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Planar Straight-Line Drawings

[De Fraysseix, Pach, Pollack ’90]Theorem.
Every n-vertex planar graph has a planar straight-line
drawing of size (2n− 4)× (n− 2).

Theorem.
Every n-vertex planar graph has a planar straight-line
drawing of size (n− 2)× (n− 2).

[Schnyder ’90]
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Planar Straight-Line Drawings

[De Fraysseix, Pach, Pollack ’90]Theorem.
Every n-vertex planar graph has a planar straight-line
drawing of size (2n− 4)× (n− 2).

Idea.

� Fix outer triangle.

� Compute coordinates of inner vertices

– based on outer triangle and

– how much space there should be for other vertices

– using weighted barycentric coordinates.
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(2n− 5)× (2n− 5).

(easier to show)
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Barycentric Coordinates

x
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C

Recall: barycenter(x1, . . . , xk) =
∑k

i=1 xi/k
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Barycentric Coordinates

Recall: barycenter(x1, . . . , xk) =
∑k

i=1 xi/k

Let A,B,C form a triangle, and let x lie in 4ABC.
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Barycentric Coordinates

Recall: barycenter(x1, . . . , xk) =
∑k

i=1 xi/k

Let A,B,C form a triangle, and let x lie in 4ABC.

(0, 0, 1)

(0, 1, 0)

(1, 0, 0)
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Barycentric Coordinates

Recall: barycenter(x1, . . . , xk) =
∑k

i=1 xi/k

Let A,B,C form a triangle, and let x lie in 4ABC.

The barycentric coordinates of x with respect to
4ABC are a triple (α, β, γ) ∈ R3

≥0 such that

� α + β + γ = 1 and

� x = αA+ βB + γC.

(0, 0, 1)

(0, 1, 0)

(1, 0, 0)

x

A

B

C

α + β + γ = 1
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Recall: barycenter(x1, . . . , xk) =
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Barycentric Representation

A barycentric representation of a graph G = (V,E) is an
assignment of barycentric coordinates to the vertices of G:

f : V → R3
≥0, v 7→ (v1, v2, v3)

with the following properties:
(B1) v1 + v2 + v3 = 1 for all v ∈ V ,

(B2) for each {x, y} ∈ E and each z ∈ V \ {x, y}
there exists a k ∈ {1, 2, 3} with xk < zk and yk < zk.
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Barycentric Representation
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Barycentric Representation

A barycentric representation of a graph G = (V,E) is an
assignment of barycentric coordinates to the vertices of G:

f : V → R3
≥0, v 7→ (v1, v2, v3)
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Barycentric Representation

A barycentric representation of a graph G = (V,E) is an
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Barycentric Representation

forbidden
triangle

A barycentric representation of a graph G = (V,E) is an
assignment of barycentric coordinates to the vertices of G:

f : V → R3
≥0, v 7→ (v1, v2, v3)

with the following properties:
(B1) v1 + v2 + v3 = 1 for all v ∈ V ,

(B2) for each {x, y} ∈ E and each z ∈ V \ {x, y}
there exists a k ∈ {1, 2, 3} with xk < zk and yk < zk.
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Barycentric Representations of Planar Graphs

C

BA

Lemma.
Let f : v 7→ (v1, v2, v3) be a barycentric representation of a
planar graph G, and let A,B,C ∈ R2 be in general position.
Then the mapping

φ : v ∈ V 7→ v1A+ v2B + v3C

yields a planar straight-line drawing of G inside 4ABC.
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Barycentric Representations of Planar Graphs

C

BA

Lemma.
Let f : v 7→ (v1, v2, v3) be a barycentric representation of a
planar graph G, and let A,B,C ∈ R2 be in general position.
Then the mapping

φ : v ∈ V 7→ v1A+ v2B + v3C

yields a planar straight-line drawing of G inside 4ABC.

no three points
on a line
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� No vertex x can lie on an edge {u, v}.
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Let f : v 7→ (v1, v2, v3) be a barycentric representation of a
planar graph G, and let A,B,C ∈ R2 be in general position.
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φ : v ∈ V 7→ v1A+ v2B + v3C

yields a planar straight-line drawing of G inside 4ABC.

(clear by definition)

no three points
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� No vertex x can lie on an edge {u, v}.
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Barycentric Representations of Planar Graphs
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� No vertex x can lie on an edge {u, v}.

BA

Lemma.
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Barycentric Representations of Planar Graphs
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no three points
on a line
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Schnyder Labeling

A

C

B

Let φ : v 7→ (v1, v2, v3) be a barycentric representation of a
planar graph G, and let A,B,C ∈ R2 be in general position.
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Schnyder Labeling
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Schnyder Labeling

x1 > y1, z1

y2 > x2, z2

z3 > x3, y3
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Let φ : v 7→ (v1, v2, v3) be a barycentric representation of a
planar graph G, and let A,B,C ∈ R2 be in general position.
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Schnyder Labeling

x1 > y1, z1

y2 > x2, z2

z3 > x3, y3
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Let φ : v 7→ (v1, v2, v3) be a barycentric representation of a
planar graph G, and let A,B,C ∈ R2 be in general position.
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Schnyder Labeling

x1 > y1, z1

y2 > x2, z2

z3 > x3, y3

We can label each angle in 4xyz uniquely with k ∈ {1, 2, 3}.

A

C

B

Let φ : v 7→ (v1, v2, v3) be a barycentric representation of a
planar graph G, and let A,B,C ∈ R2 be in general position.

x

z

y
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Schnyder Labeling

We can label each angle in 4xyz uniquely with k ∈ {1, 2, 3}.

Let φ : v 7→ (v1, v2, v3) be a barycentric representation of a
planar graph G, and let A,B,C ∈ R2 be in general position.

x

z

y

2

3
1

A Schnyder labeling of a plane triangulation G is a
labeling of all internal angles with labels 1, 2 and 3
such that:

Faces: The three angles of an internal face are
labeled 1, 2 and 3 in counterclockwise (ccw) order.

Vertices: The ccw order of labels around each vertex
consists of

� a non-empty interval of 1s

� followed by a non-empty interval of 2s

� followed by a non-empty interval of 3s.
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Weak Barycentric Representation

A weak barycentric representation of a graph G = (V,E)
is an assignment of barycentric coordinates to V :

φ : V → R3
≥0, v 7→ (v1, v2, v3)

with the following properties:
(W1) v1 + v2 + v3 = 1 for all v ∈ V ,

(W2) for each {x, y} ∈ E and each z ∈ V \ {x, y}
there exists a k ∈ {1, 2, 3} with
(xk, xk+1) <lex (zk, zk+1) and (yk, yk+1) <lex (zk, zk+1).
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Schnyder Drawing?

Theorem.
For a plane triangulation G, the mapping

f : v 7→ 1
n−1 (v1, v2, v3)

is a barycentric representation of G and, thus, yields a planar
straight-line drawing of G on the (n− 2)× (n− 2) grid.

[Schnyder ’90]

Set A = (0, 0), B = (n− 1, 0), and C = (0, n− 1).
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Results & Variations

Theorem. [De Fraysseix, Pach, Pollack ’90]
Every n-vertex planar graph has a planar straight-line drawing of size
(2n− 4)× (n− 2). Such a drawing can be computed in O(n) time.

Theorem. [Schnyder ’90]
Every n-vertex planar graph has a planar straight-line drawing of size
(n− 2)× (n− 2). Such a drawing can be computed in O(n) time.
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(2n− 4)× (n− 2). Such a drawing can be computed in O(n) time.

Theorem. [Schnyder ’90]
Every n-vertex planar graph has a planar straight-line drawing of size
(n− 2)× (n− 2). Such a drawing can be computed in O(n) time. Exercise!
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Theorem. [De Fraysseix, Pach, Pollack ’90]
Every n-vertex planar graph has a planar straight-line drawing of size
(2n− 4)× (n− 2). Such a drawing can be computed in O(n) time.

Theorem. [Schnyder ’90]
Every n-vertex planar graph has a planar straight-line drawing of size
(n− 2)× (n− 2). Such a drawing can be computed in O(n) time.

Theorem. [Brandenburg ’08]
Every n-vertex planar graph has a planar straight-line drawing of size
4
3n×

2
3n. Such a drawing can be computed in O(n) time.

Exercise!



17 - 4

Results & Variations



17 - 5

Results & Variations



17 - 6

Results & Variations



17 - 7

Results & Variations



17 - 8

Results & Variations



17 - 9

Results & Variations

Theorem. [Kant ’96]
Every n-vertex 3-connected planar graph has a planar straight-line drawing
of size (2n− 4)× (n− 2) where all faces are drawn convex.
Such a drawing can be computed in O(n) time.
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of size (2n− 4)× (n− 2) where all faces are drawn convex.
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Results & Variations

Theorem. [Kant ’96]
Every n-vertex 3-connected planar graph has a planar straight-line drawing
of size (2n− 4)× (n− 2) where all faces are drawn convex.
Such a drawing can be computed in O(n) time.

Theorem. [Chrobak & Kant ’97]
Every n-vertex 3-connected planar graph has a planar straight-line drawing
of size (n− 2)× (n− 2) where all faces are drawn convex.
Such a drawing can be computed in O(n) time.

Theorem. [Felsner ’01]
Every 3-connected planar graph with f faces has a planar straight-line
drawing of size (f − 1)× (f − 1) where all faces are drawn convex.
Such a drawing can be computed in O(n) time.
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