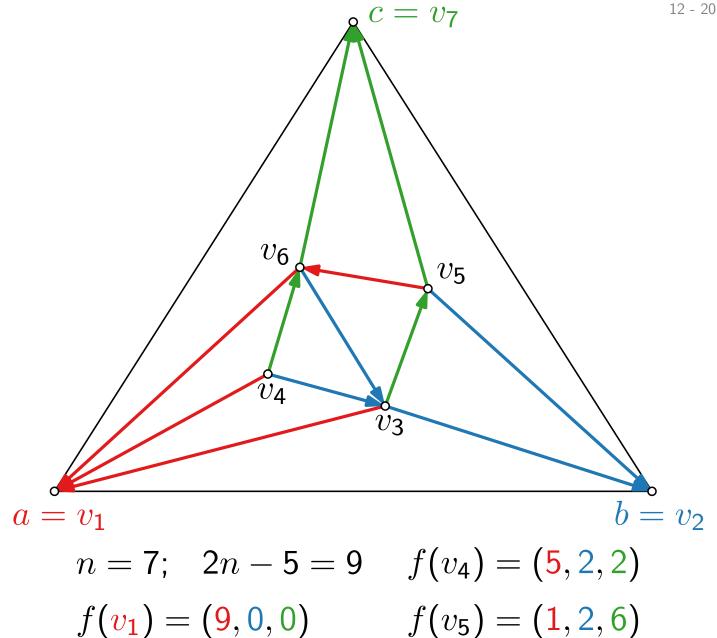
$$f(v_2) = (0, 9, 0)$$

$$f(v_3) = (2, 6, 1)$$

$$f(v_6) = (4, 1, 4)$$

$$f(v_3) = (2, 6, 1)$$
 $f(v_7) = (0, 0, 9)$





$$f(v_1) = (9, 0, 0)$$

$$f(v_5) = (1, 2, 6)$$

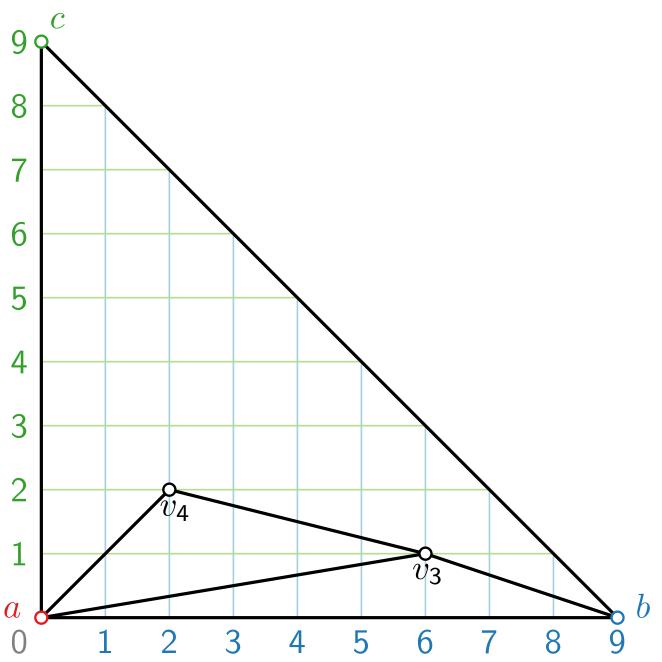
$$f(v_2) = (0, 9, 0)$$

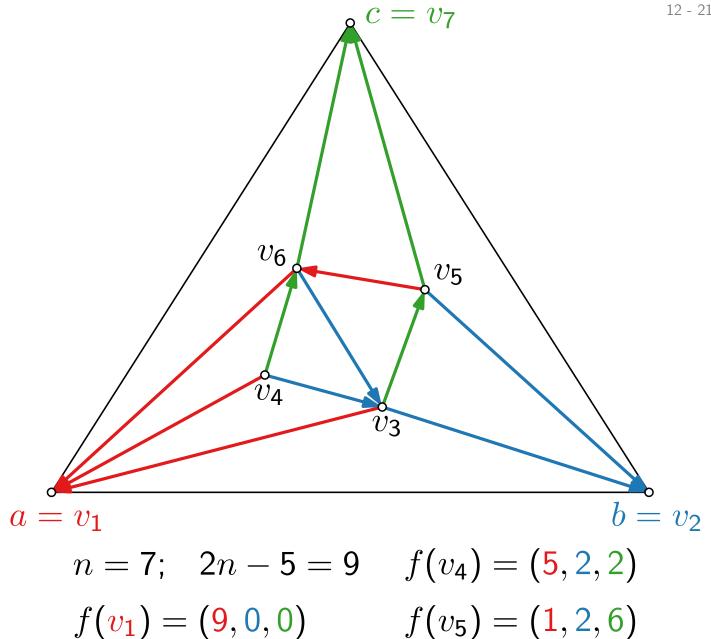
$$f(v_6) = (4, 1, 4)$$

$$f(v_3) = (2, 6, 1)$$
 $f(v_7) = (0, 0, 9)$

$$f(v_7) = (0, 0, 9)$$

Schnyder Drawing – Example

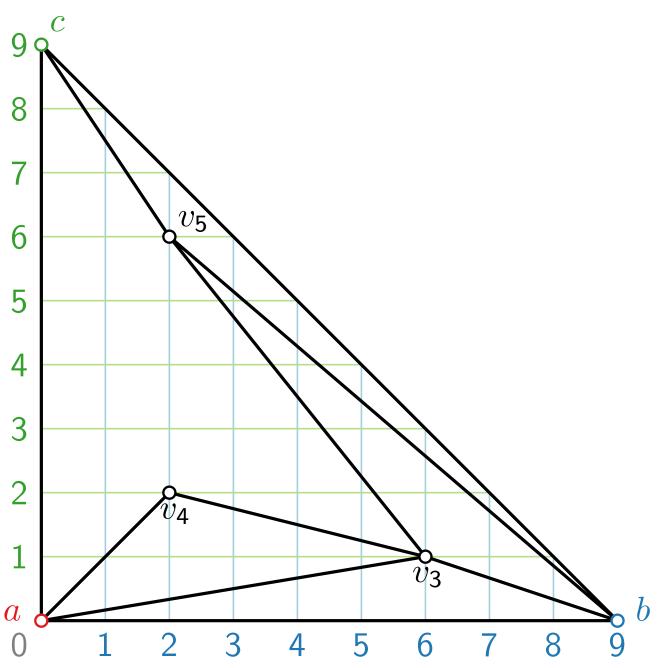


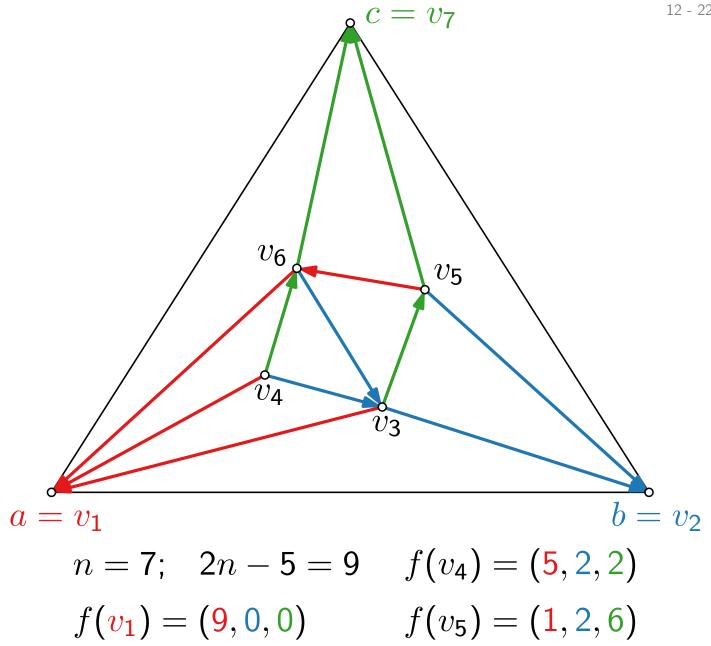


$$f(v_2) = (0, 9, 0)$$
 $f(v_6) = (4, 1, 4)$

$$f(v_3) = (2, 6, 1)$$
 $f(v_7) = (0, 0, 9)$

Schnyder Drawing – Example

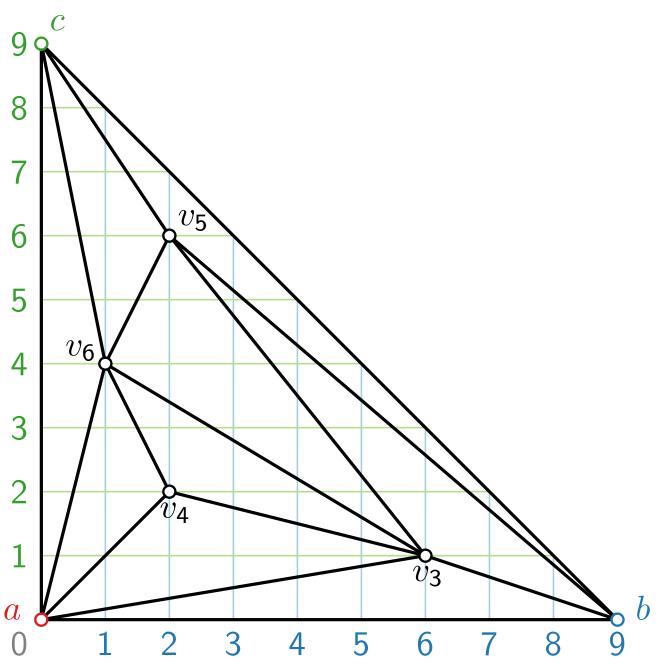


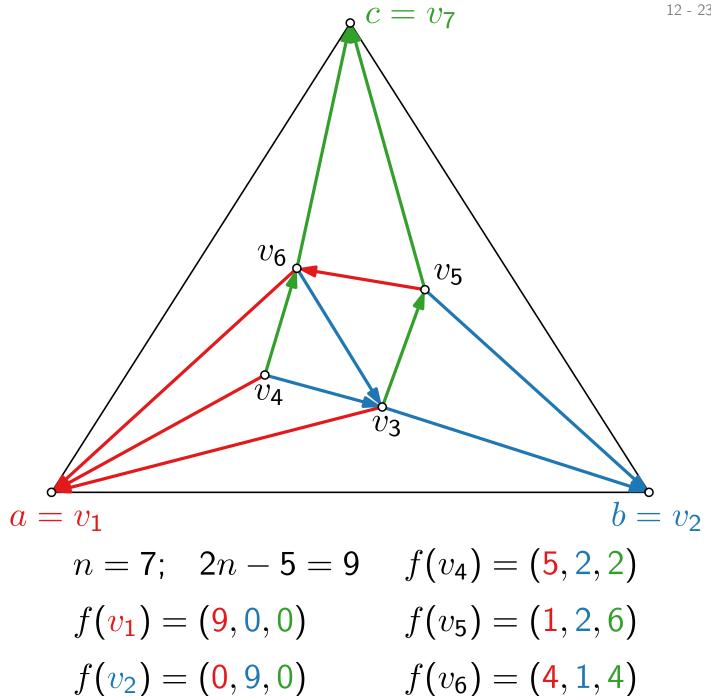


 $f(v_2) = (0, 9, 0)$ $f(v_6) = (4, 1, 4)$

 $f(v_3) = (2, 6, 1)$ $f(v_7) = (0, 0, 9)$

Schnyder Drawing – Example





 $f(v_3) = (2, 6, 1)$ $f(v_7) = (0, 0, 9)$

A weak barycentric representation of a graph G = (V, E) is an assignment of barycentric coordinates to V:

$$\phi\colon V\to\mathbb{R}^3_{\geq 0},v\mapsto (v_1,v_2,v_3)$$

with the following properties:

A weak barycentric representation of a graph G = (V, E) is an assignment of barycentric coordinates to V:

$$\phi\colon V\to\mathbb{R}^3_{\geq 0},v\mapsto (v_1,v_2,v_3)$$

with the following properties:

(W1)
$$v_1 + v_2 + v_3 = 1$$
 for all $v \in V$,

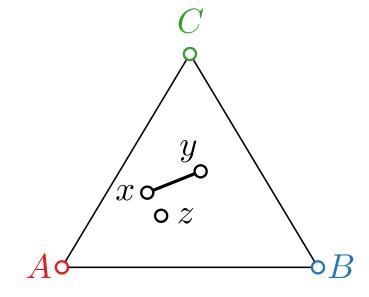
A weak barycentric representation of a graph G = (V, E) is an assignment of barycentric coordinates to V:

$$\phi\colon V\to\mathbb{R}^3_{\geq 0},v\mapsto (v_1,v_2,v_3)$$

with the following properties:

(W1)
$$v_1 + v_2 + v_3 = 1$$
 for all $v \in V$,

(W2) for each $\{x,y\} \in E$ and each $z \in V \setminus \{x,y\}$



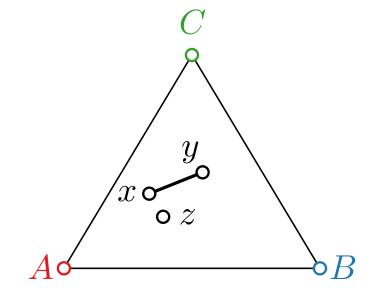
A weak barycentric representation of a graph G = (V, E) is an assignment of barycentric coordinates to V:

$$\phi\colon V\to\mathbb{R}^3_{\geq 0},v\mapsto (v_1,v_2,v_3)$$

with the following properties:

(W1)
$$v_1 + v_2 + v_3 = 1$$
 for all $v \in V$,

(W2) for each $\{x,y\} \in E$ and each $z \in V \setminus \{x,y\}$ there exists a $k \in \{1,2,3\}$ with $(x_k,x_{k+1}) <_{\text{lex}} (z_k,z_{k+1})$ and $(y_k,y_{k+1}) <_{\text{lex}} (z_k,z_{k+1})$.



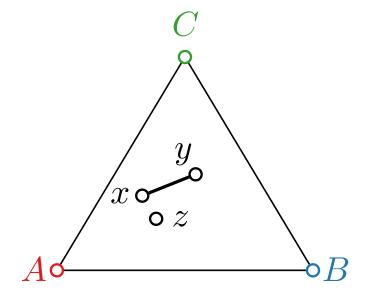
A weak barycentric representation of a graph G = (V, E) is an assignment of barycentric coordinates to V:

$$\phi\colon V\to\mathbb{R}^3_{\geq 0},v\mapsto (v_1,v_2,v_3)$$

with the following properties:

(W1)
$$v_1 + v_2 + v_3 = 1$$
 for all $v \in V$,

(W2) for each $\{x,y\} \in E$ and each $z \in V \setminus \{x,y\}$ there exists a $k \in \{1,2,3\}$ with $(x_k, x_{k+1}) <_{\text{lex}} (z_k, z_{k+1})$ and $(y_k, y_{k+1}) <_{\text{lex}} (z_k, z_{k+1})$.



i.e., either $y_k < z_k$ or $y_k = z_k$ and $y_{k+1} < z_{k+1}$

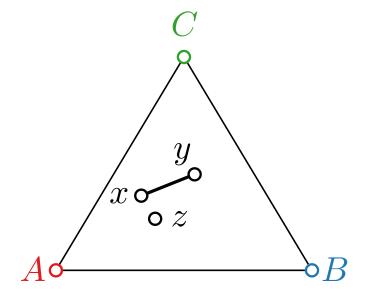
A weak barycentric representation of a graph G = (V, E) is an assignment of barycentric coordinates to V:

$$\phi\colon V\to\mathbb{R}^3_{\geq 0},v\mapsto (v_1,v_2,v_3)$$

with the following properties:

(W1)
$$v_1 + v_2 + v_3 = 1$$
 for all $v \in V$,

(W2) for each $\{x,y\} \in E$ and each $z \in V \setminus \{x,y\}$ there exists a $k \in \{1,2,3\}$ with $(x_k,x_{k+1}) <_{\text{lex}} (z_k,z_{k+1})$ and $(y_k,y_{k+1}) <_{\text{lex}} (z_k,z_{k+1})$.



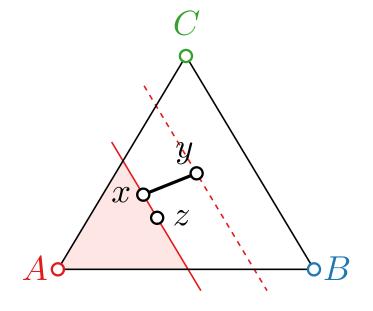
A weak barycentric representation of a graph G = (V, E) is an assignment of barycentric coordinates to V:

$$\phi\colon V\to\mathbb{R}^3_{\geq 0},v\mapsto (v_1,v_2,v_3)$$

with the following properties:

(W1)
$$v_1 + v_2 + v_3 = 1$$
 for all $v \in V$,

(W2) for each $\{x,y\} \in E$ and each $z \in V \setminus \{x,y\}$ there exists a $k \in \{1,2,3\}$ with $(x_k,x_{k+1}) <_{\text{lex}} (z_k,z_{k+1})$ and $(y_k,y_{k+1}) <_{\text{lex}} (z_k,z_{k+1})$.



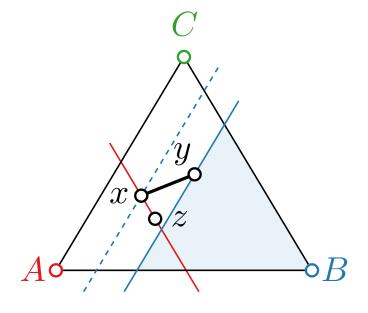
A weak barycentric representation of a graph G = (V, E) is an assignment of barycentric coordinates to V:

$$\phi\colon V\to\mathbb{R}^3_{\geq 0},v\mapsto (v_1,v_2,v_3)$$

with the following properties:

(W1)
$$v_1 + v_2 + v_3 = 1$$
 for all $v \in V$,

(W2) for each $\{x,y\} \in E$ and each $z \in V \setminus \{x,y\}$ there exists a $k \in \{1,2,3\}$ with $(x_k,x_{k+1}) <_{\text{lex}} (z_k,z_{k+1})$ and $(y_k,y_{k+1}) <_{\text{lex}} (z_k,z_{k+1})$.



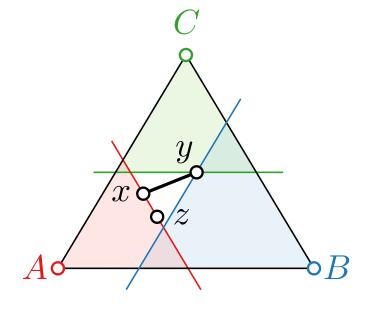
A weak barycentric representation of a graph G = (V, E) is an assignment of barycentric coordinates to V:

$$\phi\colon V\to\mathbb{R}^3_{\geq 0},v\mapsto (v_1,v_2,v_3)$$

with the following properties:

(W1)
$$v_1 + v_2 + v_3 = 1$$
 for all $v \in V$,

(W2) for each $\{x,y\} \in E$ and each $z \in V \setminus \{x,y\}$ there exists a $k \in \{1,2,3\}$ with $(x_k,x_{k+1}) <_{\text{lex}} (z_k,z_{k+1})$ and $(y_k,y_{k+1}) <_{\text{lex}} (z_k,z_{k+1})$.



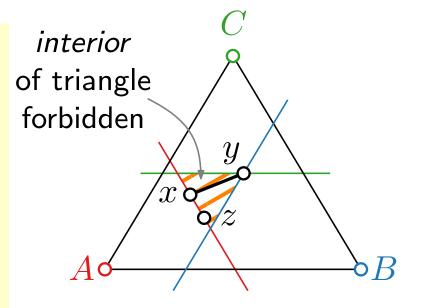
A weak barycentric representation of a graph G = (V, E) is an assignment of barycentric coordinates to V:

$$\phi\colon V\to\mathbb{R}^3_{\geq 0},v\mapsto (v_1,v_2,v_3)$$

with the following properties:

(W1)
$$v_1 + v_2 + v_3 = 1$$
 for all $v \in V$,

(W2) for each $\{x,y\} \in E$ and each $z \in V \setminus \{x,y\}$ there exists a $k \in \{1,2,3\}$ with $(x_k,x_{k+1}) <_{\text{lex}} (z_k,z_{k+1})$ and $(y_k,y_{k+1}) <_{\text{lex}} (z_k,z_{k+1})$.



i.e., either $y_k < z_k$ or $y_k = z_k$ and $y_{k+1} < z_{k+1}$

indices modulo 3

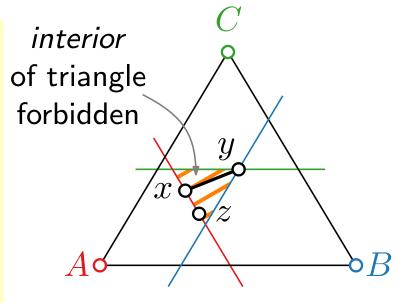
A weak barycentric representation of a graph G = (V, E) is an assignment of barycentric coordinates to V:

$$\phi\colon V\to\mathbb{R}^3_{\geq 0},v\mapsto (v_1,v_2,v_3)$$

with the following properties:

(W1)
$$v_1 + v_2 + v_3 = 1$$
 for all $v \in V$,

(W2) for each $\{x,y\} \in E$ and each $z \in V \setminus \{x,y\}$ there exists a $k \in \{1,2,3\}$ with $(x_k,x_{k+1}) <_{\text{lex}} (z_k,z_{k+1})$ and $(y_k,y_{k+1}) <_{\text{lex}} (z_k,z_{k+1})$.



i.e., either $y_k < z_k$ or $y_k = z_k$ and $y_{k+1} < z_{k+1}$

indices modulo 3

Lemma.

For a weak barycentric representation $\phi: v \mapsto (v_1, v_2, v_3)$ and a triangle $\triangle ABC$, the mapping

$$f \colon v \in V \mapsto v_1 A + v_2 B + v_3 C$$

yields a planar drawing of G inside $\triangle ABC$.

A weak barycentric representation of a graph G = (V, E) is an assignment of barycentric coordinates to V:

$$\phi\colon V\to\mathbb{R}^3_{\geq 0},v\mapsto (v_1,v_2,v_3)$$

with the following properties:

(W1)
$$v_1 + v_2 + v_3 = 1$$
 for all $v \in V$,

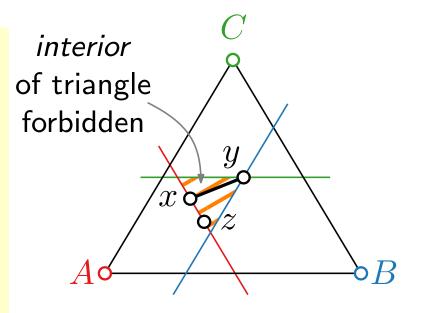
(W2) for each $\{x,y\} \in E$ and each $z \in V \setminus \{x,y\}$ there exists a $k \in \{1,2,3\}$ with $(x_k,x_{k+1}) <_{\text{lex}} (z_k,z_{k+1})$ and $(y_k,y_{k+1}) <_{\text{lex}} (z_k,z_{k+1})$.

Lemma.

For a weak barycentric representation $\phi: v \mapsto (v_1, v_2, v_3)$ and a triangle $\triangle ABC$, the mapping

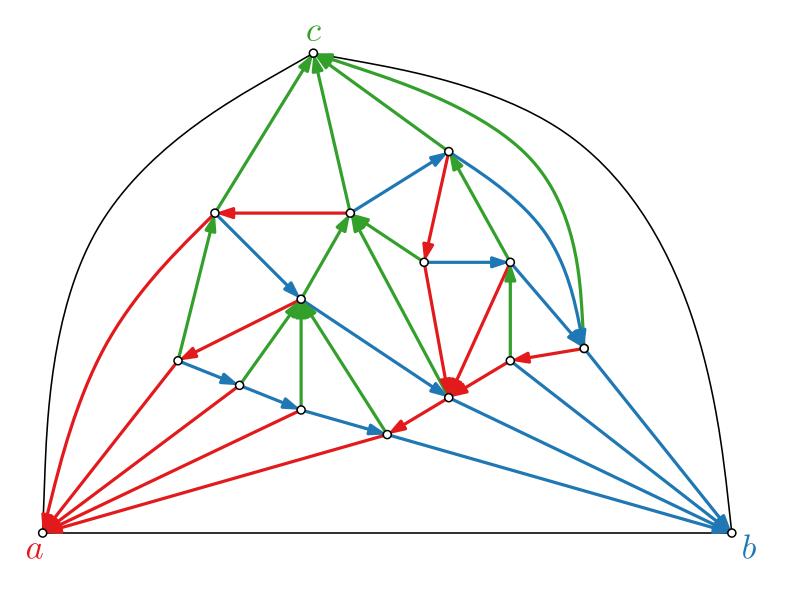
$$f \colon v \in V \mapsto v_1 A + v_2 B + v_3 C$$

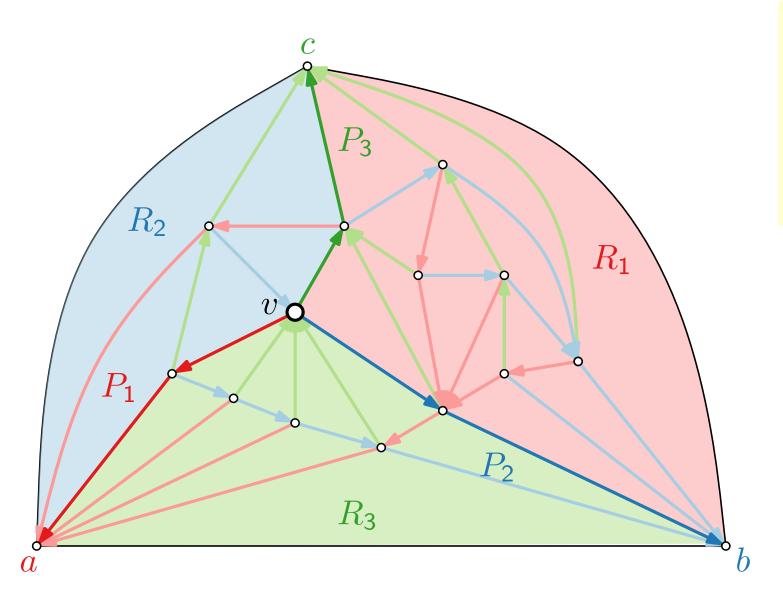
yields a planar drawing of G inside $\triangle ABC$.



i.e., either $y_k < z_k$ or $y_k = z_k$ and $y_{k+1} < z_{k+1}$ indices modulo 3

Proof. \rightarrow *Exercise!*

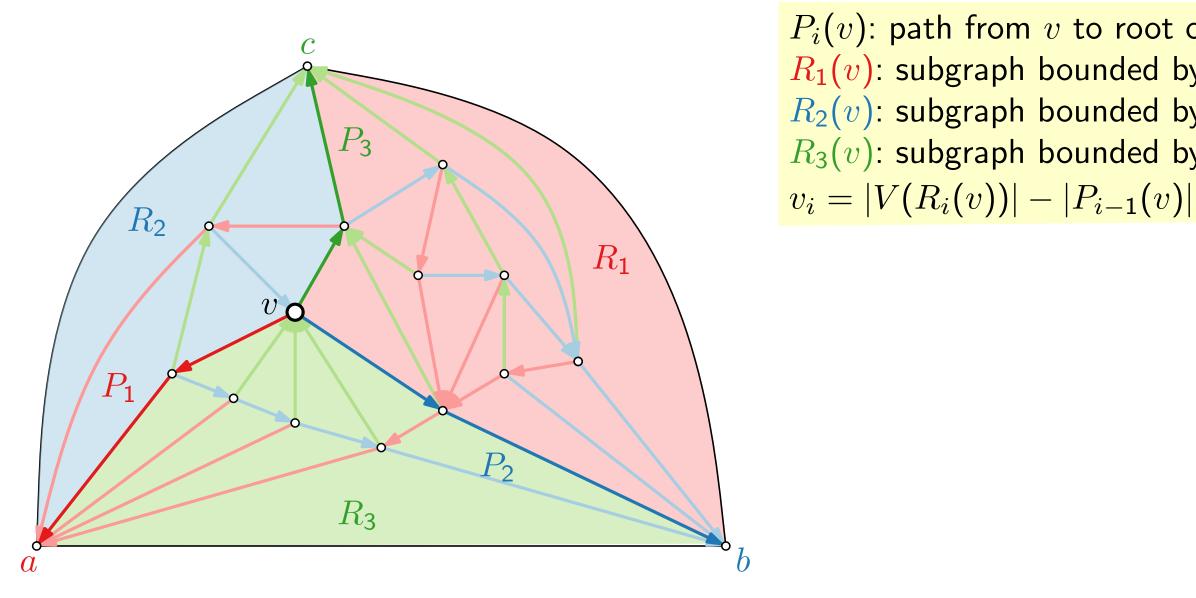




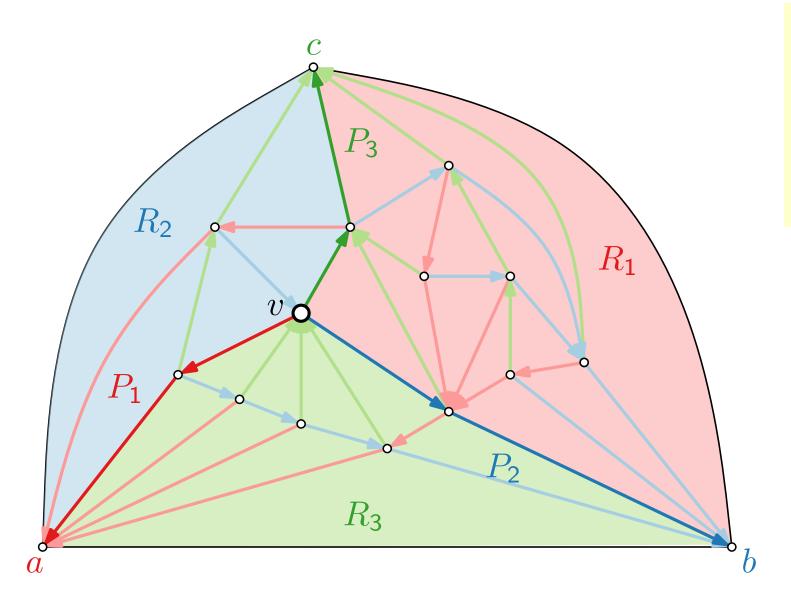
 $P_i(v)$: path from v to root of T_i .

 $R_1(v)$: subgraph bounded by P_2, bc, P_3 .

 $R_2(v)$: subgraph bounded by P_3, ca, P_1 .



 $P_i(v)$: path from v to root of T_i . $R_1(v)$: subgraph bounded by P_2, bc, P_3 . $R_2(v)$: subgraph bounded by P_3, ca, P_1 . $R_3(v)$: subgraph bounded by P_1, ab, P_2 .



```
P_i(v): path from v to root of T_i.

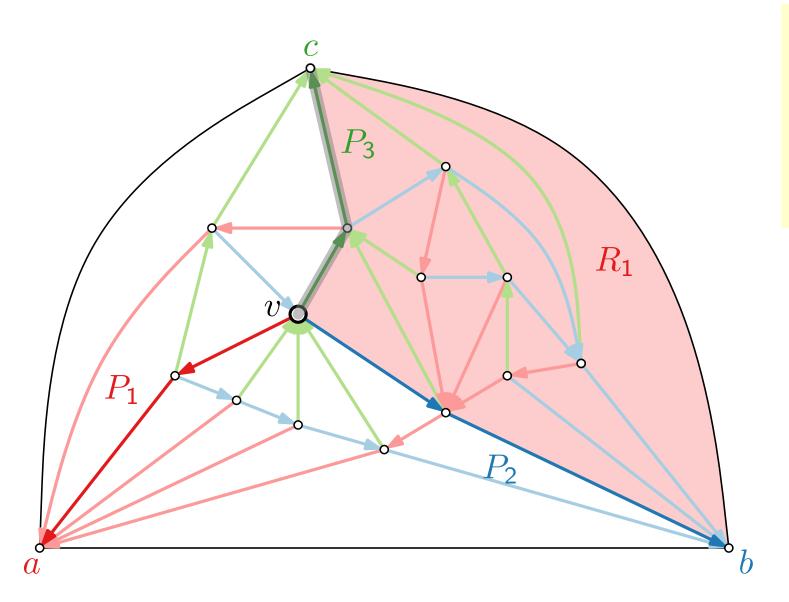
R_1(v): subgraph bounded by P_2, bc, P_3.

R_2(v): subgraph bounded by P_3, ca, P_1.

R_3(v): subgraph bounded by P_1, ab, P_2.

v_i = |V(R_i(v))| - |P_{i-1}(v)|
```

 $v_1 =$



```
P_i(v): path from v to root of T_i.

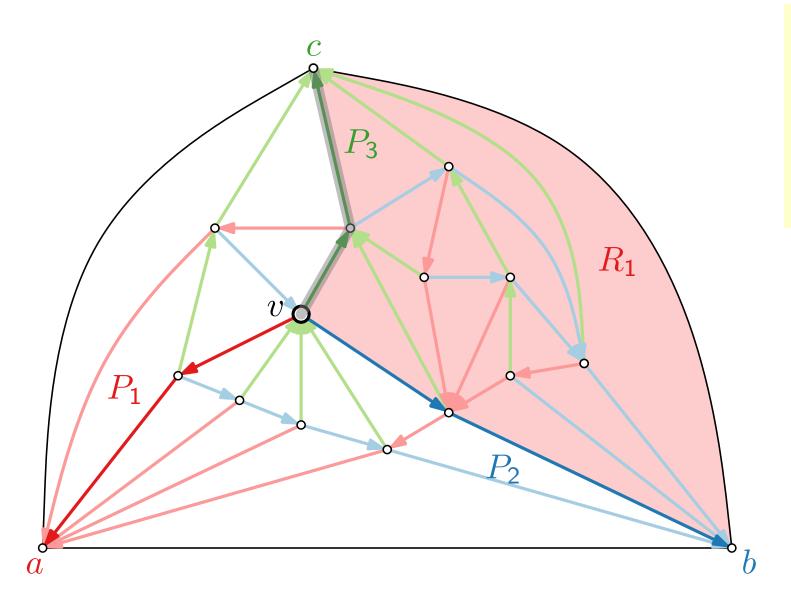
R_1(v): subgraph bounded by P_2, bc, P_3.

R_2(v): subgraph bounded by P_3, ca, P_1.

R_3(v): subgraph bounded by P_1, ab, P_2.

v_i = |V(R_i(v))| - |P_{i-1}(v)|
```

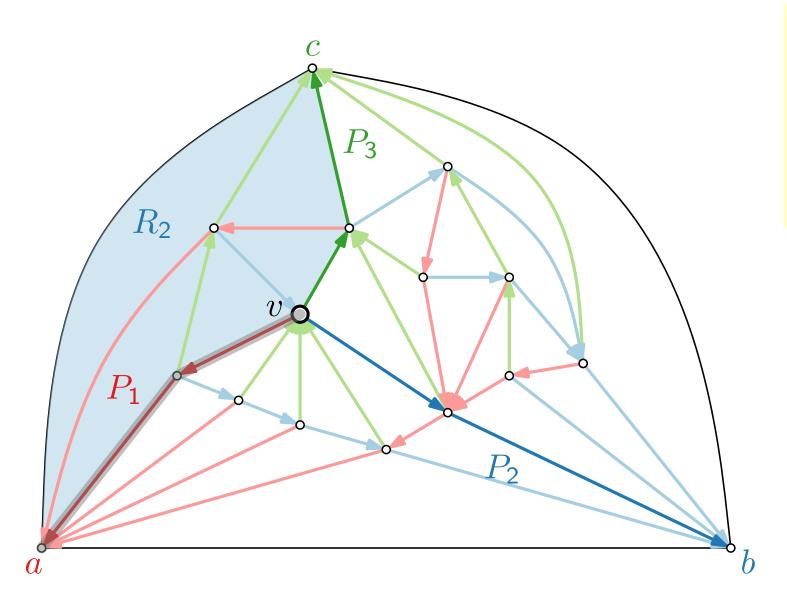
 $v_1 =$



 $P_i(v)$: path from v to root of T_i . $R_1(v)$: subgraph bounded by P_2, bc, P_3 . $R_2(v)$: subgraph bounded by P_3, ca, P_1 . $R_3(v)$: subgraph bounded by P_1, ab, P_2 .

$$v_i = |V(R_i(v))| - |P_{i-1}(v)|$$

$$v_1 = 10 - 3 = 7$$

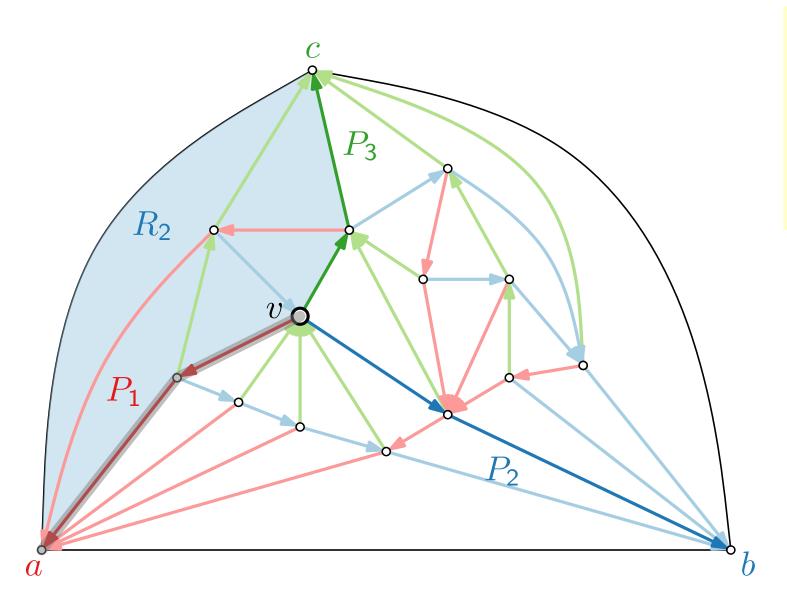


 $P_i(v)$: path from v to root of T_i . $R_1(v)$: subgraph bounded by P_2, bc, P_3 . $R_2(v)$: subgraph bounded by P_3, ca, P_1 .

$$v_i = |V(R_i(v))| - |P_{i-1}(v)|$$

$$v_1 = 10 - 3 = 7$$

$$v_2 =$$



 $P_i(v)$: path from v to root of T_i .

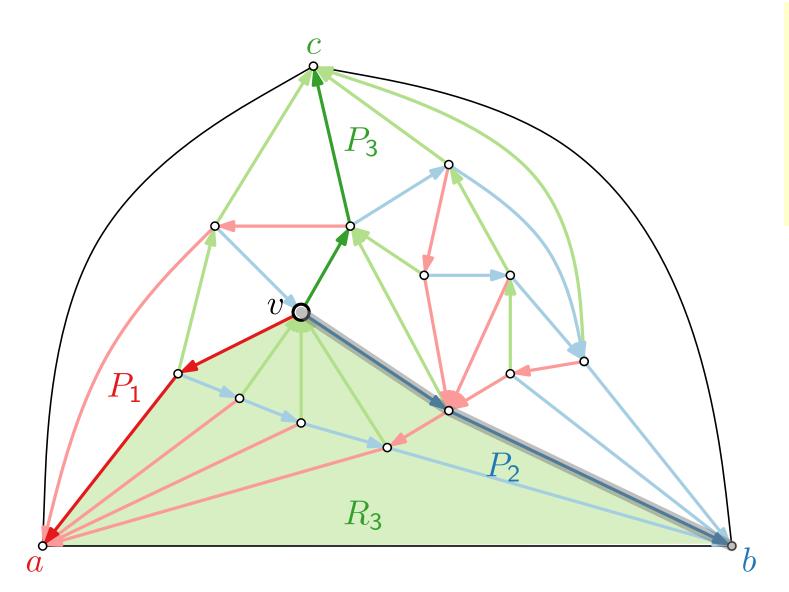
 $R_1(v)$: subgraph bounded by P_2, bc, P_3 .

 $R_2(v)$: subgraph bounded by P_3, ca, P_1 .

$$v_i = |V(R_i(v))| - |P_{i-1}(v)|$$

$$v_1 = 10 - 3 = 7$$

$$v_2 = 6 - 3 = 3$$



 $P_i(v)$: path from v to root of T_i .

 $R_1(v)$: subgraph bounded by P_2, bc, P_3 .

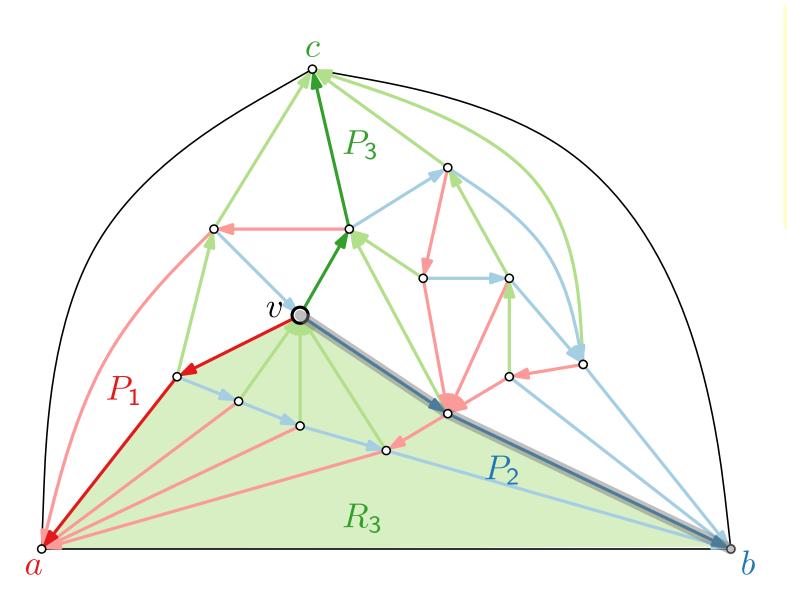
 $R_2(v)$: subgraph bounded by P_3, ca, P_1 .

$$v_i = |V(R_i(v))| - |P_{i-1}(v)|$$

$$v_1 = 10 - 3 = 7$$

$$v_2 = 6 - 3 = 3$$

$$v_3 =$$



 $P_i(v)$: path from v to root of T_i .

 $R_1(v)$: subgraph bounded by P_2, bc, P_3 .

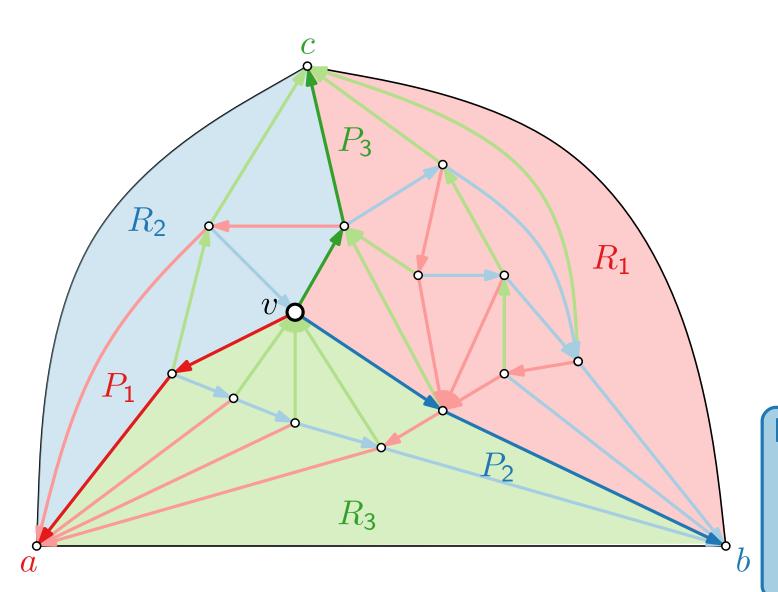
 $R_2(v)$: subgraph bounded by P_3, ca, P_1 .

$$v_i = |V(R_i(v))| - |P_{i-1}(v)|$$

$$v_1 = 10 - 3 = 7$$

$$v_2 = 6 - 3 = 3$$

$$v_3 = 8 - 3 = 5$$



 $P_i(v)$: path from v to root of T_i . $R_1(v)$: subgraph bounded by P_2, bc, P_3 . $R_2(v)$: subgraph bounded by P_3, ca, P_1 .

 $R_3(v)$: subgraph bounded by P_1, ab, P_2 .

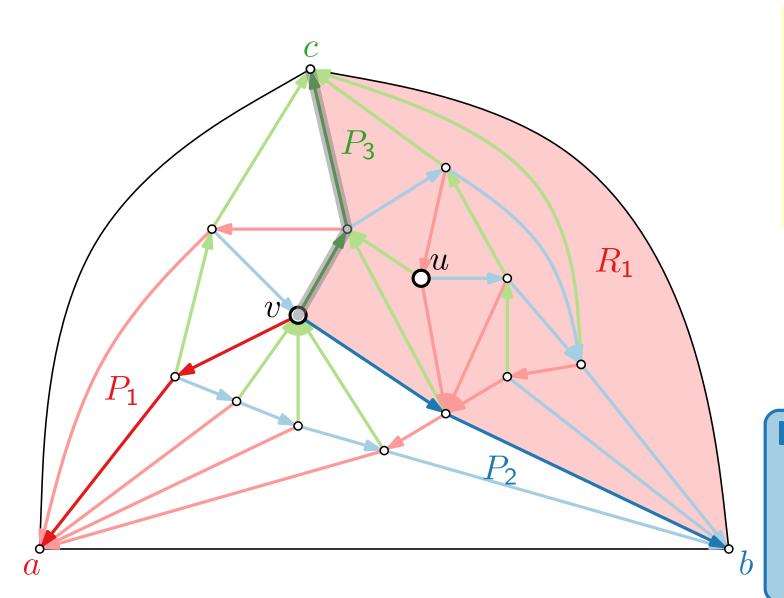
$$v_i = |V(R_i(v))| - |P_{i-1}(v)|$$

$$v_1 = 10 - 3 = 7$$

$$v_2 = 6 - 3 = 3$$

$$v_3 = 8 - 3 = 5$$

Lemma.



 $P_i(v)$: path from v to root of T_i . $R_1(v)$: subgraph bounded by P_2, bc, P_3 .

 $R_2(v)$: subgraph bounded by P_3, ca, P_1 .

 $R_3(v)$: subgraph bounded by P_1, ab, P_2 .

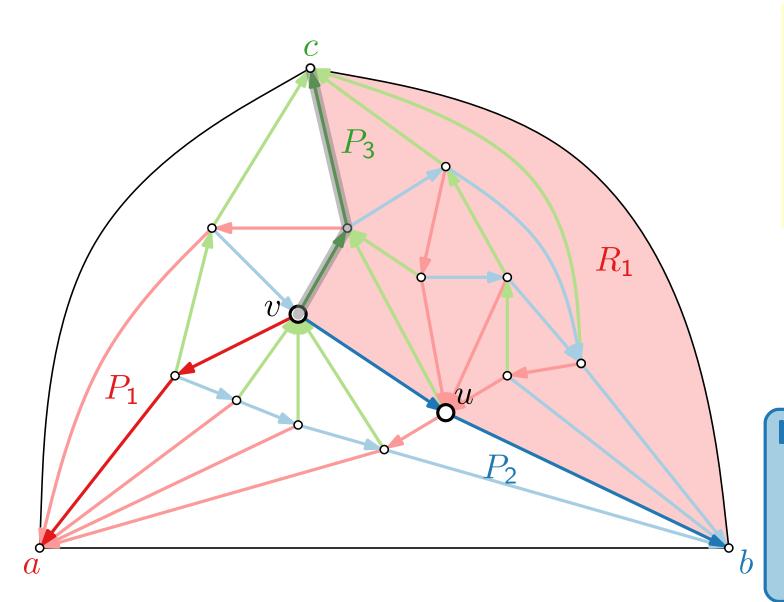
$$v_i = |V(R_i(v))| - |P_{i-1}(v)|$$

$$v_1 = 10 - 3 = 7$$

$$v_2 = 6 - 3 = 3$$

$$v_3 = 8 - 3 = 5$$

Lemma.



 $P_i(v)$: path from v to root of T_i . $R_1(v)$: subgraph bounded by P_2, bc, P_3 .

 $R_2(v)$: subgraph bounded by P_3, ca, P_1 .

 $R_3(v)$: subgraph bounded by P_1, ab, P_2 .

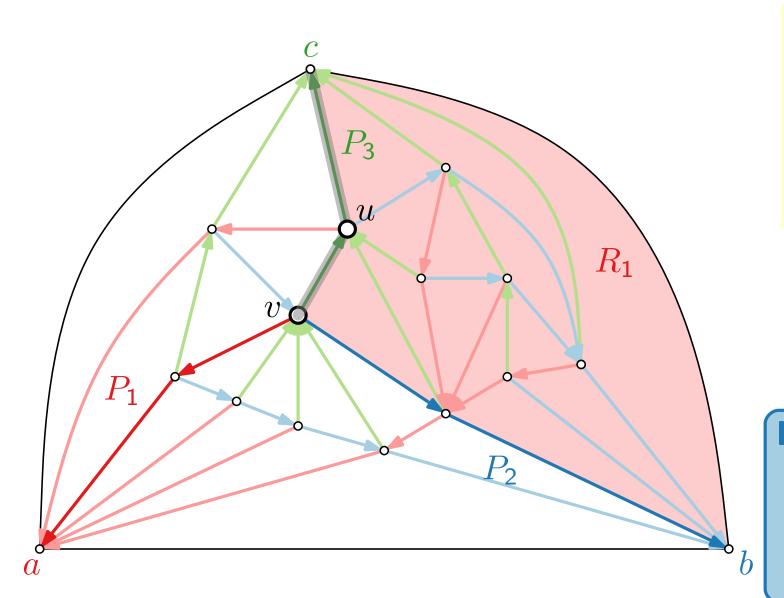
$$v_i = |V(R_i(v))| - |P_{i-1}(v)|$$

$$v_1 = 10 - 3 = 7$$

$$v_2 = 6 - 3 = 3$$

$$v_3 = 8 - 3 = 5$$

Lemma.



 $P_i(v)$: path from v to root of T_i .

 $R_1(v)$: subgraph bounded by P_2, bc, P_3 .

 $R_2(v)$: subgraph bounded by P_3, ca, P_1 .

 $R_3(v)$: subgraph bounded by P_1, ab, P_2 .

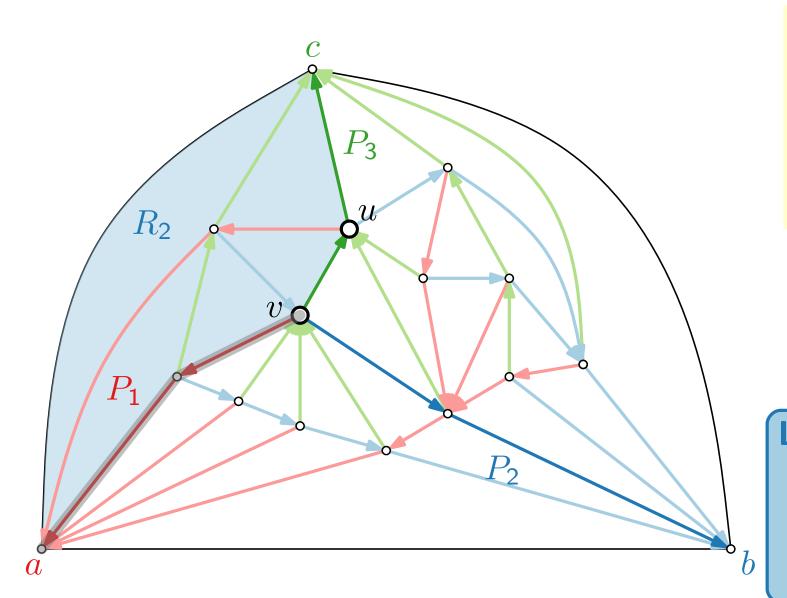
$$v_i = |V(R_i(v))| - |P_{i-1}(v)|$$

$$v_1 = 10 - 3 = 7$$

$$v_2 = 6 - 3 = 3$$

$$v_3 = 8 - 3 = 5$$

Lemma.



 $P_i(v)$: path from v to root of T_i .

 $R_1(v)$: subgraph bounded by P_2, bc, P_3 .

 $R_2(v)$: subgraph bounded by P_3, ca, P_1 .

 $R_3(v)$: subgraph bounded by P_1, ab, P_2 .

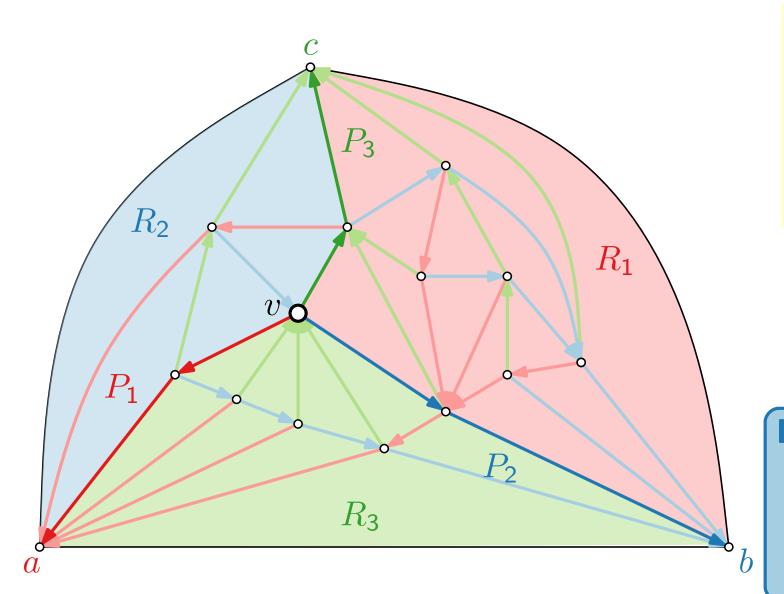
$$v_i = |V(R_i(v))| - |P_{i-1}(v)|$$

$$v_1 = 10 - 3 = 7$$

$$v_2 = 6 - 3 = 3$$

$$v_3 = 8 - 3 = 5$$

Lemma.



 $P_i(v)$: path from v to root of T_i . $R_1(v)$: subgraph bounded by P_2, bc, P_3 .

 $R_2(v)$: subgraph bounded by P_3, ca, P_1 .

 $R_3(v)$: subgraph bounded by P_1, ab, P_2 .

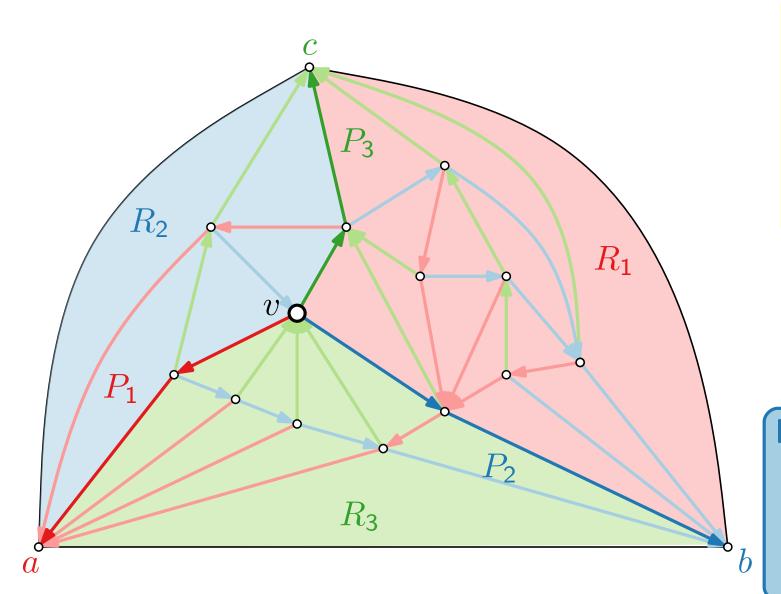
$$v_i = |V(R_i(v))| - |P_{i-1}(v)|$$

$$v_1 = 10 - 3 = 7$$

$$v_2 = 6 - 3 = 3$$

$$v_3 = 8 - 3 = 5$$

- For inner vertices $u \neq v$ it holds that $u \in R_i(v) \Rightarrow (u_i, u_{i+1}) <_{\text{lex}} (v_i, v_{i+1})$.
- $v_1 + v_2 + v_3 =$



 $P_i(v)$: path from v to root of T_i .

 $R_1(v)$: subgraph bounded by P_2, bc, P_3 .

 $R_2(v)$: subgraph bounded by P_3, ca, P_1 .

 $R_3(v)$: subgraph bounded by P_1, ab, P_2 .

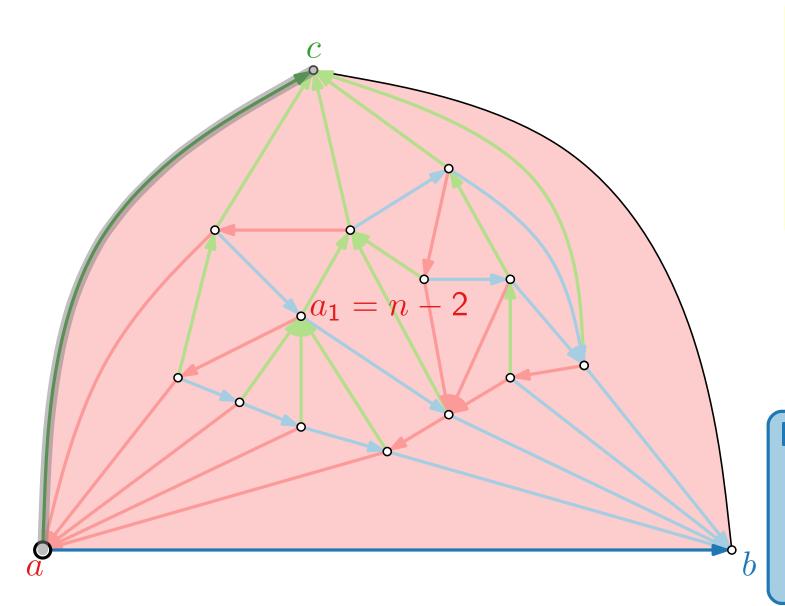
$$v_i = |V(R_i(v))| - |P_{i-1}(v)|$$

$$v_1 = 10 - 3 = 7$$

$$v_2 = 6 - 3 = 3$$

$$v_3 = 8 - 3 = 5$$

- For inner vertices $u \neq v$ it holds that $u \in R_i(v) \Rightarrow (u_i, u_{i+1}) <_{\text{lex}} (v_i, v_{i+1})$.
- $v_1 + v_2 + v_3 = n 1$



 $P_i(v)$: path from v to root of T_i .

 $R_1(v)$: subgraph bounded by P_2, bc, P_3 .

 $R_2(v)$: subgraph bounded by P_3, ca, P_1 .

 $R_3(v)$: subgraph bounded by P_1, ab, P_2 .

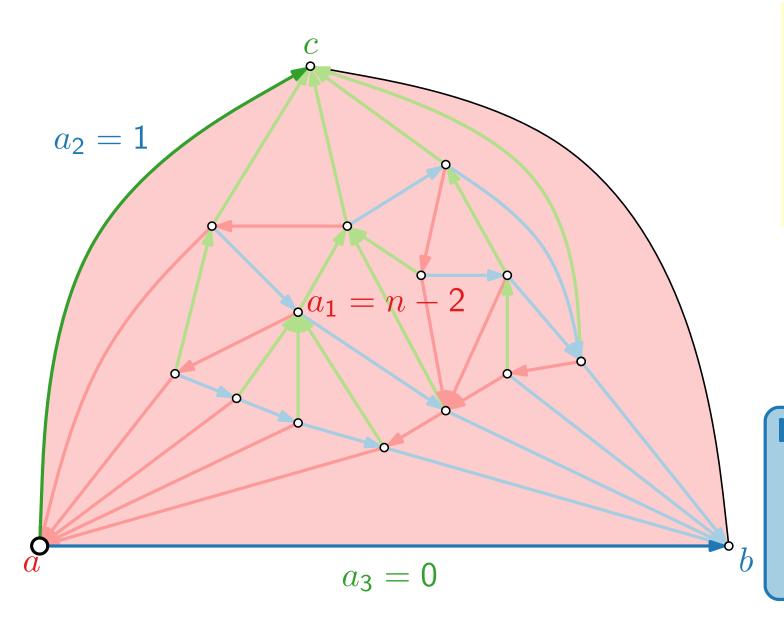
$$v_i = |V(R_i(v))| - |P_{i-1}(v)|$$

$$v_1 = 10 - 3 = 7$$

$$v_2 = 6 - 3 = 3$$

$$v_3 = 8 - 3 = 5$$

- For inner vertices $u \neq v$ it holds that $u \in R_i(v) \Rightarrow (u_i, u_{i+1}) <_{\text{lex}} (v_i, v_{i+1})$.
- $v_1 + v_2 + v_3 = n 1$



 $P_i(v)$: path from v to root of T_i .

 $R_1(v)$: subgraph bounded by P_2, bc, P_3 .

 $R_2(v)$: subgraph bounded by P_3, ca, P_1 .

 $R_3(v)$: subgraph bounded by P_1, ab, P_2 .

$$v_i = |V(R_i(v))| - |P_{i-1}(v)|$$

$$v_1 = 10 - 3 = 7$$

$$v_2 = 6 - 3 = 3$$

$$v_3 = 8 - 3 = 5$$

- For inner vertices $u \neq v$ it holds that $u \in R_i(v) \Rightarrow (u_i, u_{i+1}) <_{\text{lex}} (v_i, v_{i+1})$.
- $v_1 + v_2 + v_3 = n 1$

Schnyder Drawing*

Set
$$A = (0,0)$$
, $B = (n-1,0)$, and $C = (0, n-1)$.

Theorem.

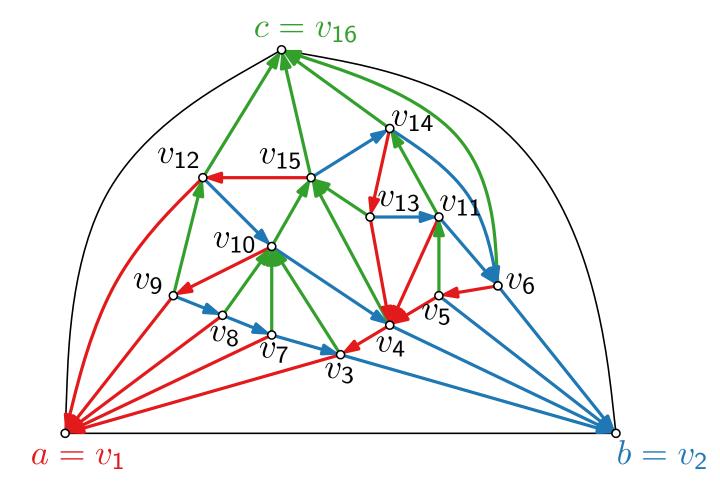
[Schnyder '90]

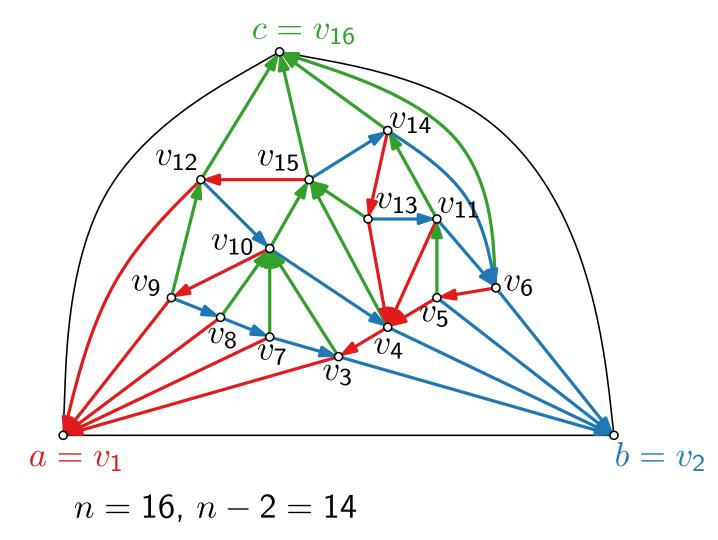
For a plane triangulation G, the mapping

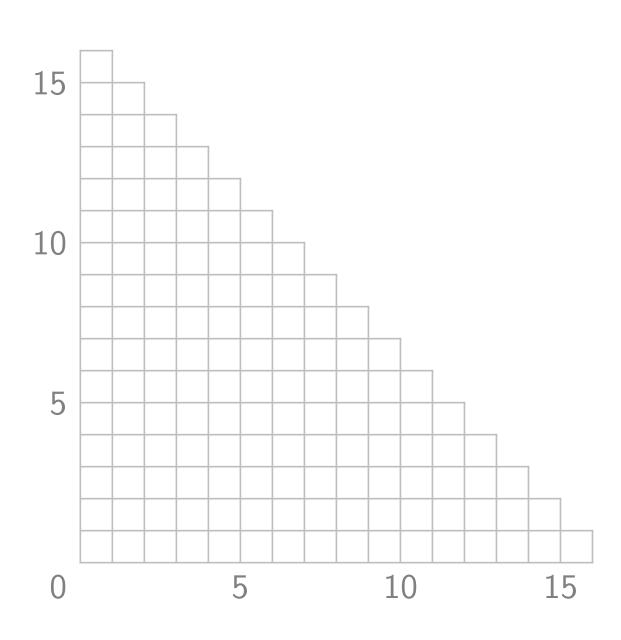
$$f: v \mapsto \frac{1}{n-1}(v_1, v_2, v_3)$$

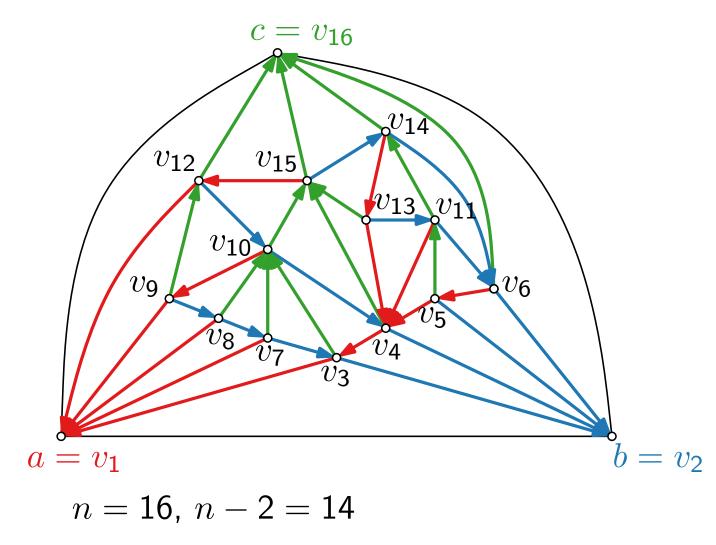
is a barycentric representation of G and, thus, yields a planar straight-line drawing of G on the $(n-2)\times(n-2)$ grid.

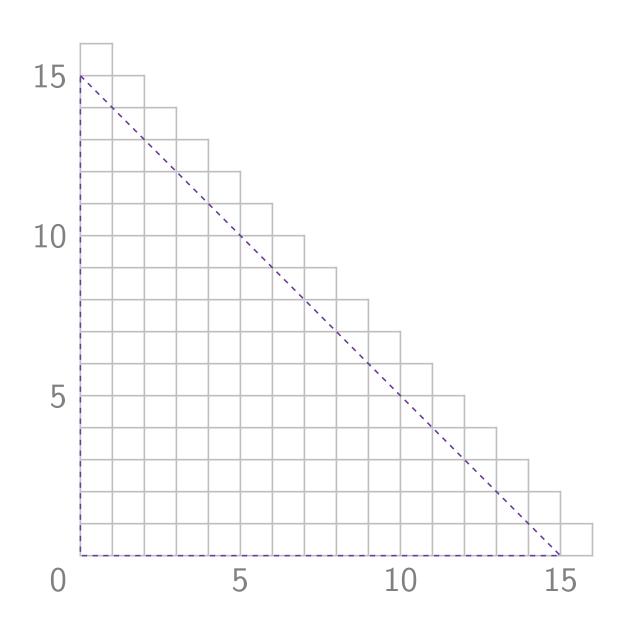
Schnyder Drawing* – Example

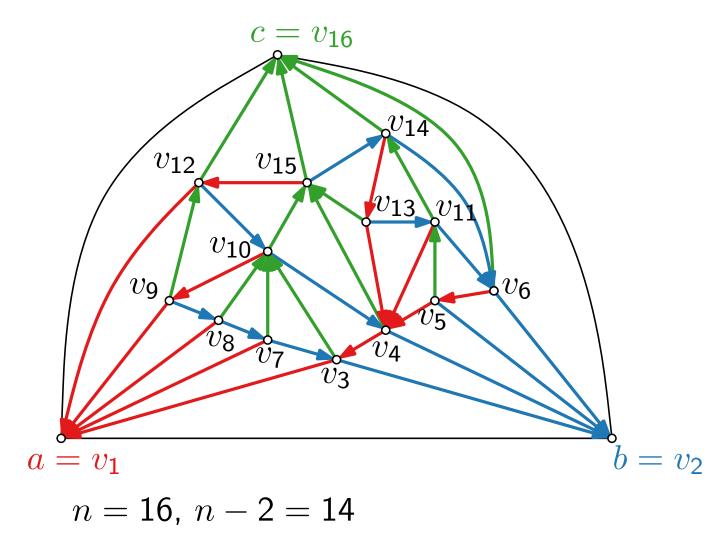


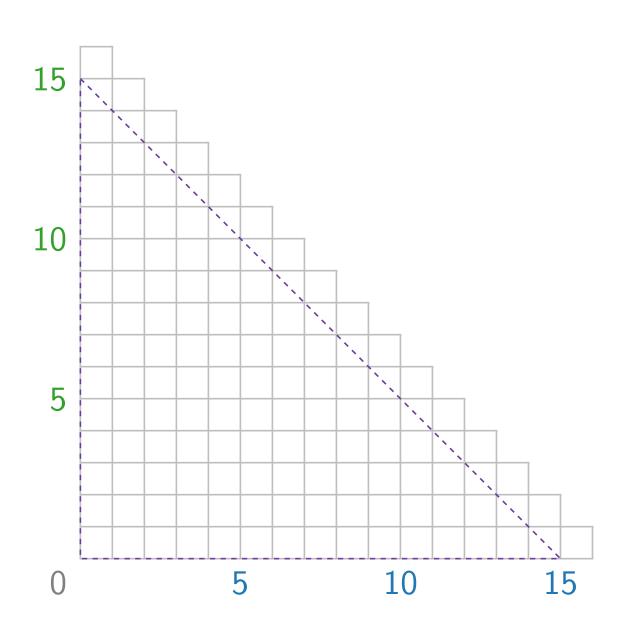


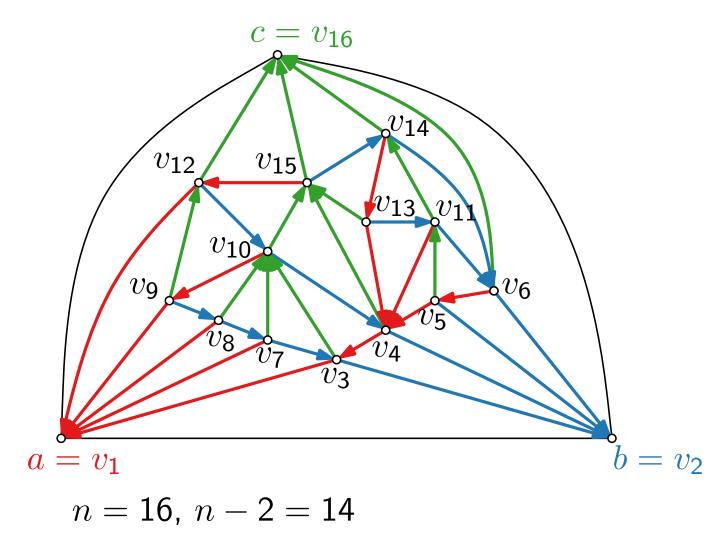


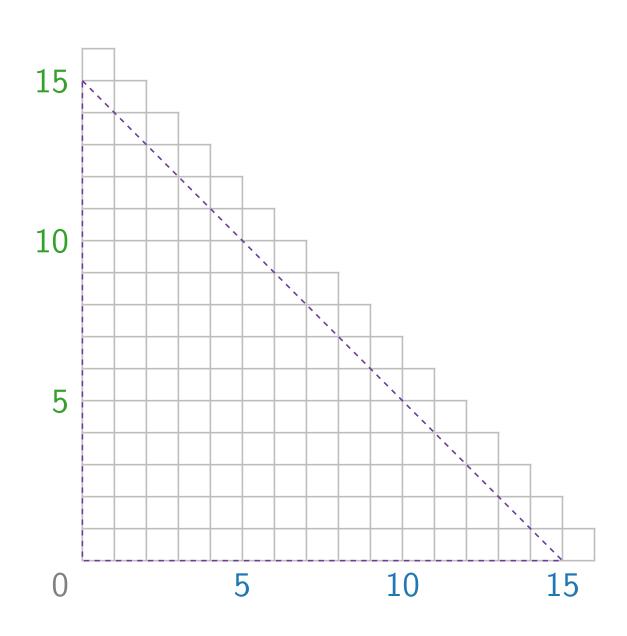


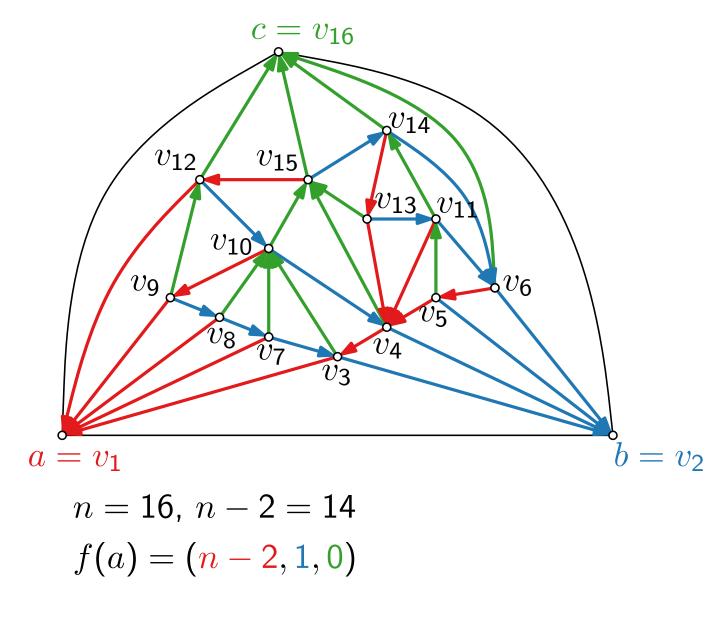


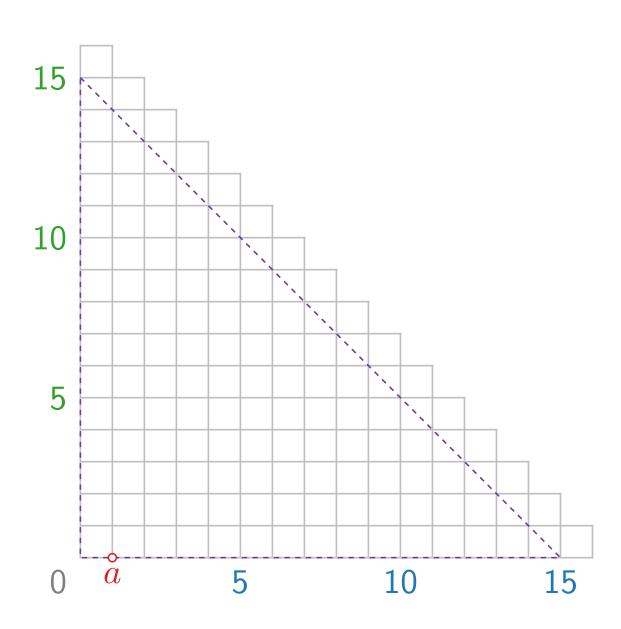


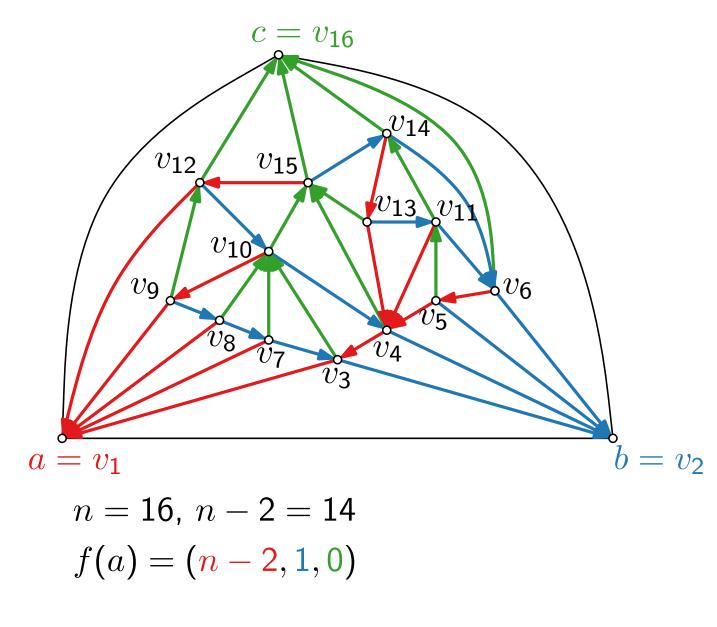


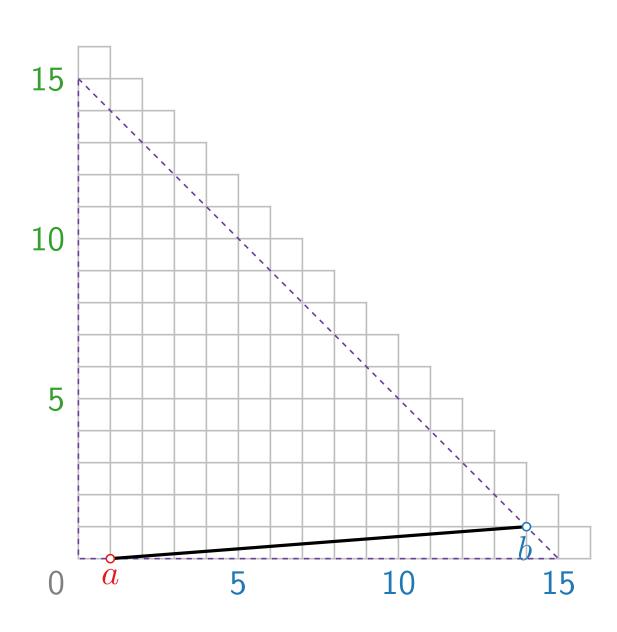


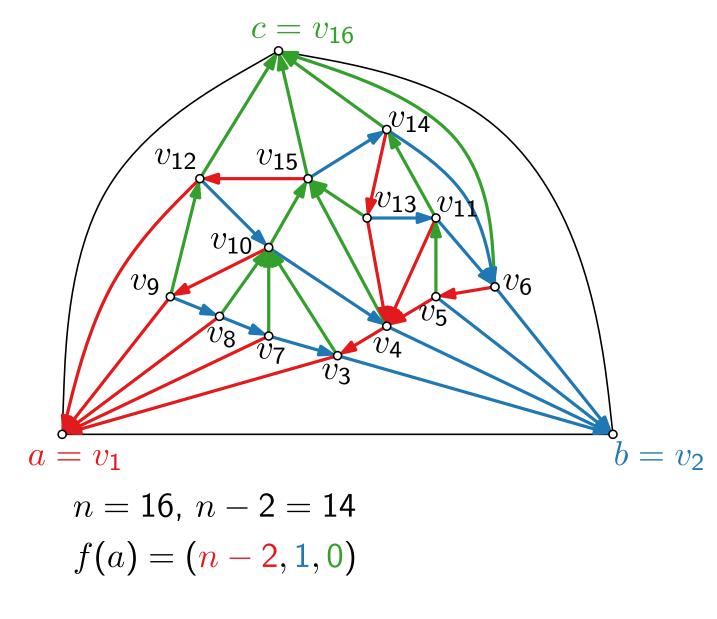


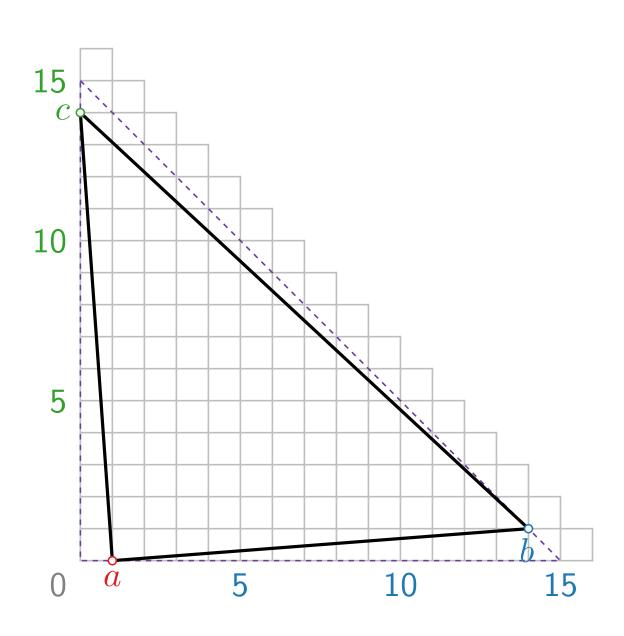


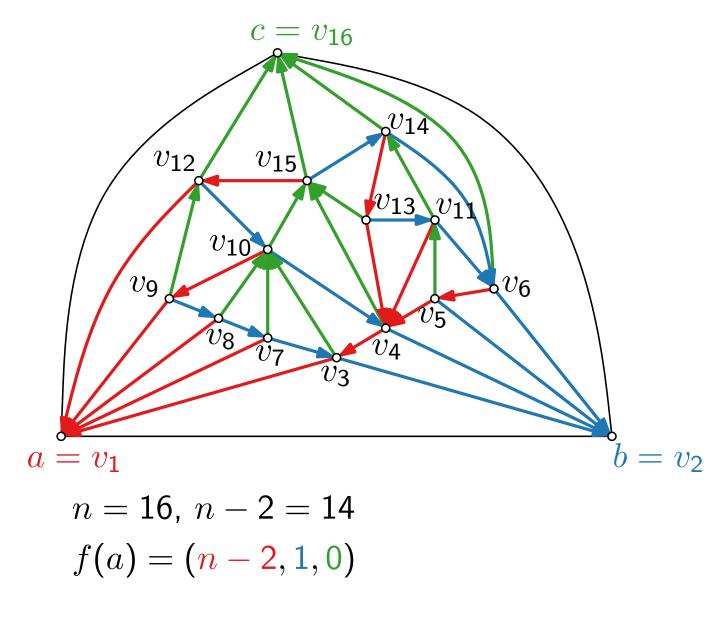


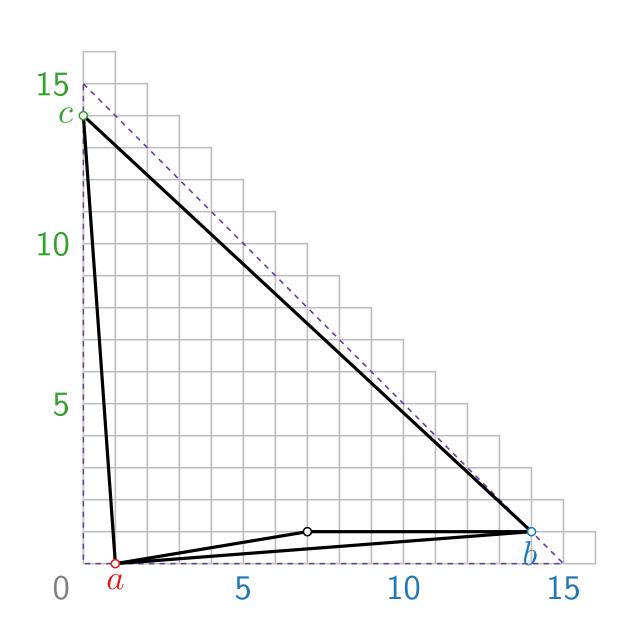


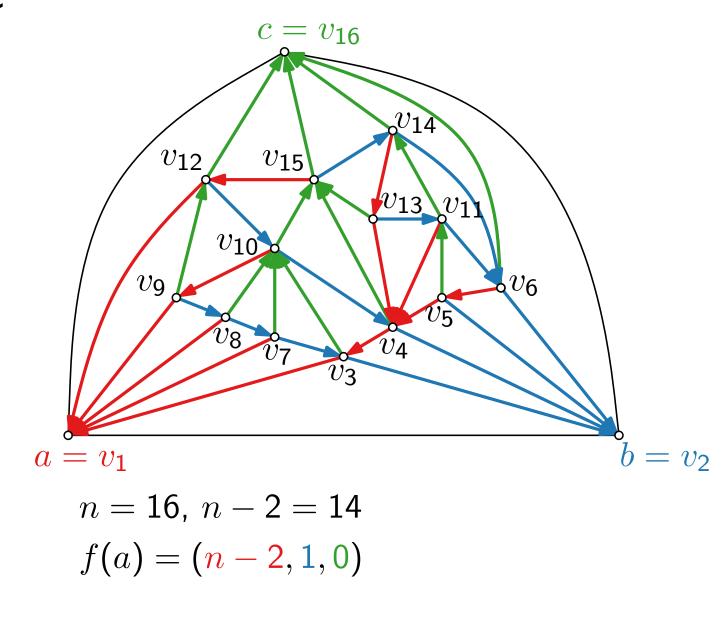


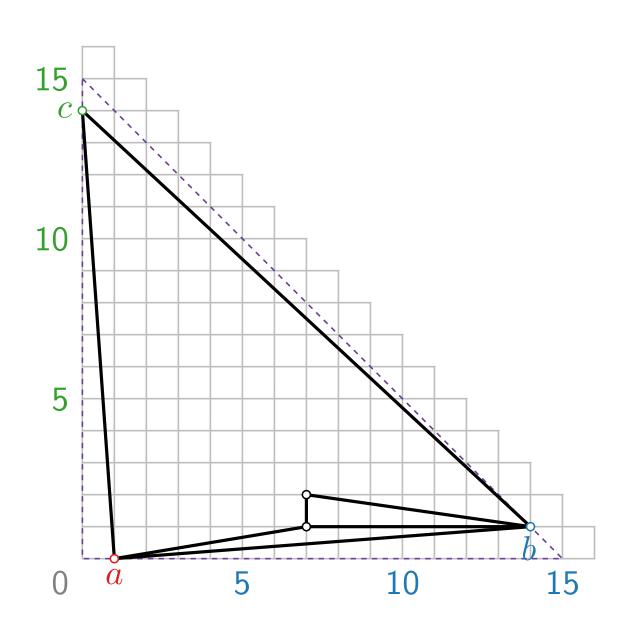


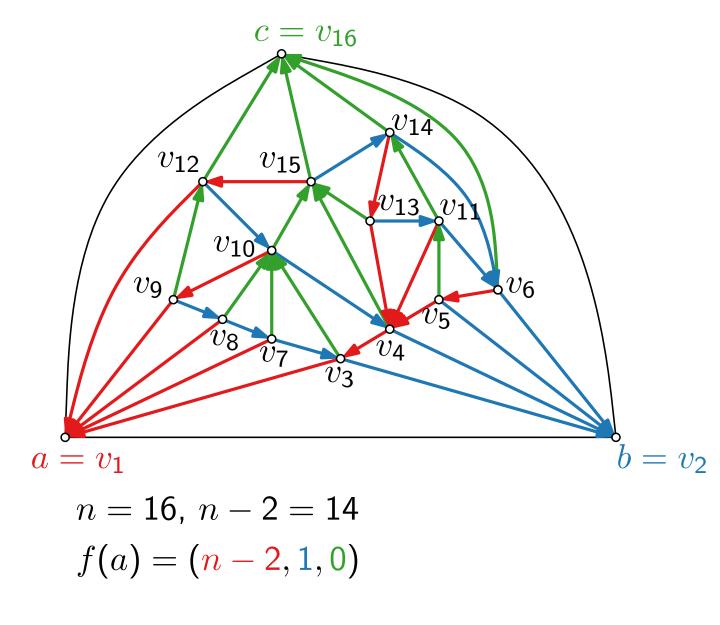


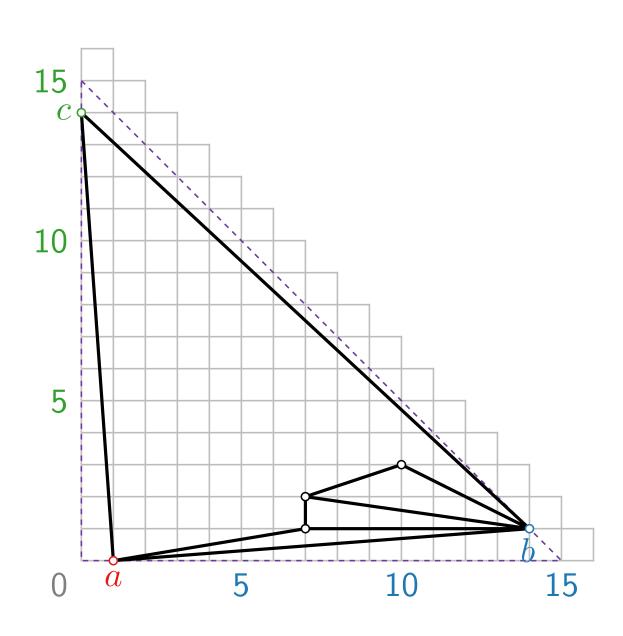


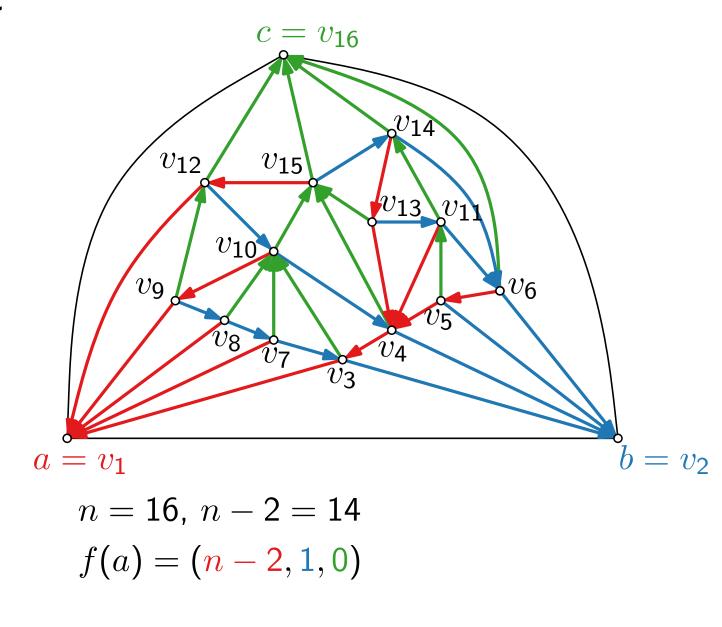


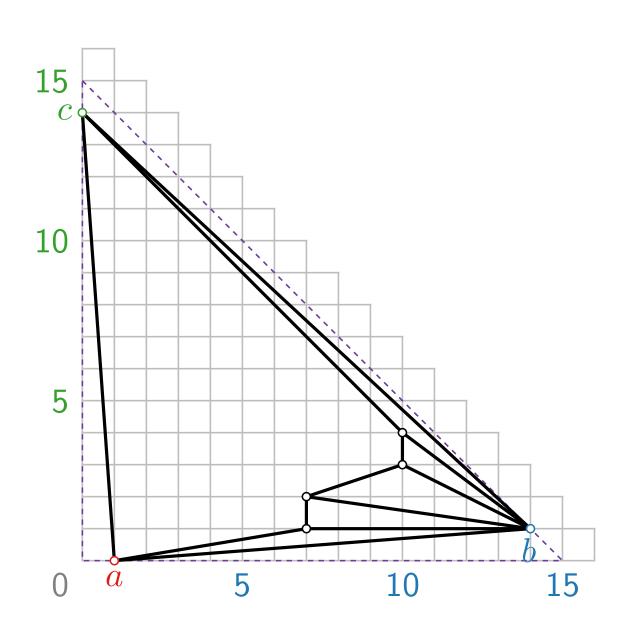


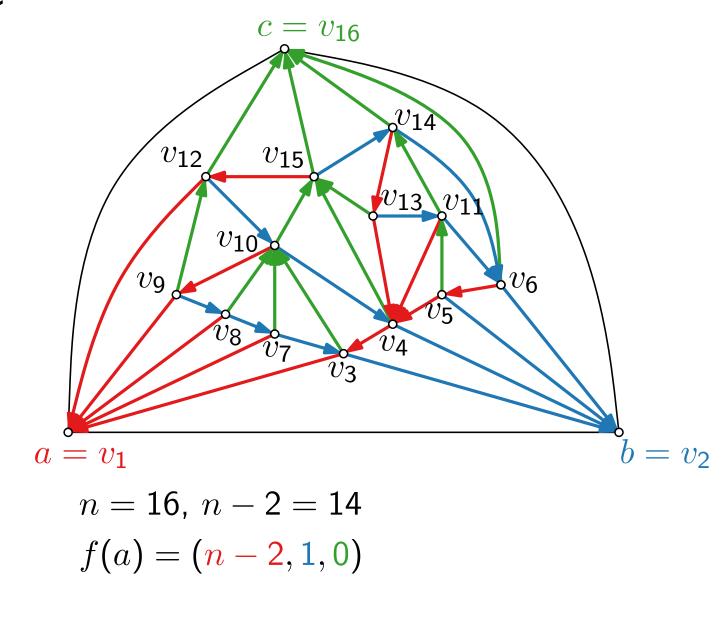


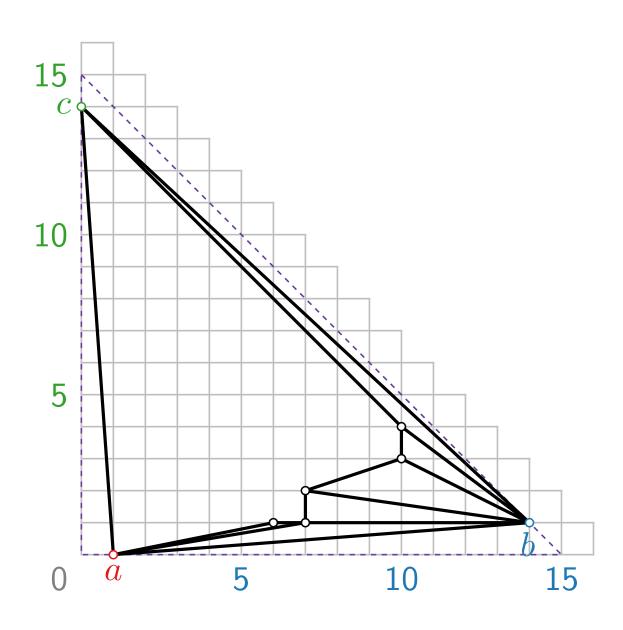


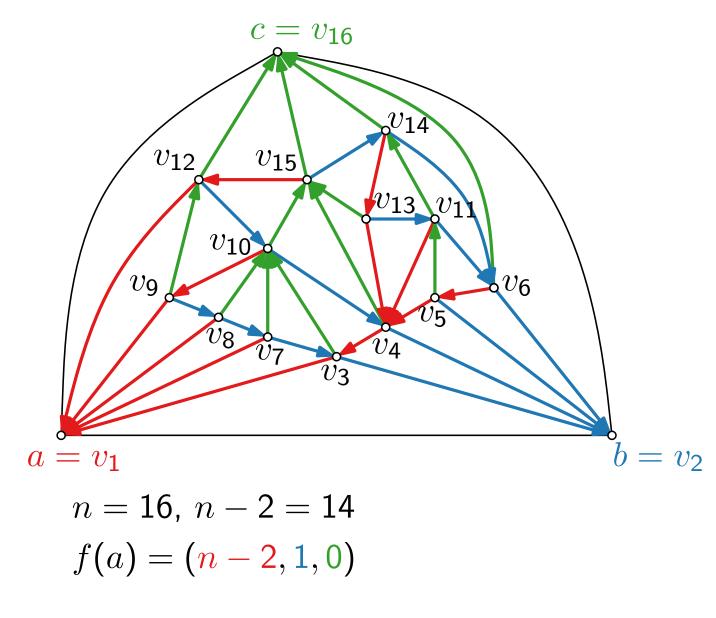


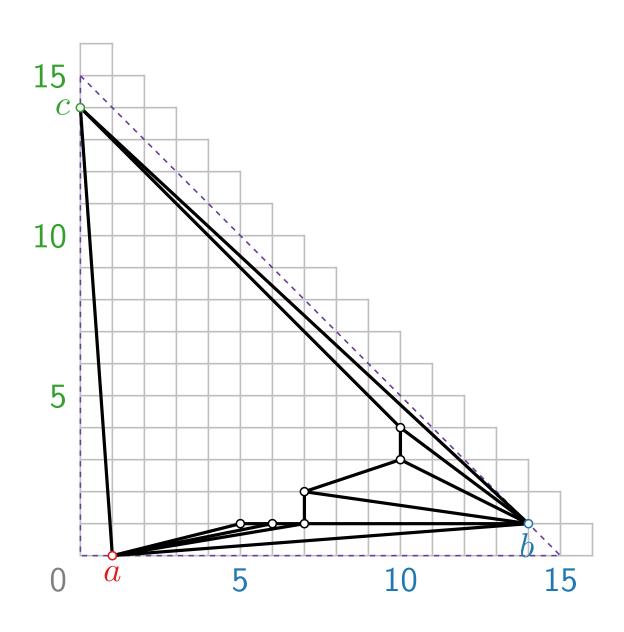


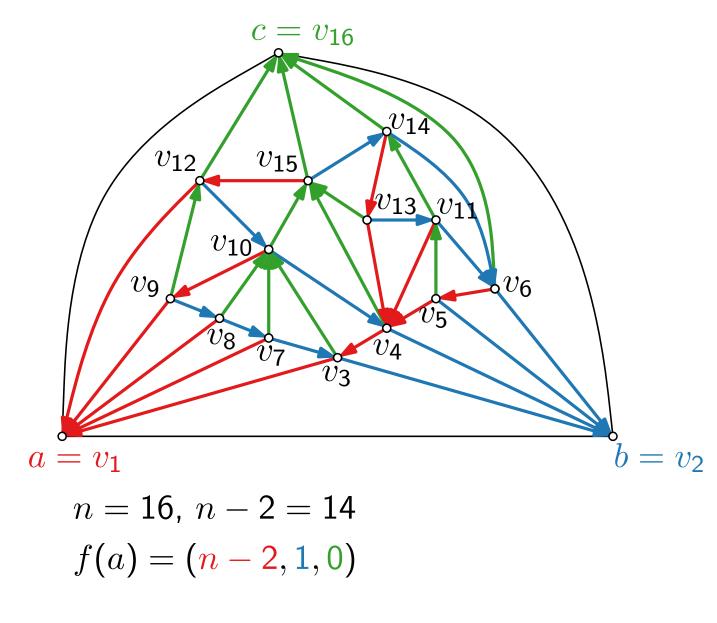


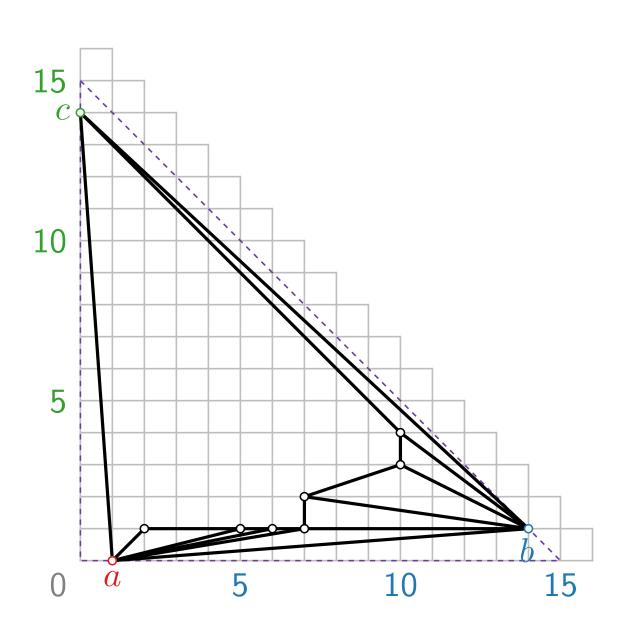


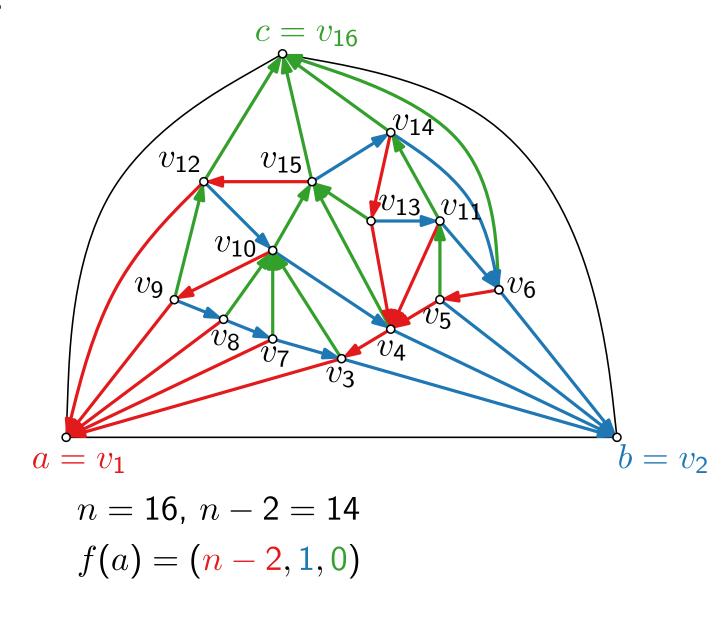


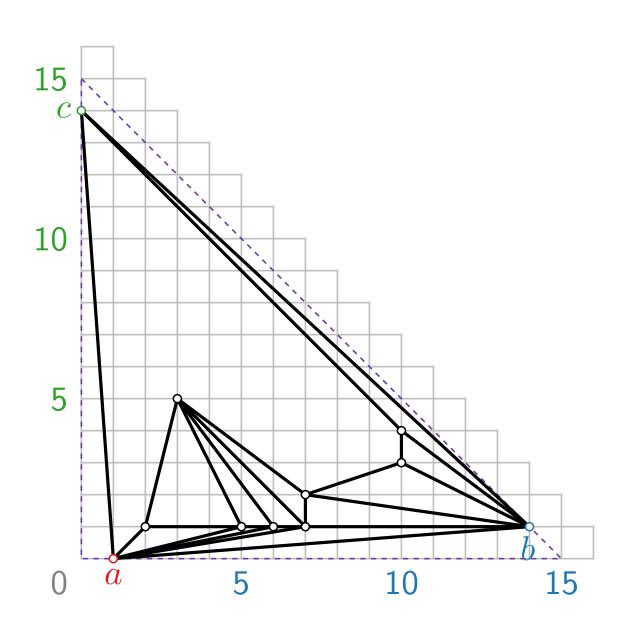


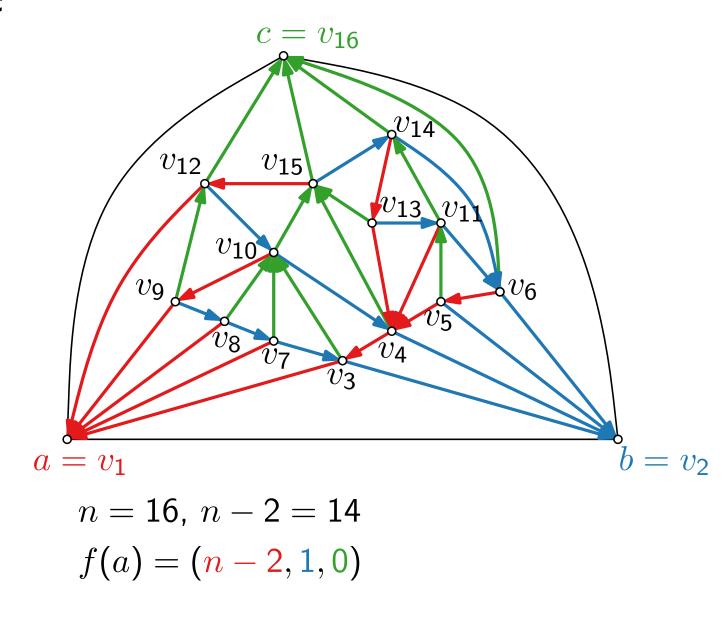


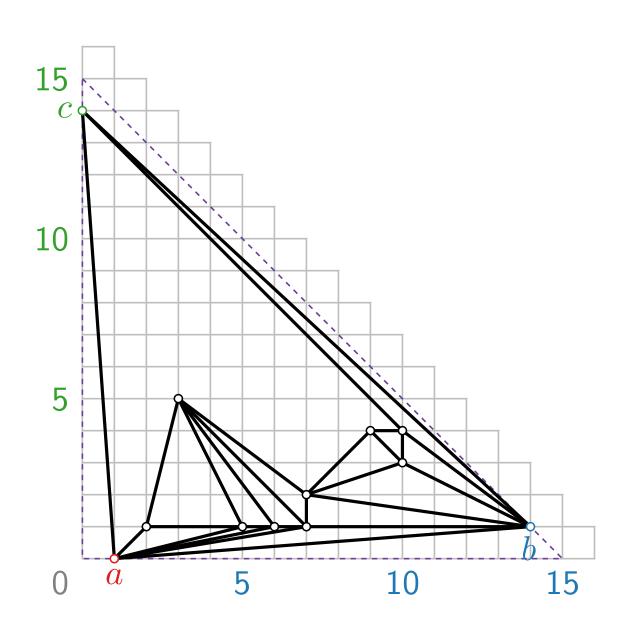


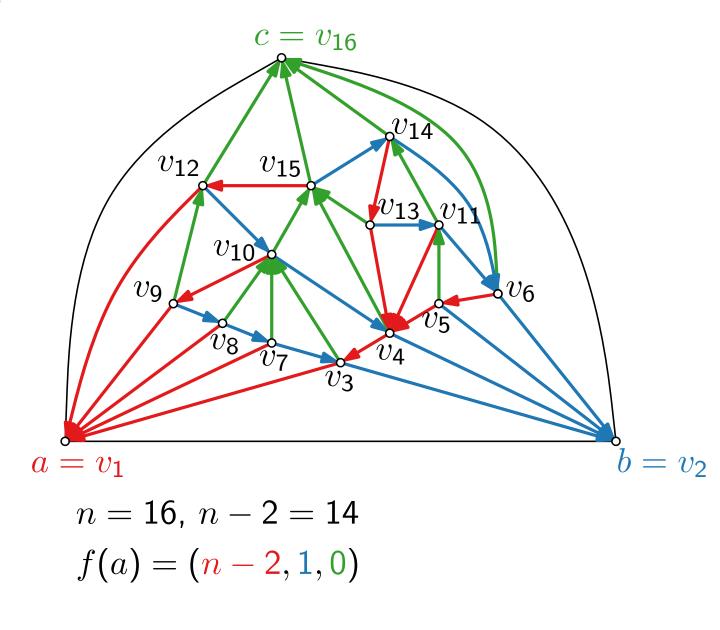


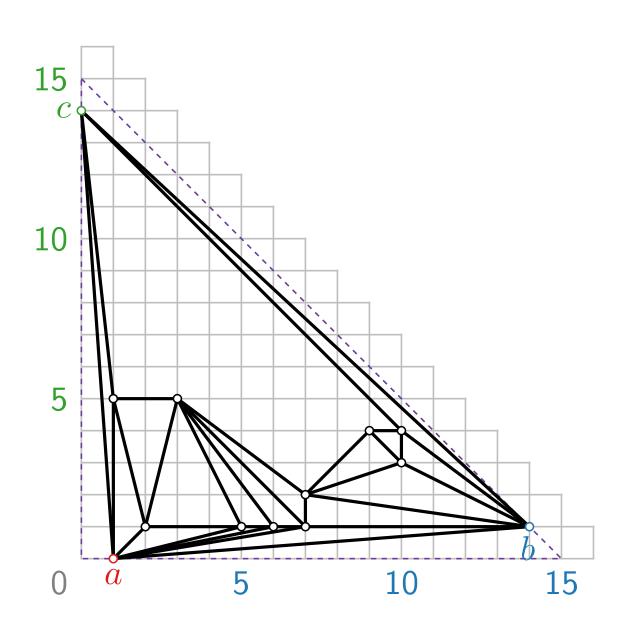


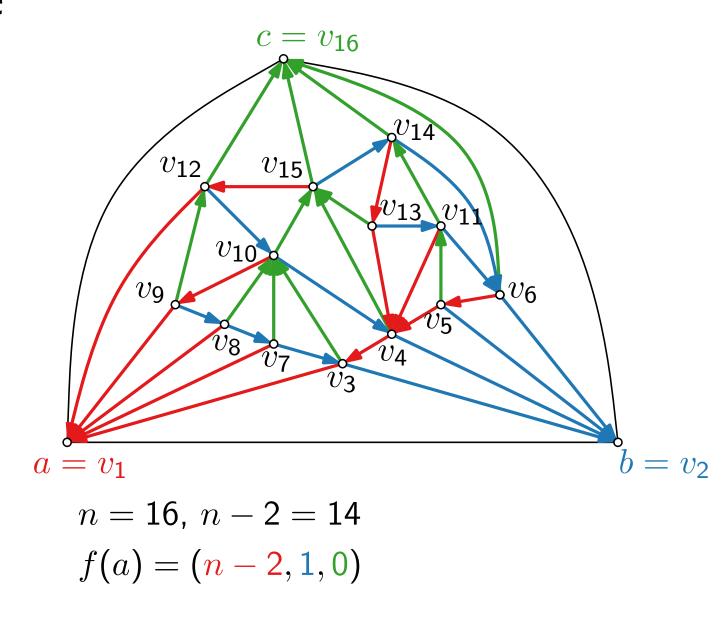


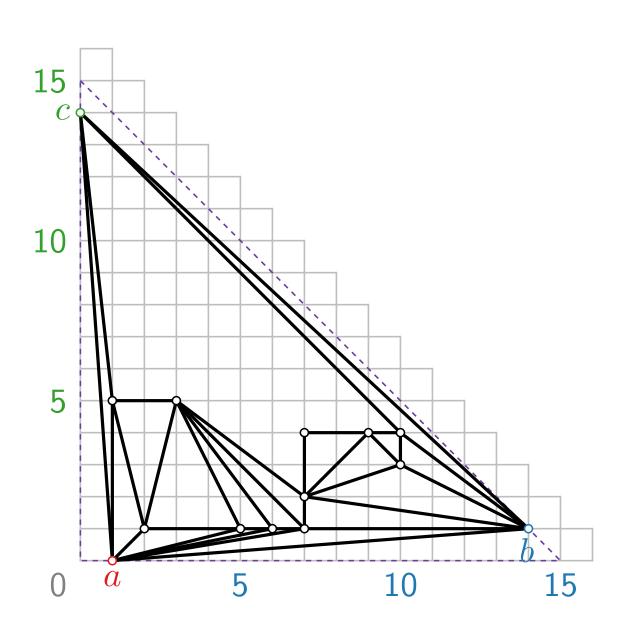


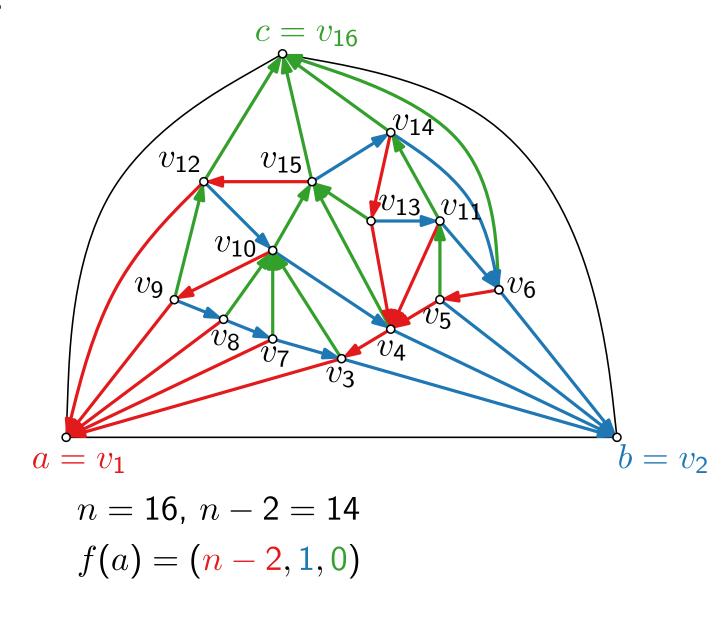


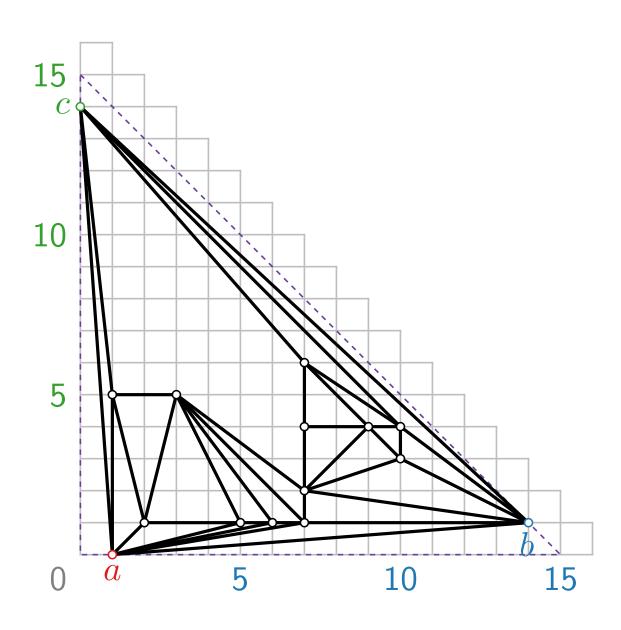


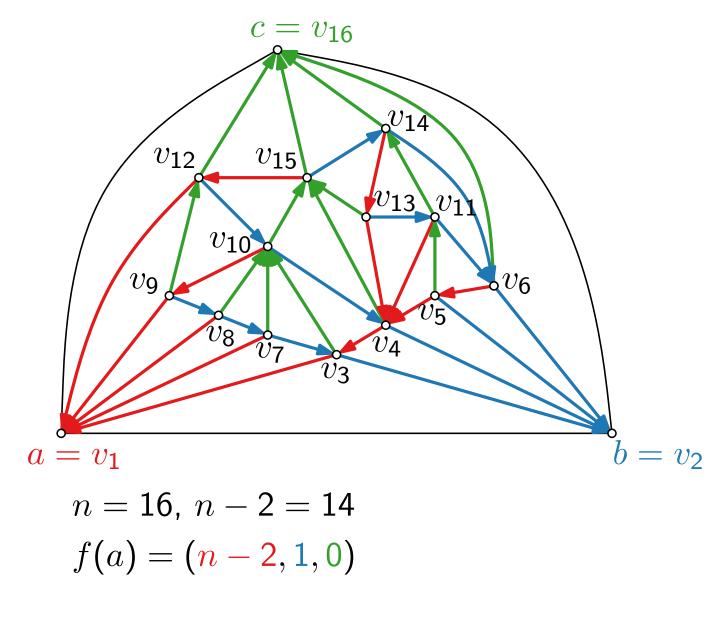


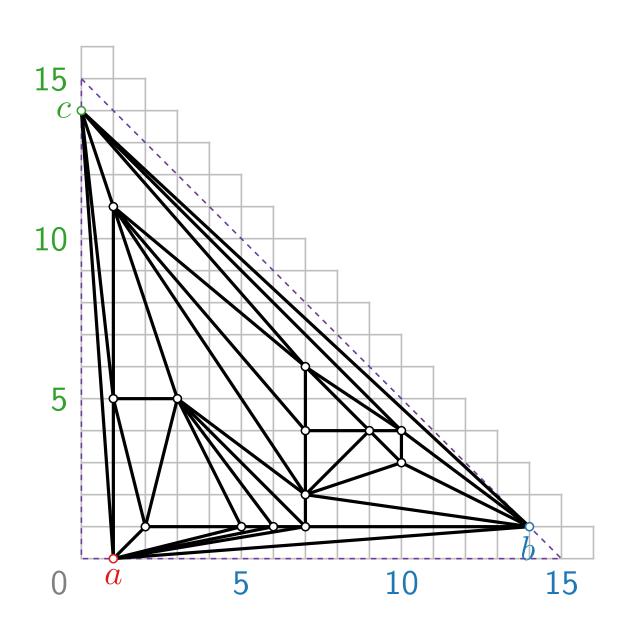


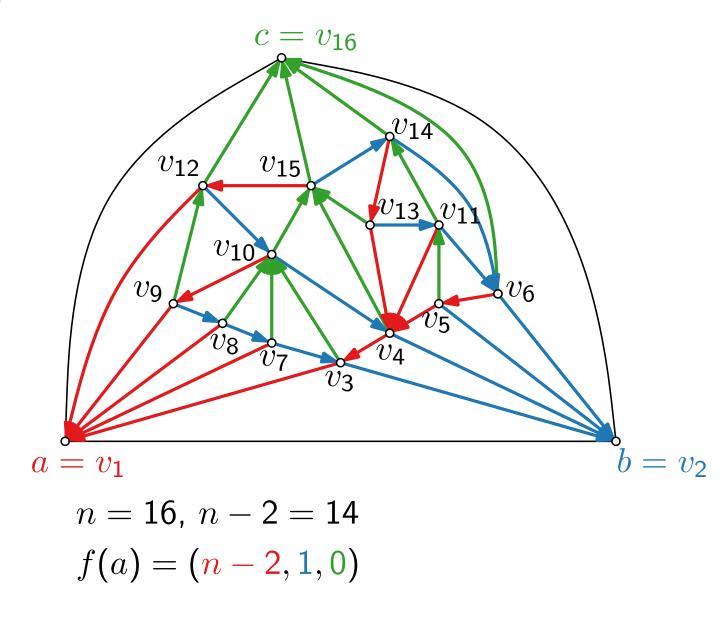


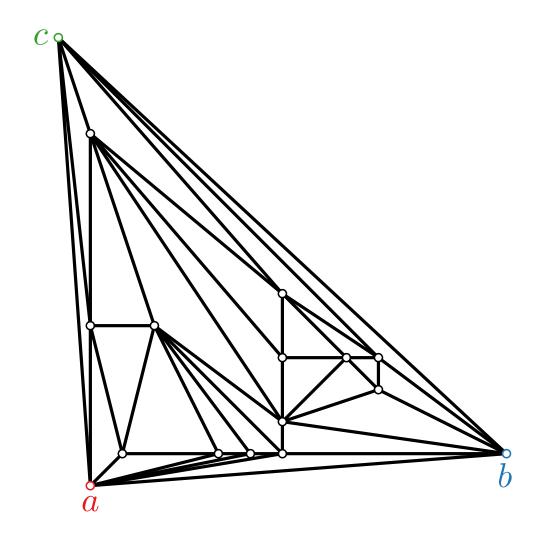


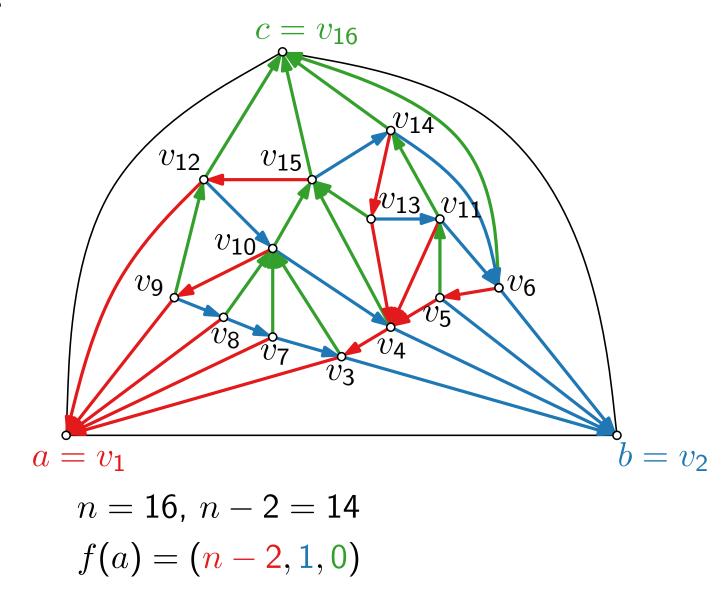












Theorem.

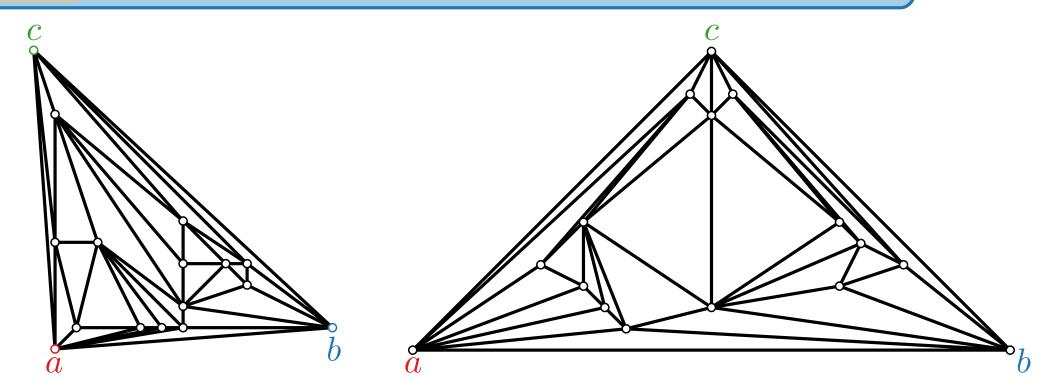
[De Fraysseix, Pach, Pollack '90]

Every n-vertex planar graph has a planar straight-line drawing of size $(2n-4)\times(n-2)$. Such a drawing can be computed in O(n) time.

Theorem.

[Schnyder '90]

Every n-vertex planar graph has a planar straight-line drawing of size $(n-2)\times(n-2)$. Such a drawing can be computed in O(n) time.



Theorem.

[De Fraysseix, Pach, Pollack '90]

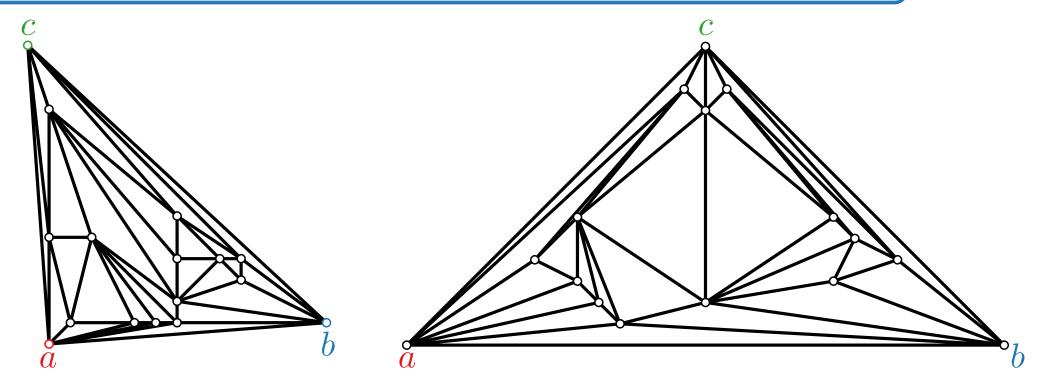
Every n-vertex planar graph has a planar straight-line drawing of size $(2n-4)\times(n-2)$. Such a drawing can be computed in O(n) time.

Theorem.

[Schnyder '90]

Every n-vertex planar graph has a planar straight-line drawing of size $(n-2)\times(n-2)$. Such a drawing can be computed in O(n) time.

Exercise!



Theorem.

[De Fraysseix, Pach, Pollack '90]

Every n-vertex planar graph has a planar straight-line drawing of size $(2n-4)\times(n-2)$. Such a drawing can be computed in O(n) time.

Theorem.

[Schnyder '90]

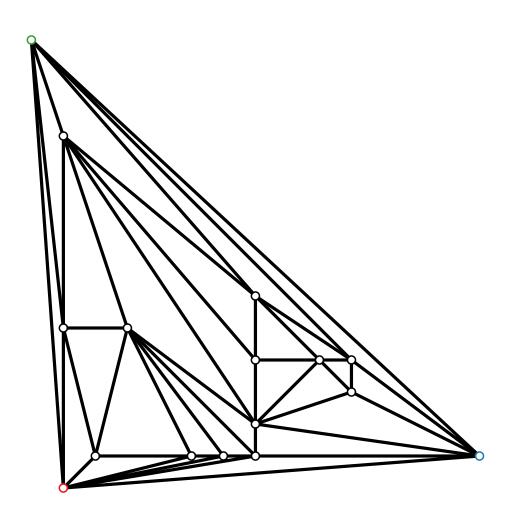
Every n-vertex planar graph has a planar straight-line drawing of size $(n-2)\times(n-2)$. Such a drawing can be computed in O(n) time.

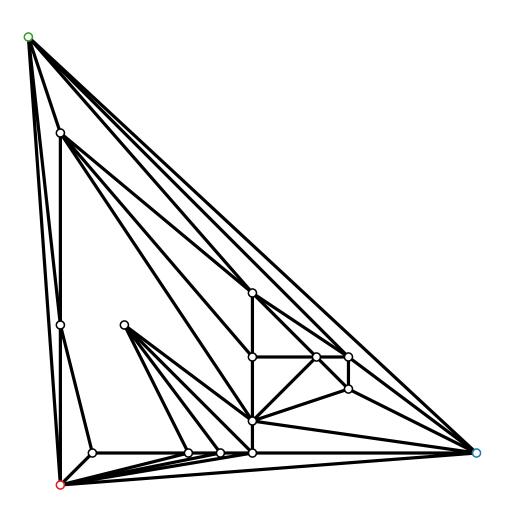
Exercise!

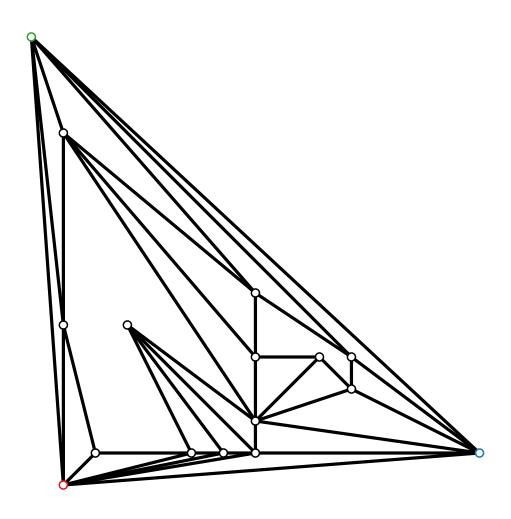
Theorem.

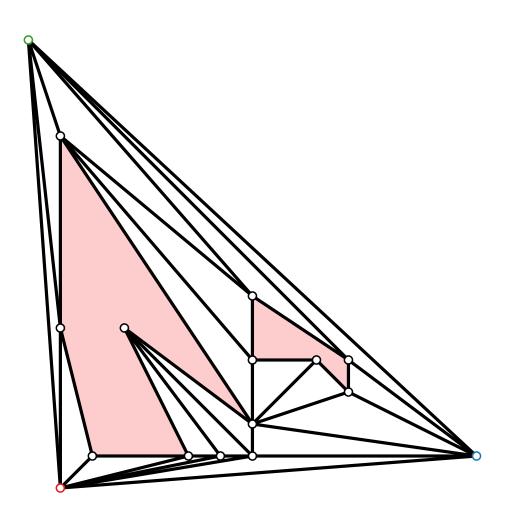
[Brandenburg '08]

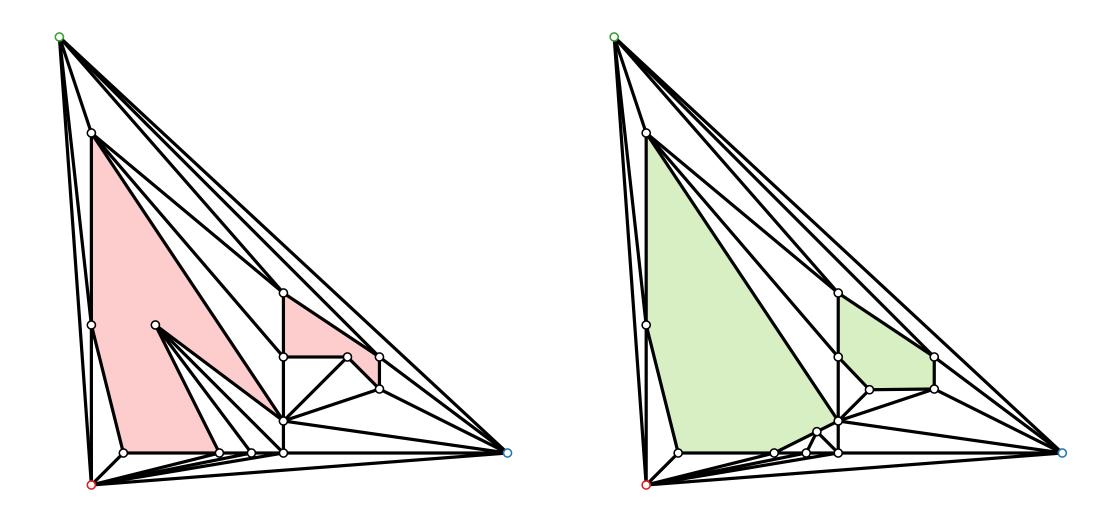
Every *n*-vertex planar graph has a planar straight-line drawing of size $\frac{4}{3}n \times \frac{2}{3}n$. Such a drawing can be computed in O(n) time.











Theorem.

[Kant '96]

Every n-vertex 3-connected planar graph has a planar straight-line drawing of size $(2n-4)\times(n-2)$ where all faces are drawn convex. Such a drawing can be computed in O(n) time.

Theorem.

[Kant '96]

Every n-vertex 3-connected planar graph has a planar straight-line drawing of size $(2n-4) \times (n-2)$ where all faces are drawn convex. Such a drawing can be computed in O(n) time.

Theorem.

[Chrobak & Kant '97]

Every n-vertex 3-connected planar graph has a planar straight-line drawing of size $(n-2) \times (n-2)$ where all faces are drawn convex. Such a drawing can be computed in O(n) time.

Theorem.

[Kant '96]

Every n-vertex 3-connected planar graph has a planar straight-line drawing of size $(2n-4) \times (n-2)$ where all faces are drawn convex. Such a drawing can be computed in O(n) time.

Theorem.

[Chrobak & Kant '97]

Every n-vertex 3-connected planar graph has a planar straight-line drawing of size $(n-2) \times (n-2)$ where all faces are drawn convex. Such a drawing can be computed in O(n) time.

Theorem.

[Felsner '01]

Every 3-connected planar graph with f faces has a planar straight-line drawing of size $(f-1) \times (f-1)$ where all faces are drawn convex. Such a drawing can be computed in O(n) time.

Literature

- [PGD Ch. 4.3] for detailed explanation of Schnyder woods etc.
- [Sch90] "Embedding planar graphs on the grid", Walter Schnyder, SoCG 1990 original paper on Schnyder realizer method.