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Planar Straight-Line Drawings

Every n-vertex planar graph has a planar straight-line
drawing of size (2n — 4) x (n — 2).

‘Theorem. [Schnyder '90]
Every n-vertex planar graph has a planar straight-line

drawing of size Dﬁ@%&ﬂ[@n —5) x (2n — 5).)

Idea. (easier to show)

B Fix outer triangle.
B Compute coordinates of inner vertices
— based on outer triangle and
— how much space there should be for other vertices

— using weighted barycentric coordinates.




Barycentric Coordinates

Recall: barycenter(xy,...,x1) = Zle x; [k

Let A, B, C form a triangle, and let = lie in AABC.

The barycentric coordinates of = with respect to
AABC are a triple (o, 3,7) € RY, such that

mao+8+~v=1and
B x=cA+ 3B +~C.




Barycentric Representation

A barycentric representation of a graph G = (V, F) is an
assignment of barycentric coordinates to the vertices of G:

f:V— R?’Zo,v — (v1, V2, v3)

with the following properties:
(Bl) v1 + v +wv3=1forallv eV,

(B2) for each {z,y} € E and each z € V \ {x,y}
there exists a k € {1,2,3} with z; < z; and yi < zi.

C
forbidden max{x2, Y2}
triangle
Y
max{xs, Y3}
/\/ 2\
AT—A B

max{xi,y1}



Barycentric Representations of Planar Graphs

rL D no three points
emma. on a line

Let f: v — (v1,v2,03) be a barycentric representation of a J
planar graph G, and let A, B, (' € R? be in general position.
Then the mapping

4
(VK

$:vEV = v A+ 1B 4 03¢ , /
\yields a planar straight-line drawing of G inside AABC. u/\\\\
A ]3

B No vertex = can lie on an edge {u,v}. (clear by definition)

4

B No pair of edges {u,v} and {u',v'} crosses:

Ui > Uiy Vg V> UGV Ug > U, U US> Uy, U " How to find a
= {1, 5 N4k 1} =0 barycentrllc
representation?

w.lo.g. it =7 =2= u,, v, > uy, v, = separated by a straight line \ J



Schnyder Labeling

Let ¢: v — (v1,v2,v3) be a barycentric representation of a
planar graph G, and let A, B, C' € R? be in general position.

r1 > Y1, 21
Yp > T2, 22

Z3 > I3,Y3




Schnyder Labeling .

Let ¢: v — (v1,v2,v3) be a barycentric representation of a
planar graph G, and let A, B, C' € R? be in general position.

We can label each angle in Azyz uniquely with k£ € {1,2,3}.

r1 > Y1, 21

Yp > T2, 22

Z3 > I3,Y3



Schnyder Labeling

Let ¢: v — (v1,v2,v3) be a barycentric representation of a
planar graph G, and let A, B, C' € R? be in general position.

We can label each angle in Azyz uniquely with k£ € {1,2,3}.

A Schnyder labeling of a plane triangulation G is a

labeling of all internal angles with labels 1, 2 and 3
such that:

Faces: The three angles of an internal face are
labeled 1, 2 and 3 in counterclockwise (ccw) order.

Vertices: The ccw order of labels around each vertex
consists of

B a non-empty interval of 1s
m followed by a non-empty interval of 2s

m followed by a non-empty interval of 3s.

_14



Schnyder Wood

A Schnyder labeling induces an edge labeling.

A Schnyder wood (or realizer) of a plane triangulation
G = (V, E) is a partition of the inner edges of F into

three sets of oriented edges 11, 15, I3 such that, for 1 >

each inner vertex v € V, it holds that
B v has one outgoing edge in each of 711, 15, and 75.

B The ccw order of edges around v is:
leaving in 17, entering in 13, leaving in 15,

entering in 11, leaving in 13, entering in 15. 2 11
2/3
15




Schnyder Wood — Example and Properties




Schnyder Wood — Example and Properties

(a Schnyder labeling is not unique)



Schnyder Wood — Example and Properties
13

1>
11

® All inner edges incident to a, b, and
¢ are incoming in the same color.

m 77, 75, and 15 are trees.
Each spans all inner vertices and
one outer vertex (its root).




Schnyder Wood — Existence

'Lemma. [Kampen 1976]
Let GG be a plane triangulation with vertices a, b, ¢ on the outer face.
Then there exists a contractible edge {a, 2z} in G with x & {b, c}.

- v
Y4 U3 contracting 4 Us
—I\
v2  Ha,x} V2
(] U1
a a

... requires that a and = have exactly two common neighbors.



Schnyder Wood — Existence

‘Lemma. [Kampen 1976?
Let G be a plane triangulation with vertices a, b, ¢ on the outer face.
| Then there exists a contractible edge {a,z} in G with x & {b, c}.

J
N

e
Theorem.

Every plane triangulation has a Schnyder labeling and a Schnyder wood.

Proof by induction on # vertices via edge contractions.

... requires that a and = have exactly two common neighbors.

This constructive
proof yields an
algorithm for
computing a

Schnyder labeling.

It can be imple-
mented to run in

O(n) time.

— Exercise @

- 16



Schnyder Wood — More Properties

13 B From each vertex v there exists
a directed red path P;(v) to a,

25 directed blue path P (v) to b, and
P3 T a directed green path P;(v) to c.

P;(v): path from v to root of Tj;.

L TR0 TN : ‘Lemma.
’ Jo> B P (v), P»(v), Ps(v) cross only at v.




Schnyder Wood — More Properties

10 -

B From each vertex v there exists

a directed
a directed

Ps a directed

red path P;(v) to a,
blue path P (v) to b, and
green path P3(v) to c.

P;(v): path from v to root of Tj;.

Ri(v): set of faces contained in P, be, Ps.
R>(v): set of faces contained in s, ca, P;.
R3(v): set of faces contained in Py, ab, P».

p
o ) Lemma.

0 J2> B Pi(v), P»(v), P3(v) cross only at v.

R m For inner vertices u # v it holds that

u € R;(v) = R;i(u) € R;(v).

13




10 - 16

Schnyder Wood — More Properties

B From each vertex v there exists
a directed red path P;(v) to a,

a directed blue path (v) to b, and
P3 a directed green path P;(v) to c.

P;(v): path from v to root of Tj;.

R . .
‘A Ri(v): set of faces contained in P, be, Ps.
R>(v): set of faces contained in s, ca, P;.
R3(v): set of faces contained in Py, ab, P».
1 o ‘Lemma. )

B P (v), P»(v), Ps(v) cross only at v.

m For inner vertices u # v it holds that
u € Ri(v) = Ri(u) € R;(v).




10 -

Schnyder Wood — More Properties

B From each vertex v there exists
a directed red path P;(v) to a,

a directed blue path (v) to b, and
a directed green path P;(v) to c.

P;(v): path from v to root of Tj;.

Ri(v): set of faces contained in P, be, Ps.
R>(v): set of faces contained in s, ca, P;.
R3(v): set of faces contained in Py, ab, P».

20

‘Lemma.
B P (v), P»(v), Ps(v) cross only at v.

m For inner vertices u # v it holds that
u € Ri(v) = Ri(u) € R;(v).
Ry (0)] + | Ra(0)] 4 |75 (0)] = 20— 5

J




Schnyder Drawing

‘Theorem. [Schnyder '90]j
For a plane triangulation GG, the mapping

frvm= (v1,02,03) = 5= (|R1(v)], |Ra2(v)], | R3(v)])

Is a barycentric representation of GG and, thus, yields a planar
&straight—line drawing of GG

(B].) v +1vo+v3=1forallveV v
(B2) for each {x,y} € F and each z € V' \ {z,y} éi)

there exists k € {1,2,3} with x; < z; and ¥y < 2z o J
B {z,y} must lie in R;(z) for some i € {1,2,3} T

11 -
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Schnyder Drawing

Set A=(0,0), B=(2n—5,0), and C' = (0,2n — 5).

‘Theorem. [Schnyder ’90]N
For a plane triangulation GG, the mapping

f3 V= (v17v2av3) — 2n1_5(|R1(/U)‘7 ‘R2(U)|7 |R3(U)D

Is a barycentric representation of GG and, thus, yields a planar
straight-line drawing of G on the (2n —5) x (2n —5) grid.
(B].) v +1vo+v3=1forallveV e

(B2) for each {x,y} € F and each z € V' \ {z,y}
there exists k € {1,2,3} with z, < 2 and Yy < 2 z

B {z,y} must lie in R;(z) for some i € {1,2,3} T
By € Ri(z)= Ri(x), Ri(y) C R;(2)
= |Ri(z)], |Ri(y)| <|Ri(2)]

J
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Schnyder Drawing — Example

C
90,
3
6
3 avl b?]g
2 n=7 2m—5=9 f(vs)=(522)
1 f(v1) =(9,0,0) f(vs) = (1,2,0)
Ad SN | o F2)=(0,90) f(ve) = (4,1,4)
091 2 3 4 5 6 7 89 flvs) = (2,6,1)  f(v7)=(0,0,9)



Schnyder Drawing — Example

avl bvz
n=7, 2n—-5=9 f(vys) = (5,2,2)

f(vl) — (97070) f(1}5) — (17276)
f(UZ) — (Oa 9, O) f(v6) — (47 174)
f(v3) — (27 0, 1) f(v7) — (07079)

O R, N W A~ 1 OO N 00O O
@ ()
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Weak Barycentric Representation

: : C
A weak barycentric representation of a graph G = (V, E) Interior
Is an assignment of barycentric coordinates to V': C;f tl;f:gg'e
orpladen
O: V%R%O,vﬁ(vl,vg,vg) Y

with the following properties: T 7

(W].) v1+vo+v3=1forall veV,

(W2) for each {z,y} € F and each z € V' \ {z,y} A B
there exists a k € {1,2,3} with

(T, Trt1) <iex (28, 2k+1) and (Yi, Ye+1) <iex (2K, Zk+1)-

l.e., either yr < zp or

@ N Yk = 2k and Yrr1 < Zp4l
emma.

For a weak barycentric representation ¢: v — (v1,v2,v3) and | A\ /A

a triangle AABC', the mapping ndices modulo 3

frveVisv A4+ B+ 030

; : . Proof. — Exercise!
yields a planar drawing of G inside AABC.




Counting Vertices

P;(v): path from v to root of Tj.

Ry (v
Ry (v
R3 (%

subgraph
ubgraph
ubgraph

(Ri(v))] =

n

n

);
);
);
v

bounded by /5, be, ;.
bounded by /s, ca, P;.

|[Pi—1(v))]

bounded by P, ab, 5.

14 -



Counting Vertices

P;(v): path from v to root of Tj.

(Bs(v))] = [Pi-1(v)
v,= 10—-3=7
= 6—-3=3
13 = 8—3=5

): subgraph bounded by FP;, bc, Ps.
R (v): subgraph bounded by Fs, ca, P;.
): subgraph bounded by P, ab, P.
v

14 - 10
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Counting Vertices

P;(v): path from v to root of Tj.

c
; Ri(v): subgraph bounded by P, bc, Fs.
R (v): subgraph bounded by Fs, ca, P;.
13 o R3 v) subgraph bounded by P, ab, P.
) U = [V(Ri(v))| = [Pi—1(v)
2 )\ Rl U1 = 10—-3=7
[Je Uy = b—3=3
Pl . ] : o © U3 = 8—3=5 X
° . ‘Lemma.
P

m For inner vertices u # v it holds that
u € Ri(v) = (ui; uit1) <iex (vi,vit1).




Counting Vertices

P;(v): path from v to root of Tj.
): subgraph bounded by FP;, bc, Ps.
R (v): subgraph bounded by Fs, ca, P;.
):
Vv

subgraph bounded by F;,ab, P>.
(Bs(v))] = [Pi-1(v)
U1 = 10 -3 =7

14 - 19

Uy = b—3=3
U3 = 8—3=5
‘Lemma. A

m For inner vertices u # v it holds that

(NS Ri(v) — (uiyuz’—l—l) <lex (Uz', Uz’+1)-
kl vi+vot+uv3=n-—1




Schnyder Drawing*

Set A=(0,0), B=(n—1,0),and C = (0,n —1).

15



Schnyder Drawing* — Example

n=16,n—2 =14
f(a):(n—2,1,0)




Results & Variations

‘Theorem. [De Fraysseix, Pach, Pollack ’90]\
Every n-vertex planar graph has a planar straight-line drawing of size
\(27” —4) x (n — 2). Such a drawing can be computed in O(n) time.

J

‘Theorem. [Schnyder ’90]\
Every n-vertex planar graph has a planar straight-line drawing of size

k(n — 2) X (n — 2). Such a drawing can be computed in O(n) time.

C C

17 -



Results & Variations

‘Theorem. [De Fraysseix, Pach, Pollack ’90]\
Every n-vertex planar graph has a planar straight-line drawing of size
k(2n —4) x (n — 2). Such a drawing can be computed in O(n) time.

‘Theorem. [Schnyder ’90]\
Every n-vertex planar graph has a planar straight-line drawing of size
k(n — 2) x (n — 2). Such a drawing can be computed in O(n) time.«———

J

‘Theorem. |[Brandenburg ’08]\
Every n-vertex planar graph has a planar straight-line drawing of size
4 2

271 X

~ Exercisel

= 1. Such a drawing can be computed in O(n) time.
\.

17 -



Results & Variations

NN\
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Results & Variations

(Theorem. [Kant ’96]j
Every n-vertex 3-connected planar graph has a planar straight-line drawing
of size (2n — 4) x (n — 2) where all faces are drawn convex.

Such a drawing can be computed in O(n) time. )

‘Theorem. [Chrobak & Kant '97]j
Every n-vertex 3-connected planar graph has a planar straight-line drawing
of size (n — 2) x (n — 2) where all faces are drawn convex.

Such a drawing can be computed in O(n) time.

J

‘Theorem. [Felsner ’01]N
Every 3-connected planar graph with f faces has a planar straight-line
drawing of size (f — 1) x (f — 1) where all faces are drawn convex.

Such a drawing can be computed in O(n) time. )




| iterature

B [PGD Ch. 4.3] for detailed explanation of Schnyder woods etc.

B [Sch90] “Embedding planar graphs on the grid”, Walter Schnyder, SoCG 1990 —
original paper on Schnyder realizer method.

18
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